]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Several simplifications in FETools::get_projection_matrix.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 20 Jun 2005 20:18:36 +0000 (20:18 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 20 Jun 2005 20:18:36 +0000 (20:18 +0000)
git-svn-id: https://svn.dealii.org/trunk@10893 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/source/fe/fe_tools.cc

index 66e21d79763489d000d5b84b5c251690e6754b0c..dc14f1ff1830be7c8300bc7da70c111bd88ec9f1 100644 (file)
@@ -457,15 +457,14 @@ void FETools::get_projection_matrix (const FiniteElement<dim> &fe1,
     {
       b = 0.;
       for (unsigned int i=0;i<n2;++i)
-       {
-         for (unsigned int k=0;k<quadrature.n_quadrature_points;++k)
-           {
-             const double w = val2.JxW(k);
-             const double u = val1.shape_value(j,k);
-             const double v = val2.shape_value(i,k);
-             b(i) += u*v*w;
-           }
-       }
+        for (unsigned int k=0;k<quadrature.n_quadrature_points;++k)
+          {
+            const double w = val2.JxW(k);
+            const double u = val1.shape_value(j,k);
+            const double v = val2.shape_value(i,k);
+            b(i) += u*v*w;
+          }
+      
                                       // Multiply by the inverse
       mass.vmult(x,b);
       for (unsigned int i=0;i<n2;++i)
@@ -490,32 +489,18 @@ FETools::compute_embedding_matrices(const FiniteElement<dim>& fe,
       Assert(matrices[i].m() == n, ExcDimensionMismatch(matrices[i].m(),n));
     }
   
-                                  /*
-                                   * Set up two meshes, one with a
-                                   * single reference cell and the
-                                   * other refined, together with
-                                   * DoFHandler and finite elements.
-                                   */
-  Triangulation<dim> tr_coarse;
-  Triangulation<dim> tr_fine;
-  GridGenerator::hyper_cube (tr_coarse, 0, 1);
-  GridGenerator::hyper_cube (tr_fine, 0, 1);
-  tr_fine.refine_global(1);
-  DoFHandler<dim> dof_coarse(tr_coarse);
-  dof_coarse.distribute_dofs(fe);
-  DoFHandler<dim> dof_fine(tr_fine);
-  dof_fine.distribute_dofs(fe);
+                                   // Set up a meshes, one with a single
+                                   // reference cell and refine it once
+  Triangulation<dim> tria;
+  GridGenerator::hyper_cube (tria, 0, 1);
+  tria.refine_global(1);
 
   MappingCartesian<dim> mapping;
   QGauss<dim> q_fine(degree+1);
   const unsigned int nq = q_fine.n_quadrature_points;
   
   FEValues<dim> fine (mapping, fe, q_fine,
-                     update_q_points | update_JxW_values | update_values);
-  
-  typename DoFHandler<dim>::active_cell_iterator coarse_cell
-    = dof_coarse.begin_active();
-  typename DoFHandler<dim>::active_cell_iterator fine_cell;
+                     update_q_points | update_JxW_values | update_values);  
 
                                   /**
                                    * We search for the polynomial on
@@ -532,7 +517,7 @@ FETools::compute_embedding_matrices(const FiniteElement<dim>& fe,
                                    * This matrix is the same for all
                                    * children.
                                    */
-  fine.reinit(dof_fine.begin_active());
+  fine.reinit(tria.begin_active());
   FullMatrix<number> A(nq*nd, n);
   for (unsigned int d=0;d<nd;++d)
     for (unsigned int k=0;k<nq;++k)
@@ -545,17 +530,23 @@ FETools::compute_embedding_matrices(const FiniteElement<dim>& fe,
   Vector<number> v_fine(n);
   
   unsigned int cell_number = 0;
-  for (fine_cell = dof_fine.begin_active();
-       fine_cell != dof_fine.end();
-       ++fine_cell, ++cell_number)
+  for (typename Triangulation<dim>::active_cell_iterator fine_cell
+         = tria.begin_active();
+       fine_cell != tria.end(); ++fine_cell, ++cell_number)
     {
-      FullMatrix<number>& matrix = matrices[cell_number];
       fine.reinit(fine_cell);
-      Quadrature<dim> q_coarse (fine.get_quadrature_points(),
-                               fine.get_JxW_values());
+
+                                       // evaluate on the coarse cell (which
+                                       // is the first -- inactive -- cell on
+                                       // the lowest level of the
+                                       // triangulation we have created)
+      const Quadrature<dim> q_coarse (fine.get_quadrature_points(),
+                                      fine.get_JxW_values());
       FEValues<dim> coarse (mapping, fe, q_coarse, update_values);
-      coarse.reinit(coarse_cell);
+      coarse.reinit(tria.begin(0));
 
+      FullMatrix<double> &this_matrix = matrices[cell_number];
+      
                                       // Compute this once for each
                                       // coarse grid basis function
       for (unsigned int i=0;i<n;++i)
@@ -582,18 +573,19 @@ FETools::compute_embedding_matrices(const FiniteElement<dim>& fe,
                                           // function, the columns
                                           // are fine grid.
          for (unsigned int j=0;j<n;++j)
-           matrix(j,i) = v_fine(j);
+           this_matrix(j,i) = v_fine(j);
        }
                                       // Remove small entries from
                                       // the matrix
-      for (unsigned int i=0; i<matrix.m(); ++i)
-       for (unsigned int j=0; j<matrix.n(); ++j)
-         if (std::fabs(matrix(i,j)) < 1e-12)
-           matrix(i,j) = 0.;
+      for (unsigned int i=0; i<this_matrix.m(); ++i)
+       for (unsigned int j=0; j<this_matrix.n(); ++j)
+         if (std::fabs(this_matrix(i,j)) < 1e-12)
+           this_matrix(i,j) = 0.;
     }
 }
 
 
+
 template<int dim, typename number>
 void
 FETools::compute_projection_matrices(const FiniteElement<dim>& fe,

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.