virtual
FiniteElementDomination::Domination
compare_for_face_domination (const FiniteElement<dim,spacedim> &fe_other) const;
+ /**
+ * @}
+ */
/**
* Return a list of constant modes of the element. For this element, it
bool symmetric = false);
-//@}
-///@name Non-modifying operators
-//@{
+ //@}
+
+ ///@name Non-modifying operators
+ //@{
/**
* Number of rows of this matrix. Note that the matrix is an <i>m x
*/
bool all_zero () const;
+ //@}
-
-//@}
-///@name Element access
-//@{
+ ///@name Element access
+ //@{
/**
* Read-only access to a value. This is restricted to the case where
* <i>|i-j| <= 1</i>.
*/
number &operator()(size_type i, size_type j);
-//@}
-///@name Multiplications with vectors
-//@{
+ //@}
+
+ ///@name Multiplications with vectors
+ //@{
/**
* Matrix-vector-multiplication. Multiplies <tt>v</tt> from the right and
*/
number matrix_norm_square (const Vector<number> &v) const;
-//@}
-///@name LAPACK operations
-//@{
+ //@}
+
+ ///@name LAPACK operations
+ //@{
/**
* Compute the eigenvalues of the symmetric tridiagonal matrix.
*
* After calling compute_eigenvalues(), you can access each eigenvalue here.
*/
number eigenvalue(const size_type i) const;
-//@}
-///@name Miscellanea
-//@{
+ //@}
+
+ ///@name Miscellanea
+ //@{
/**
* Output of the matrix in user-defined format.
*/
void print(OutputStream &s,
const unsigned int width=5,
const unsigned int precision=2) const;
+ //@}
private:
/**