]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Move things local to each program into a local namespace.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 9 Sep 2011 04:12:49 +0000 (04:12 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 9 Sep 2011 04:12:49 +0000 (04:12 +0000)
git-svn-id: https://svn.dealii.org/trunk@24297 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-42/step-42.cc
deal.II/examples/step-43/step-43.cc
deal.II/examples/step-44/step-44.cc

index b195fa35e15e30de581c9f4944a18ac0b97feca8..2431fec161c3dd43b1e0c5a832b806d770c83a0d 100644 (file)
@@ -3,7 +3,7 @@
 
 /*    $Id$       */
 /*                                                                */
-/*    Copyright (C) 2008, 2009, 2010 by the deal.II authors */
+/*    Copyright (C) 2008, 2009, 2010, 2011 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 #include <sstream>
 
 
-using namespace dealii;
-
+namespace Step42
+{
+  using namespace dealii;
 
-template <int dim>
-struct InnerPreconditioner;
 
+  template <int dim>
+  struct InnerPreconditioner;
 
-template <>
-struct InnerPreconditioner<2>
-{
-    typedef SparseDirectUMFPACK type;
-};
 
+  template <>
+  struct InnerPreconditioner<2>
+  {
+      typedef SparseDirectUMFPACK type;
+  };
 
-template <>
-struct InnerPreconditioner<3>
-{
-    typedef SparseILU<double> type;
-};
 
-template <typename MATRIX>
-void copy(const MATRIX &matrix,
-    FullMatrix<double> &full_matrix)
-{
-  const unsigned int m = matrix.m();
-  const unsigned int n = matrix.n();
-  full_matrix.reinit(n,m);
+  template <>
+  struct InnerPreconditioner<3>
+  {
+      typedef SparseILU<double> type;
+  };
 
-  Vector<double> unit (n);
-  Vector<double> result (m);
-  for(unsigned int i=0; i<n; ++i)
+  template <typename MATRIX>
+  void copy(const MATRIX &matrix,
+           FullMatrix<double> &full_matrix)
   {
-    unit(i) = 1;
-    for(unsigned int j=0; j<m; ++j)
-    {
-      matrix.vmult(result,unit);
-      full_matrix(i,j) = result(j);
-    }
-    unit(i) = 0;
+    const unsigned int m = matrix.m();
+    const unsigned int n = matrix.n();
+    full_matrix.reinit(n,m);
+
+    Vector<double> unit (n);
+    Vector<double> result (m);
+    for(unsigned int i=0; i<n; ++i)
+      {
+       unit(i) = 1;
+       for(unsigned int j=0; j<m; ++j)
+         {
+           matrix.vmult(result,unit);
+           full_matrix(i,j) = result(j);
+         }
+       unit(i) = 0;
+      }
   }
-}
 
-template <int dim>
-class StokesProblem
-{
-  public:
-    StokesProblem (const unsigned int degree);
-    void run ();
+  template <int dim>
+  class StokesProblem
+  {
+    public:
+      StokesProblem (const unsigned int degree);
+      void run ();
 
-  private:
-    void setup_dofs ();
-    void assemble_system ();
-    void assemble_multigrid ();
-    void solve ();
-    void solve_block ();
+    private:
+      void setup_dofs ();
+      void assemble_system ();
+      void assemble_multigrid ();
+      void solve ();
+      void solve_block ();
 
-    void find_dofs_on_lower_level (std::vector<std::vector<bool> > &lower_dofs,
-        std::vector<std::vector<bool> > &boundary_dofs);
+      void find_dofs_on_lower_level (std::vector<std::vector<bool> > &lower_dofs,
+                                    std::vector<std::vector<bool> > &boundary_dofs);
 
-    void output_results (const unsigned int refinement_cycle) const;
-    void refine_mesh ();
+      void output_results (const unsigned int refinement_cycle) const;
+      void refine_mesh ();
 
-    const unsigned int   degree;
+      const unsigned int   degree;
 
-    Triangulation<dim>   triangulation;
-    FESystem<dim>        fe;
-    MGDoFHandler<dim>    dof_handler;
+      Triangulation<dim>   triangulation;
+      FESystem<dim>        fe;
+      MGDoFHandler<dim>    dof_handler;
 
-    ConstraintMatrix     constraints;
+      ConstraintMatrix     constraints;
 
-    BlockSparsityPattern      sparsity_pattern;
-    BlockSparseMatrix<double> system_matrix;
+      BlockSparsityPattern      sparsity_pattern;
+      BlockSparseMatrix<double> system_matrix;
 
-    BlockVector<double> solution;
-    BlockVector<double> system_rhs;
+      BlockVector<double> solution;
+      BlockVector<double> system_rhs;
 
-    MGLevelObject<ConstraintMatrix>           mg_constraints;
-    MGLevelObject<BlockSparsityPattern>       mg_sparsity;
-    MGLevelObject<BlockSparseMatrix<double> > mg_matrices;
+      MGLevelObject<ConstraintMatrix>           mg_constraints;
+      MGLevelObject<BlockSparsityPattern>       mg_sparsity;
+      MGLevelObject<BlockSparseMatrix<double> > mg_matrices;
 
-    MGLevelObject<BlockSparseMatrix<double> > mg_interface_matrices;
-    MGConstrainedDoFs                         mg_constrained_dofs;
-    std::vector<std::vector<unsigned int> >   mg_dofs_per_component;
+      MGLevelObject<BlockSparseMatrix<double> > mg_interface_matrices;
+      MGConstrainedDoFs                         mg_constrained_dofs;
+      std::vector<std::vector<unsigned int> >   mg_dofs_per_component;
 
-    std::vector<std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type> > mg_A_preconditioner;
-    std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type> A_preconditioner;
-};
+      std::vector<std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type> > mg_A_preconditioner;
+      std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type> A_preconditioner;
+  };
 
 
-template <int dim>
-class BoundaryValues : public Function<dim>
-{
-  public:
-    BoundaryValues () : Function<dim>(dim+1) {}
+  template <int dim>
+  class BoundaryValues : public Function<dim>
+  {
+    public:
+      BoundaryValues () : Function<dim>(dim+1) {}
 
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
 
-    virtual void vector_value (const Point<dim> &p,
-                               Vector<double>   &value) const;
-};
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &value) const;
+  };
 
 
-template <int dim>
-double
-BoundaryValues<dim>::value (const Point<dim>  &p,
-                           const unsigned int component) const
-{
-  Assert (component < this->n_components,
-         ExcIndexRange (component, 0, this->n_components));
+  template <int dim>
+  double
+  BoundaryValues<dim>::value (const Point<dim>  &p,
+                             const unsigned int component) const
+  {
+    Assert (component < this->n_components,
+           ExcIndexRange (component, 0, this->n_components));
 
-   if (component == 0 && p[0] == 0)
-    return (dim == 2 ? - p[1]*(p[1]-1.) : p[1]*(p[1]-1.) * p[2]*(p[2]-1.));
-  return 0;
-}
+    if (component == 0 && p[0] == 0)
+      return (dim == 2 ? - p[1]*(p[1]-1.) : p[1]*(p[1]-1.) * p[2]*(p[2]-1.));
+    return 0;
+  }
 
 
-template <int dim>
-void
-BoundaryValues<dim>::vector_value (const Point<dim> &p,
-                                  Vector<double>   &values) const
-{
-  for (unsigned int c=0; c<this->n_components; ++c)
-    values(c) = BoundaryValues<dim>::value (p, c);
-}
+  template <int dim>
+  void
+  BoundaryValues<dim>::vector_value (const Point<dim> &p,
+                                    Vector<double>   &values) const
+  {
+    for (unsigned int c=0; c<this->n_components; ++c)
+      values(c) = BoundaryValues<dim>::value (p, c);
+  }
 
 
 
 
-template <int dim>
-class RightHandSide : public Function<dim>
-{
-  public:
-    RightHandSide () : Function<dim>(dim+1) {}
+  template <int dim>
+  class RightHandSide : public Function<dim>
+  {
+    public:
+      RightHandSide () : Function<dim>(dim+1) {}
 
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
 
-    virtual void vector_value (const Point<dim> &p,
-                               Vector<double>   &value) const;
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &value) const;
 
-};
+  };
 
 
-template <int dim>
-double
-RightHandSide<dim>::value (const Point<dim>  &/*p*/,
-                           const unsigned int component) const
-{
-  return (component == 1 ? 1 : 0);
-}
+  template <int dim>
+  double
+  RightHandSide<dim>::value (const Point<dim>  &/*p*/,
+                            const unsigned int component) const
+  {
+    return (component == 1 ? 1 : 0);
+  }
 
 
-template <int dim>
-void
-RightHandSide<dim>::vector_value (const Point<dim> &p,
-                                  Vector<double>   &values) const
-{
-  for (unsigned int c=0; c<this->n_components; ++c)
-    values(c) = RightHandSide<dim>::value (p, c);
-}
+  template <int dim>
+  void
+  RightHandSide<dim>::vector_value (const Point<dim> &p,
+                                   Vector<double>   &values) const
+  {
+    for (unsigned int c=0; c<this->n_components; ++c)
+      values(c) = RightHandSide<dim>::value (p, c);
+  }
 
 
 
 
-template <class Matrix, class Preconditioner>
-class InverseMatrix : public Subscriptor
-{
-  public:
-    InverseMatrix (const Matrix         &m,
-                   const Preconditioner &preconditioner);
+  template <class Matrix, class Preconditioner>
+  class InverseMatrix : public Subscriptor
+  {
+    public:
+      InverseMatrix (const Matrix         &m,
+                    const Preconditioner &preconditioner);
 
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
+      void vmult (Vector<double>       &dst,
+                 const Vector<double> &src) const;
 
-    mutable std::string name;
-  private:
-    const SmartPointer<const Matrix> matrix;
-    const SmartPointer<const Preconditioner> preconditioner;
-};
+      mutable std::string name;
+    private:
+      const SmartPointer<const Matrix> matrix;
+      const SmartPointer<const Preconditioner> preconditioner;
+  };
 
 
-template <class Matrix, class Preconditioner>
-InverseMatrix<Matrix,Preconditioner>::InverseMatrix (const Matrix &m,
-                                                    const Preconditioner &preconditioner)
-               :
-               matrix (&m),
-               preconditioner (&preconditioner)
-{}
+  template <class Matrix, class Preconditioner>
+  InverseMatrix<Matrix,Preconditioner>::InverseMatrix (const Matrix &m,
+                                                      const Preconditioner &preconditioner)
+                 :
+                 matrix (&m),
+                 preconditioner (&preconditioner)
+  {}
 
 
-template <class Matrix, class Preconditioner>
-void InverseMatrix<Matrix,Preconditioner>::vmult (Vector<double>       &dst,
-                                                 const Vector<double> &src) const
-{
-  SolverControl solver_control (src.size(), 1.0e-12*src.l2_norm());
-  SolverCG<>    cg (solver_control);
+  template <class Matrix, class Preconditioner>
+  void InverseMatrix<Matrix,Preconditioner>::vmult (Vector<double>       &dst,
+                                                   const Vector<double> &src) const
+  {
+    SolverControl solver_control (src.size(), 1.0e-12*src.l2_norm());
+    SolverCG<>    cg (solver_control);
 
-  dst = 0;
+    dst = 0;
 
-  try
-    {
-      cg.solve (*matrix, dst, src, *preconditioner);
-    }
-  catch (...)
-    {
-      std::cout << "Failure in " << __PRETTY_FUNCTION__ << std::endl;
-      abort ();
-    }
+    try
+      {
+       cg.solve (*matrix, dst, src, *preconditioner);
+      }
+    catch (...)
+      {
+       std::cout << "Failure in " << __PRETTY_FUNCTION__ << std::endl;
+       abort ();
+      }
 
 #ifdef STEP_42_TEST
-  if (name == "in schur")
-    std::cout << "      " << solver_control.last_step()
-             << " inner CG steps inside the Schur complement ";
-  else if (name == "top left")
-    std::cout << "    " << solver_control.last_step()
-             << " CG steps on the top left block ";
-  else if (name == "rhs")
-    std::cout << "    " << solver_control.last_step()
-             << " CG steps for computing the r.h.s. ";
-  else
-    abort ();
-
-  std::cout << solver_control.initial_value() << "->" << solver_control.last_value()
-           << std::endl;
+    if (name == "in schur")
+      std::cout << "      " << solver_control.last_step()
+               << " inner CG steps inside the Schur complement ";
+    else if (name == "top left")
+      std::cout << "    " << solver_control.last_step()
+               << " CG steps on the top left block ";
+    else if (name == "rhs")
+      std::cout << "    " << solver_control.last_step()
+               << " CG steps for computing the r.h.s. ";
+    else
+      abort ();
+
+    std::cout << solver_control.initial_value() << "->" << solver_control.last_value()
+             << std::endl;
 #endif
-}
+  }
 
 
-template <class PreconditionerA, class PreconditionerMp>
-class BlockSchurPreconditioner : public Subscriptor
-{
-  public:
-    BlockSchurPreconditioner (const BlockSparseMatrix<double>         &S,
-          const InverseMatrix<SparseMatrix<double>,PreconditionerMp>  &Mpinv,
-          const PreconditionerA &Apreconditioner);
-
-  void vmult (BlockVector<double>       &dst,
-              const BlockVector<double> &src) const;
-
-  private:
-    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
-    const SmartPointer<const InverseMatrix<SparseMatrix<double>, 
-                       PreconditionerMp > > m_inverse;
-    const PreconditionerA &a_preconditioner;
-    
-    mutable Vector<double> tmp;
-
-};
-
-template <class PreconditionerA, class PreconditionerMp>
-BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::BlockSchurPreconditioner(
-          const BlockSparseMatrix<double>                            &S,
-          const InverseMatrix<SparseMatrix<double>,PreconditionerMp> &Mpinv,
-          const PreconditionerA &Apreconditioner
-          )
-                :
-                system_matrix           (&S),
-                m_inverse               (&Mpinv),
-                a_preconditioner        (Apreconditioner),
-                tmp                     (S.block(1,1).m())
-{}
-
-        // Now the interesting function, the multiplication of
-        // the preconditioner with a BlockVector. 
-template <class PreconditionerA, class PreconditionerMp>
-void BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::vmult (
-                                     BlockVector<double>       &dst,
-                                     const BlockVector<double> &src) const
-{
-        // Form u_new = A^{-1} u
-  a_preconditioner.vmult (dst.block(0), src.block(0));
-        // Form tmp = - B u_new + p 
-        // (<code>SparseMatrix::residual</code>
-        // does precisely this)
-  system_matrix->block(1,0).residual(tmp, dst.block(0), src.block(1));
-        // Change sign in tmp
-  tmp *= -1;
-        // Multiply by approximate Schur complement 
-        // (i.e. a pressure mass matrix)
-  m_inverse->vmult (dst.block(1), tmp);
-}
+  template <class PreconditionerA, class PreconditionerMp>
+  class BlockSchurPreconditioner : public Subscriptor
+  {
+    public:
+      BlockSchurPreconditioner (const BlockSparseMatrix<double>         &S,
+                               const InverseMatrix<SparseMatrix<double>,PreconditionerMp>  &Mpinv,
+                               const PreconditionerA &Apreconditioner);
+
+      void vmult (BlockVector<double>       &dst,
+                 const BlockVector<double> &src) const;
+
+    private:
+      const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
+      const SmartPointer<const InverseMatrix<SparseMatrix<double>,
+                                            PreconditionerMp > > m_inverse;
+      const PreconditionerA &a_preconditioner;
+
+      mutable Vector<double> tmp;
+
+  };
+
+  template <class PreconditionerA, class PreconditionerMp>
+  BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::BlockSchurPreconditioner(
+    const BlockSparseMatrix<double>                            &S,
+    const InverseMatrix<SparseMatrix<double>,PreconditionerMp> &Mpinv,
+    const PreconditionerA &Apreconditioner
+  )
+                 :
+                 system_matrix           (&S),
+                 m_inverse               (&Mpinv),
+                 a_preconditioner        (Apreconditioner),
+                 tmp                     (S.block(1,1).m())
+  {}
+
+                                  // Now the interesting function, the multiplication of
+                                  // the preconditioner with a BlockVector.
+  template <class PreconditionerA, class PreconditionerMp>
+  void BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::vmult (
+    BlockVector<double>       &dst,
+    const BlockVector<double> &src) const
+  {
+                                    // Form u_new = A^{-1} u
+    a_preconditioner.vmult (dst.block(0), src.block(0));
+                                    // Form tmp = - B u_new + p
+                                    // (<code>SparseMatrix::residual</code>
+                                    // does precisely this)
+    system_matrix->block(1,0).residual(tmp, dst.block(0), src.block(1));
+                                    // Change sign in tmp
+    tmp *= -1;
+                                    // Multiply by approximate Schur complement
+                                    // (i.e. a pressure mass matrix)
+    m_inverse->vmult (dst.block(1), tmp);
+  }
 
-template <class Preconditioner>
-class SchurComplement : public Subscriptor
-{
-  public:
-    SchurComplement (const BlockSparseMatrix<double> &system_matrix,
-                    const InverseMatrix<SparseMatrix<double>, Preconditioner> &A_inverse);
+  template <class Preconditioner>
+  class SchurComplement : public Subscriptor
+  {
+    public:
+      SchurComplement (const BlockSparseMatrix<double> &system_matrix,
+                      const InverseMatrix<SparseMatrix<double>, Preconditioner> &A_inverse);
 
-    void vmult (Vector<double>       &dst,
-               const Vector<double> &src) const;
+      void vmult (Vector<double>       &dst,
+                 const Vector<double> &src) const;
 
-    unsigned int m() const
-      {
-       return system_matrix->block(1,1).m();
-      }
+      unsigned int m() const
+       {
+         return system_matrix->block(1,1).m();
+       }
 
-    unsigned int n() const
-      {
-       return system_matrix->block(1,1).n();
-      }
+      unsigned int n() const
+       {
+         return system_matrix->block(1,1).n();
+       }
 
-  private:
-    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
-    const SmartPointer<const InverseMatrix<SparseMatrix<double>, Preconditioner> > A_inverse;
+    private:
+      const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
+      const SmartPointer<const InverseMatrix<SparseMatrix<double>, Preconditioner> > A_inverse;
 
-    mutable Vector<double> tmp1, tmp2;
-};
+      mutable Vector<double> tmp1, tmp2;
+  };
 
 
 
-template <class Preconditioner>
-SchurComplement<Preconditioner>::
-SchurComplement (const BlockSparseMatrix<double> &system_matrix,
-                const InverseMatrix<SparseMatrix<double>,Preconditioner> &A_inverse)
-               :
-               system_matrix (&system_matrix),
-               A_inverse (&A_inverse),
-               tmp1 (system_matrix.block(0,0).m()),
-               tmp2 (system_matrix.block(0,0).m())
-{}
+  template <class Preconditioner>
+  SchurComplement<Preconditioner>::
+  SchurComplement (const BlockSparseMatrix<double> &system_matrix,
+                  const InverseMatrix<SparseMatrix<double>,Preconditioner> &A_inverse)
+                 :
+                 system_matrix (&system_matrix),
+                 A_inverse (&A_inverse),
+                 tmp1 (system_matrix.block(0,0).m()),
+                 tmp2 (system_matrix.block(0,0).m())
+  {}
 
 
-template <class Preconditioner>
-void SchurComplement<Preconditioner>::vmult (Vector<double>       &dst,
-                                            const Vector<double> &src) const
-{
-  system_matrix->block(0,1).vmult (tmp1, src);
-  A_inverse->name = "in schur";
-  A_inverse->vmult (tmp2, tmp1);
-  system_matrix->block(1,0).vmult (dst, tmp2);
-  dst *= -1;
-  system_matrix->block(1,1).vmult_add (dst, src);
-  dst *= -1;
-}
+  template <class Preconditioner>
+  void SchurComplement<Preconditioner>::vmult (Vector<double>       &dst,
+                                              const Vector<double> &src) const
+  {
+    system_matrix->block(0,1).vmult (tmp1, src);
+    A_inverse->name = "in schur";
+    A_inverse->vmult (tmp2, tmp1);
+    system_matrix->block(1,0).vmult (dst, tmp2);
+    dst *= -1;
+    system_matrix->block(1,1).vmult_add (dst, src);
+    dst *= -1;
+  }
 
 
 
-template <int dim>
-StokesProblem<dim>::StokesProblem (const unsigned int degree)
-                :
-                degree (degree),
-                triangulation (Triangulation<dim>::limit_level_difference_at_vertices),
-                fe (FE_Q<dim>(degree+1), dim,
-                    FE_Q<dim>(degree), 1),
-                dof_handler (triangulation)
-{}
+  template <int dim>
+  StokesProblem<dim>::StokesProblem (const unsigned int degree)
+                 :
+                 degree (degree),
+                 triangulation (Triangulation<dim>::limit_level_difference_at_vertices),
+                 fe (FE_Q<dim>(degree+1), dim,
+                     FE_Q<dim>(degree), 1),
+                 dof_handler (triangulation)
+  {}
 
 
 
 
 
-template <int dim>
-void StokesProblem<dim>::setup_dofs ()
-{
-  A_preconditioner.reset ();
-  mg_A_preconditioner.resize (0);
-  system_matrix.clear ();
+  template <int dim>
+  void StokesProblem<dim>::setup_dofs ()
+  {
+    A_preconditioner.reset ();
+    mg_A_preconditioner.resize (0);
+    system_matrix.clear ();
 
-  dof_handler.distribute_dofs (fe);
+    dof_handler.distribute_dofs (fe);
 //  DoFRenumbering::Cuthill_McKee (dof_handler);
 
-  std::vector<unsigned int> block_component (dim+1,0);
-  block_component[dim] = 1;
-  DoFRenumbering::component_wise (dof_handler, block_component);
+    std::vector<unsigned int> block_component (dim+1,0);
+    block_component[dim] = 1;
+    DoFRenumbering::component_wise (dof_handler, block_component);
 
 
-  {
-    constraints.clear ();
-    typename FunctionMap<dim>::type      dirichlet_boundary;
-    ZeroFunction<dim>                    homogeneous_dirichlet_bc (dim+1); //TODO: go back to BoundaryValues
-
-    dirichlet_boundary[0] = &homogeneous_dirichlet_bc;
-    MappingQ1<dim> mapping;
-
-    std::vector<bool> component_mask (dim+1, true);
-    component_mask[dim] = false;
-    VectorTools::interpolate_boundary_values (mapping, 
-        dof_handler,
-        dirichlet_boundary,
-        constraints,
-        component_mask);
-
-    DoFTools::make_hanging_node_constraints (dof_handler,
-                                            constraints);
-
-    mg_constrained_dofs.clear();
-    mg_constrained_dofs.initialize(dof_handler, dirichlet_boundary);
-  }
+    {
+      constraints.clear ();
+      typename FunctionMap<dim>::type      dirichlet_boundary;
+      ZeroFunction<dim>                    homogeneous_dirichlet_bc (dim+1); //TODO: go back to BoundaryValues
+
+      dirichlet_boundary[0] = &homogeneous_dirichlet_bc;
+      MappingQ1<dim> mapping;
+
+      std::vector<bool> component_mask (dim+1, true);
+      component_mask[dim] = false;
+      VectorTools::interpolate_boundary_values (mapping,
+                                               dof_handler,
+                                               dirichlet_boundary,
+                                               constraints,
+                                               component_mask);
+
+      DoFTools::make_hanging_node_constraints (dof_handler,
+                                              constraints);
+
+      mg_constrained_dofs.clear();
+      mg_constrained_dofs.initialize(dof_handler, dirichlet_boundary);
+    }
 
-  constraints.close ();
+    constraints.close ();
 
 
-  std::vector<unsigned int> dofs_per_block (2);
-  DoFTools::count_dofs_per_block (dof_handler, dofs_per_block,
-                                 block_component);
-  const unsigned int n_u = dofs_per_block[0],
-                     n_p = dofs_per_block[1];
+    std::vector<unsigned int> dofs_per_block (2);
+    DoFTools::count_dofs_per_block (dof_handler, dofs_per_block,
+                                   block_component);
+    const unsigned int n_u = dofs_per_block[0],
+                      n_p = dofs_per_block[1];
 
-  std::cout << "   Number of active cells: "
-            << triangulation.n_active_cells()
-            << std::endl
-            << "   Number of degrees of freedom: "
-            << dof_handler.n_dofs()
-            << " (" << n_u << '+' << n_p << ')'
-            << std::endl;
+    std::cout << "   Number of active cells: "
+             << triangulation.n_active_cells()
+             << std::endl
+             << "   Number of degrees of freedom: "
+             << dof_handler.n_dofs()
+             << " (" << n_u << '+' << n_p << ')'
+             << std::endl;
 
-  {
-    BlockCompressedSimpleSparsityPattern csp (2,2);
+    {
+      BlockCompressedSimpleSparsityPattern csp (2,2);
 
-    csp.block(0,0).reinit (n_u, n_u);
-    csp.block(1,0).reinit (n_p, n_u);
-    csp.block(0,1).reinit (n_u, n_p);
-    csp.block(1,1).reinit (n_p, n_p);
+      csp.block(0,0).reinit (n_u, n_u);
+      csp.block(1,0).reinit (n_p, n_u);
+      csp.block(0,1).reinit (n_u, n_p);
+      csp.block(1,1).reinit (n_p, n_p);
 
-    csp.collect_sizes();
+      csp.collect_sizes();
 
-    DoFTools::make_sparsity_pattern (
+      DoFTools::make_sparsity_pattern (
         static_cast<const DoFHandler<dim>&>(dof_handler),
         csp, constraints, false);
-    sparsity_pattern.copy_from (csp);
-  }
+      sparsity_pattern.copy_from (csp);
+    }
 
 
-  system_matrix.reinit (sparsity_pattern);
+    system_matrix.reinit (sparsity_pattern);
 
-  solution.reinit (2);
-  solution.block(0).reinit (n_u);
-  solution.block(1).reinit (n_p);
-  solution.collect_sizes ();
+    solution.reinit (2);
+    solution.block(0).reinit (n_u);
+    solution.block(1).reinit (n_p);
+    solution.collect_sizes ();
 
-  system_rhs.reinit (2);
-  system_rhs.block(0).reinit (n_u);
-  system_rhs.block(1).reinit (n_p);
-  system_rhs.collect_sizes ();
+    system_rhs.reinit (2);
+    system_rhs.block(0).reinit (n_u);
+    system_rhs.block(1).reinit (n_p);
+    system_rhs.collect_sizes ();
 
-  //now setup stuff for mg
-  const unsigned int nlevels = triangulation.n_levels();
+                                    //now setup stuff for mg
+    const unsigned int nlevels = triangulation.n_levels();
 
-  mg_matrices.resize(0, nlevels-1);
-  mg_matrices.clear ();
-  mg_interface_matrices.resize(0, nlevels-1);
-  mg_interface_matrices.clear ();
-  mg_sparsity.resize(0, nlevels-1);
+    mg_matrices.resize(0, nlevels-1);
+    mg_matrices.clear ();
+    mg_interface_matrices.resize(0, nlevels-1);
+    mg_interface_matrices.clear ();
+    mg_sparsity.resize(0, nlevels-1);
 
-  mg_dofs_per_component.resize (nlevels);
-  for (unsigned int level=0; level<nlevels; ++level)
-    mg_dofs_per_component[level].resize (2);
+    mg_dofs_per_component.resize (nlevels);
+    for (unsigned int level=0; level<nlevels; ++level)
+      mg_dofs_per_component[level].resize (2);
 
-  MGTools::count_dofs_per_block (dof_handler, mg_dofs_per_component,
-                                block_component);
-  for (unsigned int level=0; level<nlevels; ++level)
-    std::cout << "                        Level " << level << ": "
-             << dof_handler.n_dofs (level) << " ("
-             << mg_dofs_per_component[level][0] << '+'
-             << mg_dofs_per_component[level][1] << ')'
-             << std::endl;
+    MGTools::count_dofs_per_block (dof_handler, mg_dofs_per_component,
+                                  block_component);
+    for (unsigned int level=0; level<nlevels; ++level)
+      std::cout << "                        Level " << level << ": "
+               << dof_handler.n_dofs (level) << " ("
+               << mg_dofs_per_component[level][0] << '+'
+               << mg_dofs_per_component[level][1] << ')'
+               << std::endl;
 
-  for (unsigned int level=0; level<nlevels; ++level)
-  {
-    DoFRenumbering::component_wise (dof_handler, level, block_component);
-
-    BlockCompressedSparsityPattern bcsp (mg_dofs_per_component[level],
-        mg_dofs_per_component[level]);
-    MGTools::make_sparsity_pattern(dof_handler, bcsp, level);
-    mg_sparsity[level].copy_from (bcsp);
-    mg_matrices[level].reinit (mg_sparsity[level]);
-    mg_interface_matrices[level].reinit (mg_sparsity[level]);
+    for (unsigned int level=0; level<nlevels; ++level)
+      {
+       DoFRenumbering::component_wise (dof_handler, level, block_component);
+
+       BlockCompressedSparsityPattern bcsp (mg_dofs_per_component[level],
+                                            mg_dofs_per_component[level]);
+       MGTools::make_sparsity_pattern(dof_handler, bcsp, level);
+       mg_sparsity[level].copy_from (bcsp);
+       mg_matrices[level].reinit (mg_sparsity[level]);
+       mg_interface_matrices[level].reinit (mg_sparsity[level]);
+      }
   }
-}
-
 
 
-template <int dim>
-void StokesProblem<dim>::assemble_system ()
-{
-  system_matrix=0;
-  system_rhs=0;
-
-  QGauss<dim>   quadrature_formula(degree+2);
-
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                           update_values    |
-                           update_quadrature_points  |
-                           update_JxW_values |
-                           update_gradients);
-
-  const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
 
-  const unsigned int   n_q_points      = quadrature_formula.size();
-
-  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       local_rhs (dofs_per_cell);
-
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+  template <int dim>
+  void StokesProblem<dim>::assemble_system ()
+  {
+    system_matrix=0;
+    system_rhs=0;
 
-  const RightHandSide<dim>          right_hand_side;
-  std::vector<Vector<double> >      rhs_values (n_q_points,
-                                                Vector<double>(dim+1));
+    QGauss<dim>   quadrature_formula(degree+2);
 
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values    |
+                            update_quadrature_points  |
+                            update_JxW_values |
+                            update_gradients);
 
-  const FEValuesExtractors::Vector velocities (0);
-  const FEValuesExtractors::Scalar pressure (dim);
+    const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
 
+    const unsigned int   n_q_points      = quadrature_formula.size();
 
+    FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>       local_rhs (dofs_per_cell);
 
-  std::vector<Tensor<2,dim> >          phi_grads_u (dofs_per_cell);
-  std::vector<double>                  div_phi_u   (dofs_per_cell);
-  std::vector<double>                  phi_p       (dofs_per_cell);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-  typename MGDoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-      local_matrix = 0;
-      local_rhs = 0;
+    const RightHandSide<dim>          right_hand_side;
+    std::vector<Vector<double> >      rhs_values (n_q_points,
+                                                 Vector<double>(dim+1));
 
-      right_hand_side.vector_value_list(fe_values.get_quadrature_points(),
-                                        rhs_values);
 
-      for (unsigned int q=0; q<n_q_points; ++q)
-       {
-         for (unsigned int k=0; k<dofs_per_cell; ++k)
-           {
-             phi_grads_u[k] = fe_values[velocities].gradient (k, q);
-             div_phi_u[k]   = fe_values[velocities].divergence (k, q);
-             phi_p[k]       = fe_values[pressure].value (k, q);
-           }
-
-         for (unsigned int i=0; i<dofs_per_cell; ++i)
-           {
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               {
-                 local_matrix(i,j) += (scalar_product(phi_grads_u[i], phi_grads_u[j])
-                                       - div_phi_u[i] * phi_p[j]
-                                       - phi_p[i] * div_phi_u[j]
-                                        - phi_p[i] * phi_p[j]
-                                        )
-                                      * fe_values.JxW(q);
-               }
-
-             const unsigned int component_i =
-               fe.system_to_component_index(i).first;
-             local_rhs(i) += fe_values.shape_value(i,q) *
-                             rhs_values[q](component_i) *
-                             fe_values.JxW(q);
-           }
-       }
+    const FEValuesExtractors::Vector velocities (0);
+    const FEValuesExtractors::Scalar pressure (dim);
 
 
 
+    std::vector<Tensor<2,dim> >          phi_grads_u (dofs_per_cell);
+    std::vector<double>                  div_phi_u   (dofs_per_cell);
+    std::vector<double>                  phi_p       (dofs_per_cell);
 
-      cell->get_dof_indices (local_dof_indices);
-      constraints.distribute_local_to_global (local_matrix, local_rhs,
-                                             local_dof_indices,
-                                             system_matrix, system_rhs);
-    }
-}
+    typename MGDoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       fe_values.reinit (cell);
+       local_matrix = 0;
+       local_rhs = 0;
+
+       right_hand_side.vector_value_list(fe_values.get_quadrature_points(),
+                                         rhs_values);
+
+       for (unsigned int q=0; q<n_q_points; ++q)
+         {
+           for (unsigned int k=0; k<dofs_per_cell; ++k)
+             {
+               phi_grads_u[k] = fe_values[velocities].gradient (k, q);
+               div_phi_u[k]   = fe_values[velocities].divergence (k, q);
+               phi_p[k]       = fe_values[pressure].value (k, q);
+             }
+
+           for (unsigned int i=0; i<dofs_per_cell; ++i)
+             {
+               for (unsigned int j=0; j<dofs_per_cell; ++j)
+                 {
+                   local_matrix(i,j) += (scalar_product(phi_grads_u[i], phi_grads_u[j])
+                                         - div_phi_u[i] * phi_p[j]
+                                         - phi_p[i] * div_phi_u[j]
+                                         - phi_p[i] * phi_p[j]
+                   )
+                                        * fe_values.JxW(q);
+                 }
+
+               const unsigned int component_i =
+                 fe.system_to_component_index(i).first;
+               local_rhs(i) += fe_values.shape_value(i,q) *
+                               rhs_values[q](component_i) *
+                               fe_values.JxW(q);
+             }
+         }
+
+
+
+
+       cell->get_dof_indices (local_dof_indices);
+       constraints.distribute_local_to_global (local_matrix, local_rhs,
+                                               local_dof_indices,
+                                               system_matrix, system_rhs);
+      }
+  }
 
 
-template <int dim>
-void StokesProblem<dim>::assemble_multigrid ()
-{
-  QGauss<dim>   quadrature_formula(degree+2);
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                           update_values    |
-                           update_quadrature_points  |
-                           update_JxW_values |
-                           update_gradients);
+  template <int dim>
+  void StokesProblem<dim>::assemble_multigrid ()
+  {
+    QGauss<dim>   quadrature_formula(degree+2);
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values    |
+                            update_quadrature_points  |
+                            update_JxW_values |
+                            update_gradients);
 
-  const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
-  const unsigned int   n_q_points      = quadrature_formula.size();
+    const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
+    const unsigned int   n_q_points      = quadrature_formula.size();
 
-  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+    FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
 
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-  const FEValuesExtractors::Vector velocities (0);
-  const FEValuesExtractors::Scalar pressure (dim);
+    const FEValuesExtractors::Vector velocities (0);
+    const FEValuesExtractors::Scalar pressure (dim);
 
 
-  std::vector<Tensor<2,dim> >          phi_grads_u (dofs_per_cell);
-  std::vector<double>                  div_phi_u   (dofs_per_cell);
-  std::vector<double>                  phi_p       (dofs_per_cell);
+    std::vector<Tensor<2,dim> >          phi_grads_u (dofs_per_cell);
+    std::vector<double>                  div_phi_u   (dofs_per_cell);
+    std::vector<double>                  phi_p       (dofs_per_cell);
 
-  std::vector<std::vector<bool> > interface_dofs 
-    = mg_constrained_dofs.get_refinement_edge_indices ();
-  std::vector<std::vector<bool> > boundary_interface_dofs
-    = mg_constrained_dofs.get_refinement_edge_boundary_indices ();
+    std::vector<std::vector<bool> > interface_dofs
+      = mg_constrained_dofs.get_refinement_edge_indices ();
+    std::vector<std::vector<bool> > boundary_interface_dofs
+      = mg_constrained_dofs.get_refinement_edge_boundary_indices ();
 
-  std::vector<ConstraintMatrix> boundary_constraints (triangulation.n_levels());
-  std::vector<ConstraintMatrix> boundary_interface_constraints (triangulation.n_levels());
-  for (unsigned int level=0; level<triangulation.n_levels(); ++level)
-    {
-      boundary_constraints[level].add_lines (interface_dofs[level]);
-      boundary_constraints[level].add_lines (mg_constrained_dofs.get_boundary_indices()[level]);
-      boundary_constraints[level].close ();
+    std::vector<ConstraintMatrix> boundary_constraints (triangulation.n_levels());
+    std::vector<ConstraintMatrix> boundary_interface_constraints (triangulation.n_levels());
+    for (unsigned int level=0; level<triangulation.n_levels(); ++level)
+      {
+       boundary_constraints[level].add_lines (interface_dofs[level]);
+       boundary_constraints[level].add_lines (mg_constrained_dofs.get_boundary_indices()[level]);
+       boundary_constraints[level].close ();
 
-      boundary_interface_constraints[level]
-       .add_lines (boundary_interface_dofs[level]);
-      boundary_interface_constraints[level].close ();
-    }
+       boundary_interface_constraints[level]
+         .add_lines (boundary_interface_dofs[level]);
+       boundary_interface_constraints[level].close ();
+      }
 
-  typename MGDoFHandler<dim>::cell_iterator
-    cell = dof_handler.begin(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-                                      // Remember the level of the
-                                      // current cell.
-      const unsigned int level = cell->level();
-                                      // Compute the values specified
-                                      // by update flags above.
-      fe_values.reinit (cell);
-      local_matrix = 0;
-
-      for (unsigned int q=0; q<n_q_points; ++q)
+    typename MGDoFHandler<dim>::cell_iterator
+      cell = dof_handler.begin(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
       {
-         for (unsigned int k=0; k<dofs_per_cell; ++k)
-           {
-             phi_grads_u[k] = fe_values[velocities].gradient (k, q);
-             div_phi_u[k]   = fe_values[velocities].divergence (k, q);
-             phi_p[k]       = fe_values[pressure].value (k, q);
-           }
-
-         for (unsigned int i=0; i<dofs_per_cell; ++i)
+                                        // Remember the level of the
+                                        // current cell.
+       const unsigned int level = cell->level();
+                                        // Compute the values specified
+                                        // by update flags above.
+       fe_values.reinit (cell);
+       local_matrix = 0;
+
+       for (unsigned int q=0; q<n_q_points; ++q)
+         {
+           for (unsigned int k=0; k<dofs_per_cell; ++k)
+             {
+               phi_grads_u[k] = fe_values[velocities].gradient (k, q);
+               div_phi_u[k]   = fe_values[velocities].divergence (k, q);
+               phi_p[k]       = fe_values[pressure].value (k, q);
+             }
+
+           for (unsigned int i=0; i<dofs_per_cell; ++i)
              for (unsigned int j=0; j<dofs_per_cell; ++j)
-                 local_matrix(i,j) += (
-                      scalar_product(phi_grads_u[i], phi_grads_u[j])
-                                       - div_phi_u[i] * phi_p[j]
-                                       - phi_p[i] * div_phi_u[j]
+               local_matrix(i,j) += (
+                 scalar_product(phi_grads_u[i], phi_grads_u[j])
+                 - div_phi_u[i] * phi_p[j]
+                 - phi_p[i] * div_phi_u[j]
 //                                        - phi_p[i] * phi_p[j]
-                                        )
-                                      * fe_values.JxW(q);
+               )
+                                    * fe_values.JxW(q);
+         }
+
+       cell->get_mg_dof_indices (local_dof_indices);
+       boundary_constraints[level]
+         .distribute_local_to_global (local_matrix,
+                                      local_dof_indices,
+                                      mg_matrices[level]);
+
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         for (unsigned int j=0; j<dofs_per_cell; ++j)
+           if( !(interface_dofs[level][local_dof_indices[i]]==true &&
+                 interface_dofs[level][local_dof_indices[j]]==false))
+             local_matrix(i,j) = 0;
+
+       boundary_interface_constraints[level]
+         .distribute_local_to_global (local_matrix,
+                                      local_dof_indices,
+                                      mg_interface_matrices[level]);
       }
 
-      cell->get_mg_dof_indices (local_dof_indices);
-      boundary_constraints[level]
-       .distribute_local_to_global (local_matrix,
-                                    local_dof_indices,
-                                    mg_matrices[level]);
-
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-         if( !(interface_dofs[level][local_dof_indices[i]]==true &&
-               interface_dofs[level][local_dof_indices[j]]==false))
-           local_matrix(i,j) = 0;
-
-      boundary_interface_constraints[level]
-       .distribute_local_to_global (local_matrix,
-                                    local_dof_indices,
-                                    mg_interface_matrices[level]);
-    }
-
-  mg_A_preconditioner.resize (triangulation.n_levels());
-  for (unsigned int level=0; level<triangulation.n_levels(); ++level)
-    {
-      mg_A_preconditioner[level]
-       = std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type>(new typename InnerPreconditioner<dim>::type());
-      mg_A_preconditioner[level]
-       ->initialize (mg_matrices[level].block(0,0),
-                     typename InnerPreconditioner<dim>::type::AdditionalData());
-    }
-}
+    mg_A_preconditioner.resize (triangulation.n_levels());
+    for (unsigned int level=0; level<triangulation.n_levels(); ++level)
+      {
+       mg_A_preconditioner[level]
+         = std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type>(new typename InnerPreconditioner<dim>::type());
+       mg_A_preconditioner[level]
+         ->initialize (mg_matrices[level].block(0,0),
+                       typename InnerPreconditioner<dim>::type::AdditionalData());
+      }
+  }
 
 
-template <typename InnerPreconditioner>
-class SchurComplementSmoother
-{
-  public:
-    struct AdditionalData
-    {
-       const InnerPreconditioner *A_preconditioner;
-    };
+  template <typename InnerPreconditioner>
+  class SchurComplementSmoother
+  {
+    public:
+      struct AdditionalData
+      {
+         const InnerPreconditioner *A_preconditioner;
+      };
 
-    void initialize (const BlockSparseMatrix<double> &system_matrix,
-                    const AdditionalData            &data);
+      void initialize (const BlockSparseMatrix<double> &system_matrix,
+                      const AdditionalData            &data);
 
-    void vmult (BlockVector<double> &dst,
-               const BlockVector<double> &src) const;
+      void vmult (BlockVector<double> &dst,
+                 const BlockVector<double> &src) const;
 
-    void Tvmult (BlockVector<double> &dst,
-                const BlockVector<double> &src) const;
+      void Tvmult (BlockVector<double> &dst,
+                  const BlockVector<double> &src) const;
 
-    void clear ();
+      void clear ();
 
-  private:
-    SmartPointer<const BlockSparseMatrix<double> > system_matrix;
-    SmartPointer<const InnerPreconditioner>        A_preconditioner;
-};
+    private:
+      SmartPointer<const BlockSparseMatrix<double> > system_matrix;
+      SmartPointer<const InnerPreconditioner>        A_preconditioner;
+  };
 
 
-template <typename InnerPreconditioner>
-void
-SchurComplementSmoother<InnerPreconditioner>::
-initialize (const BlockSparseMatrix<double> &system_matrix,
-           const AdditionalData            &data)
-{
-  this->system_matrix    = &system_matrix;
-  this->A_preconditioner = data.A_preconditioner;
-}
+  template <typename InnerPreconditioner>
+  void
+  SchurComplementSmoother<InnerPreconditioner>::
+  initialize (const BlockSparseMatrix<double> &system_matrix,
+             const AdditionalData            &data)
+  {
+    this->system_matrix    = &system_matrix;
+    this->A_preconditioner = data.A_preconditioner;
+  }
 
 
 
 
-template <typename InnerPreconditioner>
-void
-SchurComplementSmoother<InnerPreconditioner>::
-vmult (BlockVector<double> &dst,
-       const BlockVector<double> &src) const
-{
+  template <typename InnerPreconditioner>
+  void
+  SchurComplementSmoother<InnerPreconditioner>::
+  vmult (BlockVector<double> &dst,
+        const BlockVector<double> &src) const
+  {
 #ifdef STEP_42_TEST
-  std::cout << "Entering smoother with " << dst.size() << " unknowns" << std::endl;
+    std::cout << "Entering smoother with " << dst.size() << " unknowns" << std::endl;
 #endif
 
-  SparseDirectUMFPACK direct_solver;
-  direct_solver.initialize(*system_matrix);
-  Vector<double> solution, rhs;
-  solution = dst;
-  rhs = src;
-  direct_solver.vmult(solution, rhs);
-  dst = solution;
+    SparseDirectUMFPACK direct_solver;
+    direct_solver.initialize(*system_matrix);
+    Vector<double> solution, rhs;
+    solution = dst;
+    rhs = src;
+    direct_solver.vmult(solution, rhs);
+    dst = solution;
 /*
   const InverseMatrix<SparseMatrix<double>,InnerPreconditioner>
-    A_inverse (system_matrix->block(0,0), *A_preconditioner);
+  A_inverse (system_matrix->block(0,0), *A_preconditioner);
   Vector<double> tmp (dst.block(0).size());
 
 
   {
-    Vector<double> schur_rhs (dst.block(1).size());
-    A_inverse.name = "rhs";
-    A_inverse.vmult (tmp, src.block(0));
+  Vector<double> schur_rhs (dst.block(1).size());
+  A_inverse.name = "rhs";
+  A_inverse.vmult (tmp, src.block(0));
 //    std::cout << " TMP " << tmp.l2_norm() << std::endl;
-    system_matrix->block(1,0).vmult (schur_rhs, tmp);
-    schur_rhs -= src.block(1);
+system_matrix->block(1,0).vmult (schur_rhs, tmp);
+schur_rhs -= src.block(1);
 //    std::cout << " BLOCK 1 " << src.block(1).l2_norm() << std::endl;
 //    std::cout << " SCHUR RHS " << schur_rhs.l2_norm() << std::endl;
 
-    SchurComplement<InnerPreconditioner>
-      schur_complement (*system_matrix, A_inverse);
-
-                                    // The usual control structures for
-                                    // the solver call are created...
-    SolverControl solver_control (dst.block(1).size(),
-                                 1e-1*schur_rhs.l2_norm());
-    SolverGMRES<>    cg (solver_control);
-
-#ifdef STEP_42_TEST
-    std::cout << "    Starting Schur complement solver -- "
-             << schur_complement.m() << " unknowns"
-             << std::endl;
-#endif
-    try
-      {
-       cg.solve (schur_complement, dst.block(1), schur_rhs,
-                 PreconditionIdentity());
-      }
-    catch (...)
-      {
-       std::cout << "Failure in " << __PRETTY_FUNCTION__ << std::endl;
-       std::cout << schur_rhs.l2_norm () << std::endl;
-       abort ();
-      }
+SchurComplement<InnerPreconditioner>
+schur_complement (*system_matrix, A_inverse);
+
+                                // The usual control structures for
+                                                                 // the solver call are created...
+                                                                 SolverControl solver_control (dst.block(1).size(),
+                                                                 1e-1*schur_rhs.l2_norm());
+                                                                 SolverGMRES<>    cg (solver_control);
+
+                                                                 #ifdef STEP_42_TEST
+                                                                 std::cout << "    Starting Schur complement solver -- "
+                                                                 << schur_complement.m() << " unknowns"
+                                                                 << std::endl;
+                                                                 #endif
+                                                                 try
+                                                                 {
+                                                                 cg.solve (schur_complement, dst.block(1), schur_rhs,
+                                                                 PreconditionIdentity());
+                                                                 }
+                                                                 catch (...)
+                                                                 {
+                                                                 std::cout << "Failure in " << __PRETTY_FUNCTION__ << std::endl;
+                                                                 std::cout << schur_rhs.l2_norm () << std::endl;
+                                                                 abort ();
+                                                                 }
 
 // no constraints to be taken care of here
 #ifdef STEP_42_TEST
-    std::cout << "    "
-             << solver_control.last_step()
-             << " CG Schur complement iterations in smoother "
-             << solver_control.initial_value() << "->" << solver_control.last_value()
-             << std::endl;
+std::cout << "    "
+<< solver_control.last_step()
+<< " CG Schur complement iterations in smoother "
+<< solver_control.initial_value() << "->" << solver_control.last_value()
+<< std::endl;
 #endif
-  }
+}
 
 
-  {
-    system_matrix->block(0,1).vmult (tmp, dst.block(1));
-    tmp *= -1;
-    tmp += src.block(0);
+{
+system_matrix->block(0,1).vmult (tmp, dst.block(1));
+tmp *= -1;
+tmp += src.block(0);
 
-    A_inverse.name = "top left";
-    A_inverse.vmult (dst.block(0), tmp);
+A_inverse.name = "top left";
+A_inverse.vmult (dst.block(0), tmp);
 // no constraints here either
-  }
+}
 #ifdef STEP_42_TEST
-  std::cout << "Exiting smoother with " << dst.size() << " unknowns" << std::endl;
+std::cout << "Exiting smoother with " << dst.size() << " unknowns" << std::endl;
 #endif
 */
-}
+  }
 
 
 
-template <typename InnerPreconditioner>
-void
-SchurComplementSmoother<InnerPreconditioner>::clear ()
-{}
+  template <typename InnerPreconditioner>
+  void
+  SchurComplementSmoother<InnerPreconditioner>::clear ()
+  {}
 
 
 
-template <typename InnerPreconditioner>
-void
-SchurComplementSmoother<InnerPreconditioner>::
-Tvmult (BlockVector<double> &,
-       const BlockVector<double> &) const
-{
-  Assert (false, ExcNotImplemented());
-}
+  template <typename InnerPreconditioner>
+  void
+  SchurComplementSmoother<InnerPreconditioner>::
+  Tvmult (BlockVector<double> &,
+         const BlockVector<double> &) const
+  {
+    Assert (false, ExcNotImplemented());
+  }
 
 
 
-template <int dim>
-void StokesProblem<dim>::solve ()
-{
-  system_matrix.block(1,1) = 0;
-  assemble_multigrid ();
-  typedef PreconditionMG<dim, BlockVector<double>, MGTransferPrebuilt<BlockVector<double> > >
-    MGPREC;
-
-  GrowingVectorMemory<BlockVector<double> >  mg_vector_memory;
-
-  MGTransferPrebuilt<BlockVector<double> > mg_transfer(constraints, mg_constrained_dofs);
-  std::vector<unsigned int> block_component (dim+1,0);
-  block_component[dim] = 1;
-  mg_transfer.set_component_to_block_map (block_component);
-  mg_transfer.build_matrices(dof_handler);
-
-  FullMatrix<float> mg_coarse_matrix;
-  mg_coarse_matrix.copy_from (mg_matrices[0]);
-  MGCoarseGridHouseholder<float, BlockVector<double> > mg_coarse;
-  mg_coarse.initialize(mg_coarse_matrix);
-
-  MGMatrix<BlockSparseMatrix<double>, BlockVector<double> >
-    mg_matrix(&mg_matrices);
-  MGMatrix<BlockSparseMatrix<double>, BlockVector<double> >
-    mg_interface_up(&mg_interface_matrices);
-  MGMatrix<BlockSparseMatrix<double>, BlockVector<double> >
-    mg_interface_down(&mg_interface_matrices);
-
-  typedef
-    SchurComplementSmoother<typename InnerPreconditioner<dim>::type>
-    Smoother;
-
-  MGSmootherPrecondition<BlockSparseMatrix<double>,
-    Smoother,
-    BlockVector<double> >
-  mg_smoother(mg_vector_memory);
-
-  MGLevelObject<typename Smoother::AdditionalData>
-    smoother_data (0, triangulation.n_levels()-1);
-
-  for (unsigned int level=0; level<triangulation.n_levels(); ++level)
-    smoother_data[level].A_preconditioner = mg_A_preconditioner[level].get();
-
-  mg_smoother.initialize(mg_matrices, smoother_data);
-  mg_smoother.set_steps(2);
-
-  Multigrid<BlockVector<double> > mg(dof_handler,
-      mg_matrix,
-      mg_coarse,
-      mg_transfer,
-      mg_smoother,
-      mg_smoother);
-  mg.set_debug(3);
-  mg.set_edge_matrices(mg_interface_down, mg_interface_up);
-
-  MGPREC  preconditioner(dof_handler, mg, mg_transfer);
-
-  SolverControl solver_control (system_matrix.m(),
-      1e-6*system_rhs.l2_norm());
-  GrowingVectorMemory<BlockVector<double> > vector_memory;
-  SolverGMRES<BlockVector<double> >::AdditionalData gmres_data;
-  gmres_data.max_n_tmp_vectors = 100;
-
-  SolverGMRES<BlockVector<double> > gmres(solver_control, vector_memory,
-      gmres_data);
+  template <int dim>
+  void StokesProblem<dim>::solve ()
+  {
+    system_matrix.block(1,1) = 0;
+    assemble_multigrid ();
+    typedef PreconditionMG<dim, BlockVector<double>, MGTransferPrebuilt<BlockVector<double> > >
+      MGPREC;
+
+    GrowingVectorMemory<BlockVector<double> >  mg_vector_memory;
+
+    MGTransferPrebuilt<BlockVector<double> > mg_transfer(constraints, mg_constrained_dofs);
+    std::vector<unsigned int> block_component (dim+1,0);
+    block_component[dim] = 1;
+    mg_transfer.set_component_to_block_map (block_component);
+    mg_transfer.build_matrices(dof_handler);
+
+    FullMatrix<float> mg_coarse_matrix;
+    mg_coarse_matrix.copy_from (mg_matrices[0]);
+    MGCoarseGridHouseholder<float, BlockVector<double> > mg_coarse;
+    mg_coarse.initialize(mg_coarse_matrix);
+
+    MGMatrix<BlockSparseMatrix<double>, BlockVector<double> >
+      mg_matrix(&mg_matrices);
+    MGMatrix<BlockSparseMatrix<double>, BlockVector<double> >
+      mg_interface_up(&mg_interface_matrices);
+    MGMatrix<BlockSparseMatrix<double>, BlockVector<double> >
+      mg_interface_down(&mg_interface_matrices);
+
+    typedef
+      SchurComplementSmoother<typename InnerPreconditioner<dim>::type>
+      Smoother;
+
+    MGSmootherPrecondition<BlockSparseMatrix<double>,
+      Smoother,
+      BlockVector<double> >
+      mg_smoother(mg_vector_memory);
+
+    MGLevelObject<typename Smoother::AdditionalData>
+      smoother_data (0, triangulation.n_levels()-1);
+
+    for (unsigned int level=0; level<triangulation.n_levels(); ++level)
+      smoother_data[level].A_preconditioner = mg_A_preconditioner[level].get();
+
+    mg_smoother.initialize(mg_matrices, smoother_data);
+    mg_smoother.set_steps(2);
+
+    Multigrid<BlockVector<double> > mg(dof_handler,
+                                      mg_matrix,
+                                      mg_coarse,
+                                      mg_transfer,
+                                      mg_smoother,
+                                      mg_smoother);
+    mg.set_debug(3);
+    mg.set_edge_matrices(mg_interface_down, mg_interface_up);
+
+    MGPREC  preconditioner(dof_handler, mg, mg_transfer);
+
+    SolverControl solver_control (system_matrix.m(),
+                                 1e-6*system_rhs.l2_norm());
+    GrowingVectorMemory<BlockVector<double> > vector_memory;
+    SolverGMRES<BlockVector<double> >::AdditionalData gmres_data;
+    gmres_data.max_n_tmp_vectors = 100;
+
+    SolverGMRES<BlockVector<double> > gmres(solver_control, vector_memory,
+                                           gmres_data);
 
 //  PreconditionIdentity precondition_identity;
 #ifdef STEP_42_TEST
-  std::cout << "Starting outer GMRES complement solver" << std::endl;
+    std::cout << "Starting outer GMRES complement solver" << std::endl;
 #endif
-  try
-    {
-      gmres.solve(system_matrix, solution, system_rhs,
-                 preconditioner);
-    }
-  catch (...)
-    {
-      std::cout << "Failure in " << __PRETTY_FUNCTION__ << std::endl;
-      abort ();
-    }
+    try
+      {
+       gmres.solve(system_matrix, solution, system_rhs,
+                   preconditioner);
+      }
+    catch (...)
+      {
+       std::cout << "Failure in " << __PRETTY_FUNCTION__ << std::endl;
+       abort ();
+      }
 
-  constraints.distribute (solution);
+    constraints.distribute (solution);
 
-  std::cout << solver_control.last_step()
-           << " outer GMRES iterations ";
-}
+    std::cout << solver_control.last_step()
+             << " outer GMRES iterations ";
+  }
 
 
   template <int dim>
-void StokesProblem<dim>::solve_block () 
-{
-  std::cout << "   Computing preconditioner..." << std::endl << std::flush;
-      
-  A_preconditioner
-    = std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type>(new typename InnerPreconditioner<dim>::type());
-  A_preconditioner->initialize (system_matrix.block(0,0),
-                               typename InnerPreconditioner<dim>::type::AdditionalData());
-
-  SparseMatrix<double> pressure_mass_matrix;
-  pressure_mass_matrix.reinit(sparsity_pattern.block(1,1));
-  pressure_mass_matrix.copy_from(system_matrix.block(1,1));
-  system_matrix.block(1,1) = 0;
-
-  SparseILU<double> pmass_preconditioner;
-  pmass_preconditioner.initialize (pressure_mass_matrix, 
-      SparseILU<double>::AdditionalData());
-
-  InverseMatrix<SparseMatrix<double>,SparseILU<double> >
-    m_inverse (pressure_mass_matrix, pmass_preconditioner);
-
-  BlockSchurPreconditioner<typename InnerPreconditioner<dim>::type,
-    SparseILU<double> > 
+  void StokesProblem<dim>::solve_block ()
+  {
+    std::cout << "   Computing preconditioner..." << std::endl << std::flush;
+
+    A_preconditioner
+      = std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type>(new typename InnerPreconditioner<dim>::type());
+    A_preconditioner->initialize (system_matrix.block(0,0),
+                                 typename InnerPreconditioner<dim>::type::AdditionalData());
+
+    SparseMatrix<double> pressure_mass_matrix;
+    pressure_mass_matrix.reinit(sparsity_pattern.block(1,1));
+    pressure_mass_matrix.copy_from(system_matrix.block(1,1));
+    system_matrix.block(1,1) = 0;
+
+    SparseILU<double> pmass_preconditioner;
+    pmass_preconditioner.initialize (pressure_mass_matrix,
+                                    SparseILU<double>::AdditionalData());
+
+    InverseMatrix<SparseMatrix<double>,SparseILU<double> >
+      m_inverse (pressure_mass_matrix, pmass_preconditioner);
+
+    BlockSchurPreconditioner<typename InnerPreconditioner<dim>::type,
+      SparseILU<double> >
       preconditioner (system_matrix, m_inverse, *A_preconditioner);
 
-  SolverControl solver_control (system_matrix.m(),
-      1e-6*system_rhs.l2_norm());
-  GrowingVectorMemory<BlockVector<double> > vector_memory;
-  SolverGMRES<BlockVector<double> >::AdditionalData gmres_data;
-  gmres_data.max_n_tmp_vectors = 100;
+    SolverControl solver_control (system_matrix.m(),
+                                 1e-6*system_rhs.l2_norm());
+    GrowingVectorMemory<BlockVector<double> > vector_memory;
+    SolverGMRES<BlockVector<double> >::AdditionalData gmres_data;
+    gmres_data.max_n_tmp_vectors = 100;
 
-  SolverGMRES<BlockVector<double> > gmres(solver_control, vector_memory,
-      gmres_data);
+    SolverGMRES<BlockVector<double> > gmres(solver_control, vector_memory,
+                                           gmres_data);
 
-  gmres.solve(system_matrix, solution, system_rhs,
-      preconditioner);
+    gmres.solve(system_matrix, solution, system_rhs,
+               preconditioner);
 
-  constraints.distribute (solution);
+    constraints.distribute (solution);
 
-  std::cout << " "
-    << solver_control.last_step()
-    << " block GMRES iterations ";
-}
+    std::cout << " "
+             << solver_control.last_step()
+             << " block GMRES iterations ";
+  }
 
 
-template <int dim>
-void
-StokesProblem<dim>::output_results (const unsigned int refinement_cycle)  const
-{
-  std::vector<std::string> solution_names (dim, "velocity");
-  solution_names.push_back ("pressure");
+  template <int dim>
+  void
+  StokesProblem<dim>::output_results (const unsigned int refinement_cycle)  const
+  {
+    std::vector<std::string> solution_names (dim, "velocity");
+    solution_names.push_back ("pressure");
 
-  std::vector<DataComponentInterpretation::DataComponentInterpretation>
+    std::vector<DataComponentInterpretation::DataComponentInterpretation>
+      data_component_interpretation
+      (dim, DataComponentInterpretation::component_is_part_of_vector);
     data_component_interpretation
-    (dim, DataComponentInterpretation::component_is_part_of_vector);
-  data_component_interpretation
-    .push_back (DataComponentInterpretation::component_is_scalar);
-
-  DataOut<dim> data_out;
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, solution_names,
-                           DataOut<dim>::type_dof_data,
-                           data_component_interpretation);
-  data_out.build_patches ();
-
-  std::ostringstream filename;
-  filename << "solution-"
-           << Utilities::int_to_string (refinement_cycle, 2)
-           << ".vtk";
-
-  std::ofstream output (filename.str().c_str());
-  data_out.write_vtk (output);
-}
+      .push_back (DataComponentInterpretation::component_is_scalar);
+
+    DataOut<dim> data_out;
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (solution, solution_names,
+                             DataOut<dim>::type_dof_data,
+                             data_component_interpretation);
+    data_out.build_patches ();
+
+    std::ostringstream filename;
+    filename << "solution-"
+            << Utilities::int_to_string (refinement_cycle, 2)
+            << ".vtk";
+
+    std::ofstream output (filename.str().c_str());
+    data_out.write_vtk (output);
+  }
 
 
 
-template <int dim>
-void
-StokesProblem<dim>::refine_mesh ()
-{
-  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
-  std::vector<bool> component_mask (dim+1, false);
-  component_mask[dim] = true;
-  KellyErrorEstimator<dim>::estimate (static_cast<const DoFHandler<dim>&>(dof_handler),
-                                      QGauss<dim-1>(degree+1),
-                                      typename FunctionMap<dim>::type(),
-                                      solution,
-                                      estimated_error_per_cell,
-                                      component_mask);
-
-  GridRefinement::refine_and_coarsen_fixed_number (triangulation,
-                                                   estimated_error_per_cell,
-                                                   0.3, 0.0);
-  triangulation.execute_coarsening_and_refinement ();
-}
+  template <int dim>
+  void
+  StokesProblem<dim>::refine_mesh ()
+  {
+    Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+    std::vector<bool> component_mask (dim+1, false);
+    component_mask[dim] = true;
+    KellyErrorEstimator<dim>::estimate (static_cast<const DoFHandler<dim>&>(dof_handler),
+                                       QGauss<dim-1>(degree+1),
+                                       typename FunctionMap<dim>::type(),
+                                       solution,
+                                       estimated_error_per_cell,
+                                       component_mask);
+
+    GridRefinement::refine_and_coarsen_fixed_number (triangulation,
+                                                    estimated_error_per_cell,
+                                                    0.3, 0.0);
+    triangulation.execute_coarsening_and_refinement ();
+  }
 
 
 
-template <int dim>
-void StokesProblem<dim>::run ()
-{
+  template <int dim>
+  void StokesProblem<dim>::run ()
   {
-    std::vector<unsigned int> subdivisions (dim, 1);
-    subdivisions[0] = 1;
-
-    const Point<dim> bottom_left = (dim == 2 ?
-                                   Point<dim>(0,0) :
-                                   Point<dim>(0,0,0));
-    const Point<dim> top_right   = (dim == 2 ?
-                                   Point<dim>(1,1) :
-                                   Point<dim>(1,1,1));
-
-    GridGenerator::subdivided_hyper_rectangle (triangulation,
-                                              subdivisions,
-                                              bottom_left,
-                                              top_right);
-  }
+    {
+      std::vector<unsigned int> subdivisions (dim, 1);
+      subdivisions[0] = 1;
+
+      const Point<dim> bottom_left = (dim == 2 ?
+                                     Point<dim>(0,0) :
+                                     Point<dim>(0,0,0));
+      const Point<dim> top_right   = (dim == 2 ?
+                                     Point<dim>(1,1) :
+                                     Point<dim>(1,1,1));
+
+      GridGenerator::subdivided_hyper_rectangle (triangulation,
+                                                subdivisions,
+                                                bottom_left,
+                                                top_right);
+    }
 
 
-  for (typename Triangulation<dim>::active_cell_iterator
-        cell = triangulation.begin_active();
-       cell != triangulation.end(); ++cell)
-    for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
-      if (cell->face(f)->center()[0] == 1)
-       cell->face(f)->set_all_boundary_indicators(1);
+    for (typename Triangulation<dim>::active_cell_iterator
+          cell = triangulation.begin_active();
+        cell != triangulation.end(); ++cell)
+      for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
+       if (cell->face(f)->center()[0] == 1)
+         cell->face(f)->set_all_boundary_indicators(1);
 
 
 
-  triangulation.refine_global (1);
+    triangulation.refine_global (1);
 
 
-  for (unsigned int refinement_cycle = 0; refinement_cycle<10;
-       ++refinement_cycle)
-    {
-      std::cout << "Refinement cycle " << refinement_cycle << std::endl;
+    for (unsigned int refinement_cycle = 0; refinement_cycle<10;
+        ++refinement_cycle)
+      {
+       std::cout << "Refinement cycle " << refinement_cycle << std::endl;
 
-      if (refinement_cycle > 0)
-        refine_mesh ();
+       if (refinement_cycle > 0)
+         refine_mesh ();
 
-      std::ostringstream out_filename;
-      out_filename << "gitter"
-        << refinement_cycle
-        << ".eps";
+       std::ostringstream out_filename;
+       out_filename << "gitter"
+                    << refinement_cycle
+                    << ".eps";
 
-      std::ofstream grid_output (out_filename.str().c_str());
-      GridOut grid_out;
-      grid_out.write_eps (triangulation, grid_output);
+       std::ofstream grid_output (out_filename.str().c_str());
+       GridOut grid_out;
+       grid_out.write_eps (triangulation, grid_output);
 
-      setup_dofs ();
+       setup_dofs ();
 
-      std::cout << "   Assembling..." << std::endl << std::flush;
-      assemble_system ();
+       std::cout << "   Assembling..." << std::endl << std::flush;
+       assemble_system ();
 
-      std::cout << "   Solving..." << std::flush;
+       std::cout << "   Solving..." << std::flush;
 
-      solve_block ();
-      output_results (refinement_cycle);
-      system ("mv solution-* block");
+       solve_block ();
+       output_results (refinement_cycle);
+       system ("mv solution-* block");
 
-      solution = 0;
+       solution = 0;
 
-      solve ();
-      output_results (refinement_cycle);
-      system ("mv solution-* mg");
+       solve ();
+       output_results (refinement_cycle);
+       system ("mv solution-* mg");
 
-      std::cout << std::endl;
-    }
+       std::cout << std::endl;
+      }
+  }
 }
 
 
@@ -1149,6 +1152,9 @@ int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step42;
+
       deallog.depth_console (0);
 
       StokesProblem<2> flow_problem(1);
index b3f5d3a521aff8c3706b7316127885afa733138e..feb9f2a8cfd05fe3e4654d2cd09c46eb2171a547 100644 (file)
@@ -4,7 +4,7 @@
 
 /*    $Id$       */
 /*                                                                */
-/*    Copyright (C) 2010 by Chih-Che Chueh and the deal.II authors */
+/*    Copyright (C) 2010, 2011 by Chih-Che Chueh and the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
                                 // the functionality of these well-known
                                 // deal.II library files and some C++ header
                                 // files.
-                                // 
+                                //
                                 // In this program, we use a tensor-valued
                                 // coefficient. Since it may have a spatial
                                 // dependence, we consider it a tensor-valued
                                 // function. The following include file
                                 // provides the TensorFunction class that
                                 // offers such functionality:
-                                // 
+                                //
                                 // Then we need to include some header files
                                 // that provide vector, matrix, and
                                 // preconditioner classes that implement
@@ -35,7 +35,7 @@
                                 // interfaces to the matrix and vector
                                 // classes based on Trilinos as well as
                                 // Trilinos preconditioners:
-                                // 
+                                //
                                 // At the end of this top-matter, we import
                                 // all deal.II names into the global
                                 // namespace:
 #include <fstream>
 #include <sstream>
 
-using namespace dealii;
+namespace Step43
+{
+  using namespace dealii;
 
 
-                                // @sect3{The InverseMatrix class template}
+                                  // @sect3{The InverseMatrix class template}
 
-                                // This part is exactly the same as that used in step-31.
+                                  // This part is exactly the same as that used in step-31.
 
-                                // @sect3{Schur complement preconditioner}
+                                  // @sect3{Schur complement preconditioner}
 
-                                // This part for the Schur complement
-                                // preconditioner is almost the same as that
-                                // used in step-31. The only difference is
-                                // that the original variable name
-                                // stokes_matrix is replaced by another name
-                                // darcy_matrix to satisfy our problem.
-namespace LinearSolvers
-{
-  template <class Matrix, class Preconditioner>
-  class InverseMatrix : public Subscriptor
+                                  // This part for the Schur complement
+                                  // preconditioner is almost the same as that
+                                  // used in step-31. The only difference is
+                                  // that the original variable name
+                                  // stokes_matrix is replaced by another name
+                                  // darcy_matrix to satisfy our problem.
+  namespace LinearSolvers
   {
-    public:
-      InverseMatrix (const Matrix         &m,
-                     const Preconditioner &preconditioner);
+    template <class Matrix, class Preconditioner>
+    class InverseMatrix : public Subscriptor
+    {
+      public:
+       InverseMatrix (const Matrix         &m,
+                      const Preconditioner &preconditioner);
 
 
-      template <typename VectorType>
-      void vmult (VectorType       &dst,
-                  const VectorType &src) const;
+       template <typename VectorType>
+       void vmult (VectorType       &dst,
+                   const VectorType &src) const;
 
-    private:
-      const SmartPointer<const Matrix> matrix;
-      const Preconditioner &preconditioner;
-  };
+      private:
+       const SmartPointer<const Matrix> matrix;
+       const Preconditioner &preconditioner;
+    };
 
 
-  template <class Matrix, class Preconditioner>
-  InverseMatrix<Matrix,Preconditioner>::
-  InverseMatrix (const Matrix &m,
-                 const Preconditioner &preconditioner)
-                 :
-                 matrix (&m),
-                 preconditioner (preconditioner)
-  {}
+    template <class Matrix, class Preconditioner>
+    InverseMatrix<Matrix,Preconditioner>::
+    InverseMatrix (const Matrix &m,
+                  const Preconditioner &preconditioner)
+                   :
+                   matrix (&m),
+                   preconditioner (preconditioner)
+    {}
 
 
 
-  template <class Matrix, class Preconditioner>
-  template <typename VectorType>
-  void
-  InverseMatrix<Matrix,Preconditioner>::
-  vmult (VectorType       &dst,
-         const VectorType &src) const
-  {
-    SolverControl solver_control (src.size(), 1e-7*src.l2_norm());
-    SolverCG<VectorType> cg (solver_control);
+    template <class Matrix, class Preconditioner>
+    template <typename VectorType>
+    void
+    InverseMatrix<Matrix,Preconditioner>::
+    vmult (VectorType       &dst,
+          const VectorType &src) const
+    {
+      SolverControl solver_control (src.size(), 1e-7*src.l2_norm());
+      SolverCG<VectorType> cg (solver_control);
 
-    dst = 0;
+      dst = 0;
 
-    try
-      {
-       cg.solve (*matrix, dst, src, preconditioner);
-      }
-    catch (std::exception &e)
-      {
-       Assert (false, ExcMessage(e.what()));
-      }
+      try
+       {
+         cg.solve (*matrix, dst, src, preconditioner);
+       }
+      catch (std::exception &e)
+       {
+         Assert (false, ExcMessage(e.what()));
+       }
+    }
+
+    template <class PreconditionerA, class PreconditionerMp>
+    class BlockSchurPreconditioner : public Subscriptor
+    {
+      public:
+       BlockSchurPreconditioner (
+         const TrilinosWrappers::BlockSparseMatrix     &S,
+         const InverseMatrix<TrilinosWrappers::SparseMatrix,
+         PreconditionerMp>         &Mpinv,
+         const PreconditionerA                         &Apreconditioner);
+
+       void vmult (TrilinosWrappers::BlockVector       &dst,
+                   const TrilinosWrappers::BlockVector &src) const;
+
+      private:
+       const SmartPointer<const TrilinosWrappers::BlockSparseMatrix> darcy_matrix;
+       const SmartPointer<const InverseMatrix<TrilinosWrappers::SparseMatrix,
+                                              PreconditionerMp > > m_inverse;
+       const PreconditionerA &a_preconditioner;
+
+       mutable TrilinosWrappers::Vector tmp;
+    };
+
+
+
+    template <class PreconditionerA, class PreconditionerMp>
+    BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::
+    BlockSchurPreconditioner(const TrilinosWrappers::BlockSparseMatrix  &S,
+                            const InverseMatrix<TrilinosWrappers::SparseMatrix,
+                            PreconditionerMp>      &Mpinv,
+                            const PreconditionerA                      &Apreconditioner)
+                   :
+                   darcy_matrix            (&S),
+                   m_inverse               (&Mpinv),
+                   a_preconditioner        (Apreconditioner),
+                   tmp                     (darcy_matrix->block(1,1).m())
+    {}
+
+
+    template <class PreconditionerA, class PreconditionerMp>
+    void BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::vmult (
+      TrilinosWrappers::BlockVector       &dst,
+      const TrilinosWrappers::BlockVector &src) const
+    {
+      a_preconditioner.vmult (dst.block(0), src.block(0));
+      darcy_matrix->block(1,0).residual(tmp, dst.block(0), src.block(1));
+      tmp *= -1;
+      m_inverse->vmult (dst.block(1), tmp);
+    }
   }
 
-  template <class PreconditionerA, class PreconditionerMp>
-  class BlockSchurPreconditioner : public Subscriptor
+
+                                  // @sect3{The TwoPhaseFlowProblem class}
+
+                                  // The definition of the class that defines
+                                  // the top-level logic of solving the
+                                  // time-dependent advection-dominated
+                                  // two-phase flow problem (or
+                                  // Buckley-Leverett problem
+                                  // [Buckley 1942]) is mainly based on
+                                  // three tutorial programs (step-21, step-31,
+                                  // step-33). The main difference is that,
+                                  // since adaptive operator splitting is
+                                  // considered, we need a bool-type variable
+                                  // solve_pressure_velocity_part to tell us
+                                  // when we need to solve the pressure and
+                                  // velocity part, need another bool-type
+                                  // variable
+                                  // previous_solve_pressure_velocity_part to
+                                  // determine if we have to cumulate
+                                  // micro-time steps that we need them to do
+                                  // extrapolation for the total velocity, and
+                                  // some solution vectors
+                                  // (e.g. nth_darcy_solution_after_solving_pressure_part
+                                  // and
+                                  // n_minus_oneth_darcy_solution_after_solving_pressure_part)
+                                  // to store some solutions in previous time
+                                  // steps after the solution of the pressure
+                                  // and velocity part.
+                                  //
+                                  // The member functions within this class
+                                  // have been named so properly so that
+                                  // readers can easily understand what they
+                                  // are doing.
+                                  //
+                                  // Like step-31, this tutorial uses two
+                                  // DoFHandler objects for the darcy system
+                                  // (presure and velocity) and
+                                  // saturation. This is because we want it to
+                                  // run faster, which reasons have been
+                                  // described in step-31.
+                                  //
+                                  // There is yet another important thing:
+                                  // unlike step-31. this step uses one more
+                                  // ConstraintMatrix object called
+                                  // darcy_preconditioner_constraints. This
+                                  // constraint object only for assembling the
+                                  // matrix for darcy preconditioner includes
+                                  // hanging node constrants as well as
+                                  // Dirichlet boundary value
+                                  // constraints. Without this constraint
+                                  // object for the preconditioner, we cannot
+                                  // get the convergence results when we solve
+                                  // darcy linear system.
+                                  //
+                                  // The last one variable indicates whether
+                                  // the matrix needs to be rebuilt the next
+                                  // time the corresponding build functions are
+                                  // called. This allows us to move the
+                                  // corresponding if into the function and
+                                  // thereby keeping our main run() function
+                                  // clean and easy to read.
+  template <int dim>
+  class TwoPhaseFlowProblem
   {
     public:
-      BlockSchurPreconditioner (
-        const TrilinosWrappers::BlockSparseMatrix     &S,
-        const InverseMatrix<TrilinosWrappers::SparseMatrix,
-       PreconditionerMp>         &Mpinv,
-        const PreconditionerA                         &Apreconditioner);
-
-      void vmult (TrilinosWrappers::BlockVector       &dst,
-                  const TrilinosWrappers::BlockVector &src) const;
+      TwoPhaseFlowProblem (const unsigned int degree);
+      void run ();
 
     private:
-      const SmartPointer<const TrilinosWrappers::BlockSparseMatrix> darcy_matrix;
-      const SmartPointer<const InverseMatrix<TrilinosWrappers::SparseMatrix,
-                                             PreconditionerMp > > m_inverse;
-      const PreconditionerA &a_preconditioner;
-
-      mutable TrilinosWrappers::Vector tmp;
+      void setup_dofs ();
+      void assemble_darcy_preconditioner ();
+      void build_darcy_preconditioner ();
+      void assemble_darcy_system ();
+      void assemble_saturation_system ();
+      void assemble_saturation_matrix ();
+      void assemble_saturation_rhs ();
+      void assemble_saturation_rhs_cell_term (const FEValues<dim>             &saturation_fe_values,
+                                             const FEValues<dim>             &darcy_fe_values,
+                                             const std::vector<unsigned int> &local_dof_indices,
+                                             const double                     global_u_infty,
+                                             const double                     global_S_variation,
+                                             const double                     global_Omega_diameter);
+      void assemble_saturation_rhs_boundary_term (const FEFaceValues<dim>             &saturation_fe_face_values,
+                                                 const FEFaceValues<dim>             &darcy_fe_face_values,
+                                                 const std::vector<unsigned int>     &local_dof_indices);
+      double get_maximal_velocity () const;
+      std::pair<double,double> get_extrapolated_saturation_range () const;
+      void solve ();
+      bool determine_whether_to_solve_pressure_velocity_part () const;
+      void compute_refinement_indicators (Vector<double> &indicator) const;
+      void refine_grid (const Vector<double> &indicator);
+      void project_back_saturation ();
+      void output_results () const;
+
+      static
+      double
+      compute_viscosity(const std::vector<double>          &old_saturation,
+                       const std::vector<double>          &old_old_saturation,
+                       const std::vector<Tensor<1,dim> >  &old_saturation_grads,
+                       const std::vector<Tensor<1,dim> >  &old_old_saturation_grads,
+                       const std::vector<Vector<double> > &present_darcy_values,
+                       const double                        global_u_infty,
+                       const double                        global_S_variation,
+                       const double                        global_Omega_diameter,
+                       const double                        cell_diameter,
+                       const double                        old_time_step,
+                       const double                        viscosity);
+
+
+      const unsigned int degree;
+
+      Triangulation<dim>                   triangulation;
+
+      const unsigned int                   darcy_degree;
+      FESystem<dim>                        darcy_fe;
+      DoFHandler<dim>                      darcy_dof_handler;
+      ConstraintMatrix                     darcy_constraints;
+
+      ConstraintMatrix                     darcy_preconditioner_constraints;
+
+      TrilinosWrappers::BlockSparseMatrix  darcy_matrix;
+      TrilinosWrappers::BlockSparseMatrix  darcy_preconditioner_matrix;
+
+      TrilinosWrappers::BlockVector        darcy_solution;
+      TrilinosWrappers::BlockVector        darcy_rhs;
+
+      TrilinosWrappers::BlockVector        nth_darcy_solution_after_solving_pressure_part;
+      TrilinosWrappers::BlockVector        n_minus_oneth_darcy_solution_after_solving_pressure_part;
+
+      const unsigned int                   saturation_degree;
+      FE_Q<dim>                            saturation_fe;
+      DoFHandler<dim>                      saturation_dof_handler;
+      ConstraintMatrix                     saturation_constraints;
+
+      TrilinosWrappers::SparseMatrix       saturation_matrix;
+
+      TrilinosWrappers::Vector             predictor_saturation_solution;
+      TrilinosWrappers::Vector             saturation_solution;
+      TrilinosWrappers::Vector             old_saturation_solution;
+      TrilinosWrappers::Vector             old_old_saturation_solution;
+      TrilinosWrappers::Vector             saturation_rhs;
+
+      TrilinosWrappers::Vector             nth_saturation_solution_after_solving_pressure_part;
+
+      const unsigned int        n_refinement_steps;
+      bool                      solve_pressure_velocity_part;
+      bool                      previous_solve_pressure_velocity_part;
+
+      const double              saturation_level;
+      const double              saturation_value;
+
+      double n_minus_oneth_time_step;
+      double cumulative_nth_time_step;
+
+      double time_step;
+      double old_time_step;
+      unsigned int timestep_number;
+      double viscosity;
+
+      std_cxx1x::shared_ptr<TrilinosWrappers::PreconditionIC> Amg_preconditioner;
+      std_cxx1x::shared_ptr<TrilinosWrappers::PreconditionIC>  Mp_preconditioner;
+
+      bool rebuild_saturation_matrix;
   };
 
 
+                                  // @sect3{Pressure right hand side, Pressure boundary values and saturation initial value classes}
 
-  template <class PreconditionerA, class PreconditionerMp>
-  BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::
-  BlockSchurPreconditioner(const TrilinosWrappers::BlockSparseMatrix  &S,
-                           const InverseMatrix<TrilinosWrappers::SparseMatrix,
-                          PreconditionerMp>      &Mpinv,
-                           const PreconditionerA                      &Apreconditioner)
-                  :
-                  darcy_matrix            (&S),
-                  m_inverse               (&Mpinv),
-                  a_preconditioner        (Apreconditioner),
-                  tmp                     (darcy_matrix->block(1,1).m())
-  {}
-
-
-  template <class PreconditionerA, class PreconditionerMp>
-  void BlockSchurPreconditioner<PreconditionerA, PreconditionerMp>::vmult (
-    TrilinosWrappers::BlockVector       &dst,
-    const TrilinosWrappers::BlockVector &src) const
+                                  // This part is directly taken from step-21
+                                  // so there is no need to repeat the same
+                                  // descriptions.
+  template <int dim>
+  class PressureRightHandSide : public Function<dim>
   {
-    a_preconditioner.vmult (dst.block(0), src.block(0));
-    darcy_matrix->block(1,0).residual(tmp, dst.block(0), src.block(1));
-    tmp *= -1;
-    m_inverse->vmult (dst.block(1), tmp);
-  }
-}
-
-
-                                // @sect3{The TwoPhaseFlowProblem class}
-
-                                // The definition of the class that defines
-                                // the top-level logic of solving the
-                                // time-dependent advection-dominated
-                                // two-phase flow problem (or
-                                // Buckley-Leverett problem
-                                // [Buckley 1942]) is mainly based on
-                                // three tutorial programs (step-21, step-31,
-                                // step-33). The main difference is that,
-                                // since adaptive operator splitting is
-                                // considered, we need a bool-type variable
-                                // solve_pressure_velocity_part to tell us
-                                // when we need to solve the pressure and
-                                // velocity part, need another bool-type
-                                // variable
-                                // previous_solve_pressure_velocity_part to
-                                // determine if we have to cumulate
-                                // micro-time steps that we need them to do
-                                // extrapolation for the total velocity, and
-                                // some solution vectors
-                                // (e.g. nth_darcy_solution_after_solving_pressure_part
-                                // and
-                                // n_minus_oneth_darcy_solution_after_solving_pressure_part)
-                                // to store some solutions in previous time
-                                // steps after the solution of the pressure
-                                // and velocity part.
-                                // 
-                                // The member functions within this class
-                                // have been named so properly so that
-                                // readers can easily understand what they
-                                // are doing.
-                                // 
-                                // Like step-31, this tutorial uses two
-                                // DoFHandler objects for the darcy system
-                                // (presure and velocity) and
-                                // saturation. This is because we want it to
-                                // run faster, which reasons have been
-                                // described in step-31.
-                                // 
-                                // There is yet another important thing:
-                                // unlike step-31. this step uses one more
-                                // ConstraintMatrix object called
-                                // darcy_preconditioner_constraints. This
-                                // constraint object only for assembling the
-                                // matrix for darcy preconditioner includes
-                                // hanging node constrants as well as
-                                // Dirichlet boundary value
-                                // constraints. Without this constraint
-                                // object for the preconditioner, we cannot
-                                // get the convergence results when we solve
-                                // darcy linear system.
-                                // 
-                                // The last one variable indicates whether
-                                // the matrix needs to be rebuilt the next
-                                // time the corresponding build functions are
-                                // called. This allows us to move the
-                                // corresponding if into the function and
-                                // thereby keeping our main run() function
-                                // clean and easy to read.
-template <int dim>
-class TwoPhaseFlowProblem
-{
-  public:
-    TwoPhaseFlowProblem (const unsigned int degree);
-    void run ();
-
-  private:
-    void setup_dofs ();
-    void assemble_darcy_preconditioner ();
-    void build_darcy_preconditioner ();
-    void assemble_darcy_system ();
-    void assemble_saturation_system ();
-    void assemble_saturation_matrix ();
-    void assemble_saturation_rhs ();
-    void assemble_saturation_rhs_cell_term (const FEValues<dim>             &saturation_fe_values,
-                                            const FEValues<dim>             &darcy_fe_values,
-                                            const std::vector<unsigned int> &local_dof_indices,
-                                            const double                     global_u_infty,
-                                            const double                     global_S_variation,
-                                            const double                     global_Omega_diameter);
-    void assemble_saturation_rhs_boundary_term (const FEFaceValues<dim>             &saturation_fe_face_values,
-                                                const FEFaceValues<dim>             &darcy_fe_face_values,
-                                                const std::vector<unsigned int>     &local_dof_indices);
-    double get_maximal_velocity () const;
-    std::pair<double,double> get_extrapolated_saturation_range () const;
-    void solve ();
-    bool determine_whether_to_solve_pressure_velocity_part () const;
-    void compute_refinement_indicators (Vector<double> &indicator) const;
-    void refine_grid (const Vector<double> &indicator);
-    void project_back_saturation ();
-    void output_results () const;
-
-    static
-    double
-    compute_viscosity(const std::vector<double>          &old_saturation,
-                      const std::vector<double>          &old_old_saturation,
-                      const std::vector<Tensor<1,dim> >  &old_saturation_grads,
-                      const std::vector<Tensor<1,dim> >  &old_old_saturation_grads,
-                      const std::vector<Vector<double> > &present_darcy_values,
-                      const double                        global_u_infty,
-                      const double                        global_S_variation,
-                      const double                        global_Omega_diameter,
-                      const double                        cell_diameter,
-                      const double                        old_time_step,
-                      const double                        viscosity);
-
-
-    const unsigned int degree;
-
-    Triangulation<dim>                   triangulation;
-
-    const unsigned int                   darcy_degree;
-    FESystem<dim>                        darcy_fe;
-    DoFHandler<dim>                      darcy_dof_handler;
-    ConstraintMatrix                     darcy_constraints;
-
-    ConstraintMatrix                     darcy_preconditioner_constraints;
-
-    TrilinosWrappers::BlockSparseMatrix  darcy_matrix;
-    TrilinosWrappers::BlockSparseMatrix  darcy_preconditioner_matrix;
-
-    TrilinosWrappers::BlockVector        darcy_solution;
-    TrilinosWrappers::BlockVector        darcy_rhs;
-
-    TrilinosWrappers::BlockVector        nth_darcy_solution_after_solving_pressure_part;
-    TrilinosWrappers::BlockVector        n_minus_oneth_darcy_solution_after_solving_pressure_part;
-
-    const unsigned int                   saturation_degree;
-    FE_Q<dim>                            saturation_fe;
-    DoFHandler<dim>                      saturation_dof_handler;
-    ConstraintMatrix                     saturation_constraints;
-
-    TrilinosWrappers::SparseMatrix       saturation_matrix;
-
-    TrilinosWrappers::Vector             predictor_saturation_solution;
-    TrilinosWrappers::Vector             saturation_solution;
-    TrilinosWrappers::Vector             old_saturation_solution;
-    TrilinosWrappers::Vector             old_old_saturation_solution;
-    TrilinosWrappers::Vector             saturation_rhs;
-
-    TrilinosWrappers::Vector             nth_saturation_solution_after_solving_pressure_part;
-
-    const unsigned int        n_refinement_steps;
-    bool                      solve_pressure_velocity_part;
-    bool                      previous_solve_pressure_velocity_part;
-
-    const double              saturation_level;
-    const double              saturation_value;
-
-    double n_minus_oneth_time_step;
-    double cumulative_nth_time_step;
-
-    double time_step;
-    double old_time_step;
-    unsigned int timestep_number;
-    double viscosity;
-
-    std_cxx1x::shared_ptr<TrilinosWrappers::PreconditionIC> Amg_preconditioner;
-    std_cxx1x::shared_ptr<TrilinosWrappers::PreconditionIC>  Mp_preconditioner;
-
-    bool rebuild_saturation_matrix;
-};
-
-
-                                // @sect3{Pressure right hand side, Pressure boundary values and saturation initial value classes}
-
-                                // This part is directly taken from step-21
-                                // so there is no need to repeat the same
-                                // descriptions.
-template <int dim>
-class PressureRightHandSide : public Function<dim>
-{
-  public:
-    PressureRightHandSide () : Function<dim>(1) {}
-
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
-};
-
-
-
-template <int dim>
-double
-PressureRightHandSide<dim>::value (const Point<dim>  &/*p*/,
-                                   const unsigned int /*component*/) const
-{
-  return 0;
-}
-
-
-template <int dim>
-class PressureBoundaryValues : public Function<dim>
-{
-  public:
-    PressureBoundaryValues () : Function<dim>(1) {}
-
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
-};
-
-
-template <int dim>
-double
-PressureBoundaryValues<dim>::value (const Point<dim>  &p,
-                                    const unsigned int /*component*/) const
-{
-  return 1-p[0];
-}
-
-
-template <int dim>
-class SaturationBoundaryValues : public Function<dim>
-{
-  public:
-    SaturationBoundaryValues () : Function<dim>(1) {}
+    public:
+      PressureRightHandSide () : Function<dim>(1) {}
 
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
-};
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
 
 
-template <int dim>
-double
-SaturationBoundaryValues<dim>::value (const Point<dim> &p,
-                                      const unsigned int /*component*/) const
-{
-  if (p[0] == 0)
-    return 1;
-  else
+  template <int dim>
+  double
+  PressureRightHandSide<dim>::value (const Point<dim>  &/*p*/,
+                                    const unsigned int /*component*/) const
+  {
     return 0;
-}
-
-
-template <int dim>
-class SaturationInitialValues : public Function<dim>
-{
-  public:
-    SaturationInitialValues () : Function<dim>(1) {}
-
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
-
-    virtual void vector_value (const Point<dim> &p,
-                               Vector<double>   &value) const;
-
-};
+  }
 
 
-template <int dim>
-double
-SaturationInitialValues<dim>::value (const Point<dim>  &/*p*/,
-                                     const unsigned int /*component*/) const
-{
-  return 0;
-}
+  template <int dim>
+  class PressureBoundaryValues : public Function<dim>
+  {
+    public:
+      PressureBoundaryValues () : Function<dim>(1) {}
 
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
-template <int dim>
-void
-SaturationInitialValues<dim>::vector_value (const Point<dim> &p,
-                                            Vector<double>   &values) const
-{
-  for (unsigned int c=0; c<this->n_components; ++c)
-    values(c) = SaturationInitialValues<dim>::value (p,c);
-}
 
+  template <int dim>
+  double
+  PressureBoundaryValues<dim>::value (const Point<dim>  &p,
+                                     const unsigned int /*component*/) const
+  {
+    return 1-p[0];
+  }
 
-                                // @sect3{Permeability models}
 
-                                // In this tutorial, we still use two
-                                // permeability models previous used in
-                                // step-21 so we refrain from excessive
-                                // comments about them. But we want to note
-                                // that if ones use the Random Medium model,
-                                // they can change one parameter called the
-                                // number of high-permeability regions/points
-                                // to increase the amount of permeability in
-                                // the computational domain.
-namespace SingleCurvingCrack
-{
   template <int dim>
-  class KInverse : public TensorFunction<2,dim>
+  class SaturationBoundaryValues : public Function<dim>
   {
     public:
-      KInverse ()
-                     :
-                     TensorFunction<2,dim> ()
-       {}
+      SaturationBoundaryValues () : Function<dim>(1) {}
 
-      virtual void value_list (const std::vector<Point<dim> > &points,
-                               std::vector<Tensor<2,dim> >    &values) const;
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
   };
 
 
+
   template <int dim>
-  void
-  KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
-                             std::vector<Tensor<2,dim> >    &values) const
+  double
+  SaturationBoundaryValues<dim>::value (const Point<dim> &p,
+                                       const unsigned int /*component*/) const
   {
-    Assert (points.size() == values.size(),
-            ExcDimensionMismatch (points.size(), values.size()));
-
-    for (unsigned int p=0; p<points.size(); ++p)
-      {
-        values[p].clear ();
-
-        const double distance_to_flowline
-          = std::fabs(points[p][1]-0.5-0.1*std::sin(10*points[p][0]));
-
-        const double permeability = std::max(std::exp(-(distance_to_flowline*
-                                                        distance_to_flowline)
-                                                      / (0.1 * 0.1)),
-                                             0.01);
-
-        for (unsigned int d=0; d<dim; ++d)
-          values[p][d][d] = 1./permeability;
-      }
+    if (p[0] == 0)
+      return 1;
+    else
+      return 0;
   }
-}
 
 
-namespace RandomMedium
-{
   template <int dim>
-  class KInverse : public TensorFunction<2,dim>
+  class SaturationInitialValues : public Function<dim>
   {
     public:
-      KInverse ()
-                     :
-                     TensorFunction<2,dim> ()
-       {}
+      SaturationInitialValues () : Function<dim>(1) {}
 
-      virtual void value_list (const std::vector<Point<dim> > &points,
-                               std::vector<Tensor<2,dim> >    &values) const;
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
 
-    private:
-      static std::vector<Point<dim> > centers;
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &value) const;
 
-      static std::vector<Point<dim> > get_centers ();
   };
 
 
-
   template <int dim>
-  std::vector<Point<dim> >
-  KInverse<dim>::centers = KInverse<dim>::get_centers();
+  double
+  SaturationInitialValues<dim>::value (const Point<dim>  &/*p*/,
+                                      const unsigned int /*component*/) const
+  {
+    return 0;
+  }
 
 
   template <int dim>
-  std::vector<Point<dim> >
-  KInverse<dim>::get_centers ()
+  void
+  SaturationInitialValues<dim>::vector_value (const Point<dim> &p,
+                                             Vector<double>   &values) const
   {
-    const unsigned int N = (dim == 2 ?
-                            40 :
-                            (dim == 3 ?
-                             100 :
-                             throw ExcNotImplemented()));
-
-    std::vector<Point<dim> > centers_list (N);
-    for (unsigned int i=0; i<N; ++i)
-      for (unsigned int d=0; d<dim; ++d)
-        centers_list[i][d] = static_cast<double>(rand())/RAND_MAX;
-
-    return centers_list;
+    for (unsigned int c=0; c<this->n_components; ++c)
+      values(c) = SaturationInitialValues<dim>::value (p,c);
   }
 
 
+                                  // @sect3{Permeability models}
 
-  template <int dim>
-  void
-  KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
-                             std::vector<Tensor<2,dim> >    &values) const
+                                  // In this tutorial, we still use two
+                                  // permeability models previous used in
+                                  // step-21 so we refrain from excessive
+                                  // comments about them. But we want to note
+                                  // that if ones use the Random Medium model,
+                                  // they can change one parameter called the
+                                  // number of high-permeability regions/points
+                                  // to increase the amount of permeability in
+                                  // the computational domain.
+  namespace SingleCurvingCrack
   {
-    Assert (points.size() == values.size(),
-            ExcDimensionMismatch (points.size(), values.size()));
+    template <int dim>
+    class KInverse : public TensorFunction<2,dim>
+    {
+      public:
+       KInverse ()
+                       :
+                       TensorFunction<2,dim> ()
+         {}
 
-    for (unsigned int p=0; p<points.size(); ++p)
-      {
-        values[p].clear ();
+       virtual void value_list (const std::vector<Point<dim> > &points,
+                                std::vector<Tensor<2,dim> >    &values) const;
+    };
 
-        double permeability = 0;
-        for (unsigned int i=0; i<centers.size(); ++i)
-          permeability += std::exp(-(points[p]-centers[i]).square()
-                                   / (0.05 * 0.05));
 
-        const double normalized_permeability
-          = std::min (std::max(permeability, 0.01), 4.);
+    template <int dim>
+    void
+    KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
+                              std::vector<Tensor<2,dim> >    &values) const
+    {
+      Assert (points.size() == values.size(),
+             ExcDimensionMismatch (points.size(), values.size()));
 
-        for (unsigned int d=0; d<dim; ++d)
-          values[p][d][d] = 1./normalized_permeability;
-      }
+      for (unsigned int p=0; p<points.size(); ++p)
+       {
+         values[p].clear ();
+
+         const double distance_to_flowline
+           = std::fabs(points[p][1]-0.5-0.1*std::sin(10*points[p][0]));
+
+         const double permeability = std::max(std::exp(-(distance_to_flowline*
+                                                         distance_to_flowline)
+                                                       / (0.1 * 0.1)),
+                                              0.01);
+
+         for (unsigned int d=0; d<dim; ++d)
+           values[p][d][d] = 1./permeability;
+       }
+    }
   }
-}
 
 
-                                // @sect3{Physical quantities}
+  namespace RandomMedium
+  {
+    template <int dim>
+    class KInverse : public TensorFunction<2,dim>
+    {
+      public:
+       KInverse ()
+                       :
+                       TensorFunction<2,dim> ()
+         {}
 
-                                // The implementations of all the physical
-                                // quantities such as total mobility
-                                // $\lambda_t$ and fractional flow of water
-                                // $F$ are taken from step-21 so again we
-                                // don't have do any comment about them.
-double mobility_inverse (const double S,
-                         const double viscosity)
-{
-  return 1.0 /(1.0/viscosity * S * S + (1-S) * (1-S));
-}
+       virtual void value_list (const std::vector<Point<dim> > &points,
+                                std::vector<Tensor<2,dim> >    &values) const;
 
-double f_saturation (const double S,
-                     const double viscosity)
-{
-  return S*S /( S * S +viscosity * (1-S) * (1-S));
-}
+      private:
+       static std::vector<Point<dim> > centers;
 
-double get_fractional_flow_derivative (const double S,
-                                       const double viscosity)
-{
-  const double temp = ( S * S + viscosity * (1-S) * (1-S) );
+       static std::vector<Point<dim> > get_centers ();
+    };
 
-  const double numerator   =  2.0 * S * temp
-                              -
-                              S * S *
-                              ( 2.0 * S - 2.0 * viscosity * (1-S) );
 
-  const double denomerator =  std::pow(temp, 2.0 );
 
-  return numerator / denomerator;
-}
+    template <int dim>
+    std::vector<Point<dim> >
+    KInverse<dim>::centers = KInverse<dim>::get_centers();
+
+
+    template <int dim>
+    std::vector<Point<dim> >
+    KInverse<dim>::get_centers ()
+    {
+      const unsigned int N = (dim == 2 ?
+                             40 :
+                             (dim == 3 ?
+                              100 :
+                              throw ExcNotImplemented()));
+
+      std::vector<Point<dim> > centers_list (N);
+      for (unsigned int i=0; i<N; ++i)
+       for (unsigned int d=0; d<dim; ++d)
+         centers_list[i][d] = static_cast<double>(rand())/RAND_MAX;
+
+      return centers_list;
+    }
 
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::TwoPhaseFlowProblem}
-
-                                // The constructor of this class is an
-                                // extension of the constructor in step-21
-                                // and step-31. We need to add the various
-                                // variables that concern the saturation. As
-                                // discussed in the introduction, we are
-                                // going to use $Q_2 \times Q_1$
-                                // (Taylor-Hood) elements again for the darcy
-                                // system, which element combination fulfills
-                                // the Ladyzhenskaya-Babuska-Brezzi (LBB)
-                                // conditions
-                                // [Brezzi and Fortin 1991, Chen 2005], and $Q_1$
-                                // elements for the saturation. However, by
-                                // using variables that store the polynomial
-                                // degree of the darcy and temperature finite
-                                // elements, it is easy to consistently
-                                // modify the degree of the elements as well
-                                // as all quadrature formulas used on them
-                                // downstream. Moreover, we initialize the
-                                // time stepping, variables related to
-                                // operator splitting as well as the option
-                                // for matrix assembly and preconditioning:
-template <int dim>
-TwoPhaseFlowProblem<dim>::TwoPhaseFlowProblem (const unsigned int degree)
-                :
-                degree (degree),
-                darcy_degree (degree),
-                darcy_fe (FE_Q<dim>(darcy_degree+1), dim,
-                          FE_Q<dim>(darcy_degree), 1),
-                darcy_dof_handler (triangulation),
-
-                saturation_degree (degree),
-                saturation_fe (saturation_degree),
-                saturation_dof_handler (triangulation),
-
-                n_refinement_steps (4),
-                solve_pressure_velocity_part (false),
-                previous_solve_pressure_velocity_part (false),
-
-                saturation_level (2),
-                saturation_value (0.5),
-
-                time_step (0),
-                old_time_step (0),
-                viscosity (0.2),
-
-                rebuild_saturation_matrix (true)
-{}
-
-
-                                // @sect3{TwoPhaseFlowProblem<dim>::setup_dofs}
-
-                                // This is the function that sets up the
-                                // DoFHandler objects we have here (one for
-                                // the darcy part and one for the saturation
-                                // part) as well as set to the right sizes
-                                // the various objects required for the
-                                // linear algebra in this program. Its basic
-                                // operations are similar to what authors in
-                                // step-31 did.
-                                // 
-                                // The body of the function first enumerates
-                                // all degrees of freedom for the darcy and
-                                // saturation systems. For the darcy part,
-                                // degrees of freedom are then sorted to
-                                // ensure that velocities precede pressure
-                                // DoFs so that we can partition the darcy
-                                // matrix into a $2 \times 2$ matrix. Like
-                                // step-31, the present step does not perform
-                                // any additional DoF renumbering.
-                                // 
-                                // Then, we need to incorporate hanging node
-                                // constraints and Dirichlet boundary value
-                                // constraints into
-                                // darcy_preconditioner_constraints. However,
-                                // this constraints are only set to the
-                                // pressure component since the Schur
-                                // complement preconditioner that corresponds
-                                // to the porous media flow operator in
-                                // non-mixed form, $-\nabla \cdot [\mathbf K
-                                // \lambda_t(S)]\nabla$. Therefore, we use a
-                                // component_mask that filters out the
-                                // velocity component, so that the
-                                // condensation is performed on pressure
-                                // degrees of freedom only.
-                                // 
-                                // After having done so, we count the number
-                                // of degrees of freedom in the various
-                                // blocks:
-                                // 
-                                // The next step is to create the sparsity
-                                // pattern for the darcy and saturation
-                                // system matrices as well as the
-                                // preconditioner matrix from which we build
-                                // the darcy preconditioner. As in step-31,
-                                // we choose to create the pattern not as in
-                                // the first few tutorial programs, but by
-                                // using the blocked version of
-                                // CompressedSimpleSparsityPattern. The
-                                // reason for doing this is mainly memory,
-                                // that is, the SparsityPattern class would
-                                // consume too much memory when used in three
-                                // spatial dimensions as we intend to do for
-                                // this program. So, for this, we follow the
-                                // same way as step-31 did and we don't have
-                                // to repeat descriptions again for the rest
-                                // of the member function.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::setup_dofs ()
-{
-  std::vector<unsigned int> darcy_block_component (dim+1,0);
-  darcy_block_component[dim] = 1;
-  {
-    darcy_dof_handler.distribute_dofs (darcy_fe);
-    DoFRenumbering::Cuthill_McKee (darcy_dof_handler);
-    DoFRenumbering::component_wise (darcy_dof_handler, darcy_block_component);
 
-    darcy_constraints.clear ();
-    DoFTools::make_hanging_node_constraints (darcy_dof_handler, darcy_constraints);
-    darcy_constraints.close ();
+    template <int dim>
+    void
+    KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
+                              std::vector<Tensor<2,dim> >    &values) const
+    {
+      Assert (points.size() == values.size(),
+             ExcDimensionMismatch (points.size(), values.size()));
+
+      for (unsigned int p=0; p<points.size(); ++p)
+       {
+         values[p].clear ();
+
+         double permeability = 0;
+         for (unsigned int i=0; i<centers.size(); ++i)
+           permeability += std::exp(-(points[p]-centers[i]).square()
+                                    / (0.05 * 0.05));
+
+         const double normalized_permeability
+           = std::min (std::max(permeability, 0.01), 4.);
+
+         for (unsigned int d=0; d<dim; ++d)
+           values[p][d][d] = 1./normalized_permeability;
+       }
+    }
   }
-  {
-    saturation_dof_handler.distribute_dofs (saturation_fe);
 
-    saturation_constraints.clear ();
-    DoFTools::make_hanging_node_constraints (saturation_dof_handler, saturation_constraints);
-    saturation_constraints.close ();
+
+                                  // @sect3{Physical quantities}
+
+                                  // The implementations of all the physical
+                                  // quantities such as total mobility
+                                  // $\lambda_t$ and fractional flow of water
+                                  // $F$ are taken from step-21 so again we
+                                  // don't have do any comment about them.
+  double mobility_inverse (const double S,
+                          const double viscosity)
+  {
+    return 1.0 /(1.0/viscosity * S * S + (1-S) * (1-S));
   }
+
+  double f_saturation (const double S,
+                      const double viscosity)
   {
-    darcy_preconditioner_constraints.clear ();
+    return S*S /( S * S +viscosity * (1-S) * (1-S));
+  }
 
-    std::vector<bool> component_mask (dim+1, false);
-    component_mask[dim] = true;
+  double get_fractional_flow_derivative (const double S,
+                                        const double viscosity)
+  {
+    const double temp = ( S * S + viscosity * (1-S) * (1-S) );
 
+    const double numerator   =  2.0 * S * temp
+                               -
+                               S * S *
+                               ( 2.0 * S - 2.0 * viscosity * (1-S) );
 
-    DoFTools::make_hanging_node_constraints (darcy_dof_handler, darcy_preconditioner_constraints);
-    DoFTools::make_zero_boundary_constraints (darcy_dof_handler, darcy_preconditioner_constraints, component_mask);
+    const double denomerator =  std::pow(temp, 2.0 );
 
-    darcy_preconditioner_constraints.close ();
+    return numerator / denomerator;
   }
 
 
-  std::vector<unsigned int> darcy_dofs_per_block (2);
-  DoFTools::count_dofs_per_block (darcy_dof_handler, darcy_dofs_per_block, darcy_block_component);
-  const unsigned int n_u = darcy_dofs_per_block[0],
-                     n_p = darcy_dofs_per_block[1],
-                     n_s = saturation_dof_handler.n_dofs();
-
-  std::cout << "Number of active cells: "
-            << triangulation.n_active_cells()
-            << " (on "
-            << triangulation.n_levels()
-            << " levels)"
-            << std::endl
-            << "Number of degrees of freedom: "
-            << n_u + n_p + n_s
-            << " (" << n_u << '+' << n_p << '+'<< n_s <<')'
-            << std::endl
-            << std::endl;
+                                  // @sect3{TwoPhaseFlowProblem<dim>::TwoPhaseFlowProblem}
+
+                                  // The constructor of this class is an
+                                  // extension of the constructor in step-21
+                                  // and step-31. We need to add the various
+                                  // variables that concern the saturation. As
+                                  // discussed in the introduction, we are
+                                  // going to use $Q_2 \times Q_1$
+                                  // (Taylor-Hood) elements again for the darcy
+                                  // system, which element combination fulfills
+                                  // the Ladyzhenskaya-Babuska-Brezzi (LBB)
+                                  // conditions
+                                  // [Brezzi and Fortin 1991, Chen 2005], and $Q_1$
+                                  // elements for the saturation. However, by
+                                  // using variables that store the polynomial
+                                  // degree of the darcy and temperature finite
+                                  // elements, it is easy to consistently
+                                  // modify the degree of the elements as well
+                                  // as all quadrature formulas used on them
+                                  // downstream. Moreover, we initialize the
+                                  // time stepping, variables related to
+                                  // operator splitting as well as the option
+                                  // for matrix assembly and preconditioning:
+  template <int dim>
+  TwoPhaseFlowProblem<dim>::TwoPhaseFlowProblem (const unsigned int degree)
+                 :
+                 degree (degree),
+                 darcy_degree (degree),
+                 darcy_fe (FE_Q<dim>(darcy_degree+1), dim,
+                           FE_Q<dim>(darcy_degree), 1),
+                 darcy_dof_handler (triangulation),
 
-  {
-    darcy_matrix.clear ();
+                 saturation_degree (degree),
+                 saturation_fe (saturation_degree),
+                 saturation_dof_handler (triangulation),
 
-    BlockCompressedSimpleSparsityPattern csp (2,2);
+                 n_refinement_steps (4),
+                 solve_pressure_velocity_part (false),
+                 previous_solve_pressure_velocity_part (false),
 
-    csp.block(0,0).reinit (n_u, n_u);
-    csp.block(0,1).reinit (n_u, n_p);
-    csp.block(1,0).reinit (n_p, n_u);
-    csp.block(1,1).reinit (n_p, n_p);
+                 saturation_level (2),
+                 saturation_value (0.5),
 
-    csp.collect_sizes ();
+                 time_step (0),
+                 old_time_step (0),
+                 viscosity (0.2),
 
-    Table<2,DoFTools::Coupling> coupling (dim+1, dim+1);
+                 rebuild_saturation_matrix (true)
+  {}
 
-    for (unsigned int c=0; c<dim+1; ++c)
-      for (unsigned int d=0; d<dim+1; ++d)
-        if (! ((c==dim) && (d==dim)))
-          coupling[c][d] = DoFTools::always;
-        else
-          coupling[c][d] = DoFTools::none;
 
+                                  // @sect3{TwoPhaseFlowProblem<dim>::setup_dofs}
+
+                                  // This is the function that sets up the
+                                  // DoFHandler objects we have here (one for
+                                  // the darcy part and one for the saturation
+                                  // part) as well as set to the right sizes
+                                  // the various objects required for the
+                                  // linear algebra in this program. Its basic
+                                  // operations are similar to what authors in
+                                  // step-31 did.
+                                  //
+                                  // The body of the function first enumerates
+                                  // all degrees of freedom for the darcy and
+                                  // saturation systems. For the darcy part,
+                                  // degrees of freedom are then sorted to
+                                  // ensure that velocities precede pressure
+                                  // DoFs so that we can partition the darcy
+                                  // matrix into a $2 \times 2$ matrix. Like
+                                  // step-31, the present step does not perform
+                                  // any additional DoF renumbering.
+                                  //
+                                  // Then, we need to incorporate hanging node
+                                  // constraints and Dirichlet boundary value
+                                  // constraints into
+                                  // darcy_preconditioner_constraints. However,
+                                  // this constraints are only set to the
+                                  // pressure component since the Schur
+                                  // complement preconditioner that corresponds
+                                  // to the porous media flow operator in
+                                  // non-mixed form, $-\nabla \cdot [\mathbf K
+                                  // \lambda_t(S)]\nabla$. Therefore, we use a
+                                  // component_mask that filters out the
+                                  // velocity component, so that the
+                                  // condensation is performed on pressure
+                                  // degrees of freedom only.
+                                  //
+                                  // After having done so, we count the number
+                                  // of degrees of freedom in the various
+                                  // blocks:
+                                  //
+                                  // The next step is to create the sparsity
+                                  // pattern for the darcy and saturation
+                                  // system matrices as well as the
+                                  // preconditioner matrix from which we build
+                                  // the darcy preconditioner. As in step-31,
+                                  // we choose to create the pattern not as in
+                                  // the first few tutorial programs, but by
+                                  // using the blocked version of
+                                  // CompressedSimpleSparsityPattern. The
+                                  // reason for doing this is mainly memory,
+                                  // that is, the SparsityPattern class would
+                                  // consume too much memory when used in three
+                                  // spatial dimensions as we intend to do for
+                                  // this program. So, for this, we follow the
+                                  // same way as step-31 did and we don't have
+                                  // to repeat descriptions again for the rest
+                                  // of the member function.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::setup_dofs ()
+  {
+    std::vector<unsigned int> darcy_block_component (dim+1,0);
+    darcy_block_component[dim] = 1;
+    {
+      darcy_dof_handler.distribute_dofs (darcy_fe);
+      DoFRenumbering::Cuthill_McKee (darcy_dof_handler);
+      DoFRenumbering::component_wise (darcy_dof_handler, darcy_block_component);
 
-    DoFTools::make_sparsity_pattern (darcy_dof_handler, coupling, csp,
-                                     darcy_constraints, false);
+      darcy_constraints.clear ();
+      DoFTools::make_hanging_node_constraints (darcy_dof_handler, darcy_constraints);
+      darcy_constraints.close ();
+    }
+    {
+      saturation_dof_handler.distribute_dofs (saturation_fe);
 
-    darcy_matrix.reinit (csp);
-  }
+      saturation_constraints.clear ();
+      DoFTools::make_hanging_node_constraints (saturation_dof_handler, saturation_constraints);
+      saturation_constraints.close ();
+    }
+    {
+      darcy_preconditioner_constraints.clear ();
 
-  {
-    Amg_preconditioner.reset ();
-    Mp_preconditioner.reset ();
-    darcy_preconditioner_matrix.clear ();
+      std::vector<bool> component_mask (dim+1, false);
+      component_mask[dim] = true;
 
-    BlockCompressedSimpleSparsityPattern csp (2,2);
 
-    csp.block(0,0).reinit (n_u, n_u);
-    csp.block(0,1).reinit (n_u, n_p);
-    csp.block(1,0).reinit (n_p, n_u);
-    csp.block(1,1).reinit (n_p, n_p);
+      DoFTools::make_hanging_node_constraints (darcy_dof_handler, darcy_preconditioner_constraints);
+      DoFTools::make_zero_boundary_constraints (darcy_dof_handler, darcy_preconditioner_constraints, component_mask);
 
-    csp.collect_sizes ();
+      darcy_preconditioner_constraints.close ();
+    }
 
-    Table<2,DoFTools::Coupling> coupling (dim+1, dim+1);
-    for (unsigned int c=0; c<dim+1; ++c)
-      for (unsigned int d=0; d<dim+1; ++d)
-        if (c == d)
-          coupling[c][d] = DoFTools::always;
-        else
-          coupling[c][d] = DoFTools::none;
 
-    DoFTools::make_sparsity_pattern (darcy_dof_handler, coupling, csp,
-                                     darcy_constraints, false);
+    std::vector<unsigned int> darcy_dofs_per_block (2);
+    DoFTools::count_dofs_per_block (darcy_dof_handler, darcy_dofs_per_block, darcy_block_component);
+    const unsigned int n_u = darcy_dofs_per_block[0],
+                      n_p = darcy_dofs_per_block[1],
+                      n_s = saturation_dof_handler.n_dofs();
+
+    std::cout << "Number of active cells: "
+             << triangulation.n_active_cells()
+             << " (on "
+             << triangulation.n_levels()
+             << " levels)"
+             << std::endl
+             << "Number of degrees of freedom: "
+             << n_u + n_p + n_s
+             << " (" << n_u << '+' << n_p << '+'<< n_s <<')'
+             << std::endl
+             << std::endl;
 
-    darcy_preconditioner_matrix.reinit (csp);
-  }
+    {
+      darcy_matrix.clear ();
 
+      BlockCompressedSimpleSparsityPattern csp (2,2);
 
-  {
-    saturation_matrix.clear ();
+      csp.block(0,0).reinit (n_u, n_u);
+      csp.block(0,1).reinit (n_u, n_p);
+      csp.block(1,0).reinit (n_p, n_u);
+      csp.block(1,1).reinit (n_p, n_p);
 
-    CompressedSimpleSparsityPattern csp (n_s, n_s);
+      csp.collect_sizes ();
 
-    DoFTools::make_sparsity_pattern (saturation_dof_handler, csp,
-                                     saturation_constraints, false);
+      Table<2,DoFTools::Coupling> coupling (dim+1, dim+1);
 
+      for (unsigned int c=0; c<dim+1; ++c)
+       for (unsigned int d=0; d<dim+1; ++d)
+         if (! ((c==dim) && (d==dim)))
+           coupling[c][d] = DoFTools::always;
+         else
+           coupling[c][d] = DoFTools::none;
 
-    saturation_matrix.reinit (csp);
-  }
 
-  darcy_solution.reinit (2);
-  darcy_solution.block(0).reinit (n_u);
-  darcy_solution.block(1).reinit (n_p);
-  darcy_solution.collect_sizes ();
+      DoFTools::make_sparsity_pattern (darcy_dof_handler, coupling, csp,
+                                      darcy_constraints, false);
 
-  nth_darcy_solution_after_solving_pressure_part.reinit (2);
-  nth_darcy_solution_after_solving_pressure_part.block(0).reinit (n_u);
-  nth_darcy_solution_after_solving_pressure_part.block(1).reinit (n_p);
-  nth_darcy_solution_after_solving_pressure_part.collect_sizes ();
+      darcy_matrix.reinit (csp);
+    }
 
-  n_minus_oneth_darcy_solution_after_solving_pressure_part.reinit (2);
-  n_minus_oneth_darcy_solution_after_solving_pressure_part.block(0).reinit (n_u);
-  n_minus_oneth_darcy_solution_after_solving_pressure_part.block(1).reinit (n_p);
-  n_minus_oneth_darcy_solution_after_solving_pressure_part.collect_sizes ();
+    {
+      Amg_preconditioner.reset ();
+      Mp_preconditioner.reset ();
+      darcy_preconditioner_matrix.clear ();
 
-  darcy_rhs.reinit (2);
-  darcy_rhs.block(0).reinit (n_u);
-  darcy_rhs.block(1).reinit (n_p);
-  darcy_rhs.collect_sizes ();
+      BlockCompressedSimpleSparsityPattern csp (2,2);
 
-  predictor_saturation_solution.reinit (n_s);
-  saturation_solution.reinit (n_s);
-  old_saturation_solution.reinit (n_s);
-  old_old_saturation_solution.reinit (n_s);
+      csp.block(0,0).reinit (n_u, n_u);
+      csp.block(0,1).reinit (n_u, n_p);
+      csp.block(1,0).reinit (n_p, n_u);
+      csp.block(1,1).reinit (n_p, n_p);
 
-  nth_saturation_solution_after_solving_pressure_part.reinit (n_s);
+      csp.collect_sizes ();
 
-  saturation_rhs.reinit (n_s);
-}
+      Table<2,DoFTools::Coupling> coupling (dim+1, dim+1);
+      for (unsigned int c=0; c<dim+1; ++c)
+       for (unsigned int d=0; d<dim+1; ++d)
+         if (c == d)
+           coupling[c][d] = DoFTools::always;
+         else
+           coupling[c][d] = DoFTools::none;
 
+      DoFTools::make_sparsity_pattern (darcy_dof_handler, coupling, csp,
+                                      darcy_constraints, false);
+
+      darcy_preconditioner_matrix.reinit (csp);
+    }
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::assemble_darcy_preconditioner}
-
-                                // This function assembles the matrix we use
-                                // for preconditioning the darcy system. What
-                                // we need are a vector matrix weighted by
-                                // $\left(\mathbf{K} \lambda_t\right)^{-1}$
-                                // on the velocity components and a mass
-                                // matrix weighted by $\left(\mathbf{K}
-                                // \lambda_t\right)$ on the pressure
-                                // component. We start by generating a
-                                // quadrature object of appropriate order,
-                                // the FEValues object that can give values
-                                // and gradients at the quadrature points
-                                // (together with quadrature weights). Next
-                                // we create data structures for the cell
-                                // matrix and the relation between local and
-                                // global DoFs. The vectors phi_u and
-                                // grad_phi_p are going to hold the values of
-                                // the basis functions in order to faster
-                                // build up the local matrices, as was
-                                // already done in step-22. Before we start
-                                // the loop over all active cells, we have to
-                                // specify which components are pressure and
-                                // which are velocity.
-                                // 
-                                // The creation of the local matrix is rather
-                                // simple. There are only a term weighted by
-                                // $\left(\mathbf{K} \lambda_t\right)^{-1}$
-                                // (on the velocity) and a mass matrix
-                                // weighted by $\left(\mathbf{K}
-                                // \lambda_t\right)$ to be generated, so the
-                                // creation of the local matrix is done in
-                                // two lines. Once the local matrix is ready
-                                // (loop over rows and columns in the local
-                                // matrix on each quadrature point), we get
-                                // the local DoF indices and write the local
-                                // information into the global matrix. We do
-                                // this by directly applying the constraints
-                                // (i.e. darcy_preconditioner_constraints)
-                                // from hanging nodes locally and Dirichlet
-                                // boundary conditions with zero values. By
-                                // doing so, we don't have to do that
-                                // afterwards, and we don't also write into
-                                // entries of the matrix that will actually
-                                // be set to zero again later when
-                                // eliminating constraints.
-template <int dim>
-void
-TwoPhaseFlowProblem<dim>::assemble_darcy_preconditioner ()
-{
-  std::cout << "   Rebuilding darcy preconditioner..." << std::endl;
-
-  darcy_preconditioner_matrix = 0;
-
-  const QGauss<dim> quadrature_formula(darcy_degree+2);
-  FEValues<dim>     darcy_fe_values (darcy_fe, quadrature_formula,
-                                     update_JxW_values |
-                                     update_values |
-                                     update_gradients |
-                                     update_quadrature_points);
-  FEValues<dim> saturation_fe_values (saturation_fe, quadrature_formula, 
-                                      update_values);
-  const unsigned int   dofs_per_cell   = darcy_fe.dofs_per_cell;
-  const unsigned int   n_q_points      = quadrature_formula.size();
-
-  const RandomMedium::KInverse<dim> k_inverse;   
-//  const SingleCurvingCrack::KInverse<dim> k_inverse;
 
-  std::vector<Tensor<2,dim> >       k_inverse_values (n_q_points);
-  Tensor<2,dim>                     k_value;
-
-  std::vector<double>               old_saturation_values (n_q_points);
-  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-  std::vector<Tensor<1,dim> > phi_u   (dofs_per_cell); 
-  std::vector<Tensor<1,dim> > grad_phi_p (dofs_per_cell);
-  const FEValuesExtractors::Vector velocities (0);
-  const FEValuesExtractors::Scalar pressure (dim);
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = darcy_dof_handler.begin_active(),
-    endc = darcy_dof_handler.end();
-  typename DoFHandler<dim>::active_cell_iterator
-    saturation_cell = saturation_dof_handler.begin_active();
-
-  for (; cell!=endc; ++cell, ++saturation_cell)
     {
-      darcy_fe_values.reinit (cell);
-      saturation_fe_values.reinit (saturation_cell);
-
-      local_matrix = 0;
-
-      saturation_fe_values.get_function_values (old_saturation_solution, old_saturation_values);
-
-      k_inverse.value_list (darcy_fe_values.get_quadrature_points(),
-                            k_inverse_values);
-      for (unsigned int q=0; q<n_q_points; ++q)
-        {
-          const double old_s = old_saturation_values[q];
-          const double mobility = 1.0 / mobility_inverse(old_s,viscosity);
-
-          k_value.clear ();
-          for (unsigned int d=0; d<dim; d++)
-            k_value[d][d] = 1.0 / k_inverse_values[q][d][d];           
-
-          for (unsigned int k=0; k<dofs_per_cell; ++k)
-            {
-              phi_u[k]       = darcy_fe_values[velocities].value (k,q);
-              grad_phi_p[k]  = darcy_fe_values[pressure].gradient (k,q);
-            }
-          for (unsigned int i=0; i<dofs_per_cell; ++i)
-            for (unsigned int j=0; j<dofs_per_cell; ++j)
-              {
-                local_matrix(i,j) += (k_inverse_values[q] * mobility_inverse(old_s,viscosity) *
-                                      phi_u[i] * phi_u[j]
-                                      +
-                                      k_value * mobility *
-                                      grad_phi_p[i] * grad_phi_p[j])
-                                     * darcy_fe_values.JxW(q);
-              }
-        }
-      cell->get_dof_indices (local_dof_indices);
-      darcy_preconditioner_constraints.distribute_local_to_global (local_matrix,
-                                                                   local_dof_indices,
-                                                                   darcy_preconditioner_matrix);
-    }
-}
+      saturation_matrix.clear ();
 
+      CompressedSimpleSparsityPattern csp (n_s, n_s);
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::build_darcy_preconditioner}
-
-                                // This function generates the inner
-                                // preconditioners that are going to be used
-                                // for the Schur complement block
-                                // preconditioner. The preconditioners need
-                                // to be regenerated at every saturation time
-                                // step since they contain the independent
-                                // variables saturation $S$ with time.
-                                // 
-                                // Next, we set up the preconditioner for the
-                                // velocity-velocity matrix
-                                // $\mathbf{M}^{\mathbf{u}}$ and the Schur
-                                // complement $\mathbf{S}$. As explained in
-                                // the introduction, we are going to use an
-                                // IC preconditioner based on a vector matrix
-                                // (which is spectrally close to the darcy
-                                // matrix $\mathbf{M}^{\mathbf{u}}$) and
-                                // another based on a Laplace vector matrix
-                                // (which is spectrally close to the
-                                // non-mixed pressure matrix
-                                // $\mathbf{S}$). Usually, the
-                                // TrilinosWrappers::PreconditionIC class can
-                                // be seen as a good black-box preconditioner
-                                // which does not need any special knowledge.
-template <int dim>
-void
-TwoPhaseFlowProblem<dim>::build_darcy_preconditioner ()
-{
-  assemble_darcy_preconditioner ();
+      DoFTools::make_sparsity_pattern (saturation_dof_handler, csp,
+                                      saturation_constraints, false);
 
-  Amg_preconditioner = std_cxx1x::shared_ptr<TrilinosWrappers::PreconditionIC>
-                       (new TrilinosWrappers::PreconditionIC());
-  Amg_preconditioner->initialize(darcy_preconditioner_matrix.block(0,0));
 
-  Mp_preconditioner = std_cxx1x::shared_ptr<TrilinosWrappers::PreconditionIC>
-                      (new TrilinosWrappers::PreconditionIC());
-  Mp_preconditioner->initialize(darcy_preconditioner_matrix.block(1,1));
+      saturation_matrix.reinit (csp);
+    }
 
-}
+    darcy_solution.reinit (2);
+    darcy_solution.block(0).reinit (n_u);
+    darcy_solution.block(1).reinit (n_p);
+    darcy_solution.collect_sizes ();
 
+    nth_darcy_solution_after_solving_pressure_part.reinit (2);
+    nth_darcy_solution_after_solving_pressure_part.block(0).reinit (n_u);
+    nth_darcy_solution_after_solving_pressure_part.block(1).reinit (n_p);
+    nth_darcy_solution_after_solving_pressure_part.collect_sizes ();
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::assemble_darcy_system}
-
-                                // This is the function that assembles the
-                                // linear system for the darcy system.
-                                // 
-                                // Regarding the technical details of
-                                // implementation, the procedures are similar
-                                // to those in step-22 and step-31 we reset
-                                // matrix and vector, create a quadrature
-                                // formula on the cells, and then create the
-                                // respective FEValues object. For the update
-                                // flags, we require basis function
-                                // derivatives only in case of a full
-                                // assembly, since they are not needed for
-                                // the right hand side; as always, choosing
-                                // the minimal set of flags depending on what
-                                // is currently needed makes the call to
-                                // FEValues::reinit further down in the
-                                // program more efficient.
-                                // 
-                                // There is one thing that needs to be
-                                // commented Â¡V since we have a separate
-                                // finite element and DoFHandler for the
-                                // saturation, we need to generate a second
-                                // FEValues object for the proper evaluation
-                                // of the saturation solution. This isn't too
-                                // complicated to realize here: just use the
-                                // saturation structures and set an update
-                                // flag for the basis function values which
-                                // we need for evaluation of the saturation
-                                // solution. The only important part to
-                                // remember here is that the same quadrature
-                                // formula is used for both FEValues objects
-                                // to ensure that we get matching information
-                                // when we loop over the quadrature points of
-                                // the two objects.
-                                // 
-                                // The declarations proceed with some
-                                // shortcuts for array sizes, the creation of
-                                // the local matrix, right hand side as well
-                                // as the vector for the indices of the local
-                                // dofs compared to the global system.
-                                // 
-                                // Note that in its present form, the
-                                // function uses the permeability implemented
-                                // in the RandomMedium::KInverse
-                                // class. Switching to the single curved
-                                // crack permeability function is as simple
-                                // as just changing the namespace name.
-                                // 
-                                // Here's the an important step: we have to
-                                // get the values of the saturation function
-                                // of the previous time step at the
-                                // quadrature points. To this end, we can use
-                                // the FEValues::get_function_values
-                                // (previously already used in step-9,
-                                // step-14 and step-15), a function that
-                                // takes a solution vector and returns a list
-                                // of function values at the quadrature
-                                // points of the present cell. In fact, it
-                                // returns the complete vector-valued
-                                // solution at each quadrature point,
-                                // i.e. not only the saturation but also the
-                                // velocities and pressure:
-                                // 
-                                // Next we need a vector that will contain
-                                // the values of the saturation solution at
-                                // the previous time level at the quadrature
-                                // points to assemble the source term in the
-                                // right hand side of the momentum
-                                // equation. Let's call this vector
-                                // old_saturation_values.
-                                // 
-                                // The set of vectors we create next hold the
-                                // evaluations of the basis functions as well
-                                // as their gradients and symmetrized
-                                // gradients that will be used for creating
-                                // the matrices. Putting these into their own
-                                // arrays rather than asking the FEValues
-                                // object for this information each time it
-                                // is needed is an optimization to accelerate
-                                // the assembly process, see step-22 for
-                                // details.
-                                // 
-                                // The last two declarations are used to
-                                // extract the individual blocks (velocity,
-                                // pressure, saturation) from the total FE
-                                // system.
-                                // 
-                                // Now start the loop over all cells in the
-                                // problem. We are working on two different
-                                // DoFHandlers for this assembly routine, so
-                                // we must have two different cell iterators
-                                // for the two objects in use. This might
-                                // seem a bit peculiar, since both the darcy
-                                // system and the saturation system use the
-                                // same grid, but that's the only way to keep
-                                // degrees of freedom in sync. The first
-                                // statements within the loop are again all
-                                // very familiar, doing the update of the
-                                // finite element data as specified by the
-                                // update flags, zeroing out the local arrays
-                                // and getting the values of the old solution
-                                // at the quadrature points. Then we are
-                                // ready to loop over the quadrature points
-                                // on the cell.
-                                // 
-                                // Once this is done, we start the loop over
-                                // the rows and columns of the local matrix
-                                // and feed the matrix with the relevant
-                                // products.
-                                // 
-                                // The last step in the loop over all cells
-                                // is to enter the local contributions into
-                                // the global matrix and vector structures to
-                                // the positions specified in
-                                // local_dof_indices. Again, we let the
-                                // ConstraintMatrix class do the insertion of
-                                // the cell matrix elements to the global
-                                // matrix, which already condenses the
-                                // hanging node constraints.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::assemble_darcy_system ()
-{
-  darcy_matrix = 0;
-  darcy_rhs    = 0;
+    n_minus_oneth_darcy_solution_after_solving_pressure_part.reinit (2);
+    n_minus_oneth_darcy_solution_after_solving_pressure_part.block(0).reinit (n_u);
+    n_minus_oneth_darcy_solution_after_solving_pressure_part.block(1).reinit (n_p);
+    n_minus_oneth_darcy_solution_after_solving_pressure_part.collect_sizes ();
 
-  QGauss<dim>   quadrature_formula(darcy_degree+2);
-  QGauss<dim-1> face_quadrature_formula(darcy_degree+2);
+    darcy_rhs.reinit (2);
+    darcy_rhs.block(0).reinit (n_u);
+    darcy_rhs.block(1).reinit (n_p);
+    darcy_rhs.collect_sizes ();
 
-  FEValues<dim> darcy_fe_values (darcy_fe, quadrature_formula,
-                                 update_values    | update_gradients |
-                                 update_quadrature_points  | update_JxW_values);
+    predictor_saturation_solution.reinit (n_s);
+    saturation_solution.reinit (n_s);
+    old_saturation_solution.reinit (n_s);
+    old_old_saturation_solution.reinit (n_s);
 
-  FEValues<dim> saturation_fe_values (saturation_fe, quadrature_formula,
-                                      update_values);
+    nth_saturation_solution_after_solving_pressure_part.reinit (n_s);
+
+    saturation_rhs.reinit (n_s);
+  }
 
-  FEFaceValues<dim> darcy_fe_face_values (darcy_fe, face_quadrature_formula,
-                                          update_values    | update_normal_vectors |
-                                          update_quadrature_points  | update_JxW_values);
 
-  const unsigned int   dofs_per_cell   = darcy_fe.dofs_per_cell;
+                                  // @sect3{TwoPhaseFlowProblem<dim>::assemble_darcy_preconditioner}
+
+                                  // This function assembles the matrix we use
+                                  // for preconditioning the darcy system. What
+                                  // we need are a vector matrix weighted by
+                                  // $\left(\mathbf{K} \lambda_t\right)^{-1}$
+                                  // on the velocity components and a mass
+                                  // matrix weighted by $\left(\mathbf{K}
+                                  // \lambda_t\right)$ on the pressure
+                                  // component. We start by generating a
+                                  // quadrature object of appropriate order,
+                                  // the FEValues object that can give values
+                                  // and gradients at the quadrature points
+                                  // (together with quadrature weights). Next
+                                  // we create data structures for the cell
+                                  // matrix and the relation between local and
+                                  // global DoFs. The vectors phi_u and
+                                  // grad_phi_p are going to hold the values of
+                                  // the basis functions in order to faster
+                                  // build up the local matrices, as was
+                                  // already done in step-22. Before we start
+                                  // the loop over all active cells, we have to
+                                  // specify which components are pressure and
+                                  // which are velocity.
+                                  //
+                                  // The creation of the local matrix is rather
+                                  // simple. There are only a term weighted by
+                                  // $\left(\mathbf{K} \lambda_t\right)^{-1}$
+                                  // (on the velocity) and a mass matrix
+                                  // weighted by $\left(\mathbf{K}
+                                  // \lambda_t\right)$ to be generated, so the
+                                  // creation of the local matrix is done in
+                                  // two lines. Once the local matrix is ready
+                                  // (loop over rows and columns in the local
+                                  // matrix on each quadrature point), we get
+                                  // the local DoF indices and write the local
+                                  // information into the global matrix. We do
+                                  // this by directly applying the constraints
+                                  // (i.e. darcy_preconditioner_constraints)
+                                  // from hanging nodes locally and Dirichlet
+                                  // boundary conditions with zero values. By
+                                  // doing so, we don't have to do that
+                                  // afterwards, and we don't also write into
+                                  // entries of the matrix that will actually
+                                  // be set to zero again later when
+                                  // eliminating constraints.
+  template <int dim>
+  void
+  TwoPhaseFlowProblem<dim>::assemble_darcy_preconditioner ()
+  {
+    std::cout << "   Rebuilding darcy preconditioner..." << std::endl;
 
-  const unsigned int   n_q_points      = quadrature_formula.size();
-  const unsigned int   n_face_q_points = face_quadrature_formula.size();
+    darcy_preconditioner_matrix = 0;
 
-  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       local_rhs (dofs_per_cell);
+    const QGauss<dim> quadrature_formula(darcy_degree+2);
+    FEValues<dim>     darcy_fe_values (darcy_fe, quadrature_formula,
+                                      update_JxW_values |
+                                      update_values |
+                                      update_gradients |
+                                      update_quadrature_points);
+    FEValues<dim> saturation_fe_values (saturation_fe, quadrature_formula,
+                                       update_values);
 
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+    const unsigned int   dofs_per_cell   = darcy_fe.dofs_per_cell;
+    const unsigned int   n_q_points      = quadrature_formula.size();
 
-  const PressureRightHandSide<dim>  pressure_right_hand_side;
-  const PressureBoundaryValues<dim> pressure_boundary_values;
-  const RandomMedium::KInverse<dim> k_inverse;
+    const RandomMedium::KInverse<dim> k_inverse;
 //  const SingleCurvingCrack::KInverse<dim> k_inverse;
 
-  std::vector<double>               pressure_rhs_values (n_q_points);
-  std::vector<double>               boundary_values (n_face_q_points);
-  std::vector<Tensor<2,dim> >       k_inverse_values (n_q_points);
+    std::vector<Tensor<2,dim> >       k_inverse_values (n_q_points);
+    Tensor<2,dim>                     k_value;
 
-  std::vector<double>               old_saturation_values (n_q_points);
+    std::vector<double>               old_saturation_values (n_q_points);
 
-  std::vector<Tensor<1,dim> > phi_u (dofs_per_cell);
-  std::vector<double>         div_phi_u (dofs_per_cell);
-  std::vector<double>         phi_p (dofs_per_cell);
+    FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-  const FEValuesExtractors::Vector velocities (0);
-  const FEValuesExtractors::Scalar pressure (dim);
+    std::vector<Tensor<1,dim> > phi_u   (dofs_per_cell);
+    std::vector<Tensor<1,dim> > grad_phi_p (dofs_per_cell);
 
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = darcy_dof_handler.begin_active(),
-    endc = darcy_dof_handler.end();
-  typename DoFHandler<dim>::active_cell_iterator
-    saturation_cell = saturation_dof_handler.begin_active();
+    const FEValuesExtractors::Vector velocities (0);
+    const FEValuesExtractors::Scalar pressure (dim);
 
-  for (; cell!=endc; ++cell, ++saturation_cell)
-    {
-      darcy_fe_values.reinit (cell);
-      saturation_fe_values.reinit (saturation_cell);
-
-      local_matrix = 0;
-      local_rhs = 0;
-
-      saturation_fe_values.get_function_values (old_saturation_solution, old_saturation_values);
-
-      pressure_right_hand_side.value_list (darcy_fe_values.get_quadrature_points(),
-                                           pressure_rhs_values);
-      k_inverse.value_list (darcy_fe_values.get_quadrature_points(),
-                            k_inverse_values);
-
-      for (unsigned int q=0; q<n_q_points; ++q)
-        {
-          for (unsigned int k=0; k<dofs_per_cell; ++k)
-            {
-              phi_u[k]     = darcy_fe_values[velocities].value (k,q);
-              div_phi_u[k] = darcy_fe_values[velocities].divergence (k,q);
-              phi_p[k]     = darcy_fe_values[pressure].value (k,q);
-            }
-          for (unsigned int i=0; i<dofs_per_cell; ++i)
-            {
-              const double old_s = old_saturation_values[q];
-              for (unsigned int j=0; j<=i; ++j)
-                {
-                  local_matrix(i,j) += (phi_u[i] * k_inverse_values[q] *
-                                        mobility_inverse(old_s,viscosity) * phi_u[j]
-                                        - div_phi_u[i] * phi_p[j]
-                                        - phi_p[i] * div_phi_u[j])
-                                       * darcy_fe_values.JxW(q);
-                }
-
-              local_rhs(i) += (-phi_p[i] * pressure_rhs_values[q])*
-                             darcy_fe_values.JxW(q);
-            }
-       }
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = darcy_dof_handler.begin_active(),
+      endc = darcy_dof_handler.end();
+    typename DoFHandler<dim>::active_cell_iterator
+      saturation_cell = saturation_dof_handler.begin_active();
 
-      for (unsigned int face_no=0;
-           face_no<GeometryInfo<dim>::faces_per_cell;
-           ++face_no)
-        if (cell->at_boundary(face_no))
-          {
-            darcy_fe_face_values.reinit (cell, face_no);
-
-            pressure_boundary_values
-              .value_list (darcy_fe_face_values.get_quadrature_points(),
-                           boundary_values);
-
-            for (unsigned int q=0; q<n_face_q_points; ++q)
-              for (unsigned int i=0; i<dofs_per_cell; ++i)
-                {
-                  const Tensor<1,dim>
-                    phi_i_u = darcy_fe_face_values[velocities].value (i, q);
-
-                  local_rhs(i) += -(phi_i_u *
-                                    darcy_fe_face_values.normal_vector(q) *
-                                    boundary_values[q] *
-                                    darcy_fe_face_values.JxW(q));
-                }
-          }
+    for (; cell!=endc; ++cell, ++saturation_cell)
+      {
+       darcy_fe_values.reinit (cell);
+       saturation_fe_values.reinit (saturation_cell);
+
+       local_matrix = 0;
+
+       saturation_fe_values.get_function_values (old_saturation_solution, old_saturation_values);
+
+       k_inverse.value_list (darcy_fe_values.get_quadrature_points(),
+                             k_inverse_values);
+
+       for (unsigned int q=0; q<n_q_points; ++q)
+         {
+           const double old_s = old_saturation_values[q];
+           const double mobility = 1.0 / mobility_inverse(old_s,viscosity);
+
+           k_value.clear ();
+           for (unsigned int d=0; d<dim; d++)
+             k_value[d][d] = 1.0 / k_inverse_values[q][d][d];
+
+           for (unsigned int k=0; k<dofs_per_cell; ++k)
+             {
+               phi_u[k]       = darcy_fe_values[velocities].value (k,q);
+               grad_phi_p[k]  = darcy_fe_values[pressure].gradient (k,q);
+             }
+
+           for (unsigned int i=0; i<dofs_per_cell; ++i)
+             for (unsigned int j=0; j<dofs_per_cell; ++j)
+               {
+                 local_matrix(i,j) += (k_inverse_values[q] * mobility_inverse(old_s,viscosity) *
+                                       phi_u[i] * phi_u[j]
+                                       +
+                                       k_value * mobility *
+                                       grad_phi_p[i] * grad_phi_p[j])
+                                      * darcy_fe_values.JxW(q);
+               }
+         }
+
+       cell->get_dof_indices (local_dof_indices);
+       darcy_preconditioner_constraints.distribute_local_to_global (local_matrix,
+                                                                    local_dof_indices,
+                                                                    darcy_preconditioner_matrix);
+      }
+  }
 
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-        for (unsigned int j=i+1; j<dofs_per_cell; ++j)
-          local_matrix(i,j) = local_matrix(j,i);
 
-      cell->get_dof_indices (local_dof_indices);
+                                  // @sect3{TwoPhaseFlowProblem<dim>::build_darcy_preconditioner}
+
+                                  // This function generates the inner
+                                  // preconditioners that are going to be used
+                                  // for the Schur complement block
+                                  // preconditioner. The preconditioners need
+                                  // to be regenerated at every saturation time
+                                  // step since they contain the independent
+                                  // variables saturation $S$ with time.
+                                  //
+                                  // Next, we set up the preconditioner for the
+                                  // velocity-velocity matrix
+                                  // $\mathbf{M}^{\mathbf{u}}$ and the Schur
+                                  // complement $\mathbf{S}$. As explained in
+                                  // the introduction, we are going to use an
+                                  // IC preconditioner based on a vector matrix
+                                  // (which is spectrally close to the darcy
+                                  // matrix $\mathbf{M}^{\mathbf{u}}$) and
+                                  // another based on a Laplace vector matrix
+                                  // (which is spectrally close to the
+                                  // non-mixed pressure matrix
+                                  // $\mathbf{S}$). Usually, the
+                                  // TrilinosWrappers::PreconditionIC class can
+                                  // be seen as a good black-box preconditioner
+                                  // which does not need any special knowledge.
+  template <int dim>
+  void
+  TwoPhaseFlowProblem<dim>::build_darcy_preconditioner ()
+  {
+    assemble_darcy_preconditioner ();
 
-      darcy_constraints.distribute_local_to_global (local_matrix,
-                                                    local_rhs,
-                                                    local_dof_indices,
-                                                    darcy_matrix,
-                                                    darcy_rhs);
+    Amg_preconditioner = std_cxx1x::shared_ptr<TrilinosWrappers::PreconditionIC>
+                        (new TrilinosWrappers::PreconditionIC());
+    Amg_preconditioner->initialize(darcy_preconditioner_matrix.block(0,0));
 
-    }
-}
+    Mp_preconditioner = std_cxx1x::shared_ptr<TrilinosWrappers::PreconditionIC>
+                       (new TrilinosWrappers::PreconditionIC());
+    Mp_preconditioner->initialize(darcy_preconditioner_matrix.block(1,1));
 
+  }
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::assemble_saturation_system}
-
-                                // This function is to assemble the linear
-                                // system for the saturation transport
-                                // equation. It includes two member
-                                // functions: assemble_saturation_matrix ()
-                                // and assemble_saturation_rhs (). The former
-                                // function that assembles the saturation
-                                // left hand side needs to be changed only
-                                // when grids have been changed since the
-                                // matrix is filled only with basis
-                                // functions. However, the latter that
-                                // assembles the right hand side must be
-                                // changed at every saturation time step
-                                // since it depends on an unknown variable
-                                // saturation.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::assemble_saturation_system ()
-{
-  if ( rebuild_saturation_matrix == true )
-    {
-      saturation_matrix = 0;
-      assemble_saturation_matrix ();
-    }
 
-  saturation_rhs = 0;
-  assemble_saturation_rhs ();
-}
+                                  // @sect3{TwoPhaseFlowProblem<dim>::assemble_darcy_system}
+
+                                  // This is the function that assembles the
+                                  // linear system for the darcy system.
+                                  //
+                                  // Regarding the technical details of
+                                  // implementation, the procedures are similar
+                                  // to those in step-22 and step-31 we reset
+                                  // matrix and vector, create a quadrature
+                                  // formula on the cells, and then create the
+                                  // respective FEValues object. For the update
+                                  // flags, we require basis function
+                                  // derivatives only in case of a full
+                                  // assembly, since they are not needed for
+                                  // the right hand side; as always, choosing
+                                  // the minimal set of flags depending on what
+                                  // is currently needed makes the call to
+                                  // FEValues::reinit further down in the
+                                  // program more efficient.
+                                  //
+                                  // There is one thing that needs to be
+                                  // commented Â¡V since we have a separate
+                                  // finite element and DoFHandler for the
+                                  // saturation, we need to generate a second
+                                  // FEValues object for the proper evaluation
+                                  // of the saturation solution. This isn't too
+                                  // complicated to realize here: just use the
+                                  // saturation structures and set an update
+                                  // flag for the basis function values which
+                                  // we need for evaluation of the saturation
+                                  // solution. The only important part to
+                                  // remember here is that the same quadrature
+                                  // formula is used for both FEValues objects
+                                  // to ensure that we get matching information
+                                  // when we loop over the quadrature points of
+                                  // the two objects.
+                                  //
+                                  // The declarations proceed with some
+                                  // shortcuts for array sizes, the creation of
+                                  // the local matrix, right hand side as well
+                                  // as the vector for the indices of the local
+                                  // dofs compared to the global system.
+                                  //
+                                  // Note that in its present form, the
+                                  // function uses the permeability implemented
+                                  // in the RandomMedium::KInverse
+                                  // class. Switching to the single curved
+                                  // crack permeability function is as simple
+                                  // as just changing the namespace name.
+                                  //
+                                  // Here's the an important step: we have to
+                                  // get the values of the saturation function
+                                  // of the previous time step at the
+                                  // quadrature points. To this end, we can use
+                                  // the FEValues::get_function_values
+                                  // (previously already used in step-9,
+                                  // step-14 and step-15), a function that
+                                  // takes a solution vector and returns a list
+                                  // of function values at the quadrature
+                                  // points of the present cell. In fact, it
+                                  // returns the complete vector-valued
+                                  // solution at each quadrature point,
+                                  // i.e. not only the saturation but also the
+                                  // velocities and pressure:
+                                  //
+                                  // Next we need a vector that will contain
+                                  // the values of the saturation solution at
+                                  // the previous time level at the quadrature
+                                  // points to assemble the source term in the
+                                  // right hand side of the momentum
+                                  // equation. Let's call this vector
+                                  // old_saturation_values.
+                                  //
+                                  // The set of vectors we create next hold the
+                                  // evaluations of the basis functions as well
+                                  // as their gradients and symmetrized
+                                  // gradients that will be used for creating
+                                  // the matrices. Putting these into their own
+                                  // arrays rather than asking the FEValues
+                                  // object for this information each time it
+                                  // is needed is an optimization to accelerate
+                                  // the assembly process, see step-22 for
+                                  // details.
+                                  //
+                                  // The last two declarations are used to
+                                  // extract the individual blocks (velocity,
+                                  // pressure, saturation) from the total FE
+                                  // system.
+                                  //
+                                  // Now start the loop over all cells in the
+                                  // problem. We are working on two different
+                                  // DoFHandlers for this assembly routine, so
+                                  // we must have two different cell iterators
+                                  // for the two objects in use. This might
+                                  // seem a bit peculiar, since both the darcy
+                                  // system and the saturation system use the
+                                  // same grid, but that's the only way to keep
+                                  // degrees of freedom in sync. The first
+                                  // statements within the loop are again all
+                                  // very familiar, doing the update of the
+                                  // finite element data as specified by the
+                                  // update flags, zeroing out the local arrays
+                                  // and getting the values of the old solution
+                                  // at the quadrature points. Then we are
+                                  // ready to loop over the quadrature points
+                                  // on the cell.
+                                  //
+                                  // Once this is done, we start the loop over
+                                  // the rows and columns of the local matrix
+                                  // and feed the matrix with the relevant
+                                  // products.
+                                  //
+                                  // The last step in the loop over all cells
+                                  // is to enter the local contributions into
+                                  // the global matrix and vector structures to
+                                  // the positions specified in
+                                  // local_dof_indices. Again, we let the
+                                  // ConstraintMatrix class do the insertion of
+                                  // the cell matrix elements to the global
+                                  // matrix, which already condenses the
+                                  // hanging node constraints.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::assemble_darcy_system ()
+  {
+    darcy_matrix = 0;
+    darcy_rhs    = 0;
 
+    QGauss<dim>   quadrature_formula(darcy_degree+2);
+    QGauss<dim-1> face_quadrature_formula(darcy_degree+2);
 
+    FEValues<dim> darcy_fe_values (darcy_fe, quadrature_formula,
+                                  update_values    | update_gradients |
+                                  update_quadrature_points  | update_JxW_values);
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::assemble_saturation_matrix}
+    FEValues<dim> saturation_fe_values (saturation_fe, quadrature_formula,
+                                       update_values);
 
-                                // This function is easily understood since
-                                // it only forms a simple mass matrix for the
-                                // left hand side of the saturation linear
-                                // system by basis functions phi_i_s and
-                                // phi_j_s only. Finally, as usual, we enter
-                                // the local contribution into the global
-                                // matrix by specifying the position in
-                                // local_dof_indices. This is done by letting
-                                // the ConstraintMatrix class do the
-                                // insertion of the cell matrix elements to
-                                // the global matrix, which already condenses
-                                // the hanging node constraints.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::assemble_saturation_matrix ()
-{
-  QGauss<dim> quadrature_formula(saturation_degree+2);
+    FEFaceValues<dim> darcy_fe_face_values (darcy_fe, face_quadrature_formula,
+                                           update_values    | update_normal_vectors |
+                                           update_quadrature_points  | update_JxW_values);
 
-  FEValues<dim> saturation_fe_values (saturation_fe, quadrature_formula,
-                                      update_values | update_JxW_values);
+    const unsigned int   dofs_per_cell   = darcy_fe.dofs_per_cell;
 
-  const unsigned int dofs_per_cell = saturation_fe.dofs_per_cell;
+    const unsigned int   n_q_points      = quadrature_formula.size();
+    const unsigned int   n_face_q_points = face_quadrature_formula.size();
 
-  const unsigned int n_q_points = quadrature_formula.size();
+    FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>       local_rhs (dofs_per_cell);
 
-  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       local_rhs (dofs_per_cell);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+    const PressureRightHandSide<dim>  pressure_right_hand_side;
+    const PressureBoundaryValues<dim> pressure_boundary_values;
+    const RandomMedium::KInverse<dim> k_inverse;
+//  const SingleCurvingCrack::KInverse<dim> k_inverse;
 
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = saturation_dof_handler.begin_active(),
-    endc = saturation_dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      saturation_fe_values.reinit (cell);
-      local_matrix = 0;
-      local_rhs    = 0;
-
-      for (unsigned int q=0; q<n_q_points; ++q)
-        for (unsigned int i=0; i<dofs_per_cell; ++i)
-          {
-            const double phi_i_s = saturation_fe_values.shape_value (i,q);
-            for (unsigned int j=0; j<dofs_per_cell; ++j)
-              {
-                const double phi_j_s = saturation_fe_values.shape_value (j,q);
-                local_matrix(i,j) += phi_i_s * phi_j_s * saturation_fe_values.JxW(q);
-              }
-          }
-      cell->get_dof_indices (local_dof_indices);
-
-      saturation_constraints.distribute_local_to_global (local_matrix,
-                                                         local_dof_indices,
-                                                         saturation_matrix);
+    std::vector<double>               pressure_rhs_values (n_q_points);
+    std::vector<double>               boundary_values (n_face_q_points);
+    std::vector<Tensor<2,dim> >       k_inverse_values (n_q_points);
 
-    }
-}
+    std::vector<double>               old_saturation_values (n_q_points);
 
+    std::vector<Tensor<1,dim> > phi_u (dofs_per_cell);
+    std::vector<double>         div_phi_u (dofs_per_cell);
+    std::vector<double>         phi_p (dofs_per_cell);
 
+    const FEValuesExtractors::Vector velocities (0);
+    const FEValuesExtractors::Scalar pressure (dim);
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::assemble_saturation_rhs}
-
-                                // This function is to assemble the right
-                                // hand side of the saturation transport
-                                // equation. Before assembling it, we have to
-                                // call two FEValues objects for the darcy
-                                // and saturation systems respectively and,
-                                // even more, two FEFaceValues objects for
-                                // the both systems because we have a
-                                // boundary integral term in the weak form of
-                                // saturation equation. For the FEFaceValues
-                                // object of the saturation system, we also
-                                // enter the normal vectors with an update
-                                // flag update_normal_vectors.
-                                // 
-                                // Next, before looping over all the cells,
-                                // we have to compute some parameters
-                                // (e.g. global_u_infty, global_S_variasion,
-                                // and global_Omega_diameter) that the
-                                // artificial viscosity $\nu$ needs, which
-                                // desriptions have been appearing in
-                                // step-31.
-                                // 
-                                // Next, we start to loop over all the
-                                // saturation and darcy cells to put the
-                                // local contributions into the global
-                                // vector. In this loop, in order to simplify
-                                // the implementation in this function, we
-                                // generate two more functions: one is
-                                // assemble_saturation_rhs_cell_term and the
-                                // other is
-                                // assemble_saturation_rhs_boundary_term,
-                                // which is contained in an inner boudary
-                                // loop. The former is to assemble the
-                                // integral cell term with neccessary
-                                // arguments and the latter is to assemble
-                                // the integral global boundary $\Omega$
-                                // terms. It should be noted that we achieve
-                                // the insertion of the cell or boundary
-                                // vector elements to the global vector in
-                                // the two functions rather than in this
-                                // present function by giving these two
-                                // functions with a common argument
-                                // local_dof_indices, and two arguments
-                                // saturation_fe_values darcy_fe_values for
-                                // assemble_saturation_rhs_cell_term and
-                                // another two arguments
-                                // saturation_fe_face_values
-                                // darcy_fe_face_values for
-                                // assemble_saturation_rhs_boundary_term.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::assemble_saturation_rhs ()
-{
-  QGauss<dim>   quadrature_formula(saturation_degree+2);
-  QGauss<dim-1> face_quadrature_formula(saturation_degree+2);
-
-  FEValues<dim> saturation_fe_values                          (saturation_fe, quadrature_formula,
-                                                               update_values    | update_gradients |
-                                                               update_quadrature_points  | update_JxW_values);
-  FEValues<dim> darcy_fe_values                               (darcy_fe, quadrature_formula,
-                                                               update_values);
-  FEFaceValues<dim> saturation_fe_face_values                 (saturation_fe, face_quadrature_formula,
-                                                               update_values    | update_normal_vectors |
-                                                               update_quadrature_points  | update_JxW_values);
-  FEFaceValues<dim> darcy_fe_face_values                      (darcy_fe, face_quadrature_formula,
-                                                               update_values);
-  FEFaceValues<dim> saturation_fe_face_values_neighbor        (saturation_fe, face_quadrature_formula,
-                                                               update_values);
-
-  const unsigned int dofs_per_cell = saturation_dof_handler.get_fe().dofs_per_cell;
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-  const double global_u_infty = get_maximal_velocity ();
-  const std::pair<double,double>
-    global_S_range = get_extrapolated_saturation_range ();
-  const double global_S_variasion = global_S_range.second - global_S_range.first;
-  const double global_Omega_diameter = GridTools::diameter (triangulation);
-
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = saturation_dof_handler.begin_active(),
-    endc = saturation_dof_handler.end();
-  typename DoFHandler<dim>::active_cell_iterator
-    darcy_cell = darcy_dof_handler.begin_active();
-  for (; cell!=endc; ++cell, ++darcy_cell)
-    {
-      saturation_fe_values.reinit (cell);
-      darcy_fe_values.reinit (darcy_cell);
-
-      cell->get_dof_indices (local_dof_indices);
-
-      assemble_saturation_rhs_cell_term(saturation_fe_values,
-                                        darcy_fe_values,
-                                        local_dof_indices,
-                                        global_u_infty,
-                                        global_S_variasion,
-                                        global_Omega_diameter);
-
-      for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
-           ++face_no)
-        {
-
-          if (cell->at_boundary(face_no))
-            {
-              darcy_fe_face_values.reinit (darcy_cell, face_no);
-              saturation_fe_face_values.reinit (cell, face_no);
-              assemble_saturation_rhs_boundary_term (saturation_fe_face_values,
-                                                     darcy_fe_face_values,
-                                                     local_dof_indices);
-            }
-        }
-    }
-}
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = darcy_dof_handler.begin_active(),
+      endc = darcy_dof_handler.end();
+    typename DoFHandler<dim>::active_cell_iterator
+      saturation_cell = saturation_dof_handler.begin_active();
 
+    for (; cell!=endc; ++cell, ++saturation_cell)
+      {
+       darcy_fe_values.reinit (cell);
+       saturation_fe_values.reinit (saturation_cell);
+
+       local_matrix = 0;
+       local_rhs = 0;
+
+       saturation_fe_values.get_function_values (old_saturation_solution, old_saturation_values);
+
+       pressure_right_hand_side.value_list (darcy_fe_values.get_quadrature_points(),
+                                            pressure_rhs_values);
+       k_inverse.value_list (darcy_fe_values.get_quadrature_points(),
+                             k_inverse_values);
+
+       for (unsigned int q=0; q<n_q_points; ++q)
+         {
+           for (unsigned int k=0; k<dofs_per_cell; ++k)
+             {
+               phi_u[k]     = darcy_fe_values[velocities].value (k,q);
+               div_phi_u[k] = darcy_fe_values[velocities].divergence (k,q);
+               phi_p[k]     = darcy_fe_values[pressure].value (k,q);
+             }
+           for (unsigned int i=0; i<dofs_per_cell; ++i)
+             {
+               const double old_s = old_saturation_values[q];
+               for (unsigned int j=0; j<=i; ++j)
+                 {
+                   local_matrix(i,j) += (phi_u[i] * k_inverse_values[q] *
+                                         mobility_inverse(old_s,viscosity) * phi_u[j]
+                                         - div_phi_u[i] * phi_p[j]
+                                         - phi_p[i] * div_phi_u[j])
+                                        * darcy_fe_values.JxW(q);
+                 }
+
+               local_rhs(i) += (-phi_p[i] * pressure_rhs_values[q])*
+                               darcy_fe_values.JxW(q);
+             }
+         }
+
+       for (unsigned int face_no=0;
+            face_no<GeometryInfo<dim>::faces_per_cell;
+            ++face_no)
+         if (cell->at_boundary(face_no))
+           {
+             darcy_fe_face_values.reinit (cell, face_no);
+
+             pressure_boundary_values
+               .value_list (darcy_fe_face_values.get_quadrature_points(),
+                            boundary_values);
+
+             for (unsigned int q=0; q<n_face_q_points; ++q)
+               for (unsigned int i=0; i<dofs_per_cell; ++i)
+                 {
+                   const Tensor<1,dim>
+                     phi_i_u = darcy_fe_face_values[velocities].value (i, q);
+
+                   local_rhs(i) += -(phi_i_u *
+                                     darcy_fe_face_values.normal_vector(q) *
+                                     boundary_values[q] *
+                                     darcy_fe_face_values.JxW(q));
+                 }
+           }
+
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         for (unsigned int j=i+1; j<dofs_per_cell; ++j)
+           local_matrix(i,j) = local_matrix(j,i);
+
+       cell->get_dof_indices (local_dof_indices);
+
+       darcy_constraints.distribute_local_to_global (local_matrix,
+                                                     local_rhs,
+                                                     local_dof_indices,
+                                                     darcy_matrix,
+                                                     darcy_rhs);
 
+      }
+  }
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::assemble_saturation_rhs_cell_term}
-
-                                // In this function, we actually compute
-                                // every artificial viscosity for every
-                                // element. Then, with the artificial value,
-                                // we can finish assembling the saturation
-                                // right hand side cell integral
-                                // terms. Finally, we can pass the local
-                                // contributions on to the global vector with
-                                // the position specified in
-                                // local_dof_indices.
-template <int dim>
-void
-TwoPhaseFlowProblem<dim>::
-assemble_saturation_rhs_cell_term (const FEValues<dim>             &saturation_fe_values,
-                                   const FEValues<dim>             &darcy_fe_values,
-                                   const std::vector<unsigned int> &local_dof_indices,
-                                   const double                     global_u_infty,
-                                   const double                     global_S_variation,
-                                   const double                     global_Omega_diameter)
-{
-  const unsigned int dofs_per_cell = saturation_fe_values.dofs_per_cell;
-  const unsigned int n_q_points    = saturation_fe_values.n_quadrature_points;
-
-  Vector<double> local_rhs (dofs_per_cell);
-
-  std::vector<double>          old_saturation_solution_values(n_q_points);
-  std::vector<double>          old_old_saturation_solution_values(n_q_points);
-  std::vector<Tensor<1,dim> >  old_grad_saturation_solution_values(n_q_points);
-  std::vector<Tensor<1,dim> >  old_old_grad_saturation_solution_values(n_q_points);
-  std::vector<Vector<double> > present_darcy_solution_values(n_q_points, Vector<double>(dim+1));
-
-  saturation_fe_values.get_function_values (old_saturation_solution, old_saturation_solution_values);
-  saturation_fe_values.get_function_values (old_old_saturation_solution, old_old_saturation_solution_values);
-  saturation_fe_values.get_function_grads (old_saturation_solution, old_grad_saturation_solution_values);
-  saturation_fe_values.get_function_grads (old_old_saturation_solution, old_old_grad_saturation_solution_values);
-  darcy_fe_values.get_function_values (darcy_solution, present_darcy_solution_values);
-
-  const double nu
-    = compute_viscosity (old_saturation_solution_values,
-                         old_old_saturation_solution_values,
-                         old_grad_saturation_solution_values,
-                         old_old_grad_saturation_solution_values,
-                         present_darcy_solution_values,
-                         global_u_infty,
-                         global_S_variation,
-                         global_Omega_diameter,
-                         saturation_fe_values.get_cell()->diameter(),
-                         old_time_step,
-                         viscosity);
-
-  for (unsigned int q=0; q<n_q_points; ++q)
-    for (unsigned int i=0; i<dofs_per_cell; ++i)
+
+                                  // @sect3{TwoPhaseFlowProblem<dim>::assemble_saturation_system}
+
+                                  // This function is to assemble the linear
+                                  // system for the saturation transport
+                                  // equation. It includes two member
+                                  // functions: assemble_saturation_matrix ()
+                                  // and assemble_saturation_rhs (). The former
+                                  // function that assembles the saturation
+                                  // left hand side needs to be changed only
+                                  // when grids have been changed since the
+                                  // matrix is filled only with basis
+                                  // functions. However, the latter that
+                                  // assembles the right hand side must be
+                                  // changed at every saturation time step
+                                  // since it depends on an unknown variable
+                                  // saturation.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::assemble_saturation_system ()
+  {
+    if ( rebuild_saturation_matrix == true )
       {
-        const double old_s = old_saturation_solution_values[q];
-        Tensor<1,dim> present_u;
-        for (unsigned int d=0; d<dim; ++d)
-          present_u[d] = present_darcy_solution_values[q](d);
-
-        const double        phi_i_s      = saturation_fe_values.shape_value (i, q);
-        const Tensor<1,dim> grad_phi_i_s = saturation_fe_values.shape_grad (i, q);
-
-        local_rhs(i) += (time_step *
-                         f_saturation(old_s,viscosity) *
-                         present_u *
-                         grad_phi_i_s
-                         -
-                         time_step *
-                         nu *
-                         old_grad_saturation_solution_values[q] * grad_phi_i_s
-                         +
-                         old_s * phi_i_s)
-                       *
-                       saturation_fe_values.JxW(q);
+       saturation_matrix = 0;
+       assemble_saturation_matrix ();
       }
 
-  saturation_constraints.distribute_local_to_global (local_rhs,
-                                                     local_dof_indices,
-                                                     saturation_rhs);
-}
+    saturation_rhs = 0;
+    assemble_saturation_rhs ();
+  }
 
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::assemble_saturation_rhs_boundary_term}
-
-                                // In this function, we have to give
-                                // upwinding in the global boundary faces,
-                                // i.e. we impose the Dirichlet boundary
-                                // conditions only on inflow parts of global
-                                // boundary, which has been described in
-                                // step-21 so we refrain from giving more
-                                // descriptions about that.
-template <int dim>
-void
-TwoPhaseFlowProblem<dim>::
-assemble_saturation_rhs_boundary_term (const FEFaceValues<dim>             &saturation_fe_face_values,
-                                       const FEFaceValues<dim>             &darcy_fe_face_values,
-                                       const std::vector<unsigned int>     &local_dof_indices)
-{
-  const unsigned int dofs_per_cell      = saturation_fe_face_values.dofs_per_cell;
-  const unsigned int n_face_q_points    = saturation_fe_face_values.n_quadrature_points;
 
-  Vector<double> local_rhs (dofs_per_cell);
+                                  // @sect3{TwoPhaseFlowProblem<dim>::assemble_saturation_matrix}
 
-  std::vector<double>          old_saturation_solution_values_face(n_face_q_points);
-  std::vector<Vector<double> > present_darcy_solution_values_face(n_face_q_points, Vector<double>(dim+1));
-  std::vector<double>          neighbor_saturation (n_face_q_points);
+                                  // This function is easily understood since
+                                  // it only forms a simple mass matrix for the
+                                  // left hand side of the saturation linear
+                                  // system by basis functions phi_i_s and
+                                  // phi_j_s only. Finally, as usual, we enter
+                                  // the local contribution into the global
+                                  // matrix by specifying the position in
+                                  // local_dof_indices. This is done by letting
+                                  // the ConstraintMatrix class do the
+                                  // insertion of the cell matrix elements to
+                                  // the global matrix, which already condenses
+                                  // the hanging node constraints.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::assemble_saturation_matrix ()
+  {
+    QGauss<dim> quadrature_formula(saturation_degree+2);
 
-  saturation_fe_face_values.get_function_values (old_saturation_solution, old_saturation_solution_values_face);
-  darcy_fe_face_values.get_function_values (darcy_solution, present_darcy_solution_values_face);
+    FEValues<dim> saturation_fe_values (saturation_fe, quadrature_formula,
+                                       update_values | update_JxW_values);
 
-  SaturationBoundaryValues<dim> saturation_boundary_values;
-  saturation_boundary_values
-    .value_list (saturation_fe_face_values.get_quadrature_points(),
-                 neighbor_saturation);
+    const unsigned int dofs_per_cell = saturation_fe.dofs_per_cell;
 
-  for (unsigned int q=0; q<n_face_q_points; ++q)
-    {
-      Tensor<1,dim> present_u_face;
-      for (unsigned int d=0; d<dim; ++d)
-        present_u_face[d] = present_darcy_solution_values_face[q](d);
+    const unsigned int n_q_points = quadrature_formula.size();
 
-      const double normal_flux = present_u_face *
-                                 saturation_fe_face_values.normal_vector(q);
+    FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>       local_rhs (dofs_per_cell);
 
-      const bool is_outflow_q_point = (normal_flux >= 0);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-        local_rhs(i) -= time_step *
-                        normal_flux *
-                        f_saturation((is_outflow_q_point == true
-                                     ?
-                                     old_saturation_solution_values_face[q]
-                                     :
-                                     neighbor_saturation[q]),
-                                    viscosity) *
-                        saturation_fe_face_values.shape_value (i,q) *
-                        saturation_fe_face_values.JxW(q);
-    }
-  saturation_constraints.distribute_local_to_global (local_rhs,
-                                                     local_dof_indices,
-                                                     saturation_rhs);
-}
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = saturation_dof_handler.begin_active(),
+      endc = saturation_dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       saturation_fe_values.reinit (cell);
+       local_matrix = 0;
+       local_rhs    = 0;
+
+       for (unsigned int q=0; q<n_q_points; ++q)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           {
+             const double phi_i_s = saturation_fe_values.shape_value (i,q);
+             for (unsigned int j=0; j<dofs_per_cell; ++j)
+               {
+                 const double phi_j_s = saturation_fe_values.shape_value (j,q);
+                 local_matrix(i,j) += phi_i_s * phi_j_s * saturation_fe_values.JxW(q);
+               }
+           }
+       cell->get_dof_indices (local_dof_indices);
+
+       saturation_constraints.distribute_local_to_global (local_matrix,
+                                                          local_dof_indices,
+                                                          saturation_matrix);
 
+      }
+  }
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::solve}
-
-                                // This function is to implement the operator
-                                // splitting algorithm. At the beginning of
-                                // the implementation, we decide whther to
-                                // solve the pressure-velocity part by
-                                // running an a posteriori criterion, which
-                                // will be described in the following
-                                // function. If we get the bool variable true
-                                // from that function, we will solve the
-                                // pressure-velocity part for updated
-                                // velocity. Then, we use GMRES with the
-                                // Schur complement preconditioner to solve
-                                // this linear system, as is described in the
-                                // Introduction. After solving the velocity
-                                // and pressure, we need to keep the
-                                // solutions for linear extrapolations in the
-                                // future. It is noted that we always solve
-                                // the pressure-velocity part in the first
-                                // three micro time steps to ensure accuracy
-                                // at the beginning of computation, and to
-                                // provide starting data to linearly
-                                // extrapolate previously computed velocities
-                                // to the current time step.
-                                // 
-                                // On the other hand, if we get a false
-                                // variable from the criterion, we will
-                                // directly use linear extrapolation to
-                                // compute the updated velocity for the
-                                // solution of saturation later.
-                                // 
-                                // Next, like step-21, this program need to
-                                // compute the present time step.
-                                // 
-                                // Next, we need to use two bool variables
-                                // solve_pressure_velocity_part and
-                                // previous_solve_pressure_velocity_part to
-                                // decide whether we stop or continue
-                                // cumulating the micro time steps for linear
-                                // extropolations in the next iteration. With
-                                // the reason, we need one variable
-                                // cumulative_nth_time_step for keeping the
-                                // present aggregated micro time steps and
-                                // anther one n_minus_oneth_time_step for
-                                // retaining the previous micro time steps.
-                                // 
-                                // Finally, we start to calculate the
-                                // saturation part with the use of the
-                                // incomplete Cholesky decomposition for
-                                // preconditioning.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::solve ()
-{
-  solve_pressure_velocity_part = determine_whether_to_solve_pressure_velocity_part ();
 
-  if ( timestep_number <= 3 || solve_pressure_velocity_part == true )
-    {
-      std::cout << "   Solving darcy system (pressure-velocity part)..." << std::endl;
 
-      assemble_darcy_system ();
-      build_darcy_preconditioner ();
+                                  // @sect3{TwoPhaseFlowProblem<dim>::assemble_saturation_rhs}
+
+                                  // This function is to assemble the right
+                                  // hand side of the saturation transport
+                                  // equation. Before assembling it, we have to
+                                  // call two FEValues objects for the darcy
+                                  // and saturation systems respectively and,
+                                  // even more, two FEFaceValues objects for
+                                  // the both systems because we have a
+                                  // boundary integral term in the weak form of
+                                  // saturation equation. For the FEFaceValues
+                                  // object of the saturation system, we also
+                                  // enter the normal vectors with an update
+                                  // flag update_normal_vectors.
+                                  //
+                                  // Next, before looping over all the cells,
+                                  // we have to compute some parameters
+                                  // (e.g. global_u_infty, global_S_variasion,
+                                  // and global_Omega_diameter) that the
+                                  // artificial viscosity $\nu$ needs, which
+                                  // desriptions have been appearing in
+                                  // step-31.
+                                  //
+                                  // Next, we start to loop over all the
+                                  // saturation and darcy cells to put the
+                                  // local contributions into the global
+                                  // vector. In this loop, in order to simplify
+                                  // the implementation in this function, we
+                                  // generate two more functions: one is
+                                  // assemble_saturation_rhs_cell_term and the
+                                  // other is
+                                  // assemble_saturation_rhs_boundary_term,
+                                  // which is contained in an inner boudary
+                                  // loop. The former is to assemble the
+                                  // integral cell term with neccessary
+                                  // arguments and the latter is to assemble
+                                  // the integral global boundary $\Omega$
+                                  // terms. It should be noted that we achieve
+                                  // the insertion of the cell or boundary
+                                  // vector elements to the global vector in
+                                  // the two functions rather than in this
+                                  // present function by giving these two
+                                  // functions with a common argument
+                                  // local_dof_indices, and two arguments
+                                  // saturation_fe_values darcy_fe_values for
+                                  // assemble_saturation_rhs_cell_term and
+                                  // another two arguments
+                                  // saturation_fe_face_values
+                                  // darcy_fe_face_values for
+                                  // assemble_saturation_rhs_boundary_term.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::assemble_saturation_rhs ()
+  {
+    QGauss<dim>   quadrature_formula(saturation_degree+2);
+    QGauss<dim-1> face_quadrature_formula(saturation_degree+2);
+
+    FEValues<dim> saturation_fe_values                          (saturation_fe, quadrature_formula,
+                                                                update_values    | update_gradients |
+                                                                update_quadrature_points  | update_JxW_values);
+    FEValues<dim> darcy_fe_values                               (darcy_fe, quadrature_formula,
+                                                                update_values);
+    FEFaceValues<dim> saturation_fe_face_values                 (saturation_fe, face_quadrature_formula,
+                                                                update_values    | update_normal_vectors |
+                                                                update_quadrature_points  | update_JxW_values);
+    FEFaceValues<dim> darcy_fe_face_values                      (darcy_fe, face_quadrature_formula,
+                                                                update_values);
+    FEFaceValues<dim> saturation_fe_face_values_neighbor        (saturation_fe, face_quadrature_formula,
+                                                                update_values);
+
+    const unsigned int dofs_per_cell = saturation_dof_handler.get_fe().dofs_per_cell;
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+    const double global_u_infty = get_maximal_velocity ();
+    const std::pair<double,double>
+      global_S_range = get_extrapolated_saturation_range ();
+    const double global_S_variasion = global_S_range.second - global_S_range.first;
+    const double global_Omega_diameter = GridTools::diameter (triangulation);
 
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = saturation_dof_handler.begin_active(),
+      endc = saturation_dof_handler.end();
+    typename DoFHandler<dim>::active_cell_iterator
+      darcy_cell = darcy_dof_handler.begin_active();
+    for (; cell!=endc; ++cell, ++darcy_cell)
       {
-        const LinearSolvers::InverseMatrix<TrilinosWrappers::SparseMatrix,
-         TrilinosWrappers::PreconditionIC>
-          mp_inverse (darcy_preconditioner_matrix.block(1,1), *Mp_preconditioner);
+       saturation_fe_values.reinit (cell);
+       darcy_fe_values.reinit (darcy_cell);
+
+       cell->get_dof_indices (local_dof_indices);
+
+       assemble_saturation_rhs_cell_term(saturation_fe_values,
+                                         darcy_fe_values,
+                                         local_dof_indices,
+                                         global_u_infty,
+                                         global_S_variasion,
+                                         global_Omega_diameter);
+
+       for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
+            ++face_no)
+         {
+
+           if (cell->at_boundary(face_no))
+             {
+               darcy_fe_face_values.reinit (darcy_cell, face_no);
+               saturation_fe_face_values.reinit (cell, face_no);
+               assemble_saturation_rhs_boundary_term (saturation_fe_face_values,
+                                                      darcy_fe_face_values,
+                                                      local_dof_indices);
+             }
+         }
+      }
+  }
 
-        const LinearSolvers::BlockSchurPreconditioner<TrilinosWrappers::PreconditionIC,
-         TrilinosWrappers::PreconditionIC>
-          preconditioner (darcy_matrix, mp_inverse, *Amg_preconditioner);
 
-        SolverControl solver_control (darcy_matrix.m(),
-                                      1e-6*darcy_rhs.l2_norm());
 
-        SolverGMRES<TrilinosWrappers::BlockVector>
-          gmres (solver_control,
-                 SolverGMRES<TrilinosWrappers::BlockVector >::AdditionalData(100));
+                                  // @sect3{TwoPhaseFlowProblem<dim>::assemble_saturation_rhs_cell_term}
 
-        for (unsigned int i=0; i<darcy_solution.size(); ++i)
-          if (darcy_constraints.is_constrained(i))
-            darcy_solution(i) = 0;
+                                  // In this function, we actually compute
+                                  // every artificial viscosity for every
+                                  // element. Then, with the artificial value,
+                                  // we can finish assembling the saturation
+                                  // right hand side cell integral
+                                  // terms. Finally, we can pass the local
+                                  // contributions on to the global vector with
+                                  // the position specified in
+                                  // local_dof_indices.
+  template <int dim>
+  void
+  TwoPhaseFlowProblem<dim>::
+  assemble_saturation_rhs_cell_term (const FEValues<dim>             &saturation_fe_values,
+                                    const FEValues<dim>             &darcy_fe_values,
+                                    const std::vector<unsigned int> &local_dof_indices,
+                                    const double                     global_u_infty,
+                                    const double                     global_S_variation,
+                                    const double                     global_Omega_diameter)
+  {
+    const unsigned int dofs_per_cell = saturation_fe_values.dofs_per_cell;
+    const unsigned int n_q_points    = saturation_fe_values.n_quadrature_points;
+
+    Vector<double> local_rhs (dofs_per_cell);
+
+    std::vector<double>          old_saturation_solution_values(n_q_points);
+    std::vector<double>          old_old_saturation_solution_values(n_q_points);
+    std::vector<Tensor<1,dim> >  old_grad_saturation_solution_values(n_q_points);
+    std::vector<Tensor<1,dim> >  old_old_grad_saturation_solution_values(n_q_points);
+    std::vector<Vector<double> > present_darcy_solution_values(n_q_points, Vector<double>(dim+1));
+
+    saturation_fe_values.get_function_values (old_saturation_solution, old_saturation_solution_values);
+    saturation_fe_values.get_function_values (old_old_saturation_solution, old_old_saturation_solution_values);
+    saturation_fe_values.get_function_grads (old_saturation_solution, old_grad_saturation_solution_values);
+    saturation_fe_values.get_function_grads (old_old_saturation_solution, old_old_grad_saturation_solution_values);
+    darcy_fe_values.get_function_values (darcy_solution, present_darcy_solution_values);
+
+    const double nu
+      = compute_viscosity (old_saturation_solution_values,
+                          old_old_saturation_solution_values,
+                          old_grad_saturation_solution_values,
+                          old_old_grad_saturation_solution_values,
+                          present_darcy_solution_values,
+                          global_u_infty,
+                          global_S_variation,
+                          global_Omega_diameter,
+                          saturation_fe_values.get_cell()->diameter(),
+                          old_time_step,
+                          viscosity);
+
+    for (unsigned int q=0; q<n_q_points; ++q)
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       {
+         const double old_s = old_saturation_solution_values[q];
+         Tensor<1,dim> present_u;
+         for (unsigned int d=0; d<dim; ++d)
+           present_u[d] = present_darcy_solution_values[q](d);
+
+         const double        phi_i_s      = saturation_fe_values.shape_value (i, q);
+         const Tensor<1,dim> grad_phi_i_s = saturation_fe_values.shape_grad (i, q);
+
+         local_rhs(i) += (time_step *
+                          f_saturation(old_s,viscosity) *
+                          present_u *
+                          grad_phi_i_s
+                          -
+                          time_step *
+                          nu *
+                          old_grad_saturation_solution_values[q] * grad_phi_i_s
+                          +
+                          old_s * phi_i_s)
+                         *
+                         saturation_fe_values.JxW(q);
+       }
 
-        gmres.solve(darcy_matrix, darcy_solution, darcy_rhs, preconditioner);
+    saturation_constraints.distribute_local_to_global (local_rhs,
+                                                      local_dof_indices,
+                                                      saturation_rhs);
+  }
 
-        darcy_constraints.distribute (darcy_solution);
 
-        std::cout << "     "
-                  << solver_control.last_step()
-                  << " GMRES iterations for darcy system (pressure-velocity part)."
-                  << std::endl;
+                                  // @sect3{TwoPhaseFlowProblem<dim>::assemble_saturation_rhs_boundary_term}
 
-      }
+                                  // In this function, we have to give
+                                  // upwinding in the global boundary faces,
+                                  // i.e. we impose the Dirichlet boundary
+                                  // conditions only on inflow parts of global
+                                  // boundary, which has been described in
+                                  // step-21 so we refrain from giving more
+                                  // descriptions about that.
+  template <int dim>
+  void
+  TwoPhaseFlowProblem<dim>::
+  assemble_saturation_rhs_boundary_term (const FEFaceValues<dim>             &saturation_fe_face_values,
+                                        const FEFaceValues<dim>             &darcy_fe_face_values,
+                                        const std::vector<unsigned int>     &local_dof_indices)
+  {
+    const unsigned int dofs_per_cell      = saturation_fe_face_values.dofs_per_cell;
+    const unsigned int n_face_q_points    = saturation_fe_face_values.n_quadrature_points;
 
-      {
-        n_minus_oneth_darcy_solution_after_solving_pressure_part = nth_darcy_solution_after_solving_pressure_part;
-        nth_darcy_solution_after_solving_pressure_part = darcy_solution;
+    Vector<double> local_rhs (dofs_per_cell);
 
-        nth_saturation_solution_after_solving_pressure_part = saturation_solution;
-      }
-    }
-  else
-    {
-      darcy_solution.block(0) = nth_darcy_solution_after_solving_pressure_part.block(0);
-      darcy_solution.block(0).sadd (2.0, -1.0, n_minus_oneth_darcy_solution_after_solving_pressure_part.block(0) );
+    std::vector<double>          old_saturation_solution_values_face(n_face_q_points);
+    std::vector<Vector<double> > present_darcy_solution_values_face(n_face_q_points, Vector<double>(dim+1));
+    std::vector<double>          neighbor_saturation (n_face_q_points);
 
-      double extrapolated_time_step = GridTools::minimal_cell_diameter(triangulation) /
-                                      get_maximal_velocity() / 8.0;
+    saturation_fe_face_values.get_function_values (old_saturation_solution, old_saturation_solution_values_face);
+    darcy_fe_face_values.get_function_values (darcy_solution, present_darcy_solution_values_face);
 
-      double local_cumulative_time_step = cumulative_nth_time_step + extrapolated_time_step;
-      double coef_1 = local_cumulative_time_step / n_minus_oneth_time_step;
-      double coef_2 = ( 1.0 + coef_1 );
+    SaturationBoundaryValues<dim> saturation_boundary_values;
+    saturation_boundary_values
+      .value_list (saturation_fe_face_values.get_quadrature_points(),
+                  neighbor_saturation);
 
-      TrilinosWrappers::Vector tmp (darcy_solution.block(0).size());
-      tmp = nth_darcy_solution_after_solving_pressure_part.block(0);
+    for (unsigned int q=0; q<n_face_q_points; ++q)
+      {
+       Tensor<1,dim> present_u_face;
+       for (unsigned int d=0; d<dim; ++d)
+         present_u_face[d] = present_darcy_solution_values_face[q](d);
+
+       const double normal_flux = present_u_face *
+                                  saturation_fe_face_values.normal_vector(q);
+
+       const bool is_outflow_q_point = (normal_flux >= 0);
+
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         local_rhs(i) -= time_step *
+                         normal_flux *
+                         f_saturation((is_outflow_q_point == true
+                                       ?
+                                       old_saturation_solution_values_face[q]
+                                       :
+                                       neighbor_saturation[q]),
+                                      viscosity) *
+                         saturation_fe_face_values.shape_value (i,q) *
+                         saturation_fe_face_values.JxW(q);
+      }
+    saturation_constraints.distribute_local_to_global (local_rhs,
+                                                      local_dof_indices,
+                                                      saturation_rhs);
+  }
 
-      tmp.sadd (coef_2, -coef_1, n_minus_oneth_darcy_solution_after_solving_pressure_part.block(0) );
 
-      darcy_solution.block(0).sadd (0.5, 0.5, tmp);
-    }
+                                  // @sect3{TwoPhaseFlowProblem<dim>::solve}
+
+                                  // This function is to implement the operator
+                                  // splitting algorithm. At the beginning of
+                                  // the implementation, we decide whther to
+                                  // solve the pressure-velocity part by
+                                  // running an a posteriori criterion, which
+                                  // will be described in the following
+                                  // function. If we get the bool variable true
+                                  // from that function, we will solve the
+                                  // pressure-velocity part for updated
+                                  // velocity. Then, we use GMRES with the
+                                  // Schur complement preconditioner to solve
+                                  // this linear system, as is described in the
+                                  // Introduction. After solving the velocity
+                                  // and pressure, we need to keep the
+                                  // solutions for linear extrapolations in the
+                                  // future. It is noted that we always solve
+                                  // the pressure-velocity part in the first
+                                  // three micro time steps to ensure accuracy
+                                  // at the beginning of computation, and to
+                                  // provide starting data to linearly
+                                  // extrapolate previously computed velocities
+                                  // to the current time step.
+                                  //
+                                  // On the other hand, if we get a false
+                                  // variable from the criterion, we will
+                                  // directly use linear extrapolation to
+                                  // compute the updated velocity for the
+                                  // solution of saturation later.
+                                  //
+                                  // Next, like step-21, this program need to
+                                  // compute the present time step.
+                                  //
+                                  // Next, we need to use two bool variables
+                                  // solve_pressure_velocity_part and
+                                  // previous_solve_pressure_velocity_part to
+                                  // decide whether we stop or continue
+                                  // cumulating the micro time steps for linear
+                                  // extropolations in the next iteration. With
+                                  // the reason, we need one variable
+                                  // cumulative_nth_time_step for keeping the
+                                  // present aggregated micro time steps and
+                                  // anther one n_minus_oneth_time_step for
+                                  // retaining the previous micro time steps.
+                                  //
+                                  // Finally, we start to calculate the
+                                  // saturation part with the use of the
+                                  // incomplete Cholesky decomposition for
+                                  // preconditioning.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::solve ()
+  {
+    solve_pressure_velocity_part = determine_whether_to_solve_pressure_velocity_part ();
 
+    if ( timestep_number <= 3 || solve_pressure_velocity_part == true )
+      {
+       std::cout << "   Solving darcy system (pressure-velocity part)..." << std::endl;
 
-  old_time_step = time_step;
-  time_step = GridTools::minimal_cell_diameter(triangulation) /
-              get_maximal_velocity() / 8.0;
+       assemble_darcy_system ();
+       build_darcy_preconditioner ();
 
-  if ( timestep_number <= 3 || ( solve_pressure_velocity_part == true && previous_solve_pressure_velocity_part == true ) )
-    {
-      n_minus_oneth_time_step = time_step;
-      cumulative_nth_time_step = 0.0;
-    }
-  else if ( solve_pressure_velocity_part == true && previous_solve_pressure_velocity_part == false )
-    {
-      n_minus_oneth_time_step = cumulative_nth_time_step;
-      cumulative_nth_time_step = 0.0;
-    }
-  else
-    {
-      cumulative_nth_time_step += time_step;
-    }
+       {
+         const LinearSolvers::InverseMatrix<TrilinosWrappers::SparseMatrix,
+           TrilinosWrappers::PreconditionIC>
+           mp_inverse (darcy_preconditioner_matrix.block(1,1), *Mp_preconditioner);
 
-  previous_solve_pressure_velocity_part = solve_pressure_velocity_part;
+         const LinearSolvers::BlockSchurPreconditioner<TrilinosWrappers::PreconditionIC,
+           TrilinosWrappers::PreconditionIC>
+           preconditioner (darcy_matrix, mp_inverse, *Amg_preconditioner);
 
-  std::cout << "   Solving saturation transport equation..." << std::endl;
+         SolverControl solver_control (darcy_matrix.m(),
+                                       1e-6*darcy_rhs.l2_norm());
 
-  assemble_saturation_system ();
+         SolverGMRES<TrilinosWrappers::BlockVector>
+           gmres (solver_control,
+                  SolverGMRES<TrilinosWrappers::BlockVector >::AdditionalData(100));
 
-  {
-    SolverControl solver_control (saturation_matrix.m(),
-                                  1e-8*saturation_rhs.l2_norm());
-    SolverCG<TrilinosWrappers::Vector> cg (solver_control);
+         for (unsigned int i=0; i<darcy_solution.size(); ++i)
+           if (darcy_constraints.is_constrained(i))
+             darcy_solution(i) = 0;
 
-    TrilinosWrappers::PreconditionIC preconditioner;
-    preconditioner.initialize (saturation_matrix);
+         gmres.solve(darcy_matrix, darcy_solution, darcy_rhs, preconditioner);
 
-    cg.solve (saturation_matrix, saturation_solution,
-              saturation_rhs, preconditioner);
+         darcy_constraints.distribute (darcy_solution);
 
+         std::cout << "     "
+                   << solver_control.last_step()
+                   << " GMRES iterations for darcy system (pressure-velocity part)."
+                   << std::endl;
 
-    saturation_constraints.distribute (saturation_solution);
+       }
 
-    project_back_saturation ();
+       {
+         n_minus_oneth_darcy_solution_after_solving_pressure_part = nth_darcy_solution_after_solving_pressure_part;
+         nth_darcy_solution_after_solving_pressure_part = darcy_solution;
 
-    std::cout << "     "
-              << solver_control.last_step()
-              << " CG iterations for saturation."
-              << std::endl;
+         nth_saturation_solution_after_solving_pressure_part = saturation_solution;
+       }
+      }
+    else
+      {
+       darcy_solution.block(0) = nth_darcy_solution_after_solving_pressure_part.block(0);
+       darcy_solution.block(0).sadd (2.0, -1.0, n_minus_oneth_darcy_solution_after_solving_pressure_part.block(0) );
 
-  }
+       double extrapolated_time_step = GridTools::minimal_cell_diameter(triangulation) /
+                                       get_maximal_velocity() / 8.0;
 
-}
+       double local_cumulative_time_step = cumulative_nth_time_step + extrapolated_time_step;
+       double coef_1 = local_cumulative_time_step / n_minus_oneth_time_step;
+       double coef_2 = ( 1.0 + coef_1 );
 
+       TrilinosWrappers::Vector tmp (darcy_solution.block(0).size());
+       tmp = nth_darcy_solution_after_solving_pressure_part.block(0);
 
+       tmp.sadd (coef_2, -coef_1, n_minus_oneth_darcy_solution_after_solving_pressure_part.block(0) );
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::determine_whether_to_solve_pressure_velocity_part}
-
-                                // This function is to implement the a
-                                // posteriori criterion for
-                                // adaptive operator splitting. As mentioned
-                                // in step-31, we use two FEValues objects
-                                // initialized with two cell iterators that
-                                // we walk in parallel through the two
-                                // DoFHandler objects associated with the
-                                // same Triangulation object; for these two
-                                // FEValues objects, we use of course the
-                                // same quadrature objects so that we can
-                                // iterate over the same set of quadrature
-                                // points, but each FEValues object will get
-                                // update flags only according to what it
-                                // actually needs to compute.
-                                // 
-                                // In addition to this, if someone doesn't
-                                // want to perform their simulation with
-                                // operator splitting, they can lower the
-                                // criterion value (default value is $5.0$)
-                                // down to zero ad therefore numerical
-                                // algorithm becomes the original IMPES
-                                // method.
-template <int dim>
-bool
-TwoPhaseFlowProblem<dim>::determine_whether_to_solve_pressure_velocity_part () const
-{
-  if (timestep_number <= 3)
-    return true;
+       darcy_solution.block(0).sadd (0.5, 0.5, tmp);
+      }
 
-  const QGauss<dim> quadrature_formula(saturation_degree+2);
-  const unsigned int   n_q_points = quadrature_formula.size();
 
-  FEValues<dim> fe_values (saturation_fe, quadrature_formula,
-                           update_values | update_quadrature_points);
+    old_time_step = time_step;
+    time_step = GridTools::minimal_cell_diameter(triangulation) /
+               get_maximal_velocity() / 8.0;
 
-  std::vector<double> old_saturation_after_solving_pressure (n_q_points);
-  std::vector<double> present_saturation (n_q_points);
+    if ( timestep_number <= 3 || ( solve_pressure_velocity_part == true && previous_solve_pressure_velocity_part == true ) )
+      {
+       n_minus_oneth_time_step = time_step;
+       cumulative_nth_time_step = 0.0;
+      }
+    else if ( solve_pressure_velocity_part == true && previous_solve_pressure_velocity_part == false )
+      {
+       n_minus_oneth_time_step = cumulative_nth_time_step;
+       cumulative_nth_time_step = 0.0;
+      }
+    else
+      {
+       cumulative_nth_time_step += time_step;
+      }
 
-  const RandomMedium::KInverse<dim> k_inverse;
-//  const SingleCurvingCrack::KInverse<dim> k_inverse;
+    previous_solve_pressure_velocity_part = solve_pressure_velocity_part;
 
-  std::vector<Tensor<2,dim> >       k_inverse_values (n_q_points);
+    std::cout << "   Solving saturation transport equation..." << std::endl;
 
-  double max_global_aop_indicator = 0.0;
+    assemble_saturation_system ();
 
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = saturation_dof_handler.begin_active(),
-    endc = saturation_dof_handler.end();
-  for (; cell!=endc; ++cell)
     {
-      double max_local_mobility_reciprocal_difference = 0.0;
-      double max_local_permeability_inverse_l1_norm = 0.0;
+      SolverControl solver_control (saturation_matrix.m(),
+                                   1e-8*saturation_rhs.l2_norm());
+      SolverCG<TrilinosWrappers::Vector> cg (solver_control);
 
-      fe_values.reinit(cell);
-      fe_values.get_function_values (nth_saturation_solution_after_solving_pressure_part,
-                                     old_saturation_after_solving_pressure);
-      fe_values.get_function_values (saturation_solution,
-                                     present_saturation);
+      TrilinosWrappers::PreconditionIC preconditioner;
+      preconditioner.initialize (saturation_matrix);
 
-      k_inverse.value_list (fe_values.get_quadrature_points(),
-                            k_inverse_values);
+      cg.solve (saturation_matrix, saturation_solution,
+               saturation_rhs, preconditioner);
 
-      for (unsigned int q=0; q<n_q_points; ++q)
-        {
-          double mobility_reciprocal_difference = std::fabs( mobility_inverse(present_saturation[q],viscosity)
-                                                             -
-                                                             mobility_inverse(old_saturation_after_solving_pressure[q],viscosity) );
 
-          max_local_mobility_reciprocal_difference = std::max(max_local_mobility_reciprocal_difference,
-                                                              mobility_reciprocal_difference);
+      saturation_constraints.distribute (saturation_solution);
 
-          max_local_permeability_inverse_l1_norm = std::max(max_local_permeability_inverse_l1_norm,
-                                                            k_inverse_values[q][0][0]);
-        }
+      project_back_saturation ();
 
-      max_global_aop_indicator = std::max(max_global_aop_indicator,
-                                          (max_local_mobility_reciprocal_difference*max_local_permeability_inverse_l1_norm));
-    }
+      std::cout << "     "
+               << solver_control.last_step()
+               << " CG iterations for saturation."
+               << std::endl;
 
-  if ( max_global_aop_indicator > 5.0 )
-    {
-      return true;
     }
-  else
-    {
-      std::cout << "   Activating adaptive operating splitting" << std::endl;
-      return false;
-    }
-}
-
 
+  }
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::compute_refinement_indicators}
-
-                                // This function is to to compute the
-                                // refinement indicator discussed in the
-                                // introduction for each cell and its
-                                // implementation is similar to that
-                                // contained in step-33. There is no need to
-                                // repeat descriptions about it.
-template <int dim>
-void
-TwoPhaseFlowProblem<dim>::
-compute_refinement_indicators (Vector<double> &refinement_indicators) const
-{
 
-  const QMidpoint<dim> quadrature_formula;
-  FEValues<dim> fe_values (saturation_fe, quadrature_formula, update_gradients);
-  std::vector<Tensor<1,dim> > grad_saturation (1);
 
-  double max_refinement_indicator = 0.0;
+                                  // @sect3{TwoPhaseFlowProblem<dim>::determine_whether_to_solve_pressure_velocity_part}
+
+                                  // This function is to implement the a
+                                  // posteriori criterion for
+                                  // adaptive operator splitting. As mentioned
+                                  // in step-31, we use two FEValues objects
+                                  // initialized with two cell iterators that
+                                  // we walk in parallel through the two
+                                  // DoFHandler objects associated with the
+                                  // same Triangulation object; for these two
+                                  // FEValues objects, we use of course the
+                                  // same quadrature objects so that we can
+                                  // iterate over the same set of quadrature
+                                  // points, but each FEValues object will get
+                                  // update flags only according to what it
+                                  // actually needs to compute.
+                                  //
+                                  // In addition to this, if someone doesn't
+                                  // want to perform their simulation with
+                                  // operator splitting, they can lower the
+                                  // criterion value (default value is $5.0$)
+                                  // down to zero ad therefore numerical
+                                  // algorithm becomes the original IMPES
+                                  // method.
+  template <int dim>
+  bool
+  TwoPhaseFlowProblem<dim>::determine_whether_to_solve_pressure_velocity_part () const
+  {
+    if (timestep_number <= 3)
+      return true;
 
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = saturation_dof_handler.begin_active(),
-    endc = saturation_dof_handler.end();
-  for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no)
-    {
-      fe_values.reinit(cell);
-      fe_values.get_function_grads (predictor_saturation_solution,
-                                    grad_saturation);
-
-      refinement_indicators(cell_no)
-        = std::log( 1.0 + std::sqrt( grad_saturation[0] *
-                                     grad_saturation[0] ) );
-      max_refinement_indicator = std::max(max_refinement_indicator,
-                                          refinement_indicators(cell_no));
-    }
+    const QGauss<dim> quadrature_formula(saturation_degree+2);
+    const unsigned int   n_q_points = quadrature_formula.size();
 
-//  std::cout << "max_refinement_indicator =" << max_refinement_indicator << std::endl;
-}
+    FEValues<dim> fe_values (saturation_fe, quadrature_formula,
+                            update_values | update_quadrature_points);
 
+    std::vector<double> old_saturation_after_solving_pressure (n_q_points);
+    std::vector<double> present_saturation (n_q_points);
 
+    const RandomMedium::KInverse<dim> k_inverse;
+//  const SingleCurvingCrack::KInverse<dim> k_inverse;
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::refine_grid}
+    std::vector<Tensor<2,dim> >       k_inverse_values (n_q_points);
 
-                                // This function is to decide if every cell
-                                // is refined or coarsened with computed
-                                // refinement indicators in the previous
-                                // function and do the interpolations of the
-                                // solution vectors. The main difference from
-                                // the previous time-dependent tutorials is
-                                // that there is no need to do the solution
-                                // interpolations if we don't have any cell
-                                // that is refined or coarsend, saving some
-                                // additional computing time.
-template <int dim>
-void
-TwoPhaseFlowProblem<dim>::
-refine_grid (const Vector<double> &refinement_indicators)
-{
-  const double current_saturation_level = saturation_level +
-                                          n_refinement_steps;
+    double max_global_aop_indicator = 0.0;
 
-  {
     typename DoFHandler<dim>::active_cell_iterator
       cell = saturation_dof_handler.begin_active(),
       endc = saturation_dof_handler.end();
-
-    for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no)
+    for (; cell!=endc; ++cell)
       {
-       cell->clear_coarsen_flag();
-       cell->clear_refine_flag();
+       double max_local_mobility_reciprocal_difference = 0.0;
+       double max_local_permeability_inverse_l1_norm = 0.0;
 
-       if ((cell->level() < current_saturation_level) &&
-           (std::fabs(refinement_indicators(cell_no)) > saturation_value))
-         cell->set_refine_flag();
-       else
-         if ((cell->level() > double(n_refinement_steps)) &&
-             (std::fabs(refinement_indicators(cell_no)) < 0.75 * saturation_value))
-           cell->set_coarsen_flag();
+       fe_values.reinit(cell);
+       fe_values.get_function_values (nth_saturation_solution_after_solving_pressure_part,
+                                      old_saturation_after_solving_pressure);
+       fe_values.get_function_values (saturation_solution,
+                                      present_saturation);
+
+       k_inverse.value_list (fe_values.get_quadrature_points(),
+                             k_inverse_values);
+
+       for (unsigned int q=0; q<n_q_points; ++q)
+         {
+           double mobility_reciprocal_difference = std::fabs( mobility_inverse(present_saturation[q],viscosity)
+                                                              -
+                                                              mobility_inverse(old_saturation_after_solving_pressure[q],viscosity) );
+
+           max_local_mobility_reciprocal_difference = std::max(max_local_mobility_reciprocal_difference,
+                                                               mobility_reciprocal_difference);
+
+           max_local_permeability_inverse_l1_norm = std::max(max_local_permeability_inverse_l1_norm,
+                                                             k_inverse_values[q][0][0]);
+         }
+
+       max_global_aop_indicator = std::max(max_global_aop_indicator,
+                                           (max_local_mobility_reciprocal_difference*max_local_permeability_inverse_l1_norm));
+      }
+
+    if ( max_global_aop_indicator > 5.0 )
+      {
+       return true;
+      }
+    else
+      {
+       std::cout << "   Activating adaptive operating splitting" << std::endl;
+       return false;
       }
   }
 
-  triangulation.prepare_coarsening_and_refinement ();
 
-  unsigned int number_of_cells_refine  = 0;
-  unsigned int number_of_cells_coarsen = 0;
 
+                                  // @sect3{TwoPhaseFlowProblem<dim>::compute_refinement_indicators}
+
+                                  // This function is to to compute the
+                                  // refinement indicator discussed in the
+                                  // introduction for each cell and its
+                                  // implementation is similar to that
+                                  // contained in step-33. There is no need to
+                                  // repeat descriptions about it.
+  template <int dim>
+  void
+  TwoPhaseFlowProblem<dim>::
+  compute_refinement_indicators (Vector<double> &refinement_indicators) const
   {
+
+    const QMidpoint<dim> quadrature_formula;
+    FEValues<dim> fe_values (saturation_fe, quadrature_formula, update_gradients);
+    std::vector<Tensor<1,dim> > grad_saturation (1);
+
+    double max_refinement_indicator = 0.0;
+
     typename DoFHandler<dim>::active_cell_iterator
       cell = saturation_dof_handler.begin_active(),
       endc = saturation_dof_handler.end();
+    for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no)
+      {
+       fe_values.reinit(cell);
+       fe_values.get_function_grads (predictor_saturation_solution,
+                                     grad_saturation);
+
+       refinement_indicators(cell_no)
+         = std::log( 1.0 + std::sqrt( grad_saturation[0] *
+                                      grad_saturation[0] ) );
+       max_refinement_indicator = std::max(max_refinement_indicator,
+                                           refinement_indicators(cell_no));
+      }
 
-    for (; cell!=endc; ++cell)
-      if (cell->refine_flag_set())
-       ++number_of_cells_refine;
-      else
-       if (cell->coarsen_flag_set())
-         ++number_of_cells_coarsen;
+//  std::cout << "max_refinement_indicator =" << max_refinement_indicator << std::endl;
   }
 
-  std::cout << "   "
-            << number_of_cells_refine
-            << " cell(s) are going to be refined."
-            << std::endl;
-  std::cout << "   "
-            << number_of_cells_coarsen
-            << " cell(s) are going to be coarsened."
-            << std::endl;
 
-  std::cout << std::endl;
 
-  if ( number_of_cells_refine > 0 || number_of_cells_coarsen > 0 )
-    {
-      std::vector<TrilinosWrappers::Vector> x_saturation (3);
-      x_saturation[0] = saturation_solution;
-      x_saturation[1] = old_saturation_solution;
-      x_saturation[2] = nth_saturation_solution_after_solving_pressure_part;
-
-      std::vector<TrilinosWrappers::BlockVector> x_darcy (2);
-      x_darcy[0] = nth_darcy_solution_after_solving_pressure_part;
-      x_darcy[1] = n_minus_oneth_darcy_solution_after_solving_pressure_part;
+                                  // @sect3{TwoPhaseFlowProblem<dim>::refine_grid}
 
-      SolutionTransfer<dim,TrilinosWrappers::Vector> saturation_soltrans(saturation_dof_handler);
+                                  // This function is to decide if every cell
+                                  // is refined or coarsened with computed
+                                  // refinement indicators in the previous
+                                  // function and do the interpolations of the
+                                  // solution vectors. The main difference from
+                                  // the previous time-dependent tutorials is
+                                  // that there is no need to do the solution
+                                  // interpolations if we don't have any cell
+                                  // that is refined or coarsend, saving some
+                                  // additional computing time.
+  template <int dim>
+  void
+  TwoPhaseFlowProblem<dim>::
+  refine_grid (const Vector<double> &refinement_indicators)
+  {
+    const double current_saturation_level = saturation_level +
+                                           n_refinement_steps;
 
-      SolutionTransfer<dim,TrilinosWrappers::BlockVector> darcy_soltrans(darcy_dof_handler);
+    {
+      typename DoFHandler<dim>::active_cell_iterator
+       cell = saturation_dof_handler.begin_active(),
+       endc = saturation_dof_handler.end();
+
+      for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no)
+       {
+         cell->clear_coarsen_flag();
+         cell->clear_refine_flag();
+
+         if ((cell->level() < current_saturation_level) &&
+             (std::fabs(refinement_indicators(cell_no)) > saturation_value))
+           cell->set_refine_flag();
+         else
+           if ((cell->level() > double(n_refinement_steps)) &&
+               (std::fabs(refinement_indicators(cell_no)) < 0.75 * saturation_value))
+             cell->set_coarsen_flag();
+       }
+    }
 
+    triangulation.prepare_coarsening_and_refinement ();
 
-      triangulation.prepare_coarsening_and_refinement();
-      saturation_soltrans.prepare_for_coarsening_and_refinement(x_saturation);
+    unsigned int number_of_cells_refine  = 0;
+    unsigned int number_of_cells_coarsen = 0;
 
-      darcy_soltrans.prepare_for_coarsening_and_refinement(x_darcy);
+    {
+      typename DoFHandler<dim>::active_cell_iterator
+       cell = saturation_dof_handler.begin_active(),
+       endc = saturation_dof_handler.end();
 
-      triangulation.execute_coarsening_and_refinement ();
-      setup_dofs ();
+      for (; cell!=endc; ++cell)
+       if (cell->refine_flag_set())
+         ++number_of_cells_refine;
+       else
+         if (cell->coarsen_flag_set())
+           ++number_of_cells_coarsen;
+    }
 
-      std::vector<TrilinosWrappers::Vector> tmp_saturation (3);
-      tmp_saturation[0].reinit (saturation_solution);
-      tmp_saturation[1].reinit (saturation_solution);
-      tmp_saturation[2].reinit (saturation_solution);
-      saturation_soltrans.interpolate(x_saturation, tmp_saturation);
+    std::cout << "   "
+             << number_of_cells_refine
+             << " cell(s) are going to be refined."
+             << std::endl;
+    std::cout << "   "
+             << number_of_cells_coarsen
+             << " cell(s) are going to be coarsened."
+             << std::endl;
 
-      saturation_solution = tmp_saturation[0];
-      old_saturation_solution = tmp_saturation[1];
-      nth_saturation_solution_after_solving_pressure_part = tmp_saturation[2];
+    std::cout << std::endl;
 
-      std::vector<TrilinosWrappers::BlockVector> tmp_darcy (2);
-      tmp_darcy[0].reinit (darcy_solution);
-      tmp_darcy[1].reinit (darcy_solution);
-      darcy_soltrans.interpolate(x_darcy, tmp_darcy);
+    if ( number_of_cells_refine > 0 || number_of_cells_coarsen > 0 )
+      {
+       std::vector<TrilinosWrappers::Vector> x_saturation (3);
+       x_saturation[0] = saturation_solution;
+       x_saturation[1] = old_saturation_solution;
+       x_saturation[2] = nth_saturation_solution_after_solving_pressure_part;
 
-      nth_darcy_solution_after_solving_pressure_part = tmp_darcy[0];
-      n_minus_oneth_darcy_solution_after_solving_pressure_part = tmp_darcy[1];
+       std::vector<TrilinosWrappers::BlockVector> x_darcy (2);
+       x_darcy[0] = nth_darcy_solution_after_solving_pressure_part;
+       x_darcy[1] = n_minus_oneth_darcy_solution_after_solving_pressure_part;
 
-      rebuild_saturation_matrix    = true;
-    }
-  else
-    {
-      rebuild_saturation_matrix    = false;
-
-      std::vector<unsigned int> darcy_block_component (dim+1,0);
-      darcy_block_component[dim] = 1;
-
-      std::vector<unsigned int> darcy_dofs_per_block (2);
-      DoFTools::count_dofs_per_block (darcy_dof_handler, darcy_dofs_per_block, darcy_block_component);
-      const unsigned int n_u = darcy_dofs_per_block[0],
-                         n_p = darcy_dofs_per_block[1],
-                         n_s = saturation_dof_handler.n_dofs();
-
-      std::cout << "Number of active cells: "
-                << triangulation.n_active_cells()
-                << " (on "
-                << triangulation.n_levels()
-                << " levels)"
-                << std::endl
-                << "Number of degrees of freedom: "
-                << n_u + n_p + n_s
-                << " (" << n_u << '+' << n_p << '+'<< n_s <<')'
-                << std::endl
-                << std::endl;
-    }
+       SolutionTransfer<dim,TrilinosWrappers::Vector> saturation_soltrans(saturation_dof_handler);
 
-}
+       SolutionTransfer<dim,TrilinosWrappers::BlockVector> darcy_soltrans(darcy_dof_handler);
 
 
+       triangulation.prepare_coarsening_and_refinement();
+       saturation_soltrans.prepare_for_coarsening_and_refinement(x_saturation);
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::output_results}
+       darcy_soltrans.prepare_for_coarsening_and_refinement(x_darcy);
 
-                                // This function to process the output
-                                // data. We only store the results when we
-                                // actually solve the pressure and velocity
-                                // part at the present time step. The rest of
-                                // the implementation is similar to that
-                                // output function in step-31, which
-                                // implementations has been explained in that
-                                // tutorial.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::output_results ()  const
-{
-  if ( solve_pressure_velocity_part == false )
-    return;
+       triangulation.execute_coarsening_and_refinement ();
+       setup_dofs ();
 
-  const FESystem<dim> joint_fe (darcy_fe, 1,
-                                saturation_fe, 1);
-  DoFHandler<dim> joint_dof_handler (triangulation);
-  joint_dof_handler.distribute_dofs (joint_fe);
-  Assert (joint_dof_handler.n_dofs() ==
-          darcy_dof_handler.n_dofs() + saturation_dof_handler.n_dofs(),
-          ExcInternalError());
+       std::vector<TrilinosWrappers::Vector> tmp_saturation (3);
+       tmp_saturation[0].reinit (saturation_solution);
+       tmp_saturation[1].reinit (saturation_solution);
+       tmp_saturation[2].reinit (saturation_solution);
+       saturation_soltrans.interpolate(x_saturation, tmp_saturation);
 
-  Vector<double> joint_solution (joint_dof_handler.n_dofs());
+       saturation_solution = tmp_saturation[0];
+       old_saturation_solution = tmp_saturation[1];
+       nth_saturation_solution_after_solving_pressure_part = tmp_saturation[2];
 
-  {
-    std::vector<unsigned int> local_joint_dof_indices (joint_fe.dofs_per_cell);
-    std::vector<unsigned int> local_darcy_dof_indices (darcy_fe.dofs_per_cell);
-    std::vector<unsigned int> local_saturation_dof_indices (saturation_fe.dofs_per_cell);
+       std::vector<TrilinosWrappers::BlockVector> tmp_darcy (2);
+       tmp_darcy[0].reinit (darcy_solution);
+       tmp_darcy[1].reinit (darcy_solution);
+       darcy_soltrans.interpolate(x_darcy, tmp_darcy);
 
-    typename DoFHandler<dim>::active_cell_iterator
-      joint_cell      = joint_dof_handler.begin_active(),
-      joint_endc      = joint_dof_handler.end(),
-      darcy_cell      = darcy_dof_handler.begin_active(),
-      saturation_cell = saturation_dof_handler.begin_active();
+       nth_darcy_solution_after_solving_pressure_part = tmp_darcy[0];
+       n_minus_oneth_darcy_solution_after_solving_pressure_part = tmp_darcy[1];
 
-    for (; joint_cell!=joint_endc; ++joint_cell, ++darcy_cell, ++saturation_cell)
+       rebuild_saturation_matrix    = true;
+      }
+    else
       {
-        joint_cell->get_dof_indices (local_joint_dof_indices);
-        darcy_cell->get_dof_indices (local_darcy_dof_indices);
-        saturation_cell->get_dof_indices (local_saturation_dof_indices);
-
-        for (unsigned int i=0; i<joint_fe.dofs_per_cell; ++i)
-          if (joint_fe.system_to_base_index(i).first.first == 0)
-            {
-              Assert (joint_fe.system_to_base_index(i).second
-                      <
-                      local_darcy_dof_indices.size(),
-                      ExcInternalError());
-              joint_solution(local_joint_dof_indices[i])
-                = darcy_solution(local_darcy_dof_indices[joint_fe.system_to_base_index(i).second]);
-            }
-          else
-            {
-              Assert (joint_fe.system_to_base_index(i).first.first == 1,
-                      ExcInternalError());
-              Assert (joint_fe.system_to_base_index(i).second
-                      <
-                      local_darcy_dof_indices.size(),
-                      ExcInternalError());
-              joint_solution(local_joint_dof_indices[i])
-                = saturation_solution(local_saturation_dof_indices[joint_fe.system_to_base_index(i).second]);
-            }
-
+       rebuild_saturation_matrix    = false;
+
+       std::vector<unsigned int> darcy_block_component (dim+1,0);
+       darcy_block_component[dim] = 1;
+
+       std::vector<unsigned int> darcy_dofs_per_block (2);
+       DoFTools::count_dofs_per_block (darcy_dof_handler, darcy_dofs_per_block, darcy_block_component);
+       const unsigned int n_u = darcy_dofs_per_block[0],
+                          n_p = darcy_dofs_per_block[1],
+                          n_s = saturation_dof_handler.n_dofs();
+
+       std::cout << "Number of active cells: "
+                 << triangulation.n_active_cells()
+                 << " (on "
+                 << triangulation.n_levels()
+                 << " levels)"
+                 << std::endl
+                 << "Number of degrees of freedom: "
+                 << n_u + n_p + n_s
+                 << " (" << n_u << '+' << n_p << '+'<< n_s <<')'
+                 << std::endl
+                 << std::endl;
       }
+
   }
-  std::vector<std::string> joint_solution_names;
-  switch (dim)
-    {
-      case 2:
-            joint_solution_names.push_back ("u");
-            joint_solution_names.push_back ("v");
-            break;
-
-      case 3:
-            joint_solution_names.push_back ("u");
-            joint_solution_names.push_back ("v");
-            joint_solution_names.push_back ("w");
-            break;
-
-      default:
-            Assert (false, ExcNotImplemented());
-    }
-  joint_solution_names.push_back ("pressure");
-  joint_solution_names.push_back ("saturation");
 
-  std::vector<DataComponentInterpretation::DataComponentInterpretation>
-    data_component_interpretation
-    (dim, DataComponentInterpretation::component_is_part_of_vector);
-  data_component_interpretation
-    .push_back (DataComponentInterpretation::component_is_scalar);
-  data_component_interpretation
-    .push_back (DataComponentInterpretation::component_is_scalar);
 
-  DataOut<dim> data_out;
 
-  data_out.attach_dof_handler (joint_dof_handler);
-  data_out.add_data_vector (joint_solution, joint_solution_names,
-                            DataOut<dim>::type_dof_data,
-                            data_component_interpretation);
+                                  // @sect3{TwoPhaseFlowProblem<dim>::output_results}
 
-  data_out.build_patches ();
+                                  // This function to process the output
+                                  // data. We only store the results when we
+                                  // actually solve the pressure and velocity
+                                  // part at the present time step. The rest of
+                                  // the implementation is similar to that
+                                  // output function in step-31, which
+                                  // implementations has been explained in that
+                                  // tutorial.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::output_results ()  const
+  {
+    if ( solve_pressure_velocity_part == false )
+      return;
 
-  std::string filename = "solution-" +
-                         Utilities::int_to_string (timestep_number, 5) + ".tec";
-  std::ofstream output (filename.c_str());
-  data_out.write_tecplot (output);
-}
+    const FESystem<dim> joint_fe (darcy_fe, 1,
+                                 saturation_fe, 1);
+    DoFHandler<dim> joint_dof_handler (triangulation);
+    joint_dof_handler.distribute_dofs (joint_fe);
+    Assert (joint_dof_handler.n_dofs() ==
+           darcy_dof_handler.n_dofs() + saturation_dof_handler.n_dofs(),
+           ExcInternalError());
 
+    Vector<double> joint_solution (joint_dof_handler.n_dofs());
 
+    {
+      std::vector<unsigned int> local_joint_dof_indices (joint_fe.dofs_per_cell);
+      std::vector<unsigned int> local_darcy_dof_indices (darcy_fe.dofs_per_cell);
+      std::vector<unsigned int> local_saturation_dof_indices (saturation_fe.dofs_per_cell);
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::THE_REMAINING_FUNCTIONS}
+      typename DoFHandler<dim>::active_cell_iterator
+       joint_cell      = joint_dof_handler.begin_active(),
+       joint_endc      = joint_dof_handler.end(),
+       darcy_cell      = darcy_dof_handler.begin_active(),
+       saturation_cell = saturation_dof_handler.begin_active();
+
+      for (; joint_cell!=joint_endc; ++joint_cell, ++darcy_cell, ++saturation_cell)
+       {
+         joint_cell->get_dof_indices (local_joint_dof_indices);
+         darcy_cell->get_dof_indices (local_darcy_dof_indices);
+         saturation_cell->get_dof_indices (local_saturation_dof_indices);
+
+         for (unsigned int i=0; i<joint_fe.dofs_per_cell; ++i)
+           if (joint_fe.system_to_base_index(i).first.first == 0)
+             {
+               Assert (joint_fe.system_to_base_index(i).second
+                       <
+                       local_darcy_dof_indices.size(),
+                       ExcInternalError());
+               joint_solution(local_joint_dof_indices[i])
+                 = darcy_solution(local_darcy_dof_indices[joint_fe.system_to_base_index(i).second]);
+             }
+           else
+             {
+               Assert (joint_fe.system_to_base_index(i).first.first == 1,
+                       ExcInternalError());
+               Assert (joint_fe.system_to_base_index(i).second
+                       <
+                       local_darcy_dof_indices.size(),
+                       ExcInternalError());
+               joint_solution(local_joint_dof_indices[i])
+                 = saturation_solution(local_saturation_dof_indices[joint_fe.system_to_base_index(i).second]);
+             }
 
-                                // The remaining functions that have been
-                                // used in step-31 so we don't have to
-                                // describe their implementations.
-template <int dim>
-void
-TwoPhaseFlowProblem<dim>::project_back_saturation ()
-{
-  for (unsigned int i=0; i<saturation_solution.size(); ++i)
-    if (saturation_solution(i) < 0)
-      saturation_solution(i) = 0;
-    else
-      if (saturation_solution(i) > 1)
-        saturation_solution(i) = 1;
-}
+       }
+    }
+    std::vector<std::string> joint_solution_names;
+    switch (dim)
+      {
+       case 2:
+             joint_solution_names.push_back ("u");
+             joint_solution_names.push_back ("v");
+             break;
+
+       case 3:
+             joint_solution_names.push_back ("u");
+             joint_solution_names.push_back ("v");
+             joint_solution_names.push_back ("w");
+             break;
+
+       default:
+             Assert (false, ExcNotImplemented());
+      }
+    joint_solution_names.push_back ("pressure");
+    joint_solution_names.push_back ("saturation");
 
+    std::vector<DataComponentInterpretation::DataComponentInterpretation>
+      data_component_interpretation
+      (dim, DataComponentInterpretation::component_is_part_of_vector);
+    data_component_interpretation
+      .push_back (DataComponentInterpretation::component_is_scalar);
+    data_component_interpretation
+      .push_back (DataComponentInterpretation::component_is_scalar);
 
-template <int dim>
-double
-TwoPhaseFlowProblem<dim>::get_maximal_velocity () const
-{
-  QGauss<dim>   quadrature_formula(darcy_degree+2);
-  const unsigned int   n_q_points
-    = quadrature_formula.size();
-
-  FEValues<dim> darcy_fe_values (darcy_fe, quadrature_formula,
-                                 update_values);
-  std::vector<Vector<double> > darcy_solution_values(n_q_points,
-                                                     Vector<double>(dim+1));
-  double max_velocity = 0;
-
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = darcy_dof_handler.begin_active(),
-    endc = darcy_dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      darcy_fe_values.reinit (cell);
-      darcy_fe_values.get_function_values (darcy_solution, darcy_solution_values);
-
-      for (unsigned int q=0; q<n_q_points; ++q)
-        {
-          Tensor<1,dim> velocity;
-          for (unsigned int i=0; i<dim; ++i)
-            velocity[i] = darcy_solution_values[q](i);
-
-          max_velocity = std::max (max_velocity,
-                                   velocity.norm());
-        }
-    }
+    DataOut<dim> data_out;
 
-  return max_velocity;
-}
+    data_out.attach_dof_handler (joint_dof_handler);
+    data_out.add_data_vector (joint_solution, joint_solution_names,
+                             DataOut<dim>::type_dof_data,
+                             data_component_interpretation);
 
+    data_out.build_patches ();
 
-template <int dim>
-std::pair<double,double>
-TwoPhaseFlowProblem<dim>::get_extrapolated_saturation_range () const
-{
-  const QGauss<dim>  quadrature_formula(saturation_degree+2);
-  const unsigned int n_q_points = quadrature_formula.size();
+    std::string filename = "solution-" +
+                          Utilities::int_to_string (timestep_number, 5) + ".tec";
+    std::ofstream output (filename.c_str());
+    data_out.write_tecplot (output);
+  }
 
-  FEValues<dim> fe_values (saturation_fe, quadrature_formula,
-                           update_values);
-  std::vector<double> old_saturation_values(n_q_points);
-  std::vector<double> old_old_saturation_values(n_q_points);
 
-  if (timestep_number != 0)
-    {
-      double min_saturation = (1. + time_step/old_time_step) *
-                              old_saturation_solution.linfty_norm()
-                              +
-                              time_step/old_time_step *
-                              old_old_saturation_solution.linfty_norm(),
-             max_saturation = -min_saturation;
 
-      typename DoFHandler<dim>::active_cell_iterator
-        cell = saturation_dof_handler.begin_active(),
-        endc = saturation_dof_handler.end();
-      for (; cell!=endc; ++cell)
-        {
-          fe_values.reinit (cell);
-          fe_values.get_function_values (old_saturation_solution,
-                                         old_saturation_values);
-          fe_values.get_function_values (old_old_saturation_solution,
-                                         old_old_saturation_values);
-
-          for (unsigned int q=0; q<n_q_points; ++q)
-            {
-              const double saturation =
-                (1. + time_step/old_time_step) * old_saturation_values[q]-
-                time_step/old_time_step * old_old_saturation_values[q];
-
-              min_saturation = std::min (min_saturation, saturation);
-              max_saturation = std::max (max_saturation, saturation);
-            }
-        }
-
-      return std::make_pair(min_saturation, max_saturation);
-    }
-  else
-    {
-      double min_saturation = old_saturation_solution.linfty_norm(),
-             max_saturation = -min_saturation;
+                                  // @sect3{TwoPhaseFlowProblem<dim>::THE_REMAINING_FUNCTIONS}
 
-      typename DoFHandler<dim>::active_cell_iterator
-        cell = saturation_dof_handler.begin_active(),
-        endc = saturation_dof_handler.end();
-      for (; cell!=endc; ++cell)
-        {
-          fe_values.reinit (cell);
-          fe_values.get_function_values (old_saturation_solution,
-                                         old_saturation_values);
+                                  // The remaining functions that have been
+                                  // used in step-31 so we don't have to
+                                  // describe their implementations.
+  template <int dim>
+  void
+  TwoPhaseFlowProblem<dim>::project_back_saturation ()
+  {
+    for (unsigned int i=0; i<saturation_solution.size(); ++i)
+      if (saturation_solution(i) < 0)
+       saturation_solution(i) = 0;
+      else
+       if (saturation_solution(i) > 1)
+         saturation_solution(i) = 1;
+  }
 
-          for (unsigned int q=0; q<n_q_points; ++q)
-            {
-              const double saturation = old_saturation_values[q];
 
-              min_saturation = std::min (min_saturation, saturation);
-              max_saturation = std::max (max_saturation, saturation);
-            }
-        }
+  template <int dim>
+  double
+  TwoPhaseFlowProblem<dim>::get_maximal_velocity () const
+  {
+    QGauss<dim>   quadrature_formula(darcy_degree+2);
+    const unsigned int   n_q_points
+      = quadrature_formula.size();
 
-      return std::make_pair(min_saturation, max_saturation);
-    }
-}
+    FEValues<dim> darcy_fe_values (darcy_fe, quadrature_formula,
+                                  update_values);
+    std::vector<Vector<double> > darcy_solution_values(n_q_points,
+                                                      Vector<double>(dim+1));
+    double max_velocity = 0;
 
-template <int dim>
-double
-TwoPhaseFlowProblem<dim>::
-compute_viscosity (const std::vector<double>          &old_saturation,
-                   const std::vector<double>          &old_old_saturation,
-                   const std::vector<Tensor<1,dim> >  &old_saturation_grads,
-                   const std::vector<Tensor<1,dim> >  &old_old_saturation_grads,
-                   const std::vector<Vector<double> > &present_darcy_values,
-                   const double                        global_u_infty,
-                   const double                        global_S_variation,
-                   const double                        global_Omega_diameter,
-                   const double                        cell_diameter,
-                   const double                        old_time_step,
-                   const double                        viscosity)
-{
-  const double beta = 0.08 * dim;
-  const double alpha = 1;
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = darcy_dof_handler.begin_active(),
+      endc = darcy_dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       darcy_fe_values.reinit (cell);
+       darcy_fe_values.get_function_values (darcy_solution, darcy_solution_values);
+
+       for (unsigned int q=0; q<n_q_points; ++q)
+         {
+           Tensor<1,dim> velocity;
+           for (unsigned int i=0; i<dim; ++i)
+             velocity[i] = darcy_solution_values[q](i);
+
+           max_velocity = std::max (max_velocity,
+                                    velocity.norm());
+         }
+      }
+
+    return max_velocity;
+  }
 
-  if (global_u_infty == 0)
-    return 5e-3 * cell_diameter;
 
-  const unsigned int n_q_points = old_saturation.size();
+  template <int dim>
+  std::pair<double,double>
+  TwoPhaseFlowProblem<dim>::get_extrapolated_saturation_range () const
+  {
+    const QGauss<dim>  quadrature_formula(saturation_degree+2);
+    const unsigned int n_q_points = quadrature_formula.size();
 
-  double max_residual = 0;
-  double max_velocity = 0;
+    FEValues<dim> fe_values (saturation_fe, quadrature_formula,
+                            update_values);
+    std::vector<double> old_saturation_values(n_q_points);
+    std::vector<double> old_old_saturation_values(n_q_points);
 
-  for (unsigned int q=0; q < n_q_points; ++q)
-    {
-      Tensor<1,dim> u;
-      for (unsigned int d=0; d<dim; ++d)
-        u[d] = present_darcy_values[q](d);
+    if (timestep_number != 0)
+      {
+       double min_saturation = (1. + time_step/old_time_step) *
+                               old_saturation_solution.linfty_norm()
+                               +
+                               time_step/old_time_step *
+                               old_old_saturation_solution.linfty_norm(),
+              max_saturation = -min_saturation;
+
+       typename DoFHandler<dim>::active_cell_iterator
+         cell = saturation_dof_handler.begin_active(),
+         endc = saturation_dof_handler.end();
+       for (; cell!=endc; ++cell)
+         {
+           fe_values.reinit (cell);
+           fe_values.get_function_values (old_saturation_solution,
+                                          old_saturation_values);
+           fe_values.get_function_values (old_old_saturation_solution,
+                                          old_old_saturation_values);
+
+           for (unsigned int q=0; q<n_q_points; ++q)
+             {
+               const double saturation =
+                 (1. + time_step/old_time_step) * old_saturation_values[q]-
+                 time_step/old_time_step * old_old_saturation_values[q];
+
+               min_saturation = std::min (min_saturation, saturation);
+               max_saturation = std::max (max_saturation, saturation);
+             }
+         }
+
+       return std::make_pair(min_saturation, max_saturation);
+      }
+    else
+      {
+       double min_saturation = old_saturation_solution.linfty_norm(),
+              max_saturation = -min_saturation;
+
+       typename DoFHandler<dim>::active_cell_iterator
+         cell = saturation_dof_handler.begin_active(),
+         endc = saturation_dof_handler.end();
+       for (; cell!=endc; ++cell)
+         {
+           fe_values.reinit (cell);
+           fe_values.get_function_values (old_saturation_solution,
+                                          old_saturation_values);
+
+           for (unsigned int q=0; q<n_q_points; ++q)
+             {
+               const double saturation = old_saturation_values[q];
+
+               min_saturation = std::min (min_saturation, saturation);
+               max_saturation = std::max (max_saturation, saturation);
+             }
+         }
+
+       return std::make_pair(min_saturation, max_saturation);
+      }
+  }
 
-      const double dS_dt = (old_saturation[q] - old_old_saturation[q])
-                           / old_time_step;
+  template <int dim>
+  double
+  TwoPhaseFlowProblem<dim>::
+  compute_viscosity (const std::vector<double>          &old_saturation,
+                    const std::vector<double>          &old_old_saturation,
+                    const std::vector<Tensor<1,dim> >  &old_saturation_grads,
+                    const std::vector<Tensor<1,dim> >  &old_old_saturation_grads,
+                    const std::vector<Vector<double> > &present_darcy_values,
+                    const double                        global_u_infty,
+                    const double                        global_S_variation,
+                    const double                        global_Omega_diameter,
+                    const double                        cell_diameter,
+                    const double                        old_time_step,
+                    const double                        viscosity)
+  {
+    const double beta = 0.08 * dim;
+    const double alpha = 1;
 
-      const double dF_dS = get_fractional_flow_derivative ((old_saturation[q] + old_old_saturation[q]) / 2.0,
-                                                           viscosity);
+    if (global_u_infty == 0)
+      return 5e-3 * cell_diameter;
 
-      const double u_grad_S = u * dF_dS *
-                              (old_saturation_grads[q] + old_old_saturation_grads[q]) / 2.0;
+    const unsigned int n_q_points = old_saturation.size();
 
-      const double residual
-        = std::abs((dS_dt + u_grad_S) *
-                   std::pow((old_saturation[q]+old_old_saturation[q]) / 2,
-                            alpha-1.));
+    double max_residual = 0;
+    double max_velocity = 0;
 
-      max_residual = std::max (residual,        max_residual);
-      max_velocity = std::max (std::sqrt (u*u), max_velocity);
-    }
+    for (unsigned int q=0; q < n_q_points; ++q)
+      {
+       Tensor<1,dim> u;
+       for (unsigned int d=0; d<dim; ++d)
+         u[d] = present_darcy_values[q](d);
 
-  const double global_scaling = global_u_infty * global_S_variation /
-                                std::pow(global_Omega_diameter, alpha - 2.);
+       const double dS_dt = (old_saturation[q] - old_old_saturation[q])
+                            / old_time_step;
 
-  return (beta *
-          max_velocity *
-          std::min (cell_diameter,
-                    std::pow(cell_diameter,alpha) *
-                    max_residual / global_scaling));
-}
+       const double dF_dS = get_fractional_flow_derivative ((old_saturation[q] + old_old_saturation[q]) / 2.0,
+                                                            viscosity);
 
+       const double u_grad_S = u * dF_dS *
+                               (old_saturation_grads[q] + old_old_saturation_grads[q]) / 2.0;
 
-                                // @sect3{TwoPhaseFlowProblem<dim>::run}
-
-                                // In this function, we follow the structure
-                                // of the same function partly in step-21 and
-                                // partly in step-31 so again there is no
-                                // need to repeat it. However, since we
-                                // consider the simulation with grid
-                                // adaptivity, we need to compute a
-                                // saturation predictor, which implementation
-                                // was first used in step-33, for the
-                                // function that computes the refinement
-                                // indicators.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::run ()
-{
-  unsigned int pre_refinement_step = 0;
+       const double residual
+         = std::abs((dS_dt + u_grad_S) *
+                    std::pow((old_saturation[q]+old_old_saturation[q]) / 2,
+                             alpha-1.));
 
-  GridGenerator::hyper_cube (triangulation, 0, 1);
-  triangulation.refine_global (n_refinement_steps);
+       max_residual = std::max (residual,        max_residual);
+       max_velocity = std::max (std::sqrt (u*u), max_velocity);
+      }
 
-  setup_dofs ();
+    const double global_scaling = global_u_infty * global_S_variation /
+                                 std::pow(global_Omega_diameter, alpha - 2.);
 
-  start_time_iteration:
+    return (beta *
+           max_velocity *
+           std::min (cell_diameter,
+                     std::pow(cell_diameter,alpha) *
+                     max_residual / global_scaling));
+  }
 
-  VectorTools::project (saturation_dof_handler,
-                        saturation_constraints,
-                        QGauss<dim>(saturation_degree+2),
-                        SaturationInitialValues<dim>(),
-                        old_saturation_solution);
 
-  timestep_number = 0;
-  double time = 0;
+                                  // @sect3{TwoPhaseFlowProblem<dim>::run}
 
-  do
-    {
-      std::cout << "Timestep " << timestep_number
-                << ":  t=" << time
-                << ", dt=" << time_step
-                << std::endl;
+                                  // In this function, we follow the structure
+                                  // of the same function partly in step-21 and
+                                  // partly in step-31 so again there is no
+                                  // need to repeat it. However, since we
+                                  // consider the simulation with grid
+                                  // adaptivity, we need to compute a
+                                  // saturation predictor, which implementation
+                                  // was first used in step-33, for the
+                                  // function that computes the refinement
+                                  // indicators.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::run ()
+  {
+    unsigned int pre_refinement_step = 0;
 
-      solve ();
+    GridGenerator::hyper_cube (triangulation, 0, 1);
+    triangulation.refine_global (n_refinement_steps);
 
-      output_results ();
+    setup_dofs ();
 
-      solve_pressure_velocity_part = false;
+    start_time_iteration:
 
-      if ((timestep_number == 0) &&
-          (pre_refinement_step < saturation_level))
-        {
-          predictor_saturation_solution = saturation_solution;
-          predictor_saturation_solution.sadd (2.0, -1.0, old_saturation_solution);
-          Vector<double> refinement_indicators (triangulation.n_active_cells());
-          compute_refinement_indicators(refinement_indicators);
-          refine_grid(refinement_indicators);
-          ++pre_refinement_step;
-          goto start_time_iteration;
-        }
-      else
-        {
-          predictor_saturation_solution = saturation_solution;
-          predictor_saturation_solution.sadd (2.0, -1.0, old_saturation_solution);
-         Vector<double> refinement_indicators (triangulation.n_active_cells());
-          compute_refinement_indicators(refinement_indicators);
-          refine_grid(refinement_indicators);
-        }
+    VectorTools::project (saturation_dof_handler,
+                         saturation_constraints,
+                         QGauss<dim>(saturation_degree+2),
+                         SaturationInitialValues<dim>(),
+                         old_saturation_solution);
 
-      time += time_step;
-      ++timestep_number;
+    timestep_number = 0;
+    double time = 0;
 
-      old_old_saturation_solution = old_saturation_solution;
-      old_saturation_solution = saturation_solution;
+    do
+      {
+       std::cout << "Timestep " << timestep_number
+                 << ":  t=" << time
+                 << ", dt=" << time_step
+                 << std::endl;
+
+       solve ();
+
+       output_results ();
+
+       solve_pressure_velocity_part = false;
+
+       if ((timestep_number == 0) &&
+           (pre_refinement_step < saturation_level))
+         {
+           predictor_saturation_solution = saturation_solution;
+           predictor_saturation_solution.sadd (2.0, -1.0, old_saturation_solution);
+           Vector<double> refinement_indicators (triangulation.n_active_cells());
+           compute_refinement_indicators(refinement_indicators);
+           refine_grid(refinement_indicators);
+           ++pre_refinement_step;
+           goto start_time_iteration;
+         }
+       else
+         {
+           predictor_saturation_solution = saturation_solution;
+           predictor_saturation_solution.sadd (2.0, -1.0, old_saturation_solution);
+           Vector<double> refinement_indicators (triangulation.n_active_cells());
+           compute_refinement_indicators(refinement_indicators);
+           refine_grid(refinement_indicators);
+         }
 
-    }
-  while (time <= 250);
+       time += time_step;
+       ++timestep_number;
+
+       old_old_saturation_solution = old_saturation_solution;
+       old_saturation_solution = saturation_solution;
+
+      }
+    while (time <= 250);
+  }
 }
 
 
+
 int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step43;
+
       deallog.depth_console (0);
 
       TwoPhaseFlowProblem<3> two_phase_flow_problem(1);
index e6b2b68d73e501c72092aa1a0599d136e33c1a3d..426a5711846389b2af4d500f5a03c4a1f1a0371f 100644 (file)
 #include <fstream>
 #include <sstream>
 
-using namespace dealii;
 
-// @sect3{Run-time parameters}
-namespace Parameters
+namespace Step44
 {
+  using namespace dealii;
+
+// @sect3{Run-time parameters}
+  namespace Parameters
+  {
 // Finite Element system
-struct FESystem
-{
-    int poly_degree;
-    int quad_order;
+    struct FESystem
+    {
+       int poly_degree;
+       int quad_order;
 
-    static void declare_parameters (ParameterHandler &prm);
-    void parse_parameters (ParameterHandler &prm);
-};
+       static void declare_parameters (ParameterHandler &prm);
+       void parse_parameters (ParameterHandler &prm);
+    };
 
-void FESystem::declare_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Finite element system");
+    void FESystem::declare_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Finite element system");
+      {
        prm.declare_entry("Polynomial degree",
                          "1",
                          Patterns::Integer(),
@@ -81,35 +84,35 @@ void FESystem::declare_parameters (ParameterHandler &prm)
                          "2",
                          Patterns::Integer(),
                          "Gauss quadrature order");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
-void FESystem::parse_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Finite element system");
+    void FESystem::parse_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Finite element system");
+      {
        poly_degree  = prm.get_integer("Polynomial degree");
        quad_order  = prm.get_integer("Quadrature order");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
 // Geometry
-struct Geometry
-{
-    int global_refinement;
-    double scale;
-    double p_p0;
+    struct Geometry
+    {
+       int global_refinement;
+       double scale;
+       double p_p0;
 
-    static void declare_parameters (ParameterHandler &prm);
-    void parse_parameters (ParameterHandler &prm);
-};
+       static void declare_parameters (ParameterHandler &prm);
+       void parse_parameters (ParameterHandler &prm);
+    };
 
-void Geometry::declare_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Geometry");
+    void Geometry::declare_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Geometry");
+      {
        prm.declare_entry("Global refinement",
                          "2",
                          Patterns::Integer(),
@@ -124,35 +127,35 @@ void Geometry::declare_parameters (ParameterHandler &prm)
                          "40",
                          Patterns::Selection("20|40|60|80|100"),
                          "Ratio of applied pressure to reference pressure");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
-void Geometry::parse_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Geometry");
+    void Geometry::parse_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Geometry");
+      {
        global_refinement = prm.get_integer("Global refinement");
        scale  = prm.get_double("Grid scale");
        p_p0= prm.get_double("Pressure ratio p/p0");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
 // Materials
-struct Materials
-{
-    double nu;
-    double mu;
+    struct Materials
+    {
+       double nu;
+       double mu;
 
-    static void declare_parameters (ParameterHandler &prm);
-    void parse_parameters (ParameterHandler &prm);
-};
+       static void declare_parameters (ParameterHandler &prm);
+       void parse_parameters (ParameterHandler &prm);
+    };
 
-void Materials::declare_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Material properties");
+    void Materials::declare_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Material properties");
+      {
        prm.declare_entry("Poisson's ratio",
                          "0.49",
                          Patterns::Double(),
@@ -162,36 +165,36 @@ void Materials::declare_parameters (ParameterHandler &prm)
                          "1.0e6",
                          Patterns::Double(),
                          "Shear modulus");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
-void Materials::parse_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Material properties");
+    void Materials::parse_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Material properties");
+      {
        nu  = prm.get_double("Poisson's ratio");
        mu  = prm.get_double("Shear modulus");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
 // Linear solver
-struct LinearSolver
-{
-    std::string type_lin;
-    double tol_lin;
-    double max_iterations_lin;
-    double ssor_relaxation;
+    struct LinearSolver
+    {
+       std::string type_lin;
+       double tol_lin;
+       double max_iterations_lin;
+       double ssor_relaxation;
 
-    static void declare_parameters (ParameterHandler &prm);
-    void parse_parameters (ParameterHandler &prm);
-};
+       static void declare_parameters (ParameterHandler &prm);
+       void parse_parameters (ParameterHandler &prm);
+    };
 
-void LinearSolver::declare_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Linear solver");
+    void LinearSolver::declare_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Linear solver");
+      {
        prm.declare_entry("Solver type",
                          "CG",
                          Patterns::Selection("CG|Direct"),
@@ -211,37 +214,37 @@ void LinearSolver::declare_parameters (ParameterHandler &prm)
                          "0.6",
                          Patterns::Double(),
                          "SSOR preconditioner relaxation value");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
-void LinearSolver::parse_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Linear solver");
+    void LinearSolver::parse_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Linear solver");
+      {
        type_lin = prm.get("Solver type");
        tol_lin = prm.get_double("Residual");
        max_iterations_lin  = prm.get_double("Max iteration multiplier");
        ssor_relaxation = prm.get_double("SSOR Relaxation");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
 // Nonlinear solver
-struct NonlinearSolver
-{
-    unsigned int max_iterations_NR;
-    double tol_f;
-    double tol_u;
+    struct NonlinearSolver
+    {
+       unsigned int max_iterations_NR;
+       double tol_f;
+       double tol_u;
 
-    static void declare_parameters (ParameterHandler &prm);
-    void parse_parameters (ParameterHandler &prm);
-};
+       static void declare_parameters (ParameterHandler &prm);
+       void parse_parameters (ParameterHandler &prm);
+    };
 
-void NonlinearSolver::declare_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Nonlinear solver");
+    void NonlinearSolver::declare_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Nonlinear solver");
+      {
        prm.declare_entry("Max iterations Newton-Raphson",
                          "10",
                          Patterns::Integer(),
@@ -256,35 +259,35 @@ void NonlinearSolver::declare_parameters (ParameterHandler &prm)
                          "1.0e-3",
                          Patterns::Double(),
                          "Displacement error tolerance");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
-void NonlinearSolver::parse_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Nonlinear solver");
+    void NonlinearSolver::parse_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Nonlinear solver");
+      {
        max_iterations_NR  = prm.get_integer("Max iterations Newton-Raphson");
        tol_f = prm.get_double("Tolerance force");
        tol_u = prm.get_double("Tolerance displacement");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
 // Time
-struct Time
-{
-    double end_time;
-    double delta_t;
+    struct Time
+    {
+       double end_time;
+       double delta_t;
 
-    static void declare_parameters (ParameterHandler &prm);
-    void parse_parameters (ParameterHandler &prm);
-};
+       static void declare_parameters (ParameterHandler &prm);
+       void parse_parameters (ParameterHandler &prm);
+    };
 
-void Time::declare_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Time");
+    void Time::declare_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Time");
+      {
        prm.declare_entry("End time",
                          "1",
                          Patterns::Double(),
@@ -294,23 +297,23 @@ void Time::declare_parameters (ParameterHandler &prm)
                          "0.1",
                          Patterns::Double(),
                          "Time step size");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
-void Time::parse_parameters (ParameterHandler &prm)
-{
-    prm.enter_subsection("Time");
+    void Time::parse_parameters (ParameterHandler &prm)
     {
+      prm.enter_subsection("Time");
+      {
        end_time  = prm.get_double("End time");
        delta_t  = prm.get_double("Time step size");
+      }
+      prm.leave_subsection();
     }
-    prm.leave_subsection();
-}
 
 // All parameters
-struct AllParameters
-       :
+    struct AllParameters
+      :
        public FESystem,
        public Geometry,
        public Materials,
@@ -318,683 +321,683 @@ struct AllParameters
        public NonlinearSolver,
        public Time
 
-{
-    AllParameters (const std::string & input_file);
+    {
+       AllParameters (const std::string & input_file);
 
-    static void declare_parameters (ParameterHandler &prm);
-    void parse_parameters (ParameterHandler &prm);
-};
+       static void declare_parameters (ParameterHandler &prm);
+       void parse_parameters (ParameterHandler &prm);
+    };
 
-AllParameters::AllParameters (const std::string & input_file)
-{
-    ParameterHandler prm;
-    declare_parameters(prm);
-    prm.read_input (input_file);
-    parse_parameters(prm);
-}
+    AllParameters::AllParameters (const std::string & input_file)
+    {
+      ParameterHandler prm;
+      declare_parameters(prm);
+      prm.read_input (input_file);
+      parse_parameters(prm);
+    }
 
-void AllParameters::declare_parameters (ParameterHandler &prm)
-{
-    FESystem::declare_parameters(prm);
-    Geometry::declare_parameters(prm);
-    Materials::declare_parameters(prm);
-    LinearSolver::declare_parameters(prm);
-    NonlinearSolver::declare_parameters(prm);
-    Time::declare_parameters(prm);
-}
+    void AllParameters::declare_parameters (ParameterHandler &prm)
+    {
+      FESystem::declare_parameters(prm);
+      Geometry::declare_parameters(prm);
+      Materials::declare_parameters(prm);
+      LinearSolver::declare_parameters(prm);
+      NonlinearSolver::declare_parameters(prm);
+      Time::declare_parameters(prm);
+    }
 
-void AllParameters::parse_parameters (ParameterHandler &prm)
-{
-    FESystem::parse_parameters(prm);
-    Geometry::parse_parameters(prm);
-    Materials::parse_parameters(prm);
-    LinearSolver::parse_parameters(prm);
-    NonlinearSolver::parse_parameters(prm);
-    Time::parse_parameters(prm);
-}
-}
+    void AllParameters::parse_parameters (ParameterHandler &prm)
+    {
+      FESystem::parse_parameters(prm);
+      Geometry::parse_parameters(prm);
+      Materials::parse_parameters(prm);
+      LinearSolver::parse_parameters(prm);
+      NonlinearSolver::parse_parameters(prm);
+      Time::parse_parameters(prm);
+    }
+  }
 
 // @sect3{General tools}
-namespace AdditionalTools
-{
-template <typename MatrixType>
-void extract_submatrix(const std::vector< unsigned int > &row_index_set,
-                      const std::vector< unsigned int > &column_index_set,
-                      const MatrixType &matrix,
-                      FullMatrix< double > &sub_matrix )
-{
+  namespace AdditionalTools
+  {
+    template <typename MatrixType>
+    void extract_submatrix(const std::vector< unsigned int > &row_index_set,
+                          const std::vector< unsigned int > &column_index_set,
+                          const MatrixType &matrix,
+                          FullMatrix< double > &sub_matrix )
+    {
 
-    const unsigned int n_rows_submatrix = row_index_set.size();
-    const unsigned int n_cols_submatrix = column_index_set.size();
+      const unsigned int n_rows_submatrix = row_index_set.size();
+      const unsigned int n_cols_submatrix = column_index_set.size();
 
-    sub_matrix.reinit(n_rows_submatrix, n_cols_submatrix);
+      sub_matrix.reinit(n_rows_submatrix, n_cols_submatrix);
 
-    for (unsigned int sub_row = 0; sub_row < n_rows_submatrix; ++sub_row) {
+      for (unsigned int sub_row = 0; sub_row < n_rows_submatrix; ++sub_row) {
        const unsigned int row = row_index_set[sub_row];
        Assert (row<=matrix.m(), ExcIndexRange(row, 0, matrix.m()));
 
        for (unsigned int sub_col = 0; sub_col < n_cols_submatrix; ++sub_col) {
-           const unsigned int col = column_index_set[sub_col];
-           Assert (col<=matrix.n(), ExcIndexRange(col, 0, matrix.n()));
+         const unsigned int col = column_index_set[sub_col];
+         Assert (col<=matrix.n(), ExcIndexRange(col, 0, matrix.n()));
 
-           sub_matrix(sub_row,sub_col) = matrix(row, col);
+         sub_matrix(sub_row,sub_col) = matrix(row, col);
        }
+      }
     }
-}
 
-template <typename MatrixType>
-void replace_submatrix(const std::vector< unsigned int > &row_index_set,
-                      const std::vector< unsigned int > &column_index_set,
-                      const MatrixType &sub_matrix,
-                      FullMatrix< double >  &matrix)
-{
-    const unsigned int n_rows_submatrix = row_index_set.size();
-    Assert (n_rows_submatrix<=sub_matrix.m(), ExcIndexRange(n_rows_submatrix, 0, sub_matrix.m()));
-    const unsigned int n_cols_submatrix = column_index_set.size();
-    Assert (n_cols_submatrix<=sub_matrix.n(), ExcIndexRange(n_cols_submatrix, 0, sub_matrix.n()));
+    template <typename MatrixType>
+    void replace_submatrix(const std::vector< unsigned int > &row_index_set,
+                          const std::vector< unsigned int > &column_index_set,
+                          const MatrixType &sub_matrix,
+                          FullMatrix< double >  &matrix)
+    {
+      const unsigned int n_rows_submatrix = row_index_set.size();
+      Assert (n_rows_submatrix<=sub_matrix.m(), ExcIndexRange(n_rows_submatrix, 0, sub_matrix.m()));
+      const unsigned int n_cols_submatrix = column_index_set.size();
+      Assert (n_cols_submatrix<=sub_matrix.n(), ExcIndexRange(n_cols_submatrix, 0, sub_matrix.n()));
 
-    for (unsigned int sub_row = 0; sub_row < n_rows_submatrix; ++sub_row) {
+      for (unsigned int sub_row = 0; sub_row < n_rows_submatrix; ++sub_row) {
        const unsigned int row = row_index_set[sub_row];
        Assert (row<=matrix.m(), ExcIndexRange(row, 0, matrix.m()));
 
        for (unsigned int sub_col = 0; sub_col < n_cols_submatrix; ++sub_col) {
-           const unsigned int col = column_index_set[sub_col];
-           Assert (col<=matrix.n(), ExcIndexRange(col, 0, matrix.n()));
+         const unsigned int col = column_index_set[sub_col];
+         Assert (col<=matrix.n(), ExcIndexRange(col, 0, matrix.n()));
 
-           matrix(row, col) = sub_matrix(sub_row, sub_col);
+         matrix(row, col) = sub_matrix(sub_row, sub_col);
 
        }
+      }
     }
-}
 
-}
+  }
 
 // @sect3{Time class}
-class Time {
-public:
-    Time (const double & time_end,
-          const double & delta_t)
-       :
-         timestep (0),
-         time_current (0.0),
-         time_end (time_end),
-         delta_t (delta_t)
-    {}
-    virtual ~Time (void) {}
-
-    const double & current (void) const {return time_current;}
-    const double & end (void) const {return time_end;}
-    const double & get_delta_t (void) const {return delta_t;}
-    const unsigned int & get_timestep (void) const {return timestep;}
-    void increment (void) {time_current += delta_t; ++timestep;}
-
-private:
-    unsigned int timestep;
-    double time_current;
-    const double time_end;
-    const double delta_t;
-};
+  class Time {
+    public:
+      Time (const double & time_end,
+           const double & delta_t)
+                     :
+                     timestep (0),
+                     time_current (0.0),
+                     time_end (time_end),
+                     delta_t (delta_t)
+       {}
+      virtual ~Time (void) {}
+
+      const double & current (void) const {return time_current;}
+      const double & end (void) const {return time_end;}
+      const double & get_delta_t (void) const {return delta_t;}
+      const unsigned int & get_timestep (void) const {return timestep;}
+      void increment (void) {time_current += delta_t; ++timestep;}
+
+    private:
+      unsigned int timestep;
+      double time_current;
+      const double time_end;
+      const double delta_t;
+  };
 
 // @sect3{Neo-Hookean material}
-template <int dim>
-class Material_NH
-{
-public:
-    /// \brief Class constructor
-    Material_NH (const double & lambda,
-                const double & mu)
-       :
-         lambda_0 (lambda),
-         mu_0 (mu),
-         kappa_0 (lambda + 2.0/3.0*mu)
-    { }
-    virtual ~Material_NH (void) {};
-
-    // Stress and constitutive tensors
-    virtual SymmetricTensor<2, dim> get_T (const double & J,
-                                          const SymmetricTensor <2, dim> & B)
-    {
-       const double dW_dJ  = get_dU_dtheta (J);
-       return mu_0*B + dW_dJ*J*I;
-    }
+  template <int dim>
+  class Material_NH
+  {
+    public:
+                                      /// \brief Class constructor
+      Material_NH (const double & lambda,
+                  const double & mu)
+                     :
+                     lambda_0 (lambda),
+                     mu_0 (mu),
+                     kappa_0 (lambda + 2.0/3.0*mu)
+       { }
+      virtual ~Material_NH (void) {};
 
-    virtual SymmetricTensor<4, dim> get_JC (const double & J,
-                                           const SymmetricTensor <2, dim> & B)
-    {
-       const double dW_dJ   = get_dU_dtheta (J);
-       const double d2W_dJ2 = get_d2U_dtheta2 (J);
-       return  J*(  (dW_dJ + J*d2W_dJ2)*IxI - (2.0*dW_dJ)*II  );
-    }
+                                      // Stress and constitutive tensors
+      virtual SymmetricTensor<2, dim> get_T (const double & J,
+                                            const SymmetricTensor <2, dim> & B)
+       {
+         const double dW_dJ  = get_dU_dtheta (J);
+         return mu_0*B + dW_dJ*J*I;
+       }
+
+      virtual SymmetricTensor<4, dim> get_JC (const double & J,
+                                             const SymmetricTensor <2, dim> & B)
+       {
+         const double dW_dJ   = get_dU_dtheta (J);
+         const double d2W_dJ2 = get_d2U_dtheta2 (J);
+         return  J*(  (dW_dJ + J*d2W_dJ2)*IxI - (2.0*dW_dJ)*II  );
+       }
 
-    // Volumetric quantities methods
-    double get_dU_dtheta    (const double & d) {return kappa_0*(d - 1.0/d);}
-    double get_d2U_dtheta2  (const double & d) {return kappa_0*(1.0 + 1.0/(d*d));}
+                                      // Volumetric quantities methods
+      double get_dU_dtheta    (const double & d) {return kappa_0*(d - 1.0/d);}
+      double get_d2U_dtheta2  (const double & d) {return kappa_0*(1.0 + 1.0/(d*d));}
 
-protected:
-    // Material properties
-    const double lambda_0; // Lame modulus
-    const double mu_0;     // Shear modulus
-    const double kappa_0;  // Bulk modulus
+    protected:
+                                      // Material properties
+      const double lambda_0; // Lame modulus
+      const double mu_0;     // Shear modulus
+      const double kappa_0;  // Bulk modulus
 
-    static SymmetricTensor<2, dim> const I;
-    static SymmetricTensor<4, dim> const IxI;
-    static SymmetricTensor<4, dim> const II;
-};
+      static SymmetricTensor<2, dim> const I;
+      static SymmetricTensor<4, dim> const IxI;
+      static SymmetricTensor<4, dim> const II;
+  };
 
-template <int dim> SymmetricTensor<2, dim> const Material_NH<dim>::I   = SymmetricTensor<2, dim> (unit_symmetric_tensor <dim> ());
-template <int dim> SymmetricTensor<4, dim> const Material_NH<dim>::IxI = SymmetricTensor<4, dim> (outer_product (I, I));
-template <int dim> SymmetricTensor<4, dim> const Material_NH<dim>::II  = SymmetricTensor<4, dim> (identity_tensor <dim> ());
+  template <int dim> SymmetricTensor<2, dim> const Material_NH<dim>::I   = SymmetricTensor<2, dim> (unit_symmetric_tensor <dim> ());
+  template <int dim> SymmetricTensor<4, dim> const Material_NH<dim>::IxI = SymmetricTensor<4, dim> (outer_product (I, I));
+  template <int dim> SymmetricTensor<4, dim> const Material_NH<dim>::II  = SymmetricTensor<4, dim> (identity_tensor <dim> ());
 
 // @sect3{Quadrature point history}
-template <int dim>
-class PointHistory
-{
-public:
-    PointHistory (void)
-       :
-         material (NULL),
-         dilatation_n (1.0),
-         pressure_n (0.0)
-    { }
-    virtual ~PointHistory (void) {delete material;}
-
-    void setup_lqp ( Parameters::AllParameters & parameters )
-    {
-       const double lambda = 2.0*parameters.mu*parameters.nu / (1.0-2.0*parameters.nu);
-       material = new Material_NH<dim> (lambda,
-                                        parameters.mu);
+  template <int dim>
+  class PointHistory
+  {
+    public:
+      PointHistory (void)
+                     :
+                     material (NULL),
+                     dilatation_n (1.0),
+                     pressure_n (0.0)
+       { }
+      virtual ~PointHistory (void) {delete material;}
 
-        // Initialise all tensors correctly
-       update_values (Tensor <2,dim> (), 0.0, 1.0);
-    }
+      void setup_lqp ( Parameters::AllParameters & parameters )
+       {
+         const double lambda = 2.0*parameters.mu*parameters.nu / (1.0-2.0*parameters.nu);
+         material = new Material_NH<dim> (lambda,
+                                          parameters.mu);
 
-    // Total Variables
-    void update_values (const Tensor<2, dim> & grad_u_n,
-                       const double & pressure,
-                       const double & dilatation)
-    {
-       // Calculated variables from displacement, displacement gradients
-       const Tensor <2,dim>  F = static_cast <Tensor < 2, dim> > (unit_symmetric_tensor <dim> ()) + grad_u_n;
-       J     = determinant(F);
-       F_inv = invert(F);
-       B_bar = std::pow(get_J(), -2.0/3.0) * symmetrize ( F* transpose (F) );
-
-        // Precalculated pressure, dilatation
-       pressure_n = pressure;
-       dilatation_n = dilatation;
-
-        // Now that all the necessary variables are set, we can update the stress tensors
-        // Stress update can only update the stresses once the
-        // dilatation has been set as p = p(d)
-        T_bar = material->get_T (get_J(), get_B_bar());
-        T_iso = dev_P*get_T_bar(); // Note: T_iso depends on T_bar
-        T_vol = get_pressure()*get_J()*I;
-    }
+                                          // Initialise all tensors correctly
+         update_values (Tensor <2,dim> (), 0.0, 1.0);
+       }
 
-    // Displacement and strain
-    const double & get_dilatation(void) const {return dilatation_n;}
-    const double & get_J (void) const {return J;}
-    const Tensor <2,dim> & get_F_inv (void) const {return F_inv;}
-    const SymmetricTensor <2,dim> & get_B_bar (void) const {return B_bar;}
+                                      // Total Variables
+      void update_values (const Tensor<2, dim> & grad_u_n,
+                         const double & pressure,
+                         const double & dilatation)
+       {
+                                          // Calculated variables from displacement, displacement gradients
+         const Tensor <2,dim>  F = static_cast <Tensor < 2, dim> > (unit_symmetric_tensor <dim> ()) + grad_u_n;
+         J     = determinant(F);
+         F_inv = invert(F);
+         B_bar = std::pow(get_J(), -2.0/3.0) * symmetrize ( F* transpose (F) );
+
+                                          // Precalculated pressure, dilatation
+         pressure_n = pressure;
+         dilatation_n = dilatation;
+
+                                          // Now that all the necessary variables are set, we can update the stress tensors
+                                          // Stress update can only update the stresses once the
+                                          // dilatation has been set as p = p(d)
+         T_bar = material->get_T (get_J(), get_B_bar());
+         T_iso = dev_P*get_T_bar(); // Note: T_iso depends on T_bar
+         T_vol = get_pressure()*get_J()*I;
+       }
+
+                                      // Displacement and strain
+      const double & get_dilatation(void) const {return dilatation_n;}
+      const double & get_J (void) const {return J;}
+      const Tensor <2,dim> & get_F_inv (void) const {return F_inv;}
+      const SymmetricTensor <2,dim> & get_B_bar (void) const {return B_bar;}
 
-    // Volumetric terms
-    double get_dU_dtheta (void) {
+                                      // Volumetric terms
+      double get_dU_dtheta (void) {
        return material->get_dU_dtheta(get_dilatation());
-    }
+      }
 
-    double get_d2U_dtheta2 (void) {
+      double get_d2U_dtheta2 (void) {
        return material->get_d2U_dtheta2(get_dilatation());
-    }
+      }
 
-    // Stress
-    double get_pressure(void) {return pressure_n;}
-    const SymmetricTensor<2, dim> & get_T_iso (void) const {return T_iso;}
-    const SymmetricTensor<2, dim> & get_T_vol (void) const {return T_vol;};
+                                      // Stress
+      double get_pressure(void) {return pressure_n;}
+      const SymmetricTensor<2, dim> & get_T_iso (void) const {return T_iso;}
+      const SymmetricTensor<2, dim> & get_T_vol (void) const {return T_vol;};
 
-    // Tangent matrices
-    SymmetricTensor <4,dim> get_C_iso(void)
-    {
-        const double & J = get_J();
-        const SymmetricTensor<2, dim> & B_bar = get_B_bar();
-        const SymmetricTensor<2, dim> & T_iso = get_T_iso();
+                                      // Tangent matrices
+      SymmetricTensor <4,dim> get_C_iso(void)
+       {
+         const double & J = get_J();
+         const SymmetricTensor<2, dim> & B_bar = get_B_bar();
+         const SymmetricTensor<2, dim> & T_iso = get_T_iso();
 
-        const SymmetricTensor <4,dim> T_iso_x_I = outer_product(T_iso, I);
-        const SymmetricTensor <4,dim> I_x_T_iso = outer_product(I, T_iso);
-       const SymmetricTensor <4,dim> CC_bar = material->get_JC (J, B_bar);
+         const SymmetricTensor <4,dim> T_iso_x_I = outer_product(T_iso, I);
+         const SymmetricTensor <4,dim> I_x_T_iso = outer_product(I, T_iso);
+         const SymmetricTensor <4,dim> CC_bar = material->get_JC (J, B_bar);
 
-       return     2.0/3.0*trace(get_T_bar())*dev_P
-               -  2.0/3.0*(T_iso_x_I + I_x_T_iso)
-               +  dev_P*CC_bar*dev_P;
-    }
+         return     2.0/3.0*trace(get_T_bar())*dev_P
+           -  2.0/3.0*(T_iso_x_I + I_x_T_iso)
+           +  dev_P*CC_bar*dev_P;
+       }
 
-    SymmetricTensor <4,dim> get_C_vol(void)
-    {
-       const double & p = get_pressure();
-       const double & J = get_J();
-       return p*J*(IxI - 2.0*II);
-    }
+      SymmetricTensor <4,dim> get_C_vol(void)
+       {
+         const double & p = get_pressure();
+         const double & J = get_J();
+         return p*J*(IxI - 2.0*II);
+       }
 
-private:
-    // === MATERIAL ===
-    Material_NH <dim>* material;
-
-    // ==== VOLUME, DISPLACEMENT AND STRAIN VARIABLES ====
-    double                  dilatation_n;   // Current dilatation
-    double                  J;
-    Tensor <2,dim>         F_inv;
-    SymmetricTensor <2,dim> B_bar;
-    SymmetricTensor <2,dim> E;
-
-    // ==== STRESS VARIABLES ====
-    double                  pressure_n; // Current pressure
-    SymmetricTensor<2, dim> T_bar;
-    SymmetricTensor<2, dim> T_iso;
-    SymmetricTensor<2, dim> T_vol;
-    const SymmetricTensor<2, dim> & get_T_bar (void) const {return T_bar;}
-
-    // Basis tensors
-    static SymmetricTensor<2, dim> const I;
-    static SymmetricTensor<4, dim> const IxI;
-    static SymmetricTensor<4, dim> const II;
-    static SymmetricTensor<4, dim> const dev_P;
-};
-
-template <int dim> SymmetricTensor<2,dim> const PointHistory<dim>::I
-= SymmetricTensor<2,dim> (unit_symmetric_tensor <dim> ());
-template <int dim> SymmetricTensor<4,dim> const PointHistory<dim>::IxI
-= SymmetricTensor<4,dim> (outer_product (I, I));
-template <int dim> SymmetricTensor<4,dim> const PointHistory<dim>::II
-= SymmetricTensor<4,dim> (identity_tensor <dim> ());
-template <int dim> SymmetricTensor<4,dim> const PointHistory<dim>::dev_P
-= SymmetricTensor<4,dim> (II - 1.0/3.0*IxI);
+    private:
+                                      // === MATERIAL ===
+      Material_NH <dim>* material;
+
+                                      // ==== VOLUME, DISPLACEMENT AND STRAIN VARIABLES ====
+      double                  dilatation_n;   // Current dilatation
+      double                  J;
+      Tensor <2,dim>       F_inv;
+      SymmetricTensor <2,dim> B_bar;
+      SymmetricTensor <2,dim> E;
+
+                                      // ==== STRESS VARIABLES ====
+      double                  pressure_n; // Current pressure
+      SymmetricTensor<2, dim> T_bar;
+      SymmetricTensor<2, dim> T_iso;
+      SymmetricTensor<2, dim> T_vol;
+      const SymmetricTensor<2, dim> & get_T_bar (void) const {return T_bar;}
+
+                                      // Basis tensors
+      static SymmetricTensor<2, dim> const I;
+      static SymmetricTensor<4, dim> const IxI;
+      static SymmetricTensor<4, dim> const II;
+      static SymmetricTensor<4, dim> const dev_P;
+  };
+
+  template <int dim> SymmetricTensor<2,dim> const PointHistory<dim>::I
+  = SymmetricTensor<2,dim> (unit_symmetric_tensor <dim> ());
+  template <int dim> SymmetricTensor<4,dim> const PointHistory<dim>::IxI
+  = SymmetricTensor<4,dim> (outer_product (I, I));
+  template <int dim> SymmetricTensor<4,dim> const PointHistory<dim>::II
+  = SymmetricTensor<4,dim> (identity_tensor <dim> ());
+  template <int dim> SymmetricTensor<4,dim> const PointHistory<dim>::dev_P
+  = SymmetricTensor<4,dim> (II - 1.0/3.0*IxI);
 
 
 // @sect3{Quasi-static quasi-incompressible finite-strain solid}
-template <int dim>
-class Solid
-{
-public:
-    Solid (const std::string & input_file);
-    virtual ~Solid (void);
-    void run (void);
+  template <int dim>
+  class Solid
+  {
+    public:
+      Solid (const std::string & input_file);
+      virtual ~Solid (void);
+      void run (void);
+
+    private:
+
+                                      // === DATA STRUCTS ===
+
+      struct PerTaskData_K
+      {
+         FullMatrix<double>          cell_matrix;
+         std::vector<unsigned int>   local_dof_indices;
+
+         PerTaskData_K (const unsigned int dofs_per_cell)
+                         :
+                         cell_matrix        (dofs_per_cell,
+                                             dofs_per_cell),
+                         local_dof_indices  (dofs_per_cell)
+           { }
+
+         void reset (void) {
+            cell_matrix = 0.0;
+         }
+      };
 
-private:
+      struct ScratchData_K
+      {
+         FEValues <dim> fe_values_ref;
 
-    // === DATA STRUCTS ===
+         std::vector < std::vector< double > >                  Nx;
+         std::vector < std::vector< Tensor<2, dim> > >          grad_Nx;
+         std::vector < std::vector< SymmetricTensor<2, dim> > > symm_grad_Nx;
 
-    struct PerTaskData_K
-    {
-       FullMatrix<double>          cell_matrix;
-       std::vector<unsigned int>   local_dof_indices;
-
-       PerTaskData_K (const unsigned int dofs_per_cell)
-           :
-             cell_matrix        (dofs_per_cell,
-                 dofs_per_cell),
-             local_dof_indices  (dofs_per_cell)
-       { }
-
-        void reset (void) {
-            cell_matrix = 0.0;
-        }
-    };
-
-    struct ScratchData_K
-    {
-       FEValues <dim> fe_values_ref;
-
-       std::vector < std::vector< double > >                  Nx;
-       std::vector < std::vector< Tensor<2, dim> > >          grad_Nx;
-       std::vector < std::vector< SymmetricTensor<2, dim> > > symm_grad_Nx;
-
-       ScratchData_K ( const FiniteElement <dim> & fe_cell,
-                      const QGauss <dim> & qf_cell,
-                      const UpdateFlags uf_cell)
-           :
-             fe_values_ref   (fe_cell,
-                 qf_cell,
-                 uf_cell),
-             Nx              (qf_cell.size(),
-                 std::vector< double >(fe_cell.dofs_per_cell)),
-             grad_Nx         (qf_cell.size(),
-                 std::vector< Tensor<2, dim> >(fe_cell.dofs_per_cell)),
-             symm_grad_Nx    (qf_cell.size(),
-                 std::vector< SymmetricTensor<2, dim> >(fe_cell.dofs_per_cell))
-       {  }
-
-       ScratchData_K ( const ScratchData_K & rhs ) :
-           fe_values_ref ( rhs.fe_values_ref.get_fe(),
-               rhs.fe_values_ref.get_quadrature(),
-               rhs.fe_values_ref.get_update_flags() ),
-           Nx (rhs.Nx),
-           grad_Nx (rhs.grad_Nx),
-           symm_grad_Nx (rhs.symm_grad_Nx)
-       {  }
-
-       void reset (void) {
+         ScratchData_K ( const FiniteElement <dim> & fe_cell,
+                         const QGauss <dim> & qf_cell,
+                         const UpdateFlags uf_cell)
+                         :
+                         fe_values_ref   (fe_cell,
+                                          qf_cell,
+                                          uf_cell),
+                         Nx              (qf_cell.size(),
+                                          std::vector< double >(fe_cell.dofs_per_cell)),
+                         grad_Nx         (qf_cell.size(),
+                                          std::vector< Tensor<2, dim> >(fe_cell.dofs_per_cell)),
+                         symm_grad_Nx    (qf_cell.size(),
+                                          std::vector< SymmetricTensor<2, dim> >(fe_cell.dofs_per_cell))
+           {  }
+
+         ScratchData_K ( const ScratchData_K & rhs ) :
+                         fe_values_ref ( rhs.fe_values_ref.get_fe(),
+                                         rhs.fe_values_ref.get_quadrature(),
+                                         rhs.fe_values_ref.get_update_flags() ),
+                         Nx (rhs.Nx),
+                         grad_Nx (rhs.grad_Nx),
+                         symm_grad_Nx (rhs.symm_grad_Nx)
+           {  }
+
+         void reset (void) {
             for (unsigned int q_point=0; q_point < grad_Nx.size(); ++q_point) {
-                for (unsigned int k=0; k < Nx.size(); ++k) {
-                   Nx[q_point][k] = 0.0;
-                   grad_Nx[q_point][k] = 0.0;
-                   symm_grad_Nx[q_point][k] = 0.0;
-               }
+             for (unsigned int k=0; k < Nx.size(); ++k) {
+               Nx[q_point][k] = 0.0;
+               grad_Nx[q_point][k] = 0.0;
+               symm_grad_Nx[q_point][k] = 0.0;
+             }
            }
-       }
+         }
 
-    };
-
-    struct PerTaskData_F
-    {
-       Vector<double>              cell_rhs;
-       std::vector<unsigned int>   local_dof_indices;
-
-       PerTaskData_F (const unsigned int dofs_per_cell)
-           :
-             cell_rhs           (dofs_per_cell),
-             local_dof_indices  (dofs_per_cell)
-       { }
-
-       void reset (void) { cell_rhs = 0.0; }
-    };
+      };
 
-    struct ScratchData_F
-    {
-       FEValues <dim>     fe_values_ref;
-       FEFaceValues <dim> fe_face_values_ref;
-
-       std::vector < std::vector< double > > Nx;
-       std::vector < std::vector< SymmetricTensor<2, dim> > > symm_grad_Nx;
-       std::vector< Vector<double> > rhs_values;
-
-       // Solution data
-       std::vector< std::vector<Tensor <1,dim> > > solution_grads;
-
-       ScratchData_F ( const FiniteElement <dim> & fe_cell,
-                      const QGauss <dim> & qf_cell,
-                      const UpdateFlags uf_cell,
-                      const QGauss <dim-1> & qf_face,
-                      const UpdateFlags uf_face)
-           :
-             fe_values_ref   (fe_cell,
-                 qf_cell,
-                 uf_cell),
-             fe_face_values_ref   (fe_cell,
-                 qf_face,
-                 uf_face),
-             Nx              (qf_cell.size(),
-                 std::vector< double >(fe_cell.dofs_per_cell)),
-             symm_grad_Nx    (qf_cell.size(),
-                 std::vector< SymmetricTensor<2, dim> >(fe_cell.dofs_per_cell)),
-             rhs_values   (qf_cell.size(),
-                 Vector<double>(dim))
-       {  }
-
-       ScratchData_F ( const ScratchData_F & rhs )
-           :
-             fe_values_ref ( rhs.fe_values_ref.get_fe(),
-                 rhs.fe_values_ref.get_quadrature(),
-                 rhs.fe_values_ref.get_update_flags() ),
-             fe_face_values_ref ( rhs.fe_face_values_ref.get_fe(),
-                 rhs.fe_face_values_ref.get_quadrature(),
-                 rhs.fe_face_values_ref.get_update_flags() ),
-             Nx (rhs.Nx),
-             symm_grad_Nx (rhs.symm_grad_Nx),
-             rhs_values (rhs.rhs_values)
-       {  }
-
-       void reset (void) {
-           for (unsigned int q_point=0; q_point < symm_grad_Nx.size(); ++q_point) {
-               for (unsigned int k=0; k < symm_grad_Nx[q_point].size(); ++k) {
-                   Nx[q_point][k] = 0.0;
-                   symm_grad_Nx[q_point][k] = 0.0;
-                   rhs_values[q_point] = 0.0;
-               }
-           }
-       }
+      struct PerTaskData_F
+      {
+         Vector<double>              cell_rhs;
+         std::vector<unsigned int>   local_dof_indices;
 
-    };
+         PerTaskData_F (const unsigned int dofs_per_cell)
+                         :
+                         cell_rhs           (dofs_per_cell),
+                         local_dof_indices  (dofs_per_cell)
+           { }
 
-    struct PerTaskData_SC
-    {
-        FullMatrix<double>          cell_matrix;
-        std::vector<unsigned int>   local_dof_indices;
-
-       // Calculation matrices (auto resized)
-       FullMatrix<double> K_orig;
-       FullMatrix<double> K_pu;
-       FullMatrix<double> K_pt;
-       FullMatrix<double> K_tt;
-       // Calculation matrices (manual resized)
-       FullMatrix<double> K_pt_inv;
-       FullMatrix<double> K_tt_inv;
-       FullMatrix<double> K_con;
-       FullMatrix<double> A;
-       FullMatrix<double> B;
-       FullMatrix<double> C;
-
-       PerTaskData_SC (const unsigned int & dofs_per_cell,
-                       const unsigned int & n_u,
-                       const unsigned int & n_p,
-                       const unsigned int & n_t)
-            :
-             cell_matrix        (dofs_per_cell,
-                 dofs_per_cell),
-             local_dof_indices  (dofs_per_cell),
-             K_pt_inv (n_t, n_p),
-             K_tt_inv (n_t, n_t),
-             K_con (n_u, n_u),
-             A (n_t, n_u),
-             B (n_t, n_u),
-             C (n_p, n_u)
-       {  }
-
-       // Choose not to reset any data
-       // The matrix extraction and replacement tools will take care of this
-       void reset(void) { }
-    };
+         void reset (void) { cell_rhs = 0.0; }
+      };
 
-    // Dummy struct for TBB
-    struct ScratchData_SC
-    {
-       ScratchData_SC (void) { }
-       ScratchData_SC (const ScratchData_SC & rhs) { }
-       void reset (void) { }
-    };
+      struct ScratchData_F
+      {
+         FEValues <dim>     fe_values_ref;
+         FEFaceValues <dim> fe_face_values_ref;
 
-    // Dummy struct for TBB
-    struct PerTaskData_UQPH
-    {
-       PerTaskData_UQPH (void) { }
-       void reset(void) { }
-    };
+         std::vector < std::vector< double > > Nx;
+         std::vector < std::vector< SymmetricTensor<2, dim> > > symm_grad_Nx;
+         std::vector< Vector<double> > rhs_values;
 
-    struct ScratchData_UQPH
-    {
-       FEValues<dim> fe_values_ref;
-       std::vector< Tensor< 2, dim> > solution_grads_u_total;
-       std::vector <double> solution_values_p_total;
-       std::vector <double> solution_values_t_total;
-       const BlockVector <double> & solution_total;
+                                          // Solution data
+         std::vector< std::vector<Tensor <1,dim> > > solution_grads;
 
-       ScratchData_UQPH (const FiniteElement <dim> & fe_cell,
+         ScratchData_F ( const FiniteElement <dim> & fe_cell,
                          const QGauss <dim> & qf_cell,
                          const UpdateFlags uf_cell,
-                         const BlockVector <double> & solution_total)
-           :
-             fe_values_ref (fe_cell,
-                 qf_cell,
-                 uf_cell),
-             solution_grads_u_total (qf_cell.size()),
-             solution_values_p_total (qf_cell.size()),
-             solution_values_t_total (qf_cell.size()),
-             solution_total (solution_total)
-       { }
-
-       ScratchData_UQPH (const ScratchData_UQPH & rhs)
-           :
-             fe_values_ref (rhs.fe_values_ref.get_fe(),
-                 rhs.fe_values_ref.get_quadrature(),
-                 rhs.fe_values_ref.get_update_flags()),
-             solution_grads_u_total (rhs.solution_grads_u_total),
-             solution_values_p_total (rhs.solution_values_p_total),
-             solution_values_t_total (rhs.solution_values_t_total),
-             solution_total (rhs.solution_total)
-       { }
-
-       void reset (void)
-       {
-           // Is this necessary? Won't the call to fe_values.get_gradient overwrite this data?
-           for (unsigned int q=0; q < qf_cell.size(); ++q)
+                         const QGauss <dim-1> & qf_face,
+                         const UpdateFlags uf_face)
+                         :
+                         fe_values_ref   (fe_cell,
+                                          qf_cell,
+                                          uf_cell),
+                         fe_face_values_ref   (fe_cell,
+                                               qf_face,
+                                               uf_face),
+                         Nx              (qf_cell.size(),
+                                          std::vector< double >(fe_cell.dofs_per_cell)),
+                         symm_grad_Nx    (qf_cell.size(),
+                                          std::vector< SymmetricTensor<2, dim> >(fe_cell.dofs_per_cell)),
+                         rhs_values   (qf_cell.size(),
+                                       Vector<double>(dim))
+           {  }
+
+         ScratchData_F ( const ScratchData_F & rhs )
+                         :
+                         fe_values_ref ( rhs.fe_values_ref.get_fe(),
+                                         rhs.fe_values_ref.get_quadrature(),
+                                         rhs.fe_values_ref.get_update_flags() ),
+                         fe_face_values_ref ( rhs.fe_face_values_ref.get_fe(),
+                                              rhs.fe_face_values_ref.get_quadrature(),
+                                              rhs.fe_face_values_ref.get_update_flags() ),
+                         Nx (rhs.Nx),
+                         symm_grad_Nx (rhs.symm_grad_Nx),
+                         rhs_values (rhs.rhs_values)
+           {  }
+
+         void reset (void) {
+           for (unsigned int q_point=0; q_point < symm_grad_Nx.size(); ++q_point) {
+             for (unsigned int k=0; k < symm_grad_Nx[q_point].size(); ++k) {
+               Nx[q_point][k] = 0.0;
+               symm_grad_Nx[q_point][k] = 0.0;
+               rhs_values[q_point] = 0.0;
+             }
+           }
+         }
+
+      };
+
+      struct PerTaskData_SC
+      {
+         FullMatrix<double>          cell_matrix;
+         std::vector<unsigned int>   local_dof_indices;
+
+                                          // Calculation matrices (auto resized)
+         FullMatrix<double> K_orig;
+         FullMatrix<double> K_pu;
+         FullMatrix<double> K_pt;
+         FullMatrix<double> K_tt;
+                                          // Calculation matrices (manual resized)
+         FullMatrix<double> K_pt_inv;
+         FullMatrix<double> K_tt_inv;
+         FullMatrix<double> K_con;
+         FullMatrix<double> A;
+         FullMatrix<double> B;
+         FullMatrix<double> C;
+
+         PerTaskData_SC (const unsigned int & dofs_per_cell,
+                         const unsigned int & n_u,
+                         const unsigned int & n_p,
+                         const unsigned int & n_t)
+                         :
+                         cell_matrix        (dofs_per_cell,
+                                             dofs_per_cell),
+                         local_dof_indices  (dofs_per_cell),
+                         K_pt_inv (n_t, n_p),
+                         K_tt_inv (n_t, n_t),
+                         K_con (n_u, n_u),
+                         A (n_t, n_u),
+                         B (n_t, n_u),
+                         C (n_p, n_u)
+           {  }
+
+                                          // Choose not to reset any data
+                                          // The matrix extraction and replacement tools will take care of this
+         void reset(void) { }
+      };
+
+                                      // Dummy struct for TBB
+      struct ScratchData_SC
+      {
+         ScratchData_SC (void) { }
+         ScratchData_SC (const ScratchData_SC & rhs) { }
+         void reset (void) { }
+      };
+
+                                      // Dummy struct for TBB
+      struct PerTaskData_UQPH
+      {
+         PerTaskData_UQPH (void) { }
+         void reset(void) { }
+      };
+
+      struct ScratchData_UQPH
+      {
+         FEValues<dim> fe_values_ref;
+         std::vector< Tensor< 2, dim> > solution_grads_u_total;
+         std::vector <double> solution_values_p_total;
+         std::vector <double> solution_values_t_total;
+         const BlockVector <double> & solution_total;
+
+         ScratchData_UQPH (const FiniteElement <dim> & fe_cell,
+                           const QGauss <dim> & qf_cell,
+                           const UpdateFlags uf_cell,
+                           const BlockVector <double> & solution_total)
+                         :
+                         fe_values_ref (fe_cell,
+                                        qf_cell,
+                                        uf_cell),
+                         solution_grads_u_total (qf_cell.size()),
+                         solution_values_p_total (qf_cell.size()),
+                         solution_values_t_total (qf_cell.size()),
+                         solution_total (solution_total)
+           { }
+
+         ScratchData_UQPH (const ScratchData_UQPH & rhs)
+                         :
+                         fe_values_ref (rhs.fe_values_ref.get_fe(),
+                                        rhs.fe_values_ref.get_quadrature(),
+                                        rhs.fe_values_ref.get_update_flags()),
+                         solution_grads_u_total (rhs.solution_grads_u_total),
+                         solution_values_p_total (rhs.solution_values_p_total),
+                         solution_values_t_total (rhs.solution_values_t_total),
+                         solution_total (rhs.solution_total)
+           { }
+
+         void reset (void)
            {
-               solution_grads_u_total[q] = 0.0;
-               solution_values_p_total[q] = 0.0;
-               solution_values_t_total[q] = 0.0;
+                                              // Is this necessary? Won't the call to fe_values.get_gradient overwrite this data?
+             for (unsigned int q=0; q < qf_cell.size(); ++q)
+               {
+                 solution_grads_u_total[q] = 0.0;
+                 solution_values_p_total[q] = 0.0;
+                 solution_values_t_total[q] = 0.0;
+               }
            }
-       }
-    };
-
-    // === METHODS ===
-
-    /// \brief Print out a greeting for the user
-    void make_grid (void);
-    /// \brief Setup the Finite Element system to be solved
-    void system_setup (void);
-    void determine_component_extractors(void);
-
-    /// \brief Assemble the system and right hand side matrices using multi-threading
-    void assemble_system_K          (void);
-    void assemble_system_K_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
-                                    ScratchData_K & scratch,
-                                    PerTaskData_K & data);
-    void copy_local_to_global_K     (const PerTaskData_K & data);
-    void assemble_system_F          (void);
-    void assemble_system_F_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
-                                    ScratchData_F & scratch,
-                                    PerTaskData_F & data);
-    void copy_local_to_global_F     (const PerTaskData_F & data);
-    void assemble_SC                (void);
-    void assemble_SC_one_cell       (const typename DoFHandler<dim>::active_cell_iterator & cell,
-                                     ScratchData_SC & scratch,
-                                     PerTaskData_SC & data);
-    void copy_local_to_global_SC    (const PerTaskData_SC & data);
-    /// \brief Apply Dirichlet boundary values
-    void make_constraints (const int & it_nr,
-                          ConstraintMatrix & constraints);
-
-    //    /// \brief Setup the quadrature point history for each cell
-    void setup_qph(void);
-    //    /// \brief Update the quadrature points stress and strain values, and fibre directions
-    void update_qph_incremental ( const BlockVector <double> & solution_delta );
-    void update_qph_incremental_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
-                                         ScratchData_UQPH & scratch,
-                                         PerTaskData_UQPH & data);
-    void copy_local_to_global_UQPH    (const PerTaskData_UQPH & data) {}
-    /// \brief Solve for the displacement using a Newton-Rhapson method
-    void solve_nonlinear_timestep (BlockVector <double> & solution_delta);
-    void solve_linear_system (BlockVector <double> & newton_update);
-
-    /// \brief Error measurement
-    void get_error_res (const BlockVector <double> & residual, BlockVector <double> & error_res);
-    void get_error_update (const BlockVector <double> & newton_update, BlockVector <double> & error_update);
-    double get_error_dil (void);
-
-    // Solution
-    BlockVector <double> get_solution_total (const BlockVector <double> & solution_delta);
-
-    // Postprocessing
-    void output_results(void);
-
-    // === ATTRIBUTES ===
-    // Parameters
-    Parameters::AllParameters parameters;
-
-    // Geometry
-    Triangulation<dim> triangulation; // Describes the triangulation
-
-    // Time
-    Time time;
-    TimerOutput timer;
-
-    // === Quadrature points ===
-    std::vector< PointHistory <dim> > quadrature_point_history; // Quadrature point history
-
-    // === Finite element system ===
-    DoFHandler<dim>     dof_handler_ref; // Describes the degrees of freedom
-    const unsigned int  degree;
-    const FESystem<dim> fe; // Describes the global FE system
-
-    unsigned int dofs_per_cell; // Number of degrees of freedom on each cell
-    const FEValuesExtractors::Vector u_fe;
-    const FEValuesExtractors::Scalar p_fe;
-    const FEValuesExtractors::Scalar t_fe;
-
-    // Block description
-    static const unsigned int n_blocks  = 3;
-    static const unsigned int n_components = dim + 2;
-    static const unsigned int first_u_component = 0;
-    static const unsigned int p_component = dim;
-    static const unsigned int t_component = dim + 1;
-
-    enum {u_dof=0 , p_dof, t_dof};
-    std::vector<unsigned int> dofs_per_block;
-    std::vector<unsigned int> element_indices_u;
-    std::vector<unsigned int> element_indices_p;
-    std::vector<unsigned int> element_indices_t;
-
-    // === Quadrature ===
-    QGauss<dim> qf_cell; // Cell quadrature formula
-    QGauss<dim-1> qf_face; // Face quadrature formula
-    unsigned int n_q_points; // Number of quadrature points in a cell
-    unsigned int n_q_points_f; // Number of quadrature points in a face
-
-    // === Stiffness matrix setup ====
-    ConstraintMatrix constraints; // Matrix to keep track of all constraints
-    BlockSparsityPattern sparsity_pattern; // Sparsity pattern for the stiffness matrix
-    BlockSparseMatrix <double> tangent_matrix; // Global stiffness matrix
-    BlockVector <double> residual; // Holds the residual vector
-    BlockVector <double> solution_n; // Holds the solution vector: Total displacement over all time-steps
-};
+      };
+
+                                      // === METHODS ===
+
+                                      /// \brief Print out a greeting for the user
+      void make_grid (void);
+                                      /// \brief Setup the Finite Element system to be solved
+      void system_setup (void);
+      void determine_component_extractors(void);
+
+                                      /// \brief Assemble the system and right hand side matrices using multi-threading
+      void assemble_system_K          (void);
+      void assemble_system_K_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
+                                      ScratchData_K & scratch,
+                                      PerTaskData_K & data);
+      void copy_local_to_global_K     (const PerTaskData_K & data);
+      void assemble_system_F          (void);
+      void assemble_system_F_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
+                                      ScratchData_F & scratch,
+                                      PerTaskData_F & data);
+      void copy_local_to_global_F     (const PerTaskData_F & data);
+      void assemble_SC                (void);
+      void assemble_SC_one_cell       (const typename DoFHandler<dim>::active_cell_iterator & cell,
+                                      ScratchData_SC & scratch,
+                                      PerTaskData_SC & data);
+      void copy_local_to_global_SC    (const PerTaskData_SC & data);
+                                      /// \brief Apply Dirichlet boundary values
+      void make_constraints (const int & it_nr,
+                            ConstraintMatrix & constraints);
+
+                                      //    /// \brief Setup the quadrature point history for each cell
+      void setup_qph(void);
+                                      //    /// \brief Update the quadrature points stress and strain values, and fibre directions
+      void update_qph_incremental ( const BlockVector <double> & solution_delta );
+      void update_qph_incremental_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
+                                           ScratchData_UQPH & scratch,
+                                           PerTaskData_UQPH & data);
+      void copy_local_to_global_UQPH    (const PerTaskData_UQPH & data) {}
+                                      /// \brief Solve for the displacement using a Newton-Rhapson method
+      void solve_nonlinear_timestep (BlockVector <double> & solution_delta);
+      void solve_linear_system (BlockVector <double> & newton_update);
+
+                                      /// \brief Error measurement
+      void get_error_res (const BlockVector <double> & residual, BlockVector <double> & error_res);
+      void get_error_update (const BlockVector <double> & newton_update, BlockVector <double> & error_update);
+      double get_error_dil (void);
+
+                                      // Solution
+      BlockVector <double> get_solution_total (const BlockVector <double> & solution_delta);
+
+                                      // Postprocessing
+      void output_results(void);
+
+                                      // === ATTRIBUTES ===
+                                      // Parameters
+      Parameters::AllParameters parameters;
+
+                                      // Geometry
+      Triangulation<dim> triangulation; // Describes the triangulation
+
+                                      // Time
+      Time time;
+      TimerOutput timer;
+
+                                      // === Quadrature points ===
+      std::vector< PointHistory <dim> > quadrature_point_history; // Quadrature point history
+
+                                      // === Finite element system ===
+      DoFHandler<dim>     dof_handler_ref; // Describes the degrees of freedom
+      const unsigned int  degree;
+      const FESystem<dim> fe; // Describes the global FE system
+
+      unsigned int dofs_per_cell; // Number of degrees of freedom on each cell
+      const FEValuesExtractors::Vector u_fe;
+      const FEValuesExtractors::Scalar p_fe;
+      const FEValuesExtractors::Scalar t_fe;
+
+                                      // Block description
+      static const unsigned int n_blocks  = 3;
+      static const unsigned int n_components = dim + 2;
+      static const unsigned int first_u_component = 0;
+      static const unsigned int p_component = dim;
+      static const unsigned int t_component = dim + 1;
+
+      enum {u_dof=0 , p_dof, t_dof};
+      std::vector<unsigned int> dofs_per_block;
+      std::vector<unsigned int> element_indices_u;
+      std::vector<unsigned int> element_indices_p;
+      std::vector<unsigned int> element_indices_t;
+
+                                      // === Quadrature ===
+      QGauss<dim> qf_cell; // Cell quadrature formula
+      QGauss<dim-1> qf_face; // Face quadrature formula
+      unsigned int n_q_points; // Number of quadrature points in a cell
+      unsigned int n_q_points_f; // Number of quadrature points in a face
+
+                                      // === Stiffness matrix setup ====
+      ConstraintMatrix constraints; // Matrix to keep track of all constraints
+      BlockSparsityPattern sparsity_pattern; // Sparsity pattern for the stiffness matrix
+      BlockSparseMatrix <double> tangent_matrix; // Global stiffness matrix
+      BlockVector <double> residual; // Holds the residual vector
+      BlockVector <double> solution_n; // Holds the solution vector: Total displacement over all time-steps
+  };
 
 // @sect3{Implementation of the <code>Solid</code> class}
 
 // @sect4{Public interface}
-template <int dim>
-Solid<dim>::Solid (const std::string & input_file)
-    :
-      parameters (input_file),
-      triangulation (Triangulation<dim>::maximum_smoothing),
-      time (parameters.end_time, parameters.delta_t),
-      timer (std::cout,
-         TimerOutput::summary,
-         TimerOutput::wall_times),
-      dof_handler_ref (triangulation),
-      degree (parameters.poly_degree),
-      fe (FE_Q<dim>(parameters.poly_degree), dim,    // displacement
-         FE_DGPMonomial<dim>(parameters.poly_degree-1), 1,  // pressure
-         FE_DGPMonomial<dim>(parameters.poly_degree-1), 1), // dilatation
-      u_fe (first_u_component),
-      p_fe (p_component),
-      t_fe (t_component),
-      dofs_per_block (n_blocks),
-      qf_cell (parameters.quad_order),
-      qf_face (parameters.quad_order)
-{
+  template <int dim>
+  Solid<dim>::Solid (const std::string & input_file)
+                 :
+                 parameters (input_file),
+                 triangulation (Triangulation<dim>::maximum_smoothing),
+                 time (parameters.end_time, parameters.delta_t),
+                 timer (std::cout,
+                        TimerOutput::summary,
+                        TimerOutput::wall_times),
+                 dof_handler_ref (triangulation),
+                 degree (parameters.poly_degree),
+                 fe (FE_Q<dim>(parameters.poly_degree), dim,    // displacement
+                     FE_DGPMonomial<dim>(parameters.poly_degree-1), 1,  // pressure
+                     FE_DGPMonomial<dim>(parameters.poly_degree-1), 1), // dilatation
+                 u_fe (first_u_component),
+                 p_fe (p_component),
+                 t_fe (t_component),
+                 dofs_per_block (n_blocks),
+                 qf_cell (parameters.quad_order),
+                 qf_face (parameters.quad_order)
+  {
     n_q_points = qf_cell.size();
     n_q_points_f = qf_face.size();
     dofs_per_cell = fe.dofs_per_cell;
     determine_component_extractors();
-}
+  }
 
-template <int dim>
-Solid<dim>::~Solid (void)
-{
+  template <int dim>
+  Solid<dim>::~Solid (void)
+  {
     dof_handler_ref.clear ();
-}
+  }
 
-template <int dim>
-void Solid<dim>::run (void)
-{
-    // Pre-processing
+  template <int dim>
+  void Solid<dim>::run (void)
+  {
+                                    // Pre-processing
     make_grid ();
     system_setup ();
     output_results (); // Output initial grid position
@@ -1004,129 +1007,129 @@ void Solid<dim>::run (void)
     solution_delta.collect_sizes ();
 
     while (time.current() <= time.end()) {
-       solution_delta = 0.0;
+      solution_delta = 0.0;
 
-       // Solve step and update total solution vector
-       solve_nonlinear_timestep (solution_delta);
-       solution_n += solution_delta;
+                                      // Solve step and update total solution vector
+      solve_nonlinear_timestep (solution_delta);
+      solution_n += solution_delta;
 
-       output_results ();
-       time.increment();
+      output_results ();
+      time.increment();
     }
-}
+  }
 
 // @sect4{Solid::make_grid}
-template <int dim>
-void Solid<dim>::make_grid (void)
-{
+  template <int dim>
+  void Solid<dim>::make_grid (void)
+  {
     GridGenerator::hyper_rectangle ( triangulation,
-                                   Point<dim> (0.0, 0.0, 0.0),
-                                   Point<dim> (1.0, 1.0, 1.0),
-                                   true );
+                                    Point<dim> (0.0, 0.0, 0.0),
+                                    Point<dim> (1.0, 1.0, 1.0),
+                                    true );
     GridTools::scale (parameters.scale, triangulation);
 
-    // Need to refine at least once for the indentation problem
+                                    // Need to refine at least once for the indentation problem
     if (parameters.global_refinement == 0) triangulation.refine_global (1);
     else triangulation.refine_global (parameters.global_refinement);
 
-    // Apply different BC's to a patch on the top surface
+                                    // Apply different BC's to a patch on the top surface
     typename Triangulation<dim>::active_cell_iterator
-           cell = triangulation.begin_active(),
-           endc = triangulation.end();
+      cell = triangulation.begin_active(),
+      endc = triangulation.end();
     for (; cell!=endc; ++cell)
-    {
+      {
         if (cell->at_boundary() == true) {
-           for (unsigned int face=0; face < GeometryInfo<dim>::faces_per_cell; ++face) {
-               // Find faces on the +y surface
-               if (   cell->face(face)->at_boundary() == true
-                       && cell->face(face)->center()[2] == 1.0*parameters.scale)
-               {
-                   if (   cell->face(face)->center()[0] < 0.5*parameters.scale
-                           && cell->face(face)->center()[1] < 0.5*parameters.scale)
-                   {
-                       cell->face(face)->set_boundary_indicator (6); // Set a new boundary id on a patch
-                   }
-               }
-           }
+         for (unsigned int face=0; face < GeometryInfo<dim>::faces_per_cell; ++face) {
+                                            // Find faces on the +y surface
+           if (   cell->face(face)->at_boundary() == true
+                  && cell->face(face)->center()[2] == 1.0*parameters.scale)
+             {
+               if (   cell->face(face)->center()[0] < 0.5*parameters.scale
+                      && cell->face(face)->center()[1] < 0.5*parameters.scale)
+                 {
+                   cell->face(face)->set_boundary_indicator (6); // Set a new boundary id on a patch
+                 }
+             }
+         }
        }
-    }
-}
+      }
+  }
 
 // @sect4{Solid::system_setup}
-template <int dim>
-void Solid<dim>::system_setup (void)
-{
+  template <int dim>
+  void Solid<dim>::system_setup (void)
+  {
     timer.enter_subsection ("Setup system");
 
-    // Number of components per block
+                                    // Number of components per block
     std::vector<unsigned int> block_component (n_components, u_dof); // Displacement
     block_component[p_component] = p_dof; // Pressure
     block_component[t_component] = t_dof; // Dilatation
 
-    // Setup DOF handler
+                                    // Setup DOF handler
     dof_handler_ref.distribute_dofs (fe);
     DoFRenumbering::Cuthill_McKee (dof_handler_ref);
     DoFRenumbering::component_wise (dof_handler_ref, block_component);
-    // Count number of dofs per block
+                                    // Count number of dofs per block
     DoFTools::count_dofs_per_block (dof_handler_ref, dofs_per_block, block_component);
 
     std::cout
-           << "Triangulation:"
-           << "\n\t Number of active cells: " << triangulation.n_active_cells()
-           << "\n\t Number of degrees of freedom: " << dof_handler_ref.n_dofs()
-           << std::endl;
-
-    // the global system matrix will have the following structure
-    //      | K'_uu |   K_up    |     0     |         | dU_u |         | dR_u |
-    // K =  | K_pu  |   K_tt^-1 |   K_pt^-1 | , dU =  | dU_p | , dR =  | dR_p |
-    //      |   0   |   K_tp    |   K_tt    |         | dU_t |         | dR_t |
-    // reflect this structure in the sparsity pattern
+      << "Triangulation:"
+      << "\n\t Number of active cells: " << triangulation.n_active_cells()
+      << "\n\t Number of degrees of freedom: " << dof_handler_ref.n_dofs()
+      << std::endl;
+
+                                    // the global system matrix will have the following structure
+                                    //      | K'_uu |   K_up    |     0     |         | dU_u |         | dR_u |
+                                    // K =  | K_pu  |   K_tt^-1 |   K_pt^-1 | , dU =  | dU_p | , dR =  | dR_p |
+                                    //      |   0   |   K_tp    |   K_tt    |         | dU_t |         | dR_t |
+                                    // reflect this structure in the sparsity pattern
     Table<2,DoFTools::Coupling> coupling (n_components, n_components);
     for (unsigned int ii = 0; ii < n_components; ++ii) {
-        for (unsigned int jj = ii; jj < n_components; ++jj) {
-            if ((ii < p_component) && (jj == t_component)) {
-               coupling[jj][ii] = DoFTools::none;
-               coupling[ii][jj] = DoFTools::none;
-            }
-            else {
-               coupling[ii][jj] = DoFTools::always;
-               coupling[jj][ii] = DoFTools::always;
-            }
-        }
+      for (unsigned int jj = ii; jj < n_components; ++jj) {
+       if ((ii < p_component) && (jj == t_component)) {
+         coupling[jj][ii] = DoFTools::none;
+         coupling[ii][jj] = DoFTools::none;
+       }
+       else {
+         coupling[ii][jj] = DoFTools::always;
+         coupling[jj][ii] = DoFTools::always;
+       }
+      }
     }
 
-    // Setup system matrix
+                                    // Setup system matrix
     tangent_matrix.clear ();
     {
-       const unsigned int n_dofs_u = dofs_per_block[u_dof];
-       const unsigned int n_dofs_p = dofs_per_block[p_dof];
-       const unsigned int n_dofs_t = dofs_per_block[t_dof];
+      const unsigned int n_dofs_u = dofs_per_block[u_dof];
+      const unsigned int n_dofs_p = dofs_per_block[p_dof];
+      const unsigned int n_dofs_t = dofs_per_block[t_dof];
 
-        BlockCompressedSimpleSparsityPattern csp (n_blocks, n_blocks);
+      BlockCompressedSimpleSparsityPattern csp (n_blocks, n_blocks);
 
-        csp.block(u_dof,u_dof).reinit (n_dofs_u, n_dofs_u);
-        csp.block(u_dof,p_dof).reinit (n_dofs_u, n_dofs_p);
-        csp.block(u_dof,t_dof).reinit (n_dofs_u, n_dofs_t);
+      csp.block(u_dof,u_dof).reinit (n_dofs_u, n_dofs_u);
+      csp.block(u_dof,p_dof).reinit (n_dofs_u, n_dofs_p);
+      csp.block(u_dof,t_dof).reinit (n_dofs_u, n_dofs_t);
 
-        csp.block(p_dof,u_dof).reinit (n_dofs_p, n_dofs_u);
-        csp.block(p_dof,p_dof).reinit (n_dofs_p, n_dofs_p);
-        csp.block(p_dof,t_dof).reinit (n_dofs_p, n_dofs_t);
+      csp.block(p_dof,u_dof).reinit (n_dofs_p, n_dofs_u);
+      csp.block(p_dof,p_dof).reinit (n_dofs_p, n_dofs_p);
+      csp.block(p_dof,t_dof).reinit (n_dofs_p, n_dofs_t);
 
-        csp.block(t_dof,u_dof).reinit (n_dofs_t, n_dofs_u);
-        csp.block(t_dof,p_dof).reinit (n_dofs_t, n_dofs_p);
-        csp.block(t_dof,t_dof).reinit (n_dofs_t, n_dofs_t);
-        csp.collect_sizes();
+      csp.block(t_dof,u_dof).reinit (n_dofs_t, n_dofs_u);
+      csp.block(t_dof,p_dof).reinit (n_dofs_t, n_dofs_p);
+      csp.block(t_dof,t_dof).reinit (n_dofs_t, n_dofs_t);
+      csp.collect_sizes();
 
-       DoFTools::make_sparsity_pattern (dof_handler_ref, csp);
-       //        DoFTools::make_sparsity_pattern (dof_handler_ref, csp, constraints, false);
-       //        DoFTools::make_sparsity_pattern (dof_handler_ref, coupling, csp, constraints, false);
-        sparsity_pattern.copy_from (csp);
+      DoFTools::make_sparsity_pattern (dof_handler_ref, csp);
+                                      //        DoFTools::make_sparsity_pattern (dof_handler_ref, csp, constraints, false);
+                                      //        DoFTools::make_sparsity_pattern (dof_handler_ref, coupling, csp, constraints, false);
+      sparsity_pattern.copy_from (csp);
     }
 
 
     tangent_matrix.reinit (sparsity_pattern);
 
-    // Setup storage vectors
+                                    // Setup storage vectors
     residual.reinit (dofs_per_block);
     residual.collect_sizes ();
 
@@ -1134,95 +1137,95 @@ void Solid<dim>::system_setup (void)
     solution_n.collect_sizes ();
     solution_n.block(t_dof) = 1.0; // Dilatation is 1 in the initial configuration
 
-    // Set up the quadrature point history
+                                    // Set up the quadrature point history
     setup_qph ();
 
     timer.leave_subsection();
-}
+  }
 
 // A way to extract subblocks from the matrix
-template <int dim>
-void Solid<dim>::determine_component_extractors(void)
-{
+  template <int dim>
+  void Solid<dim>::determine_component_extractors(void)
+  {
     element_indices_u.clear();
     element_indices_p.clear();
     element_indices_t.clear();
 
     for (unsigned int k=0; k < fe.dofs_per_cell; ++k) {
-       // 0 = u, 1 = p, 2 = dilatation interpolation fields
-       const unsigned int k_group = fe.system_to_base_index(k).first.first;
-       if (k_group == u_dof) {
-           element_indices_u.push_back(k);
-       }
-       else if (k_group == p_dof) {
-           element_indices_p.push_back(k);
-       }
-       else if (k_group == t_dof) {
-           element_indices_t.push_back(k);
-       }
-       else {
-           Assert (k_group <= t_dof, ExcInternalError());
-       }
+                                      // 0 = u, 1 = p, 2 = dilatation interpolation fields
+      const unsigned int k_group = fe.system_to_base_index(k).first.first;
+      if (k_group == u_dof) {
+       element_indices_u.push_back(k);
+      }
+      else if (k_group == p_dof) {
+       element_indices_p.push_back(k);
+      }
+      else if (k_group == t_dof) {
+       element_indices_t.push_back(k);
+      }
+      else {
+       Assert (k_group <= t_dof, ExcInternalError());
+      }
     }
-}
+  }
 
 // @sect4{Solid::setup_qph}
-template <int dim>
-void Solid<dim>::setup_qph (void)
-{
+  template <int dim>
+  void Solid<dim>::setup_qph (void)
+  {
     std::cout << "    Setting up quadrature point data..." << std::endl;
 
     {
-       typename Triangulation<dim>::active_cell_iterator
-               cell = triangulation.begin_active(),
-               endc = triangulation.end();
-
-       unsigned int our_cells = 0;
-       for (; cell != endc; ++cell) {
-           cell->clear_user_pointer();
-           ++our_cells;
-       }
-
-       {
-           std::vector<PointHistory <dim> > tmp;
-           tmp.swap(quadrature_point_history);
-       }
-
-       quadrature_point_history.resize(our_cells * n_q_points);
-
-       unsigned int history_index = 0;
-       for (cell = triangulation.begin_active(); cell != endc; ++cell) {
-           cell->set_user_pointer(&quadrature_point_history[history_index]);
-           history_index += n_q_points;
-       }
-
-       Assert(history_index == quadrature_point_history.size(), ExcInternalError());
+      typename Triangulation<dim>::active_cell_iterator
+       cell = triangulation.begin_active(),
+       endc = triangulation.end();
+
+      unsigned int our_cells = 0;
+      for (; cell != endc; ++cell) {
+       cell->clear_user_pointer();
+       ++our_cells;
+      }
+
+      {
+       std::vector<PointHistory <dim> > tmp;
+       tmp.swap(quadrature_point_history);
+      }
+
+      quadrature_point_history.resize(our_cells * n_q_points);
+
+      unsigned int history_index = 0;
+      for (cell = triangulation.begin_active(); cell != endc; ++cell) {
+       cell->set_user_pointer(&quadrature_point_history[history_index]);
+       history_index += n_q_points;
+      }
+
+      Assert(history_index == quadrature_point_history.size(), ExcInternalError());
     }
 
-    // Setup initial data
+                                    // Setup initial data
     typename DoFHandler<dim>::active_cell_iterator
-           cell = dof_handler_ref.begin_active(),
-           endc = dof_handler_ref.end();
+      cell = dof_handler_ref.begin_active(),
+      endc = dof_handler_ref.end();
     for (; cell != endc; ++cell) {
-       PointHistory<dim>* lqph = reinterpret_cast<PointHistory<dim>*> (cell->user_pointer());
-       Assert(lqph >= &quadrature_point_history.front(), ExcInternalError());
-       Assert(lqph < &quadrature_point_history.back(), ExcInternalError());
-
-       // Setup any initial information at displacement gauss points
-       for (unsigned int q_point = 0; q_point < n_q_points; ++q_point) {
-           lqph[q_point].setup_lqp( parameters );
-       }
+      PointHistory<dim>* lqph = reinterpret_cast<PointHistory<dim>*> (cell->user_pointer());
+      Assert(lqph >= &quadrature_point_history.front(), ExcInternalError());
+      Assert(lqph < &quadrature_point_history.back(), ExcInternalError());
+
+                                      // Setup any initial information at displacement gauss points
+      for (unsigned int q_point = 0; q_point < n_q_points; ++q_point) {
+       lqph[q_point].setup_lqp( parameters );
+      }
     }
-}
+  }
 
 // @sect4{Solid::update_qph_incremental}
-template <int dim>
-void Solid<dim>::update_qph_incremental (const BlockVector <double> & solution_delta)
-{
+  template <int dim>
+  void Solid<dim>::update_qph_incremental (const BlockVector <double> & solution_delta)
+  {
     timer.enter_subsection("Update QPH data");
     std::cout << "Update QPH data..."<< std::endl;
 
-    // Get total solution as it stands at this update increment
+                                    // Get total solution as it stands at this update increment
     const BlockVector <double> solution_total = get_solution_total(solution_delta);
     const UpdateFlags uf_UQPH ( update_values | update_gradients );
     PerTaskData_UQPH per_task_data_UQPH;
@@ -1232,21 +1235,21 @@ void Solid<dim>::update_qph_incremental (const BlockVector <double> & solution_d
                                        solution_total);
 
     WorkStream::run (  dof_handler_ref.begin_active(),
-                    dof_handler_ref.end(),
-                    *this,
-                    &Solid::update_qph_incremental_one_cell,
-                    &Solid::copy_local_to_global_UQPH,
-                    scratch_data_UQPH,
-                    per_task_data_UQPH);
+                      dof_handler_ref.end(),
+                      *this,
+                      &Solid::update_qph_incremental_one_cell,
+                      &Solid::copy_local_to_global_UQPH,
+                      scratch_data_UQPH,
+                      per_task_data_UQPH);
 
     timer.leave_subsection();
-}
+  }
 
-template <int dim>
-void Solid<dim>::update_qph_incremental_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
-                                                 ScratchData_UQPH & scratch,
-                                                 PerTaskData_UQPH & data)
-{
+  template <int dim>
+  void Solid<dim>::update_qph_incremental_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
+                                                   ScratchData_UQPH & scratch,
+                                                   PerTaskData_UQPH & data)
+  {
     PointHistory<dim>* lqph = reinterpret_cast<PointHistory<dim>*> (cell->user_pointer());
     Assert(lqph >= &quadrature_point_history.front(), ExcInternalError());
     Assert(lqph < &quadrature_point_history.back(), ExcInternalError());
@@ -1255,35 +1258,35 @@ void Solid<dim>::update_qph_incremental_one_cell (const typename DoFHandler<dim>
     Assert(scratch.solution_values_p_total.size() == n_q_points, ExcInternalError());
     Assert(scratch.solution_values_t_total.size() == n_q_points, ExcInternalError());
 
-    // Find the values and gradients at quadrature points inside the current cell
+                                    // Find the values and gradients at quadrature points inside the current cell
     scratch.fe_values_ref.reinit(cell);
     scratch.fe_values_ref[u_fe].get_function_gradients (scratch.solution_total, scratch.solution_grads_u_total);
     scratch.fe_values_ref[p_fe].get_function_values (scratch.solution_total, scratch.solution_values_p_total);
     scratch.fe_values_ref[t_fe].get_function_values (scratch.solution_total,scratch. solution_values_t_total);
 
-    // === UPDATE DATA AT EACH GAUSS POINT ===
-    // Update displacement and deformation gradient at all quadrature points
+                                    // === UPDATE DATA AT EACH GAUSS POINT ===
+                                    // Update displacement and deformation gradient at all quadrature points
     for (unsigned int q_point = 0; q_point < n_q_points; ++q_point) {
-       lqph[q_point].update_values (scratch.solution_grads_u_total [q_point],
-                                    scratch.solution_values_p_total[q_point],
-                                    scratch.solution_values_t_total[q_point]);
+      lqph[q_point].update_values (scratch.solution_grads_u_total [q_point],
+                                  scratch.solution_values_p_total[q_point],
+                                  scratch.solution_values_t_total[q_point]);
     }
-}
+  }
 
 // @sect4{Solid::solve_nonlinear_timestep}
-template <int dim>
-void Solid<dim>::solve_nonlinear_timestep (BlockVector <double> & solution_delta)
-{
-    //    timer.enter_subsection("Nonlinear solver");
+  template <int dim>
+  void Solid<dim>::solve_nonlinear_timestep (BlockVector <double> & solution_delta)
+  {
+                                    //    timer.enter_subsection("Nonlinear solver");
     std::cout
-           << "Timestep " << time.get_timestep()
-           << std::endl;
+      << "Timestep " << time.get_timestep()
+      << std::endl;
 
-    // Newton update vector
+                                    // Newton update vector
     BlockVector <double> newton_update (dofs_per_block);
     newton_update.collect_sizes ();
 
-    // Solution error vectors
+                                    // Solution error vectors
     BlockVector <double> soln_error_res (dofs_per_block); // Holds the true residual vector
     BlockVector <double> soln_error_update (dofs_per_block); // Holds the update error vector
     soln_error_res.collect_sizes ();
@@ -1292,73 +1295,73 @@ void Solid<dim>::solve_nonlinear_timestep (BlockVector <double> & solution_delta
     double res_u = 0.0, res_f = 0.0;
     double res_u_0 = 1.0, res_f_0 = 1.0;
     for (unsigned int it_nr=0; it_nr < parameters.max_iterations_NR; ++ it_nr)
-    {
+      {
        std::cout
-               << std::endl
-               << "Newton iteration: " << it_nr
-               << std::endl;
+         << std::endl
+         << "Newton iteration: " << it_nr
+         << std::endl;
 
        tangent_matrix = 0.0;
        residual = 0.0;
 
-       // Check residual
+                                        // Check residual
        make_constraints (it_nr, constraints); // Make boundary conditions
        assemble_system_F (); // Assemble RHS
        get_error_res(residual, soln_error_res);
-       // Residual scaling factors
+                                        // Residual scaling factors
        res_f = soln_error_res.block(u_dof).l2_norm();
        if (it_nr == 0) res_f_0 = res_f;
 
-       // Check for solution convergence
+                                        // Check for solution convergence
        if (   it_nr > 0
-               && res_u/res_u_0 <= parameters.tol_u
-               && res_f/res_f_0 <= parameters.tol_f)
-       {
+              && res_u/res_u_0 <= parameters.tol_u
+              && res_f/res_f_0 <= parameters.tol_f)
+         {
            std::cout
-                   << std::endl
-                   << "Solution for timestep " << time.get_timestep()
-                   << " converged on Newton iteration " << it_nr-1 << "."
-                   << std::endl
-                   << "Relative displacement error: " << res_u/res_u_0
-                   << "\t Relative force error: " << res_f/res_f_0
-                   << "\t Dilatation error: " << get_error_dil()
-                   << std::endl << std::endl;
-
-           //      timer.leave_subsection();
+             << std::endl
+             << "Solution for timestep " << time.get_timestep()
+             << " converged on Newton iteration " << it_nr-1 << "."
+             << std::endl
+             << "Relative displacement error: " << res_u/res_u_0
+             << "\t Relative force error: " << res_f/res_f_0
+             << "\t Dilatation error: " << get_error_dil()
+             << std::endl << std::endl;
+
+                                            //     timer.leave_subsection();
            return;
-       }
+         }
 
-       // No convergence -> continue with calculations
-       // Assemble stiffness matrix
+                                        // No convergence -> continue with calculations
+                                        // Assemble stiffness matrix
        assemble_system_K ();
 
-       // Do the static condensation to make K'_uu, and put K_pt^{-1}
-       // in the K_pt block and K_tt^{-1} in the K_pp block
+                                        // Do the static condensation to make K'_uu, and put K_pt^{-1}
+                                        // in the K_pt block and K_tt^{-1} in the K_pp block
         assemble_SC();
 
 
-        // Do the static condensation to make K'_uu, and put K_pt^{-1}
-        // in the K_pt block and K_tt^{-1} in the K_pp block
+                                        // Do the static condensation to make K'_uu, and put K_pt^{-1}
+                                        // in the K_pt block and K_tt^{-1} in the K_pp block
         assemble_SC();
 
        constraints.condense (tangent_matrix, residual); // Apply BC's
        solve_linear_system (newton_update);
        constraints.distribute(newton_update); // Populate the constrained DOF's with their values
 
-       // Newton update error
+                                        // Newton update error
        get_error_update(newton_update, soln_error_update);
        res_u = soln_error_update.block(u_dof).l2_norm();
 
-       // Residual scaling factors
+                                        // Residual scaling factors
        if (it_nr == 0) res_u_0 = res_u;
        std::cout
-               << "Nonlinear system error: "
-               << std::endl << std::scientific
-               << " Solution update \t ||dU||: " << soln_error_update.l2_norm()
-                << "\t ||dU_u||: " << soln_error_update.block(u_dof).l2_norm()
-                << "\t ||dU_p||: " << soln_error_update.block(p_dof).l2_norm()
-                << "\t ||dU_t||: " << soln_error_update.block(t_dof).l2_norm()
-               << std::endl;
+         << "Nonlinear system error: "
+         << std::endl << std::scientific
+         << " Solution update \t ||dU||: " << soln_error_update.l2_norm()
+         << "\t ||dU_u||: " << soln_error_update.block(u_dof).l2_norm()
+         << "\t ||dU_p||: " << soln_error_update.block(p_dof).l2_norm()
+         << "\t ||dU_t||: " << soln_error_update.block(t_dof).l2_norm()
+         << std::endl;
        std::cout << std::scientific
                  << " Residual     \t ||dF||: " << soln_error_res.l2_norm()
                  << "\t ||dR_u||: " << soln_error_res.block(u_dof).l2_norm()
@@ -1371,70 +1374,70 @@ void Solid<dim>::solve_nonlinear_timestep (BlockVector <double> & solution_delta
                  << "\t Dilatation error: " << get_error_dil()
                  << std::endl;
 
-       // Update and continue iterating
+                                        // Update and continue iterating
        solution_delta += newton_update; // Update current solution
        update_qph_incremental (solution_delta); // Update quadrature point information
-    }
+      }
 
     throw(ExcMessage("No convergence in nonlinear solver!"));
-}
+  }
 
-template <int dim>
-void Solid<dim>::get_error_res (const BlockVector <double> & residual, BlockVector <double> & error_res)
-{
+  template <int dim>
+  void Solid<dim>::get_error_res (const BlockVector <double> & residual, BlockVector <double> & error_res)
+  {
     for (unsigned int i=0; i < dof_handler_ref.n_dofs(); ++i)
-       if (!constraints.is_constrained(i))
-           error_res(i) = residual(i);
-}
+      if (!constraints.is_constrained(i))
+       error_res(i) = residual(i);
+  }
 
-template <int dim>
-void Solid<dim>::get_error_update (const BlockVector <double> & newton_update, BlockVector <double> & error_update)
-{
+  template <int dim>
+  void Solid<dim>::get_error_update (const BlockVector <double> & newton_update, BlockVector <double> & error_update)
+  {
     for (unsigned int i=0; i < dof_handler_ref.n_dofs(); ++i)
-       if (!constraints.is_constrained(i))
-           error_update(i) = newton_update(i);
-}
+      if (!constraints.is_constrained(i))
+       error_update(i) = newton_update(i);
+  }
 
-template <int dim>
-double Solid<dim>::get_error_dil (void)
-{
+  template <int dim>
+  double Solid<dim>::get_error_dil (void)
+  {
     double v_e = 0.0; // Volume in current configuration
     double V_e = 0.0; // Volume in reference configuration
 
     FEValues<dim> fe_values_ref (fe, qf_cell, update_JxW_values);
 
     typename DoFHandler<dim>::active_cell_iterator
-            cell = dof_handler_ref.begin_active(),
-            endc = dof_handler_ref.end();
+      cell = dof_handler_ref.begin_active(),
+      endc = dof_handler_ref.end();
     for (; cell != endc; ++cell) {
-        fe_values_ref.reinit (cell);
-        PointHistory<dim>* lqph = reinterpret_cast<PointHistory<dim>*> (cell->user_pointer());
-       Assert(lqph >= &quadrature_point_history.front(), ExcInternalError());
-       Assert(lqph < &quadrature_point_history.back(), ExcInternalError());
-
-        for (unsigned int q_point=0; q_point < n_q_points; ++q_point) {
-            v_e += lqph[q_point].get_dilatation() * fe_values_ref.JxW(q_point);
-            V_e += fe_values_ref.JxW(q_point);
-        }
+      fe_values_ref.reinit (cell);
+      PointHistory<dim>* lqph = reinterpret_cast<PointHistory<dim>*> (cell->user_pointer());
+      Assert(lqph >= &quadrature_point_history.front(), ExcInternalError());
+      Assert(lqph < &quadrature_point_history.back(), ExcInternalError());
+
+      for (unsigned int q_point=0; q_point < n_q_points; ++q_point) {
+       v_e += lqph[q_point].get_dilatation() * fe_values_ref.JxW(q_point);
+       V_e += fe_values_ref.JxW(q_point);
+      }
     }
 
     return std::abs((v_e - V_e)/V_e); // Difference between initial and current volume
-}
+  }
 
 // Solution (valid at any Newton step)
-template <int dim>
-BlockVector <double> Solid<dim>::get_solution_total (const BlockVector <double> & solution_delta)
-{
+  template <int dim>
+  BlockVector <double> Solid<dim>::get_solution_total (const BlockVector <double> & solution_delta)
+  {
     BlockVector <double> solution_total (solution_n);
     solution_total += solution_delta;
 
     return solution_total;
-}
+  }
 
 // @sect4{Solid::solve_linear_system}
-template <int dim>
-void Solid<dim>::solve_linear_system (BlockVector <double> & newton_update)
-{
+  template <int dim>
+  void Solid<dim>::solve_linear_system (BlockVector <double> & newton_update)
+  {
     std::cout << "Solve linear system..." << std::endl;
 
     BlockVector <double> A (dofs_per_block);
@@ -1442,83 +1445,83 @@ void Solid<dim>::solve_linear_system (BlockVector <double> & newton_update)
     A.collect_sizes ();
     B.collect_sizes ();
 
-    //      | K'_uu |   K_up    |     0     |         | dU_u |         | dR_u |
-    // K =  | K_pu  |   K_tt^-1 |   K_pt^-1 | , dU =  | dU_p | , dR =  | dR_p |
-    //      |   0   |   K_tp    |   K_tt    |         | dU_t |         | dR_t |
+                                    //      | K'_uu |   K_up    |     0     |         | dU_u |         | dR_u |
+                                    // K =  | K_pu  |   K_tt^-1 |   K_pt^-1 | , dU =  | dU_p | , dR =  | dR_p |
+                                    //      |   0   |   K_tp    |   K_tt    |         | dU_t |         | dR_t |
 
-    // Solve for du
+                                    // Solve for du
     {
 
-       // K'uu du = Ru âˆ’ Kup Ktp^-1 (Rt âˆ’ Ktt Kpt^{-1} Rp)
-       tangent_matrix.block(p_dof, t_dof).vmult(A.block(t_dof), residual.block(p_dof));
-       tangent_matrix.block(t_dof, t_dof).vmult (B.block(t_dof), A.block(t_dof));
-       A.block(t_dof).equ(1.0, residual.block(t_dof), -1.0, B.block(t_dof));
-       tangent_matrix.block(p_dof, t_dof).Tvmult(A.block(p_dof), A.block(t_dof));
-       tangent_matrix.block(u_dof, p_dof).vmult(A.block(u_dof), A.block(p_dof));
-       residual.block(u_dof) -= A.block(u_dof);
+                                      // K'uu du = Ru âˆ’ Kup Ktp^-1 (Rt âˆ’ Ktt Kpt^{-1} Rp)
+      tangent_matrix.block(p_dof, t_dof).vmult(A.block(t_dof), residual.block(p_dof));
+      tangent_matrix.block(t_dof, t_dof).vmult (B.block(t_dof), A.block(t_dof));
+      A.block(t_dof).equ(1.0, residual.block(t_dof), -1.0, B.block(t_dof));
+      tangent_matrix.block(p_dof, t_dof).Tvmult(A.block(p_dof), A.block(t_dof));
+      tangent_matrix.block(u_dof, p_dof).vmult(A.block(u_dof), A.block(p_dof));
+      residual.block(u_dof) -= A.block(u_dof);
 
-       timer.enter_subsection("Linear solver");
-       if (parameters.type_lin == "CG")
+      timer.enter_subsection("Linear solver");
+      if (parameters.type_lin == "CG")
        {
-           const int solver_its = tangent_matrix.block(u_dof, u_dof).m() * parameters.max_iterations_lin;
-           const double tol_sol = parameters.tol_lin * residual.block(u_dof).l2_norm();
+         const int solver_its = tangent_matrix.block(u_dof, u_dof).m() * parameters.max_iterations_lin;
+         const double tol_sol = parameters.tol_lin * residual.block(u_dof).l2_norm();
 
-           SolverControl solver_control (solver_its , tol_sol);
+         SolverControl solver_control (solver_its , tol_sol);
 
-           GrowingVectorMemory < Vector<double> > GVM;
-           SolverCG < Vector<double> >  solver_CG (solver_control, GVM);
+         GrowingVectorMemory < Vector<double> > GVM;
+         SolverCG < Vector<double> >  solver_CG (solver_control, GVM);
 
-           // SSOR -> much better than Jacobi for symmetric systems
-           PreconditionSSOR <SparseMatrix<double> > preconditioner;
-           preconditioner.initialize (tangent_matrix.block(u_dof, u_dof), parameters.ssor_relaxation);
+                                          // SSOR -> much better than Jacobi for symmetric systems
+         PreconditionSSOR <SparseMatrix<double> > preconditioner;
+         preconditioner.initialize (tangent_matrix.block(u_dof, u_dof), parameters.ssor_relaxation);
 
-           solver_CG.solve (tangent_matrix.block(u_dof, u_dof),
-                            newton_update.block(u_dof),
-                            residual.block(u_dof),
-                            preconditioner);
+         solver_CG.solve (tangent_matrix.block(u_dof, u_dof),
+                          newton_update.block(u_dof),
+                          residual.block(u_dof),
+                          preconditioner);
 
-           std::cout
-                   << "\t Iterations: " << solver_control.last_step()
-                   << "\n\t Residual: " << solver_control.last_value()
-                   << std::endl;
+         std::cout
+           << "\t Iterations: " << solver_control.last_step()
+           << "\n\t Residual: " << solver_control.last_value()
+           << std::endl;
        }
-       else if (parameters.type_lin == "Direct")
+      else if (parameters.type_lin == "Direct")
        {
-           SparseDirectUMFPACK  A_direct;
-           A_direct.initialize(tangent_matrix.block(u_dof, u_dof));
-           A_direct.vmult (newton_update.block(u_dof),
-                           residual.block(u_dof));
+         SparseDirectUMFPACK  A_direct;
+         A_direct.initialize(tangent_matrix.block(u_dof, u_dof));
+         A_direct.vmult (newton_update.block(u_dof),
+                         residual.block(u_dof));
        }
-       else throw (ExcMessage("Linear solver type not implemented"));
-       timer.leave_subsection();
+      else throw (ExcMessage("Linear solver type not implemented"));
+      timer.leave_subsection();
     }
 
     timer.enter_subsection("Linear solver postprocessing");
-    // Postprocess for dp
+                                    // Postprocess for dp
     {
-       // dp = Ktp^{-1} ( Rt âˆ’ Ktt Kpt^{-1} (Rp âˆ’ Kpu du) )
-       tangent_matrix.block(p_dof, u_dof).vmult (A.block(p_dof), newton_update.block(u_dof));
-       B.block(p_dof).equ(1.0, residual.block(p_dof), -1.0, A.block(p_dof));
-       tangent_matrix.block(p_dof, t_dof).vmult(A.block(t_dof), B.block(p_dof));
-       tangent_matrix.block(t_dof, t_dof).vmult(B.block(t_dof), A.block(t_dof));
-       A.block(t_dof).equ (1.0, residual.block(t_dof), -1.0, B.block(t_dof));
-       tangent_matrix.block(p_dof, t_dof).Tvmult (newton_update.block(p_dof), A.block(t_dof));
+                                      // dp = Ktp^{-1} ( Rt âˆ’ Ktt Kpt^{-1} (Rp âˆ’ Kpu du) )
+      tangent_matrix.block(p_dof, u_dof).vmult (A.block(p_dof), newton_update.block(u_dof));
+      B.block(p_dof).equ(1.0, residual.block(p_dof), -1.0, A.block(p_dof));
+      tangent_matrix.block(p_dof, t_dof).vmult(A.block(t_dof), B.block(p_dof));
+      tangent_matrix.block(t_dof, t_dof).vmult(B.block(t_dof), A.block(t_dof));
+      A.block(t_dof).equ (1.0, residual.block(t_dof), -1.0, B.block(t_dof));
+      tangent_matrix.block(p_dof, t_dof).Tvmult (newton_update.block(p_dof), A.block(t_dof));
     }
 
-    // Postprocess for dt
+                                    // Postprocess for dt
     {
-       // dt = Ktt^{-1} (Rt âˆ’ Ktp dp)
-       tangent_matrix.block(t_dof, p_dof).vmult (A.block(t_dof), newton_update.block(p_dof));
-       residual.block(t_dof) -= A.block(t_dof);
-       tangent_matrix.block(p_dof, p_dof).vmult (newton_update.block(t_dof), residual.block(t_dof));
+                                      // dt = Ktt^{-1} (Rt âˆ’ Ktp dp)
+      tangent_matrix.block(t_dof, p_dof).vmult (A.block(t_dof), newton_update.block(p_dof));
+      residual.block(t_dof) -= A.block(t_dof);
+      tangent_matrix.block(p_dof, p_dof).vmult (newton_update.block(t_dof), residual.block(t_dof));
     }
     timer.leave_subsection();
-}
+  }
 
 // @sect4{Solid::assemble_system_K}
-template <int dim>
-void Solid<dim>::assemble_system_K (void)
-{
+  template <int dim>
+  void Solid<dim>::assemble_system_K (void)
+  {
     timer.enter_subsection("Assemble system matrix");
     std::cout << "Assemble system matrix..."<< std::endl;
 
@@ -1530,124 +1533,124 @@ void Solid<dim>::assemble_system_K (void)
     ScratchData_K scratch_data (fe, qf_cell, uf_cell);
 
     WorkStream::run (  dof_handler_ref.begin_active(),
-                    dof_handler_ref.end(),
-                    *this,
-                    &Solid::assemble_system_K_one_cell,
-                    &Solid::copy_local_to_global_K,
-                    scratch_data,
-                    per_task_data);
+                      dof_handler_ref.end(),
+                      *this,
+                      &Solid::assemble_system_K_one_cell,
+                      &Solid::copy_local_to_global_K,
+                      scratch_data,
+                      per_task_data);
 
     timer.leave_subsection();
-}
+  }
 
-template <int dim>
-void Solid<dim>::copy_local_to_global_K (const PerTaskData_K & data)
-{
-    // Add the local contribution to the system matrix
+  template <int dim>
+  void Solid<dim>::copy_local_to_global_K (const PerTaskData_K & data)
+  {
+                                    // Add the local contribution to the system matrix
     for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-           tangent_matrix.add (data.local_dof_indices[i],
-                               data.local_dof_indices[j],
-                               data.cell_matrix(i,j));
-}
-
-template <int dim>
-void Solid<dim>::assemble_system_K_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
-                                            ScratchData_K & scratch,
-                                            PerTaskData_K & data)
-{
+      for (unsigned int j=0; j<dofs_per_cell; ++j)
+       tangent_matrix.add (data.local_dof_indices[i],
+                           data.local_dof_indices[j],
+                           data.cell_matrix(i,j));
+  }
+
+  template <int dim>
+  void Solid<dim>::assemble_system_K_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
+                                              ScratchData_K & scratch,
+                                              PerTaskData_K & data)
+  {
     data.reset(); // Reset data in the PerTaskData_K storage unit
     scratch.reset(); // Reset data in the Scratch storage unit
     scratch.fe_values_ref.reinit (cell);
     cell->get_dof_indices (data.local_dof_indices); // Find out which global numbers the degrees of freedom on this cell have
     PointHistory<dim> *lqph = reinterpret_cast<PointHistory<dim>*>(cell->user_pointer());
 
-    // Set up cell shape function gradients
+                                    // Set up cell shape function gradients
     static const SymmetricTensor<2, dim> I = unit_symmetric_tensor <dim> ();
     for (unsigned int q_point=0; q_point < n_q_points; ++q_point) {
-       const Tensor<2, dim> F_inv = lqph[q_point].get_F_inv();
+      const Tensor<2, dim> F_inv = lqph[q_point].get_F_inv();
 
-       for (unsigned int k=0; k< dofs_per_cell; ++k) {
-           const unsigned int k_group = fe.system_to_base_index(k).first.first;
+      for (unsigned int k=0; k< dofs_per_cell; ++k) {
+       const unsigned int k_group = fe.system_to_base_index(k).first.first;
 
-           if (k_group == u_dof) {
-               scratch.grad_Nx[q_point][k] = scratch.fe_values_ref[u_fe].gradient(k, q_point) * F_inv;
-               scratch.symm_grad_Nx[q_point][k] = symmetrize(scratch.grad_Nx[q_point][k]);
-           }
-           else if (k_group == p_dof) {
-               scratch.Nx[q_point][k] = scratch.fe_values_ref[p_fe].value(k, q_point);
-           }
-           else if (k_group == t_dof) {
-               scratch.Nx[q_point][k] = scratch.fe_values_ref[t_fe].value(k, q_point);
-           }
-           else {
-               Assert (k_group <= t_dof, ExcInternalError());
-           }
+       if (k_group == u_dof) {
+         scratch.grad_Nx[q_point][k] = scratch.fe_values_ref[u_fe].gradient(k, q_point) * F_inv;
+         scratch.symm_grad_Nx[q_point][k] = symmetrize(scratch.grad_Nx[q_point][k]);
+       }
+       else if (k_group == p_dof) {
+         scratch.Nx[q_point][k] = scratch.fe_values_ref[p_fe].value(k, q_point);
+       }
+       else if (k_group == t_dof) {
+         scratch.Nx[q_point][k] = scratch.fe_values_ref[t_fe].value(k, q_point);
        }
+       else {
+         Assert (k_group <= t_dof, ExcInternalError());
+       }
+      }
     }
 
-    // Build cell stiffness matrix
-    // Global and local system matrices are symmetric
-    //  => Take advantage of this:  Build only the lower half of the local matrix
-    // Only assemble 1/2 of the K_uu, K_pp = 0, K_tt blocks and the whole K_pt, K_ut, K_up blocks
+                                    // Build cell stiffness matrix
+                                    // Global and local system matrices are symmetric
+                                    //  => Take advantage of this:  Build only the lower half of the local matrix
+                                    // Only assemble 1/2 of the K_uu, K_pp = 0, K_tt blocks and the whole K_pt, K_ut, K_up blocks
     for (unsigned int q_point=0; q_point < n_q_points; ++q_point) {
-       const Tensor <2,dim>          T   = static_cast < Tensor<2, dim> > (lqph[q_point].get_T_iso() + lqph[q_point].get_T_vol());
-       const SymmetricTensor <4,dim> C   = lqph[q_point].get_C_iso() + lqph[q_point].get_C_vol();
-       const double                  C_v = lqph[q_point].get_d2U_dtheta2();
-       const double                  J   = lqph[q_point].get_J();
-
-       const std::vector<double> & N = scratch.Nx[q_point];
-       const std::vector< SymmetricTensor <2,dim> > & symm_B = scratch.symm_grad_Nx[q_point];
-       const std::vector< Tensor <2,dim> > & B = scratch.grad_Nx[q_point];
-       const double & JxW = scratch.fe_values_ref.JxW(q_point);
-
-       for (unsigned int i=0; i < dofs_per_cell; ++i) {
-
-           const unsigned int component_i = fe.system_to_component_index(i).first;
-           const unsigned int i_group = fe.system_to_base_index(i).first.first;
-
-           // Only assemble the lower diagonal part of the local matrix
-           for (unsigned int j=0; j <= i; ++j) {
-
-               const unsigned int component_j = fe.system_to_component_index(j).first;
-               const unsigned int j_group = fe.system_to_base_index(j).first.first;
-
-               if (   (i_group == j_group) && (i_group == u_dof ) ) {
-                   data.cell_matrix(i,j)
-                           += ( symm_B[i] * C * symm_B[j]   // Material stiffness
-                               +  ( component_i == component_j ?
-                                       B[i][component_i] * T * B[j][component_j]  :
-                                       0.0 ) // Geometric stiffness. Only add this along local diagonals
-                               ) * JxW;  // K_uu
-               }
-               else if ( (i_group == p_dof) && (j_group == u_dof) ) {
-                   data.cell_matrix(i,j) += N[i]*J*(symm_B[j]*I)*JxW; // K_pu
-               }
-               else if ( (i_group == t_dof) && (j_group == p_dof) ) {
-                   data.cell_matrix(i,j) -= N[i]*N[j]*JxW; // K_tp
-               }
-               else if ( (i_group == j_group) && (i_group == t_dof)  ) {
-                   data.cell_matrix(i,j) +=  N[i]*C_v*N[j]*JxW; // K_tt
-               }
-               else Assert ((i_group <= t_dof) && (j_group <= t_dof), ExcInternalError());
-           } // END j LOOP
-       } // END i LOOP
+      const Tensor <2,dim>          T   = static_cast < Tensor<2, dim> > (lqph[q_point].get_T_iso() + lqph[q_point].get_T_vol());
+      const SymmetricTensor <4,dim> C   = lqph[q_point].get_C_iso() + lqph[q_point].get_C_vol();
+      const double                  C_v = lqph[q_point].get_d2U_dtheta2();
+      const double                  J   = lqph[q_point].get_J();
+
+      const std::vector<double> & N = scratch.Nx[q_point];
+      const std::vector< SymmetricTensor <2,dim> > & symm_B = scratch.symm_grad_Nx[q_point];
+      const std::vector< Tensor <2,dim> > & B = scratch.grad_Nx[q_point];
+      const double & JxW = scratch.fe_values_ref.JxW(q_point);
+
+      for (unsigned int i=0; i < dofs_per_cell; ++i) {
+
+       const unsigned int component_i = fe.system_to_component_index(i).first;
+       const unsigned int i_group = fe.system_to_base_index(i).first.first;
+
+                                        // Only assemble the lower diagonal part of the local matrix
+       for (unsigned int j=0; j <= i; ++j) {
+
+         const unsigned int component_j = fe.system_to_component_index(j).first;
+         const unsigned int j_group = fe.system_to_base_index(j).first.first;
+
+         if (   (i_group == j_group) && (i_group == u_dof ) ) {
+           data.cell_matrix(i,j)
+             += ( symm_B[i] * C * symm_B[j]   // Material stiffness
+                  +  ( component_i == component_j ?
+                       B[i][component_i] * T * B[j][component_j]  :
+                       0.0 ) // Geometric stiffness. Only add this along local diagonals
+             ) * JxW;  // K_uu
+         }
+         else if ( (i_group == p_dof) && (j_group == u_dof) ) {
+           data.cell_matrix(i,j) += N[i]*J*(symm_B[j]*I)*JxW; // K_pu
+         }
+         else if ( (i_group == t_dof) && (j_group == p_dof) ) {
+           data.cell_matrix(i,j) -= N[i]*N[j]*JxW; // K_tp
+         }
+         else if ( (i_group == j_group) && (i_group == t_dof)  ) {
+           data.cell_matrix(i,j) +=  N[i]*C_v*N[j]*JxW; // K_tt
+         }
+         else Assert ((i_group <= t_dof) && (j_group <= t_dof), ExcInternalError());
+       } // END j LOOP
+      } // END i LOOP
 
     } // END q_point LOOP
 
-    // Global and local system matrices are symmetric
-    // => Copy the upper half of the local matrix in the bottom  half of the local matrix
+                                    // Global and local system matrices are symmetric
+                                    // => Copy the upper half of the local matrix in the bottom  half of the local matrix
     for (unsigned int i=0; i<dofs_per_cell; ++i) {
-       for (unsigned int j=i+1; j<dofs_per_cell; ++j) {
-           data.cell_matrix(i,j) = data.cell_matrix(j,i);
-       }
+      for (unsigned int j=i+1; j<dofs_per_cell; ++j) {
+       data.cell_matrix(i,j) = data.cell_matrix(j,i);
+      }
     }
-}
+  }
 
 // @sect4{Solid::assemble_system_F}
-template <int dim>
-void Solid<dim>::assemble_system_F (void)
-{
+  template <int dim>
+  void Solid<dim>::assemble_system_F (void)
+  {
     timer.enter_subsection("Assemble system RHS");
     std::cout << "Assemble system RHS..."<< std::endl;
 
@@ -1664,132 +1667,132 @@ void Solid<dim>::assemble_system_F (void)
                                uf_face);
 
     WorkStream::run ( dof_handler_ref.begin_active(),
-                    dof_handler_ref.end(),
-                    *this,
-                    &Solid::assemble_system_F_one_cell,
-                    &Solid::copy_local_to_global_F,
-                    scratch_data,
-                    per_task_data );
+                     dof_handler_ref.end(),
+                     *this,
+                     &Solid::assemble_system_F_one_cell,
+                     &Solid::copy_local_to_global_F,
+                     scratch_data,
+                     per_task_data );
 
     timer.leave_subsection();
-}
+  }
 
-template <int dim>
-void Solid<dim>::copy_local_to_global_F (const PerTaskData_F & data)
-{
-    // Add the local contribution to the system RHS vector
+  template <int dim>
+  void Solid<dim>::copy_local_to_global_F (const PerTaskData_F & data)
+  {
+                                    // Add the local contribution to the system RHS vector
     for (unsigned int i=0; i<dofs_per_cell; ++i) {
-       residual(data.local_dof_indices[i]) += data.cell_rhs(i);
+      residual(data.local_dof_indices[i]) += data.cell_rhs(i);
     }
-}
+  }
 
-template <int dim>
-void Solid<dim>::assemble_system_F_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
-                                            ScratchData_F & scratch,
-                                            PerTaskData_F & data)
-{
+  template <int dim>
+  void Solid<dim>::assemble_system_F_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
+                                              ScratchData_F & scratch,
+                                              PerTaskData_F & data)
+  {
     data.reset(); // Reset data in the PerTaskData_K storage unit
     scratch.reset(); // Reset data in the ScratchData_F storage unit
     scratch.fe_values_ref.reinit (cell);
     cell->get_dof_indices (data.local_dof_indices); // Find out which global numbers the degrees of freedom on this cell have
     PointHistory<dim> *lqph = reinterpret_cast<PointHistory<dim>*>(cell->user_pointer());
 
-    // Precompute some data
+                                    // Precompute some data
     for (unsigned int q_point=0; q_point < n_q_points; ++q_point) {
-       const Tensor<2, dim> F_inv = lqph[q_point].get_F_inv();
+      const Tensor<2, dim> F_inv = lqph[q_point].get_F_inv();
 
-       for (unsigned int k=0; k<dofs_per_cell; ++k) {
-           const unsigned int k_group = fe.system_to_base_index(k).first.first;
+      for (unsigned int k=0; k<dofs_per_cell; ++k) {
+       const unsigned int k_group = fe.system_to_base_index(k).first.first;
 
-           if (k_group == u_dof) {
-               scratch.symm_grad_Nx[q_point][k] = symmetrize(scratch.fe_values_ref[u_fe].gradient(k, q_point) * F_inv);
-           }
-           else if (k_group == p_dof) {
-               scratch.Nx[q_point][k] = scratch.fe_values_ref[p_fe].value(k, q_point);
-           }
-           else if (k_group == t_dof) {
-               scratch.Nx[q_point][k] = scratch.fe_values_ref[t_fe].value(k, q_point);
-           }
-           else Assert (k_group <= t_dof, ExcInternalError());
+       if (k_group == u_dof) {
+         scratch.symm_grad_Nx[q_point][k] = symmetrize(scratch.fe_values_ref[u_fe].gradient(k, q_point) * F_inv);
        }
+       else if (k_group == p_dof) {
+         scratch.Nx[q_point][k] = scratch.fe_values_ref[p_fe].value(k, q_point);
+       }
+       else if (k_group == t_dof) {
+         scratch.Nx[q_point][k] = scratch.fe_values_ref[t_fe].value(k, q_point);
+       }
+       else Assert (k_group <= t_dof, ExcInternalError());
+      }
     }
 
-    // Assembly for residual contribution
+                                    // Assembly for residual contribution
     for (unsigned int q_point=0; q_point < n_q_points; ++q_point) {
-       const SymmetricTensor <2,dim>  T = lqph[q_point].get_T_iso() + lqph[q_point].get_T_vol();
-       const double  J = lqph[q_point].get_J();
-       const double  D = lqph[q_point].get_dilatation();
-       const double  p = lqph[q_point].get_pressure();
-       const double  p_star = lqph[q_point].get_dU_dtheta();
+      const SymmetricTensor <2,dim>  T = lqph[q_point].get_T_iso() + lqph[q_point].get_T_vol();
+      const double  J = lqph[q_point].get_J();
+      const double  D = lqph[q_point].get_dilatation();
+      const double  p = lqph[q_point].get_pressure();
+      const double  p_star = lqph[q_point].get_dU_dtheta();
 
-       const std::vector< double > & N = scratch.Nx[q_point];
-       const std::vector< SymmetricTensor <2,dim> > & symm_B = scratch.symm_grad_Nx[q_point];
-       const double  JxW = scratch.fe_values_ref.JxW(q_point);
+      const std::vector< double > & N = scratch.Nx[q_point];
+      const std::vector< SymmetricTensor <2,dim> > & symm_B = scratch.symm_grad_Nx[q_point];
+      const double  JxW = scratch.fe_values_ref.JxW(q_point);
 
-       for (unsigned int i=0; i<dofs_per_cell; ++i) {
-           const unsigned int i_group = fe.system_to_base_index(i).first.first;
+      for (unsigned int i=0; i<dofs_per_cell; ++i) {
+       const unsigned int i_group = fe.system_to_base_index(i).first.first;
 
-           if (i_group == u_dof) {
-               data.cell_rhs(i) -= ( symm_B[i]*T )*JxW; // R_u
-           }
-           else if (i_group == p_dof ) {
-               data.cell_rhs(i) -= N[i]*(J - D)*JxW; // R_p
-           }
-           else if ( i_group == t_dof) {
-               data.cell_rhs(i) -= N[i]*(p_star-p)*JxW; // R_t
-           }
-           else Assert (i_group <= t_dof, ExcInternalError());
-       } // END i LOOP
+       if (i_group == u_dof) {
+         data.cell_rhs(i) -= ( symm_B[i]*T )*JxW; // R_u
+       }
+       else if (i_group == p_dof ) {
+         data.cell_rhs(i) -= N[i]*(J - D)*JxW; // R_p
+       }
+       else if ( i_group == t_dof) {
+         data.cell_rhs(i) -= N[i]*(p_star-p)*JxW; // R_t
+       }
+       else Assert (i_group <= t_dof, ExcInternalError());
+      } // END i LOOP
     } // END q_point LOOP
 
-    // Assembly for Neumann RHS contribution
+                                    // Assembly for Neumann RHS contribution
     if (cell->at_boundary() == true)
-    {
+      {
        static const Tensor <2, dim> I = static_cast < Tensor <2, dim> > ( unit_symmetric_tensor <dim> () );
 
        for (unsigned int face=0; face < GeometryInfo<dim>::faces_per_cell; ++face)
-       {
+         {
            if (    cell->face(face)->at_boundary() == true
                    &&  cell->face(face)->boundary_indicator() == 6 )
-           {
+             {
                scratch.fe_face_values_ref.reinit (cell, face);
 
                for (unsigned int f_q_point=0; f_q_point < n_q_points_f; ++f_q_point)
-               {
+                 {
                    const Tensor <1, dim> & N = scratch.fe_face_values_ref.normal_vector(f_q_point);
 
-                   // Traction in reference configuration
-                   // t_0 = p*N
+                                                    // Traction in reference configuration
+                                                    // t_0 = p*N
                    static const double p0 = -4.0/(parameters.scale*parameters.scale); // Reference pressure of 4 Pa
                    const double time_ramp = (time.current() / time.end()); // Linearly ramp up the pressure with time
                    const double pressure = p0 * parameters.p_p0 * time_ramp;
                    const Tensor <1,dim> traction = pressure * N;
 
                    for (unsigned int i=0; i < dofs_per_cell; ++i) {
-                       // Determine the dimensional component that matches the dof component (i.e. i % dim)
-                       const unsigned int i_group = fe.system_to_base_index(i).first.first;
-
-                       if (i_group == u_dof) {
-                           const unsigned int component_i = fe.system_to_component_index(i).first;
-                           const double & Ni = scratch.fe_face_values_ref.shape_value(i,f_q_point);
-                           const double & JxW = scratch.fe_face_values_ref.JxW(f_q_point);
-
-                           // Add traction vector contribution to the local RHS vector (displacement dofs only)
-                           data.cell_rhs(i) += (Ni * traction[component_i])  // Contribution from external forces
-                                   * JxW;
-                       }
+                                                      // Determine the dimensional component that matches the dof component (i.e. i % dim)
+                     const unsigned int i_group = fe.system_to_base_index(i).first.first;
+
+                     if (i_group == u_dof) {
+                       const unsigned int component_i = fe.system_to_component_index(i).first;
+                       const double & Ni = scratch.fe_face_values_ref.shape_value(i,f_q_point);
+                       const double & JxW = scratch.fe_face_values_ref.JxW(f_q_point);
+
+                                                        // Add traction vector contribution to the local RHS vector (displacement dofs only)
+                       data.cell_rhs(i) += (Ni * traction[component_i])  // Contribution from external forces
+                                           * JxW;
+                     }
                    } // END i LOOP
-               } // END face q_point LOOP
-           } // END at boundary check LOOP
+                 } // END face q_point LOOP
+             } // END at boundary check LOOP
 
-       } // END face LOOP
-    }
-}
+         } // END face LOOP
+      }
+  }
 
 // @sect4{Solid::assemble_system_SC}
-template <int dim>
-void Solid<dim>::assemble_SC  (void)
-{
+  template <int dim>
+  void Solid<dim>::assemble_SC  (void)
+  {
     timer.enter_subsection("Perform static condensation");
 
     PerTaskData_SC per_task_data (dofs_per_cell,
@@ -1799,75 +1802,75 @@ void Solid<dim>::assemble_SC  (void)
     ScratchData_SC scratch_data;
 
     WorkStream::run (  dof_handler_ref.begin_active(),
-                    dof_handler_ref.end(),
-                    *this,
-                    &Solid::assemble_SC_one_cell,
-                    &Solid::copy_local_to_global_SC,
-                    scratch_data,
-                    per_task_data  );
+                      dof_handler_ref.end(),
+                      *this,
+                      &Solid::assemble_SC_one_cell,
+                      &Solid::copy_local_to_global_SC,
+                      scratch_data,
+                      per_task_data  );
 
     timer.leave_subsection();
-}
+  }
 
-template <int dim>
-void Solid<dim>::copy_local_to_global_SC (const PerTaskData_SC & data)
-{
-    // Add the local contribution to the system matrix
+  template <int dim>
+  void Solid<dim>::copy_local_to_global_SC (const PerTaskData_SC & data)
+  {
+                                    // Add the local contribution to the system matrix
     for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-           tangent_matrix.add (data.local_dof_indices[i],
-                               data.local_dof_indices[j],
-                               data.cell_matrix(i,j));
-}
-
-template <int dim>
-void Solid<dim>::assemble_SC_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
-                                      ScratchData_SC & scratch,
-                                      PerTaskData_SC & data)
-{
+      for (unsigned int j=0; j<dofs_per_cell; ++j)
+       tangent_matrix.add (data.local_dof_indices[i],
+                           data.local_dof_indices[j],
+                           data.cell_matrix(i,j));
+  }
+
+  template <int dim>
+  void Solid<dim>::assemble_SC_one_cell (const typename DoFHandler<dim>::active_cell_iterator & cell,
+                                        ScratchData_SC & scratch,
+                                        PerTaskData_SC & data)
+  {
     data.reset();
     scratch.reset();
     cell->get_dof_indices (data.local_dof_indices); // Find out which global numbers the degrees of freedom on this cell have
 
-    // The local stifness matrix K_e is:
-    //  | K_uu  |   K_up   |   0   |
-    //  | K_pu  |     0    |  K_pt |
-    //  |   0   |   K_tp   |  K_tt |
-    //
-    // We are going to exploit the zeros for post-processing as:
-    //  | K'_uu |   K_up    |     0     |
-    //  | K_pu  |   K_tt^-1 |   K_pt^-1 |
-    //  |   0   |   K_tp    |   K_tt    |
-    // with K'_uu = K_uu + Kup Ktp^{-1} Ktt Kpt^{-1} Kpu
-
-    // NOTE:
-    // GLOBAL Data already exists in the K_uu, K_pt, K_tp subblocks
-    //
-    // For the K_uu block in particular, this means that contributions have been
-    // added from the surrounding cells, so we need to be careful when we manipulate this block.
-    // We can't just erase the subblocks and
-    // Additionally the copy_local_to_global operation is a "+=" operation -> need to take this
-    // into account
-    //
-    // So the intermediate matrix that we need to get from what we have in K_uu and what we
-    // are actually wanting is:
-    //  | K'_uu - K_uu |     0    |        0        |
-    //  |       0      |  K_tt^-1 |  K_pt^-1 - K_pt |
-    //  |       0      |     0    |        0        |
-    //
-    // Strategy to get the subblocks we want:
-    // K'_uu: Since we don't have access to K_uu^h, but we know its contribution is added to the global
-    //        K_uu matrix, we just want to add the element wise static-condensation
-    //        K'_uu^h = K_uu^h + K_up^h K_tp^{-1}^h K_tt^h K_pt^{-1}^h K_pu^h
-    //        Since we already have K_uu^h in the system matrix, we just need to do the following
-    //        K'_uu^h == (K_uu^h += K_up^h K_tp^{-1}^h K_tt^h K_pt^{-1}^h K_pu^h)
-    // K_pt^-1: Similarly, K_pt exists in the subblock. Since the copy operation is a += operation, we need
-    //          to subtract the existing K_pt submatrix in addition to "adding" that which we wish to
-    //          replace it with.
-    // K_tp^-1: Same as above
-    // K_tt^-1: Nothing exists in the original K_pp subblock, so we can just add this contribution as is.
-
-    // Extract element data from the system matrix
+                                    // The local stifness matrix K_e is:
+                                    //  | K_uu  |   K_up   |   0   |
+                                    //  | K_pu  |     0    |  K_pt |
+                                    //  |   0   |   K_tp   |  K_tt |
+                                    //
+                                    // We are going to exploit the zeros for post-processing as:
+                                    //  | K'_uu |   K_up    |     0     |
+                                    //  | K_pu  |   K_tt^-1 |   K_pt^-1 |
+                                    //  |   0   |   K_tp    |   K_tt    |
+                                    // with K'_uu = K_uu + Kup Ktp^{-1} Ktt Kpt^{-1} Kpu
+
+                                    // NOTE:
+                                    // GLOBAL Data already exists in the K_uu, K_pt, K_tp subblocks
+                                    //
+                                    // For the K_uu block in particular, this means that contributions have been
+                                    // added from the surrounding cells, so we need to be careful when we manipulate this block.
+                                    // We can't just erase the subblocks and
+                                    // Additionally the copy_local_to_global operation is a "+=" operation -> need to take this
+                                    // into account
+                                    //
+                                    // So the intermediate matrix that we need to get from what we have in K_uu and what we
+                                    // are actually wanting is:
+                                    //  | K'_uu - K_uu |     0    |        0        |
+                                    //  |       0      |  K_tt^-1 |  K_pt^-1 - K_pt |
+                                    //  |       0      |     0    |        0        |
+                                    //
+                                    // Strategy to get the subblocks we want:
+                                    // K'_uu: Since we don't have access to K_uu^h, but we know its contribution is added to the global
+                                    //        K_uu matrix, we just want to add the element wise static-condensation
+                                    //        K'_uu^h = K_uu^h + K_up^h K_tp^{-1}^h K_tt^h K_pt^{-1}^h K_pu^h
+                                    //        Since we already have K_uu^h in the system matrix, we just need to do the following
+                                    //        K'_uu^h == (K_uu^h += K_up^h K_tp^{-1}^h K_tt^h K_pt^{-1}^h K_pu^h)
+                                    // K_pt^-1: Similarly, K_pt exists in the subblock. Since the copy operation is a += operation, we need
+                                    //          to subtract the existing K_pt submatrix in addition to "adding" that which we wish to
+                                    //          replace it with.
+                                    // K_tp^-1: Same as above
+                                    // K_tt^-1: Nothing exists in the original K_pp subblock, so we can just add this contribution as is.
+
+                                    // Extract element data from the system matrix
 
     AdditionalTools::extract_submatrix(data.local_dof_indices,
                                       data.local_dof_indices,
@@ -1886,7 +1889,7 @@ void Solid<dim>::assemble_SC_one_cell (const typename DoFHandler<dim>::active_ce
                                       data.K_orig,
                                       data.K_tt);
 
-    // Place K_pt^-1 in the K_pt block
+                                    // Place K_pt^-1 in the K_pt block
     data.K_pt_inv.invert(data.K_pt);
     data.K_pt_inv.add (-1.0, data.K_pt);
     AdditionalTools::replace_submatrix(element_indices_p,
@@ -1894,14 +1897,14 @@ void Solid<dim>::assemble_SC_one_cell (const typename DoFHandler<dim>::active_ce
                                       data.K_pt_inv,
                                       data.cell_matrix);
 
-    // Place K_tt^-1 in the K_pp block
+                                    // Place K_tt^-1 in the K_pp block
     data.K_tt_inv.invert(data.K_tt);
     AdditionalTools::replace_submatrix(element_indices_p,
                                       element_indices_p,
                                       data.K_tt_inv,
                                       data.cell_matrix);
 
-    // Make condensation terms to add to the K_uu block
+                                    // Make condensation terms to add to the K_uu block
     data.K_pt_inv.mmult(data.A, data.K_pu);
     data.K_tt.mmult(data.B, data.A);
     data.K_pt_inv.Tmmult(data.C, data.B); // Symmetric matrix
@@ -1910,97 +1913,97 @@ void Solid<dim>::assemble_SC_one_cell (const typename DoFHandler<dim>::active_ce
                                       element_indices_u,
                                       data.K_con,
                                       data.cell_matrix);
-}
+  }
 
 // @sect4{Solid::make_constraints}
-template <int dim>
-void Solid<dim>::make_constraints (const int & it_nr,
-                                  ConstraintMatrix & constraints)
-{
+  template <int dim>
+  void Solid<dim>::make_constraints (const int & it_nr,
+                                    ConstraintMatrix & constraints)
+  {
     std::cout << "Make constraints..."<< std::endl;
 
     constraints.clear();
     const bool apply_dirichlet_bc = (it_nr == 0);
 
-    // Boundary conditions:
-    // b_id 0: -x face: Zero x-component of displacement : Symmetry plane
-    // b_id 2: -y face: Zero y-component of displacement : Symmetry plane
-    // b_id 4: -z face: Zero z-component of displacement : Symmetry plane
+                                    // Boundary conditions:
+                                    // b_id 0: -x face: Zero x-component of displacement : Symmetry plane
+                                    // b_id 2: -y face: Zero y-component of displacement : Symmetry plane
+                                    // b_id 4: -z face: Zero z-component of displacement : Symmetry plane
 
-    // b_id 5: +z face: Zero x-component and Zero y-component
-    // b_id 6: Applied pressure face: Zero x-component and Zero y-component
-    // b_id 1: +x face: Traction free
-    // b_id 3: +y face: Traction free
+                                    // b_id 5: +z face: Zero x-component and Zero y-component
+                                    // b_id 6: Applied pressure face: Zero x-component and Zero y-component
+                                    // b_id 1: +x face: Traction free
+                                    // b_id 3: +y face: Traction free
     {
-       const int boundary_id = 0;
+      const int boundary_id = 0;
 
-       std::vector< bool > components (n_components, false);
-       components[0] = true;
+      std::vector< bool > components (n_components, false);
+      components[0] = true;
 
-       if (apply_dirichlet_bc == true) {
-           VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
-       }
-       else {
-           VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
-       }
+      if (apply_dirichlet_bc == true) {
+       VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
+      }
+      else {
+       VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
+      }
     }
     {
-       const int boundary_id = 2;
+      const int boundary_id = 2;
 
-       std::vector< bool > components (n_components, false);
-       components[1] = true;
+      std::vector< bool > components (n_components, false);
+      components[1] = true;
 
-       if (apply_dirichlet_bc == true) {
-           VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
-       }
-       else {
-           VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
-       }
+      if (apply_dirichlet_bc == true) {
+       VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
+      }
+      else {
+       VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
+      }
     }
     {
-       const int boundary_id = 4;
-       std::vector< bool > components (n_components, false);
-       components[2] = true;
-
-       if (apply_dirichlet_bc == true) {
-           VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
-       }
-       else {
-           VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
-       }
+      const int boundary_id = 4;
+      std::vector< bool > components (n_components, false);
+      components[2] = true;
+
+      if (apply_dirichlet_bc == true) {
+       VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
+      }
+      else {
+       VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
+      }
     }
     {
-       const int boundary_id = 5;
-       std::vector< bool > components (n_components, true);
-       components[2] = false;
-
-       if (apply_dirichlet_bc == true) {
-           VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
-       }
-       else {
-           VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
-       }
+      const int boundary_id = 5;
+      std::vector< bool > components (n_components, true);
+      components[2] = false;
+
+      if (apply_dirichlet_bc == true) {
+       VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
+      }
+      else {
+       VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
+      }
     }
     {
-       const int boundary_id = 6;
-       std::vector< bool > components (n_components, true);
-       components[2] = false;
-
-       if (apply_dirichlet_bc == true) {
-           VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
-       }
-       else {
-           VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
-       }
+      const int boundary_id = 6;
+      std::vector< bool > components (n_components, true);
+      components[2] = false;
+
+      if (apply_dirichlet_bc == true) {
+       VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
+      }
+      else {
+       VectorTools::interpolate_boundary_values ( dof_handler_ref, boundary_id, ZeroFunction<dim>(n_components), constraints, components );
+      }
     }
 
     constraints.close();
-}
+  }
 
 // @sect4{Solid::output_results}
-template <int dim>
-void Solid<dim>::output_results(void)
-{
+  template <int dim>
+  void Solid<dim>::output_results(void)
+  {
     DataOut<dim> data_out;
 
     std::vector<DataComponentInterpretation::DataComponentInterpretation> data_component_interpretation (dim, DataComponentInterpretation::component_is_part_of_vector);
@@ -2015,8 +2018,8 @@ void Solid<dim>::output_results(void)
     data_out.add_data_vector (solution_n,
                              solution_name,
                              DataOut<dim>::type_dof_data, data_component_interpretation);
-    //    MappingQEulerian<dim> q_mapping (degree, solution_n.block(u_dof), dof_handler_ref);
-    //    MappingQEulerian<dim> q_mapping (degree, solution_n, dof_handler_ref);
+                                    //    MappingQEulerian<dim> q_mapping (degree, solution_n.block(u_dof), dof_handler_ref);
+                                    //    MappingQEulerian<dim> q_mapping (degree, solution_n, dof_handler_ref);
     Vector<double> soln;
     soln.reinit(solution_n.size());
     for (unsigned int i=0; i < soln.size(); ++i) soln(i) = solution_n(i);
@@ -2030,43 +2033,48 @@ void Solid<dim>::output_results(void)
 
     std::ofstream output (filename.str().c_str());
     data_out.write_vtk (output);
+  }
 }
 
+
 // @sect3{Main function}
 int main ()
 {
-    try
+  try
     {
-       deallog.depth_console (0);
+      using namespace dealii;
+      using namespace Step44;
 
-       Solid<3> solid_3d ("parameters.prm");
-       solid_3d.run();
+      deallog.depth_console (0);
+
+      Solid<3> solid_3d ("parameters.prm");
+      solid_3d.run();
     }
-    catch (std::exception &exc)
+  catch (std::exception &exc)
     {
-       std::cerr << std::endl << std::endl
-                 << "----------------------------------------------------"
-                 << std::endl;
-       std::cerr << "Exception on processing: " << std::endl
-                 << exc.what() << std::endl
-                 << "Aborting!" << std::endl
-                 << "----------------------------------------------------"
-                 << std::endl;
+      std::cerr << std::endl << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+      std::cerr << "Exception on processing: " << std::endl
+               << exc.what() << std::endl
+               << "Aborting!" << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
 
-       return 1;
+      return 1;
     }
-    catch (...)
+  catch (...)
     {
-       std::cerr << std::endl << std::endl
-                 << "----------------------------------------------------"
-                 << std::endl;
-       std::cerr << "Unknown exception!" << std::endl
-                 << "Aborting!" << std::endl
-                 << "----------------------------------------------------"
-                 << std::endl;
-       return 1;
+      std::cerr << std::endl << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+      std::cerr << "Unknown exception!" << std::endl
+               << "Aborting!" << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+      return 1;
     }
 
-    return 0;
+  return 0;
 }
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.