]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Further cleanups and documentation work.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 27 Oct 2008 14:57:31 +0000 (14:57 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 27 Oct 2008 14:57:31 +0000 (14:57 +0000)
git-svn-id: https://svn.dealii.org/trunk@17350 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-31/step-31.cc
deal.II/examples/step-32/step-32.cc

index b0a50ccfe068b72662f6af84a73db338aa2a592f..35a0cf3b190c8d34d00005338363f0f1012531d7 100644 (file)
@@ -1187,9 +1187,9 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
                                   // degrees of freedom, so we can let the
                                   // DoFTools::make_sparsity_pattern function
                                   // omit these entries by setting the last
-                                  // boolean flag to <tt>false</tt>. Once the
-                                  // sparsity pattern is ready, we can use it
-                                  // to initialize the Trilinos
+                                  // boolean flag to <code>false</code>. Once
+                                  // the sparsity pattern is ready, we can
+                                  // use it to initialize the Trilinos
                                   // matrices. Note that the Trilinos
                                   // matrices store the sparsity pattern
                                   // internally, so there is no need to keep
@@ -1310,25 +1310,25 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
                                  // we create data structures for the cell
                                  // matrix and the relation between local and
                                  // global DoFs. The vectors
-                                 // <tt>phi_grad_u</tt> and <tt>phi_p</tt> are
-                                 // going to hold the values of the basis
-                                 // functions in order to faster build up the
-                                 // local matrices, as was already done in
-                                 // step-22. Before we start the loop over all
-                                 // active cells, we have to specify which
-                                 // components are pressure and which are
-                                 // velocity.
+                                 // <code>phi_grad_u</code> and
+                                 // <code>phi_p</code> are going to hold the
+                                 // values of the basis functions in order to
+                                 // faster build up the local matrices, as was
+                                 // already done in step-22. Before we start
+                                 // the loop over all active cells, we have to
+                                 // specify which components are pressure and
+                                 // which are velocity.
 template <int dim>
 void
 BoussinesqFlowProblem<dim>::assemble_stokes_preconditioner ()
 {
   stokes_preconditioner_matrix = 0;
 
-  QGauss<dim>   quadrature_formula(stokes_degree+2);
-  FEValues<dim> stokes_fe_values (stokes_fe, quadrature_formula,
-                                 update_JxW_values |
-                                 update_values |
-                                 update_gradients);
+  const QGauss<dim> quadrature_formula(stokes_degree+2);
+  FEValues<dim>     stokes_fe_values (stokes_fe, quadrature_formula,
+                                     update_JxW_values |
+                                     update_values |
+                                     update_gradients);
 
   const unsigned int   dofs_per_cell   = stokes_fe.dofs_per_cell;
   const unsigned int   n_q_points      = quadrature_formula.size();
@@ -1397,19 +1397,22 @@ BoussinesqFlowProblem<dim>::assemble_stokes_preconditioner ()
 
 
 
-                                // @sect4{BoussinesqFlowProblem::assemble_stokes_preconditioner}
+                                // @sect4{BoussinesqFlowProblem::build_stokes_preconditioner}
                                 // 
                                 // This function generates the inner
-                                // preconditioners that are going to be
-                                // used for the Schur complement block
-                                // preconditioner. Since the
-                                // preconditioners need only to be
-                                // regenerated when the matrices change,
-                                // this function does not have to do
-                                // anything in case the matrices have not
-                                // changed (i.e., the flag
-                                // <tt>rebuild_stokes_preconditioner</tt>
-                                // has the value <tt>false</tt>).
+                                // preconditioners that are going to be used
+                                // for the Schur complement block
+                                // preconditioner. Since the preconditioners
+                                // need only to be regenerated when the
+                                // matrices change, this function does not
+                                // have to do anything in case the matrices
+                                // have not changed (i.e., the flag
+                                // <code>rebuild_stokes_preconditioner</code>
+                                // has the value
+                                // <code>false</code>). Otherwise its first
+                                // task is to call
+                                // <code>assemble_stokes_preconditioner</code>
+                                // to generate the preconditioner matrices.
                                 // 
                                 // Next, we set up the preconditioner for
                                 // the velocity-velocity matrix
@@ -1430,8 +1433,8 @@ BoussinesqFlowProblem<dim>::assemble_stokes_preconditioner ()
                                 // vector component. We do this using the
                                 // function
                                 // DoFTools::extract_constant_modes, a
-                                // function that generates a bunch of
-                                // <tt>dim</tt> vectors, where each one
+                                // function that generates a set of
+                                // <code>dim</code> vectors, where each one
                                 // has ones in the respective component
                                 // of the vector problem and zeros
                                 // elsewhere. Hence, these are the
@@ -1461,46 +1464,52 @@ BoussinesqFlowProblem<dim>::build_stokes_preconditioner ()
   amg_data.constant_modes = constant_modes;
 
                                   // Next, we set some more options of the
-                                  // AMG preconditioner. In particular,
+                                  // AMG preconditioner. In particular, we
                                   // need to tell the AMG setup that we use
                                   // quadratic basis functions for the
                                   // velocity matrix (this implies more
-                                  // nonzero elements in the matrix, so
-                                  // that a more rubust algorithm needs to
-                                  // be chosen internally). Moreover, we
-                                  // want to be able to control how the
-                                  // coarsening structure is build up. The
-                                  // way AMG does this is to look which
-                                  // matrix entries are of similar size
-                                  // than the diagonal entry in order to
-                                  // algebraically build a coarse-grid
-                                  // structure. By setting the parameter
-                                  // <tt>aggregation_threshold</tt> to
+                                  // nonzero elements in the matrix, so that
+                                  // a more rubust algorithm needs to be
+                                  // chosen internally). Moreover, we want to
+                                  // be able to control how the coarsening
+                                  // structure is build up. The way AMG does
+                                  // this is to look which matrix entries are
+                                  // of similar size as the diagonal entry in
+                                  // order to algebraically build a
+                                  // coarse-grid structure. By setting the
+                                  // parameter
+                                  // <code>aggregation_threshold</code> to
                                   // 0.05, we specify that all entries that
                                   // are more than five precent of size of
-                                  // some diagonal pivots in that row
-                                  // should form one coarse grid
-                                  // point. This parameter is rather
-                                  // ad-hoc, and some fine-tuning of it can
-                                  // influence the performance of the
-                                  // preconditioner. As a rule of thumb,
-                                  // larger values of
-                                  // <tt>aggregation_threshold</tt> will
+                                  // some diagonal pivots in that row should
+                                  // form one coarse grid point. This
+                                  // parameter is rather ad-hoc, and some
+                                  // fine-tuning of it can influence the
+                                  // performance of the preconditioner. As a
+                                  // rule of thumb, larger values of
+                                  // <code>aggregation_threshold</code> will
                                   // decrease the number of iterations, but
-                                  // increase the costs per iteration.
+                                  // increase the costs per iteration. A look
+                                  // at the Trilinos documentation will
+                                  // provide more information on these
+                                  // parameters. With this data set, we then
+                                  // initialize the preconditioner with the
+                                  // matrix we want it to apply to.
                                   // 
-                                  // Eventually, we initialize the
-                                  // preconditioner for the inversion of
-                                  // the pressure mass matrix. This matrix
-                                  // is symmetric and well-behaved, so we
-                                  // can chose a simple preconditioner. We
-                                  // stick with an incomple Cholesky (IC)
+                                  // Finally, we also initialize the
+                                  // preconditioner for the inversion of the
+                                  // pressure mass matrix. This matrix is
+                                  // symmetric and well-behaved, so we can
+                                  // chose a simple preconditioner. We stick
+                                  // with an incomple Cholesky (IC)
                                   // factorization preconditioner, which is
-                                  // designed for symmetric matrices. We
-                                  // wrap the preconditioners into a
-                                  // boost::shared_ptr pointer, which makes
-                                  // it easier to recreate the
-                                  // preconditioner.
+                                  // designed for symmetric matrices. We wrap
+                                  // the preconditioners into a
+                                  // <code>boost::shared_ptr</code> pointer,
+                                  // which makes it easier to recreate the
+                                  // preconditioner next time around since we
+                                  // do not have to care about destroying the
+                                  // previously used object.
   amg_data.elliptic = true;
   amg_data.higher_order_elements = true;
   amg_data.aggregation_threshold = 5e-2;
@@ -1528,53 +1537,50 @@ BoussinesqFlowProblem<dim>::build_stokes_preconditioner ()
                                 // Stokes system matrix and right hand
                                 // side, and the second is to create matrix
                                 // and right hand sides for the temperature
-                                // dofs, which depends on the result for
-                                // the velocity.
+                                // dofs, which depends on the result of the
+                                // linear system for the velocity.
                                 // 
-                                // This function does the first of these
-                                // two tasks. There are two different
-                                // situations for calling this
-                                // function. The first one is when we reset
-                                // the mesh, and both the matrix and the
-                                // right hand side have to be
-                                // generated. The second situation only
-                                // sets up the right hand side. The reason
-                                // for having two different accesses is
-                                // that the matrix of the Stokes system
-                                // does not change in time unless the mesh
-                                // is changed, so we can save a
-                                // considerable amount of work by doing the
-                                // full assembly only when it is needed.
+                                // This function is called at the beginning
+                                // of each time step. In the first time step
+                                // or if the mesh has changed, indicated by
+                                // the <code>rebuild_stokes_matrix</code>, we
+                                // need to assemble the Stokes matrix; on the
+                                // other hand, if the mesh hasn't changed and
+                                // the matrix is already available, this is
+                                // not necessary and all we need to do is
+                                // assemble the right hand side vector which
+                                // changes in each time step.
                                 // 
                                 // Regarding the technical details of
-                                // implementation, not much has changed
-                                // from step-22. We reset matrix and
-                                // vector, create a quadrature formula on
-                                // the cells and one on cell faces (for
-                                // implementing Neumann boundary
-                                // conditions). Then, we create a
-                                // respective FEValues object for both the
-                                // cell and the face integration. For the
-                                // the update flags of the first, we
-                                // perform the calculations of basis
-                                // function derivatives only in case of a
-                                // full assembly, since they are not needed
-                                // otherwise, which makes the call of the
-                                // FEValues::reinit function further down
-                                // in the program more efficient.
+                                // implementation, not much has changed from
+                                // step-22. We reset matrix and vector,
+                                // create a quadrature formula on the cells,
+                                // and then create the respective FEValues
+                                // object. For the update flags, we require
+                                // basis function derivatives only in case of
+                                // a full assembly, since they are not needed
+                                // for the right hand side; as always,
+                                // choosing the minimal set of flags
+                                // depending on what is currently needed
+                                // makes the call to FEValues::reinit further
+                                // down in the program more efficient.
                                  //
                                 // There is one thing that needs to be
-                                // commented &ndash; since we have a
-                                // individual finite element and DoFHandler
-                                // for the temperature, we need to generate
-                                // a second FEValues object for the proper
-                                // evaluation of the temperature
-                                // solution. This isn't too complicated to
-                                // realize here: just use the temperature
-                                // structures and set an update flag for
-                                // the basis function values which we need
-                                // for evaluation of the temperature
-                                // solution.
+                                // commented &ndash; since we have a separate
+                                // finite element and DoFHandler for the
+                                // temperature, we need to generate a second
+                                // FEValues object for the proper evaluation
+                                // of the temperature solution. This isn't
+                                // too complicated to realize here: just use
+                                // the temperature structures and set an
+                                // update flag for the basis function values
+                                // which we need for evaluation of the
+                                // temperature solution. The only important
+                                // part to remember here is that the same
+                                // quadrature formula is used for both
+                                // FEValues objects to ensure that we get
+                                // matching information when we loop over the
+                                // quadrature points of the two objects.
                                 // 
                                 // The declarations proceed with some
                                 // shortcuts for array sizes, the creation
@@ -1592,20 +1598,19 @@ void BoussinesqFlowProblem<dim>::assemble_stokes_system ()
 
   stokes_rhs=0;
 
-  QGauss<dim>   quadrature_formula (stokes_degree+2);
-
-  FEValues<dim> stokes_fe_values (stokes_fe, quadrature_formula,
-                                 update_values    |
-                                 update_quadrature_points  |
-                                 update_JxW_values |
-                                 (rebuild_stokes_matrix == true
-                                  ?
-                                  update_gradients
-                                  :
-                                  UpdateFlags(0)));
-
-  FEValues<dim> temperature_fe_values (temperature_fe, quadrature_formula,
-                                      update_values);
+  const QGauss<dim> quadrature_formula (stokes_degree+2);
+  FEValues<dim>     stokes_fe_values (stokes_fe, quadrature_formula,
+                                     update_values    |
+                                     update_quadrature_points  |
+                                     update_JxW_values |
+                                     (rebuild_stokes_matrix == true
+                                      ?
+                                      update_gradients
+                                      :
+                                      UpdateFlags(0)));
+  
+  FEValues<dim>     temperature_fe_values (temperature_fe, quadrature_formula,
+                                          update_values);
 
   const unsigned int   dofs_per_cell   = stokes_fe.dofs_per_cell;
   const unsigned int   n_q_points      = quadrature_formula.size();
@@ -1615,21 +1620,24 @@ void BoussinesqFlowProblem<dim>::assemble_stokes_system ()
 
   std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-                                  // The vector
-                                  // <code>old_solution_values</code>
-                                  // evaluates the temperature solution at
-                                  // the old time level at the quadrature
-                                  // points, which is needed for building
-                                  // the source term in the right hand side
-                                  // of the momentum equation.
+                                  // Next we need a vector that will contain
+                                  // the values of the temperature solution
+                                  // at the previous time level at the
+                                  // quadrature points to assemble the source
+                                  // term in the right hand side of the
+                                  // momentum equation. Let's call this vector
+                                  // <code>old_solution_values</code>.
                                   // 
                                   // The set of vectors we create next hold
                                   // the evaluations of the basis functions
-                                  // that will be used for creating the
-                                  // matrices. This gives faster access to
-                                  // that data, which increases the
-                                  // performance of the assembly. See
-                                  // step-22 for details.
+                                  // as well as their gradients and
+                                  // symmetrized gradients that will be used
+                                  // for creating the matrices. Putting these
+                                  // into their own arrays rather than asking
+                                  // the FEValues object for this information
+                                  // each time it is needed is an
+                                  // optimization to accelerate the assembly
+                                  // process, see step-22 for details.
                                   // 
                                   // The last two declarations are used to
                                   // extract the individual blocks
@@ -1655,13 +1663,13 @@ void BoussinesqFlowProblem<dim>::assemble_stokes_system ()
                                   // and the temperature system use the
                                   // same grid, but that's the only way to
                                   // keep degrees of freedom in sync. The
-                                  // first commands within the loop are
+                                  // first statements within the loop are
                                   // again all very familiar, doing the
                                   // update of the finite element data as
                                   // specified by the update flags, zeroing
                                   // out the local arrays and getting the
                                   // values of the old solution at the
-                                  // quadrature point. Then we are ready to
+                                  // quadrature points. Then we are ready to
                                   // loop over the quadrature points on the
                                   // cell.
   typename DoFHandler<dim>::active_cell_iterator
@@ -1685,23 +1693,29 @@ void BoussinesqFlowProblem<dim>::assemble_stokes_system ()
        {
          const double old_temperature = old_temperature_values[q];
 
-                                          // Extract the basis relevant terms in
-                                          // the inner products once in advance as
-                                          // shown in step-22 in order to
-                                          // accelerate assembly.
+                                          // Next we extract the values and
+                                          // gradients of basis functions
+                                          // relevant to the terms in the
+                                          // inner products. As shown in
+                                          // step-22 this helps accelerate
+                                          // assembly.
                                           // 
-                                          // Once this is done, we start the loop
-                                          // over the rows and columns of the local
-                                          // matrix and feed the matrix with the
-                                          // relevant products. The right hand side
-                                          // is filled with the forcing term driven
-                                          // by temperature in direction of gravity
-                                          // (which is vertical in our example).
-                                          // Note that the right hand side term is
-                                          // always generated, whereas the matrix
-                                          // contributions are only updated when it
-                                          // is requested by the
-                                          // <code>rebuild_matrices</code> flag.
+                                          // Once this is done, we start the
+                                          // loop over the rows and columns
+                                          // of the local matrix and feed the
+                                          // matrix with the relevant
+                                          // products. The right hand side is
+                                          // filled with the forcing term
+                                          // driven by temperature in
+                                          // direction of gravity (which is
+                                          // vertical in our example).  Note
+                                          // that the right hand side term is
+                                          // always generated, whereas the
+                                          // matrix contributions are only
+                                          // updated when it is requested by
+                                          // the
+                                          // <code>rebuild_matrices</code>
+                                          // flag.
          for (unsigned int k=0; k<dofs_per_cell; ++k)
            {
              phi_u[k] = stokes_fe_values[velocities].value (k,q);
@@ -1733,16 +1747,14 @@ void BoussinesqFlowProblem<dim>::assemble_stokes_system ()
                                       // The last step in the loop over all
                                       // cells is to enter the local
                                       // contributions into the global matrix
-                                      // and vector structures to the positions
-                                      // specified in
+                                      // and vector structures to the
+                                      // positions specified in
                                       // <code>local_dof_indices</code>.
-                                      // Again, we only add the matrix data
-                                      // when it is requested. Again, we let
-                                      // the ConstraintMatrix class do the
-                                      // insertion of the cell matrix elements
-                                      // to the global matrix, which already
-                                      // condenses the hanging node
-                                      // constraints.
+                                      // Again, we let the ConstraintMatrix
+                                      // class do the insertion of the cell
+                                      // matrix elements to the global
+                                      // matrix, which already condenses the
+                                      // hanging node constraints.
       cell->get_dof_indices (local_dof_indices);
 
       if (rebuild_stokes_matrix == true)
@@ -1786,7 +1798,7 @@ void BoussinesqFlowProblem<dim>::assemble_stokes_system ()
                                 // the stiffness (diffusion) matrix. We
                                 // will then sum up the matrix plus the
                                 // stiffness matrix times the time step
-                                // size.
+                                // size once we know the actual time step.
                                 // 
                                 // So the details for this first step are
                                 // very simple. In case we need to
@@ -1806,7 +1818,7 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_matrix ()
   temperature_mass_matrix = 0;
   temperature_stiffness_matrix = 0;
   
-  QGauss<dim>   quadrature_formula(temperature_degree+2);
+  QGauss<dim>   quadrature_formula (temperature_degree+2);
   FEValues<dim> temperature_fe_values (temperature_fe, quadrature_formula,
                                       update_values    | update_gradients |
                                       update_JxW_values);
@@ -1819,25 +1831,23 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_matrix ()
 
   std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-  std::vector<double> gamma_values (n_q_points);
-
   std::vector<double>         phi_T       (dofs_per_cell);
   std::vector<Tensor<1,dim> > grad_phi_T  (dofs_per_cell);
 
-                                  // Now, let's start the loop over all
-                                  // cells in the triangulation. We need to
-                                  // zero out the local matrices, update
-                                  // the finite element evaluations, and
-                                  // then loop over the rows and columns of
-                                  // the matrices on each quadrature point,
-                                  // where we then create the mass matrix
-                                  // and the stiffness matrix (Laplace
-                                  // terms times the diffusion
-                                  // <tt>EquationData::kappa</tt>. Finally,
-                                  // we let the hanging node constraints
-                                  // insert these values into the global
-                                  // matrix, and directly condense the
-                                  // constraints into the matrix.
+                                  // Now, let's start the loop over all cells
+                                  // in the triangulation. We need to zero
+                                  // out the local matrices, update the
+                                  // finite element evaluations, and then
+                                  // loop over the rows and columns of the
+                                  // matrices on each quadrature point, where
+                                  // we then create the mass matrix and the
+                                  // stiffness matrix (Laplace terms times
+                                  // the diffusion
+                                  // <code>EquationData::kappa</code>. Finally,
+                                  // we let the constraints object insert
+                                  // these values into the global matrix, and
+                                  // directly condense the constraints into
+                                  // the matrix.
   typename DoFHandler<dim>::active_cell_iterator
     cell = temperature_dof_handler.begin_active(),
     endc = temperature_dof_handler.end();
@@ -1904,15 +1914,15 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_matrix ()
                                 // system, which means that we have to
                                 // evaluate second derivatives, specified
                                 // by the update flag
-                                // <tt>update_hessians</tt>. The
-                                // temperature equation is coupled to the
+                                // <code>update_hessians</code>.
+                                //
+                                // The temperature equation is coupled to the
                                 // Stokes system by means of the fluid
-                                // velocity, and these two parts of the
-                                // solution are associated with different
-                                // dof handlers. So we need to create a
-                                // second FEValues object for the
-                                // evaluation of the velocity at the
-                                // quadrature points.
+                                // velocity. These two parts of the solution
+                                // are associated with different DoFHandlers,
+                                // so we again need to create a second
+                                // FEValues object for the evaluation of the
+                                // velocity at the quadrature points.
 template <int dim>
 void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
 {
@@ -1933,13 +1943,15 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
   
   temperature_rhs = 0;
   
-  QGauss<dim>   quadrature_formula(temperature_degree+2);
-  FEValues<dim> temperature_fe_values (temperature_fe, quadrature_formula,
-                                      update_values    | update_gradients |
-                                      update_hessians |
-                                      update_quadrature_points  | update_JxW_values);
-  FEValues<dim> stokes_fe_values (stokes_fe, quadrature_formula,
-                                 update_values);
+  const QGauss<dim> quadrature_formula(temperature_degree+2);
+  FEValues<dim>     temperature_fe_values (temperature_fe, quadrature_formula,
+                                          update_values    |
+                                          update_gradients |
+                                          update_hessians  |
+                                          update_quadrature_points  |
+                                          update_JxW_values);
+  FEValues<dim>     stokes_fe_values (stokes_fe, quadrature_formula,
+                                     update_values);
 
   const unsigned int   dofs_per_cell   = temperature_fe.dofs_per_cell;
   const unsigned int   n_q_points      = quadrature_formula.size();
@@ -1949,21 +1961,19 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
 
   std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-                                  // Here comes the declaration of vectors
-                                  // to hold the old and present solution
-                                  // values and gradients for both the cell
-                                  // as well as faces to the cell, that
-                                  // will be generated from the global
-                                  // solution vectors. Next comes the
-                                  // declaration of an object to hold the
-                                  // temperature right hande side values,
-                                  // and we again use shortcuts for the
-                                  // temperature basis
-                                  // functions. Eventually, we need to find
-                                  // the maximum of velocity, temperature
-                                  // and the diameter of the computational
-                                  // domain which will be used for the
-                                  // definition of the stabilization
+                                  // Next comes the declaration of vectors to
+                                  // hold the old and present solution values
+                                  // and gradients at quadrature points of
+                                  // the current cell. We also declarate an
+                                  // object to hold the temperature right
+                                  // hande side values
+                                  // (<code>gamma_values</code>), and we
+                                  // again use shortcuts for the temperature
+                                  // basis functions. Eventually, we need to
+                                  // find the maximum of velocity,
+                                  // temperature and the diameter of the
+                                  // computational domain which will be used
+                                  // for the definition of the stabilization
                                   // parameter.
   std::vector<Vector<double> > present_stokes_values (n_q_points, 
                                                      Vector<double>(dim+1));
@@ -1985,16 +1995,21 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
     global_T_range = get_extrapolated_temperature_range();
   const double global_Omega_diameter = GridTools::diameter (triangulation);
 
-                                  // Now, let's start the loop over all
-                                  // cells in the triangulation. First set
-                                  // the local rhs to zero, and then get
-                                  // the values of the old solution
-                                  // functions (and the current velocity)
-                                  // at the quadrature points, since they
-                                  // are going to be needed for the
-                                  // definition of the stabilization
-                                  // parameters and as coefficients in the
-                                  // equation, respectively.
+                                  // Now, let's start the loop over all cells
+                                  // in the triangulation. Again, we need two
+                                  // cell iterators that walk in parallel
+                                  // through the cells of the two involved
+                                  // DoFHandler objects for the Stokes and
+                                  // temperature part. Within the loop, we
+                                  // first set the local rhs to zero, and
+                                  // then get the values and derivatives of
+                                  // the old solution functions (and the
+                                  // current velocity) at the quadrature
+                                  // points, since they are going to be
+                                  // needed for the definition of the
+                                  // stabilization parameters and as
+                                  // coefficients in the equation,
+                                  // respectively.
   typename DoFHandler<dim>::active_cell_iterator
     cell = temperature_dof_handler.begin_active(),
     endc = temperature_dof_handler.end();
@@ -2035,7 +2050,7 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
                                       // discussion in the introduction
                                       // using the dedicated
                                       // function. With that at hand, we
-                                      // can define get into the loop
+                                      // can get into the loop
                                       // over quadrature points and local
                                       // rhs vector components. The terms
                                       // here are quite lenghty, but
@@ -2146,19 +2161,19 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
                                 // @sect4{BoussinesqFlowProblem::solve}
                                 //
                                 // This function solves the linear
-                                // equation systems. According to
+                                // systems of equations. Following to
                                 // the introduction, we start with
                                 // the Stokes system, where we need
                                 // to generate our block Schur
                                 // preconditioner. Since all the
                                 // relevant actions are implemented
                                 // in the class
-                                // <tt>BlockSchurPreconditioner</tt>,
+                                // <code>BlockSchurPreconditioner</code>,
                                 // all we have to do is to
                                 // initialize the class
                                 // appropriately. What we need to
                                 // pass down is an
-                                // <tt>InverseMatrix</tt> object
+                                // <code>InverseMatrix</code> object
                                 // for the pressure mass matrix,
                                 // which we set up using the
                                 // respective class together with
@@ -2167,10 +2182,10 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
                                 // preconditioner for the
                                 // velocity-velocity matrix. Note
                                 // that both
-                                // <tt>Mp_preconditioner</tt> and
-                                // <tt>Amg_preconditioner</tt> are
+                                // <code>Mp_preconditioner</code> and
+                                // <code>Amg_preconditioner</code> are
                                 // only pointers, so we use
-                                // <tt>*</tt> to pass down the
+                                // <code>*</code> to pass down the
                                 // actual preconditioner objects.
                                 // 
                                 // Once the preconditioner is
@@ -2182,12 +2197,12 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
                                 // the solver. GMRES needs to
                                 // internally store temporary
                                 // vectors for each iteration (see
-                                // even the discussion in the
+                                // the discussion in the
                                 // results section of step-22)
                                 // &ndash; the more vectors it can
                                 // use, the better it will
-                                // generally perform. To let memory
-                                // demands not increase to much, we
+                                // generally perform. To keep memory
+                                // demands in check, we
                                 // set the number of vectors to
                                 // 100. This means that up to 100
                                 // solver iterations, every
@@ -2197,16 +2212,15 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
                                 // specified tolerance, it will
                                 // work on a reduced set of vectors
                                 // by restarting at every 100
-                                // iterations. Then, we solve the
-                                // system and distribute the
-                                // constraints in the Stokes
-                                // system, i.e. hanging nodes and
-                                // no-flux boundary condition, in
-                                // order to have the appropriate
-                                // solution values even at
-                                // constrained dofs. Finally, we
-                                // write the number of iterations
-                                // to the screen.
+                                // iterations.
+                                //
+                                // With this all set up, we solve the system
+                                // and distribute the constraints in the
+                                // Stokes system, i.e. hanging nodes and
+                                // no-flux boundary condition, in order to
+                                // have the appropriate solution values even
+                                // at constrained dofs. Finally, we write the
+                                // number of iterations to the screen.
 template <int dim>
 void BoussinesqFlowProblem<dim>::solve ()
 {
@@ -2237,39 +2251,47 @@ void BoussinesqFlowProblem<dim>::solve ()
               << std::endl;
   }
 
-                                  // Once we know the Stokes
-                                  // solution, we can determine the
-                                  // new time step from the maximal
-                                  // velocity. We have to do this to
+                                  // Once we know the Stokes solution, we can
+                                  // determine the new time step from the
+                                  // maximal velocity. We have to do this to
                                   // satisfy the CFL condition since
-                                  // convection terms are treated
-                                  // explicitly in the temperature
-                                  // equation, as discussed in the
-                                  // introduction. Next we set up the
-                                  // temperature system and the right
-                                  // hand side using the function
-                                  // <tt>assemble_temperature_system()</tt>. Knowing
-                                  // the matrix and right hand side
-                                  // of the temperature equation, we
-                                  // set up a preconditioner and a
-                                  // solver. The temperature matrix
-                                  // is a mass matrix plus a Laplace
-                                  // matrix times a small number, the
-                                  // time step. Hence, the mass
-                                  // matrix dominates and we get a
-                                  // reasonable good preconditioner
-                                  // by simple means, namely SSOR. We
-                                  // set the relaxation parameter to
-                                  // 1.2. As a solver, we choose the
-                                  // conjugate gradient method CG. As
-                                  // before, we tell the solver to
-                                  // use Trilinos vectors via the
-                                  // template argument
-                                  // <tt>TrilinosWrappers::Vector</tt>
-                                  // at construction. Finally, we
-                                  // solve, distribute the hanging
-                                  // node constraints and write out
-                                  // the number of iterations.
+                                  // convection terms are treated explicitly
+                                  // in the temperature equation, as
+                                  // discussed in the introduction. The exact
+                                  // form of the formula used here for the
+                                  // time step is discussed in the results
+                                  // section of this program.
+                                  //
+                                  // Next we set up the temperature system
+                                  // and the right hand side using the
+                                  // function
+                                  // <code>assemble_temperature_system()</code>. Knowing
+                                  // the matrix and right hand side of the
+                                  // temperature equation, we set up a
+                                  // preconditioner and a solver. The
+                                  // temperature matrix is a mass matrix
+                                  // (with eigenvalues around one) plus a
+                                  // Laplace matrix (with eigenvalues between
+                                  // zero and $ch^{-2}$) times a small number
+                                  // proportional to the time step
+                                  // $k_n$. Hence, the resulting symmetric
+                                  // and positive definite matrix has
+                                  // eigenvalues in the range
+                                  // $[1,1+k_nh^{-2}]$ (up to
+                                  // constants). This matrix is only
+                                  // moderately ill conditioned even for
+                                  // small mesh sizes and we get a reasonable
+                                  // good preconditioner by simple means, for
+                                  // example SSOR. We set the relaxation
+                                  // parameter to 1.2. As a solver, we choose
+                                  // the conjugate gradient method CG. As
+                                  // before, we tell the solver to use
+                                  // Trilinos vectors via the template
+                                  // argument
+                                  // <code>TrilinosWrappers::Vector</code> at
+                                  // construction. Finally, we solve,
+                                  // distribute the hanging node constraints
+                                  // and write out the number of iterations.
   old_time_step = time_step;    
   time_step = 1./(1.6*dim*std::sqrt(1.*dim)) /
              temperature_degree *
@@ -2299,11 +2321,14 @@ void BoussinesqFlowProblem<dim>::solve ()
               << " CG iterations for temperature."
               << std::endl;
 
-                                    // In the end of this function, we
-                                    // step through the vector and read
-                                    // out the maximum and minimum
-                                    // temperature value, which we also
-                                    // want to output.
+                                    // At the end of this function, we step
+                                    // through the vector and read out the
+                                    // maximum and minimum temperature value,
+                                    // which we also want to output. This
+                                    // will come in handy when determining
+                                    // the correct constant in the choice of
+                                    // time step as discuss in the results
+                                    // section of this program.
     double min_temperature = temperature_solution(0),
           max_temperature = temperature_solution(0);
     for (unsigned int i=0; i<temperature_solution.size(); ++i)
@@ -2324,51 +2349,40 @@ void BoussinesqFlowProblem<dim>::solve ()
 
                                 // @sect4{BoussinesqFlowProblem::output_results}
                                 // 
-                                // This function writes the
-                                // solution to a vtk output file
-                                // for visualization, which is done
-                                // every tenth time step. This is
-                                // usually a quite simple task,
-                                // since the deal.II library
-                                // provides functions that do
-                                // almost all the job for us. In
-                                // this case, the situation is a
-                                // bit more complicated, since we
-                                // want to visualize both the
-                                // Stokes solution and the
-                                // temperature as one data set, but
-                                // we have done all the
-                                // calculations based on two
-                                // different. The way we're going
-                                // to achieve this recombination is
-                                // to create a joint DoFHandler
-                                // that collects both components,
-                                // the Stokes solution and the
-                                // temperature solution. This can
-                                // be nicely done by combining the
-                                // finite elements from the two
-                                // systems to form one FESystem,
-                                // and let this collective system
-                                // define a new DoFHandler
-                                // object. To be sure that
-                                // everything was done correctly,
-                                // we perform a sanity check that
-                                // ensures that we got all the dofs
-                                // from both Stokes and temperature
-                                // even in the combined system.
+                                // This function writes the solution to a VTK
+                                // output file for visualization, which is
+                                // done every tenth time step. This is
+                                // usually quite a simple task, since the
+                                // deal.II library provides functions that do
+                                // almost all the job for us. In this case,
+                                // the situation is a bit more complicated,
+                                // since we want to visualize both the Stokes
+                                // solution and the temperature as one data
+                                // set, but we have done all the calculations
+                                // based on two different DoFHandler objects,
+                                // a situation the DataOut class usually used
+                                // for output is not prepared to deal
+                                // with. The way we're going to achieve this
+                                // recombination is to create a joint
+                                // DoFHandler that collects both components,
+                                // the Stokes solution and the temperature
+                                // solution. This can be nicely done by
+                                // combining the finite elements from the two
+                                // systems to form one FESystem, and let this
+                                // collective system define a new DoFHandler
+                                // object. To be sure that everything was
+                                // done correctly, we perform a sanity check
+                                // that ensures that we got all the dofs from
+                                // both Stokes and temperature even in the
+                                // combined system.
                                 // 
-                                // Next, we create a vector that
-                                // collects the actual solution
-                                // values (up to now, we've just
-                                // provided the tools for it
-                                // without reading any data. Since
-                                // this vector is only going to be
-                                // used for output, we create it as
-                                // a deal.II vector that nicely
-                                // cooperate with the data output
-                                // classes. Remember that we used
-                                // Trilinos vectors for assembly
-                                // and solving.
+                                // Next, we create a vector that will collect
+                                // the actual solution values. Since this
+                                // vector is only going to be used for
+                                // output, we create it as a deal.II vector
+                                // that nicely cooperate with the data output
+                                // classes. Remember that we used Trilinos
+                                // vectors for assembly and solving.
 template <int dim>
 void BoussinesqFlowProblem<dim>::output_results ()  const
 {
@@ -2386,41 +2400,33 @@ void BoussinesqFlowProblem<dim>::output_results ()  const
   Vector<double> joint_solution (joint_dof_handler.n_dofs());
 
                                   // Unfortunately, there is no
-                                  // straight-forward relation that
-                                  // tells us how to sort Stokes and
-                                  // temperature vector into the
-                                  // joint vector. The way we can get
-                                  // around this trouble is to rely
-                                  // on the information collected in
-                                  // the FESystem. For each dof in a
-                                  // cell, the joint finite element
-                                  // knows to which equation
-                                  // component (velocity component,
-                                  // pressure, or temperature) it
-                                  // belongs &ndash; that's the
-                                  // information we need! So we step
-                                  // through all cells (as a
-                                  // complication, we need to create
-                                  // iterations for the cells in the
-                                  // Stokes system and the
-                                  // temperature system, too, even
-                                  // though they are the same in all
-                                  // the three cases), and for each
-                                  // joint cell dof, we read out that
-                                  // component using the function
-                                  // <tt>joint_fe.system_to_base_index(i).second</tt>. We
-                                  // also need to keep track whether
-                                  // we're on a Stokes dof or a
-                                  // temperature dof, which is
-                                  // contained in
-                                  // <tt>joint_fe.system_to_base_index(i).first.first</tt>. Eventually,
-                                  // the dof_indices data structures
-                                  // on either of the three systems
-                                  // tell us how the relation between
-                                  // global vector and local dofs
-                                  // looks like on the present cell,
-                                  // which concludes this tedious
-                                  // work.
+                                  // straight-forward relation that tells us
+                                  // how to sort Stokes and temperature
+                                  // vector into the joint vector. The way we
+                                  // can get around this trouble is to rely
+                                  // on the information collected in the
+                                  // FESystem. For each dof in a cell, the
+                                  // joint finite element knows to which
+                                  // equation component (velocity component,
+                                  // pressure, or temperature) it belongs
+                                  // &ndash; that's the information we need!
+                                  // So we step through all cells (with
+                                  // iterators into all three DoFHandlers
+                                  // moving in synch), and for each joint
+                                  // cell dof, we read out that component
+                                  // using the
+                                  // FiniteElement::system_to_base_index
+                                  // function (see there for a description of
+                                  // what the various parts of its return
+                                  // value contain). We also need to keep
+                                  // track whether we're on a Stokes dof or a
+                                  // temperature dof, which is contained in
+                                  // <code>joint_fe.system_to_base_index(i).first.first</code>. Eventually,
+                                  // the dof_indices data structures on
+                                  // either of the three systems tell us how
+                                  // the relation between global vector and
+                                  // local dofs looks like on the present
+                                  // cell, which concludes this tedious work.
   {
     std::vector<unsigned int> local_joint_dof_indices (joint_fe.dofs_per_cell);
     std::vector<unsigned int> local_stokes_dof_indices (stokes_fe.dofs_per_cell);
@@ -2468,7 +2474,7 @@ void BoussinesqFlowProblem<dim>::output_results ()  const
                                   // the individual components), and
                                   // attach the joint dof handler to
                                   // a DataOut object. The first
-                                  // <tt>dim</tt> components are the
+                                  // <code>dim</code> components are the
                                   // vector velocity, and then we
                                   // have pressure and
                                   // temperature. This information is
@@ -2517,42 +2523,57 @@ void BoussinesqFlowProblem<dim>::output_results ()  const
 
                                 // @sect4{BoussinesqFlowProblem::refine_mesh}
                                 // 
-                                // This function takes care of the
-                                // adaptive mesh refinement. The
-                                // three tasks this function
-                                // performs is to first find out
-                                // which cells to refine/coarsen,
-                                // then to actually do the
-                                // refinement and eventually
-                                // transfer the solution vectors
-                                // between the two different
-                                // grids. The first task is simply
-                                // achieved by using the
-                                // well-established Kelly error
-                                // estimator on the temperature (it
-                                // is the temperature we're mainly
-                                // interested in for this program,
-                                // and we need to be accurate in
-                                // regions of high temperature
-                                // gradients, also to not have too
-                                // much numerical diffusion). The
-                                // second task is to actually do
-                                // the remeshing. That involves
-                                // only basic functions as well,
-                                // such as the
-                                // <tt>refine_and_coarsen_fixed_fraction</tt>
-                                // that refines the 80 precent of
-                                // the cells which have the largest
-                                // estimated error and coarsens the
-                                // 10 precent with the smallest
-                                // error. For reasons of limited
-                                // computer ressources, we have to
-                                // set a limit on the maximum
-                                // refinement level. We do this
-                                // after the refinement indicator
-                                // has been applied to the cells,
-                                // and simply unselect cells with
-                                // too high grid level.
+                                // This function takes care of the adaptive
+                                // mesh refinement. The three tasks this
+                                // function performs is to first find out
+                                // which cells to refine/coarsen, then to
+                                // actually do the refinement and eventually
+                                // transfer the solution vectors between the
+                                // two different grids. The first task is
+                                // simply achieved by using the
+                                // well-established Kelly error estimator on
+                                // the temperature (it is the temperature
+                                // we're mainly interested in for this
+                                // program, and we need to be accurate in
+                                // regions of high temperature gradients,
+                                // also to not have too much numerical
+                                // diffusion). The second task is to actually
+                                // do the remeshing. That involves only basic
+                                // functions as well, such as the
+                                // <code>refine_and_coarsen_fixed_fraction</code>
+                                // that refines those cells with the largest
+                                // estimated error that together make up 80
+                                // per cent of the error, and coarsens those
+                                // cells with the smallest error that make up
+                                // for a combined 10 per cent of the
+                                // error.
+                                //
+                                // If implemented like this, we would get a
+                                // program that will not make much progress:
+                                // Remember that we expect temperature fields
+                                // that are nearly discontinuous (the
+                                // diffusivity $\kappa$ is very small after
+                                // all) and consequently we can expect that a
+                                // freely adapted mesh will refine further
+                                // and further into the areas of large
+                                // gradients. This decrease in mesh size will
+                                // then be accompanied by a decrease in time
+                                // step, requiring an exceedingly large
+                                // number of time steps to solve to a given
+                                // final time. It will also lead to meshes
+                                // that are much better at resolving
+                                // discontinuities after several mesh
+                                // refinement cycles than in the beginning.
+                                //
+                                // In particular to prevent the decrease in
+                                // time step size and the correspondingly
+                                // large number of time steps, we limit the
+                                // maximal refinement depth of the mesh. To
+                                // this end, after the refinement indicator
+                                // has been applied to the cells, we simply
+                                // loop over all cells on the finest level
+                                // and unselect them from refinement if they
+                                // would result in too high a mesh level.
 template <int dim>
 void BoussinesqFlowProblem<dim>::refine_mesh (const unsigned int max_grid_level)
 {
@@ -2614,8 +2635,10 @@ void BoussinesqFlowProblem<dim>::refine_mesh (const unsigned int max_grid_level)
   TrilinosWrappers::BlockVector x_stokes(2);
   x_stokes = stokes_solution;
 
-  SolutionTransfer<dim,TrilinosWrappers::Vector> temperature_trans(temperature_dof_handler);
-  SolutionTransfer<dim,TrilinosWrappers::BlockVector> stokes_trans(stokes_dof_handler);
+  SolutionTransfer<dim,TrilinosWrappers::Vector>
+    temperature_trans(temperature_dof_handler);
+  SolutionTransfer<dim,TrilinosWrappers::BlockVector>
+    stokes_trans(stokes_dof_handler);
 
   triangulation.prepare_coarsening_and_refinement();
   temperature_trans.prepare_for_coarsening_and_refinement(x_temperature);
@@ -2626,7 +2649,7 @@ void BoussinesqFlowProblem<dim>::refine_mesh (const unsigned int max_grid_level)
                                   // dof structure on the new grid,
                                   // and initialize the matrix
                                   // structures and the new vectors
-                                  // in the <tt>setup_dofs</tt>
+                                  // in the <code>setup_dofs</code>
                                   // function. Next, we actually
                                   // perform the interpolation of the
                                   // solutions between the grids. We
@@ -2677,7 +2700,7 @@ void BoussinesqFlowProblem<dim>::refine_mesh (const unsigned int max_grid_level)
                                 // refinement and additional
                                 // adative refinement steps, and
                                 // then create a cube in
-                                // <tt>dim</tt> dimensions and set
+                                // <code>dim</code> dimensions and set
                                 // up the dofs for the first
                                 // time. Since we want to start the
                                 // time stepping already with an
@@ -2691,7 +2714,7 @@ void BoussinesqFlowProblem<dim>::refine_mesh (const unsigned int max_grid_level)
                                 // Before we start, we project the
                                 // initial values to the grid and
                                 // obtain the first data for the
-                                // <tt>old_temperature_solution</tt>
+                                // <code>old_temperature_solution</code>
                                 // vector. Then, we initialize time
                                 // step number and time step and
                                 // start the time loop.
index 3d606973082aa73d2da5147f5ebf064d60e8571b..73415567ba1a27869de2c866239cf517170a718d 100644 (file)
@@ -723,11 +723,11 @@ BoussinesqFlowProblem<dim>::assemble_stokes_preconditioner ()
 {
   stokes_preconditioner_matrix = 0;
 
-  QGauss<dim>   quadrature_formula(stokes_degree+2);
-  FEValues<dim> stokes_fe_values (stokes_fe, quadrature_formula,
-                                 update_JxW_values |
-                                 update_values |
-                                 update_gradients);
+  const QGauss<dim> quadrature_formula (stokes_degree+2);
+  FEValues<dim>     stokes_fe_values (stokes_fe, quadrature_formula,
+                                     update_JxW_values |
+                                     update_values |
+                                     update_gradients);
   const unsigned int   dofs_per_cell   = stokes_fe.dofs_per_cell;
 
   const unsigned int   n_q_points      = quadrature_formula.size();
@@ -826,34 +826,29 @@ void BoussinesqFlowProblem<dim>::assemble_stokes_system ()
 
   stokes_rhs=0;
 
-  QGauss<dim>   quadrature_formula(stokes_degree+2);
-  QGauss<dim-1> face_quadrature_formula(stokes_degree+2);
-
-  FEValues<dim> stokes_fe_values (stokes_fe, quadrature_formula,
-                                 update_values    |
-                                 update_quadrature_points  |
-                                 update_JxW_values |
-                                 (rebuild_stokes_matrix == true
-                                  ?
-                                  update_gradients
-                                  :
-                                  UpdateFlags(0)));
-
-  FEValues<dim> temperature_fe_values (temperature_fe, quadrature_formula,
-                                      update_values);
+  const QGauss<dim> quadrature_formula(stokes_degree+2);
+  FEValues<dim>     stokes_fe_values (stokes_fe, quadrature_formula,
+                                     update_values    |
+                                     update_quadrature_points  |
+                                     update_JxW_values |
+                                     (rebuild_stokes_matrix == true
+                                      ?
+                                      update_gradients
+                                      :
+                                      UpdateFlags(0)));
+  
+  FEValues<dim>     temperature_fe_values (temperature_fe, quadrature_formula,
+                                          update_values);
 
   const unsigned int   dofs_per_cell   = stokes_fe.dofs_per_cell;
 
   const unsigned int   n_q_points      = quadrature_formula.size();
-  const unsigned int   n_face_q_points = face_quadrature_formula.size();
 
   FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
   Vector<double>       local_rhs (dofs_per_cell);
 
   std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-  std::vector<double>               boundary_values (n_face_q_points);
-
   std::vector<double>               old_temperature_values(n_q_points);
 
   std::vector<Tensor<1,dim> >          phi_u       (dofs_per_cell);
@@ -950,10 +945,10 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_matrix ()
   temperature_mass_matrix = 0;
   temperature_stiffness_matrix = 0;
   
-  QGauss<dim>   quadrature_formula(temperature_degree+2);
-  FEValues<dim> temperature_fe_values (temperature_fe, quadrature_formula,
-                                      update_values    | update_gradients |
-                                      update_JxW_values);
+  const QGauss<dim> quadrature_formula(temperature_degree+2);
+  FEValues<dim>     temperature_fe_values (temperature_fe, quadrature_formula,
+                                          update_values    | update_gradients |
+                                          update_JxW_values);
 
   const unsigned int   dofs_per_cell   = temperature_fe.dofs_per_cell;
   const unsigned int   n_q_points      = quadrature_formula.size();
@@ -963,8 +958,6 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_matrix ()
 
   std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-  std::vector<double> gamma_values (n_q_points);
-
   std::vector<double>                  phi_T       (dofs_per_cell);
   std::vector<Tensor<1,dim> >          grad_phi_T  (dofs_per_cell);
 
@@ -1041,11 +1034,13 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
   
   temperature_rhs = 0;
   
-  QGauss<dim>   quadrature_formula(temperature_degree+2);
-  FEValues<dim> temperature_fe_values (temperature_fe, quadrature_formula,
-                                      update_values    | update_gradients |
-                                      update_hessians |
-                                      update_quadrature_points  | update_JxW_values);
+  const QGauss<dim> quadrature_formula(temperature_degree+2);
+  FEValues<dim>     temperature_fe_values (temperature_fe, quadrature_formula,
+                                          update_values    |
+                                          update_gradients |
+                                          update_hessians  |
+                                          update_quadrature_points |
+                                          update_JxW_values);
   FEValues<dim> stokes_fe_values (stokes_fe, quadrature_formula,
                                  update_values);
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.