]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Add step-8.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Sun, 9 Jan 2000 17:18:02 +0000 (17:18 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Sun, 9 Jan 2000 17:18:02 +0000 (17:18 +0000)
git-svn-id: https://svn.dealii.org/trunk@2174 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/Attic/examples/step-by-step/step-8/Makefile [new file with mode: 0644]
deal.II/deal.II/Attic/examples/step-by-step/step-8/step-8.cc [new file with mode: 0644]
deal.II/examples/step-8/Makefile [new file with mode: 0644]
deal.II/examples/step-8/step-8.cc [new file with mode: 0644]

diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-8/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-8/Makefile
new file mode 100644 (file)
index 0000000..8753051
--- /dev/null
@@ -0,0 +1,94 @@
+# $Id$
+# Copyright W. Bangerth, University of Heidelberg, 1999
+
+# Template for makefiles for the examples subdirectory. In principle,
+# everything should be done automatically if you set the target file
+# here correctly. We get deduce it from the files in the present
+# directory:
+target   = $(basename $(shell echo step-*.cc))
+
+# All dependencies between files should be updated by the included
+# file Makefile.dep if necessary. Object files are compiled into
+# the archives ./Obj.a and ./Obj.g.a. By default, the debug version
+# is used to link. It you don't like that, change the following
+# variable to "off"
+debug-mode = on
+
+
+
+###############################################################################
+# Internals
+
+#deal include base path
+D = ../../../..
+
+include $D/common/Make.global_options
+
+# get lists of files we need
+
+
+# list of libraries needed to link with
+libs     = -ldeal_II_2d  -llac -lbase
+libs.g   = -ldeal_II_2d.g -llac.g -lbase.g
+
+
+# check whether we use debug mode or not
+ifeq ($(debug-mode),on)
+  libraries = $(target).go $(libs.g)
+  flags     = $(CXXFLAGS.g)
+else
+  libraries = $(target).go $(libs)
+  flags     = $(CXXFLAGS.o)
+endif
+
+
+
+# make rule for the target. $^ is the object file $(target).g?o
+$(target) : $(libraries)
+       @echo ============================ Linking $@
+       @$(CXX) $(flags) -o $@ $^
+
+# rule how to run the program
+run: $(target)
+       @echo ============================ Running $<
+       @./$(target)
+
+
+# rule to make object files
+%.go : %.cc
+       @echo ============================ Compiling with debugging information:   $<
+       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
+%.o : %.cc
+       @echo ============================ Compiling with optimization:   $<
+       @$(CXX) $(CXXFLAGS) -c $< -o $@
+
+
+clean:
+       -rm -f *.o *.go *~ Makefile.dep $(target) *gmv *gnuplot *gpl *eps
+
+
+
+.PHONY: clean
+
+
+# Rule to generate the dependency file. This file is
+# automagically remade whenever needed, i.e. whenever
+# one of the cc-/h-files changed. Make detects whether
+# to remake this file upon inclusion at the bottom
+# of this file.
+#
+# Since the script prefixes the output names by lib/g?o, we have to
+# strip that again (the script was written for the main libraries and
+# large projects where object files are put into subdirs)
+Makefile.dep: $(target).cc Makefile \
+              $(shell echo $D/base/include/base/*.h \
+                           $D/lac/include/lac/*.h  \
+                           $D/deal.II/include/*/*.h)
+       @echo ============================ Remaking Makefile
+       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
+               | perl -pi -e 's!lib/g?o/!!g;' \
+               > Makefile.dep
+
+
+include Makefile.dep
+
diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-8/step-8.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-8/step-8.cc
new file mode 100644 (file)
index 0000000..9fac1af
--- /dev/null
@@ -0,0 +1,961 @@
+/* $Id$ */
+/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
+
+                                // As usual, the first few include
+                                // files are already known, so we
+                                // will not comment on them further.
+#include <base/quadrature_lib.h>
+#include <base/function.h>
+#include <base/logstream.h>
+#include <lac/vector.h>
+#include <lac/full_matrix.h>
+#include <lac/sparse_matrix.h>
+#include <lac/solver_cg.h>
+#include <lac/vector_memory.h>
+#include <lac/precondition.h>
+#include <grid/tria.h>
+#include <dofs/dof_handler.h>
+#include <grid/grid_generator.h>
+#include <grid/tria_accessor.h>
+#include <grid/tria_iterator.h>
+#include <grid/tria_boundary_lib.h>
+#include <dofs/dof_accessor.h>
+#include <dofs/dof_tools.h>
+#include <fe/fe_values.h>
+#include <numerics/vectors.h>
+#include <numerics/matrices.h>
+#include <numerics/data_out.h>
+#include <dofs/dof_constraints.h>
+#include <numerics/error_estimator.h>
+
+                                // In this example, we need
+                                // vector-valued finite elements. The
+                                // suuport for these can be found in
+                                // the following include file:
+#include <fe/fe_system.h>
+                                // We will compose the vector-valued
+                                // finite elements from regular Q1
+                                // elements which can be found here,
+                                // as usual:
+#include <fe/fe_lib.lagrange.h>
+
+                                // This again is C++:
+#include <fstream>
+
+
+                                // The main class is, except for its
+                                // name, almost unchanged with
+                                // respect to the step-6 example. The
+                                // only change is the use of a
+                                // different class for the ``fe''
+                                // variable.
+template <int dim>
+class ElasticProblem 
+{
+  public:
+    ElasticProblem ();
+    ~ElasticProblem ();
+    void run ();
+    
+  private:
+    void setup_system ();
+    void assemble_system ();
+    void solve ();
+    void refine_grid ();
+    void output_results (const unsigned int cycle) const;
+
+    Triangulation<dim>   triangulation;
+    DoFHandler<dim>      dof_handler;
+
+                                    // Instead of a concrete finite
+                                    // element class such as
+                                    // ``FEQ1'', we now use a more
+                                    // generic one, ``FESystem''. In
+                                    // fact, it is not a finite
+                                    // element itself, but rather a
+                                    // class that can be used to
+                                    // stack several usual elements
+                                    // together to form one
+                                    // vector-valued finite
+                                    // element. In our case, we will
+                                    // compose the vector-valued
+                                    // element of ``FEQ1'' objects,
+                                    // as shown below in the
+                                    // constructor of this class.
+    FESystem<dim>        fe;
+
+    ConstraintMatrix     hanging_node_constraints;
+
+    SparseMatrixStruct   sparsity_pattern;
+    SparseMatrix<double> system_matrix;
+
+    Vector<double>       solution;
+    Vector<double>       system_rhs;
+};
+
+
+                                // Before going over to the
+                                // implementation of the main class,
+                                // we declare and define the class
+                                // which describes the right hand
+                                // side. This time, the right hand
+                                // side is vector-valued, as is the
+                                // solution, so we will describe the
+                                // new elements in some more detail.
+template <int dim>
+class RightHandSide :  public Function<dim> 
+{
+  public:
+                                    // The first thing is that
+                                    // vector-valued functions have a
+                                    // constructor, since they need
+                                    // to pass down to the base class
+                                    // of how many components the
+                                    // function consists. The default
+                                    // value in the constructor of
+                                    // the base class is one, so we
+                                    // need not define a constructor
+                                    // for the usual scalar function.
+    RightHandSide ();
+    
+                                    // The next function is a
+                                    // replacement for the ``value''
+                                    // function of the previous
+                                    // examples. There, a second
+                                    // parameter ``component'' was
+                                    // given, which denoted which
+                                    // component was requested. Here,
+                                    // we implement a function that
+                                    // returns the whole vector of
+                                    // values at the given place at
+                                    // once.
+    virtual void vector_value (const Point<dim> &p,
+                              Vector<double>   &values) const;
+
+                                    // Then, in analogy to the
+                                    // ``value_list'' function, there
+                                    // is a function
+                                    // ``vector_value_list'', which
+                                    // returns the values of the
+                                    // vector-valued function at
+                                    // several points at once:
+    virtual void vector_value_list (const vector<Point<dim> > &points,
+                                   vector<Vector<double> >   &value_list) const;
+};
+
+
+                                // This is the constructor of the
+                                // right hand side class. As said
+                                // above, it only passes down to the
+                                // base class the number of
+                                // components, which is ``dim'' in
+                                // the present case. Note that
+                                // although the implementation is
+                                // very short here, we do not move it
+                                // into the class declaration, since
+                                // our style guides require that
+                                // inside the class declaration only
+                                // declarations have to happen and
+                                // that definitions are always to be
+                                // found outside.
+template <int dim>
+RightHandSide<dim>::RightHandSide () :
+               Function<dim> (dim)
+{};
+
+
+                                // This is the function that returns
+                                // the whole vector of values at the
+                                // point ``p'' at once:
+template <int dim>
+inline
+void RightHandSide<dim>::vector_value (const Point<dim> &p,
+                                      Vector<double>   &values) const 
+{
+                                  // To prevent cases where the
+                                  // return value has not previously
+                                  // been set to the right size
+                                  // (which is kind of a convention
+                                  // in the deal.II library), we test
+                                  // for this case and otherwise
+                                  // throw an exception:
+  Assert (values.size() == dim, 
+         ExcVectorHasWrongSize (values.size(), dim));
+                                  // Likewise, if by some accident
+                                  // someone tried to compile and run
+                                  // the program in only one space
+                                  // dimension (in which the elastic
+                                  // equations do not make much sense
+                                  // since they reduce to the
+                                  // ordinary Laplace equation), we
+                                  // terminate the program if the
+                                  // dimension is not as expected.
+  Assert (dim >= 2, ExcInternalError());
+  
+                                  // The rest of the function is as
+                                  // would probably be expected given
+                                  // the form of the right hand side
+                                  // function. First we define the
+                                  // centers of the two points around
+                                  // which are the sources of
+                                  // x-displacement, i.e. (0.5,0) and
+                                  // (-0.5,0). Note that upon
+                                  // construction of the ``Point''
+                                  // objects, all components are set
+                                  // to zero.
+  Point<dim> point_1, point_2;
+  point_1(0) = 0.5;
+  point_2(0) = -0.5;
+  
+                                  // If now the point ``p'' is in the
+                                  // circle of radius 0.2 around one
+                                  // of these points, then set the
+                                  // force in x-direction to one,
+                                  // otherwise to zero:
+  if (((p-point_1).square() < 0.2*0.2) ||
+      ((p-point_2).square() < 0.2*0.2))
+    values(0) = 1;
+  else
+    values(0) = 0;
+  
+                                  // Likewise, if ``p'' is in the
+                                  // vicinity of the origin, then set
+                                  // the y-force to 1, otherwise to
+                                  // zero:
+  if (p.square() < 0.2*0.2)
+    values(1) = 1;
+  else
+    values(1) = 0;    
+};
+
+
+
+                                // Now, this is the function of the
+                                // right hand side class that returns
+                                // the values at several points at
+                                // once.
+template <int dim>
+void RightHandSide<dim>::vector_value_list (const vector<Point<dim> > &points,
+                                           vector<Vector<double> >   &value_list) const 
+{
+                                  // First we define an abbreviation
+                                  // for the number of points which
+                                  // we shall work on:
+  const unsigned int n_points = points.size();
+
+                                  // Then we check whether the number
+                                  // of output slots has been set
+                                  // correctly, i.e. to the number of
+                                  // input points:
+  Assert (value_list.size() == n_points, 
+         ExcVectorHasWrongSize (value_list.size(), n_points));
+
+                                  // Finally we treat each of the
+                                  // points. In one of the previous
+                                  // examples, we have explained why
+                                  // the
+                                  // ``value_list''/``vector_value_list''
+                                  // function had been introduced: to
+                                  // prevent us from calling virtual
+                                  // functions too frequently. On the
+                                  // other hand, we now need to
+                                  // implement the same function
+                                  // twice, which can lead to
+                                  // confusion if one function is
+                                  // changed but the other is
+                                  // not. However, we can prevent
+                                  // this situation using the
+                                  // following construct:
+  for (unsigned int p=0; p<n_points; ++p)
+    RightHandSide<dim>::vector_value (points[p],
+                                     value_list[p]);
+                                  // It calls the ``vector_value''
+                                  // function defined above for each
+                                  // point, and thus preempts all
+                                  // chances for inconsistency. It is
+                                  // important to note how the
+                                  // function was called: using the
+                                  // full class qualification using
+                                  // ``RightHandSide::'', since this
+                                  // calls the function directly and
+                                  // not using the virtual function
+                                  // table. The call is thus as fast
+                                  // as a call to any non-virtual
+                                  // function. In addition, we have
+                                  // declared the ``vector_value''
+                                  // function ``inline'', i.e. the
+                                  // compiler can remove the function
+                                  // call altogether and the
+                                  // resulting code can in principle
+                                  // be as fast as if we had
+                                  // duplicated the code.
+};
+
+
+
+
+template <int dim>
+ElasticProblem<dim>::ElasticProblem () :
+               dof_handler (triangulation),
+                                                // As said before, we
+                                                // would like to
+                                                // construct one
+                                                // vector-valued
+                                                // finite element as
+                                                // outer product of
+                                                // several scala
+                                                // finite
+                                                // elements. Of
+                                                // course, the number
+                                                // of scalar finite
+                                                // element we would
+                                                // like to stack
+                                                // together equals
+                                                // the number of
+                                                // components the
+                                                // solution function
+                                                // has, which is
+                                                // ``dim'' since we
+                                                // consider
+                                                // displacement in
+                                                // each space
+                                                // direction. The
+                                                // ``FESystem'' class
+                                                // can handle this:
+                                                // we pass it the
+                                                // finite element of
+                                                // which we would
+                                                // like to compose
+                                                // the system of, and
+                                                // how often it shall
+                                                // be repeated:
+               fe (FEQ1<dim>(), dim)
+                                // In fact, the ``FESystem'' class
+                                // has several more constructors
+                                // which can perform more complex
+                                // operations that just stacking
+                                // together several scalar finite
+                                // elements of the same type into
+                                // one; we will get to know these
+                                // possibilities in later examples.
+                                //
+                                // It should be noted that the
+                                // ``FESystem'' object thus created
+                                // does not actually use the finite
+                                // element which we have passed to it
+                                // as first parameter. We could thus
+                                // use an anonymous object created
+                                // in-place. The ``FESystem''
+                                // constructor only needs the
+                                // parameter to deduce the type of
+                                // the finite element from this and
+                                // then creates objects of the
+                                // underlying finite element type
+                                // itself.
+{};
+
+
+
+template <int dim>
+ElasticProblem<dim>::~ElasticProblem () 
+{
+  dof_handler.clear ();
+};
+
+
+                                // Setting up the system of equations
+                                // is equal to the function used in
+                                // the step-6 example. The
+                                // ``DoFHandler'' class and all other
+                                // classes used take care of the
+                                // vector-valuedness of the finite
+                                // element themselves (in fact, the
+                                // do not do so, since they only take
+                                // care how many degrees of freedom
+                                // there are per vertex, line and
+                                // cell, and they do not askwhat they
+                                // represent, i.e. whether the finite
+                                // element under consideration is
+                                // vector-valued or whether it is,
+                                // for example, a scalar Hermite
+                                // element with several degrees of
+                                // freedom on each vertex).
+template <int dim>
+void ElasticProblem<dim>::setup_system ()
+{
+  dof_handler.distribute_dofs (fe);
+  hanging_node_constraints.clear ();
+  DoFTools::make_hanging_node_constraints (dof_handler,
+                                          hanging_node_constraints);
+  hanging_node_constraints.close ();
+  sparsity_pattern.reinit (dof_handler.n_dofs(),
+                          dof_handler.n_dofs(),
+                          dof_handler.max_couplings_between_dofs());
+                                  // When making the sparsity
+                                  // pattern, there is some potential
+                                  // for optimization if not all
+                                  // components couple to all
+                                  // others. However, this is not the
+                                  // case for the elastic equations,
+                                  // so we use the standard call:
+  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+
+  hanging_node_constraints.condense (sparsity_pattern);
+
+  sparsity_pattern.compress();
+
+  system_matrix.reinit (sparsity_pattern);
+
+  solution.reinit (dof_handler.n_dofs());
+  system_rhs.reinit (dof_handler.n_dofs());
+};
+
+
+                                // The big changes in this program
+                                // are in the creation of matrix and
+                                // right hand side, since they are
+                                // problem-dependent. We will go
+                                // through that process step-by-step,
+                                // since it is a bit more complicated
+                                // than in previous examples.
+template <int dim>
+void ElasticProblem<dim>::assemble_system () 
+{  
+                                  // First thing: the quadrature
+                                  // formula does not need
+                                  // modification since we still deal
+                                  // with bilinear functions.
+  QGauss2<dim>  quadrature_formula;
+                                  // Also, the ``FEValues'' objects
+                                  // takes care of everything for us
+                                  // (or better: it does not really
+                                  // so; as in the comment in the
+                                  // function setting up the system,
+                                  // here as well the ``FEValues''
+                                  // object computes the same data on
+                                  // each cell, but it has some
+                                  // functionality to access data
+                                  // stored inside the finite element
+                                  // where they are precomputed upon
+                                  // construction).
+  FEValues<dim> fe_values (fe, quadrature_formula, 
+                          UpdateFlags(update_values    |
+                                      update_gradients |
+                                      update_q_points  |
+                                      update_JxW_values));
+
+                                  // The number of degrees of freedom
+                                  // per cell we now obviously ask
+                                  // from the composed finite element
+                                  // rather than from the underlying
+                                  // scalar Q1 element. Here, it is
+                                  // ``dim'' times the number of
+                                  // degrees of freedom per cell of
+                                  // the Q1 element, but this is not
+                                  // something we need to care about.
+  const unsigned int dofs_per_cell = fe.dofs_per_cell;
+  const unsigned int n_q_points    = quadrature_formula.n_quadrature_points;
+
+  FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
+  Vector<double>     cell_rhs (dofs_per_cell);
+
+  vector<int>        local_dof_indices (dofs_per_cell);
+
+                                  // As was shown in previous
+                                  // examples as well, we need a
+                                  // place where to store the values
+                                  // of the coefficients at all the
+                                  // quadrature points on a cell. In
+                                  // the present situation, we have
+                                  // two coefficients, lambda and mu.
+  vector<double>     lambda_values (n_q_points);
+  vector<double>     mu_values (n_q_points);
+
+                                  // Well, we could as well have
+                                  // omitted the above two arrays
+                                  // since we will use constant
+                                  // coefficients for both lambda and
+                                  // mu, which can be declared like
+                                  // this. They both represent
+                                  // functions always returning the
+                                  // constant value 1.0. Although we
+                                  // could omit the respective
+                                  // factors in the assemblage of the
+                                  // matrix, we use them here for
+                                  // purpose of demonstration.
+  ConstantFunction<dim> lambda(1.), mu(1.);
+
+                                  // Then again, we need to have the
+                                  // same for the right hand
+                                  // side. This is exactly as before
+                                  // in previous examples. However,
+                                  // we now have a vector-valued
+                                  // right hand side, which is why
+                                  // the data type of the
+                                  // ``rhs_values'' array is
+                                  // changed. We initialize it by
+                                  // ``n_q_points'' elements, each of
+                                  // which is a ``Vector<double>''
+                                  // with ``dim'' elements.
+  RightHandSide<dim>      right_hand_side;
+  vector<Vector<double> > rhs_values (n_q_points,
+                                     Vector<double>(dim));
+
+
+                                  // Now we can begin with the loop
+                                  // over all cells:
+  DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
+                                       endc = dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      cell_matrix.clear ();
+      cell_rhs.clear ();
+
+      fe_values.reinit (cell);
+
+      const FullMatrix<double> 
+       & shape_values = fe_values.get_shape_values();
+      const vector<vector<Tensor<1,dim> > >
+       & shape_grads  = fe_values.get_shape_grads();
+      const vector<double>
+       & JxW_values   = fe_values.get_JxW_values();
+      const vector<Point<dim> >
+       & q_points     = fe_values.get_quadrature_points();
+      
+      lambda.value_list (q_points, lambda_values);
+      mu.value_list     (q_points, mu_values);
+
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       {
+         const unsigned int component_i = fe.system_to_component_index(i).first;
+         
+         for (unsigned int j=0; j<dofs_per_cell; ++j) 
+           {
+             const unsigned int component_j = fe.system_to_component_index(j).first;
+             
+             for (unsigned int q_point=0; q_point<fe_values.n_quadrature_points; ++q_point)
+               {
+                 cell_matrix(i,j) 
+                   += 
+                                                    // (lambda d_i u_i, d_j v_j)
+                   (
+                     (shape_grads[i][q_point][component_i] *
+                      shape_grads[j][q_point][component_j] *
+                      lambda_values[q_point])
+                     +                             // (mu d_i u_j, d_i v_j)
+                     (shape_grads[i][q_point][component_j] *
+                      shape_grads[j][q_point][component_i] *
+                      mu_values[q_point])
+                     +                             // (mu d_i v_j, d_i v_j)
+                     ((component_i == component_j) ?
+                      (shape_grads[i][q_point] *
+                       shape_grads[j][q_point] *
+                       mu_values[q_point])  :
+                      0)
+                   )
+                   *
+                   JxW_values[q_point];
+               };
+           };
+       };
+
+
+      right_hand_side.vector_value_list (q_points, rhs_values);
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       {
+         const unsigned int component_i = fe.system_to_component_index(i).first;
+         
+         for (unsigned int q_point=0; q_point<fe_values.n_quadrature_points; ++q_point)
+           cell_rhs(i) += shape_values(i,q_point) *
+                          rhs_values[q_point](component_i) *
+                          JxW_values[q_point];
+       };
+
+                                      // The transfer from local
+                                      // degrees of freedom into the
+                                      // global matrix and right hand
+                                      // side vector does not depend
+                                      // on the equation under
+                                      // consideration, and is thus
+                                      // the same as in all previous
+                                      // examples.
+      cell->get_dof_indices (local_dof_indices);
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       {
+         for (unsigned int j=0; j<dofs_per_cell; ++j)
+           system_matrix.add (local_dof_indices[i],
+                              local_dof_indices[j],
+                              cell_matrix(i,j));
+         
+         system_rhs(local_dof_indices[i]) += cell_rhs(i);
+       };
+    };
+
+                                  // The interpolation of the
+                                  // boundary values needs a small
+                                  // modification: since the solution
+                                  // function is vector-valued, so
+                                  // needs to be the boundary
+                                  // values. The ``ZeroFunction''
+                                  // constructor accepts a parameter
+                                  // that tells it that it shall
+                                  // represent a vector valued,
+                                  // constant zero function with that
+                                  // many components. By default,
+                                  // this parameter is equal to one,
+                                  // in which case the
+                                  // ``ZeroFunction'' object would
+                                  // represent a scalar
+                                  // function. Since the solution
+                                  // vector has ``dim'' components,
+                                  // we need to pass ``dim'' as
+                                  // number of components to the zero
+                                  // function as well.
+  map<int,double> boundary_values;
+  VectorTools::interpolate_boundary_values (dof_handler,
+                                           0,
+                                           ZeroFunction<dim>(dim),
+                                           boundary_values);
+  MatrixTools<dim>::apply_boundary_values (boundary_values,
+                                          system_matrix,
+                                          solution,
+                                          system_rhs);
+
+  hanging_node_constraints.condense (system_matrix);
+  hanging_node_constraints.condense (system_rhs);
+};
+
+
+
+                                // The solver does not care about
+                                // where the system of equations
+                                // comes, as long as it stays
+                                // positive definite and symmetric
+                                // (which are the requirements for
+                                // the use of the CG solver), which
+                                // the system is. Therefore, we need
+                                // not change anything.
+template <int dim>
+void ElasticProblem<dim>::solve () 
+{
+  SolverControl           solver_control (1000, 1e-12);
+  PrimitiveVectorMemory<> vector_memory;
+  SolverCG<>              cg (solver_control, vector_memory);
+
+  PreconditionRelaxation<>
+    preconditioner(system_matrix,
+                  &SparseMatrix<double>::template precondition_SSOR<double>,
+                  1.2);
+
+  cg.solve (system_matrix, solution, system_rhs,
+           preconditioner);
+
+  hanging_node_constraints.distribute (solution);
+};
+
+
+
+                                // The function that does the
+                                // refinement of the grid is the same
+                                // as in the step-6 example. The
+                                // quadrature formula is adapted to
+                                // the linear elements again. Note
+                                // that the error estimator by
+                                // default adds up the estimated
+                                // obtained from all components of
+                                // the finite element solution, that
+                                // is it uses the displacement in all
+                                // directions with the same
+                                // weight. If we would like the grid
+                                // to be adapted to the
+                                // x-displacement only, we could pass
+                                // the function an additional
+                                // parameter which tells it to do so
+                                // and do not consider the
+                                // displacements in all other
+                                // directions for the error
+                                // indicators.
+template <int dim>
+void ElasticProblem<dim>::refine_grid ()
+{
+  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+  KellyErrorEstimator<dim>::FunctionMap neumann_boundary;
+  KellyErrorEstimator<dim>::estimate (dof_handler,
+                                     QGauss2<dim-1>(),
+                                     neumann_boundary,
+                                     solution,
+                                     estimated_error_per_cell);
+
+  triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell,
+                                                0.3, 0.03);
+
+  triangulation.execute_coarsening_and_refinement ();
+};
+
+
+                                // The output happens mostly as has
+                                // been shown in previous examples
+                                // already. The only difference is
+                                // not that the solution function is
+                                // vector values. The ``DataOut''
+                                // class takes care of this
+                                // automatically, but we have to give
+                                // each component of the solution
+                                // vector a different name.
+template <int dim>
+void ElasticProblem<dim>::output_results (const unsigned int cycle) const
+{
+  string filename = "solution-";
+  filename += ('0' + cycle);
+  Assert (cycle < 10, ExcInternalError());
+  
+  filename += ".gmv";
+  ofstream output (filename.c_str());
+
+  DataOut<dim> data_out;
+  data_out.attach_dof_handler (dof_handler);
+
+
+                                  // As said above, we need a
+                                  // different name for each
+                                  // component of the solution
+                                  // function. To pass one name for
+                                  // each component, a vector of
+                                  // strings is used. Since the
+                                  // number of components is the same
+                                  // as the number of dimensions we
+                                  // are working in, the following
+                                  // ``switch'' statement is used.
+                                  //
+                                  // We note that some graphics
+                                  // programs have restriction as to
+                                  // what characters are allowed in
+                                  // the names of variables. The
+                                  // library therefore supports only
+                                  // the minimal subset of these
+                                  // characters that is supported by
+                                  // all programs. Basically, these
+                                  // are letters, numbers,
+                                  // underscores, and some other
+                                  // characters, but in particular no
+                                  // whitespace and minus/hyphen. The
+                                  // library will throw an exception
+                                  // otherwise, at least if in debug
+                                  // mode.
+  vector<string> solution_names;
+  switch (dim)
+    {
+      case 1:
+           solution_names.push_back ("displacement");
+           break;
+      case 2:
+           solution_names.push_back ("x_displacement");            
+           solution_names.push_back ("y_displacement");
+           break;
+      case 3:
+           solution_names.push_back ("x_displacement");            
+           solution_names.push_back ("y_displacement");
+           solution_names.push_back ("z_displacement");
+           break;
+                                            // It is good style to
+                                            // let the program die if
+                                            // we run upon a case
+                                            // which we did not
+                                            // consider. Remember
+                                            // that the ``Assert''
+                                            // macro throws an
+                                            // exception if the
+                                            // condition in the first
+                                            // parameter is not
+                                            // satisfied. Of course,
+                                            // the condition
+                                            // ``false'' can never be
+                                            // satisfied, so the
+                                            // program will always
+                                            // abort whenever it gets
+                                            // to this statement:
+      default:
+           Assert (false, ExcInternalError());
+    };
+            
+                                  // After setting up the names for
+                                  // the different components of the
+                                  // solution vector, we can add the
+                                  // solution vector to the list of
+                                  // data vectors scheduled for
+                                  // output. Note that the following
+                                  // function takes a vector of
+                                  // strings as second argument,
+                                  // whereas the one which we have
+                                  // used in all previous examples
+                                  // accepted a string there. In
+                                  // fact, the latter function is
+                                  // only a shortcut for the function
+                                  // which we call here: it puts the
+                                  // single string that is passed to
+                                  // it into a vector of strings with
+                                  // only one element and forwards
+                                  // that to the other function.
+  data_out.add_data_vector (solution, solution_names);
+  data_out.build_patches ();
+  data_out.write_gmv (output);
+};
+
+
+
+template <int dim>
+void ElasticProblem<dim>::run () 
+{
+  for (unsigned int cycle=0; cycle<8; ++cycle)
+    {
+      cout << "Cycle " << cycle << ':' << endl;
+
+      if (cycle == 0)
+       {
+                                          // As in previous examples,
+                                          // we use the unit square
+                                          // (or cube) as domain.
+         GridGenerator::hyper_cube (triangulation, -1, 1);
+                                          // This time, we have to
+                                          // refine the coarse grid
+                                          // twice before we first
+                                          // solve on it. The reason
+                                          // is the following: we use
+                                          // the ``Gauss2''
+                                          // quadrature formula for
+                                          // integration of the right
+                                          // hand side; that means
+                                          // that there are four
+                                          // quadrature points on
+                                          // each cell (in 2D). If we
+                                          // only refine the initial
+                                          // grid once globally, then
+                                          // there will be only four
+                                          // quadrature points in
+                                          // each direction on the
+                                          // domain. However, the
+                                          // right hand side function
+                                          // was chosen to be rather
+                                          // localized and in that
+                                          // case all quadrature
+                                          // points lie outside the
+                                          // support of the right
+                                          // hand side function. The
+                                          // right hand side vector
+                                          // will then contain only
+                                          // zeroes and the solution
+                                          // of the system of
+                                          // equations is the zero
+                                          // vector, i.e. a finite
+                                          // element function that it
+                                          // zero everywhere. We
+                                          // should not be surprised
+                                          // about such things
+                                          // happening, since we have
+                                          // chosen an initial grid
+                                          // that is totally
+                                          // unsuitable for the
+                                          // problem at hand.
+                                          //
+                                          // The unfortunate thing is
+                                          // that if the discrete
+                                          // solution is constant,
+                                          // then the error
+                                          // indicators computed by
+                                          // the
+                                          // ``KellyErrorEstimator''
+                                          // class are zero for each
+                                          // cell as well, and the
+                                          // call to
+                                          // ``refine_and_coarsen_fixed_number''
+                                          // of the ``triangulation''
+                                          // object will not flag any
+                                          // cells for refinement
+                                          // (why should it if the
+                                          // indicated error is zero
+                                          // for each cell?). The
+                                          // grid in the next
+                                          // iteration will therefore
+                                          // consist of four cells
+                                          // only as well, and the
+                                          // same problem occurs
+                                          // again.
+                                          //
+                                          // The conclusion needs to
+                                          // be: while of course we
+                                          // will not choose the
+                                          // initial grid to be
+                                          // well-suited for the
+                                          // accurate solution of the
+                                          // problem, we must at
+                                          // least choose it such
+                                          // that it has the chance
+                                          // to capture the most
+                                          // striking features of the
+                                          // solution. In this case,
+                                          // it needs to be able to
+                                          // see the right hand
+                                          // side. Thus, we refine
+                                          // twice globally.
+         triangulation.refine_global (2);
+       }
+      else
+       refine_grid ();
+
+      cout << "   Number of active cells:       "
+          << triangulation.n_active_cells()
+          << endl;
+
+      setup_system ();
+
+      cout << "   Number of degrees of freedom: "
+          << dof_handler.n_dofs()
+          << endl;
+      
+      assemble_system ();
+      solve ();
+      output_results (cycle);
+    };
+};
+
+
+                                // The main function is again exactly
+                                // like in step-6 (apart from the
+                                // changed class names, of course).
+int main () 
+{
+  try
+    {
+      deallog.depth_console (0);
+
+      ElasticProblem<2> elastic_problem_2d;
+      elastic_problem_2d.run ();
+    }
+  catch (exception &exc)
+    {
+      cerr << endl << endl
+          << "----------------------------------------------------"
+          << endl;
+      cerr << "Exception on processing: " << exc.what() << endl
+          << "Aborting!" << endl
+          << "----------------------------------------------------"
+          << endl;
+
+      return 1;
+    }
+  catch (...) 
+    {
+      cerr << endl << endl
+          << "----------------------------------------------------"
+          << endl;
+      cerr << "Unknown exception!" << endl
+          << "Aborting!" << endl
+          << "----------------------------------------------------"
+          << endl;
+      return 1;
+    };
+
+  return 0;
+};
diff --git a/deal.II/examples/step-8/Makefile b/deal.II/examples/step-8/Makefile
new file mode 100644 (file)
index 0000000..8753051
--- /dev/null
@@ -0,0 +1,94 @@
+# $Id$
+# Copyright W. Bangerth, University of Heidelberg, 1999
+
+# Template for makefiles for the examples subdirectory. In principle,
+# everything should be done automatically if you set the target file
+# here correctly. We get deduce it from the files in the present
+# directory:
+target   = $(basename $(shell echo step-*.cc))
+
+# All dependencies between files should be updated by the included
+# file Makefile.dep if necessary. Object files are compiled into
+# the archives ./Obj.a and ./Obj.g.a. By default, the debug version
+# is used to link. It you don't like that, change the following
+# variable to "off"
+debug-mode = on
+
+
+
+###############################################################################
+# Internals
+
+#deal include base path
+D = ../../../..
+
+include $D/common/Make.global_options
+
+# get lists of files we need
+
+
+# list of libraries needed to link with
+libs     = -ldeal_II_2d  -llac -lbase
+libs.g   = -ldeal_II_2d.g -llac.g -lbase.g
+
+
+# check whether we use debug mode or not
+ifeq ($(debug-mode),on)
+  libraries = $(target).go $(libs.g)
+  flags     = $(CXXFLAGS.g)
+else
+  libraries = $(target).go $(libs)
+  flags     = $(CXXFLAGS.o)
+endif
+
+
+
+# make rule for the target. $^ is the object file $(target).g?o
+$(target) : $(libraries)
+       @echo ============================ Linking $@
+       @$(CXX) $(flags) -o $@ $^
+
+# rule how to run the program
+run: $(target)
+       @echo ============================ Running $<
+       @./$(target)
+
+
+# rule to make object files
+%.go : %.cc
+       @echo ============================ Compiling with debugging information:   $<
+       @$(CXX) $(CXXFLAGS.g) -c $< -o $@
+%.o : %.cc
+       @echo ============================ Compiling with optimization:   $<
+       @$(CXX) $(CXXFLAGS) -c $< -o $@
+
+
+clean:
+       -rm -f *.o *.go *~ Makefile.dep $(target) *gmv *gnuplot *gpl *eps
+
+
+
+.PHONY: clean
+
+
+# Rule to generate the dependency file. This file is
+# automagically remade whenever needed, i.e. whenever
+# one of the cc-/h-files changed. Make detects whether
+# to remake this file upon inclusion at the bottom
+# of this file.
+#
+# Since the script prefixes the output names by lib/g?o, we have to
+# strip that again (the script was written for the main libraries and
+# large projects where object files are put into subdirs)
+Makefile.dep: $(target).cc Makefile \
+              $(shell echo $D/base/include/base/*.h \
+                           $D/lac/include/lac/*.h  \
+                           $D/deal.II/include/*/*.h)
+       @echo ============================ Remaking Makefile
+       @perl $D/common/scripts/make_dependencies.pl  $(INCLUDE) $(target).cc \
+               | perl -pi -e 's!lib/g?o/!!g;' \
+               > Makefile.dep
+
+
+include Makefile.dep
+
diff --git a/deal.II/examples/step-8/step-8.cc b/deal.II/examples/step-8/step-8.cc
new file mode 100644 (file)
index 0000000..9fac1af
--- /dev/null
@@ -0,0 +1,961 @@
+/* $Id$ */
+/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
+
+                                // As usual, the first few include
+                                // files are already known, so we
+                                // will not comment on them further.
+#include <base/quadrature_lib.h>
+#include <base/function.h>
+#include <base/logstream.h>
+#include <lac/vector.h>
+#include <lac/full_matrix.h>
+#include <lac/sparse_matrix.h>
+#include <lac/solver_cg.h>
+#include <lac/vector_memory.h>
+#include <lac/precondition.h>
+#include <grid/tria.h>
+#include <dofs/dof_handler.h>
+#include <grid/grid_generator.h>
+#include <grid/tria_accessor.h>
+#include <grid/tria_iterator.h>
+#include <grid/tria_boundary_lib.h>
+#include <dofs/dof_accessor.h>
+#include <dofs/dof_tools.h>
+#include <fe/fe_values.h>
+#include <numerics/vectors.h>
+#include <numerics/matrices.h>
+#include <numerics/data_out.h>
+#include <dofs/dof_constraints.h>
+#include <numerics/error_estimator.h>
+
+                                // In this example, we need
+                                // vector-valued finite elements. The
+                                // suuport for these can be found in
+                                // the following include file:
+#include <fe/fe_system.h>
+                                // We will compose the vector-valued
+                                // finite elements from regular Q1
+                                // elements which can be found here,
+                                // as usual:
+#include <fe/fe_lib.lagrange.h>
+
+                                // This again is C++:
+#include <fstream>
+
+
+                                // The main class is, except for its
+                                // name, almost unchanged with
+                                // respect to the step-6 example. The
+                                // only change is the use of a
+                                // different class for the ``fe''
+                                // variable.
+template <int dim>
+class ElasticProblem 
+{
+  public:
+    ElasticProblem ();
+    ~ElasticProblem ();
+    void run ();
+    
+  private:
+    void setup_system ();
+    void assemble_system ();
+    void solve ();
+    void refine_grid ();
+    void output_results (const unsigned int cycle) const;
+
+    Triangulation<dim>   triangulation;
+    DoFHandler<dim>      dof_handler;
+
+                                    // Instead of a concrete finite
+                                    // element class such as
+                                    // ``FEQ1'', we now use a more
+                                    // generic one, ``FESystem''. In
+                                    // fact, it is not a finite
+                                    // element itself, but rather a
+                                    // class that can be used to
+                                    // stack several usual elements
+                                    // together to form one
+                                    // vector-valued finite
+                                    // element. In our case, we will
+                                    // compose the vector-valued
+                                    // element of ``FEQ1'' objects,
+                                    // as shown below in the
+                                    // constructor of this class.
+    FESystem<dim>        fe;
+
+    ConstraintMatrix     hanging_node_constraints;
+
+    SparseMatrixStruct   sparsity_pattern;
+    SparseMatrix<double> system_matrix;
+
+    Vector<double>       solution;
+    Vector<double>       system_rhs;
+};
+
+
+                                // Before going over to the
+                                // implementation of the main class,
+                                // we declare and define the class
+                                // which describes the right hand
+                                // side. This time, the right hand
+                                // side is vector-valued, as is the
+                                // solution, so we will describe the
+                                // new elements in some more detail.
+template <int dim>
+class RightHandSide :  public Function<dim> 
+{
+  public:
+                                    // The first thing is that
+                                    // vector-valued functions have a
+                                    // constructor, since they need
+                                    // to pass down to the base class
+                                    // of how many components the
+                                    // function consists. The default
+                                    // value in the constructor of
+                                    // the base class is one, so we
+                                    // need not define a constructor
+                                    // for the usual scalar function.
+    RightHandSide ();
+    
+                                    // The next function is a
+                                    // replacement for the ``value''
+                                    // function of the previous
+                                    // examples. There, a second
+                                    // parameter ``component'' was
+                                    // given, which denoted which
+                                    // component was requested. Here,
+                                    // we implement a function that
+                                    // returns the whole vector of
+                                    // values at the given place at
+                                    // once.
+    virtual void vector_value (const Point<dim> &p,
+                              Vector<double>   &values) const;
+
+                                    // Then, in analogy to the
+                                    // ``value_list'' function, there
+                                    // is a function
+                                    // ``vector_value_list'', which
+                                    // returns the values of the
+                                    // vector-valued function at
+                                    // several points at once:
+    virtual void vector_value_list (const vector<Point<dim> > &points,
+                                   vector<Vector<double> >   &value_list) const;
+};
+
+
+                                // This is the constructor of the
+                                // right hand side class. As said
+                                // above, it only passes down to the
+                                // base class the number of
+                                // components, which is ``dim'' in
+                                // the present case. Note that
+                                // although the implementation is
+                                // very short here, we do not move it
+                                // into the class declaration, since
+                                // our style guides require that
+                                // inside the class declaration only
+                                // declarations have to happen and
+                                // that definitions are always to be
+                                // found outside.
+template <int dim>
+RightHandSide<dim>::RightHandSide () :
+               Function<dim> (dim)
+{};
+
+
+                                // This is the function that returns
+                                // the whole vector of values at the
+                                // point ``p'' at once:
+template <int dim>
+inline
+void RightHandSide<dim>::vector_value (const Point<dim> &p,
+                                      Vector<double>   &values) const 
+{
+                                  // To prevent cases where the
+                                  // return value has not previously
+                                  // been set to the right size
+                                  // (which is kind of a convention
+                                  // in the deal.II library), we test
+                                  // for this case and otherwise
+                                  // throw an exception:
+  Assert (values.size() == dim, 
+         ExcVectorHasWrongSize (values.size(), dim));
+                                  // Likewise, if by some accident
+                                  // someone tried to compile and run
+                                  // the program in only one space
+                                  // dimension (in which the elastic
+                                  // equations do not make much sense
+                                  // since they reduce to the
+                                  // ordinary Laplace equation), we
+                                  // terminate the program if the
+                                  // dimension is not as expected.
+  Assert (dim >= 2, ExcInternalError());
+  
+                                  // The rest of the function is as
+                                  // would probably be expected given
+                                  // the form of the right hand side
+                                  // function. First we define the
+                                  // centers of the two points around
+                                  // which are the sources of
+                                  // x-displacement, i.e. (0.5,0) and
+                                  // (-0.5,0). Note that upon
+                                  // construction of the ``Point''
+                                  // objects, all components are set
+                                  // to zero.
+  Point<dim> point_1, point_2;
+  point_1(0) = 0.5;
+  point_2(0) = -0.5;
+  
+                                  // If now the point ``p'' is in the
+                                  // circle of radius 0.2 around one
+                                  // of these points, then set the
+                                  // force in x-direction to one,
+                                  // otherwise to zero:
+  if (((p-point_1).square() < 0.2*0.2) ||
+      ((p-point_2).square() < 0.2*0.2))
+    values(0) = 1;
+  else
+    values(0) = 0;
+  
+                                  // Likewise, if ``p'' is in the
+                                  // vicinity of the origin, then set
+                                  // the y-force to 1, otherwise to
+                                  // zero:
+  if (p.square() < 0.2*0.2)
+    values(1) = 1;
+  else
+    values(1) = 0;    
+};
+
+
+
+                                // Now, this is the function of the
+                                // right hand side class that returns
+                                // the values at several points at
+                                // once.
+template <int dim>
+void RightHandSide<dim>::vector_value_list (const vector<Point<dim> > &points,
+                                           vector<Vector<double> >   &value_list) const 
+{
+                                  // First we define an abbreviation
+                                  // for the number of points which
+                                  // we shall work on:
+  const unsigned int n_points = points.size();
+
+                                  // Then we check whether the number
+                                  // of output slots has been set
+                                  // correctly, i.e. to the number of
+                                  // input points:
+  Assert (value_list.size() == n_points, 
+         ExcVectorHasWrongSize (value_list.size(), n_points));
+
+                                  // Finally we treat each of the
+                                  // points. In one of the previous
+                                  // examples, we have explained why
+                                  // the
+                                  // ``value_list''/``vector_value_list''
+                                  // function had been introduced: to
+                                  // prevent us from calling virtual
+                                  // functions too frequently. On the
+                                  // other hand, we now need to
+                                  // implement the same function
+                                  // twice, which can lead to
+                                  // confusion if one function is
+                                  // changed but the other is
+                                  // not. However, we can prevent
+                                  // this situation using the
+                                  // following construct:
+  for (unsigned int p=0; p<n_points; ++p)
+    RightHandSide<dim>::vector_value (points[p],
+                                     value_list[p]);
+                                  // It calls the ``vector_value''
+                                  // function defined above for each
+                                  // point, and thus preempts all
+                                  // chances for inconsistency. It is
+                                  // important to note how the
+                                  // function was called: using the
+                                  // full class qualification using
+                                  // ``RightHandSide::'', since this
+                                  // calls the function directly and
+                                  // not using the virtual function
+                                  // table. The call is thus as fast
+                                  // as a call to any non-virtual
+                                  // function. In addition, we have
+                                  // declared the ``vector_value''
+                                  // function ``inline'', i.e. the
+                                  // compiler can remove the function
+                                  // call altogether and the
+                                  // resulting code can in principle
+                                  // be as fast as if we had
+                                  // duplicated the code.
+};
+
+
+
+
+template <int dim>
+ElasticProblem<dim>::ElasticProblem () :
+               dof_handler (triangulation),
+                                                // As said before, we
+                                                // would like to
+                                                // construct one
+                                                // vector-valued
+                                                // finite element as
+                                                // outer product of
+                                                // several scala
+                                                // finite
+                                                // elements. Of
+                                                // course, the number
+                                                // of scalar finite
+                                                // element we would
+                                                // like to stack
+                                                // together equals
+                                                // the number of
+                                                // components the
+                                                // solution function
+                                                // has, which is
+                                                // ``dim'' since we
+                                                // consider
+                                                // displacement in
+                                                // each space
+                                                // direction. The
+                                                // ``FESystem'' class
+                                                // can handle this:
+                                                // we pass it the
+                                                // finite element of
+                                                // which we would
+                                                // like to compose
+                                                // the system of, and
+                                                // how often it shall
+                                                // be repeated:
+               fe (FEQ1<dim>(), dim)
+                                // In fact, the ``FESystem'' class
+                                // has several more constructors
+                                // which can perform more complex
+                                // operations that just stacking
+                                // together several scalar finite
+                                // elements of the same type into
+                                // one; we will get to know these
+                                // possibilities in later examples.
+                                //
+                                // It should be noted that the
+                                // ``FESystem'' object thus created
+                                // does not actually use the finite
+                                // element which we have passed to it
+                                // as first parameter. We could thus
+                                // use an anonymous object created
+                                // in-place. The ``FESystem''
+                                // constructor only needs the
+                                // parameter to deduce the type of
+                                // the finite element from this and
+                                // then creates objects of the
+                                // underlying finite element type
+                                // itself.
+{};
+
+
+
+template <int dim>
+ElasticProblem<dim>::~ElasticProblem () 
+{
+  dof_handler.clear ();
+};
+
+
+                                // Setting up the system of equations
+                                // is equal to the function used in
+                                // the step-6 example. The
+                                // ``DoFHandler'' class and all other
+                                // classes used take care of the
+                                // vector-valuedness of the finite
+                                // element themselves (in fact, the
+                                // do not do so, since they only take
+                                // care how many degrees of freedom
+                                // there are per vertex, line and
+                                // cell, and they do not askwhat they
+                                // represent, i.e. whether the finite
+                                // element under consideration is
+                                // vector-valued or whether it is,
+                                // for example, a scalar Hermite
+                                // element with several degrees of
+                                // freedom on each vertex).
+template <int dim>
+void ElasticProblem<dim>::setup_system ()
+{
+  dof_handler.distribute_dofs (fe);
+  hanging_node_constraints.clear ();
+  DoFTools::make_hanging_node_constraints (dof_handler,
+                                          hanging_node_constraints);
+  hanging_node_constraints.close ();
+  sparsity_pattern.reinit (dof_handler.n_dofs(),
+                          dof_handler.n_dofs(),
+                          dof_handler.max_couplings_between_dofs());
+                                  // When making the sparsity
+                                  // pattern, there is some potential
+                                  // for optimization if not all
+                                  // components couple to all
+                                  // others. However, this is not the
+                                  // case for the elastic equations,
+                                  // so we use the standard call:
+  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+
+  hanging_node_constraints.condense (sparsity_pattern);
+
+  sparsity_pattern.compress();
+
+  system_matrix.reinit (sparsity_pattern);
+
+  solution.reinit (dof_handler.n_dofs());
+  system_rhs.reinit (dof_handler.n_dofs());
+};
+
+
+                                // The big changes in this program
+                                // are in the creation of matrix and
+                                // right hand side, since they are
+                                // problem-dependent. We will go
+                                // through that process step-by-step,
+                                // since it is a bit more complicated
+                                // than in previous examples.
+template <int dim>
+void ElasticProblem<dim>::assemble_system () 
+{  
+                                  // First thing: the quadrature
+                                  // formula does not need
+                                  // modification since we still deal
+                                  // with bilinear functions.
+  QGauss2<dim>  quadrature_formula;
+                                  // Also, the ``FEValues'' objects
+                                  // takes care of everything for us
+                                  // (or better: it does not really
+                                  // so; as in the comment in the
+                                  // function setting up the system,
+                                  // here as well the ``FEValues''
+                                  // object computes the same data on
+                                  // each cell, but it has some
+                                  // functionality to access data
+                                  // stored inside the finite element
+                                  // where they are precomputed upon
+                                  // construction).
+  FEValues<dim> fe_values (fe, quadrature_formula, 
+                          UpdateFlags(update_values    |
+                                      update_gradients |
+                                      update_q_points  |
+                                      update_JxW_values));
+
+                                  // The number of degrees of freedom
+                                  // per cell we now obviously ask
+                                  // from the composed finite element
+                                  // rather than from the underlying
+                                  // scalar Q1 element. Here, it is
+                                  // ``dim'' times the number of
+                                  // degrees of freedom per cell of
+                                  // the Q1 element, but this is not
+                                  // something we need to care about.
+  const unsigned int dofs_per_cell = fe.dofs_per_cell;
+  const unsigned int n_q_points    = quadrature_formula.n_quadrature_points;
+
+  FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
+  Vector<double>     cell_rhs (dofs_per_cell);
+
+  vector<int>        local_dof_indices (dofs_per_cell);
+
+                                  // As was shown in previous
+                                  // examples as well, we need a
+                                  // place where to store the values
+                                  // of the coefficients at all the
+                                  // quadrature points on a cell. In
+                                  // the present situation, we have
+                                  // two coefficients, lambda and mu.
+  vector<double>     lambda_values (n_q_points);
+  vector<double>     mu_values (n_q_points);
+
+                                  // Well, we could as well have
+                                  // omitted the above two arrays
+                                  // since we will use constant
+                                  // coefficients for both lambda and
+                                  // mu, which can be declared like
+                                  // this. They both represent
+                                  // functions always returning the
+                                  // constant value 1.0. Although we
+                                  // could omit the respective
+                                  // factors in the assemblage of the
+                                  // matrix, we use them here for
+                                  // purpose of demonstration.
+  ConstantFunction<dim> lambda(1.), mu(1.);
+
+                                  // Then again, we need to have the
+                                  // same for the right hand
+                                  // side. This is exactly as before
+                                  // in previous examples. However,
+                                  // we now have a vector-valued
+                                  // right hand side, which is why
+                                  // the data type of the
+                                  // ``rhs_values'' array is
+                                  // changed. We initialize it by
+                                  // ``n_q_points'' elements, each of
+                                  // which is a ``Vector<double>''
+                                  // with ``dim'' elements.
+  RightHandSide<dim>      right_hand_side;
+  vector<Vector<double> > rhs_values (n_q_points,
+                                     Vector<double>(dim));
+
+
+                                  // Now we can begin with the loop
+                                  // over all cells:
+  DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
+                                       endc = dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      cell_matrix.clear ();
+      cell_rhs.clear ();
+
+      fe_values.reinit (cell);
+
+      const FullMatrix<double> 
+       & shape_values = fe_values.get_shape_values();
+      const vector<vector<Tensor<1,dim> > >
+       & shape_grads  = fe_values.get_shape_grads();
+      const vector<double>
+       & JxW_values   = fe_values.get_JxW_values();
+      const vector<Point<dim> >
+       & q_points     = fe_values.get_quadrature_points();
+      
+      lambda.value_list (q_points, lambda_values);
+      mu.value_list     (q_points, mu_values);
+
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       {
+         const unsigned int component_i = fe.system_to_component_index(i).first;
+         
+         for (unsigned int j=0; j<dofs_per_cell; ++j) 
+           {
+             const unsigned int component_j = fe.system_to_component_index(j).first;
+             
+             for (unsigned int q_point=0; q_point<fe_values.n_quadrature_points; ++q_point)
+               {
+                 cell_matrix(i,j) 
+                   += 
+                                                    // (lambda d_i u_i, d_j v_j)
+                   (
+                     (shape_grads[i][q_point][component_i] *
+                      shape_grads[j][q_point][component_j] *
+                      lambda_values[q_point])
+                     +                             // (mu d_i u_j, d_i v_j)
+                     (shape_grads[i][q_point][component_j] *
+                      shape_grads[j][q_point][component_i] *
+                      mu_values[q_point])
+                     +                             // (mu d_i v_j, d_i v_j)
+                     ((component_i == component_j) ?
+                      (shape_grads[i][q_point] *
+                       shape_grads[j][q_point] *
+                       mu_values[q_point])  :
+                      0)
+                   )
+                   *
+                   JxW_values[q_point];
+               };
+           };
+       };
+
+
+      right_hand_side.vector_value_list (q_points, rhs_values);
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       {
+         const unsigned int component_i = fe.system_to_component_index(i).first;
+         
+         for (unsigned int q_point=0; q_point<fe_values.n_quadrature_points; ++q_point)
+           cell_rhs(i) += shape_values(i,q_point) *
+                          rhs_values[q_point](component_i) *
+                          JxW_values[q_point];
+       };
+
+                                      // The transfer from local
+                                      // degrees of freedom into the
+                                      // global matrix and right hand
+                                      // side vector does not depend
+                                      // on the equation under
+                                      // consideration, and is thus
+                                      // the same as in all previous
+                                      // examples.
+      cell->get_dof_indices (local_dof_indices);
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       {
+         for (unsigned int j=0; j<dofs_per_cell; ++j)
+           system_matrix.add (local_dof_indices[i],
+                              local_dof_indices[j],
+                              cell_matrix(i,j));
+         
+         system_rhs(local_dof_indices[i]) += cell_rhs(i);
+       };
+    };
+
+                                  // The interpolation of the
+                                  // boundary values needs a small
+                                  // modification: since the solution
+                                  // function is vector-valued, so
+                                  // needs to be the boundary
+                                  // values. The ``ZeroFunction''
+                                  // constructor accepts a parameter
+                                  // that tells it that it shall
+                                  // represent a vector valued,
+                                  // constant zero function with that
+                                  // many components. By default,
+                                  // this parameter is equal to one,
+                                  // in which case the
+                                  // ``ZeroFunction'' object would
+                                  // represent a scalar
+                                  // function. Since the solution
+                                  // vector has ``dim'' components,
+                                  // we need to pass ``dim'' as
+                                  // number of components to the zero
+                                  // function as well.
+  map<int,double> boundary_values;
+  VectorTools::interpolate_boundary_values (dof_handler,
+                                           0,
+                                           ZeroFunction<dim>(dim),
+                                           boundary_values);
+  MatrixTools<dim>::apply_boundary_values (boundary_values,
+                                          system_matrix,
+                                          solution,
+                                          system_rhs);
+
+  hanging_node_constraints.condense (system_matrix);
+  hanging_node_constraints.condense (system_rhs);
+};
+
+
+
+                                // The solver does not care about
+                                // where the system of equations
+                                // comes, as long as it stays
+                                // positive definite and symmetric
+                                // (which are the requirements for
+                                // the use of the CG solver), which
+                                // the system is. Therefore, we need
+                                // not change anything.
+template <int dim>
+void ElasticProblem<dim>::solve () 
+{
+  SolverControl           solver_control (1000, 1e-12);
+  PrimitiveVectorMemory<> vector_memory;
+  SolverCG<>              cg (solver_control, vector_memory);
+
+  PreconditionRelaxation<>
+    preconditioner(system_matrix,
+                  &SparseMatrix<double>::template precondition_SSOR<double>,
+                  1.2);
+
+  cg.solve (system_matrix, solution, system_rhs,
+           preconditioner);
+
+  hanging_node_constraints.distribute (solution);
+};
+
+
+
+                                // The function that does the
+                                // refinement of the grid is the same
+                                // as in the step-6 example. The
+                                // quadrature formula is adapted to
+                                // the linear elements again. Note
+                                // that the error estimator by
+                                // default adds up the estimated
+                                // obtained from all components of
+                                // the finite element solution, that
+                                // is it uses the displacement in all
+                                // directions with the same
+                                // weight. If we would like the grid
+                                // to be adapted to the
+                                // x-displacement only, we could pass
+                                // the function an additional
+                                // parameter which tells it to do so
+                                // and do not consider the
+                                // displacements in all other
+                                // directions for the error
+                                // indicators.
+template <int dim>
+void ElasticProblem<dim>::refine_grid ()
+{
+  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+  KellyErrorEstimator<dim>::FunctionMap neumann_boundary;
+  KellyErrorEstimator<dim>::estimate (dof_handler,
+                                     QGauss2<dim-1>(),
+                                     neumann_boundary,
+                                     solution,
+                                     estimated_error_per_cell);
+
+  triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell,
+                                                0.3, 0.03);
+
+  triangulation.execute_coarsening_and_refinement ();
+};
+
+
+                                // The output happens mostly as has
+                                // been shown in previous examples
+                                // already. The only difference is
+                                // not that the solution function is
+                                // vector values. The ``DataOut''
+                                // class takes care of this
+                                // automatically, but we have to give
+                                // each component of the solution
+                                // vector a different name.
+template <int dim>
+void ElasticProblem<dim>::output_results (const unsigned int cycle) const
+{
+  string filename = "solution-";
+  filename += ('0' + cycle);
+  Assert (cycle < 10, ExcInternalError());
+  
+  filename += ".gmv";
+  ofstream output (filename.c_str());
+
+  DataOut<dim> data_out;
+  data_out.attach_dof_handler (dof_handler);
+
+
+                                  // As said above, we need a
+                                  // different name for each
+                                  // component of the solution
+                                  // function. To pass one name for
+                                  // each component, a vector of
+                                  // strings is used. Since the
+                                  // number of components is the same
+                                  // as the number of dimensions we
+                                  // are working in, the following
+                                  // ``switch'' statement is used.
+                                  //
+                                  // We note that some graphics
+                                  // programs have restriction as to
+                                  // what characters are allowed in
+                                  // the names of variables. The
+                                  // library therefore supports only
+                                  // the minimal subset of these
+                                  // characters that is supported by
+                                  // all programs. Basically, these
+                                  // are letters, numbers,
+                                  // underscores, and some other
+                                  // characters, but in particular no
+                                  // whitespace and minus/hyphen. The
+                                  // library will throw an exception
+                                  // otherwise, at least if in debug
+                                  // mode.
+  vector<string> solution_names;
+  switch (dim)
+    {
+      case 1:
+           solution_names.push_back ("displacement");
+           break;
+      case 2:
+           solution_names.push_back ("x_displacement");            
+           solution_names.push_back ("y_displacement");
+           break;
+      case 3:
+           solution_names.push_back ("x_displacement");            
+           solution_names.push_back ("y_displacement");
+           solution_names.push_back ("z_displacement");
+           break;
+                                            // It is good style to
+                                            // let the program die if
+                                            // we run upon a case
+                                            // which we did not
+                                            // consider. Remember
+                                            // that the ``Assert''
+                                            // macro throws an
+                                            // exception if the
+                                            // condition in the first
+                                            // parameter is not
+                                            // satisfied. Of course,
+                                            // the condition
+                                            // ``false'' can never be
+                                            // satisfied, so the
+                                            // program will always
+                                            // abort whenever it gets
+                                            // to this statement:
+      default:
+           Assert (false, ExcInternalError());
+    };
+            
+                                  // After setting up the names for
+                                  // the different components of the
+                                  // solution vector, we can add the
+                                  // solution vector to the list of
+                                  // data vectors scheduled for
+                                  // output. Note that the following
+                                  // function takes a vector of
+                                  // strings as second argument,
+                                  // whereas the one which we have
+                                  // used in all previous examples
+                                  // accepted a string there. In
+                                  // fact, the latter function is
+                                  // only a shortcut for the function
+                                  // which we call here: it puts the
+                                  // single string that is passed to
+                                  // it into a vector of strings with
+                                  // only one element and forwards
+                                  // that to the other function.
+  data_out.add_data_vector (solution, solution_names);
+  data_out.build_patches ();
+  data_out.write_gmv (output);
+};
+
+
+
+template <int dim>
+void ElasticProblem<dim>::run () 
+{
+  for (unsigned int cycle=0; cycle<8; ++cycle)
+    {
+      cout << "Cycle " << cycle << ':' << endl;
+
+      if (cycle == 0)
+       {
+                                          // As in previous examples,
+                                          // we use the unit square
+                                          // (or cube) as domain.
+         GridGenerator::hyper_cube (triangulation, -1, 1);
+                                          // This time, we have to
+                                          // refine the coarse grid
+                                          // twice before we first
+                                          // solve on it. The reason
+                                          // is the following: we use
+                                          // the ``Gauss2''
+                                          // quadrature formula for
+                                          // integration of the right
+                                          // hand side; that means
+                                          // that there are four
+                                          // quadrature points on
+                                          // each cell (in 2D). If we
+                                          // only refine the initial
+                                          // grid once globally, then
+                                          // there will be only four
+                                          // quadrature points in
+                                          // each direction on the
+                                          // domain. However, the
+                                          // right hand side function
+                                          // was chosen to be rather
+                                          // localized and in that
+                                          // case all quadrature
+                                          // points lie outside the
+                                          // support of the right
+                                          // hand side function. The
+                                          // right hand side vector
+                                          // will then contain only
+                                          // zeroes and the solution
+                                          // of the system of
+                                          // equations is the zero
+                                          // vector, i.e. a finite
+                                          // element function that it
+                                          // zero everywhere. We
+                                          // should not be surprised
+                                          // about such things
+                                          // happening, since we have
+                                          // chosen an initial grid
+                                          // that is totally
+                                          // unsuitable for the
+                                          // problem at hand.
+                                          //
+                                          // The unfortunate thing is
+                                          // that if the discrete
+                                          // solution is constant,
+                                          // then the error
+                                          // indicators computed by
+                                          // the
+                                          // ``KellyErrorEstimator''
+                                          // class are zero for each
+                                          // cell as well, and the
+                                          // call to
+                                          // ``refine_and_coarsen_fixed_number''
+                                          // of the ``triangulation''
+                                          // object will not flag any
+                                          // cells for refinement
+                                          // (why should it if the
+                                          // indicated error is zero
+                                          // for each cell?). The
+                                          // grid in the next
+                                          // iteration will therefore
+                                          // consist of four cells
+                                          // only as well, and the
+                                          // same problem occurs
+                                          // again.
+                                          //
+                                          // The conclusion needs to
+                                          // be: while of course we
+                                          // will not choose the
+                                          // initial grid to be
+                                          // well-suited for the
+                                          // accurate solution of the
+                                          // problem, we must at
+                                          // least choose it such
+                                          // that it has the chance
+                                          // to capture the most
+                                          // striking features of the
+                                          // solution. In this case,
+                                          // it needs to be able to
+                                          // see the right hand
+                                          // side. Thus, we refine
+                                          // twice globally.
+         triangulation.refine_global (2);
+       }
+      else
+       refine_grid ();
+
+      cout << "   Number of active cells:       "
+          << triangulation.n_active_cells()
+          << endl;
+
+      setup_system ();
+
+      cout << "   Number of degrees of freedom: "
+          << dof_handler.n_dofs()
+          << endl;
+      
+      assemble_system ();
+      solve ();
+      output_results (cycle);
+    };
+};
+
+
+                                // The main function is again exactly
+                                // like in step-6 (apart from the
+                                // changed class names, of course).
+int main () 
+{
+  try
+    {
+      deallog.depth_console (0);
+
+      ElasticProblem<2> elastic_problem_2d;
+      elastic_problem_2d.run ();
+    }
+  catch (exception &exc)
+    {
+      cerr << endl << endl
+          << "----------------------------------------------------"
+          << endl;
+      cerr << "Exception on processing: " << exc.what() << endl
+          << "Aborting!" << endl
+          << "----------------------------------------------------"
+          << endl;
+
+      return 1;
+    }
+  catch (...) 
+    {
+      cerr << endl << endl
+          << "----------------------------------------------------"
+          << endl;
+      cerr << "Unknown exception!" << endl
+          << "Aborting!" << endl
+          << "----------------------------------------------------"
+          << endl;
+      return 1;
+    };
+
+  return 0;
+};

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.