]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Regenerate formulas.
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 2 Sep 2005 15:23:01 +0000 (15:23 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 2 Sep 2005 15:23:01 +0000 (15:23 +0000)
git-svn-id: https://svn.dealii.org/trunk@11359 0785d39b-7218-0410-832d-ea1e28bc413d

101 files changed:
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro.html
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro.pdf
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img1.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img10.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img11.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img12.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img13.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img14.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img15.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img16.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img17.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img18.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img19.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img2.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img20.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img21.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img22.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img23.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img24.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img25.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img26.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img27.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img28.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img29.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img3.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img30.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img31.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img32.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img33.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img34.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img35.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img36.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img37.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img38.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img39.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img4.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img40.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img41.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img42.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img43.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img44.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img45.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img46.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img47.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img48.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img49.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img5.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img50.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img51.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img52.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img53.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img54.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img55.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img56.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img57.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img58.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img59.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img6.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img60.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img61.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img62.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img63.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img64.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img65.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img66.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img67.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img68.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img69.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img7.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img70.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img71.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img72.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img73.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img74.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img75.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img76.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img77.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img78.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img79.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img8.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img80.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img81.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img82.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img83.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img84.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img85.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img86.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img87.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img88.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img89.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img9.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img90.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img91.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img92.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img93.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img94.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img95.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img96.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img97.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img98.png
deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img99.png

index 57ad2e5ffe5b643668bdba61aea0b24525f41bae..5b8eeb9c1a588b125fae160c2ae7e25176dc0d63 100644 (file)
@@ -46,13 +46,14 @@ elastic wave equation
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="221" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="223" HEIGHT="57" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img1.png"
  ALT="$\displaystyle \rho \frac{\partial^2 \vec u}{\partial t^2} + c \frac{\partial \vec u}{\partial t} - \div ( C \varepsilon(\vec u)) = \vec f$">&nbsp; &nbsp;in <IMG
- WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img2.png"
- ALT="$ \Omega$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Omega$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img3.png"
  ALT="$\displaystyle ,$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -63,31 +64,36 @@ where <!-- MATH
  $\vec u=\vec u (\vec x,t)$
  -->
 <IMG
- WIDTH="79" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="81" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img4.png"
- ALT="$ \vec u=\vec u (\vec x,t)$"> is the deformation of the body, <IMG
- WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \vec u=\vec u (\vec x,t)$">
+ is the deformation of the body, <IMG
+ WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img5.png"
  ALT="$ \rho$">
+
 and <IMG
- WIDTH="10" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img6.png"
- ALT="$ c$"> the density and attenuation coefficient, and <IMG
- WIDTH="10" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ ALT="$ c$">
+ the density and attenuation coefficient, and <IMG
+ WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img7.png"
- ALT="$ \vec f$"> external forces.
+ ALT="$ \vec f$">
+ external forces.
 In addition, initial conditions
 <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="100" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="102" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img8.png"
  ALT="$\displaystyle \vec u(\cdot, 0) = \vec u_0(\cdot)$">&nbsp; &nbsp;on <IMG
- WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img2.png"
- ALT="$ \Omega$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Omega$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img3.png"
  ALT="$\displaystyle ,$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -100,11 +106,11 @@ to be specified for a unique solution:
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="48" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img9.png"
  ALT="$\displaystyle \vec u(\vec x,t)$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="98" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img10.png"
  ALT="$\displaystyle = \vec d(\vec x,t) \qquad$"></TD>
 <TD>&nbsp;</TD>
@@ -112,21 +118,22 @@ to be specified for a unique solution:
  $\Gamma_D\subset\partial\Omega$
  -->
 <IMG
- WIDTH="67" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="68" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img11.png"
- ALT="$ \Gamma_D\subset\partial\Omega$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Gamma_D\subset\partial\Omega$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img3.png"
  ALT="$\displaystyle ,$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
 (3)</TD></TR>
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="96" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img12.png"
- ALT="$\displaystyle \vec n  C \varepsilon(\vec u(\vec x,t))$"></TD>
+ ALT="$\displaystyle \vec n \ C \varepsilon(\vec u(\vec x,t))$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="98" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img13.png"
  ALT="$\displaystyle = \vec b(\vec x,t) \qquad$"></TD>
 <TD>&nbsp;</TD>
@@ -134,10 +141,11 @@ to be specified for a unique solution:
  $\Gamma_N=\partial\Omega\backslash\Gamma_D$
  -->
 <IMG
- WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="98" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img14.png"
- ALT="$ \Gamma_N=\partial\Omega\backslash\Gamma_D$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Gamma_N=\partial\Omega\backslash\Gamma_D$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img15.png"
  ALT="$\displaystyle .$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -149,43 +157,50 @@ In above formulation, <!-- MATH
 \vec u^T)$
  -->
 <IMG
- WIDTH="153" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="155" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img16.png"
  ALT="$ \varepsilon(\vec u)= \tfrac 12 (\nabla \vec u + \nabla
-\vec u^T)$"> is the symmetric gradient of the displacement, also called the
+\vec u^T)$">
+ is the symmetric gradient of the displacement, also called the
 <I>strain</I>. <IMG
- WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img17.png"
- ALT="$ C$"> is a tensor of rank 4, called the <I>stress-strain
+ ALT="$ C$">
+ is a tensor of rank 4, called the <I>stress-strain
   tensor</I> that contains knowledge of the elastic strength of the material; its
 symmetry properties make sure that it maps symmetric tensors of rank 2
 (``matrices'' of dimension <IMG
- WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img18.png"
- ALT="$ d$">, where <IMG
- WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ ALT="$ d$">
+, where <IMG
+ WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img18.png"
- ALT="$ d$"> is the spatial dimensionality) onto
+ ALT="$ d$">
+ is the spatial dimensionality) onto
 symmetric tensors of the same rank. We will comment on the roles of the strain
 and stress tensors more below. For the moment it suffices to say that we
 interpret the term <!-- MATH
  $\div ( C \varepsilon(\vec u))$
  -->
 <IMG
- WIDTH="85" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="87" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img19.png"
- ALT="$ \div ( C \varepsilon(\vec u))$"> as the vector with
+ ALT="$ \div ( C \varepsilon(\vec u))$">
+ as the vector with
 components <!-- MATH
  $\tfrac \partial{\partial x_j} C_{ijkl} \varepsilon(\vec u)_{kl}$
  -->
 <IMG
- WIDTH="103" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="105" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img20.png"
- ALT="$ \tfrac \partial{\partial x_j} C_{ijkl} \varepsilon(\vec u)_{kl}$">,
+ ALT="$ \tfrac \partial{\partial x_j} C_{ijkl} \varepsilon(\vec u)_{kl}$">
+,
 where summation over indices <IMG
- WIDTH="38" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="39" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img21.png"
- ALT="$ j,k,l$"> is implied.
+ ALT="$ j,k,l$">
+ is implied.
 
 <P>
 The quasistatic limit of this equation is motivated as follows: each small
@@ -194,71 +209,76 @@ forcing function, will result in a corresponding change in the configuration
 of the body. In general, this will be in the form of waves radiating away from
 the location of the disturbance. Due to the presence of the damping term,
 these waves will be attenuated on a time scale of, say, <IMG
- WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img22.png"
- ALT="$ \tau$">. Now, assume
+ ALT="$ \tau$">
+. Now, assume
 that all changes in external forcing happen on times scales that are
 much larger than <IMG
- WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img22.png"
- ALT="$ \tau$">. In that case, the dynamic nature of the change is
+ ALT="$ \tau$">
+. In that case, the dynamic nature of the change is
 unimportant: we can consider the body to always be in static equilibrium,
 i.e.&nbsp;we can assume that at all times the body satisfies
 <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="99" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img23.png"
  ALT="$\displaystyle - \div ( C \varepsilon(\vec u))$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="27" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img24.png"
  ALT="$\displaystyle = \vec f$"></TD>
 <TD>&nbsp;</TD>
 <TD NOWRAP ALIGN="LEFT">in <IMG
- WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img2.png"
- ALT="$ \Omega$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Omega$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img3.png"
  ALT="$\displaystyle ,$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
 (5)</TD></TR>
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="48" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img9.png"
  ALT="$\displaystyle \vec u(\vec x,t)$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="98" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img10.png"
  ALT="$\displaystyle = \vec d(\vec x,t) \qquad$"></TD>
 <TD>&nbsp;</TD>
 <TD NOWRAP ALIGN="LEFT">on <IMG
- WIDTH="25" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="26" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img25.png"
- ALT="$ \Gamma_D$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Gamma_D$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img3.png"
  ALT="$\displaystyle ,$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
 (6)</TD></TR>
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="96" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img12.png"
- ALT="$\displaystyle \vec n  C \varepsilon(\vec u(\vec x,t))$"></TD>
+ ALT="$\displaystyle \vec n \ C \varepsilon(\vec u(\vec x,t))$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="98" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img13.png"
  ALT="$\displaystyle = \vec b(\vec x,t) \qquad$"></TD>
 <TD>&nbsp;</TD>
 <TD NOWRAP ALIGN="LEFT">on <IMG
- WIDTH="25" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="26" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img26.png"
- ALT="$ \Gamma_N$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Gamma_N$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img15.png"
  ALT="$\displaystyle .$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -271,46 +291,49 @@ possibly time-varying force function <!-- MATH
  $\vec f(\vec x,t)$
  -->
 <IMG
- WIDTH="45" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="47" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img27.png"
- ALT="$ \vec f(\vec x,t)$">.
+ ALT="$ \vec f(\vec x,t)$">
+.
 
 <P>
 While these equations are sufficient to describe small deformations, computing
 large deformations is a little more complicated. To do so, let us first
 introduce a stress variable <IMG
- WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img28.png"
- ALT="$ \sigma$">, and write the differential equations in
+ ALT="$ \sigma$">
+, and write the differential equations in
 terms of the stress:
 <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="52" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="54" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img29.png"
  ALT="$\displaystyle - \div\sigma$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="27" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img24.png"
  ALT="$\displaystyle = \vec f$"></TD>
 <TD>&nbsp;</TD>
 <TD NOWRAP ALIGN="LEFT">in <IMG
- WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="34" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img30.png"
- ALT="$ \Omega(t)$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Omega(t)$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img3.png"
  ALT="$\displaystyle ,$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
 (8)</TD></TR>
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="48" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img9.png"
  ALT="$\displaystyle \vec u(\vec x,t)$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="98" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img10.png"
  ALT="$\displaystyle = \vec d(\vec x,t) \qquad$"></TD>
 <TD>&nbsp;</TD>
@@ -318,21 +341,22 @@ terms of the stress:
  $\Gamma_D\subset\partial\Omega(t)$
  -->
 <IMG
- WIDTH="85" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="86" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img31.png"
- ALT="$ \Gamma_D\subset\partial\Omega(t)$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Gamma_D\subset\partial\Omega(t)$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img3.png"
  ALT="$\displaystyle ,$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
 (9)</TD></TR>
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="96" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img12.png"
- ALT="$\displaystyle \vec n  C \varepsilon(\vec u(\vec x,t))$"></TD>
+ ALT="$\displaystyle \vec n \ C \varepsilon(\vec u(\vec x,t))$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="98" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img13.png"
  ALT="$\displaystyle = \vec b(\vec x,t) \qquad$"></TD>
 <TD>&nbsp;</TD>
@@ -340,10 +364,11 @@ terms of the stress:
  $\Gamma_N=\partial\Omega(t)\backslash\Gamma_D$
  -->
 <IMG
- WIDTH="115" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="116" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img32.png"
- ALT="$ \Gamma_N=\partial\Omega(t)\backslash\Gamma_D$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Gamma_N=\partial\Omega(t)\backslash\Gamma_D$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img15.png"
  ALT="$\displaystyle .$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -351,24 +376,26 @@ terms of the stress:
 </TABLE></DIV>
 <BR CLEAR="ALL"><P></P>
 Note that these equations are posed on a domain <IMG
- WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="34" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img30.png"
- ALT="$ \Omega(t)$"> that
+ ALT="$ \Omega(t)$">
+ that
 changes with time, with the boundary moving according to the
 displacements <!-- MATH
  $\vec u(\vec x,t)$
  -->
 <IMG
- WIDTH="48" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img33.png"
- ALT="$ \vec u(\vec x,t)$"> of the points on the boundary. To
+ ALT="$ \vec u(\vec x,t)$">
+ of the points on the boundary. To
 complete this system, we have to specify the relationship between the
 stress and the strain, as follows:
 <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="81" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="82" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img34.png"
  ALT="$\displaystyle \dot\sigma = C \varepsilon (\dot{\vec u}),$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -376,16 +403,18 @@ stress and the strain, as follows:
 </TABLE></DIV>
 <BR CLEAR="ALL"><P></P>
 where a dot indicates a time derivative. Both the stress <IMG
- WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img28.png"
- ALT="$ \sigma$"> and the
+ ALT="$ \sigma$">
+ and the
 strain <!-- MATH
  $\varepsilon(\vec u)$
  -->
 <IMG
- WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="34" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img35.png"
- ALT="$ \varepsilon(\vec u)$"> are symmetric tensors of rank 2.
+ ALT="$ \varepsilon(\vec u)$">
+ are symmetric tensors of rank 2.
 
 <P>
 
@@ -397,14 +426,15 @@ Time discretization</A>
 Numerically, this system is solved as follows: first, we discretize
 the time component using a backward Euler scheme. This leads to a
 discrete equilibrium of force at time step <IMG
- WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img36.png"
- ALT="$ n$">:
+ ALT="$ n$">
+:
 <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="105" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="106" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img37.png"
  ALT="$\displaystyle -\div\sigma^n = f^n,$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -416,7 +446,7 @@ where
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="165" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="167" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img38.png"
  ALT="$\displaystyle \sigma^n = \sigma^{n-1} + C \varepsilon (\Delta \vec u^n),$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -427,23 +457,25 @@ and <!-- MATH
  $\Delta \vec u^n$
  -->
 <IMG
- WIDTH="35" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="37" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img39.png"
- ALT="$ \Delta \vec u^n$"> the incremental displacement for time step
+ ALT="$ \Delta \vec u^n$">
+ the incremental displacement for time step
 <IMG
- WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img36.png"
- ALT="$ n$">. This way, if we want to solve for the displacement increment, we
+ ALT="$ n$">
+. This way, if we want to solve for the displacement increment, we
 have to solve the following system:
 <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="107" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="108" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img40.png"
  ALT="$\displaystyle - \div C \varepsilon(\Delta\vec u^n)$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="108" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="110" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img41.png"
  ALT="$\displaystyle = \vec f + \div\sigma^{n-1}$"></TD>
 <TD>&nbsp;</TD>
@@ -451,21 +483,22 @@ have to solve the following system:
  $\Omega(t_{n-1})$
  -->
 <IMG
- WIDTH="58" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="59" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img42.png"
- ALT="$ \Omega(t_{n-1})$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Omega(t_{n-1})$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img3.png"
  ALT="$\displaystyle ,$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
 (14)</TD></TR>
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img43.png"
  ALT="$\displaystyle \Delta \vec u^n(\vec x,t)$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="195" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="196" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img44.png"
  ALT="$\displaystyle = \vec d(\vec x,t_n) - \vec d(\vec x,t_{n-1}) \qquad$"></TD>
 <TD>&nbsp;</TD>
@@ -473,21 +506,22 @@ have to solve the following system:
  $\Gamma_D\subset\partial\Omega(t_{n-1})$
  -->
 <IMG
- WIDTH="110" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="111" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img45.png"
- ALT="$ \Gamma_D\subset\partial\Omega(t_{n-1})$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Gamma_D\subset\partial\Omega(t_{n-1})$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img3.png"
  ALT="$\displaystyle ,$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
 (15)</TD></TR>
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="RIGHT"><IMG
- WIDTH="118" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="119" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img46.png"
- ALT="$\displaystyle \vec n  C \varepsilon(\Delta \vec u^n(\vec x,t))$"></TD>
+ ALT="$\displaystyle \vec n \ C \varepsilon(\Delta \vec u^n(\vec x,t))$"></TD>
 <TD NOWRAP ALIGN="LEFT"><IMG
- WIDTH="195" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="196" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img47.png"
  ALT="$\displaystyle = \vec b(\vec x,t_n)-\vec b(\vec x,t_{n-1}) \qquad$"></TD>
 <TD>&nbsp;</TD>
@@ -495,10 +529,11 @@ have to solve the following system:
  $\Gamma_N=\partial\Omega(t_{n-1})\backslash\Gamma_D$
  -->
 <IMG
- WIDTH="140" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="141" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img48.png"
- ALT="$ \Gamma_N=\partial\Omega(t_{n-1})\backslash\Gamma_D$"><IMG
- WIDTH="7" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \Gamma_N=\partial\Omega(t_{n-1})\backslash\Gamma_D$">
+<IMG
+ WIDTH="9" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img15.png"
  ALT="$\displaystyle .$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -511,10 +546,11 @@ finite element formulation, reads as follows: find <!-- MATH
 \{v\in H^1(\Omega(t_{n-1}))^d: v|_{\Gamma_D}=\vec d(\cdot,t_n) - \vec d(\cdot,t_{n-1})\}$
  -->
 <IMG
- WIDTH="393" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="394" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img49.png"
  ALT="$ \Delta \vec u^n \in
 \{v\in H^1(\Omega(t_{n-1}))^d: v\vert _{\Gamma_D}=\vec d(\cdot,t_n) - \vec d(\cdot,t_{n-1})\}$">
+
 such that
 <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
@@ -533,58 +569,67 @@ are no boundary forces, i.e.&nbsp;<!-- MATH
  $\vec b = 0$
  -->
 <IMG
- WIDTH="42" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="44" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img51.png"
- ALT="$ \vec b = 0$">, and that the deformation of the
+ ALT="$ \vec b = 0$">
+, and that the deformation of the
 body is driven by body forces <IMG
- WIDTH="10" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img7.png"
- ALT="$ \vec f$"> and prescribed boundary displacements
+ ALT="$ \vec f$">
+ and prescribed boundary displacements
 <IMG
- WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img52.png"
- ALT="$ \vec d$"> alone. It is also worth noting that when integrating by parts, we
+ ALT="$ \vec d$">
+ alone. It is also worth noting that when integrating by parts, we
 would get terms of the form <!-- MATH
  $(C \varepsilon(\Delta\vec u^n), \nabla \varphi
 )_{\Omega(t_{n-1})}$
  -->
 <IMG
- WIDTH="157" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="158" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img53.png"
  ALT="$ (C \varepsilon(\Delta\vec u^n), \nabla \varphi
-)_{\Omega(t_{n-1})}$">, but that we replace it with the term involving the
+)_{\Omega(t_{n-1})}$">
+, but that we replace it with the term involving the
 symmetric gradient <!-- MATH
  $\varepsilon(\varphi)$
  -->
 <IMG
- WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="35" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img54.png"
- ALT="$ \varepsilon(\varphi)$"> instead of <!-- MATH
+ ALT="$ \varepsilon(\varphi)$">
+ instead of <!-- MATH
  $\nabla\varphi$
  -->
 <IMG
- WIDTH="27" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="28" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img55.png"
- ALT="$ \nabla\varphi$">. Due to
+ ALT="$ \nabla\varphi$">
+. Due to
 the symmetry of <IMG
- WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img17.png"
- ALT="$ C$">, the two terms are equivalent, but the symmetric version
+ ALT="$ C$">
+, the two terms are equivalent, but the symmetric version
 avoids a potential for round-off to render the resulting matrix slightly
 non-symmetric.
 
 <P>
 The system at time step <IMG
- WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img36.png"
- ALT="$ n$">, to be solved on the old domain
+ ALT="$ n$">
+, to be solved on the old domain
 <!-- MATH
  $\Omega(t_{n-1})$
  -->
 <IMG
- WIDTH="58" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="59" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img42.png"
- ALT="$ \Omega(t_{n-1})$">, has exactly the form of a stationary elastic
+ ALT="$ \Omega(t_{n-1})$">
+, has exactly the form of a stationary elastic
 problem, and is therefore similar to what we have already implemented
 in previous example programs. We will therefore not comment on the
 space discretization beyond saying that we again use lowest order
@@ -603,9 +648,10 @@ There are differences, however:
  $\sigma^{n-1}$
  -->
 <IMG
- WIDTH="38" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="39" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img56.png"
- ALT="$ \sigma^{n-1}$"> to compute the next incremental
+ ALT="$ \sigma^{n-1}$">
+ to compute the next incremental
   displacement, i.e.&nbsp;we need to compute it at the end of the time step
   to make sure it is available for the next time step. Essentially,
   the stress variable is our window to the history of deformation of
@@ -625,18 +671,20 @@ Updating the stress variable</A>
 
 <P>
 As indicated above, we need to have the stress variable <IMG
- WIDTH="21" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="23" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img57.png"
- ALT="$ \sigma^n$"> available
+ ALT="$ \sigma^n$">
+ available
 when computing time step <IMG
- WIDTH="40" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="41" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img58.png"
- ALT="$ n+1$">, and we can compute it using
+ ALT="$ n+1$">
+, and we can compute it using
 <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="165" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="167" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img59.png"
  ALT="$\displaystyle \sigma^n = \sigma^{n-1} + C \varepsilon (\Delta \vec u^n).$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -645,34 +693,39 @@ when computing time step <IMG
 <BR CLEAR="ALL"><P></P>
 There are, despite the apparent simplicity of this equation, two questions
 that we need to discuss. The first concerns the way we store <IMG
- WIDTH="21" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="23" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img57.png"
- ALT="$ \sigma^n$">: even
+ ALT="$ \sigma^n$">
+: even
 if we compute the incremental updates <!-- MATH
  $\Delta\vec u^n$
  -->
 <IMG
- WIDTH="35" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="37" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img39.png"
- ALT="$ \Delta \vec u^n$"> using lowest-order
+ ALT="$ \Delta \vec u^n$">
+ using lowest-order
 finite elements, then its symmetric gradient <!-- MATH
  $\varepsilon(\Delta\vec u^n)$
  -->
 <IMG
- WIDTH="55" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="56" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img60.png"
- ALT="$ \varepsilon(\Delta\vec u^n)$"> is
+ ALT="$ \varepsilon(\Delta\vec u^n)$">
+ is
 in general still a function that is not easy to describe. In particular, it is
 not a piecewise constant function, and on general meshes (with cells that are
 not rectangles parallel to the coordinate axes) or with non-constant
 stress-strain tensors <IMG
- WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img17.png"
- ALT="$ C$"> it is not even a bi- or trilinear function. Thus, it
+ ALT="$ C$">
+ it is not even a bi- or trilinear function. Thus, it
 is a priori not clear how to store <IMG
- WIDTH="21" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="23" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img57.png"
- ALT="$ \sigma^n$"> in a computer program.
+ ALT="$ \sigma^n$">
+ in a computer program.
 
 <P>
 To decide this, we have to see where it is used. The only place where we
@@ -681,40 +734,45 @@ require the stress is in the term
  $(\sigma^{n-1},\varepsilon(\varphi))_{\Omega(t_{n-1})}$
  -->
 <IMG
- WIDTH="134" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="135" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img61.png"
- ALT="$ (\sigma^{n-1},\varepsilon(\varphi))_{\Omega(t_{n-1})}$">. In practice, we of
+ ALT="$ (\sigma^{n-1},\varepsilon(\varphi))_{\Omega(t_{n-1})}$">
+. In practice, we of
 course replace this term by numerical quadrature:
 <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="523" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="518" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img62.png"
  ALT="$\displaystyle (\sigma^{n-1},\varepsilon(\varphi))_{\Omega(t_{n-1})} = \sum_{K\s...
-...thbb{T}}} \sum_q w_q  \sigma^{n-1}(\vec x_q) : \varepsilon(\varphi(\vec x_q)),$"></TD>
+...athbb{T}}} \sum_q w_q \ \sigma^{n-1}(\vec x_q) : \varepsilon(\varphi(\vec x_q),$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
 (19)</TD></TR>
 </TABLE></DIV>
 <BR CLEAR="ALL"><P></P>
 where <IMG
- WIDTH="21" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="23" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img63.png"
- ALT="$ w_q$"> are the quadrature weights and <IMG
- WIDTH="20" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ w_q$">
+ are the quadrature weights and <IMG
+ WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img64.png"
- ALT="$ \vec x_q$"> the quadrature points on
+ ALT="$ \vec x_q$">
+ the quadrature points on
 cell <IMG
- WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="19" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img65.png"
- ALT="$ K$">. This should make clear that what we really need is not the stress
+ ALT="$ K$">
+. This should make clear that what we really need is not the stress
 <!-- MATH
  $\sigma^{n-1}$
  -->
 <IMG
- WIDTH="38" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="39" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img56.png"
- ALT="$ \sigma^{n-1}$"> in itself, but only the values of the stress in the quadrature
+ ALT="$ \sigma^{n-1}$">
+ in itself, but only the values of the stress in the quadrature
 points on all cells. This, however, is a simpler task: we only have to provide
 a data structure that is able to hold one symmetric tensor of rank 2 for each
 quadrature point on all cells (or, since we compute in parallel, all
@@ -723,22 +781,26 @@ end of each time step we then only have to evaluate <!-- MATH
  $\varepsilon(\Delta \vec u^n(\vec x_q))$
  -->
 <IMG
- WIDTH="84" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="85" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img66.png"
- ALT="$ \varepsilon(\Delta \vec u^n(\vec x_q))$">, multiply it by the stress-strain tensor <IMG
- WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ ALT="$ \varepsilon(\Delta \vec u^n(\vec x_q))$">
+, multiply it by the stress-strain tensor <IMG
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img17.png"
- ALT="$ C$">, and use the
+ ALT="$ C$">
+, and use the
 result to update the stress <!-- MATH
  $\sigma^n(\vec x_q)$
  -->
 <IMG
- WIDTH="50" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img67.png"
- ALT="$ \sigma^n(\vec x_q)$"> at quadrature point <IMG
- WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \sigma^n(\vec x_q)$">
+ at quadrature point <IMG
+ WIDTH="12" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img68.png"
- ALT="$ q$">.
+ ALT="$ q$">
+.
 
 <P>
 The second complication is not visible in our notation as chosen above. It is
@@ -746,23 +808,26 @@ due to the fact that we compute <!-- MATH
  $\Delta u^n$
  -->
 <IMG
- WIDTH="34" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="36" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img69.png"
- ALT="$ \Delta u^n$"> on the domain <!-- MATH
+ ALT="$ \Delta u^n$">
+ on the domain <!-- MATH
  $\Omega(t_{n-1})$
  -->
 <IMG
- WIDTH="58" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="59" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img42.png"
- ALT="$ \Omega(t_{n-1})$">,
+ ALT="$ \Omega(t_{n-1})$">
+,
 and then use this displacement increment to both update the stress as well as
 move the mesh nodes around to get to <!-- MATH
  $\Omega(t_n)$
  -->
 <IMG
- WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="43" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img70.png"
- ALT="$ \Omega(t_n)$"> on which the next increment
+ ALT="$ \Omega(t_n)$">
+ on which the next increment
 is computed. What we have to make sure, in this context, is that moving the
 mesh does not only involve moving around the nodes, but also making
 corresponding changes to the stress variable: the updated stress is a variable
@@ -772,9 +837,10 @@ can be understood as follows: locally, the incremental deformation <!-- MATH
  $\Delta\vec u$
  -->
 <IMG
- WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="28" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img71.png"
- ALT="$ \Delta\vec u$"> can be decomposed into three parts, a linear translation (the constant part
+ ALT="$ \Delta\vec u$">
+ can be decomposed into three parts, a linear translation (the constant part
 of the displacement field in the neighborhood of a point), a dilational
 component (that part of the gradient of the displacement field that has a
 nonzero divergence), and a rotation. A linear translation of the material does
@@ -786,48 +852,54 @@ situation where <!-- MATH
  $\Delta\vec u=(y, -x)^T$
  -->
 <IMG
- WIDTH="107" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="108" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img72.png"
- ALT="$ \Delta\vec u=(y, -x)^T$">, with which <!-- MATH
+ ALT="$ \Delta\vec u=(y, -x)^T$">
+, with which <!-- MATH
  $\varepsilon(\Delta \vec u)=0$
  -->
 <IMG
- WIDTH="75" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="77" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img73.png"
- ALT="$ \varepsilon(\Delta \vec u)=0$">). Nevertheless, if the the material was pre-stressed in a certain
+ ALT="$ \varepsilon(\Delta \vec u)=0$">
+). Nevertheless, if the the material was pre-stressed in a certain
 direction, then this direction will be rotated along with the material.  To
 this end, we have to define a rotation matrix <!-- MATH
  $R(\Delta \vec u^n)$
  -->
 <IMG
- WIDTH="60" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="61" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img74.png"
- ALT="$ R(\Delta \vec u^n)$"> that
+ ALT="$ R(\Delta \vec u^n)$">
+ that
 describes, in each point the rotation due to the displacement increments. It
 is not hard to see that the actual dependence of <IMG
- WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img75.png"
- ALT="$ R$"> on <!-- MATH
+ ALT="$ R$">
+ on <!-- MATH
  $\Delta \vec u^n$
  -->
 <IMG
- WIDTH="35" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="37" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img39.png"
- ALT="$ \Delta \vec u^n$"> can
+ ALT="$ \Delta \vec u^n$">
+ can
 only be through the curl of the displacement, rather than the displacement
 itself or its full gradient (as mentioned above, the constant components of
 the increment describe translations, its divergence the dilational modes, and
 the curl the rotational modes). Since the exact form of <IMG
- WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img75.png"
- ALT="$ R$"> is cumbersome, we
+ ALT="$ R$">
+ is cumbersome, we
 only state it in the program code, and note that the correct updating formula
 for the stress variable is then
 <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="298" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="299" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img76.png"
  ALT="$\displaystyle \sigma^n = R(\Delta \vec u^n)^T [\sigma^{n-1} + C \varepsilon (\Delta \vec u^n)] R(\Delta \vec u^n).$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -941,34 +1013,37 @@ sequence of operations on the present mesh:
 A^K_{ij}$
  -->
 <IMG
- WIDTH="103" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="105" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img77.png"
  ALT="$ A_{ij} = \sum_K
-A^K_{ij}$"> built up of local contributions on each cell <IMG
- WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+A^K_{ij}$">
+ built up of local contributions on each cell <IMG
+ WIDTH="19" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img65.png"
- ALT="$ K$"> with entries
+ ALT="$ K$">
+ with entries
   <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="170" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="171" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img78.png"
- ALT="$\displaystyle A^K_{ij} = (C \varepsilon(\varphi_i), \varepsilon(\varphi_j))_K;$"></TD>
+ ALT="$\displaystyle A^K_{ij} = (C \varepsilon(\varphi_j), \varepsilon(\varphi_i))_K;$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
 (21)</TD></TR>
 </TABLE></DIV>
 <BR CLEAR="ALL"><P></P>
 In practice, <IMG
- WIDTH="27" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="29" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img79.png"
- ALT="$ A^K$"> is computed using numerical quadrature according to the
+ ALT="$ A^K$">
+ is computed using numerical quadrature according to the
   formula
   <P></P>
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="275" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="277" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img80.png"
  ALT="$\displaystyle A^K_{ij} = \sum_q w_q [\varepsilon(\varphi_i(\vec x_q)) : C : \varepsilon(\varphi_j(\vec x_q))],$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -976,46 +1051,53 @@ In practice, <IMG
 </TABLE></DIV>
 <BR CLEAR="ALL"><P></P>
 with quadrature points <IMG
- WIDTH="20" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img64.png"
- ALT="$ \vec x_q$"> and weights <IMG
- WIDTH="21" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \vec x_q$">
+ and weights <IMG
+ WIDTH="23" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img63.png"
- ALT="$ w_q$">. We have built these
+ ALT="$ w_q$">
+. We have built these
   contributions before, in step-8 and step-17, but in both of these cases we
   have done so rather clumsily by using knowledge of how the rank-4 tensor <IMG
- WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img17.png"
  ALT="$ C$">
+
   is composed, and considering individual elements of the strain tensors
   <!-- MATH
  $\varepsilon(\varphi_i),\varepsilon(\varphi_j)$
  -->
 <IMG
- WIDTH="83" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="84" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img81.png"
- ALT="$ \varepsilon(\varphi_i),\varepsilon(\varphi_j)$">. This is not really
+ ALT="$ \varepsilon(\varphi_i),\varepsilon(\varphi_j)$">
+. This is not really
   convenient, in particular if we want to consider more complicated elasticity
   models than the isotropic case for which <IMG
- WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img17.png"
- ALT="$ C$"> had the convenient form
+ ALT="$ C$">
+ had the convenient form
   <!-- MATH
- $c_{ijkl}  = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl}
+ $C_{ijkl}  = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl}
 + \delta_{il} \delta_{jk})$
  -->
 <IMG
- WIDTH="235" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="241" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img82.png"
- ALT="$ c_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl}
-+ \delta_{il} \delta_{jk})$">. While we in fact do not use a more complicated
+ ALT="$ C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl}
++ \delta_{il} \delta_{jk})$">
+. While we in fact do not use a more complicated
   form than this in the present program, we nevertheless want to write it in a
   way that would easily allow for this. It is then natural to introduce
   classes that represent symmetric tensors of rank 2 (for the strains and
   stresses) and 4 (for the stress-strain tensor <IMG
- WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img17.png"
- ALT="$ C$">). Fortunately, deal.II
+ ALT="$ C$">
+). Fortunately, deal.II
   provides these: the <TT>SymmetricTensor&lt;rank,dim&gt;</TT> class template
   provides a full-fledged implementation of such tensors of rank <TT>rank</TT>
   (which needs to be an even number) and dimension <TT>dim</TT>.
@@ -1023,54 +1105,63 @@ with quadrature points <IMG
 <P>
 What we then need is two things: a way to create the stress-strain rank-4
   tensor <IMG
- WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img17.png"
- ALT="$ C$"> as well as to create a symmetric tensor of rank 2 (the strain
+ ALT="$ C$">
+ as well as to create a symmetric tensor of rank 2 (the strain
   tensor) from the gradients of a shape function <IMG
- WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img83.png"
- ALT="$ \varphi_i$"> at a quadrature
+ ALT="$ \varphi_i$">
+ at a quadrature
   point <IMG
- WIDTH="20" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img64.png"
- ALT="$ \vec x_q$"> on a given cell. At the top of the implementation of this
+ ALT="$ \vec x_q$">
+ on a given cell. At the top of the implementation of this
   example program, you will find such functions. The first one,
   <TT>get_stress_strain_tensor</TT>, takes two arguments corresponding to
   the Lam&#233; constants <IMG
- WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img84.png"
- ALT="$ \lambda$"> and <IMG
- WIDTH="13" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ \lambda$">
+ and <IMG
+ WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img85.png"
- ALT="$ \mu$"> and returns the stress-strain tensor
+ ALT="$ \mu$">
+ and returns the stress-strain tensor
   for the isotropic case corresponding to these constants (in the program, we
   will choose constants corresponding to steel); it would be simple to replace
   this function by one that computes this tensor for the anisotropic case, or
   taking into account crystal symmetries, for example. The second one,
   <TT>get_strain</TT> takes an object of type <TT>FEValues</TT> and indices
   <IMG
- WIDTH="9" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="10" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img86.png"
- ALT="$ i$"> and <IMG
- WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ ALT="$ i$">
+ and <IMG
+ WIDTH="12" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img68.png"
- ALT="$ q$"> and returns the symmetric gradient, i.e. the strain,
+ ALT="$ q$">
+ and returns the symmetric gradient, i.e. the strain,
   corresponding to shape function <!-- MATH
  $\varphi_i(\vec x_q)$
  -->
 <IMG
- WIDTH="48" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img87.png"
- ALT="$ \varphi_i(\vec x_q)$">, evaluated on the cell
+ ALT="$ \varphi_i(\vec x_q)$">
+, evaluated on the cell
   on which the <TT>FEValues</TT> object was last reinitialized.
 
 <P>
 Given this, the innermost loop of <TT>assemble_system</TT> computes the
   local contributions to the matrix in the following elegant way (the variable
   <TT>stress_strain_tensor</TT>, corresponding to the tensor <IMG
- WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img17.png"
- ALT="$ C$">, has
+ ALT="$ C$">
+, has
   previously been initialized with the result of the first function above):
   <PRE>
 for (unsigned int i=0; i&lt;dofs_per_cell; ++i)
@@ -1101,7 +1192,7 @@ Assembling the local contributions
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="331" HEIGHT="72" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="331" HEIGHT="71" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img88.png"
  ALT="\begin{gather*}\begin{split}f^K_i &amp;= (\vec f, \varphi_i)_K -(\sigma^{n-1},\varep...
 ...gma^{n-1}_q : \varepsilon(\varphi_i(\vec x_q)) \right\} \end{split}\end{gather*}"></TD>
@@ -1111,18 +1202,20 @@ Assembling the local contributions
 <BR CLEAR="ALL"><P></P>
 to the right hand side of (<A HREF="#eq:linear-system">17</A>) is equally
   straightforward (note that we do not consider any boundary tractions <IMG
- WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img89.png"
- ALT="$ \vec b$"> here). Remember that we only had to store the old stress in the
+ ALT="$ \vec b$">
+ here). Remember that we only had to store the old stress in the
   quadrature points of cells. In the program, we will provide a variable
   <TT>local_quadrature_points_data</TT> that allows to access the stress
   <!-- MATH
  $\sigma^{n-1}_q$
  -->
 <IMG
- WIDTH="38" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img90.png"
- ALT="$ \sigma^{n-1}_q$"> in each quadrature point. With this the code for the right
+ ALT="$ \sigma^{n-1}_q$">
+ in each quadrature point. With this the code for the right
   hand side looks as this, again rather elegant:
   <PRE>
 for (unsigned int i=0; i&lt;dofs_per_cell; ++i)
@@ -1149,21 +1242,24 @@ for (unsigned int i=0; i&lt;dofs_per_cell; ++i)
  $\vec f(\vec x_q) \cdot \varphi_i(\vec x_q)$
  -->
 <IMG
- WIDTH="96" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="97" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img91.png"
- ALT="$ \vec f(\vec x_q) \cdot \varphi_i(\vec x_q)$">, we have made use of the fact that for the chosen finite element, only
+ ALT="$ \vec f(\vec x_q) \cdot \varphi_i(\vec x_q)$">
+, we have made use of the fact that for the chosen finite element, only
   one vector component (namely <TT>component_i</TT>) of <IMG
- WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img83.png"
- ALT="$ \varphi_i$"> is
+ ALT="$ \varphi_i$">
+ is
   nonzero, and that we therefore also have to consider only one component of
   <!-- MATH
  $\vec f(\vec x_q)$
  -->
 <IMG
- WIDTH="39" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img92.png"
- ALT="$ \vec f(\vec x_q)$">.
+ ALT="$ \vec f(\vec x_q)$">
+.
 
 <P>
 This essentially concludes the new material we present in this function. It
@@ -1188,9 +1284,10 @@ This essentially concludes the new material we present in this function. It
  $\Delta \vec u^n$
  -->
 <IMG
- WIDTH="35" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ WIDTH="37" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img39.png"
- ALT="$ \Delta \vec u^n$"> computed before, we update the stress values in all quadrature points
+ ALT="$ \Delta \vec u^n$">
+ computed before, we update the stress values in all quadrature points
   according to (<A HREF="#eq:stress-update">18</A>) and (<A HREF="#eq:stress-update+rot">20</A>),
   including the rotation of the coordinate system.
 
@@ -1260,7 +1357,7 @@ elastic energy
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="310" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="311" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img93.png"
  ALT="$\displaystyle E(\vec u) = (\varepsilon(\vec u), C\varepsilon(\vec u))_{\Omega} - (\vec f, \vec u)_{\Omega} - (\vec b, \vec u)_{\Gamma_N},$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -1272,7 +1369,7 @@ subject to the constraint
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="86" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="88" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img94.png"
  ALT="$\displaystyle f(\sigma(\vec u)) \le 0$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -1315,7 +1412,7 @@ Incompressibility is characterized by Poisson's ratio
 <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
 <TR VALIGN="MIDDLE">
 <TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="100" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="101" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img95.png"
  ALT="$\displaystyle \nu = \frac{\lambda}{2(\lambda+\mu)},$"></TD>
 <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
@@ -1326,23 +1423,27 @@ where <!-- MATH
  $\lambda,\mu$
  -->
 <IMG
- WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="30" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img96.png"
- ALT="$ \lambda,\mu$"> are the Lam&#233; constants of the material.
+ ALT="$ \lambda,\mu$">
+ are the Lam&#233; constants of the material.
 Physical constraints indicate that <!-- MATH
  $-1\le \nu\le \tfrac 12$
  -->
 <IMG
- WIDTH="85" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="86" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img97.png"
- ALT="$ -1\le \nu\le \tfrac 12$">. If <IMG
- WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ ALT="$ -1\le \nu\le \tfrac 12$">
+. If <IMG
+ WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
  SRC="step-18.data/intro/img98.png"
  ALT="$ \nu$">
+
 approaches <IMG
- WIDTH="13" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ WIDTH="15" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
  SRC="step-18.data/intro/img99.png"
- ALT="$ \tfrac 12$">, then the material becomes incompressible. In that
+ ALT="$ \tfrac 12$">
+, then the material becomes incompressible. In that
 case, pure displacement-based formulations are no longer appropriate for the
 solution of such problems, and stabilization techniques have to be employed
 for a stable and accurate solution. The book and paper cited above give
@@ -1366,16 +1467,16 @@ you wish. The main complication one has to overcome is that one has to
 transfer the data that is stored in the quadrature points of the cells of the
 old mesh to the new mesh, preferably by some sort of projection scheme. This
 is only slightly messy in the sequential case; in fact, the functions
-<tt>FETools::get_projection_from_quadrature_points_matrix</tt> will do
-the projection, and the <tt>FiniteElement::get_restriction_matrix</tt> and
-<tt>FiniteElement::get_prolongation_matrix</tt> functions will do the
-transfer between mother and child cells. However, it becomes complicated once
-we run the program in parallel, since then each process only stores this data
-for the cells it owned on the old mesh, and it may need to know the values of
-the quadrature point data on other cells if the corresponding cells on the new
-mesh are assigned to this process after subdividing the new mesh. A global
-communication of these data elements is therefore necessary, making the entire
-process a little more unpleasant.
+<TT>FETools</TT> <TT>::</TT> <TT>get_projection_from_quadrature_points_matrix</TT> will do
+the projection, and the <TT>FiniteElement</TT> <TT>::</TT> <TT>get_restriction_matrix</TT> and
+<TT>FiniteElement</TT> <TT>::</TT> <TT>get_prolongation_matrix</TT> functions will do the
+transfer between mother and child cells. However, it becomes complicated
+once we run the program in parallel, since then each process only stores this
+data for the cells it owned on the old mesh, and it may need to know the
+values of the quadrature point data on other cells if the corresponding cells
+on the new mesh are assigned to this process after subdividing the new mesh. A
+global communication of these data elements is therefore necessary, making the
+entire process a little more unpleasant.
 
 <P>
 
@@ -1411,4 +1512,3 @@ although this is already done in the distributed version of the Makefile.
 Conversely, if you want to run the program in 2d (after making the necessary
 changes to accommodate for a 2d geometry), you have to change the Makefile
 back to allow for 2d.
-
index 05a5e2e4b849c8de8df314e250f7b23b883aadd2..a5b88b1ae765bd19448720d3c351bec78091db76 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro.pdf and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro.pdf differ
index 323baaa448afda66753d32a9dca198a63bf95818..4f85ec90841b045c59d6c40ea663378127ee7d25 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img1.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img1.png differ
index 2fea50fed4ffd71d6622f542459a64359396520d..d4f762bbfc5da55038ffb03d59264decb9dd8c8f 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img10.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img10.png differ
index 59c33a6e6fb4d20a6945719d32e807297462b82c..edf440bcf94345f395da0d6045641078e82f1cf1 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img11.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img11.png differ
index e09962d3d1926adc14278ef35fa9537ca696644c..897795f8bcb0b9afb4afb1e8e0a86f3df7581c47 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img12.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img12.png differ
index fd918c6a5520a2d5078460a1d5e493e592049dfd..e24e3a6c2975011a9b75ac31bfc856f8d5e50ede 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img13.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img13.png differ
index f7e973bd1142191ea57355d9ed2ca324a036e0e4..18f848a3b58e25bcb2c731523e7b066f010f3964 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img14.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img14.png differ
index ca804b7cf443f6aa3dbc38e254eba53771b60b11..646de73fd450c3dfae6f89a4576f107698491954 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img15.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img15.png differ
index 448517fb5417b92e67ea41dfd2f205ccf8ce91f4..abfc0473d396a6a44c371e6fce40adbcb16ff643 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img16.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img16.png differ
index 2897e02957e9a42cbe7a733dc1fe7144e05275e7..71e902470bcb9e5773c715130569d2bf08b3e331 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img17.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img17.png differ
index 044dc1e35e9c767b12d1b785177e4c3e8d09d59f..4044e4d13b61f776cacbb2c0688ffd74462413f7 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img18.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img18.png differ
index 9333d20b5a54b36597bbc9de37d7b5e2b8d60952..bee30fa41fad1f33e90bf7d3e053c9a506c656ba 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img19.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img19.png differ
index cda8ace6b06bd9b1dd027def5cb5b329d735780e..dbf248687625808f9c76fec0538dc2942bfe3fd1 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img2.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img2.png differ
index 1612593773b87b3f13fcb91b451de91704ba952c..b17e0d9b2e8fdbebb91f9917b28516b6bfd12065 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img20.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img20.png differ
index e24eea5e62d9ff88b8f377469b947bcd886d8f64..59f19b94768246b458944fd8a051a87fabfb4e92 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img21.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img21.png differ
index 32648dfb1bdddb8ce903825426ac1736317a0dc3..51bc83c6dd9bbe2bc34736c00e26ca6f9dba2185 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img22.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img22.png differ
index 197ba5e46331ab7a26fcee467fa0fee8303e2791..37de84a542fed4e9ef234d9ee4423b33ed14c714 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img23.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img23.png differ
index 4ede85b6ff931e6829d4e318fad82367876d9e5f..50bf784172d408ba3dceee13f2b1c26ca4a239d2 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img24.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img24.png differ
index a9b2370de2aa8f6341b5a3321119da1db67cac66..92f8d26d4430c59e30584f953056efd27f94ae8d 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img25.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img25.png differ
index 17fa13d0ed431535da70e4a4c73bd4a4c1e9216d..91695bc5bc45ab6a35ad64337861ec299f0b6eba 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img26.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img26.png differ
index cb01264a0151901baf563d27d0ae4df3236cf0a0..d1adfec4b53cafbf03f7750d1a701dd16bf6d9e7 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img27.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img27.png differ
index 0d3ef07fb6a0273aef676cf1c8a4442cabb37469..de071a3ae1247a62654eaa67262980cf5f7e47a1 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img28.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img28.png differ
index bf8206938dbe33bedf5669581e81e0e8192026e8..cc088f8067c861bc7ba7bea3f2f9c9b4096bdf13 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img29.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img29.png differ
index 1869553319d8902506411d3fccdabc53686ee855..fbd9219f0ef86c387d72cb508e23fe5fe84ed142 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img3.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img3.png differ
index e66944b0dd256682d188b6a4cda541ddacb625d2..52d702af1ec7ab1e40e1360a49efa952a5ec66db 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img30.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img30.png differ
index 406292a0b25b0952a88ad016bb4f1b368f480cf7..df422c0b279c24c7c740b2398e50ab784645d815 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img31.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img31.png differ
index fbb37e83bfdbd4ee138cd08245b48d91c548e886..3a94d4b5c22401520ec20e820d9702cdeb40fc21 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img32.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img32.png differ
index b1ed212b34dad6c6eeda0f49c92e47c9bb25a01b..4a0ae7d8cbc78fb776120789c4c826523f2d53fb 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img33.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img33.png differ
index 561079e9c85c9d34adcee3b10c8f46b5d2496b30..96f95c6216c3ffa8c8ea050842c4a31737107359 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img34.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img34.png differ
index 4585efe54a00adde19d6a7905561ce9faa9c3265..404f319a009179ac2536bc8221a444d9723c1e84 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img35.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img35.png differ
index bdab1750ca3634bc9e7d0f8014ce5524c55f115e..e65e53a072f05d081ab2b5ea46b2ef5897621f72 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img36.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img36.png differ
index 0161316c0442c2ed10298e51baeb62093b678198..71f20f386cd624279658eb4fd6f90eccf7e54bab 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img37.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img37.png differ
index 26745c1d616b80a28f5f1567db4b61aaced9f35c..3ccaa26cd98955269d4a97ec16d62507daeb8893 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img38.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img38.png differ
index 614a8feb42ec300f037c4634746ff090c6fbc01f..7309f7ecc1110a1741c0cc8d0cff28b8d5dc3fa2 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img39.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img39.png differ
index a8d58b909771de0ad3a167419fa464c8c41ef0e2..82a35db95c7cbee35bb7db2adcb79ebb184d55d2 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img4.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img4.png differ
index 6a5f66328c37267f8230fa847cff11e8a9636fb5..42ff48a26072041bf497fed87faae5e0fbdd6163 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img40.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img40.png differ
index 2d4c288be170a78d3e3d2dae7e371c00b6dcf1bc..8a5fc6c6ad1cf9f4bd1e0ca9ecd01d73a9f1d4b2 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img41.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img41.png differ
index c63be1b45d7f9ea6deacb8ac019a97cbd4a97dad..24f793de1a7560d6f3855b5008a5641753525f82 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img42.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img42.png differ
index e8ca6ae9755e6ace0ba6e24bddeec35e604e2ebc..457a2eea244a08900c0871f37dd7361cb55fd0e4 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img43.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img43.png differ
index c24306e1951b2ef84d6d1355fc22fafa34021376..71e35110396bc1bfc6acf74962c6a91b2c0ce64e 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img44.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img44.png differ
index 1afc2be6154284b2c0be301236deb068caf9e728..660e1f7a9e12d890568f8a11c41641bddca66bc5 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img45.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img45.png differ
index 3b8e2fd342d9978cb4e49a0ad69d03cf043ff8a7..4752bb803a99697724e5e358afc1d1db33229deb 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img46.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img46.png differ
index db799d55ac5a3a27c95d78a2a7bf11742f5bf007..2ce876f00fb3e795fa025caf3762ec10a635c8f2 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img47.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img47.png differ
index b8450755fa089892952ca6b1a75e1551ecff58ba..6208f147f1f78b885cd5642e141cfa3f9cd60573 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img48.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img48.png differ
index 7606d6a664bdee8cf10577a9ee42f087535bd726..a7412b9f18985044aebb8962e80bf496cc98fe2c 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img49.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img49.png differ
index fd0a2608e918dd23b7c0d02ff253cd301f638c22..095ea468290eebeb1fdd17353d49532d7244136f 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img5.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img5.png differ
index dc406d64c048f78eee5dbc0f43cfb8ab42f05c85..a1369cbfc848e350d06382d788e1bf3610217bd1 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img50.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img50.png differ
index d379718c151b6496990d6563b2ea6c30803588b0..11b7c77c301b7e144b45bca60455c984bb3ba6f2 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img51.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img51.png differ
index ffcc41d573c3c4c9b38aace6b0c7f24d7bcaf77d..b4019faf2d985217e5a7d58da3d38e05486ee998 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img52.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img52.png differ
index 4926fc81f5511118f27edb07457712591121c2ea..964a5b666ac970cb709aaecc7abba56eda310986 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img53.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img53.png differ
index df496ba11e3a94cec737f960c4d52c7fd38c6396..48e64e60b223a40f5578437574cce0b8165fdba3 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img54.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img54.png differ
index 7f66221be6a83693517a7ba59fded66da1bbde3b..6b14e28499b73683a2b694d28b6bb1df27a837cb 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img55.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img55.png differ
index 2fa4b0cea92f8d733d0d09e43d835b11769866f3..1ea0e6a1b744e368c6b6df27bf25d79a361995cd 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img56.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img56.png differ
index adad427a4bdc03c4673b0d49ad9f6fc8dd8fd54c..0308bdfb3bd4f925205bb38c76c4f2065b1888a5 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img57.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img57.png differ
index 3038f9623e4fd92a94b12b48e94b876cfeb99b42..01cd7abc69762b295b62b167fb68fc700dd66b08 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img58.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img58.png differ
index 1df25e7f516fbad2ae094fe88783c229751b2130..839a8a8a29a41b79f25287e5969c50e63c644845 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img59.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img59.png differ
index ec84774d14d7b9f0a6f92a8c092ab650c061ca47..d704ea28ab897a5d796edd2fca14275007e67428 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img6.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img6.png differ
index 458136f56fc0f616f9dcee9a8812373ff4a2e0d6..f7daf45ebb1ad9d948b3a2588f80fe2deb298bbd 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img60.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img60.png differ
index 73ed0355fe9e4c291e702e1bbba63f687bab53b3..d247f1dc675aaba05a8c3d7b16a9c0f90e44f693 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img61.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img61.png differ
index e970b9adf94a9006b6ced2a25fce9135bdc659cf..3b4318b6ca9e35c6369f79d2c65e3564614d230f 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img62.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img62.png differ
index e5b2ae831db021145f355a171ea0a0101d4c724d..c5a2088762f814399473fa33b41da5b1b9de7762 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img63.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img63.png differ
index 0b0d4f6e5816a6f5328c0419c62981eeb5d32957..4d1fcb84bde317dc351b894fa0a713462f70ac5f 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img64.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img64.png differ
index 0dd0f4f9459a822a0be72f42b7193c1ff8d7f332..f60a2bde1eeca59593496ce374c46ff0d26851c7 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img65.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img65.png differ
index abb9da7e04667f7b2befdfac545af143b46e78c0..25ac13b2fbf024bdcf7493cb4895c77cd41e6dee 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img66.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img66.png differ
index cc2445bc1c127c8fdee13bebc8140f19d7ba5df9..3ca0181debd9c169aa6ab7dc0697af82f5ce2885 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img67.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img67.png differ
index 7304bf3a5a586e326783e595260be6328aee2c90..8db096591f2d765ed209ca94d7ca7c0d461bf91c 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img68.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img68.png differ
index c6da046cf7a9ec72eb3500801e3a683c02de82d3..c69666acc88d7163c549850b619488e9fb59f314 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img69.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img69.png differ
index 66c1a760ddbed53ef656749d321dbf4a96344fcc..72c7d4979e7f995a94a6ce2758182835059c0e6c 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img7.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img7.png differ
index e2c9ebb33ca65830751d18c6c7fbf4b1e532c7e2..9e0d0b001bab206c4c43a39168a1d1ba08c02d38 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img70.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img70.png differ
index debbaf27866d46a2ddfb446540cfa5d64f27ee91..a2fb06cfa206ba9a9608d4f1ad9c9f03df2b2b06 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img71.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img71.png differ
index 5ec63289314d1c60da132bf754e8c024ee4adb65..784daab071cc98fc0a6ac386d577e34391291cf9 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img72.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img72.png differ
index 51b2f9732fee48743ea368ab5d1845aa918776ad..1b231e7c8a0a85588b402b8f2d8b3afb4f748f3c 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img73.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img73.png differ
index 4588b8ba5b04cb33441b24c80806e4c11cc45df8..933552a581c8ee743b0f593849edfc7bd7c44fc7 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img74.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img74.png differ
index bf6a805805f17211c1d45efb53c716ad3c418f8f..040bda610c0b03039e5bd5ccd51933369f3c5e9b 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img75.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img75.png differ
index 72bf0c871ade33ff8434fb73dfa61939a32f9426..ae00dc154a2dce1cc5a7bf698a6ccc386c616051 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img76.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img76.png differ
index f8c2551faf6f5400dead0aa9d8b88206f247fb12..53c2a77bceaebc2495afc7487900a9afe63ee478 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img77.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img77.png differ
index 5beca6ec03b04041fa73f785aaf975b99abf9975..cadb86bf8c4896e2ffe635f7b150ab11caea3f4f 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img78.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img78.png differ
index 5c8a7735cc70c49a84dc75f1aa46345959048782..18a99a6aa12d5e8d4f0295853fe81997a605a9a0 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img79.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img79.png differ
index 25aa0a7e32db3a4eabc4c80b4926b7a1988ee532..09bf5c41145a2541ac84b4b683be452bd239d51e 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img8.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img8.png differ
index 1a69c9a2fef1c5bf99353fd6d1d2d0146ae89635..4a5f786f1599a2ff95ddbff8c7ed094bbee59de9 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img80.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img80.png differ
index 8879db8bf54a4f894094f17d092ddfa71bfa0cc5..40d0d76ca9d9c4aa111191f0819e049b3c8700fc 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img81.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img81.png differ
index d367e79b01745e70b633fba09452f32f765fdee7..53b52139adc8ba272864b6563c16f384e1cc2ad5 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img82.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img82.png differ
index c834008e7762d1417dc2464d167d9e6f69e53652..e125080e8d23938d93e5be9eb74e6ddc6b1aa6b8 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img83.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img83.png differ
index 387ee03e6b16b8204d228f373a449b3658d290f5..928e241142bca4cb8177ca3caf0c5988aeed77c8 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img84.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img84.png differ
index 534bff67285862ab457f3da79e93d9f5d1340f3c..16160fda82bd59c2bb2e1093f93362f747a0f331 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img85.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img85.png differ
index a58fdd949a5e9225469c4d2a8c1345f9ef96cb5a..b4b97f19c47cebfcd613538f694a7de9d44612fb 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img86.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img86.png differ
index 46dcc447ece4fb08722c1135ebf210403ccc5613..344be488d34f294439e89a6c6acc14035ade0b12 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img87.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img87.png differ
index 2cf9015df7ec19b7170fc3d6467a6c5a746ff4a0..37de0c2c2d957e139b466e464ffc7780804b18c8 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img88.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img88.png differ
index e5f1709711d6a7586d7d478f99f5ecddb8255edb..b4667df342ae846c84bd581cedbf4a2f25099401 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img89.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img89.png differ
index b1ed212b34dad6c6eeda0f49c92e47c9bb25a01b..4a0ae7d8cbc78fb776120789c4c826523f2d53fb 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img9.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img9.png differ
index d31fa8e7a0b6468ea70f20ea79b65977694cb020..f602f9496bc71951c496d2a2f791445fa6946440 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img90.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img90.png differ
index 2a4ebe4ce242e3d5cd613f61072c003a2f3d0cb4..70addbf6e94ef52f3c0e5e1a07b09b0547c480ea 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img91.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img91.png differ
index 839879187c21bd7a0f6be1f94433f1ff3c730bb2..99aaee1866680d150aa9445acbf7b27ace8a5a36 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img92.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img92.png differ
index 62ebc9859a31a5c445afce8c73d54344fa1ea43c..420b776da8b5bd8d059bb37d547e741ca8b520dc 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img93.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img93.png differ
index 75be22136795762737797118b5ef74a8871c327b..48fbbd7df8f2b181fe67413e8d14b86a32cbffee 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img94.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img94.png differ
index 2fd953d060f3121393da1b556b1c70bebaae0b98..5614d58f22ed467e05a688eaac57246318d6207b 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img95.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img95.png differ
index 1cf25a057e277a44ba37e52b08fccafa046462d1..ffc82543e56fcb5a47e821d711e2cd3551a9c872 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img96.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img96.png differ
index 5a0de42877c990b650549cc9b19870444cfe2587..23bf8a4cd4caf342bfc1406558e77e4d6af73117 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img97.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img97.png differ
index f14d302f9d5479f35cafafe1a6fd37ac8b3f4070..074293292dd4d51725eb0aaba07bc7033b3371a6 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img98.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img98.png differ
index afad9fedacbd956d882322d605b9dd8125ccaedf..60d2b911055fd784c656a9284c7acf15bc62479a 100644 (file)
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img99.png and b/deal.II/doc/tutorial/chapter-2.step-by-step/step-18.data/intro/img99.png differ

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.