Functions::ParsedFunction<dim> wind;
Functions::ParsedFunction<dim> exact_solution;
- std_cxx0x::shared_ptr<Quadrature<dim-1> > quadrature_pointer;
+ std_cxx0x::shared_ptr<Quadrature<dim-1> > quadrature;
unsigned int singular_quadrature_order;
unsigned int n_cycles;
prm.enter_subsection("Quadrature rules");
{
- quadrature_pointer =
+ quadrature =
std_cxx0x::shared_ptr<Quadrature<dim-1> >
(new QuadratureSelector<dim-1> (prm.get("Quadrature type"),
prm.get_integer("Quadrature order")));
cell = dh.begin_active(),
endc = dh.end();
- // Quadrature formula for the integration of the kernel in non
- // singular cells. This quadrature is selected with the parameter
- // file, and should be quite precise, since the functions we are
- // integrating are not polynomial functions.
- Quadrature<dim-1> &quadrature = *quadrature_pointer;
-
// We create initially the singular quadratures for the
// threedimensional problem, since in this case they only
// dependent on the reference element. This quadrature is a
(QGaussOneOverR<2>(singular_quadrature_order, i, true));
}
- FEValues<dim-1,dim> fe_v(fe, quadrature,
+ // Initialize an FEValues object with the quadrature formula for the
+ // integration of the kernel in non singular cells. This quadrature is
+ // selected with the parameter file, and should be quite precise, since
+ // the functions we are integrating are not polynomial functions.
+ FEValues<dim-1,dim> fe_v(fe, *quadrature,
update_values |
update_cell_normal_vectors |
update_quadrature_points |
endc = dh.end();
- Quadrature<dim-1> &quadrature = *quadrature_pointer;
-
- FEValues<dim-1,dim> fe_v(fe, quadrature,
+ FEValues<dim-1,dim> fe_v(fe, *quadrature,
update_values |
update_cell_normal_vectors |
update_quadrature_points |