]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Go on commenting.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Tue, 20 May 2008 04:03:43 +0000 (04:03 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Tue, 20 May 2008 04:03:43 +0000 (04:03 +0000)
git-svn-id: https://svn.dealii.org/trunk@16131 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-33/step-33.cc

index dcf0ea8529b22f8d9b9eae332d21b2f2a137d67b..24769462226bfdb6a8c35a7b9490ca1c6c25a3c9 100644 (file)
@@ -1936,60 +1936,105 @@ assemble_cell_term (const FEValues<dim>             &fe_v,
   Table<2,double>
     W_old (n_q_points, EulerEquations<dim>::n_components);
 
-  std::vector<boost::array<Sacado::Fad::DFad<double>,EulerEquations<dim>::n_components> >
-    W_theta (n_q_points);
-
+  Table<2,Sacado::Fad::DFad<double> >
+    W_theta (n_q_points, EulerEquations<dim>::n_components);
+  
   Table<3,Sacado::Fad::DFad<double> >
     grad_W (n_q_points, EulerEquations<dim>::n_components, dim);
 
-                                  // We will define the dofs on this cell in
-                                  // these fad variables.
+                                  // Next, we have to define the independent
+                                  // variables that we will try to determine
+                                  // by solving a Newton step. These
+                                  // independent variables are the values of
+                                  // the local degrees of freedom which we
+                                  // extract here:
   std::vector<Sacado::Fad::DFad<double> > independent_local_dof_values(dofs_per_cell);
+  for (unsigned int i=0; i<dofs_per_cell; ++i)
+    independent_local_dof_values[i] = current_solution(dof_indices[i]);
   
-                                  // Here is the magical point where we declare a subset
-                                  // of the fad variables as degrees of freedom.  All 
-                                  // calculations that reference these variables (either
-                                  // directly or indirectly) will accumulate sensitivies
-                                  // with respect to these dofs.
-  for (unsigned int in = 0; in < dofs_per_cell; in++) {
-    independent_local_dof_values[in] = current_solution(dof_indices[in]);
-    independent_local_dof_values[in].diff(in, dofs_per_cell);
-  }
-
-                                  // Here we compute the shape function values and gradients
-                                  // at the quadrature points.  Ideally, we could call into 
-                                  // something like get_function_values, get_function_grads,
-                                  // but since we don't want to make the entire old_solution vector
-                                  // fad types, only the local cell variables, we explicitly
-                                  // code this loop;
-  for (unsigned int q = 0; q < n_q_points; q++) {
-    for (unsigned int di = 0; di < EulerEquations<dim>::n_components; di++) {
-      W[q][di] = 0;
-      W_old[q][di] = 0;
-      W_theta[q][di] = 0;
-      for (unsigned int d = 0; d < dim; d++) {
-        grad_W[q][di][d] = 0;
+                                  // The next step incorporates all the
+                                  // magic: we declare a subset of the
+                                  // autodifferentiation variables as
+                                  // independent degrees of freedom, whereas
+                                  // all the other ones remain dependent
+                                  // functions. These are precisely the local
+                                  // degrees of freedom just extracted. All
+                                  // calculations that reference them (either
+                                  // directly or indirectly) will accumulate
+                                  // sensitivies with respect to these
+                                  // variables.
+                                  //
+                                  // In order to mark the variables as
+                                  // independent, the following does the
+                                  // trick, marking
+                                  // <code>independent_local_dof_values[i]</code>
+                                  // as the $i$th independent variable out of
+                                  // a total of <code>dofs_per_cell</code>:
+  for (unsigned int i=0; i<dofs_per_cell; ++i)
+    independent_local_dof_values[i].diff (i, dofs_per_cell);
+
+                                  // After all these declarations, let us
+                                  // actually compute something. First, the
+                                  // values of <code>W</code>,
+                                  // <code>W_old</code>,
+                                  // <code>W_theta</code>, and
+                                  // <code>grad_W</code>, which we can
+                                  // compute from the local DoF values by
+                                  // using the formula $W(x_q)=\sum_i \mathbf
+                                  // W_i \Phi_i(x_q)$, where $\mathbf W_i$ is
+                                  // the $i$th entry of the (local part of
+                                  // the) solution vector, and $\Phi_i(x_q)$
+                                  // the value of the $i$th vector-valued
+                                  // shape function evaluated at quadrature
+                                  // point $x_q$. The gradient can be
+                                  // computed in a similar way.
+                                  //
+                                  // Ideally, we could compute this
+                                  // information using a call into something
+                                  // like FEValues::get_function_values and
+                                  // FEValues::get_function_grads, but since
+                                  // (i) we would have to extend the FEValues
+                                  // class for this, and (ii) we don't want
+                                  // to make the entire
+                                  // <code>old_solution</code> vector fad
+                                  // types, only the local cell variables, we
+                                  // explicitly code the loop above. Before
+                                  // this, we add another loop that
+                                  // initializes all the fad variables to
+                                  // zero:
+  for (unsigned int q=0; q<n_q_points; ++q)
+    for (unsigned int c=0; c<EulerEquations<dim>::n_components; ++c)
+      {
+       W[q][c]       = 0;
+       W_old[q][c]   = 0;
+       W_theta[q][c] = 0;
+       for (unsigned int d=0; d<dim; ++d)
+         grad_W[q][c][d] = 0;
       }
-    }
-    for (unsigned int sf = 0; sf < dofs_per_cell; sf++) {
-      int di = fe_v.get_fe().system_to_component_index(sf).first;
-      W[q][di] +=
-       independent_local_dof_values[sf]*fe_v.shape_value_component(sf, q, di);
-      W_old[q][di] +=
-       old_solution(dof_indices[sf])*fe_v.shape_value_component(sf, q, di);
-      W_theta[q][di] +=
-       (parameters.theta*independent_local_dof_values[sf]+(1-parameters.theta)*old_solution(dof_indices[sf]))*fe_v.shape_value_component(sf, q, di);
-
-      for (unsigned int d = 0; d < dim; d++) {
-       grad_W[q][di][d] += independent_local_dof_values[sf]*
-                           fe_v.shape_grad_component(sf, q, di)[d];
-      } // for d
 
-    }
+  for (unsigned int q=0; q<n_q_points; ++q)
+    for (unsigned int i=0; i<dofs_per_cell; ++i)
+      {
+       const unsigned int c = fe_v.get_fe().system_to_component_index(i).first;
+       
+       W[q][c] += independent_local_dof_values[i] *
+                  fe_v.shape_value_component(i, q, c);
+       W_old[q][c] += old_solution(dof_indices[i]) *
+                      fe_v.shape_value_component(i, q, c);
+       W_theta[q][c] += (parameters.theta *
+                         independent_local_dof_values[i]
+                         +
+                         (1-parameters.theta) *
+                         old_solution(dof_indices[i])) *
+                        fe_v.shape_value_component(i, q, c);
+         
+       for (unsigned int d = 0; d < dim; d++)
+         grad_W[q][c][d] += independent_local_dof_values[i] *
+                            fe_v.shape_grad_component(i, q, c)[d];
+      }
 
-  } // for q
 
-                                   // Gather the flux values for all components at
+                                  // Gather the flux values for all components at
                                    // all of the quadrature points.  This also
                                    // computes the matrix of sensitivities.  Perhaps
                                    // this could be done in a better way, since this

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.