]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Also convert MatrixCreator, MatrixTools to namespaces.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 15 Sep 2011 05:43:25 +0000 (05:43 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 15 Sep 2011 05:43:25 +0000 (05:43 +0000)
git-svn-id: https://svn.dealii.org/trunk@24326 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/doc/news/changes.h
deal.II/include/deal.II/numerics/matrices.h
deal.II/source/numerics/matrices.cc

index 19a097f0f963bc4fcdfb49052e28e7e60f5da8b3..25fdd1c821063cc108b8bdfe55211d9b19490290 100644 (file)
@@ -21,7 +21,8 @@ inconvenience this causes.
 </p>
 
 <ol>
-<li> Changed: GridTools, DoFTools, MGTools and VectorTools are now namespaces. They have long
+<li> Changed: GridTools, DoFTools, MGTools, VectorTools, MatrixCreator
+and MatrixTools are now namespaces. They have long
 been classes that had only public, static member functions, making
 the end result semantically exactly equivalent to a namespace, which is
 also how it was used. This is now also reflected in the actual code.
index bb3ae80fbdc2f854530cbfb4a880a1e047af2497..e624416121611b99b104419fdb4f9a22e50ba2df 100644 (file)
@@ -785,303 +785,311 @@ namespace MatrixCreator
  * @ingroup numerics
  * @author Wolfgang Bangerth, 1998, 2000, 2004, 2005
  */
-class MatrixTools
+namespace MatrixTools
 {
-// using namespace MatrixCreator
-  public:
-                                    /**
-                                     * Apply dirichlet boundary conditions
-                                     * to the system matrix and vectors
-                                     * as described in the general
-                                     * documentation.
-                                     */
-    template <typename number>
-    static void
-    apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                          SparseMatrix<number>  &matrix,
-                          Vector<number>        &solution,
-                          Vector<number>        &right_hand_side,
-                          const bool             eliminate_columns = true);
+                                  /**
+                                   * Import namespace MatrixCreator for
+                                   * backward compatibility with older
+                                   * versions of deal.II in which these
+                                   * namespaces were classes and class
+                                   * MatrixTools was publicly derived from
+                                   * class MatrixCreator.
+                                   */
+  using namespace MatrixCreator;
 
-                                    /**
-                                     * Apply dirichlet boundary
-                                     * conditions to the system
-                                     * matrix and vectors as
-                                     * described in the general
-                                     * documentation. This function
-                                     * works for block sparse
-                                     * matrices and block vectors
-                                     */
-    template <typename number>
-    static void
-    apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                          BlockSparseMatrix<number>           &matrix,
-                          BlockVector<number>                 &solution,
-                          BlockVector<number>                 &right_hand_side,
-                          const bool           eliminate_columns = true);
+                                  /**
+                                   * Apply dirichlet boundary conditions
+                                   * to the system matrix and vectors
+                                   * as described in the general
+                                   * documentation.
+                                   */
+  template <typename number>
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        SparseMatrix<number>  &matrix,
+                        Vector<number>        &solution,
+                        Vector<number>        &right_hand_side,
+                        const bool             eliminate_columns = true);
+
+                                  /**
+                                   * Apply dirichlet boundary
+                                   * conditions to the system
+                                   * matrix and vectors as
+                                   * described in the general
+                                   * documentation. This function
+                                   * works for block sparse
+                                   * matrices and block vectors
+                                   */
+  template <typename number>
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        BlockSparseMatrix<number>           &matrix,
+                        BlockVector<number>                 &solution,
+                        BlockVector<number>                 &right_hand_side,
+                        const bool           eliminate_columns = true);
 
 #ifdef DEAL_II_USE_PETSC
-                                    /**
-                                     * Apply dirichlet boundary conditions to
-                                     * the system matrix and vectors as
-                                     * described in the general
-                                     * documentation. This function works on
-                                     * the classes that are used to wrap
-                                     * PETSc objects.
-                                     *
-                                     * Note that this function is not very
-                                     * efficient: it needs to alternatingly
-                                     * read and write into the matrix, a
-                                     * situation that PETSc does not handle
-                                     * too well. In addition, we only get rid
-                                     * of rows corresponding to boundary
-                                     * nodes, but the corresponding case of
-                                     * deleting the respective columns
-                                     * (i.e. if @p eliminate_columns is @p
-                                     * true) is not presently implemented,
-                                     * and probably will never because it is
-                                     * too expensive without direct access to
-                                     * the PETSc data structures. (This leads
-                                     * to the situation where the action
-                                     * indicates by the default value of the
-                                     * last argument is actually not
-                                     * implemented; that argument has
-                                     * <code>true</code> as its default value
-                                     * to stay consistent with the other
-                                     * functions of same name in this class.)
-                                     * A third reason against this function
-                                     * is that it doesn't handle the case
-                                     * where the matrix is distributed across
-                                     * an MPI system.
-                                     *
-                                     * This function is used in
-                                     * step-17 and
-                                     * step-18.
-                                     */
-    static void
-    apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                          PETScWrappers::SparseMatrix  &matrix,
-                          PETScWrappers::Vector  &solution,
-                          PETScWrappers::Vector  &right_hand_side,
-                          const bool             eliminate_columns = true);
+                                  /**
+                                   * Apply dirichlet boundary conditions to
+                                   * the system matrix and vectors as
+                                   * described in the general
+                                   * documentation. This function works on
+                                   * the classes that are used to wrap
+                                   * PETSc objects.
+                                   *
+                                   * Note that this function is not very
+                                   * efficient: it needs to alternatingly
+                                   * read and write into the matrix, a
+                                   * situation that PETSc does not handle
+                                   * too well. In addition, we only get rid
+                                   * of rows corresponding to boundary
+                                   * nodes, but the corresponding case of
+                                   * deleting the respective columns
+                                   * (i.e. if @p eliminate_columns is @p
+                                   * true) is not presently implemented,
+                                   * and probably will never because it is
+                                   * too expensive without direct access to
+                                   * the PETSc data structures. (This leads
+                                   * to the situation where the action
+                                   * indicates by the default value of the
+                                   * last argument is actually not
+                                   * implemented; that argument has
+                                   * <code>true</code> as its default value
+                                   * to stay consistent with the other
+                                   * functions of same name in this class.)
+                                   * A third reason against this function
+                                   * is that it doesn't handle the case
+                                   * where the matrix is distributed across
+                                   * an MPI system.
+                                   *
+                                   * This function is used in
+                                   * step-17 and
+                                   * step-18.
+                                   */
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        PETScWrappers::SparseMatrix  &matrix,
+                        PETScWrappers::Vector  &solution,
+                        PETScWrappers::Vector  &right_hand_side,
+                        const bool             eliminate_columns = true);
 
-                                     /**
-                                      * Same function, but for parallel PETSc
-                                      * matrices.
-                                      */
-    static void
-    apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                          PETScWrappers::MPI::SparseMatrix  &matrix,
-                          PETScWrappers::MPI::Vector  &solution,
-                          PETScWrappers::MPI::Vector  &right_hand_side,
-                          const bool             eliminate_columns = true);
+                                  /**
+                                   * Same function, but for parallel PETSc
+                                   * matrices.
+                                   */
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        PETScWrappers::MPI::SparseMatrix  &matrix,
+                        PETScWrappers::MPI::Vector  &solution,
+                        PETScWrappers::MPI::Vector  &right_hand_side,
+                        const bool             eliminate_columns = true);
 
-                                     /**
-                                      * Same function, but for
-                                      * parallel PETSc matrices. Note
-                                      * that this function only
-                                      * operates on the local range of
-                                      * the parallel matrix, i.e. it
-                                      * only eliminates rows
-                                      * corresponding to degrees of
-                                      * freedom for which the row is
-                                      * stored on the present
-                                      * processor. All other boundary
-                                      * nodes are ignored, and it
-                                      * doesn't matter whether they
-                                      * are present in the first
-                                      * argument to this function or
-                                      * not. A consequence of this,
-                                      * however, is that this function
-                                      * has to be called from all
-                                      * processors that participate in
-                                      * sharing the contents of the
-                                      * given matrices and vectors. It
-                                      * is also implied that the local
-                                      * range for all objects passed
-                                      * to this function is the same.
-                                      */
-    static void
-    apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                          PETScWrappers::MPI::SparseMatrix  &matrix,
-                          PETScWrappers::Vector       &solution,
-                          PETScWrappers::MPI::Vector  &right_hand_side,
-                          const bool             eliminate_columns = true);
+                                  /**
+                                   * Same function, but for
+                                   * parallel PETSc matrices. Note
+                                   * that this function only
+                                   * operates on the local range of
+                                   * the parallel matrix, i.e. it
+                                   * only eliminates rows
+                                   * corresponding to degrees of
+                                   * freedom for which the row is
+                                   * stored on the present
+                                   * processor. All other boundary
+                                   * nodes are ignored, and it
+                                   * doesn't matter whether they
+                                   * are present in the first
+                                   * argument to this function or
+                                   * not. A consequence of this,
+                                   * however, is that this function
+                                   * has to be called from all
+                                   * processors that participate in
+                                   * sharing the contents of the
+                                   * given matrices and vectors. It
+                                   * is also implied that the local
+                                   * range for all objects passed
+                                   * to this function is the same.
+                                   */
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        PETScWrappers::MPI::SparseMatrix  &matrix,
+                        PETScWrappers::Vector       &solution,
+                        PETScWrappers::MPI::Vector  &right_hand_side,
+                        const bool             eliminate_columns = true);
 
-                                    /**
-                                      * Same as above but for BlockSparseMatrix.
-                                     */
-    static void
-    apply_boundary_values (const std::map<unsigned int,double>  &boundary_values,
-                       PETScWrappers::MPI::BlockSparseMatrix  &matrix,
-                       PETScWrappers::MPI::BlockVector        &solution,
-                       PETScWrappers::MPI::BlockVector        &right_hand_side,
-                       const bool       eliminate_columns = true);
+                                  /**
+                                   * Same as above but for BlockSparseMatrix.
+                                   */
+  void
+  apply_boundary_values (const std::map<unsigned int,double>  &boundary_values,
+                        PETScWrappers::MPI::BlockSparseMatrix  &matrix,
+                        PETScWrappers::MPI::BlockVector        &solution,
+                        PETScWrappers::MPI::BlockVector        &right_hand_side,
+                        const bool       eliminate_columns = true);
 
 #endif
 
 #ifdef DEAL_II_USE_TRILINOS
-                                    /**
-                                     * Apply dirichlet boundary
-                                     * conditions to the system matrix
-                                     * and vectors as described in the
-                                     * general documentation. This
-                                     * function works on the classes
-                                     * that are used to wrap Trilinos
-                                     * objects.
-                                     *
-                                     * Note that this function is not
-                                     * very efficient: it needs to
-                                     * alternatingly read and write
-                                     * into the matrix, a situation
-                                     * that Trilinos does not handle
-                                     * too well. In addition, we only
-                                     * get rid of rows corresponding to
-                                     * boundary nodes, but the
-                                     * corresponding case of deleting
-                                     * the respective columns (i.e. if
-                                     * @p eliminate_columns is @p true)
-                                     * is not presently implemented,
-                                     * and probably will never because
-                                     * it is too expensive without
-                                     * direct access to the Trilinos
-                                     * data structures. (This leads to
-                                     * the situation where the action
-                                     * indicates by the default value
-                                     * of the last argument is actually
-                                     * not implemented; that argument
-                                     * has <code>true</code> as its
-                                     * default value to stay consistent
-                                     * with the other functions of same
-                                     * name in this class.)  A third
-                                     * reason against this function is
-                                     * that it doesn't handle the case
-                                     * where the matrix is distributed
-                                     * across an MPI system.
-                                     */
-    static void
-    apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                          TrilinosWrappers::SparseMatrix  &matrix,
-                          TrilinosWrappers::Vector        &solution,
-                          TrilinosWrappers::Vector        &right_hand_side,
-                          const bool             eliminate_columns = true);
+                                  /**
+                                   * Apply dirichlet boundary
+                                   * conditions to the system matrix
+                                   * and vectors as described in the
+                                   * general documentation. This
+                                   * function works on the classes
+                                   * that are used to wrap Trilinos
+                                   * objects.
+                                   *
+                                   * Note that this function is not
+                                   * very efficient: it needs to
+                                   * alternatingly read and write
+                                   * into the matrix, a situation
+                                   * that Trilinos does not handle
+                                   * too well. In addition, we only
+                                   * get rid of rows corresponding to
+                                   * boundary nodes, but the
+                                   * corresponding case of deleting
+                                   * the respective columns (i.e. if
+                                   * @p eliminate_columns is @p true)
+                                   * is not presently implemented,
+                                   * and probably will never because
+                                   * it is too expensive without
+                                   * direct access to the Trilinos
+                                   * data structures. (This leads to
+                                   * the situation where the action
+                                   * indicates by the default value
+                                   * of the last argument is actually
+                                   * not implemented; that argument
+                                   * has <code>true</code> as its
+                                   * default value to stay consistent
+                                   * with the other functions of same
+                                   * name in this class.)  A third
+                                   * reason against this function is
+                                   * that it doesn't handle the case
+                                   * where the matrix is distributed
+                                   * across an MPI system.
+                                   */
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        TrilinosWrappers::SparseMatrix  &matrix,
+                        TrilinosWrappers::Vector        &solution,
+                        TrilinosWrappers::Vector        &right_hand_side,
+                        const bool             eliminate_columns = true);
 
-                                    /**
-                                     * This function does the same as
-                                     * the one above, except now
-                                     * working on block structures.
-                                     */
-    static void
-    apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                          TrilinosWrappers::BlockSparseMatrix  &matrix,
-                          TrilinosWrappers::BlockVector        &solution,
-                          TrilinosWrappers::BlockVector        &right_hand_side,
-                          const bool                eliminate_columns = true);
+                                  /**
+                                   * This function does the same as
+                                   * the one above, except now
+                                   * working on block structures.
+                                   */
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        TrilinosWrappers::BlockSparseMatrix  &matrix,
+                        TrilinosWrappers::BlockVector        &solution,
+                        TrilinosWrappers::BlockVector        &right_hand_side,
+                        const bool                eliminate_columns = true);
 
-                                    /**
-                                     * Apply dirichlet boundary
-                                     * conditions to the system matrix
-                                     * and vectors as described in the
-                                     * general documentation. This
-                                     * function works on the classes
-                                     * that are used to wrap Trilinos
-                                     * objects.
-                                     *
-                                     * Note that this function is not
-                                     * very efficient: it needs to
-                                     * alternatingly read and write
-                                     * into the matrix, a situation
-                                     * that Trilinos does not handle
-                                     * too well. In addition, we only
-                                     * get rid of rows corresponding to
-                                     * boundary nodes, but the
-                                     * corresponding case of deleting
-                                     * the respective columns (i.e. if
-                                     * @p eliminate_columns is @p true)
-                                     * is not presently implemented,
-                                     * and probably will never because
-                                     * it is too expensive without
-                                     * direct access to the Trilinos
-                                     * data structures. (This leads to
-                                     * the situation where the action
-                                     * indicates by the default value
-                                     * of the last argument is actually
-                                     * not implemented; that argument
-                                     * has <code>true</code> as its
-                                     * default value to stay consistent
-                                     * with the other functions of same
-                                     * name in this class.) This
-                                     * function does work on MPI vector
-                                     * types.
-                                     */
-    static void
-    apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                          TrilinosWrappers::SparseMatrix  &matrix,
-                          TrilinosWrappers::MPI::Vector   &solution,
-                          TrilinosWrappers::MPI::Vector   &right_hand_side,
-                          const bool             eliminate_columns = true);
+                                  /**
+                                   * Apply dirichlet boundary
+                                   * conditions to the system matrix
+                                   * and vectors as described in the
+                                   * general documentation. This
+                                   * function works on the classes
+                                   * that are used to wrap Trilinos
+                                   * objects.
+                                   *
+                                   * Note that this function is not
+                                   * very efficient: it needs to
+                                   * alternatingly read and write
+                                   * into the matrix, a situation
+                                   * that Trilinos does not handle
+                                   * too well. In addition, we only
+                                   * get rid of rows corresponding to
+                                   * boundary nodes, but the
+                                   * corresponding case of deleting
+                                   * the respective columns (i.e. if
+                                   * @p eliminate_columns is @p true)
+                                   * is not presently implemented,
+                                   * and probably will never because
+                                   * it is too expensive without
+                                   * direct access to the Trilinos
+                                   * data structures. (This leads to
+                                   * the situation where the action
+                                   * indicates by the default value
+                                   * of the last argument is actually
+                                   * not implemented; that argument
+                                   * has <code>true</code> as its
+                                   * default value to stay consistent
+                                   * with the other functions of same
+                                   * name in this class.) This
+                                   * function does work on MPI vector
+                                   * types.
+                                   */
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        TrilinosWrappers::SparseMatrix  &matrix,
+                        TrilinosWrappers::MPI::Vector   &solution,
+                        TrilinosWrappers::MPI::Vector   &right_hand_side,
+                        const bool             eliminate_columns = true);
 
-                                    /**
-                                     * This function does the same as
-                                     * the one above, except now working
-                                     * on block structures.
-                                     */
-    static void
-    apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                          TrilinosWrappers::BlockSparseMatrix  &matrix,
-                          TrilinosWrappers::MPI::BlockVector   &solution,
-                          TrilinosWrappers::MPI::BlockVector   &right_hand_side,
-                          const bool                eliminate_columns = true);
+                                  /**
+                                   * This function does the same as
+                                   * the one above, except now working
+                                   * on block structures.
+                                   */
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        TrilinosWrappers::BlockSparseMatrix  &matrix,
+                        TrilinosWrappers::MPI::BlockVector   &solution,
+                        TrilinosWrappers::MPI::BlockVector   &right_hand_side,
+                        const bool                eliminate_columns = true);
 #endif
 
-                                     /**
-                                      * Rather than applying boundary
-                                      * values to the global matrix
-                                      * and vector after creating the
-                                      * global matrix, this function
-                                      * does so during assembly, by
-                                      * modifying the local matrix and
-                                      * vector contributions. If you
-                                      * call this function on all
-                                      * local contributions, the
-                                      * resulting matrix will have the
-                                      * same entries, and the final
-                                      * call to
-                                      * apply_boundary_values() on the
-                                      * global system will not be
-                                      * necessary.
-                                      *
-                                      * Since this function does not
-                                      * have to work on the
-                                      * complicated data structures of
-                                      * sparse matrices, it is
-                                      * relatively cheap. It may
-                                      * therefore be a win if you have
-                                      * many fixed degrees of freedom
-                                      * (e.g. boundary nodes), or if
-                                      * access to the sparse matrix is
-                                      * expensive (e.g. for block
-                                      * sparse matrices, or for PETSc
-                                      * or trilinos
-                                      * matrices). However, it doesn't
-                                      * work as expected if there are
-                                      * also hanging nodes to be
-                                      * considered. More caveats are
-                                      * listed in the general
-                                      * documentation of this class.
-                                      */
-    static void
-    local_apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                                 const std::vector<unsigned int> &local_dof_indices,
-                                 FullMatrix<double> &local_matrix,
-                                 Vector<double>     &local_rhs,
-                                 const bool          eliminate_columns);
+                                  /**
+                                   * Rather than applying boundary
+                                   * values to the global matrix
+                                   * and vector after creating the
+                                   * global matrix, this function
+                                   * does so during assembly, by
+                                   * modifying the local matrix and
+                                   * vector contributions. If you
+                                   * call this function on all
+                                   * local contributions, the
+                                   * resulting matrix will have the
+                                   * same entries, and the final
+                                   * call to
+                                   * apply_boundary_values() on the
+                                   * global system will not be
+                                   * necessary.
+                                   *
+                                   * Since this function does not
+                                   * have to work on the
+                                   * complicated data structures of
+                                   * sparse matrices, it is
+                                   * relatively cheap. It may
+                                   * therefore be a win if you have
+                                   * many fixed degrees of freedom
+                                   * (e.g. boundary nodes), or if
+                                   * access to the sparse matrix is
+                                   * expensive (e.g. for block
+                                   * sparse matrices, or for PETSc
+                                   * or trilinos
+                                   * matrices). However, it doesn't
+                                   * work as expected if there are
+                                   * also hanging nodes to be
+                                   * considered. More caveats are
+                                   * listed in the general
+                                   * documentation of this class.
+                                   */
+  void
+  local_apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                              const std::vector<unsigned int> &local_dof_indices,
+                              FullMatrix<double> &local_matrix,
+                              Vector<double>     &local_rhs,
+                              const bool          eliminate_columns);
 
-                                    /**
-                                     * Exception
-                                     */
-    DeclException0 (ExcBlocksDontMatch);
-};
+                                  /**
+                                   * Exception
+                                   */
+  DeclException0 (ExcBlocksDontMatch);
+}
 
 
 
index 5e5ae0962fd42bb37aff4ed7c22d2be67b8f6205..8008c32051fd080913c4849d806565d0923354a3 100644 (file)
@@ -1917,858 +1917,661 @@ namespace MatrixCreator
 }  // namespace MatrixCreator
 
 
-
-//TODO:[WB] I don't think that the optimized storage of diagonals is needed (GK)
-template <typename number>
-void
-MatrixTools::apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                                   SparseMatrix<number>  &matrix,
-                                   Vector<number>   &solution,
-                                   Vector<number>   &right_hand_side,
-                                   const bool        eliminate_columns)
+namespace MatrixTools
 {
-                                  // Require that diagonals are first
-                                  // in each row
-  Assert (matrix.get_sparsity_pattern().optimize_diagonal(),
-         typename SparsityPattern::ExcDiagonalNotOptimized());
-  Assert (matrix.n() == right_hand_side.size(),
-         ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
-  Assert (matrix.n() == solution.size(),
-         ExcDimensionMismatch(matrix.n(), solution.size()));
-                                  // if no boundary values are to be applied
-                                  // simply return
-  if (boundary_values.size() == 0)
-    return;
-
-
-  const unsigned int n_dofs = matrix.m();
-
-                                  // if a diagonal entry is zero
-                                  // later, then we use another
-                                  // number instead. take it to be
-                                  // the first nonzero diagonal
-                                  // element of the matrix, or 1 if
-                                  // there is no such thing
-  number first_nonzero_diagonal_entry = 1;
-  for (unsigned int i=0; i<n_dofs; ++i)
-    if (matrix.diag_element(i) != 0)
-      {
-       first_nonzero_diagonal_entry = matrix.diag_element(i);
-       break;
-      }
 
+//TODO:[WB] I don't think that the optimized storage of diagonals is needed (GK)
+  template <typename number>
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        SparseMatrix<number>  &matrix,
+                        Vector<number>   &solution,
+                        Vector<number>   &right_hand_side,
+                        const bool        eliminate_columns)
+  {
+                                    // Require that diagonals are first
+                                    // in each row
+    Assert (matrix.get_sparsity_pattern().optimize_diagonal(),
+           typename SparsityPattern::ExcDiagonalNotOptimized());
+    Assert (matrix.n() == right_hand_side.size(),
+           ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
+    Assert (matrix.n() == solution.size(),
+           ExcDimensionMismatch(matrix.n(), solution.size()));
+                                    // if no boundary values are to be applied
+                                    // simply return
+    if (boundary_values.size() == 0)
+      return;
 
-  std::map<unsigned int,double>::const_iterator dof  = boundary_values.begin(),
-                                               endd = boundary_values.end();
-  const SparsityPattern    &sparsity    = matrix.get_sparsity_pattern();
-  const std::size_t  *sparsity_rowstart = sparsity.get_rowstart_indices();
-  const unsigned int *sparsity_colnums  = sparsity.get_column_numbers();
-  for (; dof != endd; ++dof)
-    {
-      Assert (dof->first < n_dofs, ExcInternalError());
-
-      const unsigned int dof_number = dof->first;
-                                      // for each boundary dof:
-
-                                      // set entries of this line
-                                      // to zero except for the diagonal
-                                      // entry. Note that the diagonal
-                                      // entry is always the first one
-                                      // for square matrices, i.e.
-                                      // we shall not set
-                                      // matrix.global_entry(
-                                      //     sparsity_rowstart[dof.first])
-      const unsigned int last = sparsity_rowstart[dof_number+1];
-      for (unsigned int j=sparsity_rowstart[dof_number]+1; j<last; ++j)
-       matrix.global_entry(j) = 0.;
-
-
-                                      // set right hand side to
-                                      // wanted value: if main diagonal
-                                      // entry nonzero, don't touch it
-                                      // and scale rhs accordingly. If
-                                      // zero, take the first main
-                                      // diagonal entry we can find, or
-                                      // one if no nonzero main diagonal
-                                      // element exists. Normally, however,
-                                      // the main diagonal entry should
-                                      // not be zero.
-                                      //
-                                      // store the new rhs entry to make
-                                      // the gauss step more efficient
-      number new_rhs;
-      if (matrix.diag_element(dof_number) != 0.0)
-        {
-          new_rhs = dof->second * matrix.diag_element(dof_number);
-          right_hand_side(dof_number) = new_rhs;
-        }
-      else
-       {
-         matrix.set (dof_number, dof_number,
-                      first_nonzero_diagonal_entry);
-         new_rhs = dof->second * first_nonzero_diagonal_entry;
-          right_hand_side(dof_number) = new_rhs;
-       }
 
+    const unsigned int n_dofs = matrix.m();
 
-                                      // if the user wants to have
-                                      // the symmetry of the matrix
-                                      // preserved, and if the
-                                      // sparsity pattern is
-                                      // symmetric, then do a Gauss
-                                      // elimination step with the
-                                      // present row
-      if (eliminate_columns)
+                                    // if a diagonal entry is zero
+                                    // later, then we use another
+                                    // number instead. take it to be
+                                    // the first nonzero diagonal
+                                    // element of the matrix, or 1 if
+                                    // there is no such thing
+    number first_nonzero_diagonal_entry = 1;
+    for (unsigned int i=0; i<n_dofs; ++i)
+      if (matrix.diag_element(i) != 0)
        {
-                                          // store the only nonzero entry
-                                          // of this line for the Gauss
-                                          // elimination step
-         const number diagonal_entry = matrix.diag_element(dof_number);
-
-                                          // we have to loop over all
-                                          // rows of the matrix which
-                                          // have a nonzero entry in
-                                          // the column which we work
-                                          // in presently. if the
-                                          // sparsity pattern is
-                                          // symmetric, then we can
-                                          // get the positions of
-                                          // these rows cheaply by
-                                          // looking at the nonzero
-                                          // column numbers of the
-                                          // present row. we need not
-                                          // look at the first entry,
-                                          // since that is the
-                                          // diagonal element and
-                                          // thus the present row
-         for (unsigned int j=sparsity_rowstart[dof_number]+1; j<last; ++j)
-           {
-             const unsigned int row = sparsity_colnums[j];
-
-                                              // find the position of
-                                              // element
-                                              // (row,dof_number)
-             const unsigned int *
-               p = Utilities::lower_bound(&sparsity_colnums[sparsity_rowstart[row]+1],
-                                    &sparsity_colnums[sparsity_rowstart[row+1]],
-                                    dof_number);
-
-                                              // check whether this line has
-                                              // an entry in the regarding column
-                                              // (check for ==dof_number and
-                                              // != next_row, since if
-                                              // row==dof_number-1, *p is a
-                                              // past-the-end pointer but points
-                                              // to dof_number anyway...)
-                                              //
-                                              // there should be such an entry!
-             Assert ((*p == dof_number) &&
-                     (p != &sparsity_colnums[sparsity_rowstart[row+1]]),
-                     ExcInternalError());
-
-             const unsigned int global_entry
-               = (p - &sparsity_colnums[sparsity_rowstart[0]]);
-
-                                              // correct right hand side
-             right_hand_side(row) -= matrix.global_entry(global_entry) /
-                                     diagonal_entry * new_rhs;
-
-                                              // set matrix entry to zero
-             matrix.global_entry(global_entry) = 0.;
-           }
+         first_nonzero_diagonal_entry = matrix.diag_element(i);
+         break;
        }
 
-                                      // preset solution vector
-      solution(dof_number) = dof->second;
-    }
-}
-
 
-
-template <typename number>
-void
-MatrixTools::apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                                   BlockSparseMatrix<number>  &matrix,
-                                   BlockVector<number>   &solution,
-                                   BlockVector<number>   &right_hand_side,
-                                   const bool             eliminate_columns)
-{
-  const unsigned int blocks = matrix.n_block_rows();
-
-  Assert (matrix.n() == right_hand_side.size(),
-         ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
-  Assert (matrix.n() == solution.size(),
-         ExcDimensionMismatch(matrix.n(), solution.size()));
-  Assert (matrix.n_block_rows() == matrix.n_block_cols(),
-         ExcNotQuadratic());
-  Assert (matrix.get_sparsity_pattern().get_row_indices() ==
-         matrix.get_sparsity_pattern().get_column_indices(),
-         ExcNotQuadratic());
-  Assert (matrix.get_sparsity_pattern().get_column_indices() ==
-         solution.get_block_indices (),
-         ExcBlocksDontMatch ());
-  Assert (matrix.get_sparsity_pattern().get_row_indices() ==
-         right_hand_side.get_block_indices (),
-         ExcBlocksDontMatch ());
-
-  for (unsigned int i=0; i<blocks; ++i)
-    Assert (matrix.block(i,i).get_sparsity_pattern().optimize_diagonal(),
-           SparsityPattern::ExcDiagonalNotOptimized());
-
-
-                                  // if no boundary values are to be applied
-                                  // simply return
-  if (boundary_values.size() == 0)
-    return;
-
-
-  const unsigned int n_dofs = matrix.m();
-
-                                  // if a diagonal entry is zero
-                                  // later, then we use another
-                                  // number instead. take it to be
-                                  // the first nonzero diagonal
-                                  // element of the matrix, or 1 if
-                                  // there is no such thing
-  number first_nonzero_diagonal_entry = 0;
-  for (unsigned int diag_block=0; diag_block<blocks; ++diag_block)
-    {
-      for (unsigned int i=0; i<matrix.block(diag_block,diag_block).n(); ++i)
-       if (matrix.block(diag_block,diag_block).diag_element(i) != 0)
+    std::map<unsigned int,double>::const_iterator dof  = boundary_values.begin(),
+                                                 endd = boundary_values.end();
+    const SparsityPattern    &sparsity    = matrix.get_sparsity_pattern();
+    const std::size_t  *sparsity_rowstart = sparsity.get_rowstart_indices();
+    const unsigned int *sparsity_colnums  = sparsity.get_column_numbers();
+    for (; dof != endd; ++dof)
+      {
+       Assert (dof->first < n_dofs, ExcInternalError());
+
+       const unsigned int dof_number = dof->first;
+                                        // for each boundary dof:
+
+                                        // set entries of this line
+                                        // to zero except for the diagonal
+                                        // entry. Note that the diagonal
+                                        // entry is always the first one
+                                        // for square matrices, i.e.
+                                        // we shall not set
+                                        // matrix.global_entry(
+                                        //     sparsity_rowstart[dof.first])
+       const unsigned int last = sparsity_rowstart[dof_number+1];
+       for (unsigned int j=sparsity_rowstart[dof_number]+1; j<last; ++j)
+         matrix.global_entry(j) = 0.;
+
+
+                                        // set right hand side to
+                                        // wanted value: if main diagonal
+                                        // entry nonzero, don't touch it
+                                        // and scale rhs accordingly. If
+                                        // zero, take the first main
+                                        // diagonal entry we can find, or
+                                        // one if no nonzero main diagonal
+                                        // element exists. Normally, however,
+                                        // the main diagonal entry should
+                                        // not be zero.
+                                        //
+                                        // store the new rhs entry to make
+                                        // the gauss step more efficient
+       number new_rhs;
+       if (matrix.diag_element(dof_number) != 0.0)
          {
-           first_nonzero_diagonal_entry
-             = matrix.block(diag_block,diag_block).diag_element(i);
-           break;
+           new_rhs = dof->second * matrix.diag_element(dof_number);
+           right_hand_side(dof_number) = new_rhs;
+         }
+       else
+         {
+           matrix.set (dof_number, dof_number,
+                       first_nonzero_diagonal_entry);
+           new_rhs = dof->second * first_nonzero_diagonal_entry;
+           right_hand_side(dof_number) = new_rhs;
          }
-                                      // check whether we have found
-                                      // something in the present
-                                      // block
-      if (first_nonzero_diagonal_entry != 0)
-       break;
-    }
-                                  // nothing found on all diagonal
-                                  // blocks? if so, use 1.0 instead
-  if (first_nonzero_diagonal_entry == 0)
-    first_nonzero_diagonal_entry = 1;
-
-
-  std::map<unsigned int,double>::const_iterator dof  = boundary_values.begin(),
-                                               endd = boundary_values.end();
-  const BlockSparsityPattern &
-    sparsity_pattern = matrix.get_sparsity_pattern();
-
-                                  // pointer to the mapping between
-                                  // global and block indices. since
-                                  // the row and column mappings are
-                                  // equal, store a pointer on only
-                                  // one of them
-  const BlockIndices &
-    index_mapping = sparsity_pattern.get_column_indices();
-
-                                  // now loop over all boundary dofs
-  for (; dof != endd; ++dof)
-    {
-      Assert (dof->first < n_dofs, ExcInternalError());
-
-                                      // get global index and index
-                                      // in the block in which this
-                                      // dof is located
-      const unsigned int dof_number = dof->first;
-      const std::pair<unsigned int,unsigned int>
-       block_index = index_mapping.global_to_local (dof_number);
-
-                                      // for each boundary dof:
-
-                                      // set entries of this line
-                                      // to zero except for the diagonal
-                                      // entry. Note that the diagonal
-                                      // entry is always the first one
-                                      // for square matrices, i.e.
-                                      // we shall not set
-                                      // matrix.global_entry(
-                                      //     sparsity_rowstart[dof.first])
-                                      // of the diagonal block
-      for (unsigned int block_col=0; block_col<blocks; ++block_col)
-       {
-         const SparsityPattern &
-           local_sparsity = sparsity_pattern.block(block_index.first,
-                                                   block_col);
-
-                                          // find first and last
-                                          // entry in the present row
-                                          // of the present
-                                          // block. exclude the main
-                                          // diagonal element, which
-                                          // is the diagonal element
-                                          // of a diagonal block,
-                                          // which must be a square
-                                          // matrix so the diagonal
-                                          // element is the first of
-                                          // this row.
-         const unsigned int
-           last  = local_sparsity.get_rowstart_indices()[block_index.second+1],
-           first = (block_col == block_index.first ?
-                    local_sparsity.get_rowstart_indices()[block_index.second]+1 :
-                    local_sparsity.get_rowstart_indices()[block_index.second]);
-
-         for (unsigned int j=first; j<last; ++j)
-           matrix.block(block_index.first,block_col).global_entry(j) = 0.;
-       }
-
 
-                                      // set right hand side to
-                                      // wanted value: if main diagonal
-                                      // entry nonzero, don't touch it
-                                      // and scale rhs accordingly. If
-                                      // zero, take the first main
-                                      // diagonal entry we can find, or
-                                      // one if no nonzero main diagonal
-                                      // element exists. Normally, however,
-                                      // the main diagonal entry should
-                                      // not be zero.
-                                      //
-                                      // store the new rhs entry to make
-                                      // the gauss step more efficient
-      number new_rhs;
-      if (matrix.block(block_index.first, block_index.first)
-         .diag_element(block_index.second) != 0.0)
-       new_rhs = dof->second *
-                 matrix.block(block_index.first, block_index.first)
-                 .diag_element(block_index.second);
-      else
-       {
-         matrix.block(block_index.first, block_index.first)
-           .diag_element(block_index.second)
-           = first_nonzero_diagonal_entry;
-         new_rhs = dof->second * first_nonzero_diagonal_entry;
-       }
-      right_hand_side.block(block_index.first)(block_index.second)
-       = new_rhs;
-
-
-                                      // if the user wants to have
-                                      // the symmetry of the matrix
-                                      // preserved, and if the
-                                      // sparsity pattern is
-                                      // symmetric, then do a Gauss
-                                      // elimination step with the
-                                      // present row. this is a
-                                      // little more complicated for
-                                      // block matrices.
-      if (eliminate_columns)
-       {
-                                          // store the only nonzero entry
-                                          // of this line for the Gauss
-                                          // elimination step
-         const number diagonal_entry
-           = matrix.block(block_index.first,block_index.first)
-           .diag_element(block_index.second);
-
-                                          // we have to loop over all
-                                          // rows of the matrix which
-                                          // have a nonzero entry in
-                                          // the column which we work
-                                          // in presently. if the
-                                          // sparsity pattern is
-                                          // symmetric, then we can
-                                          // get the positions of
-                                          // these rows cheaply by
-                                          // looking at the nonzero
-                                          // column numbers of the
-                                          // present row.
-                                          //
-                                          // note that if we check
-                                          // whether row @p{row} in
-                                          // block (r,c) is non-zero,
-                                          // then we have to check
-                                          // for the existence of
-                                          // column @p{row} in block
-                                          // (c,r), i.e. of the
-                                          // transpose block
-         for (unsigned int block_row=0; block_row<blocks; ++block_row)
-           {
-                                              // get pointers to the
-                                              // sparsity patterns of
-                                              // this block and of
-                                              // the transpose one
-             const SparsityPattern &this_sparsity
-               = sparsity_pattern.block (block_row, block_index.first);
-             const SparsityPattern &transpose_sparsity
-               = sparsity_pattern.block (block_index.first, block_row);
-
-                                              // traverse the row of
-                                              // the transpose block
-                                              // to find the
-                                              // interesting rows in
-                                              // the present block.
-                                              // don't use the
-                                              // diagonal element of
-                                              // the diagonal block
-             const unsigned int
-               first = (block_index.first == block_row ?
-                        transpose_sparsity.get_rowstart_indices()[block_index.second]+1 :
-                        transpose_sparsity.get_rowstart_indices()[block_index.second]),
-               last  = transpose_sparsity.get_rowstart_indices()[block_index.second+1];
-
-             for (unsigned int j=first; j<last; ++j)
-               {
-                                                  // get the number
-                                                  // of the column in
-                                                  // this row in
-                                                  // which a nonzero
-                                                  // entry is. this
-                                                  // is also the row
-                                                  // of the transpose
-                                                  // block which has
-                                                  // an entry in the
-                                                  // interesting row
-                 const unsigned int row = transpose_sparsity.get_column_numbers()[j];
-
-                                                  // find the
-                                                  // position of
-                                                  // element
-                                                  // (row,dof_number)
-                                                  // in this block
-                                                  // (not in the
-                                                  // transpose
-                                                  // one). note that
-                                                  // we have to take
-                                                  // care of special
-                                                  // cases with
-                                                  // square
-                                                  // sub-matrices
-                 const unsigned int *p = 0;
-                 if (this_sparsity.n_rows() == this_sparsity.n_cols())
-                   {
-                     if (this_sparsity.get_column_numbers()
-                         [this_sparsity.get_rowstart_indices()[row]]
-                         ==
-                         block_index.second)
-                       p = &this_sparsity.get_column_numbers()
-                           [this_sparsity.get_rowstart_indices()[row]];
-                     else
-                       p = Utilities::lower_bound(&this_sparsity.get_column_numbers()
-                                            [this_sparsity.get_rowstart_indices()[row]+1],
-                                            &this_sparsity.get_column_numbers()
-                                            [this_sparsity.get_rowstart_indices()[row+1]],
-                                            block_index.second);
-                   }
-                 else
-                   p = Utilities::lower_bound(&this_sparsity.get_column_numbers()
-                                        [this_sparsity.get_rowstart_indices()[row]],
-                                        &this_sparsity.get_column_numbers()
-                                        [this_sparsity.get_rowstart_indices()[row+1]],
-                                        block_index.second);
-
-                                                  // check whether this line has
-                                                  // an entry in the regarding column
-                                                  // (check for ==dof_number and
-                                                  // != next_row, since if
-                                                  // row==dof_number-1, *p is a
-                                                  // past-the-end pointer but points
-                                                  // to dof_number anyway...)
-                                                  //
-                                                  // there should be
-                                                  // such an entry!
-                                                  // note, however,
-                                                  // that this
-                                                  // assertion will
-                                                  // fail sometimes
-                                                  // if the sparsity
-                                                  // pattern is not
-                                                  // symmetric!
-                 Assert ((*p == block_index.second) &&
-                         (p != &this_sparsity.get_column_numbers()
-                          [this_sparsity.get_rowstart_indices()[row+1]]),
-                         ExcInternalError());
-
-                 const unsigned int global_entry
-                   = (p
-                      -
-                      &this_sparsity.get_column_numbers()
-                      [this_sparsity.get_rowstart_indices()[0]]);
-
-                                                  // correct right hand side
-                 right_hand_side.block(block_row)(row)
-                   -= matrix.block(block_row,block_index.first).global_entry(global_entry) /
-                   diagonal_entry * new_rhs;
-
-                                                  // set matrix entry to zero
-                 matrix.block(block_row,block_index.first).global_entry(global_entry) = 0.;
-               }
-           }
-       }
 
-                                      // preset solution vector
-      solution.block(block_index.first)(block_index.second) = dof->second;
-    }
-}
+                                        // if the user wants to have
+                                        // the symmetry of the matrix
+                                        // preserved, and if the
+                                        // sparsity pattern is
+                                        // symmetric, then do a Gauss
+                                        // elimination step with the
+                                        // present row
+       if (eliminate_columns)
+         {
+                                            // store the only nonzero entry
+                                            // of this line for the Gauss
+                                            // elimination step
+           const number diagonal_entry = matrix.diag_element(dof_number);
+
+                                            // we have to loop over all
+                                            // rows of the matrix which
+                                            // have a nonzero entry in
+                                            // the column which we work
+                                            // in presently. if the
+                                            // sparsity pattern is
+                                            // symmetric, then we can
+                                            // get the positions of
+                                            // these rows cheaply by
+                                            // looking at the nonzero
+                                            // column numbers of the
+                                            // present row. we need not
+                                            // look at the first entry,
+                                            // since that is the
+                                            // diagonal element and
+                                            // thus the present row
+           for (unsigned int j=sparsity_rowstart[dof_number]+1; j<last; ++j)
+             {
+               const unsigned int row = sparsity_colnums[j];
+
+                                                // find the position of
+                                                // element
+                                                // (row,dof_number)
+               const unsigned int *
+                 p = Utilities::lower_bound(&sparsity_colnums[sparsity_rowstart[row]+1],
+                                            &sparsity_colnums[sparsity_rowstart[row+1]],
+                                            dof_number);
+
+                                                // check whether this line has
+                                                // an entry in the regarding column
+                                                // (check for ==dof_number and
+                                                // != next_row, since if
+                                                // row==dof_number-1, *p is a
+                                                // past-the-end pointer but points
+                                                // to dof_number anyway...)
+                                                //
+                                                // there should be such an entry!
+               Assert ((*p == dof_number) &&
+                       (p != &sparsity_colnums[sparsity_rowstart[row+1]]),
+                       ExcInternalError());
+
+               const unsigned int global_entry
+                 = (p - &sparsity_colnums[sparsity_rowstart[0]]);
+
+                                                // correct right hand side
+               right_hand_side(row) -= matrix.global_entry(global_entry) /
+                                       diagonal_entry * new_rhs;
+
+                                                // set matrix entry to zero
+               matrix.global_entry(global_entry) = 0.;
+             }
+         }
 
+                                        // preset solution vector
+       solution(dof_number) = dof->second;
+      }
+  }
 
 
-#ifdef DEAL_II_USE_PETSC
 
-namespace PETScWrappers
-{
-  template <typename PETScMatrix, typename PETScVector>
+  template <typename number>
   void
   apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                         PETScMatrix      &matrix,
-                         PETScVector      &solution,
-                         PETScVector      &right_hand_side,
-                         const bool        eliminate_columns)
+                        BlockSparseMatrix<number>  &matrix,
+                        BlockVector<number>   &solution,
+                        BlockVector<number>   &right_hand_side,
+                        const bool             eliminate_columns)
   {
-    Assert (eliminate_columns == false, ExcNotImplemented());
+    const unsigned int blocks = matrix.n_block_rows();
 
     Assert (matrix.n() == right_hand_side.size(),
-            ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
+           ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
     Assert (matrix.n() == solution.size(),
-            ExcDimensionMismatch(matrix.n(), solution.size()));
+           ExcDimensionMismatch(matrix.n(), solution.size()));
+    Assert (matrix.n_block_rows() == matrix.n_block_cols(),
+           ExcNotQuadratic());
+    Assert (matrix.get_sparsity_pattern().get_row_indices() ==
+           matrix.get_sparsity_pattern().get_column_indices(),
+           ExcNotQuadratic());
+    Assert (matrix.get_sparsity_pattern().get_column_indices() ==
+           solution.get_block_indices (),
+           ExcBlocksDontMatch ());
+    Assert (matrix.get_sparsity_pattern().get_row_indices() ==
+           right_hand_side.get_block_indices (),
+           ExcBlocksDontMatch ());
+
+    for (unsigned int i=0; i<blocks; ++i)
+      Assert (matrix.block(i,i).get_sparsity_pattern().optimize_diagonal(),
+             SparsityPattern::ExcDiagonalNotOptimized());
+
 
-                                     // if no boundary values are to be applied
-                                     // simply return
+                                    // if no boundary values are to be applied
+                                    // simply return
     if (boundary_values.size() == 0)
       return;
 
-    const std::pair<unsigned int, unsigned int> local_range
-      = matrix.local_range();
-    Assert (local_range == right_hand_side.local_range(),
-            ExcInternalError());
-    Assert (local_range == solution.local_range(),
-            ExcInternalError());
 
+    const unsigned int n_dofs = matrix.m();
 
-                                     // we have to read and write from this
-                                     // matrix (in this order). this will only
-                                     // work if we compress the matrix first,
-                                     // done here
-    matrix.compress ();
+                                    // if a diagonal entry is zero
+                                    // later, then we use another
+                                    // number instead. take it to be
+                                    // the first nonzero diagonal
+                                    // element of the matrix, or 1 if
+                                    // there is no such thing
+    number first_nonzero_diagonal_entry = 0;
+    for (unsigned int diag_block=0; diag_block<blocks; ++diag_block)
+      {
+       for (unsigned int i=0; i<matrix.block(diag_block,diag_block).n(); ++i)
+         if (matrix.block(diag_block,diag_block).diag_element(i) != 0)
+           {
+             first_nonzero_diagonal_entry
+               = matrix.block(diag_block,diag_block).diag_element(i);
+             break;
+           }
+                                        // check whether we have found
+                                        // something in the present
+                                        // block
+       if (first_nonzero_diagonal_entry != 0)
+         break;
+      }
+                                    // nothing found on all diagonal
+                                    // blocks? if so, use 1.0 instead
+    if (first_nonzero_diagonal_entry == 0)
+      first_nonzero_diagonal_entry = 1;
+
+
+    std::map<unsigned int,double>::const_iterator dof  = boundary_values.begin(),
+                                                 endd = boundary_values.end();
+    const BlockSparsityPattern &
+      sparsity_pattern = matrix.get_sparsity_pattern();
+
+                                    // pointer to the mapping between
+                                    // global and block indices. since
+                                    // the row and column mappings are
+                                    // equal, store a pointer on only
+                                    // one of them
+    const BlockIndices &
+      index_mapping = sparsity_pattern.get_column_indices();
+
+                                    // now loop over all boundary dofs
+    for (; dof != endd; ++dof)
+      {
+       Assert (dof->first < n_dofs, ExcInternalError());
+
+                                        // get global index and index
+                                        // in the block in which this
+                                        // dof is located
+       const unsigned int dof_number = dof->first;
+       const std::pair<unsigned int,unsigned int>
+         block_index = index_mapping.global_to_local (dof_number);
+
+                                        // for each boundary dof:
+
+                                        // set entries of this line
+                                        // to zero except for the diagonal
+                                        // entry. Note that the diagonal
+                                        // entry is always the first one
+                                        // for square matrices, i.e.
+                                        // we shall not set
+                                        // matrix.global_entry(
+                                        //     sparsity_rowstart[dof.first])
+                                        // of the diagonal block
+       for (unsigned int block_col=0; block_col<blocks; ++block_col)
+         {
+           const SparsityPattern &
+             local_sparsity = sparsity_pattern.block(block_index.first,
+                                                     block_col);
+
+                                            // find first and last
+                                            // entry in the present row
+                                            // of the present
+                                            // block. exclude the main
+                                            // diagonal element, which
+                                            // is the diagonal element
+                                            // of a diagonal block,
+                                            // which must be a square
+                                            // matrix so the diagonal
+                                            // element is the first of
+                                            // this row.
+           const unsigned int
+             last  = local_sparsity.get_rowstart_indices()[block_index.second+1],
+             first = (block_col == block_index.first ?
+                      local_sparsity.get_rowstart_indices()[block_index.second]+1 :
+                      local_sparsity.get_rowstart_indices()[block_index.second]);
+
+           for (unsigned int j=first; j<last; ++j)
+             matrix.block(block_index.first,block_col).global_entry(j) = 0.;
+         }
 
-                                     // determine the first nonzero diagonal
-                                     // entry from within the part of the
-                                     // matrix that we can see. if we can't
-                                     // find such an entry, take one
-    PetscScalar average_nonzero_diagonal_entry = 1;
-    for (unsigned int i=local_range.first; i<local_range.second; ++i)
-      if (matrix.diag_element(i) != 0)
-        {
-          average_nonzero_diagonal_entry = std::fabs(matrix.diag_element(i));
-          break;
-        }
-
-                                     // figure out which rows of the matrix we
-                                     // have to eliminate on this processor
-    std::vector<unsigned int> constrained_rows;
-    for (std::map<unsigned int,double>::const_iterator
-           dof  = boundary_values.begin();
-         dof != boundary_values.end();
-         ++dof)
-      if ((dof->first >= local_range.first) &&
-          (dof->first < local_range.second))
-        constrained_rows.push_back (dof->first);
-
-                                     // then eliminate these rows and set
-                                     // their diagonal entry to what we have
-                                     // determined above. note that for petsc
-                                     // matrices interleaving read with write
-                                     // operations is very expensive. thus, we
-                                     // here always replace the diagonal
-                                     // element, rather than first checking
-                                     // whether it is nonzero and in that case
-                                     // preserving it. this is different from
-                                     // the case of deal.II sparse matrices
-                                     // treated in the other functions.
-    matrix.clear_rows (constrained_rows, average_nonzero_diagonal_entry);
-
-                                     // the next thing is to set right hand
-                                     // side to the wanted value. there's one
-                                     // drawback: if we write to individual
-                                     // vector elements, then we have to do
-                                     // that on all processors. however, some
-                                     // processors may not need to set
-                                     // anything because their chunk of
-                                     // matrix/rhs do not contain any boundary
-                                     // nodes. therefore, rather than using
-                                     // individual calls, we use one call for
-                                     // all elements, thereby making sure that
-                                     // all processors call this function,
-                                     // even if some only have an empty set of
-                                     // elements to set
-    right_hand_side.compress ();
-    solution.compress ();
-
-    std::vector<unsigned int> indices;
-    std::vector<PetscScalar>  solution_values;
-    for (std::map<unsigned int,double>::const_iterator
-           dof  = boundary_values.begin();
-         dof != boundary_values.end();
-         ++dof)
-      if ((dof->first >= local_range.first) &&
-          (dof->first < local_range.second))
-        {
-          indices.push_back (dof->first);
-          solution_values.push_back (dof->second);
-        }
-    solution.set (indices, solution_values);
-
-                                     // now also set appropriate values for
-                                     // the rhs
-    for (unsigned int i=0; i<solution_values.size(); ++i)
-      solution_values[i] *= average_nonzero_diagonal_entry;
-
-    right_hand_side.set (indices, solution_values);
-
-                                     // clean up
-    matrix.compress ();
-    solution.compress ();
-    right_hand_side.compress ();
-  }
-}
 
+                                        // set right hand side to
+                                        // wanted value: if main diagonal
+                                        // entry nonzero, don't touch it
+                                        // and scale rhs accordingly. If
+                                        // zero, take the first main
+                                        // diagonal entry we can find, or
+                                        // one if no nonzero main diagonal
+                                        // element exists. Normally, however,
+                                        // the main diagonal entry should
+                                        // not be zero.
+                                        //
+                                        // store the new rhs entry to make
+                                        // the gauss step more efficient
+       number new_rhs;
+       if (matrix.block(block_index.first, block_index.first)
+           .diag_element(block_index.second) != 0.0)
+         new_rhs = dof->second *
+                   matrix.block(block_index.first, block_index.first)
+                   .diag_element(block_index.second);
+       else
+         {
+           matrix.block(block_index.first, block_index.first)
+             .diag_element(block_index.second)
+             = first_nonzero_diagonal_entry;
+           new_rhs = dof->second * first_nonzero_diagonal_entry;
+         }
+       right_hand_side.block(block_index.first)(block_index.second)
+         = new_rhs;
+
+
+                                        // if the user wants to have
+                                        // the symmetry of the matrix
+                                        // preserved, and if the
+                                        // sparsity pattern is
+                                        // symmetric, then do a Gauss
+                                        // elimination step with the
+                                        // present row. this is a
+                                        // little more complicated for
+                                        // block matrices.
+       if (eliminate_columns)
+         {
+                                            // store the only nonzero entry
+                                            // of this line for the Gauss
+                                            // elimination step
+           const number diagonal_entry
+             = matrix.block(block_index.first,block_index.first)
+             .diag_element(block_index.second);
+
+                                            // we have to loop over all
+                                            // rows of the matrix which
+                                            // have a nonzero entry in
+                                            // the column which we work
+                                            // in presently. if the
+                                            // sparsity pattern is
+                                            // symmetric, then we can
+                                            // get the positions of
+                                            // these rows cheaply by
+                                            // looking at the nonzero
+                                            // column numbers of the
+                                            // present row.
+                                            //
+                                            // note that if we check
+                                            // whether row @p{row} in
+                                            // block (r,c) is non-zero,
+                                            // then we have to check
+                                            // for the existence of
+                                            // column @p{row} in block
+                                            // (c,r), i.e. of the
+                                            // transpose block
+           for (unsigned int block_row=0; block_row<blocks; ++block_row)
+             {
+                                                // get pointers to the
+                                                // sparsity patterns of
+                                                // this block and of
+                                                // the transpose one
+               const SparsityPattern &this_sparsity
+                 = sparsity_pattern.block (block_row, block_index.first);
+               const SparsityPattern &transpose_sparsity
+                 = sparsity_pattern.block (block_index.first, block_row);
+
+                                                // traverse the row of
+                                                // the transpose block
+                                                // to find the
+                                                // interesting rows in
+                                                // the present block.
+                                                // don't use the
+                                                // diagonal element of
+                                                // the diagonal block
+               const unsigned int
+                 first = (block_index.first == block_row ?
+                          transpose_sparsity.get_rowstart_indices()[block_index.second]+1 :
+                          transpose_sparsity.get_rowstart_indices()[block_index.second]),
+                 last  = transpose_sparsity.get_rowstart_indices()[block_index.second+1];
+
+               for (unsigned int j=first; j<last; ++j)
+                 {
+                                                    // get the number
+                                                    // of the column in
+                                                    // this row in
+                                                    // which a nonzero
+                                                    // entry is. this
+                                                    // is also the row
+                                                    // of the transpose
+                                                    // block which has
+                                                    // an entry in the
+                                                    // interesting row
+                   const unsigned int row = transpose_sparsity.get_column_numbers()[j];
+
+                                                    // find the
+                                                    // position of
+                                                    // element
+                                                    // (row,dof_number)
+                                                    // in this block
+                                                    // (not in the
+                                                    // transpose
+                                                    // one). note that
+                                                    // we have to take
+                                                    // care of special
+                                                    // cases with
+                                                    // square
+                                                    // sub-matrices
+                   const unsigned int *p = 0;
+                   if (this_sparsity.n_rows() == this_sparsity.n_cols())
+                     {
+                       if (this_sparsity.get_column_numbers()
+                           [this_sparsity.get_rowstart_indices()[row]]
+                           ==
+                           block_index.second)
+                         p = &this_sparsity.get_column_numbers()
+                             [this_sparsity.get_rowstart_indices()[row]];
+                       else
+                         p = Utilities::lower_bound(&this_sparsity.get_column_numbers()
+                                                    [this_sparsity.get_rowstart_indices()[row]+1],
+                                                    &this_sparsity.get_column_numbers()
+                                                    [this_sparsity.get_rowstart_indices()[row+1]],
+                                                    block_index.second);
+                     }
+                   else
+                     p = Utilities::lower_bound(&this_sparsity.get_column_numbers()
+                                                [this_sparsity.get_rowstart_indices()[row]],
+                                                &this_sparsity.get_column_numbers()
+                                                [this_sparsity.get_rowstart_indices()[row+1]],
+                                                block_index.second);
+
+                                                    // check whether this line has
+                                                    // an entry in the regarding column
+                                                    // (check for ==dof_number and
+                                                    // != next_row, since if
+                                                    // row==dof_number-1, *p is a
+                                                    // past-the-end pointer but points
+                                                    // to dof_number anyway...)
+                                                    //
+                                                    // there should be
+                                                    // such an entry!
+                                                    // note, however,
+                                                    // that this
+                                                    // assertion will
+                                                    // fail sometimes
+                                                    // if the sparsity
+                                                    // pattern is not
+                                                    // symmetric!
+                   Assert ((*p == block_index.second) &&
+                           (p != &this_sparsity.get_column_numbers()
+                            [this_sparsity.get_rowstart_indices()[row+1]]),
+                           ExcInternalError());
 
+                   const unsigned int global_entry
+                     = (p
+                        -
+                        &this_sparsity.get_column_numbers()
+                        [this_sparsity.get_rowstart_indices()[0]]);
 
-void
-MatrixTools::
-apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                       PETScWrappers::SparseMatrix   &matrix,
-                       PETScWrappers::Vector   &solution,
-                       PETScWrappers::Vector   &right_hand_side,
-                       const bool        eliminate_columns)
-{
-                                   // simply redirect to the generic function
-                                   // used for both petsc matrix types
-  PETScWrappers::apply_boundary_values (boundary_values, matrix, solution,
-                                        right_hand_side, eliminate_columns);
-}
+                                                    // correct right hand side
+                   right_hand_side.block(block_row)(row)
+                     -= matrix.block(block_row,block_index.first).global_entry(global_entry) /
+                     diagonal_entry * new_rhs;
 
+                                                    // set matrix entry to zero
+                   matrix.block(block_row,block_index.first).global_entry(global_entry) = 0.;
+                 }
+             }
+         }
 
+                                        // preset solution vector
+       solution.block(block_index.first)(block_index.second) = dof->second;
+      }
+  }
 
-void
-MatrixTools::
-apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                       PETScWrappers::MPI::SparseMatrix   &matrix,
-                       PETScWrappers::MPI::Vector   &solution,
-                       PETScWrappers::MPI::Vector   &right_hand_side,
-                       const bool        eliminate_columns)
-{
-                                   // simply redirect to the generic function
-                                   // used for both petsc matrix types
-  PETScWrappers::apply_boundary_values (boundary_values, matrix, solution,
-                                        right_hand_side, eliminate_columns);
 
-                                  // compress the matrix once we're done
-  matrix.compress ();
-}
 
+#ifdef DEAL_II_USE_PETSC
 
-void
-MatrixTools::
-apply_boundary_values (const std::map<unsigned int,double>  &boundary_values,
-                       PETScWrappers::MPI::BlockSparseMatrix  &matrix,
-                       PETScWrappers::MPI::BlockVector        &solution,
-                       PETScWrappers::MPI::BlockVector        &right_hand_side,
-                       const bool                            eliminate_columns)
-{
-  Assert (matrix.n() == right_hand_side.size(),
-          ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
-  Assert (matrix.n() == solution.size(),
-          ExcDimensionMismatch(matrix.n(), solution.size()));
-  Assert (matrix.n_block_rows() == matrix.n_block_cols(),
-          ExcNotQuadratic());
-
-  const unsigned int n_blocks = matrix.n_block_rows();
-
-  matrix.compress();
-
-                                   // We need to find the subdivision
-                                   // into blocks for the boundary values.
-                                   // To this end, generate a vector of
-                                   // maps with the respective indices.
-  std::vector<std::map<unsigned int,double> > block_boundary_values(n_blocks);
+  namespace internal
   {
-    int offset = 0, block=0;
-    for (std::map<unsigned int,double>::const_iterator
-            dof  = boundary_values.begin();
-          dof != boundary_values.end();
-          ++dof)
+    namespace PETScWrappers
+    {
+      template <typename PETScMatrix, typename PETScVector>
+      void
+      apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                            PETScMatrix      &matrix,
+                            PETScVector      &solution,
+                            PETScVector      &right_hand_side,
+                            const bool        eliminate_columns)
       {
-        if (dof->first >= matrix.block(block,0).m() + offset)
-          {
-            offset += matrix.block(block,0).m();
-            block++;
-          }
-        const unsigned int index = dof->first - offset;
-        block_boundary_values[block].insert(std::pair<unsigned int, double> (index,dof->second));
-      }
-  }
+       Assert (eliminate_columns == false, ExcNotImplemented());
 
-                                   // Now call the non-block variants on
-                                   // the diagonal subblocks and the
-                                   // solution/rhs.
-  for (unsigned int block=0; block<n_blocks; ++block)
-    PETScWrappers::apply_boundary_values(block_boundary_values[block],
-                                         matrix.block(block,block),
-                                         solution.block(block),
-                                         right_hand_side.block(block),
-                                         eliminate_columns);
-
-                                  // Finally, we need to do something
-                                   // about the off-diagonal matrices. This
-                                   // is luckily not difficult. Just clear
-                                   // the whole row.
-  for (unsigned int block_m=0; block_m<n_blocks; ++block_m)
-    {
-      const std::pair<unsigned int, unsigned int> local_range
-        = matrix.block(block_m,0).local_range();
+       Assert (matrix.n() == right_hand_side.size(),
+               ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
+       Assert (matrix.n() == solution.size(),
+               ExcDimensionMismatch(matrix.n(), solution.size()));
 
-      std::vector<unsigned int> constrained_rows;
-      for (std::map<unsigned int,double>::const_iterator
-            dof  = block_boundary_values[block_m].begin();
-          dof != block_boundary_values[block_m].end();
-          ++dof)
-        if ((dof->first >= local_range.first) &&
-            (dof->first < local_range.second))
-          constrained_rows.push_back (dof->first);
-
-      for (unsigned int block_n=0; block_n<n_blocks; ++block_n)
-        if (block_m != block_n)
-          matrix.block(block_m,block_n).clear_rows(constrained_rows);
-    }
-}
+                                        // if no boundary values are to be applied
+                                        // simply return
+       if (boundary_values.size() == 0)
+         return;
 
-#endif
+       const std::pair<unsigned int, unsigned int> local_range
+         = matrix.local_range();
+       Assert (local_range == right_hand_side.local_range(),
+               ExcInternalError());
+       Assert (local_range == solution.local_range(),
+               ExcInternalError());
+
+
+                                        // we have to read and write from this
+                                        // matrix (in this order). this will only
+                                        // work if we compress the matrix first,
+                                        // done here
+       matrix.compress ();
+
+                                        // determine the first nonzero diagonal
+                                        // entry from within the part of the
+                                        // matrix that we can see. if we can't
+                                        // find such an entry, take one
+       PetscScalar average_nonzero_diagonal_entry = 1;
+       for (unsigned int i=local_range.first; i<local_range.second; ++i)
+         if (matrix.diag_element(i) != 0)
+           {
+             average_nonzero_diagonal_entry = std::fabs(matrix.diag_element(i));
+             break;
+           }
+
+                                        // figure out which rows of the matrix we
+                                        // have to eliminate on this processor
+       std::vector<unsigned int> constrained_rows;
+       for (std::map<unsigned int,double>::const_iterator
+              dof  = boundary_values.begin();
+            dof != boundary_values.end();
+            ++dof)
+         if ((dof->first >= local_range.first) &&
+             (dof->first < local_range.second))
+           constrained_rows.push_back (dof->first);
 
+                                        // then eliminate these rows and set
+                                        // their diagonal entry to what we have
+                                        // determined above. note that for petsc
+                                        // matrices interleaving read with write
+                                        // operations is very expensive. thus, we
+                                        // here always replace the diagonal
+                                        // element, rather than first checking
+                                        // whether it is nonzero and in that case
+                                        // preserving it. this is different from
+                                        // the case of deal.II sparse matrices
+                                        // treated in the other functions.
+       matrix.clear_rows (constrained_rows, average_nonzero_diagonal_entry);
+
+                                        // the next thing is to set right hand
+                                        // side to the wanted value. there's one
+                                        // drawback: if we write to individual
+                                        // vector elements, then we have to do
+                                        // that on all processors. however, some
+                                        // processors may not need to set
+                                        // anything because their chunk of
+                                        // matrix/rhs do not contain any boundary
+                                        // nodes. therefore, rather than using
+                                        // individual calls, we use one call for
+                                        // all elements, thereby making sure that
+                                        // all processors call this function,
+                                        // even if some only have an empty set of
+                                        // elements to set
+       right_hand_side.compress ();
+       solution.compress ();
+
+       std::vector<unsigned int> indices;
+       std::vector<PetscScalar>  solution_values;
+       for (std::map<unsigned int,double>::const_iterator
+              dof  = boundary_values.begin();
+            dof != boundary_values.end();
+            ++dof)
+         if ((dof->first >= local_range.first) &&
+             (dof->first < local_range.second))
+           {
+             indices.push_back (dof->first);
+             solution_values.push_back (dof->second);
+           }
+       solution.set (indices, solution_values);
+
+                                        // now also set appropriate values for
+                                        // the rhs
+       for (unsigned int i=0; i<solution_values.size(); ++i)
+         solution_values[i] *= average_nonzero_diagonal_entry;
+
+       right_hand_side.set (indices, solution_values);
+
+                                        // clean up
+       matrix.compress ();
+       solution.compress ();
+       right_hand_side.compress ();
+      }
+    }
+  }
 
 
-#ifdef DEAL_II_USE_TRILINOS
 
-namespace TrilinosWrappers
-{
-  template <typename TrilinosMatrix, typename TrilinosVector>
   void
   apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                         TrilinosMatrix      &matrix,
-                         TrilinosVector      &solution,
-                         TrilinosVector      &right_hand_side,
-                         const bool           eliminate_columns)
+                        PETScWrappers::SparseMatrix   &matrix,
+                        PETScWrappers::Vector   &solution,
+                        PETScWrappers::Vector   &right_hand_side,
+                        const bool        eliminate_columns)
   {
-    Assert (eliminate_columns == false, ExcNotImplemented());
+                                    // simply redirect to the generic function
+                                    // used for both petsc matrix types
+    internal::PETScWrappers::apply_boundary_values (boundary_values, matrix, solution,
+                                                   right_hand_side, eliminate_columns);
+  }
 
-    Assert (matrix.n() == right_hand_side.size(),
-            ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
-    Assert (matrix.n() == solution.size(),
-            ExcDimensionMismatch(matrix.m(), solution.size()));
 
-                                     // if no boundary values are to be applied
-                                     // simply return
-    if (boundary_values.size() == 0)
-      return;
 
-    const std::pair<unsigned int, unsigned int> local_range
-      = matrix.local_range();
-    Assert (local_range == right_hand_side.local_range(),
-            ExcInternalError());
-    Assert (local_range == solution.local_range(),
-            ExcInternalError());
-
-                                     // we have to read and write from this
-                                     // matrix (in this order). this will only
-                                     // work if we compress the matrix first,
-                                     // done here
-    matrix.compress ();
+  void
 
-                                     // determine the first nonzero diagonal
-                                     // entry from within the part of the
-                                     // matrix that we can see. if we can't
-                                     // find such an entry, take one
-    TrilinosScalar average_nonzero_diagonal_entry = 1;
-    for (unsigned int i=local_range.first; i<local_range.second; ++i)
-      if (matrix.diag_element(i) != 0)
-        {
-          average_nonzero_diagonal_entry = std::fabs(matrix.diag_element(i));
-          break;
-        }
-
-                                     // figure out which rows of the matrix we
-                                     // have to eliminate on this processor
-    std::vector<unsigned int> constrained_rows;
-    for (std::map<unsigned int,double>::const_iterator
-           dof  = boundary_values.begin();
-         dof != boundary_values.end();
-         ++dof)
-      if ((dof->first >= local_range.first) &&
-          (dof->first < local_range.second))
-        constrained_rows.push_back (dof->first);
-
-                                     // then eliminate these rows and
-                                     // set their diagonal entry to
-                                     // what we have determined
-                                     // above. if the value already is
-                                     // nonzero, it will be preserved,
-                                     // in accordance with the basic
-                                     // matrix classes in deal.II.
-    matrix.clear_rows (constrained_rows, average_nonzero_diagonal_entry);
-
-                                     // the next thing is to set right
-                                     // hand side to the wanted
-                                     // value. there's one drawback:
-                                     // if we write to individual
-                                     // vector elements, then we have
-                                     // to do that on all
-                                     // processors. however, some
-                                     // processors may not need to set
-                                     // anything because their chunk
-                                     // of matrix/rhs do not contain
-                                     // any boundary nodes. therefore,
-                                     // rather than using individual
-                                     // calls, we use one call for all
-                                     // elements, thereby making sure
-                                     // that all processors call this
-                                     // function, even if some only
-                                     // have an empty set of elements
-                                     // to set
-    right_hand_side.compress ();
-    solution.compress ();
-
-    std::vector<unsigned int> indices;
-    std::vector<TrilinosScalar>  solution_values;
-    for (std::map<unsigned int,double>::const_iterator
-           dof  = boundary_values.begin();
-         dof != boundary_values.end();
-         ++dof)
-      if ((dof->first >= local_range.first) &&
-          (dof->first < local_range.second))
-        {
-          indices.push_back (dof->first);
-          solution_values.push_back (dof->second);
-        }
-    solution.set (indices, solution_values);
-
-                                     // now also set appropriate
-                                     // values for the rhs
-    for (unsigned int i=0; i<solution_values.size(); ++i)
-      solution_values[i] *= matrix.diag_element(indices[i]);
-
-    right_hand_side.set (indices, solution_values);
-
-                                     // clean up
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        PETScWrappers::MPI::SparseMatrix   &matrix,
+                        PETScWrappers::MPI::Vector   &solution,
+                        PETScWrappers::MPI::Vector   &right_hand_side,
+                        const bool        eliminate_columns)
+  {
+                                    // simply redirect to the generic function
+                                    // used for both petsc matrix types
+    internal::PETScWrappers::apply_boundary_values (boundary_values, matrix, solution,
+                                                   right_hand_side, eliminate_columns);
+
+                                    // compress the matrix once we're done
     matrix.compress ();
-    solution.compress ();
-    right_hand_side.compress ();
   }
 
 
-
-  template <typename TrilinosMatrix, typename TrilinosBlockVector>
   void
-  apply_block_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                              TrilinosMatrix      &matrix,
-                              TrilinosBlockVector &solution,
-                              TrilinosBlockVector &right_hand_side,
-                              const bool          eliminate_columns)
+  apply_boundary_values (const std::map<unsigned int,double>  &boundary_values,
+                        PETScWrappers::MPI::BlockSparseMatrix  &matrix,
+                        PETScWrappers::MPI::BlockVector        &solution,
+                        PETScWrappers::MPI::BlockVector        &right_hand_side,
+                        const bool                            eliminate_columns)
   {
-    Assert (eliminate_columns == false, ExcNotImplemented());
-
     Assert (matrix.n() == right_hand_side.size(),
            ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
     Assert (matrix.n() == solution.size(),
@@ -2780,10 +2583,10 @@ namespace TrilinosWrappers
 
     matrix.compress();
 
-                                  // We need to find the subdivision
-                                  // into blocks for the boundary values.
-                                  // To this end, generate a vector of
-                                  // maps with the respective indices.
+                                    // We need to find the subdivision
+                                    // into blocks for the boundary values.
+                                    // To this end, generate a vector of
+                                    // maps with the respective indices.
     std::vector<std::map<unsigned int,double> > block_boundary_values(n_blocks);
     {
       int offset = 0, block=0;
@@ -2798,25 +2601,24 @@ namespace TrilinosWrappers
              block++;
            }
          const unsigned int index = dof->first - offset;
-         block_boundary_values[block].insert(
-            std::pair<unsigned int, double> (index,dof->second));
+         block_boundary_values[block].insert(std::pair<unsigned int, double> (index,dof->second));
        }
     }
 
-                                  // Now call the non-block variants on
-                                  // the diagonal subblocks and the
-                                  // solution/rhs.
+                                    // Now call the non-block variants on
+                                    // the diagonal subblocks and the
+                                    // solution/rhs.
     for (unsigned int block=0; block<n_blocks; ++block)
-      TrilinosWrappers::apply_boundary_values(block_boundary_values[block],
-                                             matrix.block(block,block),
-                                             solution.block(block),
-                                             right_hand_side.block(block),
-                                             eliminate_columns);
-
-                                  // Finally, we need to do something
-                                  // about the off-diagonal matrices. This
-                                  // is luckily not difficult. Just clear
-                                  // the whole row.
+      PETScWrappers::apply_boundary_values(block_boundary_values[block],
+                                          matrix.block(block,block),
+                                          solution.block(block),
+                                          right_hand_side.block(block),
+                                          eliminate_columns);
+
+                                    // Finally, we need to do something
+                                    // about the off-diagonal matrices. This
+                                    // is luckily not difficult. Just clear
+                                    // the whole row.
     for (unsigned int block_m=0; block_m<n_blocks; ++block_m)
       {
        const std::pair<unsigned int, unsigned int> local_range
@@ -2837,186 +2639,386 @@ namespace TrilinosWrappers
       }
   }
 
-}
+#endif
 
 
 
-void
-MatrixTools::
-apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                       TrilinosWrappers::SparseMatrix   &matrix,
-                       TrilinosWrappers::Vector         &solution,
-                       TrilinosWrappers::Vector         &right_hand_side,
-                       const bool        eliminate_columns)
-{
-                                   // simply redirect to the generic function
-                                   // used for both trilinos matrix types
-  TrilinosWrappers::apply_boundary_values (boundary_values, matrix, solution,
-                                        right_hand_side, eliminate_columns);
-}
+#ifdef DEAL_II_USE_TRILINOS
 
+  namespace internal
+  {
+    namespace TrilinosWrappers
+    {
+      template <typename TrilinosMatrix, typename TrilinosVector>
+      void
+      apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                            TrilinosMatrix      &matrix,
+                            TrilinosVector      &solution,
+                            TrilinosVector      &right_hand_side,
+                            const bool           eliminate_columns)
+      {
+       Assert (eliminate_columns == false, ExcNotImplemented());
 
+       Assert (matrix.n() == right_hand_side.size(),
+               ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
+       Assert (matrix.n() == solution.size(),
+               ExcDimensionMismatch(matrix.m(), solution.size()));
 
-void
-MatrixTools::
-apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                       TrilinosWrappers::SparseMatrix   &matrix,
-                       TrilinosWrappers::MPI::Vector    &solution,
-                       TrilinosWrappers::MPI::Vector    &right_hand_side,
-                       const bool        eliminate_columns)
-{
-                                   // simply redirect to the generic function
-                                   // used for both trilinos matrix types
-  TrilinosWrappers::apply_boundary_values (boundary_values, matrix, solution,
-                                          right_hand_side, eliminate_columns);
-}
+                                        // if no boundary values are to be applied
+                                        // simply return
+       if (boundary_values.size() == 0)
+         return;
 
+       const std::pair<unsigned int, unsigned int> local_range
+         = matrix.local_range();
+       Assert (local_range == right_hand_side.local_range(),
+               ExcInternalError());
+       Assert (local_range == solution.local_range(),
+               ExcInternalError());
+
+                                        // we have to read and write from this
+                                        // matrix (in this order). this will only
+                                        // work if we compress the matrix first,
+                                        // done here
+       matrix.compress ();
+
+                                        // determine the first nonzero diagonal
+                                        // entry from within the part of the
+                                        // matrix that we can see. if we can't
+                                        // find such an entry, take one
+       TrilinosScalar average_nonzero_diagonal_entry = 1;
+       for (unsigned int i=local_range.first; i<local_range.second; ++i)
+         if (matrix.diag_element(i) != 0)
+           {
+             average_nonzero_diagonal_entry = std::fabs(matrix.diag_element(i));
+             break;
+           }
 
+                                        // figure out which rows of the matrix we
+                                        // have to eliminate on this processor
+       std::vector<unsigned int> constrained_rows;
+       for (std::map<unsigned int,double>::const_iterator
+              dof  = boundary_values.begin();
+            dof != boundary_values.end();
+            ++dof)
+         if ((dof->first >= local_range.first) &&
+             (dof->first < local_range.second))
+           constrained_rows.push_back (dof->first);
 
-void
-MatrixTools::
-apply_boundary_values (const std::map<unsigned int,double>  &boundary_values,
-                       TrilinosWrappers::BlockSparseMatrix  &matrix,
-                       TrilinosWrappers::BlockVector        &solution,
-                       TrilinosWrappers::BlockVector        &right_hand_side,
-                       const bool                            eliminate_columns)
-{
-  TrilinosWrappers::apply_block_boundary_values (boundary_values, matrix,
-                                                solution, right_hand_side,
-                                                eliminate_columns);
-}
+                                        // then eliminate these rows and
+                                        // set their diagonal entry to
+                                        // what we have determined
+                                        // above. if the value already is
+                                        // nonzero, it will be preserved,
+                                        // in accordance with the basic
+                                        // matrix classes in deal.II.
+       matrix.clear_rows (constrained_rows, average_nonzero_diagonal_entry);
+
+                                        // the next thing is to set right
+                                        // hand side to the wanted
+                                        // value. there's one drawback:
+                                        // if we write to individual
+                                        // vector elements, then we have
+                                        // to do that on all
+                                        // processors. however, some
+                                        // processors may not need to set
+                                        // anything because their chunk
+                                        // of matrix/rhs do not contain
+                                        // any boundary nodes. therefore,
+                                        // rather than using individual
+                                        // calls, we use one call for all
+                                        // elements, thereby making sure
+                                        // that all processors call this
+                                        // function, even if some only
+                                        // have an empty set of elements
+                                        // to set
+       right_hand_side.compress ();
+       solution.compress ();
+
+       std::vector<unsigned int> indices;
+       std::vector<TrilinosScalar>  solution_values;
+       for (std::map<unsigned int,double>::const_iterator
+              dof  = boundary_values.begin();
+            dof != boundary_values.end();
+            ++dof)
+         if ((dof->first >= local_range.first) &&
+             (dof->first < local_range.second))
+           {
+             indices.push_back (dof->first);
+             solution_values.push_back (dof->second);
+           }
+       solution.set (indices, solution_values);
 
+                                        // now also set appropriate
+                                        // values for the rhs
+       for (unsigned int i=0; i<solution_values.size(); ++i)
+         solution_values[i] *= matrix.diag_element(indices[i]);
 
+       right_hand_side.set (indices, solution_values);
 
-void
-MatrixTools::
-apply_boundary_values (const std::map<unsigned int,double>  &boundary_values,
-                       TrilinosWrappers::BlockSparseMatrix  &matrix,
-                       TrilinosWrappers::MPI::BlockVector   &solution,
-                       TrilinosWrappers::MPI::BlockVector   &right_hand_side,
-                       const bool                            eliminate_columns)
-{
-  TrilinosWrappers::apply_block_boundary_values (boundary_values, matrix,
-                                                solution, right_hand_side,
-                                                eliminate_columns);
-}
+                                        // clean up
+       matrix.compress ();
+       solution.compress ();
+       right_hand_side.compress ();
+      }
 
-#endif
 
 
+      template <typename TrilinosMatrix, typename TrilinosBlockVector>
+      void
+      apply_block_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                                  TrilinosMatrix      &matrix,
+                                  TrilinosBlockVector &solution,
+                                  TrilinosBlockVector &right_hand_side,
+                                  const bool          eliminate_columns)
+      {
+       Assert (eliminate_columns == false, ExcNotImplemented());
 
-void
-MatrixTools::
-local_apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
-                             const std::vector<unsigned int> &local_dof_indices,
-                             FullMatrix<double> &local_matrix,
-                             Vector<double>     &local_rhs,
-                             const bool          eliminate_columns)
-{
-  Assert (local_dof_indices.size() == local_matrix.m(),
-          ExcDimensionMismatch(local_dof_indices.size(),
-                               local_matrix.m()));
-  Assert (local_dof_indices.size() == local_matrix.n(),
-          ExcDimensionMismatch(local_dof_indices.size(),
-                               local_matrix.n()));
-  Assert (local_dof_indices.size() == local_rhs.size(),
-          ExcDimensionMismatch(local_dof_indices.size(),
-                               local_rhs.size()));
-
-                                   // if there is nothing to do, then exit
-                                   // right away
-  if (boundary_values.size() == 0)
-    return;
-
-                                   // otherwise traverse all the dofs used in
-                                   // the local matrices and vectors and see
-                                   // what's there to do
-
-                                   // if we need to treat an entry, then we
-                                   // set the diagonal entry to its absolute
-                                   // value. if it is zero, we used to set it
-                                   // to one, which is a really terrible
-                                   // choice that can lead to hours of
-                                   // searching for bugs in programs (I
-                                   // experienced this :-( ) if the matrix
-                                   // entries are otherwise very large. this
-                                   // is so since iterative solvers would
-                                   // simply not correct boundary nodes for
-                                   // their correct values since the residual
-                                   // contributions of their rows of the
-                                   // linear system is almost zero if the
-                                   // diagonal entry is one. thus, set it to
-                                   // the average absolute value of the
-                                   // nonzero diagonal elements.
-                                   //
-                                   // we only compute this value lazily the
-                                   // first time we need it.
-  double average_diagonal = 0;
-  const unsigned int n_local_dofs = local_dof_indices.size();
-  for (unsigned int i=0; i<n_local_dofs; ++i)
-    {
-      const std::map<unsigned int, double>::const_iterator
-        boundary_value = boundary_values.find (local_dof_indices[i]);
-      if (boundary_value != boundary_values.end())
-        {
-                                           // remove this row, except for the
-                                           // diagonal element
-          for (unsigned j=0; j<n_local_dofs; ++j)
-            if (i != j)
-              local_matrix(i,j) = 0;
-
-                                           // replace diagonal entry by its
-                                           // absolute value to make sure that
-                                           // everything remains positive, or
-                                           // by the average diagonal value if
-                                           // zero
-          if (local_matrix(i,i) == 0.)
-            {
-                                               // if average diagonal hasn't
-                                               // yet been computed, do so now
-              if (average_diagonal == 0.)
-                {
-                  unsigned int nonzero_diagonals = 0;
-                  for (unsigned int k=0; k<n_local_dofs; ++k)
-                    if (local_matrix(k,k) != 0.)
-                      {
-                        average_diagonal += std::fabs(local_matrix(k,k));
-                        ++nonzero_diagonals;
-                      }
-                  if (nonzero_diagonals != 0)
-                    average_diagonal /= nonzero_diagonals;
-                  else
-                    average_diagonal = 0;
-                }
-
-                                               // only if all diagonal entries
-                                               // are zero, then resort to the
-                                               // last measure: choose one
-              if (average_diagonal == 0.)
-                average_diagonal = 1.;
-
-              local_matrix(i,i) = average_diagonal;
-            }
-          else
-            local_matrix(i,i) = std::fabs(local_matrix(i,i));
-
-                                           // and replace rhs entry by correct
-                                           // value
-          local_rhs(i) = local_matrix(i,i) * boundary_value->second;
-
-                                           // finally do the elimination step
-                                           // if requested
-          if (eliminate_columns == true)
-            {
-              for (unsigned int row=0; row<n_local_dofs; ++row)
-                if (row != i)
-                  {
-                    local_rhs(row) -= local_matrix(row,i) * boundary_value->second;
-                    local_matrix(row,i) = 0;
-                  }
-            }
-        }
+       Assert (matrix.n() == right_hand_side.size(),
+               ExcDimensionMismatch(matrix.n(), right_hand_side.size()));
+       Assert (matrix.n() == solution.size(),
+               ExcDimensionMismatch(matrix.n(), solution.size()));
+       Assert (matrix.n_block_rows() == matrix.n_block_cols(),
+               ExcNotQuadratic());
+
+       const unsigned int n_blocks = matrix.n_block_rows();
+
+       matrix.compress();
+
+                                        // We need to find the subdivision
+                                        // into blocks for the boundary values.
+                                        // To this end, generate a vector of
+                                        // maps with the respective indices.
+       std::vector<std::map<unsigned int,double> > block_boundary_values(n_blocks);
+       {
+         int offset = 0, block=0;
+         for (std::map<unsigned int,double>::const_iterator
+                dof  = boundary_values.begin();
+              dof != boundary_values.end();
+              ++dof)
+           {
+             if (dof->first >= matrix.block(block,0).m() + offset)
+               {
+                 offset += matrix.block(block,0).m();
+                 block++;
+               }
+             const unsigned int index = dof->first - offset;
+             block_boundary_values[block].insert(
+               std::pair<unsigned int, double> (index,dof->second));
+           }
+       }
+
+                                        // Now call the non-block variants on
+                                        // the diagonal subblocks and the
+                                        // solution/rhs.
+       for (unsigned int block=0; block<n_blocks; ++block)
+         TrilinosWrappers::apply_boundary_values(block_boundary_values[block],
+                                                 matrix.block(block,block),
+                                                 solution.block(block),
+                                                 right_hand_side.block(block),
+                                                 eliminate_columns);
+
+                                        // Finally, we need to do something
+                                        // about the off-diagonal matrices. This
+                                        // is luckily not difficult. Just clear
+                                        // the whole row.
+       for (unsigned int block_m=0; block_m<n_blocks; ++block_m)
+         {
+           const std::pair<unsigned int, unsigned int> local_range
+             = matrix.block(block_m,0).local_range();
+
+           std::vector<unsigned int> constrained_rows;
+           for (std::map<unsigned int,double>::const_iterator
+                  dof  = block_boundary_values[block_m].begin();
+                dof != block_boundary_values[block_m].end();
+                ++dof)
+             if ((dof->first >= local_range.first) &&
+                 (dof->first < local_range.second))
+               constrained_rows.push_back (dof->first);
+
+           for (unsigned int block_n=0; block_n<n_blocks; ++block_n)
+             if (block_m != block_n)
+               matrix.block(block_m,block_n).clear_rows(constrained_rows);
+         }
+      }
     }
+  }
+
+
+
+
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        TrilinosWrappers::SparseMatrix   &matrix,
+                        TrilinosWrappers::Vector         &solution,
+                        TrilinosWrappers::Vector         &right_hand_side,
+                        const bool        eliminate_columns)
+  {
+                                    // simply redirect to the generic function
+                                    // used for both trilinos matrix types
+    internal::TrilinosWrappers::apply_boundary_values (boundary_values, matrix, solution,
+                                                      right_hand_side, eliminate_columns);
+  }
+
+
+
+  void
+  apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                        TrilinosWrappers::SparseMatrix   &matrix,
+                        TrilinosWrappers::MPI::Vector    &solution,
+                        TrilinosWrappers::MPI::Vector    &right_hand_side,
+                        const bool        eliminate_columns)
+  {
+                                    // simply redirect to the generic function
+                                    // used for both trilinos matrix types
+    internal::TrilinosWrappers::apply_boundary_values (boundary_values, matrix, solution,
+                                                      right_hand_side, eliminate_columns);
+  }
+
+
+
+  void
+  apply_boundary_values (const std::map<unsigned int,double>  &boundary_values,
+                        TrilinosWrappers::BlockSparseMatrix  &matrix,
+                        TrilinosWrappers::BlockVector        &solution,
+                        TrilinosWrappers::BlockVector        &right_hand_side,
+                        const bool                            eliminate_columns)
+  {
+    internal::TrilinosWrappers::apply_block_boundary_values (boundary_values, matrix,
+                                                            solution, right_hand_side,
+                                                            eliminate_columns);
+  }
+
+
+
+  void
+  apply_boundary_values (const std::map<unsigned int,double>  &boundary_values,
+                        TrilinosWrappers::BlockSparseMatrix  &matrix,
+                        TrilinosWrappers::MPI::BlockVector   &solution,
+                        TrilinosWrappers::MPI::BlockVector   &right_hand_side,
+                        const bool                            eliminate_columns)
+  {
+    internal::TrilinosWrappers::apply_block_boundary_values (boundary_values, matrix,
+                                                            solution, right_hand_side,
+                                                            eliminate_columns);
+  }
+
+#endif
+
+
+
+  void
+  local_apply_boundary_values (const std::map<unsigned int,double> &boundary_values,
+                              const std::vector<unsigned int> &local_dof_indices,
+                              FullMatrix<double> &local_matrix,
+                              Vector<double>     &local_rhs,
+                              const bool          eliminate_columns)
+  {
+    Assert (local_dof_indices.size() == local_matrix.m(),
+           ExcDimensionMismatch(local_dof_indices.size(),
+                                local_matrix.m()));
+    Assert (local_dof_indices.size() == local_matrix.n(),
+           ExcDimensionMismatch(local_dof_indices.size(),
+                                local_matrix.n()));
+    Assert (local_dof_indices.size() == local_rhs.size(),
+           ExcDimensionMismatch(local_dof_indices.size(),
+                                local_rhs.size()));
+
+                                    // if there is nothing to do, then exit
+                                    // right away
+    if (boundary_values.size() == 0)
+      return;
+
+                                    // otherwise traverse all the dofs used in
+                                    // the local matrices and vectors and see
+                                    // what's there to do
+
+                                    // if we need to treat an entry, then we
+                                    // set the diagonal entry to its absolute
+                                    // value. if it is zero, we used to set it
+                                    // to one, which is a really terrible
+                                    // choice that can lead to hours of
+                                    // searching for bugs in programs (I
+                                    // experienced this :-( ) if the matrix
+                                    // entries are otherwise very large. this
+                                    // is so since iterative solvers would
+                                    // simply not correct boundary nodes for
+                                    // their correct values since the residual
+                                    // contributions of their rows of the
+                                    // linear system is almost zero if the
+                                    // diagonal entry is one. thus, set it to
+                                    // the average absolute value of the
+                                    // nonzero diagonal elements.
+                                    //
+                                    // we only compute this value lazily the
+                                    // first time we need it.
+    double average_diagonal = 0;
+    const unsigned int n_local_dofs = local_dof_indices.size();
+    for (unsigned int i=0; i<n_local_dofs; ++i)
+      {
+       const std::map<unsigned int, double>::const_iterator
+         boundary_value = boundary_values.find (local_dof_indices[i]);
+       if (boundary_value != boundary_values.end())
+         {
+                                            // remove this row, except for the
+                                            // diagonal element
+           for (unsigned j=0; j<n_local_dofs; ++j)
+             if (i != j)
+               local_matrix(i,j) = 0;
+
+                                            // replace diagonal entry by its
+                                            // absolute value to make sure that
+                                            // everything remains positive, or
+                                            // by the average diagonal value if
+                                            // zero
+           if (local_matrix(i,i) == 0.)
+             {
+                                                // if average diagonal hasn't
+                                                // yet been computed, do so now
+               if (average_diagonal == 0.)
+                 {
+                   unsigned int nonzero_diagonals = 0;
+                   for (unsigned int k=0; k<n_local_dofs; ++k)
+                     if (local_matrix(k,k) != 0.)
+                       {
+                         average_diagonal += std::fabs(local_matrix(k,k));
+                         ++nonzero_diagonals;
+                       }
+                   if (nonzero_diagonals != 0)
+                     average_diagonal /= nonzero_diagonals;
+                   else
+                     average_diagonal = 0;
+                 }
+
+                                                // only if all diagonal entries
+                                                // are zero, then resort to the
+                                                // last measure: choose one
+               if (average_diagonal == 0.)
+                 average_diagonal = 1.;
+
+               local_matrix(i,i) = average_diagonal;
+             }
+           else
+             local_matrix(i,i) = std::fabs(local_matrix(i,i));
+
+                                            // and replace rhs entry by correct
+                                            // value
+           local_rhs(i) = local_matrix(i,i) * boundary_value->second;
+
+                                            // finally do the elimination step
+                                            // if requested
+           if (eliminate_columns == true)
+             {
+               for (unsigned int row=0; row<n_local_dofs; ++row)
+                 if (row != i)
+                   {
+                     local_rhs(row) -= local_matrix(row,i) * boundary_value->second;
+                     local_matrix(row,i) = 0;
+                   }
+             }
+         }
+      }
+  }
 }
 
 
@@ -3024,35 +3026,37 @@ local_apply_boundary_values (const std::map<unsigned int,double> &boundary_value
 // explicit instantiations
 #include "matrices.inst"
 
-template
-void
-MatrixTools::apply_boundary_values<double> (const std::map<unsigned int,double> &boundary_values,
-                                           SparseMatrix<double>  &matrix,
-                                           Vector<double>   &solution,
-                                           Vector<double>   &right_hand_side,
-                                           const bool        eliminate_columns);
-template
-void
-MatrixTools::apply_boundary_values<float> (const std::map<unsigned int,double> &boundary_values,
-                                          SparseMatrix<float>  &matrix,
-                                          Vector<float>   &solution,
-                                          Vector<float>   &right_hand_side,
-                                          const bool        eliminate_columns);
-
-template
-void
-MatrixTools::apply_boundary_values<double> (const std::map<unsigned int,double> &boundary_values,
-                                           BlockSparseMatrix<double>  &matrix,
-                                           BlockVector<double>   &solution,
-                                           BlockVector<double>   &right_hand_side,
-                                           const bool        eliminate_columns);
-template
-void
-MatrixTools::apply_boundary_values<float> (const std::map<unsigned int,double> &boundary_values,
-                                          BlockSparseMatrix<float>  &matrix,
-                                          BlockVector<float>   &solution,
-                                          BlockVector<float>   &right_hand_side,
-                                          const bool        eliminate_columns);
+namespace MatrixTools
+{
+  template
+  void
+  apply_boundary_values<double> (const std::map<unsigned int,double> &boundary_values,
+                                SparseMatrix<double>  &matrix,
+                                Vector<double>   &solution,
+                                Vector<double>   &right_hand_side,
+                                const bool        eliminate_columns);
+  template
+  void
+  apply_boundary_values<float> (const std::map<unsigned int,double> &boundary_values,
+                               SparseMatrix<float>  &matrix,
+                               Vector<float>   &solution,
+                               Vector<float>   &right_hand_side,
+                               const bool        eliminate_columns);
 
+  template
+  void
+  apply_boundary_values<double> (const std::map<unsigned int,double> &boundary_values,
+                                BlockSparseMatrix<double>  &matrix,
+                                BlockVector<double>   &solution,
+                                BlockVector<double>   &right_hand_side,
+                                const bool        eliminate_columns);
+  template
+  void
+  apply_boundary_values<float> (const std::map<unsigned int,double> &boundary_values,
+                               BlockSparseMatrix<float>  &matrix,
+                               BlockVector<float>   &solution,
+                               BlockVector<float>   &right_hand_side,
+                               const bool        eliminate_columns);
+}
 
 DEAL_II_NAMESPACE_CLOSE

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.