]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Correct error in restriction matrix for FE_Q defined by quadrature formula.
authorkormann <kormann@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 27 Jan 2010 19:20:32 +0000 (19:20 +0000)
committerkormann <kormann@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 27 Jan 2010 19:20:32 +0000 (19:20 +0000)
git-svn-id: https://svn.dealii.org/trunk@20462 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/source/fe/fe_q.cc

index 59f85881e715db176922cc9405f22be038129e90..06b74131de6b3a80924f5c9fed7f58bdb822bc2a 100644 (file)
@@ -627,9 +627,9 @@ FE_Q<dim,spacedim>::FE_Q (const Quadrature<1> &points)
                                   // embedding operators
   FETools::compute_embedding_matrices (*this, this->prolongation);
 
-                                  // Fill restriction matrices with
-                                  // L2-projection
-  FETools::compute_projection_matrices (*this, this->restriction);
+                                  // Fill restriction matrices 
+  initialize_restriction();
+
   initialize_quad_dof_index_permutation();
 }
 
@@ -1708,15 +1708,15 @@ FE_Q<dim,spacedim>::initialize_restriction ()
 {
                                    // for these Lagrange interpolation
                                    // polynomials, construction of the
-                                   // restriction matrices is
-                                   // relatively simple. the reason is
-                                   // that the interpolation points on
-                                   // the mother cell are always also
-                                   // interpolation points for some
-                                   // shape function on one or the
-                                   // other child, because we have
-                                   // chosen equidistant Lagrange
-                                   // interpolation points for the
+                                   // restriction matrices is relatively
+                                   // simple. the reason is that the
+                                   // interpolation points on the mother cell
+                                   // are (except for the case with arbitrary
+                                   // nonequidistant nodes) always also
+                                   // interpolation points for some shape
+                                   // function on one or the other child,
+                                   // because we have chosen equidistant
+                                   // Lagrange interpolation points for the
                                    // polynomials
                                    //
                                    // so the only thing we have to
@@ -1753,12 +1753,11 @@ FE_Q<dim,spacedim>::initialize_restriction ()
                                    // we don't have to care about this
 
   const double eps = 2e-13*this->degree*this->degree*dim;
-
+  const std::vector<unsigned int> &index_map_inverse=
+    this->poly_space.get_numbering_inverse();
   for (unsigned int i=0; i<this->dofs_per_cell; ++i)
     {
-      const Point<dim> p_cell
-       = FE_Q_Helper::generate_unit_point (i, this->dofs_per_cell,
-                                           dealii::internal::int2type<dim>());
+      const Point<dim> p_cell = this->unit_support_points[index_map_inverse[i]];
       unsigned int mother_dof = 0;
       for (; mother_dof<this->dofs_per_cell; ++mother_dof)
         {
@@ -1775,7 +1774,7 @@ FE_Q<dim,spacedim>::initialize_restriction ()
             Assert (std::fabs(val) < eps, ExcInternalError());
         }
                                        // check also the shape
-                                       // functions after tat
+                                       // functions after that
       for (unsigned int j=mother_dof+1; j<this->dofs_per_cell; ++j)
         Assert (std::fabs (this->poly_space.compute_value(j, p_cell))
                 < eps,
@@ -1799,33 +1798,32 @@ FE_Q<dim,spacedim>::initialize_restriction ()
              = GeometryInfo<dim>::cell_to_child_coordinates (p_cell, child, RefinementCase<dim>(ref));
            if (GeometryInfo<dim>::is_inside_unit_cell (p_subcell))
              {
-                                                // find the one child
-                                                // shape function
-                                                // corresponding to
-                                                // this point. do it in
-                                                // the same way as
-                                                // above
-               unsigned int child_dof = 0;
-               for (; child_dof<this->dofs_per_cell; ++child_dof)
+                                                // find the child shape
+                                                // function(s) corresponding
+                                                // to this point. Usually
+                                                // this is just one function;
+                                                // however, when we use FE_Q
+                                                // on arbitrary nodes a
+                                                // parent support point might
+                                                // not be a child support
+                                                // point, and then we will
+                                                // get more than one nonzero
+                                                // value per row. Still, the
+                                                // values should sum up to 1
+               double sum_check = 0;
+               for (unsigned int child_dof = 0; child_dof<this->dofs_per_cell; 
+                    ++child_dof)
                  {
                    const double val
                      = this->poly_space.compute_value(child_dof, p_subcell);
                    if (std::fabs (val-1.) < eps)
-                     break;
-                   else
-                     Assert (std::fabs(val) < eps,
-                             ExcInternalError());
+                     this-> restriction[ref-1][child](mother_dof,child_dof)=1.;
+                   else if(std::fabs(val) > eps)
+                     this->restriction[ref-1][child](mother_dof,child_dof)= val;
+
+                   sum_check += val;
                  }
-               for (unsigned int j=child_dof+1; j<this->dofs_per_cell; ++j)
-                 Assert (std::fabs (this->poly_space.compute_value(j, p_subcell))
-                         < eps,
-                         ExcInternalError());
-
-                                                // so now that we have
-                                                // it, set the
-                                                // corresponding value
-                                                // in the matrix
-               this->restriction[ref-1][child](mother_dof, child_dof) = 1.;
+               Assert (std::fabs(sum_check-1) < eps, ExcInternalError());
              }
          }
     }

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.