const Point<2> vector_to_center
= (cell->vertex(vertex) - center);
const double distance_from_center
- = sqrt(vector_to_center.square());
+ = std::sqrt(vector_to_center.square());
- if (fabs(distance_from_center - inner_radius) < 1e-10)
+ if (std::fabs(distance_from_center - inner_radius) < 1e-10)
{
// Ok, this is one of
// the cells we were
const Point<2> vector_to_center
= (cell->vertex(vertex) - center);
const double distance_from_center
- = sqrt(vector_to_center.square());
+ = std::sqrt(vector_to_center.square());
- if (fabs(distance_from_center - inner_radius) < 1e-10)
+ if (std::fabs(distance_from_center - inner_radius) < 1e-10)
{
cell->set_refine_flag ();
break;
{
double return_value = 0;
for (unsigned int i=0; i<dim; ++i)
- return_value += 4*pow(p(i), 4);
+ return_value += 4*std::pow(p(i), 4);
return return_value;
};
// offers a member function
// ``square'' that does what
// it's name suggests.
- return_value += exp(-shifted_point.square() / (width*width));
+ return_value += std::exp(-shifted_point.square() / (width*width));
};
return return_value;
// vector, where the factor is
// given by the exponentials.
return_value += (-2 / (width*width) *
- exp(-shifted_point.square() / (width*width)) *
+ std::exp(-shifted_point.square() / (width*width)) *
shifted_point);
};
// the Laplacian:
return_value += ((2*dim - 4*shifted_point.square()/(width*width)) /
(width*width) *
- exp(-shifted_point.square() / (width*width)));
+ std::exp(-shifted_point.square() / (width*width)));
// And the second is the
// solution itself:
- return_value += exp(-shifted_point.square() / (width*width));
+ return_value += std::exp(-shifted_point.square() / (width*width));
};
return return_value;
Point<dim> value;
value[0] = 2;
for (unsigned int i=1; i<dim; ++i)
- value[i] = 1+0.8*sin(8*M_PI*p[0]);
+ value[i] = 1+0.8*std::sin(8*M_PI*p[0]);
return value;
};
Assert (component == 0, ExcIndexRange (component, 0, 1));
const double diameter = 0.1;
return ( (p-center_point).square() < diameter*diameter ?
- .1/pow(diameter,dim) :
+ .1/std::pow(diameter,dim) :
0);
};
{
Assert (component == 0, ExcIndexRange (component, 0, 1));
- const double sine_term = sin(16*M_PI*sqrt(p.square()));
- const double weight = exp(-5*p.square()) / exp(-5.);
+ const double sine_term = std::sin(16*M_PI*std::sqrt(p.square()));
+ const double weight = std::exp(-5*p.square()) / std::exp(-5.);
return sine_term * weight;
};
//TODO:[?] Find better breakdown criterion
- if (fabs(alpha) > 1.e10)
+ if (std::fabs(alpha) > 1.e10)
return true;
s.equ(1., r, -alpha, v);