]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
power method by von Mises
authorguido <guido@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 18 Apr 2000 21:57:33 +0000 (21:57 +0000)
committerguido <guido@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 18 Apr 2000 21:57:33 +0000 (21:57 +0000)
git-svn-id: https://svn.dealii.org/trunk@2745 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/lac/include/lac/eigen.h [new file with mode: 0644]

diff --git a/deal.II/lac/include/lac/eigen.h b/deal.II/lac/include/lac/eigen.h
new file mode 100644 (file)
index 0000000..7ccb12a
--- /dev/null
@@ -0,0 +1,179 @@
+//----------------------------  eigen.h  ---------------------------
+//    $Id$
+//    Version: $Name$
+//
+//    Copyright (C) 1998, 1999, 2000 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//----------------------------  eigen.h  ---------------------------
+#ifndef __deal2__eigen_h
+#define __deal2__eigen_h
+
+
+#include <lac/forward_declarations.h>
+#include <lac/solver.h>
+#include <lac/solver_control.h>
+#include <lac/vector_memory.h>
+
+/**
+ * Power method (von Mises).
+ *
+ * This method determines the largest eigenvalue of a matrix by
+ * applying increasing powers of this matrix to a vector. If there is
+ * an eigenvalue $l$ with dominant absolute value, the iteration vectors
+ * will become aligned to its eigenspace and $Ax = lx$.
+ *
+ * A shift parameter allows to shift the spectrum, so it is possible
+ * to compute the smallest eigenvalue, too.
+ *
+ * Convergence of this method is known to be slow.
+ *
+ * @author Guido Kanschat, 2000
+ */
+template <class MATRIX = SparseMatrix<double>,
+          class VECTOR = Vector<double> >
+class EigenPower : public Solver<MATRIX,VECTOR>
+{
+  public:
+                                    /**
+                                     * Standardized data struct to
+                                     * pipe additional data to the
+                                     * solver. This solver does not
+                                     * need additional data yet.
+                                     */
+    struct AdditionalData
+    {
+                                        /**
+                                         * Shift parameter. This
+                                         * parameter allows to shift
+                                         * the spectrum to compute a
+                                         * different eigenvalue.
+                                         */
+       double shift;
+                                        /**
+                                         * Constructor. Set the shift parameter.
+                                         */
+       AdditionalData (const double shift):
+                       shift(shift)
+         {}
+       
+    };
+
+                                    /**
+                                     * Constructor.
+                                     */
+    EigenPower (SolverControl &cn,
+               VectorMemory<VECTOR> &mem,
+               const AdditionalData &data=AdditionalData());
+
+                                    /**
+                                     * Virtual destructor.
+                                     */
+    virtual ~EigenPower ();
+
+                                    /**
+                                     * Power method. @p x is the (not
+                                     * necessarily normalized) start
+                                     * vector for the power
+                                     * method. After the iteration,
+                                     * @p value is the approximated
+                                     * eigenvalue and @p x is the
+                                     * corresponding eigenvector,
+                                     * normalized with respect to the l2-norm.
+                                     */
+    typename Solver<MATRIX,VECTOR>::ReturnState
+    solve (double       &value,
+          const MATRIX &A,
+          VECTOR       &x);
+
+  protected:
+                                    /**
+                                     * Shift parameter.
+                                     */
+    AdditionalData additional_data;
+};
+
+//----------------------------------------------------------------------//
+
+template <class MATRIX, class VECTOR>
+EigenPower<MATRIX, VECTOR>::EigenPower (SolverControl &cn,
+                                       VectorMemory<VECTOR> &mem,
+                                       const AdditionalData &data):
+               Solver<MATRIX, VECTOR>(cn, mem),
+               additional_data(data)
+{}
+
+
+template <class MATRIX, class VECTOR>
+EigenPower<MATRIX, VECTOR>::~EigenPower ()
+{}
+
+
+template <class MATRIX, class VECTOR>
+typename Solver<MATRIX,VECTOR>::ReturnState
+EigenPower<MATRIX, VECTOR>::solve (double       &value,
+                                  const MATRIX &A,
+                                  VECTOR       &x)
+{
+  SolverControl::State conv=SolverControl::iterate;
+
+  deallog.push("Power method");
+
+  VECTOR* Vy = memory.alloc (); VECTOR& y = *Vy; y.reinit (x);
+  
+  double length = x.l2_norm ();
+  double old_length = 0.;
+  x.scale(1./length);
+  
+  
+                                  // Main loop
+  for(int iter=0; conv==SolverControl::iterate; iter++)
+    {
+      A.vmult (y,x);
+      y.add(additional_data.shift, x);
+      
+                                      // Compute absolute value of eigenvalue
+      old_length = length;
+      length = y.l2_norm ();
+
+                                      // do a little trick to compute the sign
+                                      // with not too much round-off errors.
+      double entry = 0.;
+      unsigned int i = 0;
+      double thresh = length/x.size();
+      do 
+       {
+         Assert (i<x.size(), ExcInternalError());
+         entry = y (i++);
+       }
+      while (fabs(entry) < thresh);
+
+      --i;
+
+                                      // Compute unshifted eigenvalue
+      value = (entry * x (i) < 0.) ? -length : length;
+      value -= additional_data.shift;
+
+                                      // Update normalized eigenvector
+      x.equ (1/length, y);
+
+      conv = control().check (iter, fabs(1.-length/old_length));
+    }
+  
+  memory.free(Vy);
+
+  deallog.pop();
+                                  // Output
+  if (conv == SolverControl::failure)
+    return exceeded;
+  else
+    return success;
+
+}
+
+
+#endif

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.