The algorithm for the primal-dual active set method works as follows:
\begin{itemize}
- \item [(0)] Initialize $\mathcal{A}_k$ and $\mathcal{F}_k$, such that $\mathcal{S}=\mathcal{A}_k\cup\mathcal{F}_k$ and $\mathcal{A}_k\cap\mathcal{F}_k=\O{}$ and set $k=1$.
+ \item [(0)] Initialize $\mathcal{A}_k$ and $\mathcal{F}_k$, such that $\mathcal{S}=\mathcal{A}_k\cup\mathcal{F}_k$ and $\mathcal{A}_k\cap\mathcal{F}_k=\emptyset$ and set $k=1$.
\item [(1)] Find the primal-dual pair $(U^k,\Lambda^k)$ that satisfies
\begin{align*}
AU^k + B\Lambda^k &= F,\\
This tutorial is quite similar to step-4. But to solve the obstacle problem, two new methods are
implemented: assemble\_mass\_matrix\_diagonal (TrilinosWrappers::SparseMatrix \&mass\_matrix) and
-update\_solution\_and\_constraints ().
+update\_solution\_and\_constraints ().
-\end{document}
\ No newline at end of file
+\end{document}