// @sect3{Constitutive equation for the solid component of the biphasic material}
//@sect4{Base class: generic hyperelastic material}
-// The ``extra" Kirchhoff stress in the solid component is the sum of isochoric
-// and a volumetric part.
-// $\mathbf{\tau} = \mathbf{\tau}_E^{(\bullet)} + \mathbf{\tau}^{\textrm{vol}}$
+// The "extra" Kirchhoff stress in the solid component is the sum of isochoric
+// and a volumetric part:
+// $\mathbf{\tau} = \mathbf{\tau}_E^{(\bullet)} + \mathbf{\tau}^{\textrm{vol}}$.
// The deviatoric part changes depending on the type of material model selected:
// Neo-Hooken hyperelasticity, Ogden hyperelasticiy,
// or a single-mode finite viscoelasticity based on the Ogden hyperelastic model.
// We define here the volumetric component, which depends on the
// extension function $U(J_S)$ selected, and in this case is the same for all models.
// We use the function proposed by
-// Ehlers & Eipper 1999 doi:10.1023/A:1006565509095
+// Ehlers & Eipper 1999 doi:10.1023/A:1006565509095.
// We also define some public functions to access and update the internal variables.
template <int dim, typename NumberType = Sacado::Fad::DFad<double> >
class Material_Hyperelastic
// for storing data at the quadrature points. Here each quadrature point
// holds a pointer to a material description. Thus, different material models
// can be used in different regions of the domain. Among other data, we
-// choose to store the ``extra" Kirchhoff stress $\boldsymbol{\tau}_E$ and
+// choose to store the "extra" Kirchhoff stress $\boldsymbol{\tau}_E$ and
// the dissipation values $\mathcal{D}_p$ and $\mathcal{D}_v$.
template <int dim, typename NumberType = Sacado::Fad::DFad<double> > //double>
class PointHistory