]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Improved initialization of embedding and restriction: need to evaluate a tensor produ...
authorMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Tue, 26 Jul 2011 13:05:02 +0000 (13:05 +0000)
committerMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Tue, 26 Jul 2011 13:05:02 +0000 (13:05 +0000)
git-svn-id: https://svn.dealii.org/trunk@23961 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/source/fe/fe_q.cc

index a316bbe31b85c35b0610239d856c717afa250726..d5328724d84d9a37f924d410b25babb98df6a6d8 100644 (file)
@@ -20,7 +20,6 @@
 #include <deal.II/base/quadrature_lib.h>
 
 #include <vector>
-#include <iostream>
 #include <sstream>
 
 DEAL_II_NAMESPACE_OPEN
@@ -69,6 +68,83 @@ namespace FE_Q_Helper
        out[in[i]]=i;
       return out;
     }
+
+
+
+                               // in initialize_embedding() and
+                               // initialize_restriction(), want to undo
+                               // tensorization on inner loops for
+                               // performance reasons. this clears a
+                               // dim-array
+    template <int dim>
+#ifdef DEAL_II_ANON_NAMESPACE_BUG
+    static
+#endif
+    inline
+    void
+    zero_indices (unsigned int indices[dim])
+    {
+      for (unsigned int d=0; d<dim; ++d)
+       indices[d] = 0;
+    }
+
+
+
+                               // in initialize_embedding() and
+                               // initialize_restriction(), want to undo
+                               // tensorization on inner loops for
+                               // performance reasons. this increments tensor
+                               // product indices
+    template <int dim>
+#ifdef DEAL_II_ANON_NAMESPACE_BUG
+    static
+#endif
+    inline
+    void
+    increment_indices (unsigned int       indices[dim],
+                      const unsigned int dofs1d)
+    {
+      ++indices[0];
+      for (int d=0; d<dim-1; ++d)
+       if (indices[d]==dofs1d)
+         {
+           indices[d] = 0;
+           indices[d+1]++;
+         }
+    }
+
+
+
+                               // in initialize_embedding() and
+                               // initialize_restriction(), want to undo
+                               // tensorization on inner loops for
+                               // performance reasons, and we need to again
+                               // access 1D polynomials. This function
+                               // creates them from dim-dimensional support
+                               // points.
+    template <int dim>
+#ifdef DEAL_II_ANON_NAMESPACE_BUG
+    static
+#endif
+    inline
+    std::vector<Polynomials::Polynomial<double> >
+    generate_poly_space1d (const std::vector<Point<dim> >  &unit_support_points,
+                          const std::vector<unsigned int> &index_map_inverse,
+                          const unsigned int               dofs1d)
+    {
+      AssertDimension (Utilities::fixed_power<dim> (dofs1d),
+                      unit_support_points.size());
+      std::vector<Point<1> > points1d (dofs1d);
+      for (unsigned int i=0; i<dofs1d; ++i)
+       {
+         const unsigned int j = index_map_inverse[i];
+         points1d[i] = Point<1>(unit_support_points[j](0));
+         for (unsigned int d=1; d<dim; ++d)
+           Assert (unit_support_points[j][d] == 0.,
+                   ExcInternalError());
+       }
+      return Polynomials::generate_complete_Lagrange_basis (points1d);
+    }
   }
 }
 
@@ -470,12 +546,15 @@ FE_Q<dim,spacedim>::FE_Q (const unsigned int degree)
   initialize_unit_support_points ();
   initialize_unit_face_support_points ();
 
-                                  // compute constraint, embedding
-                                  // and restriction matrices
+                                  // reinit constraints
   initialize_constraints ();
+
+                                  // Reinit the vectors of restriction and
+                                  // prolongation matrices to the right sizes
+                                  // and compute the matrices
   this->reinit_restriction_and_prolongation_matrices();
-  initialize_embedding ();
-  initialize_restriction ();
+  initialize_embedding();
+  initialize_restriction();
 
   initialize_quad_dof_index_permutation();
 }
@@ -513,20 +592,14 @@ FE_Q<dim,spacedim>::FE_Q (const Quadrature<1> &points)
   initialize_unit_support_points (points);
   initialize_unit_face_support_points (points);
 
-                                  // compute constraint, embedding
-                                  // and restriction matrices
+                                  // reinit constraints
   Implementation::initialize_constraints (points, *this);
 
-                                  // Reinit the vectors of
-                                  // restriction and prolongation
-                                  // matrices to the right sizes
+                                  // Reinit the vectors of restriction and
+                                  // prolongation matrices to the right sizes
+                                  // and compute the matrices
   this->reinit_restriction_and_prolongation_matrices();
-
-                                  // Fill prolongation matrices with
-                                  // embedding operators
-  initialize_embedding ();
-
-                                  // Fill restriction matrices
+  initialize_embedding();
   initialize_restriction();
 
   initialize_quad_dof_index_permutation();
@@ -958,7 +1031,7 @@ get_subface_interpolation_matrix (const FiniteElement<dim,spacedim> &x_source_fe
          for (unsigned int i=0; i<this->dofs_per_face; ++i)
            sum += interpolation_matrix(j,i);
 
-         Assert (std::fabs(sum-1) < 2e-13*this->degree*this->degree*dim,
+         Assert (std::fabs(sum-1) < 2e-13*this->degree*dim,
                  ExcInternalError());
        }
     }
@@ -1483,54 +1556,54 @@ FE_Q<dim,spacedim>::initialize_embedding ()
                                   // value eps is used a threshold to
                                   // decide when certain evaluations of the
                                   // Lagrange polynomials are zero or one.
-  const double eps = 1e-13*this->degree*this->degree*this->degree*this->degree*dim;
-
-  unsigned n_ones = 0;
-                                  // precompute subcell interpolation
-                                  // information, which will give us a
-                                  // vector of permutations. it actually is
-                                  // a matrix (the inverse of which we'd
-                                  // need to multiply the celL
-                                  // interpolation matrix with), but since
-                                  // we use Lagrangian basis functions
-                                  // here, we know that each basis function
-                                  // will just one at one node and zero on
-                                  // all the others. this makes this
-                                  // process much cheaper.
-  std::vector<unsigned int> subcell_permutations (this->dofs_per_cell,
-                                                 deal_II_numbers::invalid_unsigned_int);
-  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
-    for (unsigned int j=0; j<this->dofs_per_cell; ++j)
-      {
-       const Point<dim> p_subcell = this->unit_support_points[j];
-       const double
-         subcell_value = this->poly_space.compute_value (i, p_subcell);
+  const double eps = 1e-15*this->degree*dim;
 
-       if (std::fabs(subcell_value-1) < eps)
-         {
-           subcell_permutations[i] = j;
-                                  // in debug mode, still want to check
-                                  // whether we're not getting any strange
-                                  // results with more than one 1 per row.
-#ifndef DEBUG
-           break;
-#else
-           n_ones++;
-#endif
-         }
-       else
-         Assert (std::fabs(subcell_value) < eps,
+#ifdef DEBUG
+                               // in DEBUG mode, check that the evaluation of
+                               // support points in the current numbering
+                               // gives the identity operation
+  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
+    {
+      Assert (std::fabs (1.-this->poly_space.compute_value
+                        (i, this->unit_support_points[i])) < eps,
+             ExcInternalError());
+      for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+       if (j!=i)
+         Assert (std::fabs (this->poly_space.compute_value
+                            (i, this->unit_support_points[j])) < eps,
                  ExcInternalError());
+    }
+#endif
+
+                               // to efficiently evaluate the polynomial at
+                               // the subcell, make use of the tensor product
+                               // structure of this element and only evaluate
+                               // 1D information from the polynomial. This
+                               // makes the cost of this function almost
+                               // negligible also for high order elements
+  const unsigned int dofs1d = this->degree+1;
+  std::vector<Table<2,double> >
+    subcell_evaluations (dim, Table<2,double>(dofs1d, dofs1d));
+  const std::vector<unsigned int> &index_map_inverse =
+    this->poly_space.get_numbering_inverse();
+
+                               //  recreate 1D polynomials
+  std::vector<Polynomials::Polynomial<double> > poly_space1d =
+    FE_Q_Helper::generate_poly_space1d (this->unit_support_points,
+                                        index_map_inverse, dofs1d);
+
+                               // helper value: step size how to walk through
+                               // diagonal and how many points we have left
+                               // apart from the first dimension
+  unsigned int step_size_diag = 0;
+  {
+    unsigned int factor = 1;
+    for (unsigned int d=0; d<dim; ++d)
+      {
+       step_size_diag += factor;
+       factor *= dofs1d;
       }
-                                            // make sure that we only
-                                            // extracted a single one per
-                                            // row, and that each row
-                                            // actually got one value
-  Assert (n_ones == this->dofs_per_cell,
-         ExcDimensionMismatch(n_ones, this->dofs_per_cell));
-  for (unsigned int i=0; i<this->dofs_per_cell; ++i)
-    Assert (subcell_permutations[i] < this->dofs_per_cell,
-           ExcInternalError());
+  }
 
                                             // next evaluate the functions
                                             // for the different refinement
@@ -1538,20 +1611,20 @@ FE_Q<dim,spacedim>::initialize_embedding ()
   for (unsigned int ref=0; ref<RefinementCase<dim>::isotropic_refinement; ++ref)
     for (unsigned int child=0; child<GeometryInfo<dim>::n_children(RefinementCase<dim>(ref+1)); ++child)
       {
-       for (unsigned int j=0; j<this->dofs_per_cell; ++j)
+                               // go through the points in diagonal to
+                               // capture variation in all directions
+                               // simultaneously
+       for (unsigned int j=0; j<dofs1d; ++j)
          {
-                                            // generate a point on the
-                                            // child cell and evaluate the
-                                            // shape functions there
-           const Point<dim> p_subcell = this->unit_support_points[j];
+           const unsigned int diag_comp = index_map_inverse[j*step_size_diag];
+           const Point<dim> p_subcell = this->unit_support_points[diag_comp];
            const Point<dim> p_cell =
              GeometryInfo<dim>::child_to_cell_coordinates (p_subcell, child,
                                                            RefinementCase<dim>(ref+1));
-
-           for (unsigned int i=0; i<this->dofs_per_cell; ++i)
-             {
-               const double
-                 cell_value    = this->poly_space.compute_value (i, p_cell);
+           for (unsigned int i=0; i<dofs1d; ++i)
+             for (unsigned int d=0; d<dim; ++d)
+               {
+                 const double cell_value = poly_space1d[i].value (p_cell[d]);
 
                                   // cut off values that are too
                                   // small. note that we have here Lagrange
@@ -1563,7 +1636,7 @@ FE_Q<dim,spacedim>::initialize_embedding ()
                                   //
                                   // the actual cut-off value is somewhat
                                   // fuzzy, but it works for
-                                  // 2e-13*degree^2*dim (see above), which
+                                  // 2e-13*degree*dim (see above), which
                                   // is kind of reasonable given that we
                                   // compute the values of the polynomials
                                   // via an degree-step recursion and then
@@ -1579,25 +1652,63 @@ FE_Q<dim,spacedim>::initialize_embedding ()
                                   // all we need to do is to switch the
                                   // rows we write the data into. moreover,
                                   // cut off very small values here
-               if (std::fabs(cell_value) < eps)
-                 this->prolongation[ref][child](subcell_permutations[j],i) = 0;
-               else
-                 this->prolongation[ref][child](subcell_permutations[j],i) =
-                   cell_value;
+                 if (std::fabs(cell_value) < eps)
+                   subcell_evaluations[d](j,i) = 0;
+                 else
+                   subcell_evaluations[d](j,i) = cell_value;
+               }
+         }
+
+                               // now expand from 1D info. block innermost
+                               // dimension (x_0) in order to avoid difficult
+                               // checks at innermost loop
+       unsigned int j_indices[dim];
+       FE_Q_Helper::zero_indices<dim> (j_indices);
+       for (unsigned int j=0; j<this->dofs_per_cell; j+=dofs1d)
+         {
+           unsigned int i_indices[dim];
+           FE_Q_Helper::zero_indices<dim> (i_indices);
+           for (unsigned int i=0; i<this->dofs_per_cell; i+=dofs1d)
+             {
+               double val_extra_dim = 1.;
+               for (unsigned int d=1; d<dim; ++d)
+                 val_extra_dim *= subcell_evaluations[d](j_indices[d-1],
+                                                         i_indices[d-1]);
+
+                               // innermost sum where we actually
+                               // compute. the same as
+                               // this->prolongation[ref][child](j,i) =
+                               // this->poly_space.compute_value (i, p_cell);
+               for (unsigned int jj=0; jj<dofs1d; ++jj)
+                 {
+                   const unsigned int j_ind = index_map_inverse[j+jj];
+                   for (unsigned int ii=0; ii<dofs1d; ++ii)
+                     this->prolongation[ref][child](j_ind,index_map_inverse[i+ii])
+                       = val_extra_dim * subcell_evaluations[0](jj,ii);
+                 }
+
+                               // update indices that denote the tensor
+                               // product position. a bit fuzzy and therefore
+                               // not done for innermost x_0 direction
+               FE_Q_Helper::increment_indices<dim> (i_indices, dofs1d);
              }
+           Assert (i_indices[dim-1] == 1, ExcInternalError());
+           FE_Q_Helper::increment_indices<dim> (j_indices, dofs1d);
          }
 
                                   // and make sure that the row sum is
                                   // 1. this must be so since for this
                                   // element, the shape functions add up to
                                   // one
+#ifdef DEBUG
        for (unsigned int row=0; row<this->dofs_per_cell; ++row)
          {
            double sum = 0;
            for (unsigned int col=0; col<this->dofs_per_cell; ++col)
              sum += this->prolongation[ref][child](row,col);
-           Assert (std::fabs(sum-1.) < this->degree*eps, ExcInternalError());
+           Assert (std::fabs(sum-1.) < eps, ExcInternalError());
          }
+#endif
       }
 }
 
@@ -1630,10 +1741,7 @@ FE_Q<dim,spacedim>::initialize_restriction ()
                                    // function there. rather than
                                    // doing it for the shape functions
                                    // on the mother cell, we take the
-                                   // interpolation points there are
-                                   // also search which shape function
-                                   // corresponds to it (too lazy to
-                                   // do this mapping by hand)
+                                   // interpolation points there
                                    //
                                    // note that the interpolation
                                    // point of a shape function can be
@@ -1653,33 +1761,22 @@ FE_Q<dim,spacedim>::initialize_restriction ()
                                    // (compute on a later child), so
                                    // we don't have to care about this
 
-  const double eps = 1e-13*this->degree*this->degree*this->degree*this->degree*dim;
-  const std::vector<unsigned int> &index_map_inverse=
+  const double eps = 1e-15*this->degree*dim;
+  const std::vector<unsigned int> &index_map_inverse =
     this->poly_space.get_numbering_inverse();
+
+                               //  recreate 1D polynomials for faster
+                               //  evaluation of polynomial
+  const unsigned int dofs1d = this->degree+1;
+  std::vector<Polynomials::Polynomial<double> > poly_space1d =
+    FE_Q_Helper::generate_poly_space1d (this->unit_support_points,
+                                        index_map_inverse, dofs1d);
+  std::vector<Tensor<1,dim> > evaluations1d (dofs1d);
+
   for (unsigned int i=0; i<this->dofs_per_cell; ++i)
     {
-      const Point<dim> p_cell = this->unit_support_points[index_map_inverse[i]];
-      unsigned int mother_dof = 0;
-      for (; mother_dof<this->dofs_per_cell; ++mother_dof)
-        {
-          const double val
-            = this->poly_space.compute_value(mother_dof, p_cell);
-          if (std::fabs (val-1.) < eps)
-                                             // ok, this is the right
-                                             // dof
-            break;
-          else
-                                             // make sure that all
-                                             // other shape functions
-                                             // are zero there
-            Assert (std::fabs(val) < eps, ExcInternalError());
-        }
-                                       // check also the shape
-                                       // functions after that
-      for (unsigned int j=mother_dof+1; j<this->dofs_per_cell; ++j)
-        Assert (std::fabs (this->poly_space.compute_value(j, p_cell))
-                < eps,
-                ExcInternalError());
+      unsigned int mother_dof = index_map_inverse[i];
+      const Point<dim> p_cell = this->unit_support_points[mother_dof];
 
                                        // then find the children on
                                        // which the interpolation
@@ -1687,18 +1784,33 @@ FE_Q<dim,spacedim>::initialize_restriction ()
       for (unsigned int ref=RefinementCase<dim>::cut_x; ref<=RefinementCase<dim>::isotropic_refinement; ++ref)
        for (unsigned int child=0; child<GeometryInfo<dim>::n_children(RefinementCase<dim>(ref)); ++child)
          {
-                                            // first initialize this
-                                            // column of the matrix
-           for (unsigned int j=0; j<this->dofs_per_cell; ++j)
-             this->restriction[ref-1][child](mother_dof, j) = 0.;
-
-                                            // then check whether this
+                                            // check whether this
                                             // interpolation point is
                                             // inside this child cell
            const Point<dim> p_subcell
              = GeometryInfo<dim>::cell_to_child_coordinates (p_cell, child, RefinementCase<dim>(ref));
            if (GeometryInfo<dim>::is_inside_unit_cell (p_subcell))
              {
+                               // same logic as in initialize_embedding to
+                               // evaluate the polynomial faster than from
+                               // the tensor product: since we evaluate all
+                               // polynomials, it is much faster to just
+                               // compute the 1D values for all polynomials
+                               // before and then get the dim-data.
+               for (unsigned int j=0; j<dofs1d; ++j)
+                 for (unsigned int d=0; d<dim; ++d)
+                   evaluations1d[j][d] = poly_space1d[j].value (p_subcell[d]);
+               unsigned int j_indices[dim];
+               FE_Q_Helper::zero_indices<dim> (j_indices);
+               double sum_check = 0;
+               for (unsigned int j = 0; j<this->dofs_per_cell; j += dofs1d)
+                 {
+                   double val_extra_dim = 1.;
+                   for (unsigned int d=1; d<dim; ++d)
+                     val_extra_dim *= evaluations1d[j_indices[d-1]][d];
+                   for (unsigned int jj=0; jj<dofs1d; ++jj)
+                     {
+
                                                 // find the child shape
                                                 // function(s) corresponding
                                                 // to this point. Usually
@@ -1711,20 +1823,19 @@ FE_Q<dim,spacedim>::initialize_restriction ()
                                                 // get more than one nonzero
                                                 // value per row. Still, the
                                                 // values should sum up to 1
-               double sum_check = 0;
-               for (unsigned int child_dof = 0; child_dof<this->dofs_per_cell;
-                    ++child_dof)
-                 {
-                   const double val
-                     = this->poly_space.compute_value(child_dof, p_subcell);
-                   if (std::fabs (val-1.) < eps)
-                     this-> restriction[ref-1][child](mother_dof,child_dof)=1.;
-                   else if(std::fabs(val) > eps)
-                     this->restriction[ref-1][child](mother_dof,child_dof)= val;
-
-                   sum_check += val;
+                       const double val
+                         = val_extra_dim * evaluations1d[jj][0];
+                       const unsigned int child_dof =
+                         index_map_inverse[j+jj];
+                       if (std::fabs (val-1.) < eps)
+                         this->restriction[ref-1][child](mother_dof,child_dof)=1.;
+                       else if(std::fabs(val) > eps)
+                         this->restriction[ref-1][child](mother_dof,child_dof)=val;
+                       sum_check += val;
+                     }
+                   FE_Q_Helper::increment_indices<dim> (j_indices, dofs1d);
                  }
-               Assert (std::fabs(sum_check-1) < this->degree*eps,
+               Assert (std::fabs(sum_check-1) < eps,
                        ExcInternalError());
              }
          }

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.