interior penalty discretization of the Laplacian, i.e., the same scheme as the
one used for the step-39 tutorial program. The discretization of the Laplacian
is given by the following weak form
-@f{eqnarray*}
-&&\sum_{K\in\text{cells}} \left(\nabla v_h, \nabla u_h\right)_{K}+\\
-&&\sum_{F\in\text{faces}}\Big(-\left<[\![v_h]\!], \{\!\{\nabla u_h\}\!\}\right>_{F} - \left<\{\!\{\nabla v_h\}\!\}, \left<[\![u_h]\!]\right>_{F}\right) + \left<\left<[\![v_h]\!], \sigma \left<[\![u_h]\!]\right>_{F}\Big) \\
-&&= \sum_{K\in\text{cells}}\left(v_h, f\right)_{K},
+@f{align*}
+&\sum_{K\in\text{cells}} \left(\nabla v_h, \nabla u_h\right)_{K}+\\
+&\sum_{F\in\text{faces}}\Big(-\left<[\![v_h]\!], \{\!\{\nabla u_h\}\!\}\right>_{F} - \left<\{\!\{\nabla v_h\}\!\}, \left<[\![u_h]\!]\right>_{F}\right) + \left<\left<[\![v_h]\!], \sigma \left<[\![u_h]\!]\right>_{F}\Big) \\
+&= \sum_{K\in\text{cells}}\left(v_h, f\right)_{K},
@f}
where $[\![v]\!] = v^- \mathbf{n}^- + v^+ \mathbf{n}^+ = \mathbf n^{-}
\left(v^- - v^+\right)$ denotes the directed jump of the quantity $v$ from the