]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Merge branch_raviart_thomas
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 9 Jun 2003 15:56:35 +0000 (15:56 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 9 Jun 2003 15:56:35 +0000 (15:56 +0000)
git-svn-id: https://svn.dealii.org/trunk@7770 0785d39b-7218-0410-832d-ea1e28bc413d

23 files changed:
deal.II/deal.II/include/fe/fe_base.h
deal.II/deal.II/include/fe/fe_dgp.h
deal.II/deal.II/include/fe/fe_dgp_nonparametric.h
deal.II/deal.II/include/fe/fe_dgq.h
deal.II/deal.II/include/fe/fe_nedelec.h
deal.II/deal.II/include/fe/fe_q.h
deal.II/deal.II/include/fe/fe_q_hierarchical.h
deal.II/deal.II/include/fe/fe_raviart_thomas.h [new file with mode: 0644]
deal.II/deal.II/include/fe/fe_system.h
deal.II/deal.II/include/fe/fe_tools.h
deal.II/deal.II/source/fe/fe.cc
deal.II/deal.II/source/fe/fe_dgp.cc
deal.II/deal.II/source/fe/fe_dgp_nonparametric.cc
deal.II/deal.II/source/fe/fe_dgq.cc
deal.II/deal.II/source/fe/fe_nedelec.cc
deal.II/deal.II/source/fe/fe_q.cc
deal.II/deal.II/source/fe/fe_q_1d.cc
deal.II/deal.II/source/fe/fe_q_2d.cc
deal.II/deal.II/source/fe/fe_q_3d.cc
deal.II/deal.II/source/fe/fe_q_hierarchical.cc
deal.II/deal.II/source/fe/fe_raviart_thomas.cc [new file with mode: 0644]
deal.II/deal.II/source/fe/fe_system.cc
deal.II/deal.II/source/fe/fe_tools.cc

index 9a00eee92807ce1bca11da320bd6b935d7c01edb..85f16c573d76899a83c26a6650d5986466124930 100644 (file)
@@ -24,6 +24,8 @@
 #include <fe/fe_update_flags.h>
 #include <fe/mapping.h>
 
+#include <string>
+
 template<int dim> class FESystem;
 
 
@@ -440,6 +442,26 @@ class FiniteElementBase : public Subscriptor,
                       const std::vector<bool> &restriction_is_additive_flags,
                       const std::vector<std::vector<bool> > &nonzero_components);
 
+                                    /**
+                                     * Return a string that uniquely
+                                     * identifies a finite
+                                     * element. The general
+                                     * convention is that this is the
+                                     * class name, followed by the
+                                     * space dimension in angle
+                                     * brackets, and the polynomial
+                                     * degree and whatever else is
+                                     * necessary in parentheses. For
+                                     * example, @p{FE_Q<2>(3)} is the
+                                     * value returned for a cubic
+                                     * element in 2d.
+                                     *
+                                     * Systems of elements have their
+                                     * own naming convention, see the
+                                     * @ref{FESystem} class.
+                                     */
+    virtual std::string get_name () const = 0;
+    
                                     /**
                                      * Return the value of the
                                      * @p{i}th shape function at the
@@ -774,7 +796,31 @@ class FiniteElementBase : public Subscriptor,
                                       * just expresses.
                                       */
     bool constraints_are_implemented () const;
-    
+
+                                    /**
+                                     * Return the matrix
+                                     * interpolating from the given
+                                     * finite element to the present
+                                     * one. The size of the matrix is
+                                     * then @p{dofs_per_cell} times
+                                     * @p{source.dofs_per_cell}.
+                                     *
+                                     * Derived elements will have to
+                                     * implement this function. They
+                                     * may only provide interpolation
+                                     * matrices for certain source
+                                     * finite elements, for example
+                                     * those from the same family. If
+                                     * they don't implement
+                                     * interpolation from a given
+                                     * element, then they must throw
+                                     * an exception of type
+                                     * @ref{FiniteElementBase<dim>::ExcInterpolationNotImplemented}.
+                                     */
+    virtual void
+    get_interpolation_matrix (const FiniteElementBase<dim> &source,
+                             FullMatrix<double>           &matrix) const;
+      
                                     /**
                                      * Comparison operator. We also
                                      * check for equality of the
@@ -1277,6 +1323,10 @@ class FiniteElementBase : public Subscriptor,
                    << "The interface matrix has a size of " << arg1
                    << "x" << arg2
                    << ", which is not reasonable in the present dimension.");
+                                     /**
+                                      * Exception
+                                      */
+    DeclException0 (ExcInterpolationNotImplemented);
     
   protected:  
                                     /**
index ad0ff15b0caa7bdaedaa37056d1f8f0fd3f9aff9..09c7be61120c72e24f1add26429d1ccfc6f09e57 100644 (file)
@@ -43,6 +43,17 @@ class FE_DGP : public FiniteElement<dim>
                                      */
     FE_DGP (const unsigned int k);
     
+                                    /**
+                                     * Return a string that uniquely
+                                     * identifies a finite
+                                     * element. This class returns
+                                     * @p{FE_DGP<dim>(degree)}, with
+                                     * @p{dim} and @p{degree}
+                                     * replaced by appropriate
+                                     * values.
+                                     */
+    virtual std::string get_name () const;
+
                                     /**
                                      * Return the value of the
                                      * @p{i}th shape function at the
index 40d0ed1cdda4148afe17f426129801ff86e5999d..72e594c0f266a54e2983429a020ebb8a00e4282c 100644 (file)
@@ -52,6 +52,17 @@ class FE_DGPNonparametric : public FiniteElement<dim>
                                      */
     FE_DGPNonparametric (const unsigned int k);
     
+                                    /**
+                                     * Return a string that uniquely
+                                     * identifies a finite
+                                     * element. This class returns
+                                     * @p{FE_DGPNonparametric<dim>(degree)},
+                                     * with @p{dim} and @p{degree}
+                                     * replaced by appropriate
+                                     * values.
+                                     */
+    virtual std::string get_name () const;
+
                                     /**
                                      * Return the value of the
                                      * @p{i}th shape function at the
index 907ba8fd60aff27aa62a9a1ef916f208b9393617..f5cd910154c284e5f43b2790d3ae601ed6f6e805 100644 (file)
@@ -42,6 +42,17 @@ class FE_DGQ : public FiniteElement<dim>
                                      */
     FE_DGQ (const unsigned int k);
     
+                                    /**
+                                     * Return a string that uniquely
+                                     * identifies a finite
+                                     * element. This class returns
+                                     * @p{FE_DGQ<dim>(degree)}, with
+                                     * @p{dim} and @p{degree}
+                                     * replaced by appropriate
+                                     * values.
+                                     */
+    virtual std::string get_name () const;
+
                                     /**
                                      * Return the value of the
                                      * @p{i}th shape function at the
@@ -152,6 +163,26 @@ class FE_DGQ : public FiniteElement<dim>
                                      * constructor.
                                      */
     unsigned int get_degree () const;
+    
+                                    /**
+                                     * Return the matrix
+                                     * interpolating from the given
+                                     * finite element to the present
+                                     * one. The size of the matrix is
+                                     * then @p{dofs_per_cell} times
+                                     * @p{source.dofs_per_cell}.
+                                     *
+                                     * These matrices are only
+                                     * available if the source
+                                     * element is also a @p{FE_DGQ}
+                                     * element. Otherwise, an
+                                     * exception of type
+                                     * @ref{FiniteElementBase<dim>::ExcInterpolationNotImplemented}
+                                     * is thrown.
+                                     */
+    virtual void
+    get_interpolation_matrix (const FiniteElementBase<dim> &source,
+                             FullMatrix<double>           &matrix) const;
 
                                     /**
                                      * Number of base elements in a
index 2f4ea09c5028c4c710727e637ecb70043152516d..8cb0977a14f4c360a9e30977cb1c6fa24bf5e050 100644 (file)
@@ -174,7 +174,7 @@ template <int dim> class MappingQ;
  * implemented there.
  *
  *
- * @author Wolfgang Bangerth, Anna Schneebeli, 2002
+ * @author Wolfgang Bangerth, Anna Schneebeli, 2002, 2003
  */
 template <int dim>
 class FE_Nedelec : public FiniteElement<dim>
@@ -186,6 +186,17 @@ class FE_Nedelec : public FiniteElement<dim>
                                      */
     FE_Nedelec (const unsigned int p);
     
+                                    /**
+                                     * Return a string that uniquely
+                                     * identifies a finite
+                                     * element. This class returns
+                                     * @p{FE_Nedelec<dim>(degree)}, with
+                                     * @p{dim} and @p{degree}
+                                     * replaced by appropriate
+                                     * values.
+                                     */
+    virtual std::string get_name () const;
+
                                     /**
                                      * Return the value of the
                                      * @p{component}th vector
index 218949d220d0dadcad8b64c004d35d3096785e0d..66f3627906a801bd9699aa1e141063d9ac527b10 100644 (file)
@@ -246,6 +246,17 @@ class FE_Q : public FiniteElement<dim>
                                      */
     FE_Q (const unsigned int p);
     
+                                    /**
+                                     * Return a string that uniquely
+                                     * identifies a finite
+                                     * element. This class returns
+                                     * @p{FE_Q<dim>(degree)}, with
+                                     * @p{dim} and @p{degree}
+                                     * replaced by appropriate
+                                     * values.
+                                     */
+    virtual std::string get_name () const;
+
                                     /**
                                      * Return the value of the
                                      * @p{i}th shape function at the
@@ -358,6 +369,26 @@ class FE_Q : public FiniteElement<dim>
     unsigned int get_degree () const;
     
                                     /**
+                                     * Return the matrix
+                                     * interpolating from the given
+                                     * finite element to the present
+                                     * one. The size of the matrix is
+                                     * then @p{dofs_per_cell} times
+                                     * @p{source.dofs_per_cell}.
+                                     *
+                                     * These matrices are only
+                                     * available if the source
+                                     * element is also a @p{FE_Q}
+                                     * element. Otherwise, an
+                                     * exception of type
+                                     * @ref{FiniteElementBase<dim>::ExcInterpolationNotImplemented}
+                                     * is thrown.
+                                     */
+    virtual void
+    get_interpolation_matrix (const FiniteElementBase<dim> &source,
+                             FullMatrix<double>           &matrix) const;
+
+                                     /**
                                      * Number of base elements in a
                                      * mixed discretization. Since
                                      * this is a scalar element,
@@ -426,42 +457,6 @@ class FE_Q : public FiniteElement<dim>
                                      */
     struct Matrices
     {
-                                        /**
-                                         * Embedding matrices. For
-                                         * each element type (the
-                                         * first index) there are as
-                                         * many embedding matrices as
-                                         * there are children per
-                                         * cell. The first index
-                                         * starts with linear
-                                         * elements and goes up in
-                                         * polynomial degree. The
-                                         * array may grow in the
-                                         * future with the number of
-                                         * elements for which these
-                                         * matrices have been
-                                         * computed. If for some
-                                         * element, the matrices have
-                                         * not been computed then you
-                                         * may use the element
-                                         * nevertheless but can not
-                                         * access the respective
-                                         * fields.
-                                         */
-       static const double * const
-       embedding[][GeometryInfo<dim>::children_per_cell];
-
-                                        /**
-                                         * Number of elements (first
-                                         * index) the above field
-                                         * has. Equals the highest
-                                         * polynomial degree for
-                                         * which the embedding
-                                         * matrices have been
-                                         * computed.
-                                         */
-       static const unsigned int n_embedding_matrices;
-
                                         /**
                                          * As the
                                          * @p{embedding_matrices}
@@ -858,41 +853,30 @@ template <>
 std::vector<unsigned int>
 FE_Q<1>::face_lexicographic_to_hierarchic_numbering (const unsigned int);
 
-// declaration of explicit specializations of member variables, if the
-// compiler allows us to do that (the standard says we must)
-#ifndef DEAL_II_MEMBER_VAR_SPECIALIZATION_BUG
-template <> 
-const double * const 
-FE_Q<1>::Matrices::embedding[][GeometryInfo<1>::children_per_cell];
-
 template <>
-const unsigned int FE_Q<1>::Matrices::n_embedding_matrices;
+void FE_Q<1>::initialize_constraints ();
 
 template <>
-const double * const FE_Q<1>::Matrices::constraint_matrices[];
+void FE_Q<2>::initialize_constraints ();
 
 template <>
-const unsigned int FE_Q<1>::Matrices::n_constraint_matrices;
+void FE_Q<3>::initialize_constraints ();
 
-template <> 
-const double * const 
-FE_Q<2>::Matrices::embedding[][GeometryInfo<2>::children_per_cell];
 
+// declaration of explicit specializations of member variables, if the
+// compiler allows us to do that (the standard says we must)
+#ifndef DEAL_II_MEMBER_VAR_SPECIALIZATION_BUG
 template <>
-const unsigned int FE_Q<2>::Matrices::n_embedding_matrices;
+const double * const FE_Q<1>::Matrices::constraint_matrices[];
 
 template <>
-const double * const FE_Q<2>::Matrices::constraint_matrices[];
+const unsigned int FE_Q<1>::Matrices::n_constraint_matrices;
 
 template <>
-const unsigned int FE_Q<2>::Matrices::n_constraint_matrices;
-
-template <> 
-const double * const 
-FE_Q<3>::Matrices::embedding[][GeometryInfo<3>::children_per_cell];
+const double * const FE_Q<2>::Matrices::constraint_matrices[];
 
 template <>
-const unsigned int FE_Q<3>::Matrices::n_embedding_matrices;
+const unsigned int FE_Q<2>::Matrices::n_constraint_matrices;
 
 template <>
 const double * const FE_Q<3>::Matrices::constraint_matrices[];
index 816bb73f6878de5291cd538bdeccd2a7caa4bc78..9823c87351641e2b37fafca4f1d74567e801aedb 100644 (file)
@@ -241,6 +241,17 @@ class FE_Q_Hierarchical : public FiniteElement<dim>
                                      */
     FE_Q_Hierarchical (const unsigned int p);
     
+                                    /**
+                                     * Return a string that uniquely
+                                     * identifies a finite
+                                     * element. This class returns
+                                     * @p{FE_Q_Hierarchical<dim>(degree)},
+                                     * with @p{dim} and @p{degree}
+                                     * replaced by appropriate
+                                     * values.
+                                     */
+    virtual std::string get_name () const;
+
                                     /**
                                      * Return the value of the
                                      * @p{i}th shape function at the
diff --git a/deal.II/deal.II/include/fe/fe_raviart_thomas.h b/deal.II/deal.II/include/fe/fe_raviart_thomas.h
new file mode 100644 (file)
index 0000000..0001118
--- /dev/null
@@ -0,0 +1,636 @@
+//---------------------------------------------------------------
+//    $Id$
+//    Version: $Name$
+//
+//    Copyright (C) 2002, 2003 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//---------------------------------------------------------------
+#ifndef __deal2__fe_raviart_thomas_h
+#define __deal2__fe_raviart_thomas_h
+
+#include <base/config.h>
+#include <base/tensor_product_polynomials.h>
+#include <grid/geometry_info.h>
+#include <fe/fe.h>
+
+template <int dim> class MappingQ;
+
+
+
+/**
+ * Implementation of continuous Raviart-Thomas elements for the space
+ * H_div. Note, however, that continuity only concerns the normal
+ * component of the vector field.
+ *
+ * The constructor of this class takes the degree @p{p} of this finite
+ * element. The numbering of the degree of this element in the
+ * literature is somewhat funny: the degree is defined not as the
+ * polynomial degree of the finite element space, but as that of the
+ * normal component of the traces onto the boundary. Thus, the lowest
+ * order, zero, has linear shape functions, but on the faces, the
+ * traces of the normal component of these elements is constant on
+ * each face.
+ * 
+ * 
+ * @sect3{Interpolation to finer and coarser meshes}
+ *
+ * Each finite element class in deal.II provides matrices that are
+ * used to interpolate from coarser to finer meshes and the other way
+ * round. Interpolation from a mother cell to its children is usually
+ * trivial, since finite element spaces are normally nested and this
+ * kind of interpolation is therefore exact. On the other hand, when
+ * we interpolate from child cells to the mother cell, we usually have
+ * to throw away some information.
+ *
+ * For continuous elements, this transfer usually happens by
+ * interpolating the values on the child cells at the support points
+ * of the shape functions of the mother cell. However, for
+ * discontinuous elements, we often use a projection from the child
+ * cells to the mother cell. The projection approach is only possible
+ * for discontinuous elements, since it cannot be guaranteed that the
+ * values of the projected functions on one cell and its neighbor
+ * match. In this case, only an interpolation can be
+ * used. (Internally, whether the values of a shape function are
+ * interpolated or projected, or better: whether the matrices the
+ * finite element provides are to be treated with the properties of a
+ * projection or of an interpolation, is controlled by the
+ * @p{restriction_is_additive} flag. See there for more information.)
+ *
+ * Here, things are not so simple: since the element has some
+ * continuity requirements across faces, we can only resort to some
+ * kind of interpolation. On the other hand, for the lowest order
+ * elements, the values of generating functionals are the (constant)
+ * tangential values of the shape functions. We would therefore really
+ * like to take the mean value of the tangential values of the child
+ * faces, and make this the value of the mother face. Then, however,
+ * taking a mean value of two piecewise constant function is not an
+ * interpolation, but a restriction. Since this is not possible, we
+ * cannot use this.
+ *
+ * To make a long story somewhat shorter, when interpolating from
+ * refined edges to a coarse one, we do not take the mean value, but
+ * pick only one (the one from the first child edge). While this is
+ * not optimal, it is certainly a valid choice (using an interpolation
+ * point that is not in the middle of the cell, but shifted to one
+ * side), and it also preserves the order of the interpolation.
+ * 
+ *
+ * @sect3{Numbering of the degrees of freedom (DoFs)}
+ *
+ * Nedelec elements have their degrees of freedom on edges, with shape
+ * functions being vector valued and pointing in tangential
+ * direction. We use the standard enumeration and direction of edges
+ * in deal.II, yielding the following shape functions in 2d:
+ *
+ *   @begin{verbatim}
+ *          2
+ *      *---^---*
+ *      |       |
+ *     3>       >1
+ *      |       |
+ *      *---^---*
+ *          0
+ *   @end{verbatim}
+ *
+ * For the 3d case, the ordering follows the same scheme: the lines
+ * are numbered as described in the documentation of the
+ * @ref{Triangulation} class, i.e.
+ *   @begin{verbatim}
+ *         *---6---*        *---6---*
+ *        /|       |       /       /|
+ *      11 |       5      11     10 5
+ *      /  7       |     /       /  |
+ *     *   |       |    *---2---*   |
+ *     |   *---4---*    |       |   *
+ *     |  /       /     |       1  /
+ *     3 8       9      3       | 9
+ *     |/       /       |       |/
+ *     *---0---*        *---0---*
+ *   @end{verbatim}
+ * and their directions are as follows:
+ *   @begin{verbatim}
+ *         *--->---*        *--->---*
+ *        /|       |       /       /|
+ *       ^ |       ^      ^       ^ ^
+ *      /  ^       |     /       /  |
+ *     *   |       |    *--->---*   |
+ *     |   *--->---*    |       |   *
+ *     |  /       /     |       ^  /
+ *     ^ ^       ^      ^       | ^
+ *     |/       /       |       |/
+ *     *--->---*        *--->---*
+ *   @end{verbatim}
+ *
+ * The element does not make much sense in 1d, so it is not
+ * implemented there.
+ *
+ *
+ * @author Wolfgang Bangerth, 2003
+ */
+template <int dim>
+class FE_RaviartThomas : public FiniteElement<dim>
+{
+  public:
+                                    /**
+                                     * Constructor for the Nedelec
+                                     * element of degree @p{p}.
+                                     */
+    FE_RaviartThomas (const unsigned int p);
+    
+                                    /**
+                                     * Return a string that uniquely
+                                     * identifies a finite
+                                     * element. This class returns
+                                     * @p{FE_RaviartThomas<dim>(degree)}, with
+                                     * @p{dim} and @p{degree}
+                                     * replaced by appropriate
+                                     * values.
+                                     */
+    virtual std::string get_name () const;
+
+                                    /**
+                                     * Return the value of the
+                                     * @p{component}th vector
+                                     * component of the @p{i}th shape
+                                     * function at the point
+                                     * @p{p}. See the
+                                     * @ref{FiniteElementBase} base
+                                     * class for more information
+                                     * about the semantics of this
+                                     * function.
+                                     */
+    virtual double shape_value_component (const unsigned int i,
+                                         const Point<dim> &p,
+                                         const unsigned int component) const;
+
+                                    /**
+                                     * Return the gradient of the
+                                     * @p{component}th vector
+                                     * component of the @p{i}th shape
+                                     * function at the point
+                                     * @p{p}. See the
+                                     * @ref{FiniteElementBase} base
+                                     * class for more information
+                                     * about the semantics of this
+                                     * function.
+                                     */
+    virtual Tensor<1,dim> shape_grad_component (const unsigned int i,
+                                               const Point<dim> &p,
+                                               const unsigned int component) const;
+
+                                    /**
+                                     * Return the second derivative
+                                     * of the @p{component}th vector
+                                     * component of the @p{i}th shape
+                                     * function at the point
+                                     * @p{p}. See the
+                                     * @ref{FiniteElementBase} base
+                                     * class for more information
+                                     * about the semantics of this
+                                     * function.
+                                     */
+    virtual Tensor<2,dim> shape_grad_grad_component (const unsigned int i,
+                                                    const Point<dim> &p,
+                                                    const unsigned int component) const;
+
+                                    /**
+                                     * Return the polynomial degree
+                                     * of this finite element,
+                                     * i.e. the value passed to the
+                                     * constructor.
+                                     */
+    unsigned int get_degree () const;
+    
+                                    /**
+                                     * Return the matrix
+                                     * interpolating from the given
+                                     * finite element to the present
+                                     * one. The size of the matrix is
+                                     * then @p{dofs_per_cell} times
+                                     * @p{source.dofs_per_cell}.
+                                     *
+                                     * These matrices are only
+                                     * available if the source
+                                     * element is also a Raviart
+                                     * Thomas element. Otherwise, an
+                                     * exception of type
+                                     * @ref{FiniteElementBase<dim>::ExcInterpolationNotImplemented}
+                                     * is thrown.
+                                     */
+    virtual void
+    get_interpolation_matrix (const FiniteElementBase<dim> &source,
+                             FullMatrix<double>           &matrix) const;
+
+                                    /**
+                                     * Number of base elements in a
+                                     * mixed discretization. Here,
+                                     * this is of course equal to
+                                     * one.
+                                     */
+    virtual unsigned int n_base_elements () const;
+    
+                                    /**
+                                     * Access to base element
+                                     * objects. Since this element is
+                                     * atomic, @p{base_element(0)} is
+                                     * @p{this}, and all other
+                                     * indices throw an error.
+                                     */
+    virtual const FiniteElement<dim> &
+    base_element (const unsigned int index) const;
+
+                                     /**
+                                      * Multiplicity of base element
+                                      * @p{index}. Since this is an
+                                      * atomic element,
+                                      * @p{element_multiplicity(0)}
+                                      * returns one, and all other
+                                      * indices will throw an error.
+                                      */
+    virtual unsigned int element_multiplicity (const unsigned int index) const;
+    
+                                    /**
+                                     * This function returns
+                                     * @p{true}, if the shape
+                                     * function @p{shape_index} has
+                                     * non-zero values on the face
+                                     * @p{face_index}. For the lowest
+                                     * order Nedelec elements, this
+                                     * is actually the case for the
+                                     * one on which the shape
+                                     * function is defined and all
+                                     * neighboring ones.
+                                     *
+                                     * Implementation of the
+                                     * interface in
+                                     * @ref{FiniteElement}
+                                     */
+    virtual bool has_support_on_face (const unsigned int shape_index,
+                                     const unsigned int face_index) const;
+
+                                    /**
+                                     * Determine an estimate for the
+                                     * memory consumption (in bytes)
+                                     * of this object.
+                                     *
+                                     * This function is made virtual,
+                                     * since finite element objects
+                                     * are usually accessed through
+                                     * pointers to their base class,
+                                     * rather than the class itself.
+                                     */
+    virtual unsigned int memory_consumption () const;
+
+                                    /**
+                                     * Exception
+                                     */
+    DeclException0 (ExcNotUsefulInThisDimension);
+    
+  protected:    
+                                    /**
+                                     * @p{clone} function instead of
+                                     * a copy constructor.
+                                     *
+                                     * This function is needed by the
+                                     * constructors of @p{FESystem}.
+                                     */
+    virtual FiniteElement<dim> * clone() const;
+  
+                                    /**
+                                     * Prepare internal data
+                                     * structures and fill in values
+                                     * independent of the cell.
+                                     */
+    virtual
+    typename Mapping<dim>::InternalDataBase *
+    get_data (const UpdateFlags,
+             const Mapping<dim>& mapping,
+             const Quadrature<dim>& quadrature) const ;
+
+                                    /**
+                                     * Implementation of the same
+                                     * function in
+                                     * @ref{FiniteElement}.
+                                     */
+    virtual void
+    fill_fe_values (const Mapping<dim> &mapping,
+                   const typename DoFHandler<dim>::cell_iterator &cell,
+                   const Quadrature<dim>                &quadrature,
+                   typename Mapping<dim>::InternalDataBase      &mapping_internal,
+                   typename Mapping<dim>::InternalDataBase      &fe_internal,
+                   FEValuesData<dim>& data) const;
+    
+                                    /**
+                                     * Implementation of the same
+                                     * function in
+                                     * @ref{FiniteElement}.
+                                     */
+    virtual void
+    fill_fe_face_values (const Mapping<dim> &mapping,
+                        const typename DoFHandler<dim>::cell_iterator &cell,
+                        const unsigned int                    face_no,
+                        const Quadrature<dim-1>                &quadrature,
+                        typename Mapping<dim>::InternalDataBase      &mapping_internal,
+                        typename Mapping<dim>::InternalDataBase      &fe_internal,
+                        FEValuesData<dim>& data) const;
+    
+                                    /**
+                                     * Implementation of the same
+                                     * function in
+                                     * @ref{FiniteElement}.
+                                     */
+    virtual void
+    fill_fe_subface_values (const Mapping<dim> &mapping,
+                           const typename DoFHandler<dim>::cell_iterator &cell,
+                           const unsigned int                    face_no,
+                           const unsigned int                    sub_no,
+                           const Quadrature<dim-1>                &quadrature,
+                           typename Mapping<dim>::InternalDataBase      &mapping_internal,
+                           typename Mapping<dim>::InternalDataBase      &fe_internal,
+                           FEValuesData<dim>& data) const;
+
+  private:
+                                    /**
+                                     * Degree of the polynomials.
+                                     */  
+    const unsigned int degree;
+
+                                     /**
+                                      * Spaces describing the
+                                      * anisotropic polynomial spaces
+                                      * for each vector component,
+                                      * i.e. there are @p{dim}
+                                      * elements of this field. The
+                                      * values for this member are
+                                      * created in
+                                      * @ref{create_polynomials}.
+                                      */
+    const std::vector<AnisotropicPolynomials<dim> > polynomials;
+
+                                     /**
+                                      * For each shape function, store
+                                      * to which vector component (on
+                                      * the unit cell, they are mixed
+                                      * on the real cell by the
+                                      * transformation) they belong,
+                                      * and which index they have
+                                      * within the anisotropic tensor
+                                      * product polynomial space
+                                      * describing this vector
+                                      * component.
+                                      *
+                                      * These values are computed by
+                                      * the @ref{compute_renumber}
+                                      * function.
+                                      */
+    const std::vector<std::pair<unsigned int, unsigned int> > renumber;
+    
+    
+                                     /**
+                                      * Generate the polynomial spaces
+                                      * for the @ref{polynomials}
+                                      * member.
+                                      */
+    static std::vector<AnisotropicPolynomials<dim> >
+    create_polynomials (const unsigned int degree);
+    
+                                    /**
+                                     * Only for internal use. Its
+                                     * full name is
+                                     * @p{get_dofs_per_object_vector}
+                                     * function and it creates the
+                                     * @p{dofs_per_object} vector that is
+                                     * needed within the constructor to
+                                     * be passed to the constructor of
+                                     * @p{FiniteElementData}.
+                                     */
+    static std::vector<unsigned int>
+    get_dpo_vector (const unsigned int degree);
+
+                                    /**
+                                     * Compute the vector used for
+                                     * the
+                                     * @p{restriction_is_additive}
+                                     * field passed to the base
+                                     * class's constructor.
+                                     */
+    static std::vector<bool>
+    get_ria_vector (const unsigned int degree);
+
+                                     /**
+                                      * Compute the values of the
+                                      * @p{renumber} field.
+                                      */
+    static std::vector<std::pair<unsigned int, unsigned int> >
+    compute_renumber (const unsigned int);
+
+                                    /**
+                                     * Initialize the hanging node
+                                     * constraints matrices. Called
+                                     * from the constructor.
+                                     */
+    void initialize_constraints ();
+
+                                    /**
+                                     * Initialize the embedding
+                                     * matrices. Called from the
+                                     * constructor.
+                                     */
+    void initialize_embedding ();
+
+                                    /**
+                                     * Initialize the restriction
+                                     * matrices. Called from the
+                                     * constructor.
+                                     */
+    void initialize_restriction ();
+    
+                                    /**
+                                     * Initialize the
+                                     * @p{unit_support_points} field
+                                     * of the @ref{FiniteElementBase}
+                                     * class. Called from the
+                                     * constructor.
+                                     */
+    void initialize_unit_support_points ();
+
+                                    /**
+                                     * Initialize the
+                                     * @p{unit_face_support_points} field
+                                     * of the @ref{FiniteElementBase}
+                                     * class. Called from the
+                                     * constructor.
+                                     */
+    void initialize_unit_face_support_points ();
+    
+                                    /**
+                                     * Given a set of flags indicating
+                                     * what quantities are requested
+                                     * from a @p{FEValues} object,
+                                     * return which of these can be
+                                     * precomputed once and for
+                                     * all. Often, the values of
+                                     * shape function at quadrature
+                                     * points can be precomputed, for
+                                     * example, in which case the
+                                     * return value of this function
+                                     * would be the logical and of
+                                     * the input @p{flags} and
+                                     * @p{update_values}.
+                                     *
+                                     * For the present kind of finite
+                                     * element, this is exactly the
+                                     * case.
+                                     */
+    virtual UpdateFlags update_once (const UpdateFlags flags) const;
+  
+                                    /**
+                                     * This is the opposite to the
+                                     * above function: given a set of
+                                     * flags indicating what we want
+                                     * to know, return which of these
+                                     * need to be computed each time
+                                     * we visit a new cell.
+                                     *
+                                     * If for the computation of one
+                                     * quantity something else is
+                                     * also required (for example, we
+                                     * often need the covariant
+                                     * transformation when gradients
+                                     * need to be computed), include
+                                     * this in the result as well.
+                                     */
+    virtual UpdateFlags update_each (const UpdateFlags flags) const;
+    
+                                    /**
+                                     * Fields of cell-independent data.
+                                     *
+                                     * For information about the
+                                     * general purpose of this class,
+                                     * see the documentation of the
+                                     * base class.
+                                     */
+    class InternalData : public FiniteElementBase<dim>::InternalDataBase
+    {
+      public:
+                                        /**
+                                         * Array with shape function
+                                         * values in quadrature
+                                         * points. There is one row
+                                         * for each shape function,
+                                         * containing values for each
+                                         * quadrature point. Since
+                                         * the shape functions are
+                                         * vector-valued (with as
+                                         * many components as there
+                                         * are space dimensions), the
+                                         * value is a tensor.
+                                         *
+                                         * In this array, we store
+                                         * the values of the shape
+                                         * function in the quadrature
+                                         * points on the unit
+                                         * cell. The transformation
+                                         * to the real space cell is
+                                         * then simply done by
+                                         * multiplication with the
+                                         * Jacobian of the mapping.
+                                         */
+       Table<2,Tensor<1,dim> > shape_values;
+
+                                        /**
+                                         * Array with shape function
+                                         * gradients in quadrature
+                                         * points. There is one
+                                         * row for each shape
+                                         * function, containing
+                                         * values for each quadrature
+                                         * point.
+                                         *
+                                         * We store the gradients in
+                                         * the quadrature points on
+                                         * the unit cell. We then
+                                         * only have to apply the
+                                         * transformation (which is a
+                                         * matrix-vector
+                                         * multiplication) when
+                                         * visiting an actual cell.
+                                         */
+       Table<2,Tensor<2,dim> > shape_gradients;
+    };
+    
+                                    /**
+                                     * Allow access from other
+                                     * dimensions.
+                                     */
+    template <int dim1> friend class FE_RaviartThomas;
+};
+
+
+/* -------------- declaration of explicit specializations ------------- */
+
+template <>
+void FE_RaviartThomas<1>::initialize_unit_face_support_points ();
+
+template <>
+std::vector<unsigned int> FE_RaviartThomas<1>::get_dpo_vector (const unsigned int);
+
+template <>
+std::vector<AnisotropicPolynomials<1> >
+FE_RaviartThomas<1>::create_polynomials (const unsigned int);
+
+template <>
+std::vector<AnisotropicPolynomials<2> >
+FE_RaviartThomas<2>::create_polynomials (const unsigned int);
+
+template <>
+std::vector<AnisotropicPolynomials<3> >
+FE_RaviartThomas<3>::create_polynomials (const unsigned int);
+
+template <>
+std::vector<std::pair<unsigned int, unsigned int> >
+FE_RaviartThomas<1>::compute_renumber (const unsigned int);
+
+template <>
+std::vector<std::pair<unsigned int, unsigned int> >
+FE_RaviartThomas<2>::compute_renumber (const unsigned int);
+
+template <>
+std::vector<std::pair<unsigned int, unsigned int> >
+FE_RaviartThomas<3>::compute_renumber (const unsigned int);
+
+template <>
+void
+FE_RaviartThomas<1>::initialize_constraints ();
+
+template <>
+void
+FE_RaviartThomas<2>::initialize_constraints ();
+
+template <>
+void
+FE_RaviartThomas<3>::initialize_constraints ();
+
+template <>
+void
+FE_RaviartThomas<1>::initialize_embedding ();
+
+template <>
+void
+FE_RaviartThomas<1>::initialize_restriction ();
+
+template <>
+void
+FE_RaviartThomas<2>::initialize_restriction ();
+
+template <>
+void
+FE_RaviartThomas<3>::initialize_restriction ();
+
+
+#endif
index 349bf0efa6a5209a020d6bc95facdd3ae80fd848..6a9a557ac79fdc2b2feaf96d79e621aa91396ae1 100644 (file)
@@ -63,7 +63,7 @@
  * coupled to @p{u} at the vertices and the line on the larger cell next to this
  * vertex, there is no interaction with @p{v} and @p{w} of this or the other cell.
  *
- * @author Wolfgang Bangerth, Guido Kanschat, 1999, partial reimplementation Ralf Hartmann 2001.
+ * @author Wolfgang Bangerth, Guido Kanschat, 1999, 2002, 2003, partial reimplementation Ralf Hartmann 2001.
  */
 template <int dim>
 class FESystem : public FiniteElement<dim>
@@ -123,6 +123,24 @@ class FESystem : public FiniteElement<dim>
                                      */
     virtual ~FESystem ();
 
+                                    /**
+                                     * Return a string that uniquely
+                                     * identifies a finite
+                                     * element. This element returns
+                                     * a string that is composed of
+                                     * the strings
+                                     * @p{name1}...@p{nameN} returned
+                                     * by the basis elements. From
+                                     * these, we create a sequence
+                                     * @p{FESystem<dim>[name1^m1-name2^m2-...-nameN^mN]},
+                                     * where @p{mi} are the
+                                     * multiplicities of the basis
+                                     * elements. If a multiplicity is
+                                     * equal to one, then the
+                                     * superscript is omitted.
+                                     */
+    virtual std::string get_name () const;
+
                                     /**
                                      * Return the value of the
                                      * @p{i}th shape function at the
@@ -273,11 +291,39 @@ class FESystem : public FiniteElement<dim>
                                      * the computation of these
                                      * values to the base elements.
                                      */
-    virtual Tensor<2,dim> shape_grad_grad_component (const unsigned int i,
-                                                    const Point<dim> &p,
-                                                    const unsigned int component) const;
+    virtual
+    Tensor<2,dim>
+    shape_grad_grad_component (const unsigned int i,
+                               const Point<dim> &p,
+                               const unsigned int component) const;
+    
+                                    /**
+                                     * Return the matrix
+                                     * interpolating from the given
+                                     * finite element to the present
+                                     * one. The size of the matrix is
+                                     * then @p{dofs_per_cell} times
+                                     * @p{source.dofs_per_cell}.
+                                     *
+                                     * These matrices are available
+                                     * if source and destination
+                                     * element are both @p{FESystem}
+                                     * elements, have the same number
+                                     * of base elements with same
+                                     * element multiplicity, and if
+                                     * these base elements also
+                                     * implement their
+                                     * @p{get_interpolation_matrix}
+                                     * functions. Otherwise, an
+                                     * exception of type
+                                     * @ref{FiniteElementBase<dim>::ExcInterpolationNotImplemented}
+                                     * is thrown.
+                                     */
+    virtual void
+    get_interpolation_matrix (const FiniteElementBase<dim> &source,
+                             FullMatrix<double>           &matrix) const;
 
-                                    /** 
+                                     /** 
                                      * Number of different base
                                      * elements of this object.
                                      *
index e2d02f6f081af6fdd95a0cb8a8c5ae1860c5c89d..c10f96cd312b09703a201347b16b31c0d27efa1b 100644 (file)
@@ -483,7 +483,7 @@ class FETools
     DeclException4 (ExcMatrixDimensionMismatch,
                    int, int, int, int,
                    << "This is a " << arg1 << "x" << arg2 << " matrix, "
-                   << "but should be a " << arg1 << "x" << arg2 << " matrix.");
+                   << "but should be a " << arg3 << "x" << arg4 << " matrix.");
 };
 
 
index 2c24809b47194c105f71d50b2978aef62cb0341c..7b9b389887b2a7770887be696e747e8b3dc9c2f3 100644 (file)
@@ -328,11 +328,28 @@ FiniteElementBase<dim>::interface_constraints_size () const
                           static_cast<unsigned int>(-1));
 }
 
+
+
+template <int dim>
+void
+FiniteElementBase<dim>::
+get_interpolation_matrix (const FiniteElementBase<dim> &,
+                         FullMatrix<double>           &) const
+{
+                                  // by default, no interpolation
+                                  // implemented. so throw exception,
+                                  // as documentation says
+  AssertThrow (false,
+               typename FiniteElementBase<dim>::
+               ExcInterpolationNotImplemented());
+}
+
                                    
 
 
 template <int dim>
-bool FiniteElementBase<dim>::operator == (const FiniteElementBase<dim> &f) const
+bool
+FiniteElementBase<dim>::operator == (const FiniteElementBase<dim> &f) const
 {
   return ((static_cast<const FiniteElementData<dim>&>(*this) ==
           static_cast<const FiniteElementData<dim>&>(f)) &&
index 878e972180f8a962cf64b546337d2e5315c6405e..c0eb0d10b7d892cc4e3438a485a4ebef3e92c15a 100644 (file)
 #include <fe/fe_dgp.h>
 #include <fe/fe_values.h>
 
+#ifdef HAVE_STD_STRINGSTREAM
+#  include <sstream>
+#else
+#  include <strstream>
+#endif
 
 
 template <int dim>
@@ -73,6 +78,26 @@ FE_DGP<dim>::FE_DGP (const unsigned int degree)
 
 
 
+template <int dim>
+std::string
+FE_DGP<dim>::get_name () const
+{
+#ifdef HAVE_STD_STRINGSTREAM
+  std::ostringstream namebuf;
+#else
+  std::ostrstream namebuf;
+#endif
+  
+  namebuf << "FE_DGP<" << dim << ">(" << degree << ")";
+
+#ifndef HAVE_STD_STRINGSTREAM
+  namebuf << std::ends;
+#endif
+  return namebuf.str();
+}
+
+
+
 template <int dim>
 FiniteElement<dim> *
 FE_DGP<dim>::clone() const
index 361e71d0f6194f59c991698f48cbaa8eb9e37820..c80225dc075e571a205c830b96d0a790386eb843 100644 (file)
 #include <fe/fe_dgp_nonparametric.h>
 #include <fe/fe_values.h>
 
+#ifdef HAVE_STD_STRINGSTREAM
+#  include <sstream>
+#else
+#  include <strstream>
+#endif
 
 
 template <int dim>
@@ -76,6 +81,26 @@ FE_DGPNonparametric<dim>::FE_DGPNonparametric (const unsigned int degree)
 
 
 
+template <int dim>
+std::string
+FE_DGPNonparametric<dim>::get_name () const
+{
+#ifdef HAVE_STD_STRINGSTREAM
+  std::ostringstream namebuf;
+#else
+  std::ostrstream namebuf;
+#endif
+  
+  namebuf << "FE_DGPNonparametric<" << dim << ">(" << degree << ")";
+
+#ifndef HAVE_STD_STRINGSTREAM
+  namebuf << std::ends;
+#endif
+  return namebuf.str();
+}
+
+
+
 template <int dim>
 FiniteElement<dim> *
 FE_DGPNonparametric<dim>::clone() const
index 0e4cb2beedaa7ec94906e429eee6f5ecf173d6cc..fc5b6581e5ef27618d38494e9a88b9e71f0a0f20 100644 (file)
 #include <fe/fe_dgq.h>
 #include <fe/fe_values.h>
 
+#ifdef HAVE_STD_STRINGSTREAM
+#  include <sstream>
+#else
+#  include <strstream>
+#endif
+
+
+
+// namespace for some functions that are used in this file. they are
+// specific to numbering conventions used for the FE_DGQ element, and
+// are thus not very interesting to the outside world
+namespace
+{
+                                  // auxiliary type to allow for some
+                                  // kind of explicit template
+                                  // specialization of the following
+                                  // functions
+  template <int dim> struct int2type {};
+
+
+                                  // given an integer N, compute its
+                                  // integer square root (if it
+                                  // exists, otherwise give up)
+  unsigned int int_sqrt (const unsigned int N)
+  {
+    for (unsigned int i=0; i<=N; ++i)
+      if (i*i == N)
+       return i;
+    Assert (false, ExcInternalError());
+    return static_cast<unsigned int>(-1);
+  }
+
+
+                                  // given an integer N, compute its
+                                  // integer cube root (if it
+                                  // exists, otherwise give up)
+  unsigned int int_cuberoot (const unsigned int N)
+  {
+    for (unsigned int i=0; i<=N; ++i)
+      if (i*i*i == N)
+       return i;
+    Assert (false, ExcInternalError());
+    return static_cast<unsigned int>(-1);
+  }
+
+
+                                  // given N, generate i=0...N-1
+                                  // equidistant points in the
+                                  // interior of the interval [0,1]
+  Point<1>
+  generate_unit_point (const unsigned int i,
+                      const unsigned int N,
+                      const int2type<1>  )
+  {
+    Assert (i<N, ExcInternalError());
+    if (N==1)
+      return Point<1> (.5);
+    else
+      {
+        const double h = 1./(N-1);
+        return Point<1>(i*h);
+      }
+  }
+  
+    
+                                  // given N, generate i=0...N-1
+                                  // equidistant points in the domain
+                                  // [0,1]^2
+  Point<2>
+  generate_unit_point (const unsigned int i,
+                      const unsigned int N,
+                      const int2type<2>  )
+  {
+    Assert (i<N, ExcInternalError());
+    
+    if (N==1)
+      return Point<2> (.5, .5);
+    else
+      {
+        Assert (N>=4, ExcInternalError());
+        const unsigned int N1d = int_sqrt(N);
+        const double h = 1./(N1d-1);
+        
+        return Point<2> (i%N1d * h,
+                         i/N1d * h);
+      }
+  }
+  
+
+  
+
+                                  // given N, generate i=0...N-1
+                                  // equidistant points in the domain
+                                  // [0,1]^3
+  Point<3>
+  generate_unit_point (const unsigned int i,
+                      const unsigned int N,
+                      const int2type<3>  )
+  {
+    Assert (i<N, ExcInternalError());
+    if (N==1)
+      return Point<3> (.5, .5, .5);
+    else
+      {
+        Assert (N>=8, ExcInternalError());
+    
+        const unsigned int N1d = int_cuberoot(N);
+        const double h = 1./(N1d-1);
+
+        return Point<3> (i%N1d * h,
+                         (i/N1d)%N1d * h,
+                         i/(N1d*N1d) * h);
+      }
+  }
+}
+
+
 
 
 template <int dim>
@@ -209,6 +326,26 @@ FE_DGQ<dim>::FE_DGQ (const unsigned int degree)
 
 
 
+template <int dim>
+std::string
+FE_DGQ<dim>::get_name () const
+{
+#ifdef HAVE_STD_STRINGSTREAM
+  std::ostringstream namebuf;
+#else
+  std::ostrstream namebuf;
+#endif
+  
+  namebuf << "FE_DGQ<" << dim << ">(" << degree << ")";
+
+#ifndef HAVE_STD_STRINGSTREAM
+  namebuf << std::ends;
+#endif
+  return namebuf.str();
+}
+
+
+
 template <int dim>
 FiniteElement<dim> *
 FE_DGQ<dim>::clone() const
@@ -414,6 +551,93 @@ FE_DGQ<dim>::rotate_indices (std::vector<unsigned int> &numbers,
 
 
 
+template <int dim>
+void
+FE_DGQ<dim>::
+get_interpolation_matrix (const FiniteElementBase<dim> &x_source_fe,
+                         FullMatrix<double>           &interpolation_matrix) const
+{
+                                  // this is only implemented, if the
+                                  // source FE is also a
+                                  // DGQ element
+  AssertThrow ((x_source_fe.get_name().find ("FE_DGQ<") == 0)
+               ||
+               (dynamic_cast<const FE_DGQ<dim>*>(&x_source_fe) != 0),
+               typename FiniteElementBase<dim>::
+               ExcInterpolationNotImplemented());
+  
+                                  // ok, source is a Q element, so
+                                  // we will be able to do the work
+  const FE_DGQ<dim> &source_fe
+    = dynamic_cast<const FE_DGQ<dim>&>(x_source_fe);
+
+  Assert (interpolation_matrix.m() == this->dofs_per_cell,
+         ExcDimensionMismatch (interpolation_matrix.m(),
+                               this->dofs_per_cell));
+  Assert (interpolation_matrix.n() == source_fe.dofs_per_cell,
+         ExcDimensionMismatch (interpolation_matrix.m(),
+                               source_fe.dofs_per_cell));
+  
+  
+                                  // compute the interpolation
+                                  // matrices in much the same way as
+                                  // we do for the embedding matrices
+                                  // from mother to child.
+  FullMatrix<double> cell_interpolation (this->dofs_per_cell,
+                                        this->dofs_per_cell);
+  FullMatrix<double> source_interpolation (this->dofs_per_cell,
+                                          source_fe.dofs_per_cell);
+  FullMatrix<double> tmp (this->dofs_per_cell,
+                         source_fe.dofs_per_cell);
+  for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+    {
+                                       // generate a point on this
+                                       // cell and evaluate the
+                                       // shape functions there
+      const Point<dim> p = generate_unit_point (j, this->dofs_per_cell,
+                                                int2type<dim>());
+      for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+        cell_interpolation(j,i)
+          = polynomial_space.compute_value (i, p);
+
+      for (unsigned int i=0; i<source_fe.dofs_per_cell; ++i)
+        source_interpolation(j,i)
+          = source_fe.polynomial_space.compute_value (i, p);
+    }
+
+                                   // then compute the
+                                   // interpolation matrix matrix
+                                   // for this coordinate
+                                   // direction
+  cell_interpolation.gauss_jordan ();
+  cell_interpolation.mmult (interpolation_matrix,
+                            source_interpolation);
+
+                                   // cut off very small values
+  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+    for (unsigned int j=0; j<source_fe.dofs_per_cell; ++j)
+      if (std::fabs(interpolation_matrix(i,j)) < 1e-15)
+        interpolation_matrix(i,j) = 0.;
+
+                                  // make sure that the row sum of
+                                  // each of the matrices is 1 at
+                                  // this point. this must be so
+                                  // since the shape functions sum up
+                                  // to 1
+  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+    {
+      double sum = 0.;
+      for (unsigned int j=0; j<source_fe.dofs_per_cell; ++j)
+        sum += interpolation_matrix(i,j);
+
+      Assert (std::fabs(sum-1) < 5e-14*std::max(degree,1U)*dim,
+              ExcInternalError());
+    }
+}
+
+
+
+
 
 //----------------------------------------------------------------------
 // Data field initialization
index 37bf020088880217d178493692d920d5a2fae7db..7a19b160ce9ee7678da86842184f9b0014ae6a9a 100644 (file)
 #include <fe/fe_nedelec.h>
 #include <fe/fe_values.h>
 
+#ifdef HAVE_STD_STRINGSTREAM
+#  include <sstream>
+#else
+#  include <strstream>
+#endif
+
 
 template <int dim>
 FE_Nedelec<dim>::FE_Nedelec (const unsigned int degree)
@@ -58,6 +64,26 @@ FE_Nedelec<dim>::FE_Nedelec (const unsigned int degree)
 
 
 
+template <int dim>
+std::string
+FE_Nedelec<dim>::get_name () const
+{
+#ifdef HAVE_STD_STRINGSTREAM
+  std::ostringstream namebuf;
+#else
+  std::ostrstream namebuf;
+#endif
+  
+  namebuf << "FE_Nedelec<" << dim << ">(" << degree << ")";
+
+#ifndef HAVE_STD_STRINGSTREAM
+  namebuf << std::ends;
+#endif
+  return namebuf.str();
+}
+
+
+
 template <int dim>
 FiniteElement<dim> *
 FE_Nedelec<dim>::clone() const
@@ -1249,8 +1275,10 @@ FE_Nedelec<dim>::fill_fe_subface_values (const Mapping<dim>                   &m
   if (flags & update_values)
     {
       Assert (fe_data.shape_values.n_cols() ==
-              GeometryInfo<dim>::faces_per_cell * n_q_points,
-              ExcInternalError());
+             GeometryInfo<dim>::subfaces_per_face *
+              GeometryInfo<dim>::faces_per_cell *
+             n_q_points,
+             ExcInternalError());
       
       std::vector<Tensor<1,dim> > shape_values (n_q_points);
 
@@ -1279,7 +1307,9 @@ FE_Nedelec<dim>::fill_fe_subface_values (const Mapping<dim>                   &m
   if (flags & update_gradients)
     {
       Assert (fe_data.shape_gradients.n_cols() ==
-              GeometryInfo<dim>::faces_per_cell * n_q_points,
+              GeometryInfo<dim>::faces_per_cell *
+             GeometryInfo<dim>::subfaces_per_face *
+             n_q_points,
               ExcInternalError());
 
       std::vector<Tensor<2,dim> > shape_grads1 (n_q_points);
index 84bbfaef08755b896bba745add6155ffac87ae74..2d2979464d3c298be278f7cf2620d92e3d440d47 100644 (file)
 #include <fe/fe_q.h>
 #include <fe/fe_values.h>
 
+#ifdef HAVE_STD_STRINGSTREAM
+#  include <sstream>
+#else
+#  include <strstream>
+#endif
+
 
-namespace 
+// namespace for some functions that are used in this file. they are
+// specific to numbering conventions used for the FE_Q element, and
+// are thus not very interesting to the outside world
+namespace
 {
+                                  // auxiliary type to allow for some
+                                  // kind of explicit template
+                                  // specialization of the following
+                                  // functions
+  template <int dim> struct int2type {};
+
+                                  // given a permutation array,
+                                  // compute and return the inverse
+                                  // permutation
 #ifdef DEAL_II_ANON_NAMESPACE_BUG
   static
 #endif
@@ -36,6 +54,299 @@ namespace
       out[in[i]]=i;
     return out;
   }
+
+
+                                  // given an integer N, compute its
+                                  // integer square root (if it
+                                  // exists, otherwise give up)
+  unsigned int int_sqrt (const unsigned int N)
+  {
+    for (unsigned int i=0; i<=N; ++i)
+      if (i*i == N)
+       return i;
+    Assert (false, ExcInternalError());
+    return static_cast<unsigned int>(-1);
+  }
+
+
+                                  // given an integer N, compute its
+                                  // integer cube root (if it
+                                  // exists, otherwise give up)
+  unsigned int int_cuberoot (const unsigned int N)
+  {
+    for (unsigned int i=0; i<=N; ++i)
+      if (i*i*i == N)
+       return i;
+    Assert (false, ExcInternalError());
+    return static_cast<unsigned int>(-1);
+  }
+
+
+                                  // given N, generate i=0...N-1
+                                  // equidistant points in the
+                                  // interior of the interval [0,1]
+  Point<1>
+  generate_unit_point (const unsigned int i,
+                      const unsigned int N,
+                      const int2type<1>  )
+  {
+    Assert (i<N, ExcInternalError());
+    const double h = 1./(N-1);
+    return Point<1>(i*h);
+  }
+  
+    
+                                  // given N, generate i=0...N-1
+                                  // equidistant points in the domain
+                                  // [0,1]^2
+  Point<2>
+  generate_unit_point (const unsigned int i,
+                      const unsigned int N,
+                      const int2type<2>  )
+  {
+    Assert (i<N, ExcInternalError());
+    Assert (N>=4, ExcInternalError());
+    
+    const unsigned int N1d = int_sqrt(N);
+    const double h = 1./(N1d-1);
+
+    return Point<2> (i%N1d * h,
+                    i/N1d * h);
+  }
+
+  
+
+                                  // given N, generate i=0...N-1
+                                  // equidistant points in the domain
+                                  // [0,1]^3
+  Point<3>
+  generate_unit_point (const unsigned int i,
+                      const unsigned int N,
+                      const int2type<3>  )
+  {
+    Assert (i<N, ExcInternalError());
+    Assert (N>=8, ExcInternalError());
+    
+    const unsigned int N1d = int_cuberoot(N);
+    const double h = 1./(N1d-1);
+
+    return Point<3> (i%N1d * h,
+                    (i/N1d)%N1d * h,
+                    i/(N1d*N1d) * h);
+  }
+
+  
+
+                                  // given N, generate i=0...N-1
+                                  // equidistant points in the
+                                  // interior of the interval [0,1]
+  Point<1>
+  generate_face_unit_point (const unsigned int i,
+                           const unsigned int N,
+                           const int2type<1>  )
+  {
+    Assert (i<N, ExcInternalError());
+    const double h = 1./(N+1);
+    return Point<1>((1+i)*h);
+  }
+  
+    
+                                  // given N, generate i=0...N-1
+                                  // equidistant points in the domain
+                                  // [0,1]^2, but excluding the four
+                                  // vertices (since we don't have to
+                                  // consider shape functions on
+                                  // child cells that are located on
+                                  // existing vertices)
+  Point<2>
+  generate_face_unit_point (const unsigned int i,
+                           const unsigned int N,
+                           const int2type<2>  )
+  {
+    Assert (i<N, ExcInternalError());
+    
+    const unsigned int N1d = int_sqrt(N+4);    
+    const double h = 1./(N1d+1);
+    
+                                    // i gives the index in the list
+                                    // of points excluding the four
+                                    // vertices. convert this into an
+                                    // index for all N1d**2 points
+                                    //
+                                    // we do so by
+                                    // - adding one if the point is
+                                    // beyond the lower left vertex
+                                    // (actually, all points are)
+
+                                    // - adding one if the point is
+                                    // beyond the lower right one
+                                    // - adding one if it is beyond
+                                    // the upper left one
+                                    // - not adding one for the upper
+                                    // right vertex, since no point
+                                    // can be beyond that one anyway
+                                    // :-)
+    const unsigned int true_i = (1
+                                +
+                                (i >= N1d-2 ? 1 : 0)
+                                +
+                                (i >= N1d*(N1d-1)-2 ? 1 : 0));
+    return Point<2> ((true_i%N1d)*h,
+                    (true_i/N1d)*h);
+  }
+  
+
+
+                                  // return whether shape function j,
+                                  // as given in the numbering
+                                  // specific to the computation of
+                                  // the constraint matrix, is active
+                                  // on the given subface
+  bool
+  constraint_function_is_active_on_child (const unsigned int          j,
+                                         const unsigned int          subface,
+                                         const FiniteElementData<2> &fe_data)
+  {
+                                    // note that in our weird
+                                    // numbering, the zeroth function
+                                    // is the one associated with the
+                                    // center node, then come the
+                                    // ones on subface 0, then those
+                                    // on subface 1. the initial one
+                                    // is active on both subfaces,
+                                    // all other ones only on one of
+                                    // the subfaces
+    return !(((j>=1) && (j<1+fe_data.dofs_per_line) && (subface == 1)) ||
+            ((j>=1+fe_data.dofs_per_line) && (subface == 0)));
+  }
+
+
+
+  bool
+  constraint_function_is_active_on_child (const unsigned int          j,
+                                         const unsigned int          subface,
+                                         const FiniteElementData<3> &fe_data)
+  {
+                                    // in 3d: in our weird numbering,
+                                    // the zeroth function is the one
+                                    // associated with the center
+                                    // node, then come the four edge
+                                    // midpoints, then the ones on
+                                    // the 12 edges then those on
+                                    // subfaces. some are active on
+                                    // more than one child
+
+    if (j < 5)
+                                      // one one of the five vertices
+      {
+       switch (j)
+         {
+           case 0: return true;
+           case 1: return (subface == 0) || (subface == 1);
+           case 2: return (subface == 1) || (subface == 2);
+           case 3: return (subface == 2) || (subface == 3);
+           case 4: return (subface == 3) || (subface == 0);
+         }
+      }
+    else if (j < 5 + 12*fe_data.dofs_per_line)
+                                      // one one of the 12 lines
+      {
+       const unsigned int line = (j-5)/fe_data.dofs_per_line;
+       Assert (line<12, ExcInternalError());
+
+       switch (line)
+         {
+           case 0: return (subface == 0) || (subface == 1);
+           case 1: return (subface == 1) || (subface == 2);
+           case 2: return (subface == 2) || (subface == 3);
+           case 3: return (subface == 3) || (subface == 0);
+           case 4: return (subface == 0);
+           case 5: return (subface == 1);
+           case 6: return (subface == 1);
+           case 7: return (subface == 2);
+           case 8: return (subface == 3);
+           case 9: return (subface == 2);
+           case 10: return (subface == 0);
+           case 11: return (subface == 2);
+         }
+      }
+    else
+                                      // interior
+      {
+       const unsigned int quad = (j-5-12*fe_data.dofs_per_line)/fe_data.dofs_per_quad;
+       Assert (quad<4, ExcInternalError());
+       return quad == subface;
+      }
+    
+    Assert (false, ExcInternalError());
+    return static_cast<unsigned int>(-1);
+  }
+
+
+                                  // given index j in the weird
+                                  // constraint numbering, compute
+                                  // its index in the polynomials
+                                  // space of a given subface
+  unsigned int
+  constraint_get_local_j (const unsigned int          j,
+                         const unsigned int          subface,
+                         const FiniteElementData<2> &fe_data)
+  {
+                                    // the zeroth shape function is a
+                                    // little special, since it has
+                                    // index N on subface 0 and index
+                                    // 0 on subface 1
+         
+    return (subface == 0 ?
+           (j == 0 ? 1+fe_data.dofs_per_line : j) :
+           (j == 0 ? 0 : j-fe_data.dofs_per_line));
+  }
+  
+
+  unsigned int
+  constraint_get_local_j (const unsigned int          /*j*/,
+                         const unsigned int          /*subface*/,
+                         const FiniteElementData<3> &/*fe_data*/)
+  {
+    Assert (false, ExcNotImplemented());
+//    const unsigned int N1d = 2+fe_data.dofs_per_line;
+    return static_cast<unsigned int>(-1);
+  }
+
+
+
+                                  // in the constraint numbering:
+                                  // return true if the support point
+                                  // of shape function j and
+                                  // evaluation point i coincide. to
+                                  // make things simpler, also pass
+                                  // the subface on which j is
+                                  // located
+  bool
+  constraint_is_support_point (const unsigned int          i,
+                              const unsigned int          j,
+                              const unsigned int          subface,
+                              const FiniteElementData<2> &fe_data)
+  {
+    return ((subface == 0) && (((j==0) && (i==fe_data.dofs_per_line))
+                              ||
+                              ((j!=0) && (i==j-1))))
+                     ||
+          ((subface == 1) && (((j==0) && (i==fe_data.dofs_per_line))
+                              ||
+                              ((j!=0) && (i==j))));
+  }
+  
+
+  bool
+  constraint_is_support_point (const unsigned int          /*i*/,
+                              const unsigned int          /*j*/,
+                              const unsigned int          /*subface*/,
+                              const FiniteElementData<3> &/*fe_data*/)
+  {
+    Assert (false, ExcNotImplemented());
+    return false;
+  }  
 }
 
 
@@ -71,6 +382,26 @@ FE_Q<dim>::FE_Q (const unsigned int degree)
 
 
 
+template <int dim>
+std::string
+FE_Q<dim>::get_name () const
+{
+#ifdef HAVE_STD_STRINGSTREAM
+  std::ostringstream namebuf;
+#else
+  std::ostrstream namebuf;
+#endif
+  
+  namebuf << "FE_Q<" << dim << ">(" << degree << ")";
+
+#ifndef HAVE_STD_STRINGSTREAM
+  namebuf << std::ends;
+#endif
+  return namebuf.str();
+}
+
+
+
 template <int dim>
 FiniteElement<dim> *
 FE_Q<dim>::clone() const
@@ -150,6 +481,92 @@ FE_Q<dim>::shape_grad_grad_component (const unsigned int i,
 }
 
 
+
+template <int dim>
+void
+FE_Q<dim>::
+get_interpolation_matrix (const FiniteElementBase<dim> &x_source_fe,
+                         FullMatrix<double>           &interpolation_matrix) const
+{
+                                  // this is only implemented, if the
+                                  // source FE is also a
+                                  // Q element
+  AssertThrow ((x_source_fe.get_name().find ("FE_Q<") == 0)
+               ||
+               (dynamic_cast<const FE_Q<dim>*>(&x_source_fe) != 0),
+               typename FiniteElementBase<dim>::
+               ExcInterpolationNotImplemented());
+  
+                                  // ok, source is a Q element, so
+                                  // we will be able to do the work
+  const FE_Q<dim> &source_fe
+    = dynamic_cast<const FE_Q<dim>&>(x_source_fe);
+
+  Assert (interpolation_matrix.m() == this->dofs_per_cell,
+         ExcDimensionMismatch (interpolation_matrix.m(),
+                               this->dofs_per_cell));
+  Assert (interpolation_matrix.n() == source_fe.dofs_per_cell,
+         ExcDimensionMismatch (interpolation_matrix.m(),
+                               source_fe.dofs_per_cell));
+  
+  
+                                  // compute the interpolation
+                                  // matrices in much the same way as
+                                  // we do for the embedding matrices
+                                  // from mother to child.
+  FullMatrix<double> cell_interpolation (this->dofs_per_cell,
+                                        this->dofs_per_cell);
+  FullMatrix<double> source_interpolation (this->dofs_per_cell,
+                                          source_fe.dofs_per_cell);
+  FullMatrix<double> tmp (this->dofs_per_cell,
+                         source_fe.dofs_per_cell);
+  for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+    {
+                                       // generate a point on this
+                                       // cell and evaluate the
+                                       // shape functions there
+      const Point<dim> p = generate_unit_point (j, this->dofs_per_cell,
+                                                int2type<dim>());
+      for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+        cell_interpolation(renumber[j],renumber[i])
+          = polynomial_space.compute_value (i, p);
+
+      for (unsigned int i=0; i<source_fe.dofs_per_cell; ++i)
+        source_interpolation(renumber[j],source_fe.renumber[i])
+          = source_fe.polynomial_space.compute_value (i, p);
+    }
+
+                                   // then compute the
+                                   // interpolation matrix matrix
+                                   // for this coordinate
+                                   // direction
+  cell_interpolation.gauss_jordan ();
+  cell_interpolation.mmult (interpolation_matrix,
+                            source_interpolation);
+
+                                   // cut off very small values
+  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+    for (unsigned int j=0; j<source_fe.dofs_per_cell; ++j)
+      if (std::fabs(interpolation_matrix(i,j)) < 1e-15)
+        interpolation_matrix(i,j) = 0.;
+
+                                  // make sure that the row sum of
+                                  // each of the matrices is 1 at
+                                  // this point. this must be so
+                                  // since the shape functions sum up
+                                  // to 1
+  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+    {
+      double sum = 0.;
+      for (unsigned int j=0; j<source_fe.dofs_per_cell; ++j)
+        sum += interpolation_matrix(i,j);
+
+      Assert (std::fabs(sum-1) < 2e-14*degree*dim,
+              ExcInternalError());
+    }
+}
+
+
 //----------------------------------------------------------------------
 // Auxiliary functions
 //----------------------------------------------------------------------
@@ -249,7 +666,6 @@ FE_Q<dim>::lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &
   
   const unsigned int n = degree+1;
 
-
   if (degree == 0)
     {
       Assert ((fe_data.dofs_per_vertex == 0) &&
@@ -288,34 +704,34 @@ FE_Q<dim>::lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &
          switch (dim)
            {
              case 1:
-           {
-             const unsigned int values[GeometryInfo<1>::vertices_per_cell]
-               = { 0, degree };
-             index = values[i];
-             break;
-           };
+             {
+               const unsigned int values[GeometryInfo<1>::vertices_per_cell]
+                 = { 0, degree };
+               index = values[i];
+               break;
+             };
             
              case 2:
-           {
-             const unsigned int values[GeometryInfo<2>::vertices_per_cell]
-               = { 0, degree, n*degree+degree, n*degree };
-             index = values[i];
-             break;
-           };
+             {
+               const unsigned int values[GeometryInfo<2>::vertices_per_cell]
+                 = { 0, degree, n*degree+degree, n*degree };
+               index = values[i];
+               break;
+             };
             
              case 3:
-           {
-             const unsigned int values[GeometryInfo<3>::vertices_per_cell]
-               = { 0, degree,
-                   n*n*degree + degree, n*n*degree,
-                   n*degree, n*degree+degree,
-                   n*n*degree + n*degree+degree, n*n*degree + n*degree};
-             index = values[i];
-             break;
-           };
+             {
+               const unsigned int values[GeometryInfo<3>::vertices_per_cell]
+                 = { 0, degree,
+                     n*n*degree + degree, n*n*degree,
+                     n*degree, n*degree+degree,
+                     n*n*degree + n*degree+degree, n*n*degree + n*degree};
+               index = values[i];
+               break;
+             };
             
              default:
-               Assert(false, ExcNotImplemented());
+                   Assert(false, ExcNotImplemented());
            }
 
          Assert (index<renumber.size(), ExcInternalError());
@@ -348,19 +764,19 @@ FE_Q<dim>::lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &
              case 100:
              case 200: case 202:
              case 300: case 302: case 304: case 306:
-               incr = 1;
-               break;
-                                                // lines in y-direction
+                   incr = 1;
+                   break;
+                                                    // lines in y-direction
              case 201: case 203:
              case 308: case 309: case 310: case 311:
-               incr = n;
-               break;
-                                                // lines in z-direction
+                   incr = n;
+                   break;
+                                                    // lines in z-direction
              case 301: case 303: case 305: case 307:
-               incr = n*n;
-               break;
+                   incr = n*n;
+                   break;
              default:
-               Assert(false, ExcNotImplemented());
+                   Assert(false, ExcNotImplemented());
            }
          switch (i+100*dim)
            {
@@ -368,36 +784,36 @@ FE_Q<dim>::lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &
              case 100:
              case 200: case 203:
              case 300: case 303: case 308:
-               tensorstart = 0;
-               break;
-                                                // x=1 y=z=0
+                   tensorstart = 0;
+                   break;
+                                                    // x=1 y=z=0
              case 201:
              case 301: case 309:
-               tensorstart = degree;
-               break;
-                                                // y=1 x=z=0
+                   tensorstart = degree;
+                   break;
+                                                    // y=1 x=z=0
              case 202:
              case 304: case 307:
-               tensorstart = n*degree;
-               break;
-                                                // x=z=1 y=0
+                   tensorstart = n*degree;
+                   break;
+                                                    // x=z=1 y=0
              case 310:
-               tensorstart = n*n*degree+degree;
-               break;
-                                                // z=1 x=y=0
+                   tensorstart = n*n*degree+degree;
+                   break;
+                                                    // z=1 x=y=0
              case 302: case 311:
-               tensorstart = n*n*degree;
-               break;
-                                                // x=y=1 z=0
+                   tensorstart = n*n*degree;
+                   break;
+                                                    // x=y=1 z=0
              case 305:
-               tensorstart = n*degree+degree;
-               break;
-                                                // y=z=1 x=0
+                   tensorstart = n*degree+degree;
+                   break;
+                                                    // y=z=1 x=0
              case 306:
-               tensorstart = n*n*n-n;
-               break;
+                   tensorstart = n*n*n-n;
+                   break;
              default:
-               Assert(false, ExcNotImplemented());           
+                   Assert(false, ExcNotImplemented());       
            }
          
          for (unsigned int jx = 1; jx<degree ;++jx)
@@ -417,29 +833,29 @@ FE_Q<dim>::lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &
          switch (i)
            {
              case 0:
-               tensorstart = 0; incx = 1;
-               if (dim==2)
-                 incy = n;
-               else
-                 incy = n*n;
-               break;
+                   tensorstart = 0; incx = 1;
+                   if (dim==2)
+                     incy = n;
+                   else
+                     incy = n*n;
+                   break;
              case 1:
-               tensorstart = n*degree; incx = 1; incy = n*n;
-               break;
+                   tensorstart = n*degree; incx = 1; incy = n*n;
+                   break;
              case 2:
-               tensorstart = 0; incx = 1; incy = n;
-               break;
+                   tensorstart = 0; incx = 1; incy = n;
+                   break;
              case 3:
-               tensorstart = degree; incx = n; incy = n*n;
-               break;
+                   tensorstart = degree; incx = n; incy = n*n;
+                   break;
              case 4:
-               tensorstart = n*n*degree; incx = 1; incy = n;
-               break;
+                   tensorstart = n*n*degree; incx = 1; incy = n;
+                   break;
              case 5:
-               tensorstart = 0; incx = n; incy = n*n;
-               break;
+                   tensorstart = 0; incx = n; incy = n*n;
+                   break;
              default:
-               Assert(false, ExcNotImplemented());           
+                   Assert(false, ExcNotImplemented());       
            }
          
          for (unsigned int jy = 1; jy<degree; jy++)
@@ -482,7 +898,7 @@ FE_Q<dim>::face_lexicographic_to_hierarchic_numbering (const unsigned int degree
 }
 
 
-#if (deal_II_dimension == 1)
+#if deal_II_dimension == 1
 
 template <>
 std::vector<unsigned int>
@@ -493,50 +909,488 @@ FE_Q<1>::face_lexicographic_to_hierarchic_numbering (const unsigned int)
 
 #endif
 
+#if deal_II_dimension == 1
 
+template <>
+void
+FE_Q<1>::initialize_constraints ()
+{
+                                  // no constraints in 1d
+}
 
-template <int dim>
+#endif
+
+
+#if deal_II_dimension == 2
+
+template <>
 void
-FE_Q<dim>::initialize_constraints ()
-{  
-                                  // copy constraint matrices if they
-                                  // are defined. otherwise leave them
-                                  // at invalid size
-  if ((dim > 1) && (degree < Matrices::n_constraint_matrices+1))
+FE_Q<2>::initialize_constraints ()
+{
+  const unsigned int dim = 2;
+
+                                  // restricted to each face, the
+                                  // traces of the shape functions is
+                                  // an element of P_{k} (in 2d), or
+                                  // Q_{k} (in 3d), where k is the
+                                  // degree of the element
+                                  //
+                                  // from this, we interpolate
+                                  // between mother and cell
+                                  // face. for the general case, this
+                                  // may be a little complicated if
+                                  // we don't use Lagrange
+                                  // interpolation polynomials, since
+                                  // then we can't just use point
+                                  // interpolation. what we do
+                                  // instead is to evaluate at a
+                                  // number of points and then invert
+                                  // the interpolation matrix. here,
+                                  // for the FE_Q elements, we
+                                  // actually do have Lagrange
+                                  // polynomials, but we still follow
+                                  // the general scheme since this
+                                  // code here is the master copy for
+                                  // what we use in other elements as
+                                  // well. however, there are places
+                                  // where we make use of the fact
+                                  // that we have Lagrange
+                                  // interpolation polynomials.
+
+                                  // mathematically speaking, the
+                                  // interpolation process works in
+                                  // the following way: on each
+                                  // subface, we want that finite
+                                  // element solututions from both
+                                  // sides coincide. i.e. if a and b
+                                  // are expansion coefficients for
+                                  // the shape functions from both
+                                  // sides, we seek a relation
+                                  // between x and y such that
+                                  //   sum_i a_i phi^c_i(x)
+                                  //   == sum_j b_j phi_j(x)
+                                  // for all points x on the
+                                  // interface. here, phi^c_i are the
+                                  // shape functions on the small
+                                  // cell on one side of the face,
+                                  // and phi_j those on the big cell
+                                  // on the other side. To get this
+                                  // relation, it suffices to look at
+                                  // a sufficient number of points
+                                  // for which this has to hold. if
+                                  // there are n functions, then we
+                                  // need n evaluation points, and we
+                                  // choose them equidistantly.
+                                  //
+                                  // what one then gets is a matrix
+                                  // system
+                                  //    a A  ==  b B
+                                  // where
+                                  //    A_ij = phi^c_i(x_j)
+                                  //    B_ij = phi_i(x_j)
+                                  // and the relation we are looking for
+                                  // is
+                                  //    a = (A^T)^-1 B^T b
+                                  //
+                                  // below, we build up these
+                                  // matrices, but rather than
+                                  // transposing them after the
+                                  // fact, we do so while building
+                                  // them. A will be
+                                  // subface_interpolation, B will be
+                                  // face_interpolation. note that we
+                                  // build up these matrices for all
+                                  // faces at once, rather than
+                                  // considering them separately. the
+                                  // reason is that we finally will
+                                  // want to have them in this order
+                                  // anyway, as this is the format we
+                                  // need inside deal.II
+  TensorProductPolynomials<dim-1>
+    face_polynomials (Polynomials::LagrangeEquidistant::
+                     generate_complete_basis (degree));
+  Assert (face_polynomials.n() == this->dofs_per_face, ExcInternalError());
+  
+  const unsigned int n_small_functions = this->interface_constraints_size()[0];
+  
+  FullMatrix<double> face_interpolation (n_small_functions, this->dofs_per_face);
+  FullMatrix<double> subface_interpolation (n_small_functions, n_small_functions);
+
+  const std::vector<unsigned int>
+    face_renumber_inverse (invert_numbering(face_renumber));
+  
+  for (unsigned int i=0; i<n_small_functions; ++i)
     {
-      this->interface_constraints.
-        TableBase<2,double>::reinit (this->interface_constraints_size());
+                                      // generate a quadrature point
+                                      // xi. it is actually not so
+                                      // important where this point
+                                      // lies, as long as we make
+                                      // sure that they are not
+                                      // equal. however, we will want
+                                      // them to be the (equidistant)
+                                      // Lagrange points, since then
+                                      // the subface_interpolation
+                                      // matrix has a most positive
+                                      // property: it is a
+                                      // permutation of the identity
+                                      // matrix. so create an
+                                      // equidistant mesh of points
+                                      // in the interior of the face
+                                      // (in 2d). for 3d, things are
+                                      // somewhat more convoluted as
+                                      // usual, since the new (child)
+                                      // shape functions are not only
+                                      // located in the interior of
+                                      // the face, but also on the
+                                      // edges, with the exception of
+                                      // the four vertices of the
+                                      // face. the function we call
+                                      // takes care of all this
+      const Point<dim-1> p_face = generate_face_unit_point (i, n_small_functions,
+                                                           int2type<dim-1>());
+
+                                      // evaluate the big face
+                                      // shape function at this
+                                      // point. note that the
+                                      // numbering of our shape
+                                      // functions is different
+                                      // from that of the
+                                      // polynomial, which orders
+                                      // them in the order of
+                                      // interpolation points.
+                                      //
+                                      // face_renumber_inverse will
+                                      // get us over this little
+                                      // conversion
+      for (unsigned int j=0; j<this->dofs_per_face; ++j)
+       {
+         face_interpolation(i,j)
+           = face_polynomials.compute_value(face_renumber_inverse[j], p_face);
+                                          // if the value is small up
+                                          // to round-off, then
+                                          // simply set it to zero to
+                                          // avoid unwanted fill-in
+                                          // of the constraint
+                                          // matrices (which would
+                                          // then increase the number
+                                          // of other DoFs a
+                                          // constrained DoF would
+                                          // couple to)
+         if (std::fabs(face_interpolation(i,j)) < 1e-14)
+           face_interpolation(i,j) = 0;
+       }
+       
+                                      // then evaluate all the
+                                      // small shape functions at
+                                      // this point.
+      for (unsigned int j=0; j<n_small_functions; ++j)
+       {
+                                          // first thing is to check
+                                          // which face the present
+                                          // point is on,
+                                          // i.e. whether it is left
+                                          // or right of the middle
+                                          // vertex in 2d, or
+                                          // something more complex
+                                          // in 3d (note that we
+                                          // might actually be
+                                          // sitting on top of the
+                                          // center vertex, or on on
+                                          // interface between
+                                          // children, but that
+                                          // doesn't really bother
+                                          // us: the shape functions
+                                          // associated with that
+                                          // have the same value
+                                          // whether we consider the
+                                          // left or the right
+                                          // subface, and all other
+                                          // shape functions should
+                                          // be zero there as well,
+                                          // so it doesn't really
+                                          // matter whether we
+                                          // account for this fact or
+                                          // not...)
+         const unsigned int subface
+           = GeometryInfo<dim-1>::child_cell_from_point (p_face);
+
+                                          // then check whether small
+                                          // shape function number j
+                                          // is nonzero on this
+                                          // face. as usual with our
+                                          // numbering of shape
+                                          // functions in constraint
+                                          // matrices, this is messy,
+                                          // so have a function that
+                                          // does this for us
+                                          //
+                                          // if not active, then the
+                                          // entry in the matrix will
+                                          // remain zero, and we
+                                          // simply go on with the
+                                          // next entry
+         if (! constraint_function_is_active_on_child (j, subface, *this))
+           continue;
+           
+                                          // otherwise: compute the
+                                          // coordinates of this
+                                          // evaluation point on
+                                          // the small face
+         const Point<dim-1> p_subface
+           = GeometryInfo<dim-1>::cell_to_child_coordinates (p_face, subface);
+       
+                                          // then get the index of
+                                          // small shape function j
+                                          // on this subface. again,
+                                          // divert to a function
+                                          // that is specialized for
+                                          // this
+         const unsigned int local_j
+           = constraint_get_local_j (j, subface, *this);
+
+                                          // so evaluate this shape
+                                          // function there. now,
+                                          // since we have been
+                                          // careful with our choice
+                                          // of evaluation points,
+                                          // this is not actually
+                                          // necessary: the values of
+                                          // the small shape
+                                          // functions at these
+                                          // points should be either
+                                          // zero, and we can
+                                          // precompute which they
+                                          // are. However, we double
+                                          // check just to be sure we
+                                          // didn't do something
+                                          // stupid...
+                                          //
+                                          // (we could just set the
+                                          // evaluated value, but
+                                          // we'd end up with a lot
+                                          // of almost-zero entries,
+                                          // which will then carry
+                                          // over to the final
+                                          // result. this clutters up
+                                          // the constraint matrices,
+                                          // which we want to keep as
+                                          // small as possible.)
+         if (constraint_is_support_point (i, j, subface, *this))
+           subface_interpolation(i, j) = 1.;
+         else
+           subface_interpolation(i, j) = 0.;
+         Assert (std::fabs (subface_interpolation(i, j) -
+                            face_polynomials.compute_value(local_j, p_subface))
+                 < 1e-12,
+                 ExcInternalError());
+       }
+    }
+
+                                  // what we now want to do is to
+                                  // compute
+                                  //   (subface_intp)^-1 face_intp
+                                  // which should give us the
+                                  // desired hanging node constraints.
+                                  // rather than actually doing this,
+                                  // we note that we have constructed
+                                  // subface_interpolation to be a
+                                  // permutation of the unit matrix.
+                                  // rather than doing a gauss jordan
+                                  // inversion, we note that the
+                                  // inverse is actually given by the
+                                  // transpose of the matrix. This has
+                                  // the additional benefit of being
+                                  // more stable and in particular of
+                                  // not adding almost-zeros
+  this->interface_constraints
+    .TableBase<2,double>::reinit (this->interface_constraints_size());
+  subface_interpolation.Tmmult (this->interface_constraints,
+                               face_interpolation);
+
+                                  // in 3d we still have the
+                                  // constraint matrices, so make the
+                                  // check
+  if (dim == 3)
+    if (degree < Matrices::n_constraint_matrices+1)
+      {
+       FullMatrix<double> x;
+       x.TableBase<2,double>::reinit (this->interface_constraints_size());
+       x.fill (Matrices::constraint_matrices[degree-1]);
+
+       for (unsigned int i=0; i<x.m(); ++i)
+         for (unsigned int j=0; j<x.n(); ++j)
+           Assert (std::fabs (x(i,j) - this->interface_constraints(i,j))
+                    <
+                    1e-14,
+                   ExcInternalError());
+      }    
+}
+
+#endif
+
+#if deal_II_dimension == 3
+
+template <>
+void
+FE_Q<3>::initialize_constraints ()
+{
+                                   // the algorithm for 2d is written
+                                   // in a way so that it can be
+                                   // extended to 3d as well. however,
+                                   // the weird numbering convention
+                                   // makes this really really hard,
+                                   // so we abandoned this project at
+                                   // one point. the plan is to change
+                                   // the numbering convention for the
+                                   // constraint matrices, and then
+                                   // the approach for 2d will be
+                                   // readily extendable to 3d as
+                                   // well, but until this happens we
+                                   // rather prefer to go back to the
+                                   // precomputed matrices in 3d
+  if (degree < Matrices::n_constraint_matrices+1)
+    {
+      this->interface_constraints
+        .TableBase<2,double>::reinit (this->interface_constraints_size());
       this->interface_constraints.fill (Matrices::constraint_matrices[degree-1]);
-    };
+    }
 }
 
+#endif
 
 
 template <int dim>
 void
 FE_Q<dim>::initialize_embedding ()
 {
-                                  // copy over embedding matrices if
-                                  // they are defined
-  if ((degree < Matrices::n_embedding_matrices+1) &&
-      (Matrices::embedding[degree-1][0] != 0))
-    for (unsigned int c=0; c<GeometryInfo<dim>::children_per_cell; ++c)
-      {
-        this->prolongation[c].reinit (this->dofs_per_cell,
-                                      this->dofs_per_cell);
-        this->prolongation[c].fill (Matrices::embedding[degree-1][c]);
-
-                                         // and make sure that the row
-                                         // sum is 1
-        for (unsigned int row=0; row<this->dofs_per_cell; ++row)
-          {
-            double sum = 0;
-            for (unsigned int col=0; col<this->dofs_per_cell; ++col)
-              sum += this->prolongation[c](row,col);
-            Assert (std::fabs(sum-1.) < 1e-14,
-                    ExcInternalError());
-          };
-      };  
+                                  // compute the interpolation
+                                  // matrices in much the same way as
+                                  // we do for the constraints. it's
+                                  // actually simpler here, since we
+                                  // don't have this weird
+                                  // renumbering stuff going on
+  FullMatrix<double> cell_interpolation (this->dofs_per_cell,
+                                        this->dofs_per_cell);
+  FullMatrix<double> subcell_interpolation (this->dofs_per_cell,
+                                           this->dofs_per_cell);
+  for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
+    this->prolongation[child].reinit (this->dofs_per_cell,
+                                     this->dofs_per_cell);
+  for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
+    {
+      for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+       {
+                                          // generate a point on
+                                          // the child cell and
+                                          // evaluate the shape
+                                          // functions there
+         const Point<dim> p_subcell = generate_unit_point (j, this->dofs_per_cell,
+                                                           int2type<dim>());
+         const Point<dim> p_cell =
+           GeometryInfo<dim>::child_to_cell_coordinates (p_subcell, child);
+
+         for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+           {
+             const double
+               cell_value    = polynomial_space.compute_value (i, p_cell),
+               subcell_value = polynomial_space.compute_value (i, p_subcell);
+
+                                              // cut off values that
+                                              // are too small. note
+                                              // that we have here
+                                              // Lagrange
+                                              // interpolation
+                                              // functions, so they
+                                              // should be zero at
+                                              // almost all points,
+                                              // and one at the
+                                              // others, at least on
+                                              // the subcells. so set
+                                              // them to their exact
+                                              // values
+                                               //
+                                               // the actual cut-off
+                                               // value is somewhat
+                                               // fuzzy, but it works
+                                               // for
+                                               // 1e-14*degree*dim,
+                                               // which is kind of
+                                               // reasonable given
+                                               // that we compute the
+                                               // values of the
+                                               // polynomials via an
+                                               // degree-step
+                                               // recursion and then
+                                               // multiply the
+                                               // 1d-values. this
+                                               // gives us a linear
+                                               // growth in
+                                               // degree*dim, times a
+                                               // small constant.
+             if (std::fabs(cell_value) < 2e-14*degree*dim)
+               cell_interpolation(renumber[j], renumber[i]) = 0.;
+             else
+               cell_interpolation(renumber[j], renumber[i]) = cell_value;
+
+             if (std::fabs(subcell_value) < 2e-14*degree*dim)
+               subcell_interpolation(renumber[j], renumber[i]) = 0.;
+             else
+               if (std::fabs(subcell_value-1) < 2e-14*degree*dim)
+                 subcell_interpolation(renumber[j], renumber[i]) = 1.;
+               else
+                                                  // we have put our
+                                                  // evaluation
+                                                  // points onto the
+                                                  // interpolation
+                                                  // points, so we
+                                                  // should either
+                                                  // get zeros or
+                                                  // ones!
+                 Assert (false, ExcInternalError());
+           }
+       }
+
+                                      // then compute the embedding
+                                      // matrix for this child and
+                                      // this coordinate
+                                      // direction. by the same trick
+                                      // as with the constraint
+                                      // matrices, don't compute the
+                                      // inverse of
+                                      // subcell_interpolation, but
+                                      // use the fact that we have
+                                      // put our interpolation points
+                                      // onto the interpolation
+                                      // points of the Lagrange
+                                      // polynomials used here. then,
+                                      // the subcell_interpolation
+                                      // matrix is just a permutation
+                                      // of the identity matrix and
+                                      // its inverse is also its
+                                      // transpose
+      subcell_interpolation.Tmmult (this->prolongation[child],
+                                    cell_interpolation);
+
+                                        // cut off very small values
+                                        // here
+      for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+       for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+         if (std::fabs(this->prolongation[child](i,j)) < 2e-14*degree*dim)
+           this->prolongation[child](i,j) = 0.;
+
+                                      // and make sure that the row
+                                      // sum is 1. this must be so
+                                      // since for this element, the
+                                      // shape functions add up to on
+      for (unsigned int row=0; row<this->dofs_per_cell; ++row)
+       {
+         double sum = 0;
+         for (unsigned int col=0; col<this->dofs_per_cell; ++col)
+           sum += this->prolongation[child](row,col);
+         Assert (std::fabs(sum-1.) < 2e-14*degree*dim,
+                 ExcInternalError());
+       };
+    }
 }
 
 
@@ -545,559 +1399,131 @@ template <int dim>
 void
 FE_Q<dim>::initialize_restriction ()
 {
-  
-                                  // then fill restriction
-                                  // matrices. they are hardcoded for
-                                  // the first few elements. in
-                                  // contrast to the other matrices,
-                                  // these are not stored in the
-                                  // files fe_q_[123]d.cc, since they
-                                  // contain only a rather small
-                                  // number of zeros, and storing
-                                  // them element-wise is more
-                                  // expensive than just setting the
-                                  // nonzero elements as done here
+                                   // for these Lagrange interpolation
+                                   // polynomials, construction of the
+                                   // restriction matrices is
+                                   // relatively simple. the reason is
+                                   // that the interpolation points on
+                                   // the mother cell are always also
+                                   // interpolation points for some
+                                   // shape function on one or the
+                                   // other child, because we have
+                                   // chosen equidistant Lagrange
+                                   // interpolation points for the
+                                   // polynomials
+                                   //
+                                   // so the only thing we have to
+                                   // find out is: for each shape
+                                   // function on the mother cell,
+                                   // which is the child cell
+                                   // (possibly more than one) on
+                                   // which it is located, and which
+                                   // is the corresponding shape
+                                   // function there. rather than
+                                   // doing it for the shape functions
+                                   // on the mother cell, we take the
+                                   // interpolation points there are
+                                   // also search which shape function
+                                   // corresponds to it (too lazy to
+                                   // do this mapping by hand)
+                                   //
+                                   // note that the interpolation
+                                   // point of a shape function can be
+                                   // on the boundary between
+                                   // subcells. in that case,
+                                   // restriction from children to
+                                   // mother may produce two or more
+                                   // entries for a dof on the mother
+                                   // cell. however, this doesn't
+                                   // hurt: since the element is
+                                   // continuous, the contribution
+                                   // from each child should yield the
+                                   // same result, and since the
+                                   // element is non-additive we just
+                                   // overwrite one value (compute one
+                                   // one child) by the same value
+                                   // (compute on a later child), so
+                                   // we don't have to care about this
   for (unsigned int c=0; c<GeometryInfo<dim>::children_per_cell; ++c)
     this->restriction[c].reinit (this->dofs_per_cell, this->dofs_per_cell);
-  switch (dim)
+  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
     {
-      case 1:  // 1d
-      {
-        switch (degree)
-          {
-            case 1:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[1](1,1) = 1;
-                  break;
-            case 2:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[0](2,1) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[1](2,0) = 1;
-                  break;
-            case 3:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[0](2,3) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[1](3,2) = 1;
-                  break;
-            case 4:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[0](2,3) = 1;
-                  this->restriction[0](3,1) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[1](3,0) = 1;
-                  this->restriction[1](4,3) = 1;
-                  break;
-                 
-            default:
-            {
-                                               // in case we don't
-                                               // have the matrices
-                                               // (yet), reset them to
-                                               // zero size. this does
-                                               // not prevent the use
-                                               // of this FE, but will
-                                               // prevent the use of
-                                               // these matrices
-              for (unsigned int i=0;
-                   i<GeometryInfo<dim>::children_per_cell;
-                   ++i)
-                this->restriction[i].reinit(0,0);
-            };
-          }
-        break;
-      };
-      
-      case 2:  // 2d
-      {
-        switch (degree)
-          {
-            case 1:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[2](2,2) = 1;
-                  this->restriction[3](3,3) = 1;
-                  break;
-            case 2:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[0](4,1) = 1;
-                  this->restriction[0](7,3) = 1;
-                  this->restriction[0](8,2) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[1](4,0) = 1;
-                  this->restriction[1](5,2) = 1;
-                  this->restriction[1](8,3) = 1;
-                  this->restriction[2](2,2) = 1;
-                  this->restriction[2](5,1) = 1;
-                  this->restriction[2](6,3) = 1;
-                  this->restriction[2](8,0) = 1;
-                  this->restriction[3](3,3) = 1;
-                  this->restriction[3](6,2) = 1;
-                  this->restriction[3](7,0) = 1;
-                  this->restriction[3](8,1) = 1;
-                  break;
-            case 3:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[0](4,5) = 1;
-                  this->restriction[0](10,11) = 1;
-                  this->restriction[0](12,15) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[1](5,4) = 1;
-                  this->restriction[1](6,7) = 1;
-                  this->restriction[1](13,14) = 1;
-                  this->restriction[2](2,2) = 1;
-                  this->restriction[2](7,6) = 1;
-                  this->restriction[2](9,8) = 1;
-                  this->restriction[2](15,12) = 1;
-                  this->restriction[3](3,3) = 1;
-                  this->restriction[3](8,9) = 1;
-                  this->restriction[3](11,10) = 1;
-                  this->restriction[3](14,13) = 1;
-                  break;
-            case 4:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[0](4,5) = 1;
-                  this->restriction[0](5,1) = 1;
-                  this->restriction[0](13,14) = 1;
-                  this->restriction[0](14,3) = 1;
-                  this->restriction[0](16,20) = 1;
-                  this->restriction[0](17,8) = 1;
-                  this->restriction[0](19,11) = 1;
-                  this->restriction[0](20,2) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[1](5,0) = 1;
-                  this->restriction[1](6,5) = 1;
-                  this->restriction[1](7,8) = 1;
-                  this->restriction[1](8,2) = 1;
-                  this->restriction[1](17,14) = 1;
-                  this->restriction[1](18,20) = 1;
-                  this->restriction[1](20,3) = 1;
-                  this->restriction[1](21,11) = 1;
-                  this->restriction[2](2,2) = 1;
-                  this->restriction[2](8,1) = 1;
-                  this->restriction[2](9,8) = 1;
-                  this->restriction[2](11,3) = 1;
-                  this->restriction[2](12,11) = 1;
-                  this->restriction[2](20,0) = 1;
-                  this->restriction[2](21,5) = 1;
-                  this->restriction[2](23,14) = 1;
-                  this->restriction[2](24,20) = 1;
-                  this->restriction[3](3,3) = 1;
-                  this->restriction[3](10,11) = 1;
-                  this->restriction[3](11,2) = 1;
-                  this->restriction[3](14,0) = 1;
-                  this->restriction[3](15,14) = 1;
-                  this->restriction[3](19,5) = 1;
-                  this->restriction[3](20,1) = 1;
-                  this->restriction[3](22,20) = 1;
-                  this->restriction[3](23,8) = 1;
-                  break;
-
-            default:
-            {
-                                               // in case we don't
-                                               // have the matrices
-                                               // (yet), reset them to
-                                               // zero size. this does
-                                               // not prevent the use
-                                               // of this FE, but will
-                                               // prevent the use of
-                                               // these matrices
-              for (unsigned int i=0;
-                   i<GeometryInfo<dim>::children_per_cell;
-                   ++i)
-                this->restriction[i].reinit(0,0);
-            };
-          }
-        break;
-      };
-      
-      case 3:  // 3d
-      {
-        switch (degree)
-          {
-            case 1:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[2](2,2) = 1;
-                  this->restriction[3](3,3) = 1;
-                  this->restriction[4](4,4) = 1;
-                  this->restriction[5](5,5) = 1;
-                  this->restriction[6](6,6) = 1;
-                  this->restriction[7](7,7) = 1;
-                  break;
-            case 2:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[0](8,1) = 1;
-                  this->restriction[0](11,3) = 1;
-                  this->restriction[0](16,4) = 1;
-                  this->restriction[0](20,2) = 1;
-                  this->restriction[0](22,5) = 1;
-                  this->restriction[0](25,7) = 1;
-                  this->restriction[0](26,6) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[1](8,0) = 1;
-                  this->restriction[1](9,2) = 1;
-                  this->restriction[1](17,5) = 1;
-                  this->restriction[1](20,3) = 1;
-                  this->restriction[1](22,4) = 1;
-                  this->restriction[1](23,6) = 1;
-                  this->restriction[1](26,7) = 1;
-                  this->restriction[2](2,2) = 1;
-                  this->restriction[2](9,1) = 1;
-                  this->restriction[2](10,3) = 1;
-                  this->restriction[2](18,6) = 1;
-                  this->restriction[2](20,0) = 1;
-                  this->restriction[2](23,5) = 1;
-                  this->restriction[2](24,7) = 1;
-                  this->restriction[2](26,4) = 1;
-                  this->restriction[3](3,3) = 1;
-                  this->restriction[3](10,2) = 1;
-                  this->restriction[3](11,0) = 1;
-                  this->restriction[3](19,7) = 1;
-                  this->restriction[3](20,1) = 1;
-                  this->restriction[3](24,6) = 1;
-                  this->restriction[3](25,4) = 1;
-                  this->restriction[3](26,5) = 1;
-                  this->restriction[4](4,4) = 1;
-                  this->restriction[4](12,5) = 1;
-                  this->restriction[4](15,7) = 1;
-                  this->restriction[4](16,0) = 1;
-                  this->restriction[4](21,6) = 1;
-                  this->restriction[4](22,1) = 1;
-                  this->restriction[4](25,3) = 1;
-                  this->restriction[4](26,2) = 1;
-                  this->restriction[5](5,5) = 1;
-                  this->restriction[5](12,4) = 1;
-                  this->restriction[5](13,6) = 1;
-                  this->restriction[5](17,1) = 1;
-                  this->restriction[5](21,7) = 1;
-                  this->restriction[5](22,0) = 1;
-                  this->restriction[5](23,2) = 1;
-                  this->restriction[5](26,3) = 1;
-                  this->restriction[6](6,6) = 1;
-                  this->restriction[6](13,5) = 1;
-                  this->restriction[6](14,7) = 1;
-                  this->restriction[6](18,2) = 1;
-                  this->restriction[6](21,4) = 1;
-                  this->restriction[6](23,1) = 1;
-                  this->restriction[6](24,3) = 1;
-                  this->restriction[6](26,0) = 1;
-                  this->restriction[7](7,7) = 1;
-                  this->restriction[7](14,6) = 1;
-                  this->restriction[7](15,4) = 1;
-                  this->restriction[7](19,3) = 1;
-                  this->restriction[7](21,5) = 1;
-                  this->restriction[7](24,2) = 1;
-                  this->restriction[7](25,0) = 1;
-                  this->restriction[7](26,1) = 1;
-                  break;
-            case 3:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[0](8,9) = 1;
-                  this->restriction[0](14,15) = 1;
-                  this->restriction[0](24,25) = 1;
-                  this->restriction[0](32,35) = 1;
-                  this->restriction[0](40,43) = 1;
-                  this->restriction[0](52,55) = 1;
-                  this->restriction[0](56,63) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[1](9,8) = 1;
-                  this->restriction[1](10,11) = 1;
-                  this->restriction[1](26,27) = 1;
-                  this->restriction[1](33,34) = 1;
-                  this->restriction[1](41,42) = 1;
-                  this->restriction[1](44,47) = 1;
-                  this->restriction[1](57,62) = 1;
-                  this->restriction[2](2,2) = 1;
-                  this->restriction[2](11,10) = 1;
-                  this->restriction[2](13,12) = 1;
-                  this->restriction[2](28,29) = 1;
-                  this->restriction[2](35,32) = 1;
-                  this->restriction[2](46,45) = 1;
-                  this->restriction[2](49,50) = 1;
-                  this->restriction[2](61,58) = 1;
-                  this->restriction[3](3,3) = 1;
-                  this->restriction[3](12,13) = 1;
-                  this->restriction[3](15,14) = 1;
-                  this->restriction[3](30,31) = 1;
-                  this->restriction[3](34,33) = 1;
-                  this->restriction[3](48,51) = 1;
-                  this->restriction[3](54,53) = 1;
-                  this->restriction[3](60,59) = 1;
-                  this->restriction[4](4,4) = 1;
-                  this->restriction[4](16,17) = 1;
-                  this->restriction[4](22,23) = 1;
-                  this->restriction[4](25,24) = 1;
-                  this->restriction[4](36,39) = 1;
-                  this->restriction[4](42,41) = 1;
-                  this->restriction[4](53,54) = 1;
-                  this->restriction[4](58,61) = 1;
-                  this->restriction[5](5,5) = 1;
-                  this->restriction[5](17,16) = 1;
-                  this->restriction[5](18,19) = 1;
-                  this->restriction[5](27,26) = 1;
-                  this->restriction[5](37,38) = 1;
-                  this->restriction[5](43,40) = 1;
-                  this->restriction[5](45,46) = 1;
-                  this->restriction[5](59,60) = 1;
-                  this->restriction[6](6,6) = 1;
-                  this->restriction[6](19,18) = 1;
-                  this->restriction[6](21,20) = 1;
-                  this->restriction[6](29,28) = 1;
-                  this->restriction[6](39,36) = 1;
-                  this->restriction[6](47,44) = 1;
-                  this->restriction[6](51,48) = 1;
-                  this->restriction[6](63,56) = 1;
-                  this->restriction[7](7,7) = 1;
-                  this->restriction[7](20,21) = 1;
-                  this->restriction[7](23,22) = 1;
-                  this->restriction[7](31,30) = 1;
-                  this->restriction[7](38,37) = 1;
-                  this->restriction[7](50,49) = 1;
-                  this->restriction[7](55,52) = 1;
-                  this->restriction[7](62,57) = 1;
-                  break;
-            case 4:
-                  this->restriction[0](0,0) = 1;
-                  this->restriction[0](8,9) = 1;
-                  this->restriction[0](9,1) = 1;
-                  this->restriction[0](17,18) = 1;
-                  this->restriction[0](18,3) = 1;
-                  this->restriction[0](32,33) = 1;
-                  this->restriction[0](33,4) = 1;
-                  this->restriction[0](44,48) = 1;
-                  this->restriction[0](45,12) = 1;
-                  this->restriction[0](47,15) = 1;
-                  this->restriction[0](48,2) = 1;
-                  this->restriction[0](62,66) = 1;
-                  this->restriction[0](63,36) = 1;
-                  this->restriction[0](65,21) = 1;
-                  this->restriction[0](66,5) = 1;
-                  this->restriction[0](89,93) = 1;
-                  this->restriction[0](90,30) = 1;
-                  this->restriction[0](92,42) = 1;
-                  this->restriction[0](93,7) = 1;
-                  this->restriction[0](98,111) = 1;
-                  this->restriction[0](99,75) = 1;
-                  this->restriction[0](101,57) = 1;
-                  this->restriction[0](102,24) = 1;
-                  this->restriction[0](107,84) = 1;
-                  this->restriction[0](108,39) = 1;
-                  this->restriction[0](110,27) = 1;
-                  this->restriction[0](111,6) = 1;
-                  this->restriction[1](1,1) = 1;
-                  this->restriction[1](9,0) = 1;
-                  this->restriction[1](10,9) = 1;
-                  this->restriction[1](11,12) = 1;
-                  this->restriction[1](12,2) = 1;
-                  this->restriction[1](35,36) = 1;
-                  this->restriction[1](36,5) = 1;
-                  this->restriction[1](45,18) = 1;
-                  this->restriction[1](46,48) = 1;
-                  this->restriction[1](48,3) = 1;
-                  this->restriction[1](49,15) = 1;
-                  this->restriction[1](63,33) = 1;
-                  this->restriction[1](64,66) = 1;
-                  this->restriction[1](66,4) = 1;
-                  this->restriction[1](67,21) = 1;
-                  this->restriction[1](71,75) = 1;
-                  this->restriction[1](72,24) = 1;
-                  this->restriction[1](74,39) = 1;
-                  this->restriction[1](75,6) = 1;
-                  this->restriction[1](99,93) = 1;
-                  this->restriction[1](100,111) = 1;
-                  this->restriction[1](102,30) = 1;
-                  this->restriction[1](103,57) = 1;
-                  this->restriction[1](108,42) = 1;
-                  this->restriction[1](109,84) = 1;
-                  this->restriction[1](111,7) = 1;
-                  this->restriction[1](112,27) = 1;
-                  this->restriction[2](2,2) = 1;
-                  this->restriction[2](12,1) = 1;
-                  this->restriction[2](13,12) = 1;
-                  this->restriction[2](15,3) = 1;
-                  this->restriction[2](16,15) = 1;
-                  this->restriction[2](38,39) = 1;
-                  this->restriction[2](39,6) = 1;
-                  this->restriction[2](48,0) = 1;
-                  this->restriction[2](49,9) = 1;
-                  this->restriction[2](51,18) = 1;
-                  this->restriction[2](52,48) = 1;
-                  this->restriction[2](74,36) = 1;
-                  this->restriction[2](75,5) = 1;
-                  this->restriction[2](77,75) = 1;
-                  this->restriction[2](78,24) = 1;
-                  this->restriction[2](81,42) = 1;
-                  this->restriction[2](82,84) = 1;
-                  this->restriction[2](84,7) = 1;
-                  this->restriction[2](85,27) = 1;
-                  this->restriction[2](108,33) = 1;
-                  this->restriction[2](109,66) = 1;
-                  this->restriction[2](111,4) = 1;
-                  this->restriction[2](112,21) = 1;
-                  this->restriction[2](117,93) = 1;
-                  this->restriction[2](118,111) = 1;
-                  this->restriction[2](120,30) = 1;
-                  this->restriction[2](121,57) = 1;
-                  this->restriction[3](3,3) = 1;
-                  this->restriction[3](14,15) = 1;
-                  this->restriction[3](15,2) = 1;
-                  this->restriction[3](18,0) = 1;
-                  this->restriction[3](19,18) = 1;
-                  this->restriction[3](41,42) = 1;
-                  this->restriction[3](42,7) = 1;
-                  this->restriction[3](47,9) = 1;
-                  this->restriction[3](48,1) = 1;
-                  this->restriction[3](50,48) = 1;
-                  this->restriction[3](51,12) = 1;
-                  this->restriction[3](80,84) = 1;
-                  this->restriction[3](81,39) = 1;
-                  this->restriction[3](83,27) = 1;
-                  this->restriction[3](84,6) = 1;
-                  this->restriction[3](92,33) = 1;
-                  this->restriction[3](93,4) = 1;
-                  this->restriction[3](95,93) = 1;
-                  this->restriction[3](96,30) = 1;
-                  this->restriction[3](107,66) = 1;
-                  this->restriction[3](108,36) = 1;
-                  this->restriction[3](110,21) = 1;
-                  this->restriction[3](111,5) = 1;
-                  this->restriction[3](116,111) = 1;
-                  this->restriction[3](117,75) = 1;
-                  this->restriction[3](119,57) = 1;
-                  this->restriction[3](120,24) = 1;
-                  this->restriction[4](4,4) = 1;
-                  this->restriction[4](20,21) = 1;
-                  this->restriction[4](21,5) = 1;
-                  this->restriction[4](29,30) = 1;
-                  this->restriction[4](30,7) = 1;
-                  this->restriction[4](33,0) = 1;
-                  this->restriction[4](34,33) = 1;
-                  this->restriction[4](53,57) = 1;
-                  this->restriction[4](54,24) = 1;
-                  this->restriction[4](56,27) = 1;
-                  this->restriction[4](57,6) = 1;
-                  this->restriction[4](65,9) = 1;
-                  this->restriction[4](66,1) = 1;
-                  this->restriction[4](68,66) = 1;
-                  this->restriction[4](69,36) = 1;
-                  this->restriction[4](90,18) = 1;
-                  this->restriction[4](91,93) = 1;
-                  this->restriction[4](93,3) = 1;
-                  this->restriction[4](94,42) = 1;
-                  this->restriction[4](101,48) = 1;
-                  this->restriction[4](102,12) = 1;
-                  this->restriction[4](104,111) = 1;
-                  this->restriction[4](105,75) = 1;
-                  this->restriction[4](110,15) = 1;
-                  this->restriction[4](111,2) = 1;
-                  this->restriction[4](113,84) = 1;
-                  this->restriction[4](114,39) = 1;
-                  this->restriction[5](5,5) = 1;
-                  this->restriction[5](21,4) = 1;
-                  this->restriction[5](22,21) = 1;
-                  this->restriction[5](23,24) = 1;
-                  this->restriction[5](24,6) = 1;
-                  this->restriction[5](36,1) = 1;
-                  this->restriction[5](37,36) = 1;
-                  this->restriction[5](54,30) = 1;
-                  this->restriction[5](55,57) = 1;
-                  this->restriction[5](57,7) = 1;
-                  this->restriction[5](58,27) = 1;
-                  this->restriction[5](66,0) = 1;
-                  this->restriction[5](67,9) = 1;
-                  this->restriction[5](69,33) = 1;
-                  this->restriction[5](70,66) = 1;
-                  this->restriction[5](72,12) = 1;
-                  this->restriction[5](73,75) = 1;
-                  this->restriction[5](75,2) = 1;
-                  this->restriction[5](76,39) = 1;
-                  this->restriction[5](102,18) = 1;
-                  this->restriction[5](103,48) = 1;
-                  this->restriction[5](105,93) = 1;
-                  this->restriction[5](106,111) = 1;
-                  this->restriction[5](111,3) = 1;
-                  this->restriction[5](112,15) = 1;
-                  this->restriction[5](114,42) = 1;
-                  this->restriction[5](115,84) = 1;
-                  this->restriction[6](6,6) = 1;
-                  this->restriction[6](24,5) = 1;
-                  this->restriction[6](25,24) = 1;
-                  this->restriction[6](27,7) = 1;
-                  this->restriction[6](28,27) = 1;
-                  this->restriction[6](39,2) = 1;
-                  this->restriction[6](40,39) = 1;
-                  this->restriction[6](57,4) = 1;
-                  this->restriction[6](58,21) = 1;
-                  this->restriction[6](60,30) = 1;
-                  this->restriction[6](61,57) = 1;
-                  this->restriction[6](75,1) = 1;
-                  this->restriction[6](76,36) = 1;
-                  this->restriction[6](78,12) = 1;
-                  this->restriction[6](79,75) = 1;
-                  this->restriction[6](84,3) = 1;
-                  this->restriction[6](85,15) = 1;
-                  this->restriction[6](87,42) = 1;
-                  this->restriction[6](88,84) = 1;
-                  this->restriction[6](111,0) = 1;
-                  this->restriction[6](112,9) = 1;
-                  this->restriction[6](114,33) = 1;
-                  this->restriction[6](115,66) = 1;
-                  this->restriction[6](120,18) = 1;
-                  this->restriction[6](121,48) = 1;
-                  this->restriction[6](123,93) = 1;
-                  this->restriction[6](124,111) = 1;
-                  this->restriction[7](7,7) = 1;
-                  this->restriction[7](26,27) = 1;
-                  this->restriction[7](27,6) = 1;
-                  this->restriction[7](30,4) = 1;
-                  this->restriction[7](31,30) = 1;
-                  this->restriction[7](42,3) = 1;
-                  this->restriction[7](43,42) = 1;
-                  this->restriction[7](56,21) = 1;
-                  this->restriction[7](57,5) = 1;
-                  this->restriction[7](59,57) = 1;
-                  this->restriction[7](60,24) = 1;
-                  this->restriction[7](83,15) = 1;
-                  this->restriction[7](84,2) = 1;
-                  this->restriction[7](86,84) = 1;
-                  this->restriction[7](87,39) = 1;
-                  this->restriction[7](93,0) = 1;
-                  this->restriction[7](94,33) = 1;
-                  this->restriction[7](96,18) = 1;
-                  this->restriction[7](97,93) = 1;
-                  this->restriction[7](110,9) = 1;
-                  this->restriction[7](111,1) = 1;
-                  this->restriction[7](113,66) = 1;
-                  this->restriction[7](114,36) = 1;
-                  this->restriction[7](119,48) = 1;
-                  this->restriction[7](120,12) = 1;
-                  this->restriction[7](122,111) = 1;
-                  this->restriction[7](123,75) = 1;
-                  break;
-            default:
+      const Point<dim> p_cell = generate_unit_point (i, this->dofs_per_cell,
+                                                     int2type<dim>());
+      unsigned int mother_dof = 0;
+      for (; mother_dof<this->dofs_per_cell; ++mother_dof)
+        {
+          const double val
+            = polynomial_space.compute_value(renumber_inverse[mother_dof],
+                                             p_cell);
+          if (std::fabs (val-1.) < 2e-14*degree*dim)
+                                             // ok, this is the right
+                                             // dof
+            break;
+          else
+                                             // make sure that all
+                                             // other shape functions
+                                             // are zero there
+            Assert (std::fabs(val) < 2e-14*degree*dim,
+                    ExcInternalError());
+        }
+                                       // check also the shape
+                                       // functions after tat
+      for (unsigned int j=mother_dof+1; j<this->dofs_per_cell; ++j)
+        Assert (std::fabs (polynomial_space.compute_value(renumber_inverse[j],
+                                                          p_cell))
+                < 2e-14*degree*dim,
+                ExcInternalError());
+
+                                       // then find the children on
+                                       // which the interpolation
+                                       // point is located
+      for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell;
+           ++child)
+        {
+                                           // first initialize this
+                                           // column of the matrix
+          for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+            this->restriction[child](mother_dof, j) = 0.;
+
+                                           // then check whether this
+                                           // interpolation point is
+                                           // inside this child cell
+          const Point<dim> p_subcell
+            = GeometryInfo<dim>::cell_to_child_coordinates (p_cell, child);
+          if (GeometryInfo<dim>::is_inside_unit_cell (p_subcell))
             {
-                                               // in case we don't
-                                               // have the matrices
-                                               // (yet), reset them to
-                                               // zero size. this does
-                                               // not prevent the use
-                                               // of this FE, but will
-                                               // prevent the use of
-                                               // these matrices
-              for (unsigned int i=0;
-                   i<GeometryInfo<dim>::children_per_cell;
-                   ++i)
-                this->restriction[i].reinit(0,0);
-            };
-          }
-        break;
-      };
-      
-      default:
-            Assert (false, ExcNotImplemented());
+                                               // find the one child
+                                               // shape function
+                                               // corresponding to
+                                               // this point. do it in
+                                               // the same way as
+                                               // above
+              unsigned int child_dof = 0;
+              for (; child_dof<this->dofs_per_cell; ++child_dof)
+                {
+                  const double val
+                    = polynomial_space.compute_value(renumber_inverse[child_dof],
+                                                     p_subcell);
+                  if (std::fabs (val-1.) < 2e-14*degree*dim)
+                    break;
+                  else
+                    Assert (std::fabs(val) < 2e-14*degree*dim,
+                            ExcInternalError());
+                }
+              for (unsigned int j=child_dof+1; j<this->dofs_per_cell; ++j)
+                Assert (std::fabs (polynomial_space.compute_value(renumber_inverse[j],
+                                                                  p_subcell))
+                        < 2e-14*degree*dim,
+                        ExcInternalError());
+
+                                               // so now that we have
+                                               // it, set the
+                                               // corresponding value
+                                               // in the matrix
+              this->restriction[child](mother_dof, child_dof) = 1.;
+            }
+        }
     }
 }
 
index 247f791255548f5c64ecd109882219378f46bc79..fac65276407d17de35a10fbfb8360b5d9fc4b365 100644 (file)
 
 #include <fe/fe_q.h>
 
-// Transfer matrices for finite elements
-
-namespace FE_Q_1d
-{
-  static const double q1_into_q1_refined_0[] =
-  {
-       1., 0.,
-       13.5/27., 13.5/27.,
-  };
-
-  static const double q1_into_q1_refined_1[] =
-  {
-       13.5/27., 13.5/27.,
-       0., 1.,
-  };
-
-  static const double q2_into_q2_refined_0[] =
-  {
-       1., 0., 0.,
-       0., 0., 1.,
-       10.125/27., -3.375/27., 20.25/27.,
-  };
-
-  static const double q2_into_q2_refined_1[] =
-  {
-       0., 0., 1.,
-       0., 1., 0.,
-       -3.375/27., 10.125/27., 20.25/27.,
-  };
-
-  static const double q3_into_q3_refined_0[] =
-  {
-       1., 0., 0., 0.,
-       -1.6875/27., -1.6875/27., 15.1875/27., 15.1875/27.,
-       8.4375/27., 1.6875/27., 25.3125/27., -8.4375/27.,
-       0., 0., 1., 0.
-  };
-
-  static const double q3_into_q3_refined_1[] =
-  {
-       -1.6875/27., -1.6875/27., 15.1875/27., 15.1875/27.,
-       0., 1., 0., 0.,
-       0., 0., 0., 1.,
-       1.6875/27., 8.4375/27., -8.4375/27., 25.3125/27.,
-  };
-
-  static const double q4_into_q4_refined_0[] =
-  {
-       1., 0., 0., 0., 0.,
-       0., 0., 0., 1., 0.,
-       7.3828125/27., -1.0546875/27., 29.53125/27., -14.765625/27., 5.90625/27.,
-       0., 0., 1., 0., 0.,
-       -1.0546875/27., 0.6328125/27., 12.65625/27., 18.984375/27., -4.21875/27.,
-  };
-
-  static const double q4_into_q4_refined_1[] =
-  {
-       0., 0., 0., 1., 0.,
-       0., 1., 0., 0., 0.,
-       0.6328125/27., -1.0546875/27., -4.21875/27., 18.984375/27., 12.65625/27.,
-       0., 0., 0., 0., 1.,
-       -1.0546875/27., 7.3828125/27., 5.90625/27., -14.765625/27., 29.53125/27.,
-  };
-}   // namespace FE_Q_1d
-
-
-
-// embedding matrices
-
-
-template <>
-const double * const
-FE_Q<1>::Matrices::embedding[][GeometryInfo<1>::children_per_cell] =
-{
-  {FE_Q_1d::q1_into_q1_refined_0, FE_Q_1d::q1_into_q1_refined_1},
-  {FE_Q_1d::q2_into_q2_refined_0, FE_Q_1d::q2_into_q2_refined_1},
-  {FE_Q_1d::q3_into_q3_refined_0, FE_Q_1d::q3_into_q3_refined_1},
-  {FE_Q_1d::q4_into_q4_refined_0, FE_Q_1d::q4_into_q4_refined_1},
-};
-
-
-
-template <>
-const unsigned int
-FE_Q<1>::Matrices::n_embedding_matrices
-  = sizeof(FE_Q<1>::Matrices::embedding) /
-    sizeof(FE_Q<1>::Matrices::embedding[0]);
-
-
 
 // No constraints in 1d
 template <>
index ea7764cc2db8a32e9077ceb1ccd442456fcee7d8..83cdec554406c244e0e859426faff4a17bf79038 100644 (file)
 
 #include <fe/fe_q.h>
 
-// Transfer matrices for finite elements
-namespace FE_Q_2d
-{
-  static const double q1_into_q1_refined_0[] =
-  {
-       1., 0., 0., 0.,
-       13.5/27., 13.5/27., 0., 0.,
-       6.75/27., 6.75/27., 6.75/27., 6.75/27.,
-       13.5/27., 0., 0., 13.5/27.,
-  };
-
-  static const double q1_into_q1_refined_1[] =
-  {
-       13.5/27., 13.5/27., 0., 0.,
-       0., 1., 0., 0.,
-       0., 13.5/27., 13.5/27., 0.,
-       6.75/27., 6.75/27., 6.75/27., 6.75/27.,
-  };
-
-  static const double q1_into_q1_refined_2[] =
-  {
-       6.75/27., 6.75/27., 6.75/27., 6.75/27.,
-       0., 13.5/27., 13.5/27., 0.,
-       0., 0., 1., 0.,
-       0., 0., 13.5/27., 13.5/27.,
-  };
-
-  static const double q1_into_q1_refined_3[] =
-  {
-       13.5/27., 0., 0., 13.5/27.,
-       6.75/27., 6.75/27., 6.75/27., 6.75/27.,
-       0., 0., 13.5/27., 13.5/27.,
-       0., 0., 0., 1.,
-  };
-
-  static const double q2_into_q2_refined_0[] =
-  {
-       1., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 1., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 0., 0., 1., 0.,
-       10.125/27., -3.375/27., 0., 0., 20.25/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 20.25/27.,
-       0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 20.25/27.,
-       10.125/27., 0., 0., -3.375/27., 0., 0., 0., 20.25/27., 0.,
-       3.796875/27., -1.265625/27., 0.421875/27., -1.265625/27., 7.59375/27., -2.53125/27., -2.53125/27., 7.59375/27., 15.1875/27.,
-  };
-
-  static const double q2_into_q2_refined_1[] =
-  {
-       0., 0., 0., 0., 1., 0., 0., 0., 0.,
-       0., 1., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 1., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       -3.375/27., 10.125/27., 0., 0., 20.25/27., 0., 0., 0., 0.,
-       0., 10.125/27., -3.375/27., 0., 0., 20.25/27., 0., 0., 0.,
-       0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 20.25/27.,
-       0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 20.25/27.,
-       -1.265625/27., 3.796875/27., -1.265625/27., 0.421875/27., 7.59375/27., 7.59375/27., -2.53125/27., -2.53125/27., 15.1875/27.,
-  };
-
-  static const double q2_into_q2_refined_2[] =
-  {
-       0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 1., 0., 0., 0.,
-       0., 0., 1., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 1., 0., 0.,
-       0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 20.25/27.,
-       0., -3.375/27., 10.125/27., 0., 0., 20.25/27., 0., 0., 0.,
-       0., 0., 10.125/27., -3.375/27., 0., 0., 20.25/27., 0., 0.,
-       0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 20.25/27.,
-       0.421875/27., -1.265625/27., 3.796875/27., -1.265625/27., -2.53125/27., 7.59375/27., 7.59375/27., -2.53125/27., 15.1875/27.,
-  };
-
-  static const double q2_into_q2_refined_3[] =
-  {
-       0., 0., 0., 0., 0., 0., 0., 1., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 0., 1., 0., 0.,
-       0., 0., 0., 1., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 20.25/27.,
-       0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 20.25/27.,
-       0., 0., -3.375/27., 10.125/27., 0., 0., 20.25/27., 0., 0.,
-       -3.375/27., 0., 0., 10.125/27., 0., 0., 0., 20.25/27., 0.,
-       -1.265625/27., 0.421875/27., -1.265625/27., 3.796875/27., -2.53125/27., -2.53125/27., 7.59375/27., 7.59375/27., 15.1875/27.,
-  };
-
-  static const double q3_into_q3_refined_0[] =
-  {
-       1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       -1.6875/27., -1.6875/27., 0., 0., 15.1875/27., 15.1875/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0.10546875/27., 0.10546875/27., 0.10546875/27., 0.10546875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., 8.54296875/27., 8.54296875/27., 8.54296875/27., 8.54296875/27.,
-       -1.6875/27., 0., 0., -1.6875/27., 0., 0., 0., 0., 0., 0., 15.1875/27., 15.1875/27., 0., 0., 0., 0.,
-       8.4375/27., 1.6875/27., 0., 0., 25.3125/27., -8.4375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       -0.52734375/27., -0.52734375/27., -0.10546875/27., -0.10546875/27., 4.74609375/27., 4.74609375/27., -1.58203125/27., 0.52734375/27., 0.94921875/27., 0.94921875/27., -1.58203125/27., 0.52734375/27., 14.23828125/27., 14.23828125/27., -4.74609375/27., -4.74609375/27.,
-       0., 0., 0., 0., 0., 0., -1.6875/27., 0., 0., 0., -1.6875/27., 0., 15.1875/27., 15.1875/27., 0., 0.,
-       -0.52734375/27., -0.10546875/27., -0.10546875/27., -0.52734375/27., -1.58203125/27., 0.52734375/27., 0.94921875/27., 0.94921875/27., -1.58203125/27., 0.52734375/27., 4.74609375/27., 4.74609375/27., 14.23828125/27., -4.74609375/27., 14.23828125/27., -4.74609375/27.,
-       0., 0., 0., 0., -1.6875/27., 0., 0., 0., -1.6875/27., 0., 0., 0., 15.1875/27., 0., 15.1875/27., 0.,
-       8.4375/27., 0., 0., 1.6875/27., 0., 0., 0., 0., 0., 0., 25.3125/27., -8.4375/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
-       2.63671875/27., 0.52734375/27., 0.10546875/27., 0.52734375/27., 7.91015625/27., -2.63671875/27., 1.58203125/27., -0.52734375/27., 1.58203125/27., -0.52734375/27., 7.91015625/27., -2.63671875/27., 23.73046875/27., -7.91015625/27., -7.91015625/27., 2.63671875/27.,
-       0., 0., 0., 0., 8.4375/27., 0., 0., 0., 1.6875/27., 0., 0., 0., 25.3125/27., 0., -8.4375/27., 0.,
-       0., 0., 0., 0., 0., 0., 1.6875/27., 0., 0., 0., 8.4375/27., 0., 25.3125/27., -8.4375/27., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
-  };
-
-  static const double q3_into_q3_refined_1[] =
-  {
-       -1.6875/27., -1.6875/27., 0., 0., 15.1875/27., 15.1875/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., -1.6875/27., -1.6875/27., 0., 0., 0., 15.1875/27., 15.1875/27., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0.10546875/27., 0.10546875/27., 0.10546875/27., 0.10546875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., 8.54296875/27., 8.54296875/27., 8.54296875/27., 8.54296875/27.,
-       0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       1.6875/27., 8.4375/27., 0., 0., -8.4375/27., 25.3125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 8.4375/27., 1.6875/27., 0., 0., 0., 25.3125/27., -8.4375/27., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., -1.6875/27., 0., 0., 0., -1.6875/27., 0., 0., 0., 15.1875/27., 0., 15.1875/27.,
-       -0.10546875/27., -0.52734375/27., -0.52734375/27., -0.10546875/27., 0.52734375/27., -1.58203125/27., 4.74609375/27., 4.74609375/27., 0.52734375/27., -1.58203125/27., 0.94921875/27., 0.94921875/27., -4.74609375/27., 14.23828125/27., -4.74609375/27., 14.23828125/27.,
-       -0.52734375/27., -0.52734375/27., -0.10546875/27., -0.10546875/27., 4.74609375/27., 4.74609375/27., -1.58203125/27., 0.52734375/27., 0.94921875/27., 0.94921875/27., -1.58203125/27., 0.52734375/27., 14.23828125/27., 14.23828125/27., -4.74609375/27., -4.74609375/27.,
-       0., 0., 0., 0., 0., 0., -1.6875/27., 0., 0., 0., -1.6875/27., 0., 15.1875/27., 15.1875/27., 0., 0.,
-       0., 0., 0., 0., 0., 8.4375/27., 0., 0., 0., 1.6875/27., 0., 0., 0., 25.3125/27., 0., -8.4375/27.,
-       0.52734375/27., 2.63671875/27., 0.52734375/27., 0.10546875/27., -2.63671875/27., 7.91015625/27., 7.91015625/27., -2.63671875/27., -0.52734375/27., 1.58203125/27., 1.58203125/27., -0.52734375/27., -7.91015625/27., 23.73046875/27., 2.63671875/27., -7.91015625/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
-       0., 0., 0., 0., 0., 0., 8.4375/27., 0., 0., 0., 1.6875/27., 0., -8.4375/27., 25.3125/27., 0., 0.,
-  };
-
-  static const double q3_into_q3_refined_2[] =
-  {
-       0.10546875/27., 0.10546875/27., 0.10546875/27., 0.10546875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., 8.54296875/27., 8.54296875/27., 8.54296875/27., 8.54296875/27.,
-       0., -1.6875/27., -1.6875/27., 0., 0., 0., 15.1875/27., 15.1875/27., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., -1.6875/27., -1.6875/27., 0., 0., 0., 0., 15.1875/27., 15.1875/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., -1.6875/27., 0., 0., 0., -1.6875/27., 0., 0., 0., 15.1875/27., 0., 15.1875/27.,
-       -0.10546875/27., -0.52734375/27., -0.52734375/27., -0.10546875/27., 0.52734375/27., -1.58203125/27., 4.74609375/27., 4.74609375/27., 0.52734375/27., -1.58203125/27., 0.94921875/27., 0.94921875/27., -4.74609375/27., 14.23828125/27., -4.74609375/27., 14.23828125/27.,
-       0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 1.6875/27., 8.4375/27., 0., 0., 0., -8.4375/27., 25.3125/27., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
-       0., 0., 8.4375/27., 1.6875/27., 0., 0., 0., 0., -8.4375/27., 25.3125/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., -1.6875/27., 0., 0., 0., -1.6875/27., 0., 0., 15.1875/27., 15.1875/27.,
-       -0.10546875/27., -0.10546875/27., -0.52734375/27., -0.52734375/27., 0.94921875/27., 0.94921875/27., 0.52734375/27., -1.58203125/27., 4.74609375/27., 4.74609375/27., 0.52734375/27., -1.58203125/27., -4.74609375/27., -4.74609375/27., 14.23828125/27., 14.23828125/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 0., 0., 8.4375/27., 0., 0., 0., 1.6875/27., 0., 0., -8.4375/27., 25.3125/27.,
-       0., 0., 0., 0., 0., 1.6875/27., 0., 0., 0., 8.4375/27., 0., 0., 0., -8.4375/27., 0., 25.3125/27.,
-       0.10546875/27., 0.52734375/27., 2.63671875/27., 0.52734375/27., -0.52734375/27., 1.58203125/27., -2.63671875/27., 7.91015625/27., -2.63671875/27., 7.91015625/27., -0.52734375/27., 1.58203125/27., 2.63671875/27., -7.91015625/27., -7.91015625/27., 23.73046875/27.,
-  };
-
-  static const double q3_into_q3_refined_3[] =
-  {
-       -1.6875/27., 0., 0., -1.6875/27., 0., 0., 0., 0., 0., 0., 15.1875/27., 15.1875/27., 0., 0., 0., 0.,
-       0.10546875/27., 0.10546875/27., 0.10546875/27., 0.10546875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., 8.54296875/27., 8.54296875/27., 8.54296875/27., 8.54296875/27.,
-       0., 0., -1.6875/27., -1.6875/27., 0., 0., 0., 0., 15.1875/27., 15.1875/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       -0.52734375/27., -0.10546875/27., -0.10546875/27., -0.52734375/27., -1.58203125/27., 0.52734375/27., 0.94921875/27., 0.94921875/27., -1.58203125/27., 0.52734375/27., 4.74609375/27., 4.74609375/27., 14.23828125/27., -4.74609375/27., 14.23828125/27., -4.74609375/27.,
-       0., 0., 0., 0., -1.6875/27., 0., 0., 0., -1.6875/27., 0., 0., 0., 15.1875/27., 0., 15.1875/27., 0.,
-       0., 0., 0., 0., 0., 0., 0., -1.6875/27., 0., 0., 0., -1.6875/27., 0., 0., 15.1875/27., 15.1875/27.,
-       -0.10546875/27., -0.10546875/27., -0.52734375/27., -0.52734375/27., 0.94921875/27., 0.94921875/27., 0.52734375/27., -1.58203125/27., 4.74609375/27., 4.74609375/27., 0.52734375/27., -1.58203125/27., -4.74609375/27., -4.74609375/27., 14.23828125/27., 14.23828125/27.,
-       0., 0., 1.6875/27., 8.4375/27., 0., 0., 0., 0., 25.3125/27., -8.4375/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
-       1.6875/27., 0., 0., 8.4375/27., 0., 0., 0., 0., 0., 0., -8.4375/27., 25.3125/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 1.6875/27., 0., 0., 0., 8.4375/27., 0., 0., 25.3125/27., -8.4375/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
-       0.52734375/27., 0.10546875/27., 0.52734375/27., 2.63671875/27., 1.58203125/27., -0.52734375/27., -0.52734375/27., 1.58203125/27., 7.91015625/27., -2.63671875/27., -2.63671875/27., 7.91015625/27., -7.91015625/27., 2.63671875/27., 23.73046875/27., -7.91015625/27.,
-       0., 0., 0., 0., 1.6875/27., 0., 0., 0., 8.4375/27., 0., 0., 0., -8.4375/27., 0., 25.3125/27., 0.,
-  };
-}  // namespace FE_Q_2d
-
-
-// embedding matrices
-
-template <>
-const double * const 
-FE_Q<2>::Matrices::embedding[][GeometryInfo<2>::children_per_cell] =
-{
-  { FE_Q_2d::q1_into_q1_refined_0, FE_Q_2d::q1_into_q1_refined_1,
-      FE_Q_2d::q1_into_q1_refined_2, FE_Q_2d::q1_into_q1_refined_3 },
-  { FE_Q_2d::q2_into_q2_refined_0, FE_Q_2d::q2_into_q2_refined_1,
-      FE_Q_2d::q2_into_q2_refined_2, FE_Q_2d::q2_into_q2_refined_3 },
-  { FE_Q_2d::q3_into_q3_refined_0, FE_Q_2d::q3_into_q3_refined_1,
-      FE_Q_2d::q3_into_q3_refined_2, FE_Q_2d::q3_into_q3_refined_3 }
-};
-
-
-template <>
-const unsigned int
-FE_Q<2>::Matrices::n_embedding_matrices
-  = sizeof(FE_Q<2>::Matrices::embedding) /
-    sizeof(FE_Q<2>::Matrices::embedding[0]);
-
-
-// Constraint matrices taken from Wolfgangs old version
-namespace FE_Q_2d 
-{
-  static const double constraint_q1[] =
-  {
-       .5, .5
-  };
-
-  static const double constraint_q2[] =
-  {
-       0., 0., 1.,
-       .375, -.125, .75,
-       -.125, .375, .75
-  };
-
-  static const double constraint_q3[] =
-  {
-       -.0625, -.0625, .5625, .5625,
-       .3125, .0625, .9375, -.3125,
-       0., 0., 1., 0.,
-       0., 0., 0., 1.,
-       .0625, .3125, -.3125, 0.9375
-  };
-
-  static const double constraint_q4[] =
-  {
-       0., 0., 0., 1., 0.,
-       0.2734375, -0.0390625, 1.09375, -0.546875,  0.21875,
-       0., 0., 1., 0., 0.,
-       -0.0390625, 0.0234375, 0.46875, 0.703125, -0.15625,
-       0.0234375, -0.0390625, -0.15625, 0.703125, 0.46875, 
-       0., 0., 0., 0., 1.,
-       -0.0390625, 0.2734375, 0.21875, -0.546875, 1.09375
-  };
-}
-
+// constraint matrices in 2d are now implemented by computing them on
+// the fly for all polynomial degrees
 
 template <>
 const double * const 
-FE_Q<2>::Matrices::constraint_matrices[] =
-{
-  FE_Q_2d::constraint_q1,
-  FE_Q_2d::constraint_q2,
-  FE_Q_2d::constraint_q3,
-  FE_Q_2d::constraint_q4,
-};
+FE_Q<2>::Matrices::constraint_matrices[] = {};
 
 
 template <>
 const unsigned int 
-FE_Q<2>::Matrices::n_constraint_matrices
-  = sizeof(FE_Q<2>::Matrices::constraint_matrices) /
-    sizeof(FE_Q<2>::Matrices::constraint_matrices[0]);
+FE_Q<2>::Matrices::n_constraint_matrices = 0;
 
 
 
index c82c4657011d5c52526e4d65b88cf0c6437ee617..6b0de5a7df4eab7c4889738bd22df0dd9cb801f4 100644 (file)
 
 #include <fe/fe_q.h>
 
-namespace FE_Q_3d
-{
-  static const double q1_into_q1_refined_0[] =
-  {
-       1., 0., 0., 0., 0., 0., 0., 0.,
-       13.5/27., 13.5/27., 0., 0., 0., 0., 0., 0.,
-       6.75/27., 6.75/27., 6.75/27., 6.75/27., 0., 0., 0., 0.,
-       13.5/27., 0., 0., 13.5/27., 0., 0., 0., 0.,
-       13.5/27., 0., 0., 0., 13.5/27., 0., 0., 0.,
-       6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27., 0., 0.,
-       3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27.,
-       6.75/27., 0., 0., 6.75/27., 6.75/27., 0., 0., 6.75/27.,
-  };
-
-  static const double q1_into_q1_refined_1[] =
-  {
-       13.5/27., 13.5/27., 0., 0., 0., 0., 0., 0.,
-       0., 1., 0., 0., 0., 0., 0., 0.,
-       0., 13.5/27., 13.5/27., 0., 0., 0., 0., 0.,
-       6.75/27., 6.75/27., 6.75/27., 6.75/27., 0., 0., 0., 0.,
-       6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27., 0., 0.,
-       0., 13.5/27., 0., 0., 0., 13.5/27., 0., 0.,
-       0., 6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27., 0.,
-       3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27.,
-  };
-
-  static const double q1_into_q1_refined_2[] =
-  {
-       6.75/27., 6.75/27., 6.75/27., 6.75/27., 0., 0., 0., 0.,
-       0., 13.5/27., 13.5/27., 0., 0., 0., 0., 0.,
-       0., 0., 1., 0., 0., 0., 0., 0.,
-       0., 0., 13.5/27., 13.5/27., 0., 0., 0., 0.,
-       3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27.,
-       0., 6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27., 0.,
-       0., 0., 13.5/27., 0., 0., 0., 13.5/27., 0.,
-       0., 0., 6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27.,
-  };
-
-  static const double q1_into_q1_refined_3[] =
-  {
-       13.5/27., 0., 0., 13.5/27., 0., 0., 0., 0.,
-       6.75/27., 6.75/27., 6.75/27., 6.75/27., 0., 0., 0., 0.,
-       0., 0., 13.5/27., 13.5/27., 0., 0., 0., 0.,
-       0., 0., 0., 1., 0., 0., 0., 0.,
-       6.75/27., 0., 0., 6.75/27., 6.75/27., 0., 0., 6.75/27.,
-       3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27.,
-       0., 0., 6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27.,
-       0., 0., 0., 13.5/27., 0., 0., 0., 13.5/27.,
-  };
-
-  static const double q1_into_q1_refined_4[] =
-  {
-       13.5/27., 0., 0., 0., 13.5/27., 0., 0., 0.,
-       6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27., 0., 0.,
-       3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27.,
-       6.75/27., 0., 0., 6.75/27., 6.75/27., 0., 0., 6.75/27.,
-       0., 0., 0., 0., 1., 0., 0., 0.,
-       0., 0., 0., 0., 13.5/27., 13.5/27., 0., 0.,
-       0., 0., 0., 0., 6.75/27., 6.75/27., 6.75/27., 6.75/27.,
-       0., 0., 0., 0., 13.5/27., 0., 0., 13.5/27.,
-  };
-
-  static const double q1_into_q1_refined_5[] =
-  {
-       6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27., 0., 0.,
-       0., 13.5/27., 0., 0., 0., 13.5/27., 0., 0.,
-       0., 6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27., 0.,
-       3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27.,
-       0., 0., 0., 0., 13.5/27., 13.5/27., 0., 0.,
-       0., 0., 0., 0., 0., 1., 0., 0.,
-       0., 0., 0., 0., 0., 13.5/27., 13.5/27., 0.,
-       0., 0., 0., 0., 6.75/27., 6.75/27., 6.75/27., 6.75/27.,
-  };
-
-  static const double q1_into_q1_refined_6[] =
-  {
-       3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27.,
-       0., 6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27., 0.,
-       0., 0., 13.5/27., 0., 0., 0., 13.5/27., 0.,
-       0., 0., 6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27.,
-       0., 0., 0., 0., 6.75/27., 6.75/27., 6.75/27., 6.75/27.,
-       0., 0., 0., 0., 0., 13.5/27., 13.5/27., 0.,
-       0., 0., 0., 0., 0., 0., 1., 0.,
-       0., 0., 0., 0., 0., 0., 13.5/27., 13.5/27.,
-  };
-
-  static const double q1_into_q1_refined_7[] =
-  {
-       6.75/27., 0., 0., 6.75/27., 6.75/27., 0., 0., 6.75/27.,
-       3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27., 3.375/27.,
-       0., 0., 6.75/27., 6.75/27., 0., 0., 6.75/27., 6.75/27.,
-       0., 0., 0., 13.5/27., 0., 0., 0., 13.5/27.,
-       0., 0., 0., 0., 13.5/27., 0., 0., 13.5/27.,
-       0., 0., 0., 0., 6.75/27., 6.75/27., 6.75/27., 6.75/27.,
-       0., 0., 0., 0., 0., 0., 13.5/27., 13.5/27.,
-       0., 0., 0., 0., 0., 0., 0., 1.,
-  };
-
-  static const double q2_into_q2_refined_0[] =
-  {
-       1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
-       10.125/27., -3.375/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0.,
-       10.125/27., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 20.25/27., 0.,
-       10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0.,
-       3.796875/27., -1.265625/27., 0.421875/27., -1.265625/27., 0., 0., 0., 0., 7.59375/27., -2.53125/27., -2.53125/27., 7.59375/27., 0., 0., 0., 0., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 3.796875/27., -1.265625/27., 0.421875/27., -1.265625/27., 0., 0., 7.59375/27., -2.53125/27., -2.53125/27., 7.59375/27., 15.1875/27.,
-       3.796875/27., -1.265625/27., 0., 0., -1.265625/27., 0.421875/27., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., -2.53125/27., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 3.796875/27., 0., -1.265625/27., 0., -1.265625/27., 0., 0.421875/27., 0., 0., 0., 0., 0., 7.59375/27., -2.53125/27., 7.59375/27., 0., -2.53125/27., 0., 15.1875/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 0., 3.796875/27., 0., 0.421875/27., 0., -1.265625/27., 0., 0., 0., 0., 7.59375/27., -2.53125/27., 0., -2.53125/27., 0., 7.59375/27., 15.1875/27.,
-       3.796875/27., 0., 0., -1.265625/27., -1.265625/27., 0., 0., 0.421875/27., 0., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., 7.59375/27., 0., 0., -2.53125/27., 0., 0., 0., 0., 0., 15.1875/27., 0.,
-       1.423828125/27., -0.474609375/27., 0.158203125/27., -0.474609375/27., -0.474609375/27., 0.158203125/27., -0.052734375/27., 0.158203125/27., 2.84765625/27., -0.94921875/27., -0.94921875/27., 2.84765625/27., -0.94921875/27., 0.31640625/27., 0.31640625/27., -0.94921875/27., 2.84765625/27., -0.94921875/27., 0.31640625/27., -0.94921875/27., 5.6953125/27., -1.8984375/27., 5.6953125/27., -1.8984375/27., -1.8984375/27., 5.6953125/27., 11.390625/27.,
-  };
-
-  static const double q2_into_q2_refined_1[] =
-  {
-       0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       -3.375/27., 10.125/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 10.125/27., -3.375/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 20.25/27., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0.,
-       0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 20.25/27.,
-       -1.265625/27., 3.796875/27., -1.265625/27., 0.421875/27., 0., 0., 0., 0., 7.59375/27., 7.59375/27., -2.53125/27., -2.53125/27., 0., 0., 0., 0., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 3.796875/27., -1.265625/27., 0.421875/27., 0., 0., 7.59375/27., 7.59375/27., -2.53125/27., -2.53125/27., 15.1875/27.,
-       -1.265625/27., 3.796875/27., 0., 0., 0.421875/27., -1.265625/27., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., 0., 0., 0., -2.53125/27., 7.59375/27., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0.,
-       0., 3.796875/27., -1.265625/27., 0., 0., -1.265625/27., 0.421875/27., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., -2.53125/27., 0., 0., 0., 0., 15.1875/27., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 3.796875/27., 0., -1.265625/27., 0., -1.265625/27., 0., 0.421875/27., 0., 0., 0., 0., 7.59375/27., -2.53125/27., 0., 7.59375/27., 0., -2.53125/27., 15.1875/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 3.796875/27., 0., -1.265625/27., 0., -1.265625/27., 0., 0.421875/27., 0., 0., 0., 0., 0., 7.59375/27., -2.53125/27., 7.59375/27., 0., -2.53125/27., 0., 15.1875/27.,
-       -0.474609375/27., 1.423828125/27., -0.474609375/27., 0.158203125/27., 0.158203125/27., -0.474609375/27., 0.158203125/27., -0.052734375/27., 2.84765625/27., 2.84765625/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., 0.31640625/27., 0.31640625/27., -0.94921875/27., 2.84765625/27., -0.94921875/27., 0.31640625/27., 5.6953125/27., -1.8984375/27., 5.6953125/27., 5.6953125/27., -1.8984375/27., -1.8984375/27., 11.390625/27.,
-  };
-
-  static const double q2_into_q2_refined_2[] =
-  {
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0.,
-       0., -3.375/27., 10.125/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 20.25/27., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 20.25/27., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0.,
-       0., 0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0.,
-       0.421875/27., -1.265625/27., 3.796875/27., -1.265625/27., 0., 0., 0., 0., -2.53125/27., 7.59375/27., 7.59375/27., -2.53125/27., 0., 0., 0., 0., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.421875/27., -1.265625/27., 3.796875/27., -1.265625/27., 0., 0., -2.53125/27., 7.59375/27., 7.59375/27., -2.53125/27., 15.1875/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 3.796875/27., 0., -1.265625/27., 0., -1.265625/27., 0., 0.421875/27., 0., 0., 0., 0., 7.59375/27., -2.53125/27., 0., 7.59375/27., 0., -2.53125/27., 15.1875/27.,
-       0., -1.265625/27., 3.796875/27., 0., 0., 0.421875/27., -1.265625/27., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., 0., 0., 0., -2.53125/27., 7.59375/27., 0., 0., 0., 0., 15.1875/27., 0., 0., 0.,
-       0., 0., 3.796875/27., -1.265625/27., 0., 0., -1.265625/27., 0.421875/27., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., -2.53125/27., 0., 0., 0., 0., 15.1875/27., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 0., 3.796875/27., 0., 0.421875/27., 0., -1.265625/27., 0., 0., 0., 0., 0., 7.59375/27., -2.53125/27., -2.53125/27., 0., 7.59375/27., 0., 15.1875/27.,
-       0.158203125/27., -0.474609375/27., 1.423828125/27., -0.474609375/27., -0.052734375/27., 0.158203125/27., -0.474609375/27., 0.158203125/27., -0.94921875/27., 2.84765625/27., 2.84765625/27., -0.94921875/27., 0.31640625/27., -0.94921875/27., -0.94921875/27., 0.31640625/27., 0.31640625/27., -0.94921875/27., 2.84765625/27., -0.94921875/27., 5.6953125/27., -1.8984375/27., -1.8984375/27., 5.6953125/27., 5.6953125/27., -1.8984375/27., 11.390625/27.,
-  };
-
-  static const double q2_into_q2_refined_3[] =
-  {
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       -3.375/27., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 20.25/27., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 20.25/27., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0.,
-       0., 0., 0., 10.125/27., 0., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0.,
-       -1.265625/27., 0.421875/27., -1.265625/27., 3.796875/27., 0., 0., 0., 0., -2.53125/27., -2.53125/27., 7.59375/27., 7.59375/27., 0., 0., 0., 0., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 0.421875/27., -1.265625/27., 3.796875/27., 0., 0., -2.53125/27., -2.53125/27., 7.59375/27., 7.59375/27., 15.1875/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 0., 3.796875/27., 0., 0.421875/27., 0., -1.265625/27., 0., 0., 0., 0., 7.59375/27., -2.53125/27., 0., -2.53125/27., 0., 7.59375/27., 15.1875/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 0., 3.796875/27., 0., 0.421875/27., 0., -1.265625/27., 0., 0., 0., 0., 0., 7.59375/27., -2.53125/27., -2.53125/27., 0., 7.59375/27., 0., 15.1875/27.,
-       0., 0., -1.265625/27., 3.796875/27., 0., 0., 0.421875/27., -1.265625/27., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., 0., 0., 0., -2.53125/27., 7.59375/27., 0., 0., 0., 0., 15.1875/27., 0., 0.,
-       -1.265625/27., 0., 0., 3.796875/27., 0.421875/27., 0., 0., -1.265625/27., 0., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., -2.53125/27., 0., 0., 7.59375/27., 0., 0., 0., 0., 0., 15.1875/27., 0.,
-       -0.474609375/27., 0.158203125/27., -0.474609375/27., 1.423828125/27., 0.158203125/27., -0.052734375/27., 0.158203125/27., -0.474609375/27., -0.94921875/27., -0.94921875/27., 2.84765625/27., 2.84765625/27., 0.31640625/27., 0.31640625/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., 0.31640625/27., -0.94921875/27., 2.84765625/27., 5.6953125/27., -1.8984375/27., -1.8984375/27., -1.8984375/27., 5.6953125/27., 5.6953125/27., 11.390625/27.,
-  };
-
-  static const double q2_into_q2_refined_4[] =
-  {
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
-       0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 20.25/27., 0.,
-       0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 10.125/27., 0., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 3.796875/27., -1.265625/27., 0.421875/27., -1.265625/27., 0., 0., 7.59375/27., -2.53125/27., -2.53125/27., 7.59375/27., 15.1875/27.,
-       0., 0., 0., 0., 3.796875/27., -1.265625/27., 0.421875/27., -1.265625/27., 0., 0., 0., 0., 7.59375/27., -2.53125/27., -2.53125/27., 7.59375/27., 0., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0., 0.,
-       -1.265625/27., 0.421875/27., 0., 0., 3.796875/27., -1.265625/27., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., 0., 0., 0., 7.59375/27., -2.53125/27., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 0., 0.421875/27., 0., 3.796875/27., 0., -1.265625/27., 0., 0., 0., 0., 0., -2.53125/27., 7.59375/27., 7.59375/27., 0., -2.53125/27., 0., 15.1875/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0.421875/27., 0., -1.265625/27., 0., -1.265625/27., 0., 3.796875/27., 0., 0., 0., 0., -2.53125/27., 7.59375/27., 0., -2.53125/27., 0., 7.59375/27., 15.1875/27.,
-       -1.265625/27., 0., 0., 0.421875/27., 3.796875/27., 0., 0., -1.265625/27., 0., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., 7.59375/27., 0., 0., -2.53125/27., 0., 0., 0., 0., 0., 15.1875/27., 0.,
-       -0.474609375/27., 0.158203125/27., -0.052734375/27., 0.158203125/27., 1.423828125/27., -0.474609375/27., 0.158203125/27., -0.474609375/27., -0.94921875/27., 0.31640625/27., 0.31640625/27., -0.94921875/27., 2.84765625/27., -0.94921875/27., -0.94921875/27., 2.84765625/27., 2.84765625/27., -0.94921875/27., 0.31640625/27., -0.94921875/27., -1.8984375/27., 5.6953125/27., 5.6953125/27., -1.8984375/27., -1.8984375/27., 5.6953125/27., 11.390625/27.,
-  };
-
-  static const double q2_into_q2_refined_5[] =
-  {
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 20.25/27., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 20.25/27.,
-       0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0.,
-       0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 3.796875/27., -1.265625/27., 0.421875/27., 0., 0., 7.59375/27., 7.59375/27., -2.53125/27., -2.53125/27., 15.1875/27.,
-       0., 0., 0., 0., -1.265625/27., 3.796875/27., -1.265625/27., 0.421875/27., 0., 0., 0., 0., 7.59375/27., 7.59375/27., -2.53125/27., -2.53125/27., 0., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0., 0.,
-       0.421875/27., -1.265625/27., 0., 0., -1.265625/27., 3.796875/27., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., 7.59375/27., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0.,
-       0., -1.265625/27., 0.421875/27., 0., 0., 3.796875/27., -1.265625/27., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., 0., 0., 0., 7.59375/27., -2.53125/27., 0., 0., 0., 0., 15.1875/27., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 0., 0.421875/27., 0., 3.796875/27., 0., -1.265625/27., 0., 0., 0., 0., -2.53125/27., 7.59375/27., 0., 7.59375/27., 0., -2.53125/27., 15.1875/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 0., 0.421875/27., 0., 3.796875/27., 0., -1.265625/27., 0., 0., 0., 0., 0., -2.53125/27., 7.59375/27., 7.59375/27., 0., -2.53125/27., 0., 15.1875/27.,
-       0.158203125/27., -0.474609375/27., 0.158203125/27., -0.052734375/27., -0.474609375/27., 1.423828125/27., -0.474609375/27., 0.158203125/27., -0.94921875/27., -0.94921875/27., 0.31640625/27., 0.31640625/27., 2.84765625/27., 2.84765625/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., 2.84765625/27., -0.94921875/27., 0.31640625/27., -1.8984375/27., 5.6953125/27., 5.6953125/27., 5.6953125/27., -1.8984375/27., -1.8984375/27., 11.390625/27.,
-  };
-
-  static const double q2_into_q2_refined_6[] =
-  {
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 20.25/27., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 20.25/27., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10.125/27., 0., -3.375/27., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 10.125/27., -3.375/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0.,
-       0., 0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.421875/27., -1.265625/27., 3.796875/27., -1.265625/27., 0., 0., -2.53125/27., 7.59375/27., 7.59375/27., -2.53125/27., 15.1875/27.,
-       0., 0., 0., 0., 0.421875/27., -1.265625/27., 3.796875/27., -1.265625/27., 0., 0., 0., 0., -2.53125/27., 7.59375/27., 7.59375/27., -2.53125/27., 0., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 0., 0.421875/27., 0., 3.796875/27., 0., -1.265625/27., 0., 0., 0., 0., -2.53125/27., 7.59375/27., 0., 7.59375/27., 0., -2.53125/27., 15.1875/27.,
-       0., 0.421875/27., -1.265625/27., 0., 0., -1.265625/27., 3.796875/27., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., 7.59375/27., 0., 0., 0., 0., 15.1875/27., 0., 0., 0.,
-       0., 0., -1.265625/27., 0.421875/27., 0., 0., 3.796875/27., -1.265625/27., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., 0., 0., 0., 7.59375/27., -2.53125/27., 0., 0., 0., 0., 15.1875/27., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0.421875/27., 0., -1.265625/27., 0., -1.265625/27., 0., 3.796875/27., 0., 0., 0., 0., 0., -2.53125/27., 7.59375/27., -2.53125/27., 0., 7.59375/27., 0., 15.1875/27.,
-       -0.052734375/27., 0.158203125/27., -0.474609375/27., 0.158203125/27., 0.158203125/27., -0.474609375/27., 1.423828125/27., -0.474609375/27., 0.31640625/27., -0.94921875/27., -0.94921875/27., 0.31640625/27., -0.94921875/27., 2.84765625/27., 2.84765625/27., -0.94921875/27., 0.31640625/27., -0.94921875/27., 2.84765625/27., -0.94921875/27., -1.8984375/27., 5.6953125/27., -1.8984375/27., 5.6953125/27., 5.6953125/27., -1.8984375/27., 11.390625/27.,
-  };
-
-  static const double q2_into_q2_refined_7[] =
-  {
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 20.25/27., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 20.25/27., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., -3.375/27., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 10.125/27., 0., 0., 0., 0., 20.25/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0.,
-       0., 0., 0., -3.375/27., 0., 0., 0., 10.125/27., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 20.25/27., 0., 0., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1.265625/27., 0.421875/27., -1.265625/27., 3.796875/27., 0., 0., -2.53125/27., -2.53125/27., 7.59375/27., 7.59375/27., 15.1875/27.,
-       0., 0., 0., 0., -1.265625/27., 0.421875/27., -1.265625/27., 3.796875/27., 0., 0., 0., 0., -2.53125/27., -2.53125/27., 7.59375/27., 7.59375/27., 0., 0., 0., 0., 0., 15.1875/27., 0., 0., 0., 0., 0.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0., 0.421875/27., 0., -1.265625/27., 0., -1.265625/27., 0., 3.796875/27., 0., 0., 0., 0., -2.53125/27., 7.59375/27., 0., -2.53125/27., 0., 7.59375/27., 15.1875/27.,
-       0., 0., 0., 0., 0., 0., 0., 0., 0.421875/27., 0., -1.265625/27., 0., -1.265625/27., 0., 3.796875/27., 0., 0., 0., 0., 0., -2.53125/27., 7.59375/27., -2.53125/27., 0., 7.59375/27., 0., 15.1875/27.,
-       0., 0., 0.421875/27., -1.265625/27., 0., 0., -1.265625/27., 3.796875/27., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., 0., 0., 0., -2.53125/27., 7.59375/27., 0., 0., 0., 0., 15.1875/27., 0., 0.,
-       0.421875/27., 0., 0., -1.265625/27., -1.265625/27., 0., 0., 3.796875/27., 0., 0., 0., -2.53125/27., 0., 0., 0., 7.59375/27., -2.53125/27., 0., 0., 7.59375/27., 0., 0., 0., 0., 0., 15.1875/27., 0.,
-       0.158203125/27., -0.052734375/27., 0.158203125/27., -0.474609375/27., -0.474609375/27., 0.158203125/27., -0.474609375/27., 1.423828125/27., 0.31640625/27., 0.31640625/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., -0.94921875/27., 2.84765625/27., 2.84765625/27., -0.94921875/27., 0.31640625/27., -0.94921875/27., 2.84765625/27., -1.8984375/27., 5.6953125/27., -1.8984375/27., -1.8984375/27., 5.6953125/27., 5.6953125/27., 11.390625/27.,
-  };
-}  // namespace FE_Q_3d
-
-
-// embedding matrices
-
-template <>
-const double * const 
-FE_Q<3>::Matrices::embedding[][GeometryInfo<3>::children_per_cell] =
-{
-  { FE_Q_3d::q1_into_q1_refined_0, FE_Q_3d::q1_into_q1_refined_1,
-      FE_Q_3d::q1_into_q1_refined_2, FE_Q_3d::q1_into_q1_refined_3,
-      FE_Q_3d::q1_into_q1_refined_4, FE_Q_3d::q1_into_q1_refined_5,
-      FE_Q_3d::q1_into_q1_refined_6, FE_Q_3d::q1_into_q1_refined_7 },
-  { FE_Q_3d::q2_into_q2_refined_0, FE_Q_3d::q2_into_q2_refined_1,
-      FE_Q_3d::q2_into_q2_refined_2, FE_Q_3d::q2_into_q2_refined_3,
-      FE_Q_3d::q2_into_q2_refined_4, FE_Q_3d::q2_into_q2_refined_5,
-      FE_Q_3d::q2_into_q2_refined_6, FE_Q_3d::q2_into_q2_refined_7 }
-};
-
-
-template <>
-const unsigned int
-FE_Q<3>::Matrices::n_embedding_matrices
-  = sizeof(FE_Q<3>::Matrices::embedding) /
-    sizeof(FE_Q<3>::Matrices::embedding[0]);
-
-
-
 // Constraint matrices taken from Wolfgangs old version
 
 namespace FE_Q_3d 
index 9c45ac62dd4ce3a13e0c84e51367dfaa5418aaf9..5c924144cc152ec80190ac7322b8eb3b8c3539cd 100644 (file)
 #include <fe/fe_values.h>
 
 #include <cmath>
+#ifdef HAVE_STD_STRINGSTREAM
+#  include <sstream>
+#else
+#  include <strstream>
+#endif
+
 
 namespace 
 {
@@ -92,6 +98,26 @@ FE_Q_Hierarchical<dim>::FE_Q_Hierarchical (const unsigned int degree)
 
 
 
+template <int dim>
+std::string
+FE_Q_Hierarchical<dim>::get_name () const
+{
+#ifdef HAVE_STD_STRINGSTREAM
+  std::ostringstream namebuf;
+#else
+  std::ostrstream namebuf;
+#endif
+  
+  namebuf << "FE_Q_Hierarchical<" << dim << ">(" << degree << ")";
+
+#ifndef HAVE_STD_STRINGSTREAM
+  namebuf << std::ends;
+#endif
+  return namebuf.str();
+}
+
+
+
 template <int dim>
 FiniteElement<dim> *
 FE_Q_Hierarchical<dim>::clone() const
diff --git a/deal.II/deal.II/source/fe/fe_raviart_thomas.cc b/deal.II/deal.II/source/fe/fe_raviart_thomas.cc
new file mode 100644 (file)
index 0000000..d14c6fb
--- /dev/null
@@ -0,0 +1,1983 @@
+//----------------------------------------------------------------
+//    $Id$
+//    Version: $Name$
+//
+//    Copyright (C) 2003 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//----------------------------------------------------------------
+
+#include <base/quadrature.h>
+#include <base/table.h>
+#include <grid/tria.h>
+#include <grid/tria_iterator.h>
+#include <dofs/dof_accessor.h>
+#include <fe/fe.h>
+#include <fe/mapping.h>
+#include <fe/fe_raviart_thomas.h>
+#include <fe/fe_values.h>
+
+#ifdef HAVE_STD_STRINGSTREAM
+#  include <sstream>
+#else
+#  include <strstream>
+#endif
+
+
+// namespace for some functions that are used in this file. they are
+// specific to numbering conventions used for the FE_RT element, and
+// are thus not very interesting to the outside world
+namespace 
+{
+                                  // auxiliary type to allow for some
+                                  // kind of explicit template
+                                  // specialization of the following
+                                  // functions
+  template <int dim> struct int2type {};
+
+  
+                                  // generate the j-th out of a total
+                                  // of N points on the unit square
+                                  // in 2d. N needs not be a square
+                                  // number, but must be the product
+                                  // of two integers
+                                  //
+                                  // there is one complication: we
+                                  // want to generate interpolation
+                                  // points on the unit square for
+                                  // the shape functions for this
+                                  // element, but for that we need to
+                                  // make sure that these
+                                  // interpolation points make the
+                                  // resulting matrix rows linearly
+                                  // independent. this is a problem
+                                  // since we have anisotropic
+                                  // polynomials, so for example for
+                                  // the lowest order elements, we
+                                  // have as polynomials in for the
+                                  // x-component of the shape
+                                  // functions only "x" and "1-x",
+                                  // i.e. no y-dependence. if we
+                                  // select as interpolation points
+                                  // the points (.5,0) and (.5,1),
+                                  // we're hosed!
+                                  //
+                                  // thus, the third parameter gives
+                                  // the coordinate direction in
+                                  // which the polynomial degree is
+                                  // highest. we use this to select
+                                  // interpolation points primarily
+                                  // in this direction then
+  Point<2> generate_unit_point (const unsigned int j,
+                               const unsigned int N,
+                               const unsigned int d,
+                               const int2type<2>  &)
+  {
+    Assert (d<2, ExcInternalError());
+    
+                                    // factorize N int N1*N2. note
+                                    // that we always have N1<=N2,
+                                    // since the square root is
+                                    // rounded down
+    const unsigned int N1 = static_cast<unsigned int>(std::sqrt(1.*N));
+    const unsigned int N2 = N/N1;
+    Assert (N1*N2 == N, ExcInternalError());
+
+    const unsigned int Nx = (d==0 ? N2 : N1),
+                      Ny = (d==1 ? N2 : N1);
+    
+    return Point<2> (Nx == 1 ? .5 : 1.*(j%Nx)/(Nx-1),
+                    Ny == 1 ? .5 : 1.*(j/Nx)/(Ny-1));
+  }
+  
+
+                                  // generate the j-th out of a total
+                                  // of N points on the unit cube
+                                  // in 3d. N needs not be a cube
+                                  // number, but must be the product
+                                  // of three integers
+                                  //
+                                  // the same applies as above for
+                                  // the meaning of the parameter "d"
+  Point<3> generate_unit_point (const unsigned int /*j*/,
+                               const unsigned int N,
+                               const unsigned int d,
+                               const int2type<3>  &)
+  {
+    Assert (d<3, ExcInternalError());
+
+    const unsigned int N1 = static_cast<unsigned int>(std::pow(1.*N, 1./3.));
+    const unsigned int N2 = static_cast<unsigned int>(std::sqrt(1.*N/N1));
+    const unsigned int N3 = N/(N1*N2);
+    Assert (N1*N2*N3 == N, ExcInternalError());
+
+    Assert (false, ExcNotImplemented());
+
+    return Point<3> ();
+  }
+  
+}
+
+
+
+template <int dim>
+FE_RaviartThomas<dim>::FE_RaviartThomas (const unsigned int degree)
+               :
+               FiniteElement<dim> (FiniteElementData<dim>(get_dpo_vector(degree),
+                                                          dim),
+                                   get_ria_vector (degree),
+                                   std::vector<std::vector<bool> >(FiniteElementData<dim>(get_dpo_vector(degree),dim).dofs_per_cell,
+                                                                   std::vector<bool>(dim,true))),
+               degree(degree),
+                polynomials (create_polynomials(degree)),
+                renumber (compute_renumber(degree))
+{
+  Assert (dim >= 2, ExcNotUsefulInThisDimension());
+
+                                   // check formula (III.3.22) in the
+                                   // book by Brezzi & Fortin about
+                                   // the number of degrees of freedom
+                                   // per cell
+  Assert (((dim==2) &&
+           (this->dofs_per_cell == 2*(degree+1)*(degree+2)))
+          ||
+          ((dim==3) &&
+           (this->dofs_per_cell == 3*(degree+1)*(degree+1)*(degree+2))),
+          ExcInternalError());
+  Assert (renumber.size() == this->dofs_per_cell,
+          ExcInternalError());
+
+                                  // initialize the various matrices
+  initialize_constraints ();
+  initialize_embedding ();
+  initialize_restriction ();
+
+                                  // finally fill in support points
+                                  // on cell and face
+  initialize_unit_support_points ();
+  initialize_unit_face_support_points ();
+
+                                   // then make
+                                   // system_to_component_table
+                                   // invalid, since this has no
+                                   // meaning for the present element
+  std::vector<std::pair<unsigned,unsigned> > tmp1, tmp2;
+  this->system_to_component_table.swap (tmp1);
+  this->face_system_to_component_table.swap (tmp2);
+}
+
+
+
+template <int dim>
+std::string
+FE_RaviartThomas<dim>::get_name () const
+{
+#ifdef HAVE_STD_STRINGSTREAM
+  std::ostringstream namebuf;
+#else
+  std::ostrstream namebuf;
+#endif
+  
+  namebuf << "FE_RaviartThomas<" << dim << ">(" << degree << ")";
+
+#ifndef HAVE_STD_STRINGSTREAM
+  namebuf << std::ends;
+#endif
+  return namebuf.str();
+}
+
+
+
+template <int dim>
+FiniteElement<dim> *
+FE_RaviartThomas<dim>::clone() const
+{
+  return new FE_RaviartThomas<dim>(degree);
+}
+
+
+template <int dim>
+double
+FE_RaviartThomas<dim>::shape_value_component (const unsigned int i,
+                                              const Point<dim>    &p,
+                                              const unsigned int component) const
+{
+  Assert (i<this->dofs_per_cell, ExcIndexRange(i,0,this->dofs_per_cell));
+  Assert (component < dim, ExcIndexRange (component, 0, dim));
+
+                                   // check whether this shape
+                                   // function has a contribution in
+                                   // this component at all, and if so
+                                   // delegate to the respective
+                                   // polynomial
+  if (component == renumber[i].first)
+    return polynomials[component].compute_value(renumber[i].second, p);
+  else
+    return 0;
+}
+
+
+
+template <int dim>
+Tensor<1,dim>
+FE_RaviartThomas<dim>::shape_grad_component (const unsigned int  i,
+                                             const Point<dim>   &p,
+                                             const unsigned int  component) const
+{
+  Assert (i<this->dofs_per_cell, ExcIndexRange(i,0,this->dofs_per_cell));
+  Assert (component < dim, ExcIndexRange (component, 0, dim));
+
+                                   // check whether this shape
+                                   // function has a contribution in
+                                   // this component at all, and if so
+                                   // delegate to the respective
+                                   // polynomial
+  if (component == renumber[i].first)
+    return polynomials[component].compute_grad(renumber[i].second, p);
+  else
+    return Tensor<1,dim>();
+}
+
+
+
+template <int dim>
+Tensor<2,dim>
+FE_RaviartThomas<dim>::shape_grad_grad_component (const unsigned int i,
+                                                  const Point<dim>  &p,
+                                                  const unsigned int component) const
+{
+  Assert (i<this->dofs_per_cell, ExcIndexRange(i,0,this->dofs_per_cell));
+  Assert (component < dim, ExcIndexRange (component, 0, dim));
+
+                                   // check whether this shape
+                                   // function has a contribution in
+                                   // this component at all, and if so
+                                   // delegate to the respective
+                                   // polynomial
+  if (component == renumber[i].first)
+    return polynomials[component].compute_grad_grad(renumber[i].second, p);
+  else
+    return Tensor<2,dim>();
+}
+
+
+
+#if deal_II_dimension == 1
+
+template <>
+void
+FE_RaviartThomas<1>::
+get_interpolation_matrix (const FiniteElementBase<1> &,
+                         FullMatrix<double>         &) const
+{
+  Assert (false, ExcNotUsefulInThisDimension());
+}
+
+#endif
+
+
+template <int dim>
+void
+FE_RaviartThomas<dim>::
+get_interpolation_matrix (const FiniteElementBase<dim> &x_source_fe,
+                         FullMatrix<double>           &interpolation_matrix) const
+{
+                                  // this is only implemented, if the
+                                  // source FE is also a
+                                  // Raviart-Thomas element,
+                                  // otherwise throw an exception, as
+                                  // the documentation says
+  AssertThrow ((x_source_fe.get_name().find ("FE_RaviartThomas<") == 0)
+               ||
+               (dynamic_cast<const FE_RaviartThomas<dim>*>(&x_source_fe) != 0),
+               typename FiniteElementBase<dim>::
+               ExcInterpolationNotImplemented());
+  
+                                  // ok, source is a RT element, so
+                                  // we will be able to do the work
+  const FE_RaviartThomas<dim> &source_fe
+    = dynamic_cast<const FE_RaviartThomas<dim>&>(x_source_fe);
+
+  Assert (interpolation_matrix.m() == this->dofs_per_cell,
+         ExcDimensionMismatch (interpolation_matrix.m(),
+                               this->dofs_per_cell));
+  Assert (interpolation_matrix.n() == source_fe.dofs_per_cell,
+         ExcDimensionMismatch (interpolation_matrix.m(),
+                               source_fe.dofs_per_cell));
+  
+  
+                                  // compute the interpolation
+                                  // matrices in much the same way as
+                                  // we do for the embedding matrices
+                                  // from mother to child.
+  const unsigned int dofs_per_coordinate = this->dofs_per_cell/dim;
+  Assert (dofs_per_coordinate*dim == this->dofs_per_cell,
+         ExcInternalError());
+  for (unsigned int d=0; d<dim; ++d)
+    Assert (polynomials[d].n() == dofs_per_coordinate, ExcInternalError());
+
+  const unsigned int source_dofs_per_coordinate = source_fe.dofs_per_cell/dim;
+  Assert (source_dofs_per_coordinate*dim == source_fe.dofs_per_cell,
+         ExcInternalError());
+  for (unsigned int d=0; d<dim; ++d)
+    Assert (source_fe.polynomials[d].n() == source_dofs_per_coordinate, ExcInternalError());
+  
+  FullMatrix<double> cell_interpolation (dofs_per_coordinate,
+                                        dofs_per_coordinate);
+  FullMatrix<double> source_interpolation (dofs_per_coordinate,
+                                          source_dofs_per_coordinate);
+  FullMatrix<double> tmp (dofs_per_coordinate,
+                         source_dofs_per_coordinate);
+  for (unsigned int d=0; d<dim; ++d)
+    {
+      for (unsigned int j=0; j<dofs_per_coordinate; ++j)
+       {
+                                          // generate a point on this
+                                          // cell and evaluate the
+                                          // shape functions there
+                                          //
+                                          // see the comment for that
+                                          // function to see why the
+                                          // third parameter is
+                                          // necessary
+         const Point<dim> p = generate_unit_point (j, dofs_per_coordinate,
+                                                   d, int2type<dim>());
+         for (unsigned int i=0; i<dofs_per_coordinate; ++i)
+           cell_interpolation(j,i) = polynomials[d].compute_value (i, p);
+
+         for (unsigned int i=0; i<source_dofs_per_coordinate; ++i)
+           source_interpolation(j,i) = source_fe.polynomials[d].compute_value (i, p);
+       }
+
+                                      // then compute the
+                                      // interpolation matrix matrix
+                                      // for this coordinate
+                                      // direction
+      cell_interpolation.gauss_jordan ();
+      cell_interpolation.mmult (tmp, source_interpolation);
+
+                                      // finally transfer the
+                                      // results for this
+                                      // coordinate into the matrix
+                                      // corresponding to the
+                                      // entire space on this
+                                      // cell. cut off very small
+                                      // values here
+      for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+       if (renumber[i].first == d)
+         for (unsigned int j=0; j<source_fe.dofs_per_cell; ++j)
+           if (source_fe.renumber[j].first == d)
+             if (std::fabs(tmp(renumber[i].second,
+                               source_fe.renumber[j].second)) > 1e-15)
+               interpolation_matrix(i,j) = tmp(renumber[i].second,
+                                               source_fe.renumber[j].second);
+    }
+
+                                  // if this were a Lagrange
+                                  // interpolation element, we could
+                                  // make sure that the row sum of
+                                  // each of the matrices is 1 at
+                                  // this point. note that this won't
+                                  // work here, since we are working
+                                  // with hierarchical elements for
+                                  // which the shape functions don't
+                                  // sum up to 1
+                                  //
+                                  // however, we can make sure that
+                                  // only components couple that have
+                                  // the same vector component
+  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+    for (unsigned int j=0; j<source_fe.dofs_per_cell; ++j)
+      Assert ((interpolation_matrix(i,j) == 0.) ||
+             (renumber[i].first == source_fe.renumber[j].first),
+             ExcInternalError());
+}
+
+
+
+//----------------------------------------------------------------------
+// Auxiliary and internal functions
+//----------------------------------------------------------------------
+
+
+
+
+#if deal_II_dimension == 1
+
+template <>
+void
+FE_RaviartThomas<1>::initialize_constraints ()
+{
+  Assert (false, ExcNotUsefulInThisDimension());
+}
+
+#endif
+
+#if deal_II_dimension == 2
+
+template <>
+void
+FE_RaviartThomas<2>::initialize_constraints ()
+{
+  const unsigned int dim = 2;
+  
+  this->interface_constraints.
+    TableBase<2,double>::reinit (this->interface_constraints_size());
+
+                                  // this case is too easy, so
+                                  // special case it
+  if (degree == 0)
+    {
+      this->interface_constraints(0,0) = this->interface_constraints(1,0) = .5;
+      return;
+    }
+
+                                  // for higher orders of the
+                                  // Raviart-Thomas element:
+    
+                                  // restricted to each face, the
+                                  // normal component of the shape
+                                  // functions is an element of P_{k}
+                                  // (in 2d), or Q_{k} (in 3d), where
+                                  // k is the degree of the element
+                                  //
+                                  // from this, we interpolate
+                                  // between mother and cell
+                                  // face. this is slightly
+                                  // complicated by the fact that we
+                                  // don't use Lagrange interpolation
+                                  // polynomials, but rather
+                                  // hierarchical polynomials, so we
+                                  // can't just use point
+                                  // interpolation. what we do
+                                  // instead is to evaluate at a
+                                  // number of points and then invert
+                                  // the interpolation matrix
+
+                                  // mathematically speaking, this
+                                  // works in the following way: on
+                                  // each subface, we want that
+                                  // finite element solututions from
+                                  // both sides coincide. i.e. if a
+                                  // and b are expansion coefficients
+                                  // for the shape functions from
+                                  // both sides, we seek a relation
+                                  // between x and y such that
+                                  //   sum_i a_i phi^c_i(x)
+                                  //   == sum_j b_j phi_j(x)
+                                  // for all points x on the
+                                  // interface. here, phi^c_i are the
+                                  // shape functions on the small
+                                  // cell on one side of the face,
+                                  // and phi_j those on the big cell
+                                  // on the other side. To get this
+                                  // relation, it suffices to look at
+                                  // a sufficient number of points
+                                  // for which this has to hold. if
+                                  // there are n functions, then we
+                                  // need n evaluation points, and we
+                                  // choose them equidistantly.
+                                  //
+                                  // what one then gets is a matrix
+                                  // system
+                                  //    a A  ==  b B
+                                  // where
+                                  //    A_ij = phi^c_i(x_j)
+                                  //    B_ij = phi_i(x_j)
+                                  // and the relation we are looking for
+                                  // is
+                                  //    a = (A^T)^-1 B^T b
+                                  //
+                                  // below, we build up these
+                                  // matrices, but rather than
+                                  // transposing them after the
+                                  // fact, we do so while building
+                                  // them. A will be
+                                  // subface_interpolation, B will be
+                                  // face_interpolation. note that we
+                                  // build up these matrices for all
+                                  // faces at once, rather than
+                                  // considering them separately. the
+                                  // reason is that we finally will
+                                  // want to have them in this order
+                                  // anyway, as this is the format we
+                                  // need inside deal.II
+  const std::vector<Polynomials::Polynomial<double> >
+    face_polynomials (Polynomials::Hierarchical::
+                     generate_complete_basis (degree));
+  Assert (face_polynomials.size() == this->dofs_per_face, ExcInternalError());
+  
+  FullMatrix<double> face_interpolation (2*this->dofs_per_face, this->dofs_per_face);
+  FullMatrix<double> subface_interpolation (2*this->dofs_per_face, 2*this->dofs_per_face);
+  
+                                  // generate the matrix for the
+                                  // evaluation points on the big
+                                  // face, and the corresponding
+                                  // points in the coordinate system
+                                  // of the small face. order the
+                                  // shape functions in the same way
+                                  // we want to have them in the
+                                  // final matrix. extend shape
+                                  // functions on the small faces by
+                                  // zero to the other face on which
+                                  // they are not defined (we do this
+                                  // by simply not considering these
+                                  // entries in the matrix)
+                                  //
+                                  // note the agreeable fact that for
+                                  // this element, all the shape
+                                  // functions we presently care for
+                                  // are face-based (i.e. not vertex
+                                  // shape functions); thus, for this
+                                  // element, we can skip the
+                                  // annoying index shifting for the
+                                  // constraints matrix due to its
+                                  // weird format
+  for (unsigned int subface=0; subface<GeometryInfo<dim>::subfaces_per_face; ++subface)
+    for (unsigned int i=0; i<this->dofs_per_face; ++i)
+      {
+       const double p_face (1.*i/degree/2 + (subface == 0 ? 0. : .5));
+       const double p_subface (1.*i/degree);
+
+       for (unsigned int j=0; j<this->dofs_per_face; ++j)
+         {
+           face_interpolation(subface*this->dofs_per_face+i,
+                              j)
+             = face_polynomials[j].value(p_face);
+           subface_interpolation(subface*this->dofs_per_face+i,
+                                 subface*this->dofs_per_face+j)
+             = face_polynomials[j].value(p_subface);
+         }
+      }
+      
+  subface_interpolation.gauss_jordan ();
+  subface_interpolation.mmult (this->interface_constraints,
+                              face_interpolation);
+    
+                                  // there is one additional thing to
+                                  // be considered: since the shape
+                                  // functions on the real cell
+                                  // contain the Jacobian (actually,
+                                  // the determinant of the inverse),
+                                  // there is an additional factor of
+                                  // 2 when going from the big to the
+                                  // small cell:
+  this->interface_constraints *= 1./2;
+
+                                  // finally: constraints become
+                                  // really messy if the matrix in
+                                  // question has some entries that
+                                  // are almost zero, but not
+                                  // quite. this will happen in the
+                                  // above procedure due to
+                                  // round-off. let us simply delete
+                                  // these entries
+  for (unsigned int i=0; i<this->interface_constraints.m(); ++i)
+    for (unsigned int j=0; j<this->interface_constraints.n(); ++j)
+      if (fabs(this->interface_constraints(i,j)) < 1e-14)
+       this->interface_constraints(i,j) = 0.;
+}
+
+#endif
+
+#if deal_II_dimension == 3
+
+template <>
+void
+FE_RaviartThomas<3>::initialize_constraints ()
+{
+  Assert (false, ExcNotImplemented());
+}
+
+#endif
+
+
+#if deal_II_dimension == 1
+
+template <>
+void
+FE_RaviartThomas<1>::initialize_embedding ()
+{
+  Assert (false, ExcNotUsefulInThisDimension());
+}
+
+#endif
+
+
+template <int dim>
+void
+FE_RaviartThomas<dim>::initialize_embedding ()
+{
+                                  // compute the interpolation
+                                  // matrices in much the same way as
+                                  // we do for the constraints. it's
+                                  // actually simpler here, since we
+                                  // don't have this weird
+                                  // renumbering stuff going on
+                                  //
+                                  // it is, however, slightly
+                                  // complicated by the fact that we
+                                  // have vector-valued elements
+                                  // here, so we do all the stuff for
+                                  // the degrees of freedom
+                                  // corresponding to each coordinate
+                                  // direction separately
+  const unsigned int dofs_per_coordinate = this->dofs_per_cell/dim;
+  Assert (dofs_per_coordinate*dim == this->dofs_per_cell,
+         ExcInternalError());
+  for (unsigned int d=0; d<dim; ++d)
+    Assert (polynomials[d].n() == dofs_per_coordinate, ExcInternalError());
+  
+  FullMatrix<double> cell_interpolation (dofs_per_coordinate,
+                                        dofs_per_coordinate);
+  FullMatrix<double> subcell_interpolation (dofs_per_coordinate,
+                                           dofs_per_coordinate);
+  FullMatrix<double> tmp (dofs_per_coordinate,
+                         dofs_per_coordinate);
+  for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
+    this->prolongation[child].reinit (this->dofs_per_cell,
+                                     this->dofs_per_cell);
+  for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
+    for (unsigned int d=0; d<dim; ++d)
+      {
+       for (unsigned int j=0; j<dofs_per_coordinate; ++j)
+         {
+                                            // generate a point on
+                                            // the child cell and
+                                            // evaluate the shape
+                                            // functions there
+                                            //
+                                            // see the comment for
+                                            // that function to see
+                                            // why the third
+                                            // parameter is necessary
+           const Point<dim> p_subcell = generate_unit_point (j, dofs_per_coordinate,
+                                                             d, int2type<dim>());
+           const Point<dim> p_cell =
+             GeometryInfo<dim>::child_to_cell_coordinates (p_subcell, child);
+
+           for (unsigned int i=0; i<dofs_per_coordinate; ++i)
+             {
+               cell_interpolation(j,i) = polynomials[d].compute_value (i, p_cell);
+               subcell_interpolation(j,i) = polynomials[d].compute_value (i, p_subcell);
+             }
+         }
+
+                                        // then compute the embedding
+                                        // matrix for this child and
+                                        // this coordinate direction
+       subcell_interpolation.gauss_jordan ();
+       subcell_interpolation.mmult (tmp, cell_interpolation);
+
+                                        // finally transfer the
+                                        // results for this
+                                        // coordinate into the matrix
+                                        // corresponding to the
+                                        // entire space on this
+                                        // cell. cut off very small
+                                        // values here
+       for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+         if (renumber[i].first == d)
+           for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+             if (renumber[j].first == d)
+               if (std::fabs(tmp(renumber[i].second,renumber[j].second)) > 1e-15)
+                 this->prolongation[child](i,j) = tmp(renumber[i].second,
+                                                      renumber[j].second);
+      }
+
+                                  // if this were a Lagrange
+                                  // interpolation element, we could
+                                  // make sure that the row sum of
+                                  // each of the matrices is 1 at
+                                  // this point. note that this won't
+                                  // work here, since we are working
+                                  // with hierarchical elements for
+                                  // which the shape functions don't
+                                  // sum up to 1
+                                  //
+                                  // however, we can make sure that
+                                  // only components couple that have
+                                  // the same vector component
+  for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
+    for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+      for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+       Assert ((this->prolongation[child](i,j) == 0.) ||
+               (renumber[i].first == renumber[j].first),
+               ExcInternalError());
+      
+  
+                                  // there is one additional thing to
+                                  // be considered: since the shape
+                                  // functions on the real cell
+                                  // contain the Jacobian (actually,
+                                  // the determinant of the inverse),
+                                  // there is an additional factor of
+                                  // 2 when going from the big to the
+                                  // small cell:
+  for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
+    this->prolongation[child] *= 1./2;
+}
+
+
+#if deal_II_dimension == 1
+
+template <>
+void
+FE_RaviartThomas<1>::initialize_restriction ()
+{}
+
+#endif
+
+
+#if deal_II_dimension == 2
+
+template <>
+void
+FE_RaviartThomas<2>::initialize_restriction ()
+{
+  const unsigned int dim = 2;
+  switch (degree)
+    {
+      case 0:
+      {
+                                        // this is a strange element,
+                                        // since it is both additive
+                                        // and then it is also
+                                        // not. ideally, we would
+                                        // like to have the value of
+                                        // the shape function on the
+                                        // coarse line to be the mean
+                                        // value of that on the two
+                                        // child ones. thus, one
+                                        // should make it
+                                        // additive. however,
+                                        // additivity only works if
+                                        // an element does not have
+                                        // any continuity
+                                        // requirements, since
+                                        // otherwise degrees of
+                                        // freedom are shared between
+                                        // adjacent elements, and
+                                        // when we make the element
+                                        // additive, that would mean
+                                        // that we end up adding up
+                                        // contributions not only
+                                        // from the child cells of
+                                        // this cell, but also from
+                                        // the child cells of the
+                                        // neighbor, and since we
+                                        // cannot know whether there
+                                        // even exists a neighbor we
+                                        // cannot simply make the
+                                        // element additive.
+                                        //
+                                        // so, until someone comes
+                                        // along with a better
+                                        // alternative, we do the
+                                        // following: make the
+                                        // element non-additive, and
+                                        // simply pick the value of
+                                        // one of the child lines for
+                                        // the value of the mother
+                                        // line (note that we have to
+                                        // multiply by two, since the
+                                        // shape functions scale with
+                                        // the inverse Jacobian). we
+                                        // thus throw away the
+                                        // information of one of the
+                                        // child lines, but there
+                                        // seems to be no other way
+                                        // than that...
+                                        //
+                                        // note: to make things
+                                        // consistent, and
+                                        // restriction independent of
+                                        // the order in which we
+                                        // travel across the cells of
+                                        // the coarse grid, we have
+                                        // to make sure that we take
+                                        // the same small line when
+                                        // visiting its two
+                                        // neighbors, to get the
+                                        // value for the mother
+                                        // line. we take the first
+                                        // line always, in the
+                                        // canonical direction of
+                                        // lines
+       for (unsigned int c=0; c<GeometryInfo<dim>::children_per_cell; ++c)
+         this->restriction[c].reinit (this->dofs_per_cell,
+                                      this->dofs_per_cell);
+              
+       this->restriction[0](0,0) = 2.;
+       this->restriction[1](1,1) = 2.;
+       this->restriction[3](2,2) = 2.;
+       this->restriction[0](3,3) = 2.;
+
+       break;
+      };
+
+
+      case 1:
+      {
+       for (unsigned int c=0; c<GeometryInfo<dim>::children_per_cell; ++c)
+         this->restriction[c].reinit (this->dofs_per_cell,
+                                      this->dofs_per_cell);
+
+                                        // first set the corner
+                                        // nodes. note that they are
+                                        // non-additive
+       this->restriction[0](0,0) = 2.;
+       this->restriction[0](6,6) = 2.;
+
+       this->restriction[1](1,1) = 2.;
+       this->restriction[1](2,2) = 2.;
+
+       this->restriction[2](3,3) = 2.;
+       this->restriction[2](5,5) = 2.;
+
+       this->restriction[3](4,4) = 2.;
+       this->restriction[3](7,7) = 2.;
+
+                                        // then also set the bubble
+                                        // nodes. they _are_
+                                        // additive. to understand
+                                        // what's going on, recall
+                                        // that the bubble shape
+                                        // functions have value -1
+                                        // (!) at the center point,
+                                        // by construction of the
+                                        // polynomials, and that the
+                                        // corner nodes have values
+                                        // 1/2 there since they are
+                                        // just the linears, and not
+                                        // some interpolating
+                                        // polynomial
+                                        //
+                                        // (actually, the
+                                        // additive/non-additive
+                                        // business shouldn't make
+                                        // that much of a difference:
+                                        // node 4 on cell 0 and node
+                                        // 0 on cell 3 must have the
+                                        // same value, since normal
+                                        // components are
+                                        // continuous. so we could
+                                        // pick either and make these
+                                        // shape functions
+                                        // non-additive as well. we
+                                        // choose to take the mean
+                                        // value, which should be the
+                                        // same as either value, and
+                                        // make the shape function
+                                        // additive)
+       this->restriction[0](10,0) = 1.;
+       this->restriction[0](10,4) = -1.;
+       this->restriction[3](10,0) = -1.;
+       this->restriction[3](10,4) = 1.;
+
+       this->restriction[1](11,1) = 1.;
+       this->restriction[1](11,5) = -1.;
+       this->restriction[2](11,1) = -1.;
+       this->restriction[2](11,5) = 1.;
+       
+       this->restriction[0](8,6) = 1.;
+       this->restriction[0](8,2) = -1.;
+       this->restriction[1](8,6) = -1.;
+       this->restriction[1](8,2) = 1.;
+       
+       this->restriction[3](8,7) = 1.;
+       this->restriction[3](8,3) = -1.;
+       this->restriction[2](8,7) = -1.;
+       this->restriction[2](8,3) = 1.;
+       
+       break;
+      };
+       
+                                       // in case we don't have the
+                                       // matrices (yet), leave them
+                                       // empty. this does not
+                                       // prevent the use of this FE,
+                                       // but will prevent the use of
+                                       // these matrices
+    };
+}
+
+#endif
+
+#if deal_II_dimension == 3
+
+template <>
+void
+FE_RaviartThomas<3>::initialize_restriction ()
+{
+  Assert (false, ExcNotImplemented());
+}
+
+#endif
+
+
+template <int dim>
+void
+FE_RaviartThomas<dim>::initialize_unit_support_points ()
+{
+  this->unit_support_points.resize (this->dofs_per_cell);
+  switch (dim) 
+    {
+      case 2:
+      {
+        Assert (degree+1 == this->dofs_per_face, ExcInternalError());
+        
+                                         // associate support points
+                                         // with mid-face points if a
+                                         // shape function has a
+                                         // non-zero normal component
+                                         // there, otherwise with the
+                                         // cell center. the reason
+                                         // for this non-unique
+                                         // support point is that we
+                                         // use hierarchical shape
+                                         // functions, rather than
+                                         // Lagrange functions, for
+                                         // which we get into the same
+                                         // trouble as in the
+                                         // FE_Q_Hierarchical element;
+                                         // see the respective
+                                         // function there
+
+                                         // start with the face shape
+                                         // functions
+        for (unsigned int i=0; i<this->dofs_per_face; ++i)
+          this->unit_support_points[0*this->dofs_per_face+i] = Point<dim>(.5, .0);
+        for (unsigned int i=0; i<this->dofs_per_face; ++i)
+          this->unit_support_points[1*this->dofs_per_face+i] = Point<dim>(1., .5);
+        for (unsigned int i=0; i<this->dofs_per_face; ++i)
+          this->unit_support_points[2*this->dofs_per_face+i] = Point<dim>(.5, 1.);
+        for (unsigned int i=0; i<this->dofs_per_face; ++i)
+          this->unit_support_points[3*this->dofs_per_face+i] = Point<dim>(.0, .5);
+
+                                         // associate the rest with
+                                         // the cell center
+        for (unsigned int i=4*this->dofs_per_face; i<this->dofs_per_cell; ++i)
+          this->unit_support_points[i] = Point<dim>(.5, .5);
+        
+        break;
+      }
+
+      case 3:
+      {
+                                         // same as in 2d
+        Assert ((degree+1)*(degree+1) == this->dofs_per_face, ExcInternalError());
+        
+                                         // start with the face shape
+                                         // functions
+        for (unsigned int i=0; i<this->dofs_per_face; ++i)
+          this->unit_support_points[0*this->dofs_per_face+i] = Point<dim>(.5, .0, .5);
+        for (unsigned int i=0; i<this->dofs_per_face; ++i)
+          this->unit_support_points[1*this->dofs_per_face+i] = Point<dim>(.5, 1., .5);
+        for (unsigned int i=0; i<this->dofs_per_face; ++i)
+          this->unit_support_points[2*this->dofs_per_face+i] = Point<dim>(.5, .5, 0.);
+        for (unsigned int i=0; i<this->dofs_per_face; ++i)
+          this->unit_support_points[3*this->dofs_per_face+i] = Point<dim>(1., .5, .5);
+        for (unsigned int i=0; i<this->dofs_per_face; ++i)
+          this->unit_support_points[4*this->dofs_per_face+i] = Point<dim>(.5, .5, 1.);
+        for (unsigned int i=0; i<this->dofs_per_face; ++i)
+          this->unit_support_points[5*this->dofs_per_face+i] = Point<dim>(.0, .5, .5);
+
+                                         // associate the rest with
+                                         // the cell center
+        for (unsigned int i=6*this->dofs_per_face; i<this->dofs_per_cell; ++i)
+          this->unit_support_points[i] = Point<dim>(.5, .5, .5);
+        
+        break;
+      }
+
+      default:
+           Assert (false, ExcNotImplemented());
+    };
+}
+
+
+#if deal_II_dimension == 1
+
+template <>
+void FE_RaviartThomas<1>::initialize_unit_face_support_points ()
+{
+                                  // no faces in 1d, so nothing to do
+}
+
+#endif
+
+
+template <int dim>
+void FE_RaviartThomas<dim>::initialize_unit_face_support_points ()
+{
+  this->unit_face_support_points.resize (this->dofs_per_face);
+
+                                         // like with cell
+                                         // unit_support_points:
+                                         // associate all of the in
+                                         // the face mid-point, since
+                                         // there is no other useful
+                                         // way
+  for (unsigned int i=0; i<this->dofs_per_face; ++i)
+    this->unit_face_support_points[i] = (dim == 2 ?
+                                         Point<dim-1>(.5) :
+                                         Point<dim-1>(.5,.5));
+}
+
+
+#if deal_II_dimension == 1
+
+template <>
+std::vector<unsigned int>
+FE_RaviartThomas<1>::get_dpo_vector (const unsigned int)
+{
+  Assert (false, ExcNotUsefulInThisDimension());
+  return std::vector<unsigned int>();
+}
+
+#endif
+
+
+template <int dim>
+std::vector<unsigned int>
+FE_RaviartThomas<dim>::get_dpo_vector (const unsigned int degree)
+{
+                                   // the element is face-based (not
+                                   // to be confused with George
+                                   // W. Bush's Faith Based
+                                   // Initiative...), and we have
+                                   // (degree+1)^(dim-1) DoFs per face
+  unsigned int dofs_per_face = 1;
+  for (unsigned int d=0; d<dim-1; ++d)
+    dofs_per_face *= degree+1;
+
+                                   // and then there are interior dofs
+  const unsigned int
+    interior_dofs = dim*degree*dofs_per_face;
+  
+  std::vector<unsigned int> dpo(dim+1);
+  dpo[dim-1] = dofs_per_face;
+  dpo[dim]   = interior_dofs;
+  
+  return dpo;
+}
+
+
+
+#if deal_II_dimension == 1
+
+template <>
+std::vector<bool>
+FE_RaviartThomas<1>::get_ria_vector (const unsigned int)
+{
+  Assert (false, ExcNotUsefulInThisDimension());
+  return std::vector<bool>();
+}
+
+#endif
+
+
+template <int dim>
+std::vector<bool>
+FE_RaviartThomas<dim>::get_ria_vector (const unsigned int degree)
+{
+  unsigned int dofs_per_cell, dofs_per_face;
+  switch (dim)
+    {
+      case 2:
+           dofs_per_face = degree+1;
+           dofs_per_cell = 2*(degree+1)*(degree+2);
+           break;
+      case 3:
+           dofs_per_face = (degree+1)*(degree+1);
+           dofs_per_cell = 3*(degree+1)*(degree+1)*(degree+2);
+           break;
+      default:
+           Assert (false, ExcNotImplemented());
+    }
+  Assert (FiniteElementData<dim>(get_dpo_vector(degree),dim).dofs_per_cell ==
+         dofs_per_cell,
+         ExcInternalError());
+  Assert (FiniteElementData<dim>(get_dpo_vector(degree),dim).dofs_per_face ==
+         dofs_per_face,
+         ExcInternalError());
+  
+                                  // all face dofs need to be
+                                  // non-additive, since they have
+                                  // continuity requirements.
+                                  // however, the interior dofs are
+                                  // made additive
+  std::vector<bool> ret_val(dofs_per_cell,false);
+  for (unsigned int i=GeometryInfo<dim>::faces_per_cell*dofs_per_face;
+       i < dofs_per_cell; ++i)
+    ret_val[i] = true;
+
+  return ret_val;
+}
+
+
+#if deal_II_dimension == 1
+
+template <>
+std::vector<AnisotropicPolynomials<1> >
+FE_RaviartThomas<1>::create_polynomials (const unsigned int)
+{
+  Assert (false, ExcNotUsefulInThisDimension());
+  return std::vector<AnisotropicPolynomials<1> > ();
+}
+
+#endif
+
+
+#if deal_II_dimension == 2
+
+template <>
+std::vector<AnisotropicPolynomials<2> >
+FE_RaviartThomas<2>::create_polynomials (const unsigned int degree)
+{
+  const unsigned int dim = 2;
+  
+                                   // use the fact that the RT(k)
+                                   // spaces are spanned by the
+                                   // functions
+                                   // P_{k+1,k} \times P_{k,k+1},
+                                   // see the book by Brezzi and
+                                   // Fortin
+  const std::vector<Polynomials::Polynomial<double> > pols[2]
+    = { Polynomials::Hierarchical::generate_complete_basis (degree+1),
+        Polynomials::Hierarchical::generate_complete_basis (degree)};
+
+                                   // create spaces (k+1,k) and (k,k+1)
+  std::vector<std::vector<Polynomials::Polynomial<double> > >
+    pols_vector_1(dim), pols_vector_2(dim);
+  pols_vector_1[0] = pols[0];
+  pols_vector_1[1] = pols[1];
+
+  pols_vector_2[0] = pols[1];
+  pols_vector_2[1] = pols[0];
+  
+  const AnisotropicPolynomials<dim> anisotropic[dim]
+    = { AnisotropicPolynomials<dim> (pols_vector_1),
+        AnisotropicPolynomials<dim> (pols_vector_2) };
+
+                                   // work around a stupid bug in
+                                   // gcc2.95 where the compiler
+                                   // complains about reaching the end
+                                   // of a non-void function when we
+                                   // simply return the following
+                                   // object unnamed, rather than
+                                   // first creating a named object
+                                   // and then returning it...
+  const std::vector<AnisotropicPolynomials<dim> >
+    ret_val (&anisotropic[0], &anisotropic[dim]);
+  return ret_val;
+}
+
+#endif
+
+
+#if deal_II_dimension == 3
+
+template <>
+std::vector<AnisotropicPolynomials<3> >
+FE_RaviartThomas<3>::create_polynomials (const unsigned int degree)
+{
+  const unsigned int dim = 3;
+  
+                                   // use the fact that the RT(k)
+                                   // spaces are spanned by the
+                                   // functions
+                                   // P_{k+1,k,k} \times P_{k,k+1,k}
+                                   // \times P_{k,k,k+1},
+                                   // see the book by Brezzi and
+                                   // Fortin
+  const std::vector<Polynomials::Polynomial<double> > pols[2]
+    = { Polynomials::Hierarchical::generate_complete_basis (degree+1),
+        Polynomials::Hierarchical::generate_complete_basis (degree)};
+
+                                   // create spaces (k+1,k,k),
+                                   // (k,k+1,k) and (k,k,k+1)
+  std::vector<std::vector<Polynomials::Polynomial<double> > >
+    pols_vector_1(dim), pols_vector_2(dim), pols_vector_3(dim);
+  pols_vector_1[0] = pols[0];
+  pols_vector_1[1] = pols[1];
+  pols_vector_1[2] = pols[1];
+
+  pols_vector_2[0] = pols[1];
+  pols_vector_2[1] = pols[0];
+  pols_vector_2[2] = pols[1];
+  
+  pols_vector_3[0] = pols[1];
+  pols_vector_3[1] = pols[1];
+  pols_vector_3[2] = pols[0];
+  
+  const AnisotropicPolynomials<dim> anisotropic[dim]
+    = { AnisotropicPolynomials<dim> (pols_vector_1),
+        AnisotropicPolynomials<dim> (pols_vector_2),
+        AnisotropicPolynomials<dim> (pols_vector_3) };
+
+                                   // work around a stupid bug in
+                                   // gcc2.95 where the compiler
+                                   // complains about reaching the end
+                                   // of a non-void function when we
+                                   // simply return the following
+                                   // object unnamed, rather than
+                                   // first creating a named object
+                                   // and then returning it...
+  const std::vector<AnisotropicPolynomials<dim> >
+    ret_val (&anisotropic[0], &anisotropic[dim]);
+  return ret_val;
+}
+
+#endif
+
+
+
+#if deal_II_dimension == 1
+
+template <>
+std::vector<std::pair<unsigned int, unsigned int> >
+FE_RaviartThomas<1>::compute_renumber (const unsigned int)
+{
+  Assert (false, ExcNotUsefulInThisDimension());
+  return std::vector<std::pair<unsigned int, unsigned int> > ();
+}
+
+#endif
+
+
+#if deal_II_dimension == 2
+
+template <>
+std::vector<std::pair<unsigned int, unsigned int> >
+FE_RaviartThomas<2>::compute_renumber (const unsigned int degree)
+{
+  const unsigned int dim = 2;
+  
+  std::vector<std::pair<unsigned int, unsigned int> > ret_val;
+  
+                                   // to explain the following: the
+                                   // first (degree+1) shape functions
+                                   // are on face 0, and point in
+                                   // y-direction, so are for the
+                                   // second vector component. then
+                                   // there are (degree+1) shape
+                                   // functions on face 1, which is
+                                   // for the x vector component, and
+                                   // so on. since the order of face
+                                   // degrees of freedom is arbitrary,
+                                   // we simply use the same order as
+                                   // that provided by the 1d
+                                   // polynomial class on which this
+                                   // element is based. after
+                                   // 4*(degree+1), the remaining
+                                   // shape functions are all bubbles,
+                                   // so we can number them in any way
+                                   // we want. we do so by first
+                                   // numbering the x-vectors, then
+                                   // the y-vectors
+                                   //
+                                   // now, we have to find a mapping
+                                   // from the above ordering to:
+                                   // first which vector component
+                                   // they belong to (easy), and
+                                   // second the index within this
+                                   // component as provided by the
+                                   // AnisotropicPolynomials class
+                                   //
+                                   // this is mostly a counting
+                                   // argument, tedious and error
+                                   // prone, and so boring to explain
+                                   // that we rather not try to do so
+                                   // here (it's simple, but boring,
+                                   // as said), aside from a few
+                                   // comments below
+
+                                   // face 0
+  for (unsigned int i=0; i<degree+1; ++i)
+    ret_val.push_back (std::make_pair (1, i));
+  
+                                   // face 1
+  for (unsigned int i=0; i<degree+1; ++i)
+    ret_val.push_back (std::make_pair (0, (degree+2)*i+1));
+  
+                                   // face 2
+  for (unsigned int i=0; i<degree+1; ++i)
+    ret_val.push_back (std::make_pair (1, (degree+1)+i));
+  
+                                   // face 3
+  for (unsigned int i=0; i<degree+1; ++i)
+    ret_val.push_back (std::make_pair (0, (degree+2)*i));
+
+                                   // then go on with interior bubble
+                                   // functions, first for the
+                                   // x-direction, then for the
+                                   // y-direction
+  for (unsigned int x=0; x<degree; ++x)
+    for (unsigned int y=0; y<degree+1; ++y)
+      {
+        const unsigned int index_in_component = (x+2) + y*(degree+2);
+        Assert (index_in_component < (degree+1)*(degree+2),
+                ExcInternalError());
+        ret_val.push_back (std::make_pair(0, index_in_component));
+      }
+  for (unsigned int x=0; x<degree+1; ++x)
+    for (unsigned int y=0; y<degree; ++y)
+      {
+        const unsigned int index_in_component = 2*(degree+1) + y + x*degree;
+        Assert (index_in_component < (degree+1)*(degree+2),
+                ExcInternalError());
+        ret_val.push_back (std::make_pair(1, index_in_component));
+      }
+
+#ifdef DEBUG  
+                                   // make sure we have actually used
+                                   // up all elements of the tensor
+                                   // product polynomial
+  Assert (ret_val.size() == 2*(degree+1)*(degree+2),
+          ExcInternalError());
+  std::vector<bool> test[dim] = { std::vector<bool>(ret_val.size()/dim, false),
+                                  std::vector<bool>(ret_val.size()/dim, false) };
+  for (unsigned int i=0; i<ret_val.size(); ++i)
+    {
+      Assert (ret_val[i].first < dim, ExcInternalError());
+      Assert (ret_val[i].second < test[dim].size(), ExcInternalError());
+      Assert (test[ret_val[i].first][ret_val[i].second] == false,
+              ExcInternalError());
+      
+      test[ret_val[i].first][ret_val[i].second] = true;
+    }
+  for (unsigned int d=0; d<dim; ++d)
+    Assert (std::find (test[d].begin(), test[d].end(), false) == test[d].end(),
+            ExcInternalError());
+#endif
+  
+  return ret_val;
+}
+
+#endif
+
+
+#if deal_II_dimension == 3
+
+template <>
+std::vector<std::pair<unsigned int, unsigned int> >
+FE_RaviartThomas<3>::compute_renumber (const unsigned int /*degree*/)
+{
+  Assert (false, ExcNotImplemented());
+  return std::vector<std::pair<unsigned int, unsigned int> > ();  
+}
+
+#endif
+
+
+
+
+template <int dim>
+UpdateFlags
+FE_RaviartThomas<dim>::update_once (const UpdateFlags) const
+{
+                                  // even the values have to be
+                                  // computed on the real cell, so
+                                  // nothing can be done in advance
+  return update_default;
+}
+
+
+
+template <int dim>
+UpdateFlags
+FE_RaviartThomas<dim>::update_each (const UpdateFlags flags) const
+{
+  UpdateFlags out = update_default;
+
+  if (flags & update_values)
+    out |= update_values             | update_covariant_transformation;
+  if (flags & update_gradients)
+    out |= update_gradients          | update_covariant_transformation;
+  if (flags & update_second_derivatives)
+    out |= update_second_derivatives | update_covariant_transformation;
+
+  return out;
+}
+
+
+
+//----------------------------------------------------------------------
+// Data field initialization
+//----------------------------------------------------------------------
+
+template <int dim>
+typename Mapping<dim>::InternalDataBase *
+FE_RaviartThomas<dim>::get_data (const UpdateFlags      update_flags,
+                                 const Mapping<dim>    &mapping,
+                                 const Quadrature<dim> &quadrature) const
+{
+                                  // generate a new data object and
+                                  // initialize some fields
+  InternalData* data = new InternalData;
+
+                                  // check what needs to be
+                                  // initialized only once and what
+                                  // on every cell/face/subface we
+                                  // visit
+  data->update_once = update_once(update_flags);
+  data->update_each = update_each(update_flags);
+  data->update_flags = data->update_once | data->update_each;
+
+  const UpdateFlags flags(data->update_flags);
+  const unsigned int n_q_points = quadrature.n_quadrature_points;
+
+                                  // initialize fields only if really
+                                  // necessary. otherwise, don't
+                                  // allocate memory
+  if (flags & update_values)
+    data->shape_values.reinit (this->dofs_per_cell, n_q_points);
+
+  if (flags & update_gradients)
+    data->shape_gradients.reinit (this->dofs_per_cell, n_q_points);
+
+                                  // if second derivatives through
+                                  // finite differencing is required,
+                                  // then initialize some objects for
+                                  // that
+  if (flags & update_second_derivatives)
+    data->initialize_2nd (this, mapping, quadrature);
+
+                                  // next already fill those fields
+                                  // of which we have information by
+                                  // now. note that the shape values
+                                  // and gradients are only those on
+                                  // the unit cell, and need to be
+                                  // transformed when visiting an
+                                  // actual cell
+  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+    for (unsigned int q=0; q<n_q_points; ++q)
+      {
+        if (flags & update_values)
+          for (unsigned int c=0; c<dim; ++c)
+            data->shape_values[i][q][c]
+              = shape_value_component(i,quadrature.point(q),c);
+       
+        if (flags & update_gradients)
+          for (unsigned int c=0; c<dim; ++c)
+            data->shape_gradients[i][q][c]
+              = shape_grad_component(i,quadrature.point(q),c);
+      }
+   
+  return data;
+}
+
+
+
+
+//----------------------------------------------------------------------
+// Fill data of FEValues
+//----------------------------------------------------------------------
+
+template <int dim>
+void
+FE_RaviartThomas<dim>::fill_fe_values (const Mapping<dim>                   &mapping,
+                                       const typename DoFHandler<dim>::cell_iterator &cell,
+                                       const Quadrature<dim>                &quadrature,
+                                       typename Mapping<dim>::InternalDataBase &mapping_data,
+                                       typename Mapping<dim>::InternalDataBase &fedata,
+                                       FEValuesData<dim>                    &data) const
+{
+                                  // convert data object to internal
+                                  // data for this class. fails with
+                                  // an exception if that is not
+                                  // possible
+  InternalData &fe_data = dynamic_cast<InternalData &> (fedata);
+
+                                  // get the flags indicating the
+                                  // fields that have to be filled
+  const UpdateFlags flags(fe_data.current_update_flags());
+
+  const unsigned int n_q_points = quadrature.n_quadrature_points;
+                                 
+                                  // fill shape function
+                                  // values. these are vector-valued,
+                                  // so we have to transform
+                                  // them. since the output format
+                                  // (in data.shape_values) is a
+                                  // sequence of doubles (one for
+                                  // each non-zero shape function
+                                  // value, and for each quadrature
+                                  // point, rather than a sequence of
+                                  // small vectors, we have to use a
+                                  // number of conversions
+  if (flags & update_values)
+    {
+      std::vector<Tensor<1,dim> > shape_values (n_q_points);
+
+      Assert (data.shape_values.n_rows() == this->dofs_per_cell * dim,
+             ExcInternalError());
+      Assert (data.shape_values.n_cols() == n_q_points,
+             ExcInternalError());
+      
+      for (unsigned int k=0; k<this->dofs_per_cell; ++k)
+       {
+                                          // first transform shape
+                                          // values...
+         Assert (fe_data.shape_values[k].size() == n_q_points,
+                 ExcInternalError());
+         mapping.transform_covariant(&*shape_values.begin(),
+                                      &*shape_values.end(),
+                                      fe_data.shape_values[k].begin(),
+                                      mapping_data);
+
+                                          // then copy over to target:
+         for (unsigned int q=0; q<n_q_points; ++q)
+           for (unsigned int d=0; d<dim; ++d)
+             data.shape_values[k*dim+d][q] = shape_values[q][d];
+       };
+    };
+  
+      
+  if (flags & update_gradients)
+    {
+      std::vector<Tensor<2,dim> > shape_grads1 (n_q_points);
+      std::vector<Tensor<2,dim> > shape_grads2 (n_q_points);
+
+      Assert (data.shape_gradients.n_rows() == this->dofs_per_cell * dim,
+             ExcInternalError());
+      Assert (data.shape_gradients.n_cols() == n_q_points,
+             ExcInternalError());
+
+                                       // loop over all shape
+                                       // functions, and treat the
+                                       // gradients of each shape
+                                       // function at all quadrature
+                                       // points
+      for (unsigned int k=0; k<this->dofs_per_cell; ++k)
+       {
+                                           // treat the gradients of
+                                           // this particular shape
+                                           // function at all
+                                           // q-points. if Dv is the
+                                           // gradient of the shape
+                                           // function on the unit
+                                           // cell, then
+                                           // (J^-T)Dv(J^-1) is the
+                                           // value we want to have on
+                                           // the real cell. so, we
+                                           // will have to apply a
+                                           // covariant transformation
+                                           // to Dv twice. since the
+                                           // interface only allows
+                                           // multiplication with
+                                           // (J^-1) from the right,
+                                           // we have to trick a
+                                           // little in between
+         Assert (fe_data.shape_gradients[k].size() == n_q_points,
+                 ExcInternalError());
+                                           // do first transformation
+         mapping.transform_covariant(&*shape_grads1.begin(),
+                                      &*shape_grads1.end(),
+                                      fe_data.shape_gradients[k].begin(),
+                                      mapping_data);
+                                           // transpose matrix
+          for (unsigned int q=0; q<n_q_points; ++q)
+            shape_grads2[q] = transpose(shape_grads1[q]);
+                                           // do second transformation
+         mapping.transform_covariant(&*shape_grads1.begin(),
+                                      &*shape_grads1.end(),
+                                      &*shape_grads2.begin(),
+                                      mapping_data);
+                                           // transpose back
+          for (unsigned int q=0; q<n_q_points; ++q)
+            shape_grads2[q] = transpose(shape_grads1[q]);
+          
+                                          // then copy over to target:
+         for (unsigned int q=0; q<n_q_points; ++q)
+           for (unsigned int d=0; d<dim; ++d)
+             data.shape_gradients[k*dim+d][q] = shape_grads2[q][d];
+       };
+    }
+
+  if (flags & update_second_derivatives)
+    this->compute_2nd (mapping, cell, 0, mapping_data, fe_data, data);
+}
+
+
+
+template <int dim>
+void
+FE_RaviartThomas<dim>::fill_fe_face_values (const Mapping<dim>                   &mapping,
+                                            const typename DoFHandler<dim>::cell_iterator &cell,
+                                            const unsigned int                    face,
+                                            const Quadrature<dim-1>              &quadrature,
+                                            typename Mapping<dim>::InternalDataBase       &mapping_data,
+                                            typename Mapping<dim>::InternalDataBase       &fedata,
+                                            FEValuesData<dim>                    &data) const
+{
+                                  // convert data object to internal
+                                  // data for this class. fails with
+                                  // an exception if that is not
+                                  // possible
+  InternalData &fe_data = dynamic_cast<InternalData &> (fedata);
+
+                                   // offset determines which data set
+                                  // to take (all data sets for all
+                                  // faces are stored contiguously)
+  const unsigned int offset = face * quadrature.n_quadrature_points;
+
+                                  // get the flags indicating the
+                                  // fields that have to be filled
+  const UpdateFlags flags(fe_data.current_update_flags());
+
+  const unsigned int n_q_points = quadrature.n_quadrature_points;
+                                 
+                                  // fill shape function
+                                  // values. these are vector-valued,
+                                  // so we have to transform
+                                  // them. since the output format
+                                  // (in data.shape_values) is a
+                                  // sequence of doubles (one for
+                                  // each non-zero shape function
+                                  // value, and for each quadrature
+                                  // point, rather than a sequence of
+                                  // small vectors, we have to use a
+                                  // number of conversions
+  if (flags & update_values)
+    {
+      Assert (fe_data.shape_values.n_cols() ==
+              GeometryInfo<dim>::faces_per_cell * n_q_points,
+              ExcInternalError());
+      
+      std::vector<Tensor<1,dim> > shape_values (n_q_points);
+
+      Assert (data.shape_values.n_rows() == this->dofs_per_cell * dim,
+             ExcInternalError());
+      Assert (data.shape_values.n_cols() == n_q_points,
+             ExcInternalError());
+      
+      for (unsigned int k=0; k<this->dofs_per_cell; ++k)
+       {
+                                          // first transform shape
+                                          // values...
+         mapping.transform_covariant(&*shape_values.begin(),
+                                      &*shape_values.end(),
+                                      fe_data.shape_values[k].begin()+offset,
+                                      mapping_data);
+
+                                          // then copy over to target:
+         for (unsigned int q=0; q<n_q_points; ++q)
+           for (unsigned int d=0; d<dim; ++d)
+             data.shape_values[k*dim+d][q] = shape_values[q][d];
+       };
+    };
+  
+      
+  if (flags & update_gradients)
+    {
+      Assert (fe_data.shape_gradients.n_cols() ==
+              GeometryInfo<dim>::faces_per_cell * n_q_points,
+              ExcInternalError());
+
+      std::vector<Tensor<2,dim> > shape_grads1 (n_q_points);
+      std::vector<Tensor<2,dim> > shape_grads2 (n_q_points);
+
+      Assert (data.shape_gradients.n_rows() == this->dofs_per_cell * dim,
+             ExcInternalError());
+      Assert (data.shape_gradients.n_cols() == n_q_points,
+             ExcInternalError());
+
+                                       // loop over all shape
+                                       // functions, and treat the
+                                       // gradients of each shape
+                                       // function at all quadrature
+                                       // points
+      for (unsigned int k=0; k<this->dofs_per_cell; ++k)
+       {
+                                           // treat the gradients of
+                                           // this particular shape
+                                           // function at all
+                                           // q-points. if Dv is the
+                                           // gradient of the shape
+                                           // function on the unit
+                                           // cell, then
+                                           // (J^-T)Dv(J^-1) is the
+                                           // value we want to have on
+                                           // the real cell. so, we
+                                           // will have to apply a
+                                           // covariant transformation
+                                           // to Dv twice. since the
+                                           // interface only allows
+                                           // multiplication with
+                                           // (J^-1) from the right,
+                                           // we have to trick a
+                                           // little in between
+                                           // 
+                                           // do first transformation
+         mapping.transform_covariant(&*shape_grads1.begin(),
+                                      &*shape_grads1.end(),
+                                      fe_data.shape_gradients[k].begin()+offset,
+                                      mapping_data);
+                                           // transpose matrix
+          for (unsigned int q=0; q<n_q_points; ++q)
+            shape_grads2[q] = transpose(shape_grads1[q]);
+                                           // do second transformation
+         mapping.transform_covariant(&*shape_grads1.begin(),
+                                      &*shape_grads1.end(),
+                                      &*shape_grads2.begin(),
+                                      mapping_data);
+                                           // transpose back
+          for (unsigned int q=0; q<n_q_points; ++q)
+            shape_grads2[q] = transpose(shape_grads1[q]);
+          
+                                          // then copy over to target:
+         for (unsigned int q=0; q<n_q_points; ++q)
+           for (unsigned int d=0; d<dim; ++d)
+             data.shape_gradients[k*dim+d][q] = shape_grads2[q][d];
+       };
+    }
+
+  if (flags & update_second_derivatives)
+    this->compute_2nd (mapping, cell, offset, mapping_data, fe_data, data);
+}
+
+
+
+template <int dim>
+void
+FE_RaviartThomas<dim>::fill_fe_subface_values (const Mapping<dim>                   &mapping,
+                                               const typename DoFHandler<dim>::cell_iterator &cell,
+                                               const unsigned int                    face,
+                                               const unsigned int                    subface,
+                                               const Quadrature<dim-1>              &quadrature,
+                                               typename Mapping<dim>::InternalDataBase       &mapping_data,
+                                               typename Mapping<dim>::InternalDataBase       &fedata,
+                                               FEValuesData<dim>                    &data) const
+{
+                                  // convert data object to internal
+                                  // data for this class. fails with
+                                  // an exception if that is not
+                                  // possible
+  InternalData &fe_data = dynamic_cast<InternalData &> (fedata);
+
+                                   // offset determines which data set
+                                  // to take (all data sets for all
+                                  // faces are stored contiguously)
+  const unsigned int offset = ((face * GeometryInfo<dim>::subfaces_per_face + subface)
+                               * quadrature.n_quadrature_points);
+
+                                  // get the flags indicating the
+                                  // fields that have to be filled
+  const UpdateFlags flags(fe_data.current_update_flags());
+
+  const unsigned int n_q_points = quadrature.n_quadrature_points;
+                                 
+                                  // fill shape function
+                                  // values. these are vector-valued,
+                                  // so we have to transform
+                                  // them. since the output format
+                                  // (in data.shape_values) is a
+                                  // sequence of doubles (one for
+                                  // each non-zero shape function
+                                  // value, and for each quadrature
+                                  // point, rather than a sequence of
+                                  // small vectors, we have to use a
+                                  // number of conversions
+  if (flags & update_values)
+    {
+      Assert (fe_data.shape_values.n_cols() ==
+              GeometryInfo<dim>::faces_per_cell *
+             GeometryInfo<dim>::subfaces_per_face *
+             n_q_points,
+              ExcInternalError());
+      
+      std::vector<Tensor<1,dim> > shape_values (n_q_points);
+
+      Assert (data.shape_values.n_rows() == this->dofs_per_cell * dim,
+             ExcInternalError());
+      Assert (data.shape_values.n_cols() == n_q_points,
+             ExcInternalError());
+      
+      for (unsigned int k=0; k<this->dofs_per_cell; ++k)
+       {
+                                          // first transform shape
+                                          // values...
+         mapping.transform_covariant(&*shape_values.begin(),
+                                      &*shape_values.end(),
+                                      fe_data.shape_values[k].begin()+offset,
+                                      mapping_data);
+
+                                          // then copy over to target:
+         for (unsigned int q=0; q<n_q_points; ++q)
+           for (unsigned int d=0; d<dim; ++d)
+             data.shape_values[k*dim+d][q] = shape_values[q][d];
+       };
+    };
+  
+      
+  if (flags & update_gradients)
+    {
+      Assert (fe_data.shape_gradients.n_cols() ==
+              GeometryInfo<dim>::faces_per_cell *
+             GeometryInfo<dim>::subfaces_per_face *
+             n_q_points,
+              ExcInternalError());
+
+      std::vector<Tensor<2,dim> > shape_grads1 (n_q_points);
+      std::vector<Tensor<2,dim> > shape_grads2 (n_q_points);
+
+      Assert (data.shape_gradients.n_rows() == this->dofs_per_cell * dim,
+             ExcInternalError());
+      Assert (data.shape_gradients.n_cols() == n_q_points,
+             ExcInternalError());
+
+                                       // loop over all shape
+                                       // functions, and treat the
+                                       // gradients of each shape
+                                       // function at all quadrature
+                                       // points
+      for (unsigned int k=0; k<this->dofs_per_cell; ++k)
+       {
+                                           // treat the gradients of
+                                           // this particular shape
+                                           // function at all
+                                           // q-points. if Dv is the
+                                           // gradient of the shape
+                                           // function on the unit
+                                           // cell, then
+                                           // (J^-T)Dv(J^-1) is the
+                                           // value we want to have on
+                                           // the real cell. so, we
+                                           // will have to apply a
+                                           // covariant transformation
+                                           // to Dv twice. since the
+                                           // interface only allows
+                                           // multiplication with
+                                           // (J^-1) from the right,
+                                           // we have to trick a
+                                           // little in between
+                                           // 
+                                           // do first transformation
+         mapping.transform_covariant(&*shape_grads1.begin(),
+                                      &*shape_grads1.end(),
+                                      fe_data.shape_gradients[k].begin()+offset,
+                                      mapping_data);
+                                           // transpose matrix
+          for (unsigned int q=0; q<n_q_points; ++q)
+            shape_grads2[q] = transpose(shape_grads1[q]);
+                                           // do second transformation
+         mapping.transform_covariant(&*shape_grads1.begin(),
+                                      &*shape_grads1.end(),
+                                      &*shape_grads2.begin(),
+                                      mapping_data);
+                                           // transpose back
+          for (unsigned int q=0; q<n_q_points; ++q)
+            shape_grads2[q] = transpose(shape_grads1[q]);
+          
+                                          // then copy over to target:
+         for (unsigned int q=0; q<n_q_points; ++q)
+           for (unsigned int d=0; d<dim; ++d)
+             data.shape_gradients[k*dim+d][q] = shape_grads2[q][d];
+       };
+    }
+
+  if (flags & update_second_derivatives)
+    this->compute_2nd (mapping, cell, offset, mapping_data, fe_data, data);
+}
+
+
+
+template <int dim>
+unsigned int
+FE_RaviartThomas<dim>::n_base_elements () const
+{
+  return 1;
+}
+
+
+
+template <int dim>
+const FiniteElement<dim> &
+FE_RaviartThomas<dim>::base_element (const unsigned int index) const
+{
+  Assert (index==0, ExcIndexRange(index, 0, 1));
+  return *this;
+}
+
+
+
+template <int dim>
+unsigned int
+FE_RaviartThomas<dim>::element_multiplicity (const unsigned int index) const
+{
+  Assert (index==0, ExcIndexRange(index, 0, 1));
+  return 1;
+}
+
+
+
+template <int dim>
+bool
+FE_RaviartThomas<dim>::has_support_on_face (const unsigned int shape_index,
+                                            const unsigned int face_index) const
+{
+  Assert (shape_index < this->dofs_per_cell,
+         ExcIndexRange (shape_index, 0, this->dofs_per_cell));
+  Assert (face_index < GeometryInfo<dim>::faces_per_cell,
+         ExcIndexRange (face_index, 0, GeometryInfo<dim>::faces_per_cell));
+
+  switch (degree)
+    {
+      case 0:
+      {
+        switch (dim)
+          {
+            case 2:
+            {
+                                               // only on the one
+                                               // non-adjacent face
+                                               // are the values
+                                               // actually zero. list
+                                               // these in a table
+              const unsigned int
+                opposite_faces[GeometryInfo<2>::faces_per_cell]
+                = { 2, 3, 0, 1};
+              
+              return (face_index != opposite_faces[shape_index]);
+            };
+            
+            default: Assert (false, ExcNotImplemented());
+          };
+      };
+      
+      default:  // other degree
+            Assert (false, ExcNotImplemented());
+    };
+  
+  return true;
+}
+
+
+
+template <int dim>
+unsigned int
+FE_RaviartThomas<dim>::memory_consumption () const
+{
+  Assert (false, ExcNotImplemented ());
+  return 0;
+}
+
+
+
+template <int dim>
+unsigned int
+FE_RaviartThomas<dim>::get_degree () const
+{
+  return degree;
+}
+
+
+
+template class FE_RaviartThomas<deal_II_dimension>;
index 53aca37dc641b29cbe3ce969fa865e81e040dd9b..911398c66a563491d1ea69fb0e7bf608ef50cb77 100644 (file)
 #include <fe/fe_system.h>
 #include <fe/fe_values.h>
 
+#ifdef HAVE_STD_STRINGSTREAM
+#  include <sstream>
+#else
+#  include <strstream>
+#endif
 
 
 /* ----------------------- FESystem::InternalData ------------------- */
@@ -222,6 +227,35 @@ FESystem<dim>::~FESystem ()
 
 
 
+template <int dim>
+std::string
+FESystem<dim>::get_name () const
+{
+#ifdef HAVE_STD_STRINGSTREAM
+  std::ostringstream namebuf;
+#else
+  std::ostrstream namebuf;
+#endif
+
+  namebuf << "FESystem<" << dim << ">[";
+  for (unsigned int i=0; i<n_base_elements(); ++i)
+    {
+      namebuf << base_element(i).get_name();
+      if (element_multiplicity(i) != 1)
+       namebuf << '^' << element_multiplicity(i);
+      if (i != n_base_elements()-1)
+       namebuf << '-';
+    }
+  namebuf << ']';
+
+#ifndef HAVE_STD_STRINGSTREAM
+  namebuf << std::ends;
+#endif
+  return namebuf.str();
+}
+
+
+
 template <int dim>
 FiniteElement<dim>*
 FESystem<dim>::clone() const
@@ -407,6 +441,96 @@ FESystem<dim>::shape_grad_grad_component (const unsigned int i,
 
 
 
+template <int dim>
+void
+FESystem<dim>::
+get_interpolation_matrix (const FiniteElementBase<dim> &x_source_fe,
+                         FullMatrix<double>           &interpolation_matrix) const
+{
+  Assert (interpolation_matrix.m() == this->dofs_per_cell,
+         ExcDimensionMismatch (interpolation_matrix.m(),
+                               this->dofs_per_cell));
+  Assert (interpolation_matrix.n() == x_source_fe.dofs_per_cell,
+         ExcDimensionMismatch (interpolation_matrix.m(),
+                               x_source_fe.dofs_per_cell));
+
+                                   // there are certain conditions
+                                   // that the two elements have to
+                                   // satisfy so that this can work.
+                                   // 
+                                   // condition 1: the other element
+                                   // must also be a system element
+  AssertThrow ((x_source_fe.get_name().find ("FESystem<") == 0)
+               ||
+               (dynamic_cast<const FESystem<dim>*>(&x_source_fe) != 0),
+               typename FiniteElementBase<dim>::
+               ExcInterpolationNotImplemented());
+  
+                                  // ok, source is a system element,
+                                  // so we may be able to do the work
+  const FESystem<dim> &source_fe
+    = dynamic_cast<const FESystem<dim>&>(x_source_fe);
+
+                                   // condition 2: same number of
+                                   // basis elements
+  AssertThrow (n_base_elements() == source_fe.n_base_elements(),
+               typename FiniteElementBase<dim>::
+               ExcInterpolationNotImplemented());
+
+                                   // condition 3: same number of
+                                   // basis elements
+  for (unsigned int i=0; i<n_base_elements(); ++i)
+    AssertThrow (element_multiplicity(i) ==
+                 source_fe.element_multiplicity(i),
+                 typename FiniteElementBase<dim>::
+                 ExcInterpolationNotImplemented());
+
+                                   // ok, so let's try whether it
+                                   // works:
+  
+                                   // first let's see whether all the
+                                   // basis elements actually generate
+                                   // their interpolation matrices. if
+                                   // we get past the following loop,
+                                   // then apparently none of the
+                                   // called base elements threw an
+                                   // exception, so we're fine
+                                   // continuing and assembling the
+                                   // one big matrix from the small
+                                   // ones of the base elements
+  std::vector<FullMatrix<double> > base_matrices (n_base_elements());
+  for (unsigned int i=0; i<n_base_elements(); ++i)
+    {
+      base_matrices[i].reinit (base_element(i).dofs_per_cell,
+                               source_fe.base_element(i).dofs_per_cell);
+      base_element(i).get_interpolation_matrix (source_fe.base_element(i),
+                                                base_matrices[i]);
+    }
+
+                                   // first clear big matrix, to make
+                                   // sure that entries that would
+                                   // couple different bases (or
+                                   // multiplicity indices) are really
+                                   // zero. then assign entries
+  interpolation_matrix.clear ();
+  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+    for (unsigned int j=0; j<source_fe.dofs_per_cell; ++j)
+      if (this->system_to_base_table[i].first ==
+          source_fe.system_to_base_table[j].first)
+        interpolation_matrix(i,j)
+          = (base_matrices[this->system_to_base_table[i].first.first]
+             (this->system_to_base_table[i].second,
+              source_fe.system_to_base_table[j].second));
+}
+
+
+
+//----------------------------------------------------------------------
+// Data field initialization
+//----------------------------------------------------------------------
+
+
+
 template <int dim>
 UpdateFlags
 FESystem<dim>::update_once (const UpdateFlags flags) const
index 5746b9be20139319afac5cabff5aa4c28c75625a..815e2f5816e2c82977d4b58d92464ea9cda27f75 100644 (file)
 #include <dofs/dof_accessor.h>
 
 
+
+namespace 
+{
+                                   // forwarder function for
+                                   // FE::get_interpolation_matrix. we
+                                   // will want to call that function
+                                   // for arbitrary FullMatrix<T>
+                                   // types, but it only accepts
+                                   // double arguments. since it is a
+                                   // virtual function, this can also
+                                   // not be changed. so have a
+                                   // forwarder function that calls
+                                   // that function directly if
+                                   // T==double, and otherwise uses a
+                                   // temporary
+  template <int dim>
+  void gim_forwarder (const FiniteElement<dim> &fe1,
+                      const FiniteElement<dim> &fe2,
+                      FullMatrix<double> &interpolation_matrix)
+  {
+    fe2.get_interpolation_matrix (fe1, interpolation_matrix);
+  }
+
+  
+  template <int dim, typename number>
+  void gim_forwarder (const FiniteElement<dim> &fe1,
+                      const FiniteElement<dim> &fe2,
+                      FullMatrix<number> &interpolation_matrix)
+  {
+    FullMatrix<double> tmp (interpolation_matrix.m(),
+                            interpolation_matrix.n());
+    fe2.get_interpolation_matrix (fe1, tmp);
+    interpolation_matrix = tmp;
+  }
+}
+
+
 template <int dim, typename number>
-void FETools::get_interpolation_matrix(const FiniteElement<dim> &fe1,
-                                      const FiniteElement<dim> &fe2,
-                                      FullMatrix<number> &interpolation_matrix)
+void FETools::get_interpolation_matrix (const FiniteElement<dim> &fe1,
+                                        const FiniteElement<dim> &fe2,
+                                        FullMatrix<number> &interpolation_matrix)
 {
   Assert (fe1.n_components() == fe2.n_components(),
          ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
-  Assert (fe1.is_primitive() == true, ExcFEMustBePrimitive());
-  Assert (fe2.is_primitive() == true, ExcFEMustBePrimitive());  
   Assert(interpolation_matrix.m()==fe2.dofs_per_cell &&
         interpolation_matrix.n()==fe1.dofs_per_cell,
         ExcMatrixDimensionMismatch(interpolation_matrix.m(),
@@ -44,6 +79,30 @@ void FETools::get_interpolation_matrix(const FiniteElement<dim> &fe1,
                                    fe2.dofs_per_cell,
                                    fe1.dofs_per_cell));
 
+                                  // first try the easy way: maybe
+                                  // the FE wants to implement things
+                                  // itself:
+  bool fe_implements_interpolation = true;
+  try 
+    {
+      gim_forwarder (fe1, fe2, interpolation_matrix);
+    }
+  catch (typename FiniteElementBase<dim>::ExcInterpolationNotImplemented &)
+    {
+                                       // too bad....
+      fe_implements_interpolation = false;
+    }
+  if (fe_implements_interpolation == true)
+    return;
+
+                                  // uh, so this was not the
+                                  // case. hm. then do it the hard
+                                  // way. note that this will only
+                                  // work if the element is
+                                  // primitive, so check this first
+  Assert (fe1.is_primitive() == true, ExcFEMustBePrimitive());
+  Assert (fe2.is_primitive() == true, ExcFEMustBePrimitive());
+
                                   // Initialize FEValues for fe1 at
                                   // the unit support points of the
                                   // fe2 element.
@@ -76,8 +135,6 @@ void FETools::get_back_interpolation_matrix(const FiniteElement<dim> &fe1,
 {
   Assert (fe1.n_components() == fe2.n_components(),
          ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
-  Assert (fe1.is_primitive() == true, ExcFEMustBePrimitive());
-  Assert (fe2.is_primitive() == true, ExcFEMustBePrimitive());  
   Assert(interpolation_matrix.m()==fe1.dofs_per_cell &&
         interpolation_matrix.n()==fe1.dofs_per_cell, 
         ExcMatrixDimensionMismatch(interpolation_matrix.m(),
@@ -104,8 +161,6 @@ void FETools::get_interpolation_difference_matrix(const FiniteElement<dim> &fe1,
 {
   Assert (fe1.n_components() == fe2.n_components(),
          ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
-  Assert (fe1.is_primitive() == true, ExcFEMustBePrimitive());
-  Assert (fe2.is_primitive() == true, ExcFEMustBePrimitive());  
   Assert(difference_matrix.m()==fe1.dofs_per_cell &&
         difference_matrix.n()==fe1.dofs_per_cell, 
         ExcMatrixDimensionMismatch(difference_matrix.m(),

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.