]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Removed.
authorhartmann <hartmann@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 6 Mar 2001 11:51:58 +0000 (11:51 +0000)
committerhartmann <hartmann@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 6 Mar 2001 11:51:58 +0000 (11:51 +0000)
git-svn-id: https://svn.dealii.org/trunk@4118 0785d39b-7218-0410-832d-ea1e28bc413d

30 files changed:
deal.II/deal.II/source/fe/scripts/1d/lagrange [deleted file]
deal.II/deal.II/source/fe/scripts/1d/lagrange-cubic [deleted file]
deal.II/deal.II/source/fe/scripts/1d/lagrange-quartic [deleted file]
deal.II/deal.II/source/fe/scripts/1d/postprocess [deleted file]
deal.II/deal.II/source/fe/scripts/1d/restriction_dg [deleted file]
deal.II/deal.II/source/fe/scripts/1d/restriction_dg1 [deleted file]
deal.II/deal.II/source/fe/scripts/1d/restriction_dg2 [deleted file]
deal.II/deal.II/source/fe/scripts/1d/restriction_dg3 [deleted file]
deal.II/deal.II/source/fe/scripts/1d/restriction_dg4 [deleted file]
deal.II/deal.II/source/fe/scripts/2d/lagrange [deleted file]
deal.II/deal.II/source/fe/scripts/2d/lagrange-cubic [deleted file]
deal.II/deal.II/source/fe/scripts/2d/lagrange-quadratic [deleted file]
deal.II/deal.II/source/fe/scripts/2d/lagrange-quartic [deleted file]
deal.II/deal.II/source/fe/scripts/2d/postprocess [deleted file]
deal.II/deal.II/source/fe/scripts/2d/restriction_dg [deleted file]
deal.II/deal.II/source/fe/scripts/2d/restriction_dg1 [deleted file]
deal.II/deal.II/source/fe/scripts/2d/restriction_dg2 [deleted file]
deal.II/deal.II/source/fe/scripts/2d/restriction_dg3 [deleted file]
deal.II/deal.II/source/fe/scripts/2d/restriction_dg4 [deleted file]
deal.II/deal.II/source/fe/scripts/3d/computations_on_faces [deleted file]
deal.II/deal.II/source/fe/scripts/3d/lagrange [deleted file]
deal.II/deal.II/source/fe/scripts/3d/lagrange-cubic [deleted file]
deal.II/deal.II/source/fe/scripts/3d/lagrange-linear [deleted file]
deal.II/deal.II/source/fe/scripts/3d/lagrange-quadratic [deleted file]
deal.II/deal.II/source/fe/scripts/3d/lagrange-tools [deleted file]
deal.II/deal.II/source/fe/scripts/3d/postprocess [deleted file]
deal.II/deal.II/source/fe/scripts/3d/restriction_dg [deleted file]
deal.II/deal.II/source/fe/scripts/3d/restriction_dg1 [deleted file]
deal.II/deal.II/source/fe/scripts/3d/restriction_dg2 [deleted file]
deal.II/deal.II/source/fe/scripts/3d/restriction_dg3 [deleted file]

diff --git a/deal.II/deal.II/source/fe/scripts/1d/lagrange b/deal.II/deal.II/source/fe/scripts/1d/lagrange
deleted file mode 100644 (file)
index b57a028..0000000
+++ /dev/null
@@ -1,89 +0,0 @@
-# Maple script to compute much of the data needed to implement the
-# family of Lagrange elements in 2d. Expects that the fields denoting
-# position and number of support points, etc are already set. Note that
-# we assume a bilinear mapping from the unit to the real cell.
-#
-# $Id$
-# Author: Wolfgang Bangerth, 1998
-
-
-
-  phi_polynom := array(0..n_functions-1);
-  grad_phi_polynom := array(0..n_functions-1);
-  grad_grad_phi_polynom := array(0..n_functions-1);
-  local_mass_matrix := array(0..n_functions-1, 0..n_functions-1);
-
-  for i from 0 to n_functions-1 do
-    # note that the interp function wants vectors indexed from
-    #   one and not from zero. 
-    values := array(1..n_functions);
-    for j from 1 to n_functions do
-      values[j] := 0;
-    od;  
-    values[i+1] := 1;
-
-    shifted_support_points := array (1..n_functions);
-    for j from 1 to n_functions do
-      shifted_support_points[j] := support_points[j-1];
-    od;
-    
-    phi_polynom[i] := interp (shifted_support_points, values, xi);
-    grad_phi_polynom[i] := diff(phi_polynom[i], xi);
-    grad_grad_phi_polynom[i] := diff(grad_phi_polynom[i], xi);
-  od;
-
-  phi:= proc(i,x) subs(xi=x, phi_polynom[i]); end;
-
-
-  points[0] := array(0..n_functions-1);
-  points[1] := array(0..n_functions-1);
-  for i from 0 to n_functions-1 do
-    points[0][i] := support_points[i]/2;  
-    points[1][i] := support_points[i]/2+1/2;
-  od;  
-
-  prolongation := array(0..1,0..n_functions-1, 0..n_functions-1);
-
-  for i from 0 to 1 do
-    for j from 0 to n_functions-1 do
-      for k from 0 to n_functions-1 do
-        prolongation[i,j,k] := phi(k, points[i][j]);
-      od;
-    od;
-  od;
-
-
-  # to get the restriction (interpolation) matrices, evaluate
-  # the basis functions on the child cells at the global
-  # interpolation points
-  child_phi[0] := proc(i, point)
-                    if ((point<0) or (point>1/2)) then
-                     0:
-                   else
-                     phi(i,2*point):
-                   fi:
-                 end: 
-  child_phi[1] := proc(i, point)
-                    if ((point<1/2) or (point>1)) then
-                     0:
-                   else
-                     phi(i,2*point-1):
-                   fi:
-                 end: 
-  restriction := array(0..1,0..n_functions-1, 0..n_functions-1);  
-  for child from 0 to 1 do
-    for j from 0 to n_functions-1 do
-      for k from 0 to n_functions-1 do
-        restriction[child,j,k] := child_phi[child](k, support_points[j]):
-      od:
-    od:
-  od:
-
-  
-  for i from 0 to n_functions-1 do
-    for j from 0 to n_functions-1 do
-      local_mass_matrix[i,j] := int(phi_polynom[i] * phi_polynom[j] * h,
-                                    xi=0..1);
-    od;
-  od;
-
diff --git a/deal.II/deal.II/source/fe/scripts/1d/lagrange-cubic b/deal.II/deal.II/source/fe/scripts/1d/lagrange-cubic
deleted file mode 100644 (file)
index a33cbd2..0000000
+++ /dev/null
@@ -1,21 +0,0 @@
-  n_functions := 4;
-  
-  support_points := array(0..n_functions-1);
-  support_points[0] := 0;
-  support_points[1] := 1;
-  support_points[2] := 1/3;
-  support_points[3] := 2/3;
-
-
-  # do the real work
-  read "lagrange":
-
-  
-  # write data to files
-  readlib(C);
-  C(phi_polynom, filename=cubic1d_shape_value);
-  C(grad_phi_polynom, filename=cubic1d_shape_grad);
-  C(grad_grad_phi_polynom, filename=cubic1d_shape_grad_grad);
-  C(prolongation, filename=cubic1d_prolongation);
-  C(restriction, filename=cubic1d_restriction);
-  C(local_mass_matrix, optimized, filename=cubic1d_massmatrix);
diff --git a/deal.II/deal.II/source/fe/scripts/1d/lagrange-quartic b/deal.II/deal.II/source/fe/scripts/1d/lagrange-quartic
deleted file mode 100644 (file)
index bf82c87..0000000
+++ /dev/null
@@ -1,22 +0,0 @@
-  n_functions := 5;
-  
-  support_points := array(0..n_functions-1);
-  support_points[0] := 0;
-  support_points[1] := 1;
-  support_points[2] := 1/4;
-  support_points[3] := 2/4;
-  support_points[4] := 3/4;
-
-
-  # do the real work
-  read "lagrange":
-
-  
-  # write data to files
-  readlib(C);
-  C(phi_polynom, filename=quartic1d_shape_value);
-  C(grad_phi_polynom, filename=quartic1d_shape_grad);
-  C(grad_grad_phi_polynom, filename=quartic1d_shape_grad_grad);
-  C(prolongation, filename=quartic1d_prolongation);
-  C(restriction, filename=quartic1d_restriction);
-  C(local_mass_matrix, optimized, filename=quartic1d_massmatrix);
diff --git a/deal.II/deal.II/source/fe/scripts/1d/postprocess b/deal.II/deal.II/source/fe/scripts/1d/postprocess
deleted file mode 100644 (file)
index 45c5371..0000000
+++ /dev/null
@@ -1,29 +0,0 @@
-#  Use the following perl scripts to convert the output into a
-#  suitable format:
-#
-#  $Id$
-#  Wolfgang Bangerth, 1998
-
-
-#    concatenate lines belonging together
-perl -pi -e 's/([^;])\n/$1/g;' *1d_shape_value
-perl -pi -e 's/([^;])\n/$1/g;' *1d_shape_grad
-perl -pi -e 's/([^;])\n/$1/g;' *1d_shape_grad_grad
-
-#    give the programs a structure
-perl -pi -e 's/phi_polynom\[(\d)\] =/case $1: return/g;' *1d_shape_value
-perl -pi -e 's/grad_phi_polynom\[(\d)\] = (.*);/case $1: return Point<1>($2);/g;' *1d_shape_grad
-perl -pi -e 's/grad_grad_phi_polynom\[(\d)\] = (.*);/case $1: return_value[0][0] = $2;/g;' *1d_shape_grad_grad
-
-#    use other indexing format for matrices
-perl -pi -e 's/\[(\d+)\]\[(\d)\]/($1,$2)/g;' *1d_massmatrix
-perl -pi -e 's/\[(\d+)\]\[(\d)\]\[(\d)\]/[$1]($2,$3)/g;' *1d_prolongation
-perl -pi -e 's/\[(\d+)\]\[(\d)\]\[(\d)\]/[$1]($2,$3)/g;' *1d_restriction
-
-#    give temporaries a data type
-perl -pi -e 's/(t\d+) =/const double $1 =/g;' *1d_massmatrix
-
-#    omit lines assigning zeroes to matrix elements, since zero is
-#    already set and to save compilation time
-perl -pi -e 's/.*= 0.0;\n//g;' *1d_restriction
-perl -pi -e 's/.*= 0.0;\n//g;' *1d_prolongation
diff --git a/deal.II/deal.II/source/fe/scripts/1d/restriction_dg b/deal.II/deal.II/source/fe/scripts/1d/restriction_dg
deleted file mode 100644 (file)
index 6bdcef8..0000000
+++ /dev/null
@@ -1,100 +0,0 @@
-  dim:=1;
-
-  print (`Computing basis functions`);
-  phi_polynom := array(0..n_functions-1);
-  for i from 0 to n_functions-1 do
-    print (i):
-    values := array(1..n_functions):
-    for j from 1 to n_functions do
-      values[j] := 0:
-    od:  
-    values[i+1] := 1:
-
-    shifted_support_points := array (1..n_functions);
-    for j from 1 to n_functions do
-      shifted_support_points[j] := support_points[j-1];
-    od;
-    
-    phi_polynom[i] := interp (shifted_support_points, values, xi);
-  od:
-
-  phi:= proc(i,x,y) subs(xi=x, phi_polynom[i]): end:
-
-
-
-  points[0] := array(0..n_functions-1);
-  points[1] := array(0..n_functions-1);
-  for i from 0 to n_functions-1 do
-    points[0][i] := support_points[i]/2;  
-    points[1][i] := support_points[i]/2+1/2;
-  od;  
-
-  # find the prolongation matrices such that
-  #  phi(k,x,y)|_K_i=prol[i,j,k] child_phi[i](j,x,y)
-  print (`Computing prolongation matrices`):
-  prolongation := array(0..1,0..n_functions-1, 0..n_functions-1);
-  for i from 0 to 1 do
-    for j from 0 to n_functions-1 do
-      for k from 0 to n_functions-1 do
-        prolongation[i,j,k] := phi(k, points[i][j]);
-      od;
-    od;
-  od;
-
-  # assemble the local mass matrix (on [0,1])
-  # m[i,j]=int_{0..1} phi[i]*phi[j] dx
-  m := array(1..n_functions, 1..n_functions):
-  print (`Assembling mass matrix`):
-  for i from 1 to n_functions do
-    for j from 1 to n_functions do
-      m[i,j] := int(phi_polynom[i-1] * phi_polynom[j-1], xi=0..1);     
-    od:
-  od:
-
-  print(`m=`, m);
-
-  # assemble the local mass matrix for child cell 0 
-  # m[i,j]=int_{0..0.5}child_phi[0]*child_phi[0] dx
-  child_m := array(1..n_functions, 1..n_functions):
-  child_m:=linalg[scalarmul](m, 1/2**dim);     
-
-  print(`Ausgabe=`);
-  print(`child_m=`,child_m);
-
-  # inverte the local mass matrix
-  inv_m := linalg[inverse](m):
-  print(`inv_m=`, inv_m);
-  
-  # assembling restriction matrices
-  restriction := array(0..1, 0..n_functions-1, 0..n_functions-1):
-  restr_child := array(1..n_functions, 1..n_functions):
-  prol_child:= array(1..n_functions, 1..n_functions):
-  for child from 0 to 1 do
-    print(`child=`, child);
-    # copy the prologation matrix with a shift 1 and take the transpose
-    for i from 1 to n_functions do
-      for j from 1 to n_functions do
-        prol_child[i,j] := prolongation[child,j-1,i-1]:
-      od:
-    od:
-    restr_child := linalg[multiply](inv_m, prol_child, child_m);
-    print(restr_child);
-    # copy the restriction of this child with a shift 1
-    for i from 1 to n_functions do
-      for j from 1 to n_functions do
-        restriction[child,i-1,j-1] := restr_child[i,j]:
-      od:
-    od:
-  od:
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/1d/restriction_dg1 b/deal.II/deal.II/source/fe/scripts/1d/restriction_dg1
deleted file mode 100644 (file)
index 5e143fe..0000000
+++ /dev/null
@@ -1,40 +0,0 @@
-#  --------------------------------- For 1d ---------------------------------
-#  -- Use the following maple script to generate the restriction matrices
-#  -- for DG.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(1)
-
-  n_functions      := 2:
-
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points := array(0..n_functions-1):
-  support_points[0] := 0:
-  support_points[1] := 1:
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg1_txt);
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/1d/restriction_dg2 b/deal.II/deal.II/source/fe/scripts/1d/restriction_dg2
deleted file mode 100644 (file)
index 75639c3..0000000
+++ /dev/null
@@ -1,41 +0,0 @@
-#  --------------------------------- For 1d ---------------------------------
-#  -- Use the following maple script to generate the restriction matrices
-#  -- for DG.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(2)
-
-  n_functions      := 3:
-
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points := array(0..n_functions-1):
-  support_points[0] := 0:
-  support_points[1] := 1:
-  support_points[2] := 1/2:
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg2_txt);
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/1d/restriction_dg3 b/deal.II/deal.II/source/fe/scripts/1d/restriction_dg3
deleted file mode 100644 (file)
index ba3dd17..0000000
+++ /dev/null
@@ -1,42 +0,0 @@
-#  --------------------------------- For 1d ---------------------------------
-#  -- Use the following maple script to generate the restriction matrices
-#  -- for DG.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(3)
-
-  n_functions      := 4:
-
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points := array(0..n_functions-1):
-  support_points[0] := 0;
-  support_points[1] := 1;
-  support_points[2] := 1/3;
-  support_points[3] := 2/3;
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg3_txt);
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/1d/restriction_dg4 b/deal.II/deal.II/source/fe/scripts/1d/restriction_dg4
deleted file mode 100644 (file)
index b3b2c34..0000000
+++ /dev/null
@@ -1,43 +0,0 @@
-#  --------------------------------- For 1d ---------------------------------
-#  -- Use the following maple script to generate the restriction matrices
-#  -- for DG.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(4)
-
-  n_functions      := 5:
-
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points := array(0..n_functions-1):
-  support_points[0] := 0;
-  support_points[1] := 1;
-  support_points[2] := 1/4;
-  support_points[3] := 2/4;
-  support_points[4] := 3/4;
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg4_txt);
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/2d/lagrange b/deal.II/deal.II/source/fe/scripts/2d/lagrange
deleted file mode 100644 (file)
index a435233..0000000
+++ /dev/null
@@ -1,209 +0,0 @@
-# Maple script to compute much of the data needed to implement the
-# family of Lagrange elements in 2d. Expects that the fields denoting
-# position and number of support points, etc are already set. Note that
-# we assume a bilinear mapping from the unit to the real cell.
-#
-# $Id$
-# Author: Wolfgang Bangerth, 1998
-
-  phi_polynom := array(0..n_functions-1):
-  grad_phi_polynom := array(0..n_functions-1,0..1):
-  grad_grad_phi_polynom := array(0..n_functions-1,0..1,0..1):
-  local_mass_matrix := array(0..n_functions-1, 0..n_functions-1):
-  prolongation := array(0..3,0..n_functions-1, 0..n_functions-1):
-  interface_constraints := array(0..2*(n_face_functions-2)+1-1,
-                                 0..n_face_functions-1):
-  real_points := array(0..n_functions-1, 0..1);
-
-  print ("Computing basis functions"):
-  for i from 0 to n_functions-1 do
-    print (i):
-    values := array(1..n_functions):
-    for j from 1 to n_functions do
-      values[j] := 0:
-    od:  
-    values[i+1] := 1:
-
-    equation_system := {}:
-    for j from 0 to n_functions-1 do
-      poly := subs(xi=support_points[j][1],
-                   eta=support_points[j][2],
-                  trial_function):
-      if (i=j) then
-        equation_system := equation_system union {poly = 1}:
-      else     
-        equation_system := equation_system union {poly = 0}:
-      fi:      
-    od:
-    
-    phi_polynom[i] := subs(solve(equation_system), trial_function):
-    grad_phi_polynom[i,0] := diff(phi_polynom[i], xi):
-    grad_phi_polynom[i,1] := diff(phi_polynom[i], eta):
-
-    grad_grad_phi_polynom[i,0,0] := diff(phi_polynom[i], xi, xi):
-    grad_grad_phi_polynom[i,0,1] := diff(phi_polynom[i], xi, eta):
-    grad_grad_phi_polynom[i,1,0] := diff(phi_polynom[i], eta,xi):
-    grad_grad_phi_polynom[i,1,1] := diff(phi_polynom[i], eta,eta):
-  od:
-
-  phi:= proc(i,x,y) subs(xi=x, eta=y, phi_polynom[i]): end:
-
-
-  #points on children: let them be indexed one-based, as are
-  #the support_points
-  points[0] := array(0..n_functions-1, 1..2):
-  points[1] := array(0..n_functions-1, 1..2):
-  points[2] := array(0..n_functions-1, 1..2):
-  points[3] := array(0..n_functions-1, 1..2):
-  for i from 0 to n_functions-1 do
-    points[0][i,1] := support_points[i][1]/2:
-    points[0][i,2] := support_points[i][2]/2:
-    
-    points[1][i,1] := support_points[i][1]/2+1/2:
-    points[1][i,2] := support_points[i][2]/2:
-
-    points[2][i,1] := support_points[i][1]/2+1/2:
-    points[2][i,2] := support_points[i][2]/2+1/2:
-
-    points[3][i,1] := support_points[i][1]/2:
-    points[3][i,2] := support_points[i][2]/2+1/2:
-  od:  
-
-  print ("Computing prolongation matrices"):
-  for i from 0 to 3 do
-    print ("child", i):
-    for j from 0 to n_functions-1 do
-      for k from 0 to n_functions-1 do
-        prolongation[i,j,k] := phi(k, points[i][j,1], points[i][j,2]):
-      od:
-    od:
-  od:
-
-  print ("Computing restriction matrices"):
-  # to get the restriction (interpolation) matrices, evaluate
-  # the basis functions on the child cells at the global
-  # interpolation points
-  child_phi[0] := proc(i, x, y)
-                    if ((x>1/2) or (y>1/2)) then
-                     0:
-                   else
-                     phi(i,2*x,2*y):
-                   fi:
-                 end: 
-  child_phi[1] := proc(i, x, y)
-                    if ((x<1/2) or (y>1/2)) then
-                     0:
-                   else
-                     phi(i,2*x-1,2*y):
-                   fi:
-                 end: 
-  child_phi[2] := proc(i, x, y)
-                    if ((x<1/2) or (y<1/2)) then
-                     0:
-                   else
-                     phi(i,2*x-1,2*y-1):
-                   fi:
-                 end: 
-  child_phi[3] := proc(i, x, y)
-                    if ((x>1/2) or (y<1/2)) then
-                     0:
-                   else
-                     phi(i,2*x,2*y-1):
-                   fi:
-                 end: 
-  restriction := array(0..3,0..n_functions-1, 0..n_functions-1):
-  for child from 0 to 3 do
-    for j from 0 to n_functions-1 do
-      for k from 0 to n_functions-1 do
-        restriction[child,j,k] := child_phi[child](k,
-                                                  support_points[j][1],
-                                                  support_points[j][2]):
-      od:
-    od:
-  od:
-
-
-  print ("Computing local mass matrix"):
-  # tphi are the basis functions of the linear element. These functions
-  # are used for the computation of the subparametric transformation from
-  # unit cell to real cell.
-  # x and y are arrays holding the x- and y-values of the four vertices
-  # of this cell in real space. 
-  #
-  # Since we're already at it and need it anyway, we also compute the
-  # Jacobian matrix of the transform and its derivatives. For the
-  # question of whether to take the given form or its transpose, refer
-  # to the documentation of the FEValues class and the source code
-  # documentation of FELinearMapping::fill_fe_values. Also note, that
-  # the computed inverse is multiplied to the unit cell gradients
-  # *from the right*. 
-  x := array(0..3);
-  y := array(0..3);
-  tphi[0] := (1-xi)*(1-eta):
-  tphi[1] := xi*(1-eta):
-  tphi[2] := xi*eta:
-  tphi[3] := (1-xi)*eta:
-  x_real := sum(x[s]*tphi[s], s=0..3):
-  y_real := sum(y[s]*tphi[s], s=0..3):
-  Jacobian := linalg[matrix](2,2, [[diff(x_real,xi), diff(x_real,eta)],
-                                   [diff(y_real,xi), diff(y_real,eta)]]):
-  inverseJacobian := linalg[inverse](Jacobian):
-  detJ := linalg[det](Jacobian):
-
-  grad_inverseJacobian := array(1..2, 1..2, 1..2):
-  for i from 1 to 2 do
-    for j from 1 to 2 do
-      for k from 1 to 2 do
-        if (i=1) then
-          grad_inverseJacobian[i,j,k] := diff (inverseJacobian[j,k], xi):
-        else 
-          grad_inverseJacobian[i,j,k] := diff (inverseJacobian[j,k], eta):
-        fi:
-      od:
-    od:
-  od:
-
-  for i from 0 to n_functions-1 do
-    print ("line", i):
-    for j from 0 to n_functions-1 do
-      local_mass_matrix[i,j] := int(int(phi_polynom[i] * phi_polynom[j] * detJ,
-                                        xi=0..1), eta=0..1):
-    od:
-  od:
-
-  print ("computing support points in real space"):
-  for i from 0 to n_functions-1 do
-    real_points[i,0] := subs(xi=support_points[i][1],
-                             eta=support_points[i][2], x_real);
-    real_points[i,1] := subs(xi=support_points[i][1],
-                             eta=support_points[i][2], y_real);
-  od:
-
-  print ("computing interface constraint matrices"):
-  # compute the interface constraint matrices. these are the values of the
-  # basis functions on the coarse cell's face at the points of the child
-  # cell's basis functions on the child faces
-  face_phi_polynom := array(0..n_face_functions-1):
-  for i from 0 to n_face_functions-1 do
-    # note that the interp function wants vectors indexed from
-    #   one and not from zero. 
-    values := array(1..n_face_functions):
-    for j from 1 to n_face_functions do
-      values[j] := 0:
-    od:  
-    values[i+1] := 1:
-
-    shifted_face_support_points := array (1..n_face_functions):
-    for j from 1 to n_face_functions do
-      shifted_face_support_points[j] := face_support_points[j-1]:
-    od:
-    
-    face_phi_polynom[i] := interp (shifted_face_support_points, values, xi):
-  od:
-
-  for i from 0 to 2*(n_face_functions-2)+1-1 do
-    for j from 0 to n_face_functions-1 do
-      interface_constraints[i,j] := subs(xi=constrained_face_support_points[i],
-                                     face_phi_polynom[j]); 
-    od:
-  od:
diff --git a/deal.II/deal.II/source/fe/scripts/2d/lagrange-cubic b/deal.II/deal.II/source/fe/scripts/2d/lagrange-cubic
deleted file mode 100644 (file)
index 6611177..0000000
+++ /dev/null
@@ -1,69 +0,0 @@
-#  --------------------------------- For 2d ---------------------------------
-#  -- Use the following maple script to generate the basis functions,
-#  -- gradients and prolongation matrices as well as the mass matrix.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Wolfgang Bangerth, 1998
-
-  n_functions      := 16:
-  n_face_functions := 4:
-
-  trial_function := (a1 + a2*xi + a3*xi*xi + a4*xi*xi*xi) +
-                     (b1 + b2*xi + b3*xi*xi + b4*xi*xi*xi)*eta +
-                    (c1 + c2*xi + c3*xi*xi + c4*xi*xi*xi)*eta*eta +
-                    (d1 + d2*xi + d3*xi*xi + d4*xi*xi*xi)*eta*eta*eta:
-  face_trial_function := a + b*xi + c*xi*xi + d*xi*xi*xi:
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  support_points := array(0..n_functions-1):
-  support_points[0] := [0,0]:
-  support_points[1] := [1,0]:
-  support_points[2] := [1,1]:
-  support_points[3] := [0,1]:
-  support_points[4] := [1/3,0]:
-  support_points[5] := [2/3,0]:
-  support_points[6] := [1,1/3]:
-  support_points[7] := [1,2/3]:
-  support_points[8] := [1/3,1]:
-  support_points[9] := [2/3,1]:
-  support_points[10]:= [0,1/3]:
-  support_points[11]:= [0,2/3]:
-  support_points[12]:= [1/3,1/3]:
-  support_points[13]:= [2/3,1/3]:
-  support_points[14]:= [2/3,2/3]:
-  support_points[15]:= [1/3,2/3]:
-
-  face_support_points := array(0..n_face_functions-1):
-  face_support_points[0] := 0:
-  face_support_points[1] := 1:
-  face_support_points[2] := 1/3:
-  face_support_points[3] := 2/3:
-  constrained_face_support_points := array(0..2*(n_face_functions-2)+1-1):
-  constrained_face_support_points[0] := 1/2:
-  constrained_face_support_points[1] := 1/6:
-  constrained_face_support_points[2] := 2/6:
-  constrained_face_support_points[3] := 4/6:
-  constrained_face_support_points[4] := 5/6:
-
-  # do the real work
-  read "lagrange":
-
-  
-  # write data to files
-  print ("writing data to files"):
-  readlib(C):
-  C(phi_polynom, filename=cubic2d_shape_value):
-  C(grad_phi_polynom, filename=cubic2d_shape_grad):
-  C(grad_grad_phi_polynom, filename=cubic2d_shape_grad_grad):
-  C(prolongation, filename=cubic2d_prolongation):
-  C(restriction, filename=cubic2d_restriction):
-  C(local_mass_matrix, optimized, filename=cubic2d_massmatrix):
-  C(interface_constraints, filename=cubic2d_constraints):
-  C(real_points, optimized, filename=cubic2d_real_points):
-
diff --git a/deal.II/deal.II/source/fe/scripts/2d/lagrange-quadratic b/deal.II/deal.II/source/fe/scripts/2d/lagrange-quadratic
deleted file mode 100644 (file)
index bcf0601..0000000
+++ /dev/null
@@ -1,69 +0,0 @@
-#  --------------------------------- For 2d ---------------------------------
-#  -- Use the following maple script to generate the basis functions,
-#  -- gradients and prolongation matrices as well as the mass matrix.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --
-#  -- Please note:
-#  -- Apart from the restriction matrices, I did not initially use it; it is
-#  -- an adaption of the script for cubic and quartic elements. For
-#  -- some of the data, however, a smaller script is given in the
-#  -- FEQuadratic<2> constructor.
-#
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Wolfgang Bangerth, 1998
-
-  n_functions      := 9:
-  n_face_functions := 3:
-
-  trial_function := (a1 + a2*xi + a3*xi*xi) +
-                     (b1 + b2*xi + b3*xi*xi)*eta +
-                    (c1 + c2*xi + c3*xi*xi)*eta*eta:
-  face_trial_function := a + b*xi + c*xi*xi:
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  support_points := array(0..n_functions-1):
-  support_points[0] := [0,0]:
-  support_points[1] := [1,0]:
-  support_points[2] := [1,1]:
-  support_points[3] := [0,1]:
-  support_points[4] := [1/2,0]:
-  support_points[5] := [1,1/2]:
-  support_points[6] := [1/2,1]:
-  support_points[7] := [0,1/2]:
-  support_points[8] := [1/2,1/2]:
-
-  face_support_points := array(0..n_face_functions-1):
-  face_support_points[0] := 0:
-  face_support_points[1] := 1:
-  face_support_points[2] := 1/2:
-
-  constrained_face_support_points := array(0..2*(n_face_functions-2)+1-1):
-  constrained_face_support_points[0] := 1/2:
-  constrained_face_support_points[1] := 1/4:
-  constrained_face_support_points[2] := 3/4:
-
-
-  # do the real work
-  read "lagrange":
-
-  
-  # write data to files
-  print ("writing data to files"):
-  readlib(C):
-  C(phi_polynom, filename=quadratic2d_shape_value):
-  C(grad_phi_polynom, filename=quadratic2d_shape_grad):
-  C(grad_grad_phi_polynom, filename=quadratic2d_shape_grad_grad):
-  C(prolongation, filename=quadratic2d_prolongation):
-  C(restriction, filename=quadratic2d_restriction):
-  C(local_mass_matrix, optimized, filename=quadratic2d_massmatrix):
-  C(interface_constraints, filename=quadratic2d_constraints):
-  C(real_points, optimized, filename=quadratic2d_real_points):
-  C(inverseJacobian, optimized, filename=quadratic2d_inverse_jacobian):
-  C(grad_inverseJacobian, optimized,
-    filename=quadratic2d_inverse_jacobian_grad):
diff --git a/deal.II/deal.II/source/fe/scripts/2d/lagrange-quartic b/deal.II/deal.II/source/fe/scripts/2d/lagrange-quartic
deleted file mode 100644 (file)
index 689ba34..0000000
+++ /dev/null
@@ -1,83 +0,0 @@
-#  --------------------------------- For 2d ---------------------------------
-#  -- Use the following maple script to generate the basis functions,
-#  -- gradients and prolongation matrices as well as the mass matrix.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Wolfgang Bangerth, 1998
-
-  n_functions      := 25:
-  n_face_functions := 5:
-
-  trial_function := (a1 + a2*xi + a3*xi*xi + a4*xi**3 + a5*xi**4) +
-                     (b1 + b2*xi + b3*xi*xi + b4*xi**3 + b5*xi**4)*eta +
-                    (c1 + c2*xi + c3*xi*xi + c4*xi**3 + c5*xi**4)*eta*eta +
-                    (d1 + d2*xi + d3*xi*xi + d4*xi**3 + d5*xi**4)*eta**3 +
-                    (e1 + e2*xi + e3*xi*xi + e4*xi**3 + e5*xi**4)*eta**4:
-  face_trial_function := a + b*xi + c*xi*xi + d*xi**3 + e*xi**4:
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  support_points := array(0..n_functions-1):
-  support_points[0] := [0,0]:
-  support_points[1] := [1,0]:
-  support_points[2] := [1,1]:
-  support_points[3] := [0,1]:
-  support_points[4] := [1/4,0]:
-  support_points[5] := [2/4,0]:
-  support_points[6] := [3/4,0]:
-  support_points[7] := [1,1/4]:
-  support_points[8] := [1,2/4]:
-  support_points[9] := [1,3/4]:
-  support_points[10] := [1/4,1]:
-  support_points[11] := [2/4,1]:
-  support_points[12] := [3/4,1]:
-  support_points[13] := [0,1/4]:
-  support_points[14] := [0,2/4]:
-  support_points[15] := [0,3/4]:
-  support_points[16] := [1/4,1/4]:
-  support_points[17] := [3/4,1/4]:
-  support_points[18] := [3/4,3/4]:
-  support_points[19] := [1/4,3/4]:
-  support_points[20] := [1/2,1/4]:
-  support_points[21] := [3/4,1/2]:
-  support_points[22] := [1/2,3/4]:
-  support_points[23] := [1/4,1/2]:
-  support_points[24] := [1/2,1/2]:
-
-  face_support_points := array(0..n_face_functions-1):
-  face_support_points[0] := 0:
-  face_support_points[1] := 1:
-  face_support_points[2] := 1/4:
-  face_support_points[3] := 2/4:
-  face_support_points[4] := 3/4:
-  constrained_face_support_points := array(0..2*(n_face_functions-2)+1-1):
-  constrained_face_support_points[0] := 1/2:
-  constrained_face_support_points[1] := 1/8:
-  constrained_face_support_points[2] := 2/8:
-  constrained_face_support_points[3] := 3/8:
-  constrained_face_support_points[4] := 5/8:
-  constrained_face_support_points[5] := 6/8:
-  constrained_face_support_points[6] := 7/8:
-
-
-  # do the real work
-  read "lagrange":
-
-  
-  # write data to files
-  print ("writing data to files"):
-  readlib(C):
-  C(phi_polynom, filename=quartic2d_shape_value):
-  C(grad_phi_polynom, filename=quartic2d_shape_grad):
-  C(grad_grad_phi_polynom, filename=quartic2d_shape_grad_grad):
-  C(prolongation, filename=quartic2d_prolongation):
-  C(restriction, filename=quartic2d_restriction):
-  C(local_mass_matrix, optimized, filename=quartic2d_massmatrix):
-  C(interface_constraints, filename=quartic2d_constraints):
-  C(real_points, optimized, filename=quartic2d_real_points):
-
diff --git a/deal.II/deal.II/source/fe/scripts/2d/postprocess b/deal.II/deal.II/source/fe/scripts/2d/postprocess
deleted file mode 100644 (file)
index 84d6ad4..0000000
+++ /dev/null
@@ -1,42 +0,0 @@
-#  Use the following perl scripts to convert the output into a
-#  suitable format.
-#
-#  $Id$
-#  Wolfgang Bangerth, 1998
-  
-perl -pi -e 's/phi_polynom\[(\d+)\] =/case $1: return/g;' *2d_shape_value
-perl -pi -e 's/xi/p(0)/g; s/zeta/p(2)/g; s/eta/p(1)/g;' *2d_shape_value
-
-perl -pi -e 's/\[(\d+)\]\[(\d+)\]/($1,$2)/g;' *2d_massmatrix
-perl -pi -e 's/(t\d+) =/const double $1 =/g;' *2d_massmatrix
-perl -pi -e 's/\[(\d+)\]\[(\d+)\]\[(\d+)\]/[$1]($2,$3)/g;' *2d_prolongation
-perl -pi -e 's/.*= 0.0;\n//g;' *2d_prolongation
-perl -pi -e 's/\[(\d+)\]\[(\d+)\]\[(\d+)\]/[$1]($2,$3)/g;' *2d_restriction
-perl -pi -e 's/.*= 0.0;\n//g;' *2d_restriction
-perl -pi -e 's/\[(\d+)\]\[(\d+)\]/($1,$2)/g;' *2d_constraints
-
-perl -pi -e 's/^\s*t/const double t/g;' *2d_inverse_jacobian
-perl -pi -e 's/x\[(\d)\]/vertices[$1](0)/g;' *2d_inverse_jacobian
-perl -pi -e 's/y\[(\d)\]/vertices[$1](1)/g;' *2d_inverse_jacobian
-perl -pi -e 's/inverseJacobian/jacobians[point]/g;' *2d_inverse_jacobian
-perl -pi -e 's/\[(\d)\]\[(\d)\] =/($1,$2) =/g;' *2d_inverse_jacobian
-
-perl -pi -e 's/^\s*t/const double t/g;' *2d_inverse_jacobian_grad
-perl -pi -e 's/x\[(\d)\]/vertices[$1](0)/g;' *2d_inverse_jacobian_grad
-perl -pi -e 's/y\[(\d)\]/vertices[$1](1)/g;' *2d_inverse_jacobian_grad
-perl -pi -e 's/inverseJacobian/jacobians_grad[point]/g;' *2d_inverse_jacobian_grad
-
-perl -pi -e 's/([^;])\n/$1/g;' *3d_shape_grad
-perl -pi -e 's/grad_phi_polynom\[(\d+)\]\[0\] = (.*);/case $1: return Point<2>($2,/g;' *2d_shape_grad
-perl -pi -e 's/grad_phi_polynom\[(\d+)\]\[[12]\] = (.*);/$2);/g;' *2d_shape_grad
-perl -pi -e 's/xi/p(0)/g; s/zeta/p(2)/g; s/eta/p(1)/g;' *2d_shape_grad
-
-
-#    concatenate all lines for each entry
-perl -pi -e 's/([^;])\n/$1/g;' *2d_shape_grad_grad
-#    rename the variable
-perl -pi -e 's/\s*grad_grad_phi_polynom/return_value/g;' *2d_shape_grad_grad
-#    insert 'case' and 'break' statements
-perl -pi -e 's/(return_value\[(\d)\]\[0\]\[0\] = .*;)/break;\ncase $2:\n$1/g;' *2d_shape_grad_grad
-#    eliminate first index, since that one is caught by the 'case' statement
-perl -pi -e 's/return_value\[\d+\]/return_value/g;' *2d_shape_grad_grad
diff --git a/deal.II/deal.II/source/fe/scripts/2d/restriction_dg b/deal.II/deal.II/source/fe/scripts/2d/restriction_dg
deleted file mode 100644 (file)
index a789e31..0000000
+++ /dev/null
@@ -1,121 +0,0 @@
-  dim:=2;
-
-  print (`Computing basis functions`);
-  phi_polynom := array(0..n_functions-1);
-  for i from 0 to n_functions-1 do
-    print (i):
-    values := array(1..n_functions):
-    for j from 1 to n_functions do
-      values[j] := 0:
-    od:  
-    values[i+1] := 1:
-
-    equation_system := {}:
-    for j from 0 to n_functions-1 do
-      poly := subs(xi=support_points[j][1],
-                   eta=support_points[j][2],
-                  trial_function):
-      if (i=j) then
-        equation_system := equation_system union {poly = 1}:
-      else     
-        equation_system := equation_system union {poly = 0}:
-      fi:      
-    od:
-    
-    phi_polynom[i] := subs(solve(equation_system), trial_function);
-  od:
-
-  phi:= proc(i,x,y) subs(xi=x, eta=y, phi_polynom[i]): end:
-
-
-
-  #points on children: let them be indexed one-based, as are
-  #the support_points
-  #  child_phi[c](i, points[c][j, ])=delta_ij
-  points[0] := array(0..n_functions-1, 1..2):
-  points[1] := array(0..n_functions-1, 1..2):
-  points[2] := array(0..n_functions-1, 1..2):
-  points[3] := array(0..n_functions-1, 1..2):
-  for i from 0 to n_functions-1 do
-    points[0][i,1] := support_points[i][1]/2:
-    points[0][i,2] := support_points[i][2]/2:
-    
-    points[1][i,1] := support_points[i][1]/2+1/2:
-    points[1][i,2] := support_points[i][2]/2:
-
-    points[2][i,1] := support_points[i][1]/2+1/2:
-    points[2][i,2] := support_points[i][2]/2+1/2:
-
-    points[3][i,1] := support_points[i][1]/2:
-    points[3][i,2] := support_points[i][2]/2+1/2:
-  od:  
-
-  # find the prolongation matrices such that
-  #  phi(k,x,y)|_K_i=prol[i,j,k] child_phi[i](j,x,y)
-  print (`Computing prolongation matrices`):
-  prolongation := array(0..3,0..n_functions-1, 0..n_functions-1):
-  for i from 0 to 3 do
-    for j from 0 to n_functions-1 do
-      for k from 0 to n_functions-1 do
-        prolongation[i,j,k] := phi(k, points[i][j,1], points[i][j,2]);
-      od:
-    od:
-  od:
-
-  # assemble the local mass matrix (on the unit square)
-  # m[i,j]=int_{0..1}int_{0..1} phi[i]*phi[j] dxdy
-  m := array(1..n_functions, 1..n_functions):
-  print (`Assembling mass matrix`):
-  for i from 1 to n_functions do
-    for j from 1 to n_functions do
-      m[i,j] := int(int(phi_polynom[i-1] * phi_polynom[j-1], xi=0..1), eta=0..1);      
-    od:
-  od:
-
-  print(`m=`, m);
-
-  # assemble the local mass matrix for child cell 0 
-  # m[i,j]=int_{0..0.5}int_{0..0.5} child_phi[0]*child_phi[0] dxdy
-  child_m := array(1..n_functions, 1..n_functions):
-  child_m:=linalg[scalarmul](m, 1/2**dim);
-
-  print(`Ausgabe=`);
-  print(`child_m=`,child_m);
-
-  # inverte the local mass matrix
-  inv_m := linalg[inverse](m):
-  print(`inv_m=`, inv_m);
-  
-  # assembling restriction matrices
-  restriction := array(0..3, 0..n_functions-1, 0..n_functions-1):
-  restr_child := array(1..n_functions, 1..n_functions):
-  prol_child:= array(1..n_functions, 1..n_functions):
-  for child from 0 to 3 do
-    print(`child=`, child);
-    # copy the prologation matrix with a shift 1 and take the transponent
-    for i from 1 to n_functions do
-      for j from 1 to n_functions do
-        prol_child[i,j] := prolongation[child,j-1,i-1]:
-      od:
-    od:
-    restr_child := linalg[multiply](inv_m, prol_child, child_m);
-    print(restr_child);
-    # copy the restriction of this child with a shift 1
-    for i from 1 to n_functions do
-      for j from 1 to n_functions do
-        restriction[child,i-1,j-1] := restr_child[i,j]:
-      od:
-    od:
-  od:
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/2d/restriction_dg1 b/deal.II/deal.II/source/fe/scripts/2d/restriction_dg1
deleted file mode 100644 (file)
index bf8c1da..0000000
+++ /dev/null
@@ -1,44 +0,0 @@
-#  --------------------------------- For 2d ---------------------------------
-#  -- Use the following maple script to generate the restriction matrices
-#  -- for DG.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(1)
-
-  n_functions      := 4:
-
-  trial_function := (a1 + a2*xi) +
-                     (b1 + b2*xi)*eta:
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points := array(0..n_functions-1):
-  support_points[0] := [0,0]:
-  support_points[1] := [1,0]:
-  support_points[2] := [1,1]:
-  support_points[3] := [0,1]:
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg1_txt);
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/2d/restriction_dg2 b/deal.II/deal.II/source/fe/scripts/2d/restriction_dg2
deleted file mode 100644 (file)
index c093e67..0000000
+++ /dev/null
@@ -1,40 +0,0 @@
-#  --------------------------------- For 2d ---------------------------------
-#  -- Use the following maple script to generate the restriction matrices
-#  -- for DG.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(2)
-
-  n_functions      := 9:
-       
-  trial_function := (a1 + a2*xi + a3*xi*xi) +
-                     (b1 + b2*xi + b3*xi*xi)*eta +
-                    (c1 + c2*xi + c3*xi*xi)*eta*eta:
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points := array(0..n_functions-1):
-  support_points[0] := [0,0]:
-  support_points[1] := [1,0]:
-  support_points[2] := [1,1]:
-  support_points[3] := [0,1]:
-  support_points[4] := [1/2,0]:
-  support_points[5] := [1,1/2]:
-  support_points[6] := [1/2,1]:
-  support_points[7] := [0,1/2]:
-  support_points[8] := [1/2,1/2]:
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg2_txt);
-
diff --git a/deal.II/deal.II/source/fe/scripts/2d/restriction_dg3 b/deal.II/deal.II/source/fe/scripts/2d/restriction_dg3
deleted file mode 100644 (file)
index f4d60ec..0000000
+++ /dev/null
@@ -1,58 +0,0 @@
-#  --------------------------------- For 2d ---------------------------------
-#  -- Use the following maple script to generate the restriction matrices
-#  -- for DG.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(3)
-
-  n_functions      := 16:
-       
-  trial_function := (a1 + a2*xi + a3*xi*xi + a4*xi*xi*xi) +
-                     (b1 + b2*xi + b3*xi*xi + b4*xi*xi*xi)*eta +
-                    (c1 + c2*xi + c3*xi*xi + c4*xi*xi*xi)*eta*eta +
-                    (d1 + d2*xi + d3*xi*xi + d4*xi*xi*xi)*eta*eta*eta:
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points := array(0..n_functions-1):
-  support_points[0] := [0,0]:
-  support_points[1] := [1,0]:
-  support_points[2] := [1,1]:
-  support_points[3] := [0,1]:
-  support_points[4] := [1/3,0]:
-  support_points[5] := [2/3,0]:
-  support_points[6] := [1,1/3]:
-  support_points[7] := [1,2/3]:
-  support_points[8] := [1/3,1]:
-  support_points[9] := [2/3,1]:
-  support_points[10]:= [0,1/3]:
-  support_points[11]:= [0,2/3]:
-  support_points[12]:= [1/3,1/3]:
-  support_points[13]:= [2/3,1/3]:
-  support_points[14]:= [2/3,2/3]:
-  support_points[15]:= [1/3,2/3]:
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg3_txt);
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/2d/restriction_dg4 b/deal.II/deal.II/source/fe/scripts/2d/restriction_dg4
deleted file mode 100644 (file)
index 3f44800..0000000
+++ /dev/null
@@ -1,68 +0,0 @@
-#  --------------------------------- For 2d ---------------------------------
-#  -- Use the following maple script to generate the basis functions,
-#  -- gradients and prolongation matrices as well as the mass matrix.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(4)
-
-  n_functions      := 25:
-  n_face_functions := 5:
-
-  trial_function := (a1 + a2*xi + a3*xi*xi + a4*xi**3 + a5*xi**4) +
-                     (b1 + b2*xi + b3*xi*xi + b4*xi**3 + b5*xi**4)*eta +
-                    (c1 + c2*xi + c3*xi*xi + c4*xi**3 + c5*xi**4)*eta*eta +
-                    (d1 + d2*xi + d3*xi*xi + d4*xi**3 + d5*xi**4)*eta**3 +
-                    (e1 + e2*xi + e3*xi*xi + e4*xi**3 + e5*xi**4)*eta**4:
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points[0] := [0,0]:
-  support_points[1] := [1,0]:
-  support_points[2] := [1,1]:
-  support_points[3] := [0,1]:
-  support_points[4] := [1/4,0]:
-  support_points[5] := [2/4,0]:
-  support_points[6] := [3/4,0]:
-  support_points[7] := [1,1/4]:
-  support_points[8] := [1,2/4]:
-  support_points[9] := [1,3/4]:
-  support_points[10] := [1/4,1]:
-  support_points[11] := [2/4,1]:
-  support_points[12] := [3/4,1]:
-  support_points[13] := [0,1/4]:
-  support_points[14] := [0,2/4]:
-  support_points[15] := [0,3/4]:
-  support_points[16] := [1/4,1/4]:
-  support_points[17] := [3/4,1/4]:
-  support_points[18] := [3/4,3/4]:
-  support_points[19] := [1/4,3/4]:
-  support_points[20] := [1/2,1/4]:
-  support_points[21] := [3/4,1/2]:
-  support_points[22] := [1/2,3/4]:
-  support_points[23] := [1/4,1/2]:
-  support_points[24] := [1/2,1/2]:
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg4_txt);
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/3d/computations_on_faces b/deal.II/deal.II/source/fe/scripts/3d/computations_on_faces
deleted file mode 100644 (file)
index 0f80762..0000000
+++ /dev/null
@@ -1,34 +0,0 @@
-  # tphi are the basis functions of the linear element. These functions
-  # are used for the computation of the subparametric transformation from
-  # unit cell to real cell.
-  # x and y are arrays holding the x- and y-values of the four vertices
-  # of this cell in real space. 
-
-  x := array(0..3);
-  y := array(0..3);
-  z := array(0..3);
-  tphi[0] := (1-xi)*(1-eta):
-  tphi[1] := xi*(1-eta):
-  tphi[2] := xi*eta:
-  tphi[3] := (1-xi)*eta:
-  x_real := sum(x[s]*tphi[s], s=0..3):
-  y_real := sum(y[s]*tphi[s], s=0..3):
-  z_real := sum(z[s]*tphi[s], s=0..3):
-
-  image := vector([x_real, y_real, z_real]):
-
-  outward_vector := linalg[crossprod] (map(diff, image, xi), 
-                                       map(diff, image,eta)):
-  detJ := sqrt (outward_vector[1]*outward_vector[1] +
-                outward_vector[2]*outward_vector[2] +
-                outward_vector[3]*outward_vector[3]):
-  normal_vector := map (p->p/detJ, outward_vector):
-
-  measure := int (int (detJ, xi=0..1), eta=0..1):
-
-  readlib(C):
-  C(detJ, optimized):
-
-  # apply the following perl scripts:
-  # perl -pi -e 's/x\[(\d)\]/vertices[$1](0)/g; s/y\[(\d)\]/vertices[$1](1)/g; s/z\[(\d)\]/vertices[$1](2)/g;'
-  # perl -pi -e 's/^\s*t/const double t/g;'
\ No newline at end of file
diff --git a/deal.II/deal.II/source/fe/scripts/3d/lagrange b/deal.II/deal.II/source/fe/scripts/3d/lagrange
deleted file mode 100644 (file)
index 7dc2549..0000000
+++ /dev/null
@@ -1,248 +0,0 @@
-# Maple script to compute much of the data needed to implement the
-# family of Lagrange elements in 3d. Expects that the fields denoting
-# position and number of support points, etc are already set. Note that
-# we assume a bilinear mapping from the unit to the real cell.
-#
-# $Id$
-# Author: Wolfgang Bangerth, 1998
-
-  phi_polynom := array(0..n_functions-1):
-  grad_phi_polynom := array(0..n_functions-1,0..2):
-  grad_grad_phi_polynom := array(0..n_functions-1,0..2,0..2):
-  local_mass_matrix := array(0..n_functions-1, 0..n_functions-1):
-  prolongation := array(0..7,0..n_functions-1, 0..n_functions-1):
-  interface_constraints := array(0..n_constraints-1,
-                                 0..n_face_functions-1):
-
-  print ("Computing basis functions"):
-  for i from 0 to n_functions-1 do
-    print (i):
-    values := array(1..n_functions):
-    for j from 1 to n_functions do
-      values[j] := 0:
-    od:  
-    values[i+1] := 1:
-
-    equation_system := {}:
-    for j from 0 to n_functions-1 do
-      poly := subs(xi=support_points[j][1],
-                   eta=support_points[j][2],
-                  zeta=support_points[j][3],
-                  trial_function):
-      if (i=j) then
-        equation_system := equation_system union {poly = 1}:
-      else     
-        equation_system := equation_system union {poly = 0}:
-      fi:      
-    od:
-    
-    phi_polynom[i] := subs(solve(equation_system), trial_function):
-    grad_phi_polynom[i,0] := diff(phi_polynom[i], xi):
-    grad_phi_polynom[i,1] := diff(phi_polynom[i], eta):
-    grad_phi_polynom[i,2] := diff(phi_polynom[i], zeta):
-
-    grad_grad_phi_polynom[i,0,0] := diff(phi_polynom[i], xi, xi):
-    grad_grad_phi_polynom[i,0,1] := diff(phi_polynom[i], xi, eta):
-    grad_grad_phi_polynom[i,0,2] := diff(phi_polynom[i], xi, zeta):
-    grad_grad_phi_polynom[i,1,0] := diff(phi_polynom[i], eta,xi):
-    grad_grad_phi_polynom[i,1,1] := diff(phi_polynom[i], eta,eta):
-    grad_grad_phi_polynom[i,1,2] := diff(phi_polynom[i], eta,zeta):
-    grad_grad_phi_polynom[i,2,0] := diff(phi_polynom[i], zeta,xi):
-    grad_grad_phi_polynom[i,2,1] := diff(phi_polynom[i], zeta,eta):
-    grad_grad_phi_polynom[i,2,2] := diff(phi_polynom[i], zeta,zeta):
-  od:
-
-  phi:= proc(i,x,y,z) subs(xi=x, eta=y, zeta=z, phi_polynom[i]): end:
-
-
-  #points on children: let them be indexed one-based, as are
-  #the support_points
-  points[0] := array(0..n_functions-1, 1..3):
-  points[1] := array(0..n_functions-1, 1..3):
-  points[2] := array(0..n_functions-1, 1..3):
-  points[3] := array(0..n_functions-1, 1..3):
-  points[4] := array(0..n_functions-1, 1..3):
-  points[5] := array(0..n_functions-1, 1..3):
-  points[6] := array(0..n_functions-1, 1..3):
-  points[7] := array(0..n_functions-1, 1..3):
-  for i from 0 to n_functions-1 do
-    points[0][i,1] := support_points[i][1]/2:
-    points[0][i,2] := support_points[i][2]/2:
-    points[0][i,3] := support_points[i][3]/2:
-    
-    points[1][i,1] := support_points[i][1]/2+1/2:
-    points[1][i,2] := support_points[i][2]/2:
-    points[1][i,3] := support_points[i][3]/2:
-
-    points[2][i,1] := support_points[i][1]/2+1/2:
-    points[2][i,2] := support_points[i][2]/2:
-    points[2][i,3] := support_points[i][3]/2+1/2:
-
-    points[3][i,1] := support_points[i][1]/2:
-    points[3][i,2] := support_points[i][2]/2:
-    points[3][i,3] := support_points[i][3]/2+1/2:
-
-    points[4][i,1] := support_points[i][1]/2:
-    points[4][i,2] := support_points[i][2]/2+1/2:
-    points[4][i,3] := support_points[i][3]/2:
-    
-    points[5][i,1] := support_points[i][1]/2+1/2:
-    points[5][i,2] := support_points[i][2]/2+1/2:
-    points[5][i,3] := support_points[i][3]/2:
-
-    points[6][i,1] := support_points[i][1]/2+1/2:
-    points[6][i,2] := support_points[i][2]/2+1/2:
-    points[6][i,3] := support_points[i][3]/2+1/2:
-
-    points[7][i,1] := support_points[i][1]/2:
-    points[7][i,2] := support_points[i][2]/2+1/2:
-    points[7][i,3] := support_points[i][3]/2+1/2:
-  od:  
-
-  print ("Computing prolongation matrices"):
-  for i from 0 to 7 do
-    print ("child", i):
-    for j from 0 to n_functions-1 do
-      for k from 0 to n_functions-1 do
-        prolongation[i,j,k] := phi(k, points[i][j,1], points[i][j,2], points[i][j,3]):
-      od:
-    od:
-  od:
-
-  print ("Computing restriction matrices"):
-  # to get the restriction (interpolation) matrices, evaluate
-  # the basis functions on the child cells at the global
-  # interpolation points
-  child_phi[0] := proc(i, x, y, z)
-                    if ((x>1/2) or (y>1/2) or (z>1/2)) then
-                     0:
-                   else
-                     phi(i,2*x,2*y,2*z):
-                   fi:
-                 end: 
-  child_phi[1] := proc(i, x, y, z)
-                    if ((x<1/2) or (y>1/2) or (z>1/2)) then
-                     0:
-                   else
-                     phi(i,2*x-1,2*y, 2*z):
-                   fi:
-                 end: 
-  child_phi[2] := proc(i, x, y, z)
-                    if ((x<1/2) or (y>1/2) or (z<1/2)) then
-                     0:
-                   else
-                     phi(i,2*x-1,2*y, 2*z-1):
-                   fi:
-                 end: 
-  child_phi[3] := proc(i, x, y, z)
-                    if ((x>1/2) or (y>1/2) or (z<1/2)) then
-                     0:
-                   else
-                     phi(i,2*x,2*y,2*z-1):
-                   fi:
-                 end: 
-  child_phi[4] := proc(i, x, y, z)
-                    if ((x>1/2) or (y<1/2) or (z>1/2)) then
-                     0:
-                   else
-                     phi(i,2*x,2*y-1,2*z):
-                   fi:
-                 end: 
-  child_phi[5] := proc(i, x, y, z)
-                    if ((x<1/2) or (y<1/2) or (z>1/2)) then
-                     0:
-                   else
-                     phi(i,2*x-1,2*y-1,2*z):
-                   fi:
-                 end: 
-  child_phi[6] := proc(i, x, y, z)
-                    if ((x<1/2) or (y<1/2) or (z<1/2)) then
-                     0:
-                   else
-                     phi(i,2*x-1,2*y-1,2*z-1):
-                   fi:
-                 end: 
-  child_phi[7] := proc(i, x, y, z)
-                    if ((x>1/2) or (y<1/2) or (z<1/2)) then
-                     0:
-                   else
-                     phi(i,2*x,2*y-1,2*z-1):
-                   fi:
-                 end: 
-  restriction := array(0..7,0..n_functions-1, 0..n_functions-1):
-  for child from 0 to 7 do
-    for j from 0 to n_functions-1 do
-      for k from 0 to n_functions-1 do
-        restriction[child,j,k] := child_phi[child](k,
-                                                  support_points[j][1],
-                                                  support_points[j][2],
-                                                  support_points[j][3]):
-      od:
-    od:
-  od:
-
-
-  print ("computing interface constraint matrices"):
-  # compute the interface constraint matrices. these are the values of the
-  # basis functions on the coarse cell's face at the points of the child
-  # cell's basis functions on the child faces
-  #
-  # first compute for each function on the (large) face the polynom
-  # we get this by evaluating the respective global trial function
-  # with y=0
-  face_phi_polynom := array(0..n_face_functions-1):
-  for j from 0 to n_face_functions-1 do
-    face_phi_polynom[j] := proc(xi,eta)
-      subs(dummy=0, phi(constrained_face_function[j],xi,dummy,eta)):
-    end:
-  od:
-
-  for i from 0 to n_constraints-1 do
-    for j from 0 to n_face_functions-1 do
-      interface_constraints[i,j] 
-            := face_phi_polynom[j](constrained_face_support_points[i][0],
-                                   constrained_face_support_points[i][1]):
-    od:
-  od:
-
-                                     
-  # tphi are the basis functions of the linear element. These functions
-  # are used for the computation of the subparametric transformation from
-  # unit cell to real cell.
-  # x and y are arrays holding the x- and y-values of the four vertices
-  # of this cell in real space. same for z
-  #
-  print ("Computing real space support points"):
-  x := array(0..7);
-  y := array(0..7);
-  z := array(0..7):
-  tphi[0] := (1-xi)*(1-eta)*(1-zeta):
-  tphi[1] := xi*(1-eta)*(1-zeta):
-  tphi[2] := xi*(1-eta)*zeta:
-  tphi[3] := (1-xi)*(1-eta)*zeta:
-  tphi[4] := (1-xi)*eta*(1-zeta):
-  tphi[5] := xi*eta*(1-zeta):
-  tphi[6] := xi*eta*zeta:
-  tphi[7] := (1-xi)*eta*zeta:
-  x_real := sum(x[s]*tphi[s], s=0..7):
-  y_real := sum(y[s]*tphi[s], s=0..7):
-  z_real := sum(z[s]*tphi[s], s=0..7):
-
-  real_space_points := array(0..n_functions-1,0..2):
-  for i from 0 to n_functions-1 do
-    real_space_points[i,0] :=
-                   subs(xi=support_points[i][1],
-                        eta=support_points[i][2],
-                        zeta=support_points[i][3],
-                        x_real):
-    real_space_points[i,1] :=
-                   subs(xi=support_points[i][1],
-                        eta=support_points[i][2],
-                        zeta=support_points[i][3],
-                        y_real):
-    real_space_points[i,2] :=
-                   subs(xi=support_points[i][1],
-                        eta=support_points[i][2],
-                        zeta=support_points[i][3],
-                        z_real):
-   od:
\ No newline at end of file
diff --git a/deal.II/deal.II/source/fe/scripts/3d/lagrange-cubic b/deal.II/deal.II/source/fe/scripts/3d/lagrange-cubic
deleted file mode 100644 (file)
index 1716d22..0000000
+++ /dev/null
@@ -1,161 +0,0 @@
-#  --------------------------------- For 3d ---------------------------------
-#  -- Use the following maple script to generate the basis functions,
-#  -- gradients and prolongation matrices as well as the mass matrix.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Wolfgang Bangerth, 1999
-
-  read "lagrange-tools":
-
-  n_functions      := 64:
-  n_face_functions := 16:
-  n_constraints    := 45:
-
-  trial_function := ((a1 + a2*xi + a3*xi*xi + a4*xi*xi*xi) +
-                     (b1 + b2*xi + b3*xi*xi + b4*xi*xi*xi)*eta +
-                     (c1 + c2*xi + c3*xi*xi + c4*xi*xi*xi)*eta*eta +
-                     (d1 + d2*xi + d3*xi*xi + d4*xi*xi*xi)*eta*eta*eta) +
-                    ((e1 + e2*xi + e3*xi*xi + e4*xi*xi*xi) + 
-                     (f1 + f2*xi + f3*xi*xi + f4*xi*xi*xi)*eta +
-                     (g1 + g2*xi + g3*xi*xi + g4*xi*xi*xi)*eta*eta +
-                     (h1 + h2*xi + h3*xi*xi + h4*xi*xi*xi)*eta*eta*eta)*zeta +
-                    ((i1 + i2*xi + i3*xi*xi + i4*xi*xi*xi) + 
-                     (j1 + j2*xi + j3*xi*xi + j4*xi*xi*xi)*eta +
-                     (k1 + k2*xi + k3*xi*xi + k4*xi*xi*xi)*eta*eta +
-                     (l1 + l2*xi + l3*xi*xi + l4*xi*xi*xi)*eta*eta*eta)*zeta*zeta +
-                    ((m1 + m2*xi + m3*xi*xi + m4*xi*xi*xi) + 
-                     (n1 + n2*xi + n3*xi*xi + n4*xi*xi*xi)*eta +
-                     (o1 + o2*xi + o3*xi*xi + o4*xi*xi*xi)*eta*eta +
-                     (p1 + p2*xi + p3*xi*xi + p4*xi*xi*xi)*eta*eta*eta)*zeta*zeta*zeta:
-  face_trial_function := subs(zeta=0, trial_function):
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  support_points := array(0..n_functions-1):
-
-  support_points_fill_vertices (0, support_points):
-  support_points_fill_lines (8, 2, support_points):
-  support_points_fill_quads (32, 2, support_points):
-  support_points_fill_hex (56, 2, support_points):
-
-  face_support_points := array(0..n_face_functions-1):
-  face_support_points[0] := [0,0]:
-  face_support_points[1] := [1,0]:
-  face_support_points[2] := [1,1]:
-  face_support_points[3] := [0,1]:
-  face_support_points[4] := [1/3,0]:
-  face_support_points[5] := [2/3,0]:
-  face_support_points[6] := [1,1/3]:
-  face_support_points[7] := [1,2/3]:
-  face_support_points[8] := [1/3,1]:
-  face_support_points[9] := [2/3,1]:
-  face_support_points[10] := [0,1/3]:
-  face_support_points[11] := [0,2/3]:
-  face_support_points[12] := [1/3,1/3]:
-  face_support_points[13] := [1/3,2/3]:
-  face_support_points[14] := [2/3,1/3]:
-  face_support_points[15] := [2/3,2/3]:
-
-  # list of functions which are at face 0, used to compute
-  # the constraints on a face
-  constrained_face_function := array (0..n_face_functions-1):
-  # the list of points at which we want the functions at
-  # faces to be evaluated
-  constrained_face_support_points := array(0..n_constraints-1):
-  constrained_face_function[0] := 0:
-  constrained_face_function[1] := 1:
-  constrained_face_function[2] := 2:
-  constrained_face_function[3] := 3:
-  constrained_face_function[4] := 8:
-  constrained_face_function[5] := 9:
-  constrained_face_function[6] := 10:
-  constrained_face_function[7] := 11:
-  constrained_face_function[8] := 12:
-  constrained_face_function[9] := 13:
-  constrained_face_function[10] := 14:
-  constrained_face_function[11] := 15:
-  constrained_face_function[12] := 32:
-  constrained_face_function[13] := 33:
-  constrained_face_function[14] := 34:
-  constrained_face_function[15] := 35:
-
-  constrained_face_support_points[0] := array(0..1, [1/2,1/2]):  # center vertex
-  constrained_face_support_points[1] := array(0..1, [1/2,0]):    # centers of large lines
-  constrained_face_support_points[2] := array(0..1, [1,1/2]):
-  constrained_face_support_points[3] := array(0..1, [1/2,1]):
-  constrained_face_support_points[4] := array(0..1, [0,1/2]):
-  constrained_face_support_points[5] := array(0..1, [1/2,1/6]):  # lines from center to boundary
-  constrained_face_support_points[6] := array(0..1, [1/2,2/6]):
-  constrained_face_support_points[7] := array(0..1, [4/6,1/2]):
-  constrained_face_support_points[8] := array(0..1, [5/6,1/2]):
-  constrained_face_support_points[9] := array(0..1, [1/2,4/6]):
-  constrained_face_support_points[10] := array(0..1, [1/2,5/6]):
-  constrained_face_support_points[11] := array(0..1, [1/6,1/2]):
-  constrained_face_support_points[12] := array(0..1, [2/6,1/2]):
-  constrained_face_support_points[13] := array(0..1, [1/6,0]):    # children of bounding lines
-  constrained_face_support_points[14] := array(0..1, [2/6,0]):
-  constrained_face_support_points[15] := array(0..1, [4/6,0]):
-  constrained_face_support_points[16] := array(0..1, [5/6,0]):
-
-  constrained_face_support_points[17] := array(0..1, [1,1/6]):
-  constrained_face_support_points[18] := array(0..1, [1,2/6]):
-  constrained_face_support_points[19] := array(0..1, [1,4/6]):
-  constrained_face_support_points[20] := array(0..1, [1,5/6]):
-
-  constrained_face_support_points[21] := array(0..1, [1/6,1]):
-  constrained_face_support_points[22] := array(0..1, [2/6,1]):
-  constrained_face_support_points[23] := array(0..1, [4/6,1]):
-  constrained_face_support_points[24] := array(0..1, [5/6,1]):
-
-  constrained_face_support_points[25] := array(0..1, [0,1/6]):
-  constrained_face_support_points[26] := array(0..1, [0,2/6]):
-  constrained_face_support_points[27] := array(0..1, [0,4/6]):
-  constrained_face_support_points[28] := array(0..1, [0,5/6]):
-
-  constrained_face_support_points[29] := array(0..1, [1/6,1/6]):    # child quads
-  constrained_face_support_points[30] := array(0..1, [2/6,1/6]):
-  constrained_face_support_points[31] := array(0..1, [1/6,2/6]):
-  constrained_face_support_points[32] := array(0..1, [2/6,2/6]):
-
-  constrained_face_support_points[33] := array(0..1, [4/6,1/6]):
-  constrained_face_support_points[34] := array(0..1, [5/6,1/6]):
-  constrained_face_support_points[35] := array(0..1, [4/6,2/6]):
-  constrained_face_support_points[36] := array(0..1, [5/6,2/6]):
-
-  constrained_face_support_points[37] := array(0..1, [4/6,4/6]):
-  constrained_face_support_points[38] := array(0..1, [5/6,4/6]):
-  constrained_face_support_points[39] := array(0..1, [4/6,5/6]):
-  constrained_face_support_points[40] := array(0..1, [5/6,5/6]):
-
-  constrained_face_support_points[41] := array(0..1, [1/6,4/6]):
-  constrained_face_support_points[42] := array(0..1, [2/6,4/6]):
-  constrained_face_support_points[43] := array(0..1, [1/6,5/6]):
-  constrained_face_support_points[44] := array(0..1, [2/6,5/6]):
-
-
-  # do the real work
-  read "lagrange":
-
-
-  
-  # write data to files
-  print ("writing data to files"):
-  readlib(C):
-  C(phi_polynom,            filename=cubic3d_shape_value):
-  C(grad_phi_polynom,       filename=cubic3d_shape_grad):
-  C(grad_grad_phi_polynom,  filename=cubic3d_shape_grad_grad):
-  C(prolongation,           filename=cubic3d_prolongation):
-  C(restriction,            filename=cubic3d_restriction):
-  C(interface_constraints,  filename=cubic3d_constraints):
-  C(real_space_points,      optimized, filename=cubic3d_real_points):
-
-  writeto (cubic3d_unit_support_points):
-  print (support_points):
-
-  
\ No newline at end of file
diff --git a/deal.II/deal.II/source/fe/scripts/3d/lagrange-linear b/deal.II/deal.II/source/fe/scripts/3d/lagrange-linear
deleted file mode 100644 (file)
index afcc425..0000000
+++ /dev/null
@@ -1,128 +0,0 @@
-#  --------------------------------- For 3d ---------------------------------
-#  -- Use the following maple script to generate the basis functions,
-#  -- gradients and prolongation matrices as well as the mass matrix.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Wolfgang Bangerth, 1999
-
-  n_functions      := 8:
-  n_face_functions := 4:
-  n_constraints    := 5:
-
-  trial_function := ((a1 + a2*xi) +
-                     (b1 + b2*xi)*eta) +
-                    ((d1 + d2*xi) + 
-                     (e1 + e2*xi)*eta)*zeta:
-  face_trial_function := subs(zeta=0, trial_function):
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  support_points := array(0..n_functions-1):
-  support_points[0] := array(1..3, [0,0,0]):
-  support_points[1] := array(1..3, [1,0,0]):
-  support_points[2] := array(1..3, [1,0,1]):
-  support_points[3] := array(1..3, [0,0,1]):
-  support_points[4] := array(1..3, [0,1,0]):
-  support_points[5] := array(1..3, [1,1,0]):
-  support_points[6] := array(1..3, [1,1,1]):
-  support_points[7] := array(1..3, [0,1,1]):
-
-  face_support_points := array(0..n_face_functions-1):
-  face_support_points[0] := [0,0]:
-  face_support_points[1] := [1,0]:
-  face_support_points[2] := [1,1]:
-  face_support_points[3] := [0,1]:
-
-  # list of functions which are at face 0, used to compute
-  # the constraints on a face
-  constrained_face_function := array (0..n_face_functions-1):
-  # the list of points at which we want the functions at
-  # faces to be evaluated
-  constrained_face_support_points := array(0..n_constraints-1):
-  constrained_face_function[0] := 0:
-  constrained_face_function[1] := 1:
-  constrained_face_function[2] := 2:
-  constrained_face_function[3] := 3:
-  constrained_face_support_points[0] := array(0..1, [1/2,1/2]):
-  constrained_face_support_points[1] := array(0..1, [1/2,0]):
-  constrained_face_support_points[2] := array(0..1, [1,1/2]):
-  constrained_face_support_points[3] := array(0..1, [1/2,1]):
-  constrained_face_support_points[4] := array(0..1, [0,1/2]):
-
-
-  # do the real work
-  read "lagrange":
-
-  # ... originally taken from another comment, so this does not
-  # fit in here too well...
-  #
-  # Since we're already at it and need it anyway, we also compute the
-  # Jacobian matrix of the transform and its derivatives. For the
-  # question of whether to take the given form or its transpose, refer
-  # to the documentation of the FEValues class and the source code
-  # documentation of FELinearMapping::fill_fe_values. Also note, that
-  # the computed inverse is multiplied to the unit cell gradients
-  # *from the right*. 
-  print ("Computing Jacobian matrices"):
-  Jacobian := linalg[matrix](3,3, [[diff(x_real,xi), diff(x_real,eta), diff(x_real,zeta)],
-                                   [diff(y_real,xi), diff(y_real,eta), diff(y_real,zeta)],
-                                   [diff(z_real,xi), diff(z_real,eta), diff(z_real,zeta)]]):
-  inverseJacobian := linalg[inverse](Jacobian):
-  detJ := linalg[det](Jacobian):
-
-  grad_inverseJacobian := array(1..3, 1..3, 1..3):
-  for i from 1 to 3 do
-    for j from 1 to 3 do
-      for k from 1 to 3 do
-        if (i=1) then
-          grad_inverseJacobian[i,j,k] := diff (inverseJacobian[j,k], xi):
-        else 
-          if (i=2) then
-            grad_inverseJacobian[i,j,k] := diff (inverseJacobian[j,k], eta):
-          else
-            grad_inverseJacobian[i,j,k] := diff (inverseJacobian[j,k], zeta):
-         fi:
-        fi:
-      od:
-    od:
-  od:
-
-
-  print ("computing support points in real space"):
-  real_points := array(0..n_functions-1, 0..2);
-  for i from 0 to n_functions-1 do
-    real_points[i,0] := subs(xi=support_points[i][1],
-                            eta=support_points[i][2],  
-                             zeta=support_points[i][3], x_real);
-    real_points[i,1] := subs(xi=support_points[i][1],
-                             eta=support_points[i][2], 
-                             zeta=support_points[i][3], y_real);
-    real_points[i,2] := subs(xi=support_points[i][1],
-                             eta=support_points[i][2], 
-                             zeta=support_points[i][3], z_real);
-  od:
-
-
-  
-  # write data to files
-  print ("writing data to files"):
-  readlib(C):
-  C(phi_polynom,            filename=linear3d_shape_value):
-  C(grad_phi_polynom,       filename=linear3d_shape_grad):
-  C(grad_grad_phi_polynom,  filename=linear3d_shape_grad_grad):
-  C(prolongation,           filename=linear3d_prolongation):
-  C(restriction,            filename=linear3d_restriction):
-  C(local_mass_matrix,      filename=linear3d_massmatrix):
-  C(interface_constraints,  filename=linear3d_constraints):
-  C(real_points, optimized, filename=linear3d_real_points):
-  # the following two files get much smaller and faster when processed using 'optimized'
-  C(inverseJacobian,        optimized, filename=linear3d_inverse_jacobian):
-  C(grad_inverseJacobian,   optimized, filename=linear3d_inverse_jacobian_grad):
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/3d/lagrange-quadratic b/deal.II/deal.II/source/fe/scripts/3d/lagrange-quadratic
deleted file mode 100644 (file)
index 69dfc0a..0000000
+++ /dev/null
@@ -1,113 +0,0 @@
-#  --------------------------------- For 3d ---------------------------------
-#  -- Use the following maple script to generate the basis functions,
-#  -- gradients and prolongation matrices as well as the mass matrix.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Wolfgang Bangerth, 1999
-
-  read "lagrange-tools":
-
-  n_functions      := 27:
-  n_face_functions := 9:
-  n_constraints    := 21:
-
-  trial_function := ((a1 + a2*xi + a3*xi*xi) +
-                     (b1 + b2*xi + b3*xi*xi)*eta +
-                     (c1 + c2*xi + c3*xi*xi)*eta*eta) +
-                    ((d1 + d2*xi + d3*xi*xi) + 
-                     (e1 + e2*xi + e3*xi*xi)*eta +
-                     (f1 + f2*xi + f3*xi*xi)*eta*eta)*zeta +
-                    ((g1 + g2*xi + g3*xi*xi) + 
-                     (h1 + h2*xi + h3*xi*xi)*eta +
-                     (i1 + i2*xi + i3*xi*xi)*eta*eta)*zeta*zeta:
-  face_trial_function := subs(zeta=0, trial_function):
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  support_points := array(0..n_functions-1):
-
-  support_points_fill_vertices (0, support_points):
-  support_points_fill_lines (8, 1, support_points):
-  support_points[20] := array(1..3, [1/2, 0, 1/2]):  #faces
-  support_points[21] := array(1..3, [1/2, 1, 1/2]):
-  support_points[22] := array(1..3, [1/2, 1/2, 0]):
-  support_points[23] := array(1..3, [1, 1/2, 1/2]):
-  support_points[24] := array(1..3, [1/2, 1/2, 1]):
-  support_points[25] := array(1..3, [0, 1/2, 1/2]):
-  support_points[26] := array(1..3, [1/2, 1/2,1/2]):  #center
-
-  face_support_points := array(0..n_face_functions-1):
-  face_support_points[0] := [0,0]:
-  face_support_points[1] := [1,0]:
-  face_support_points[2] := [1,1]:
-  face_support_points[3] := [0,1]:
-  face_support_points[4] := [1/2,0]:
-  face_support_points[5] := [1,1/2]:
-  face_support_points[6] := [1/2,1]:
-  face_support_points[7] := [0,1/2]:
-  face_support_points[8] := [1/2,1/2]:
-
-  # list of functions which are at face 0, used to compute
-  # the constraints on a face
-  constrained_face_function := array (0..n_face_functions-1):
-  # the list of points at which we want the functions at
-  # faces to be evaluated
-  constrained_face_support_points := array(0..n_constraints-1):
-  constrained_face_function[0] := 0:
-  constrained_face_function[1] := 1:
-  constrained_face_function[2] := 2:
-  constrained_face_function[3] := 3:
-  constrained_face_function[4] := 8:
-  constrained_face_function[5] := 9:
-  constrained_face_function[6] := 10:
-  constrained_face_function[7] := 11:
-  constrained_face_function[8] := 20:
-  constrained_face_support_points[0] := array(0..1, [1/2,1/2]):  # center vertex
-  constrained_face_support_points[1] := array(0..1, [1/2,0]):    # centers of large lines
-  constrained_face_support_points[2] := array(0..1, [1,1/2]):
-  constrained_face_support_points[3] := array(0..1, [1/2,1]):
-  constrained_face_support_points[4] := array(0..1, [0,1/2]):
-  constrained_face_support_points[5] := array(0..1, [1/2,1/4]):  # lines from center to boundary
-  constrained_face_support_points[6] := array(0..1, [3/4,1/2]):
-  constrained_face_support_points[7] := array(0..1, [1/2,3/4]):
-  constrained_face_support_points[8] := array(0..1, [1/4,1/2]):
-  constrained_face_support_points[9] := array(0..1, [1/4,0]):    # children of bounding lines
-  constrained_face_support_points[10] := array(0..1, [3/4,0]):
-  constrained_face_support_points[11] := array(0..1, [1,1/4]):
-  constrained_face_support_points[12] := array(0..1, [1,3/4]):
-  constrained_face_support_points[13] := array(0..1, [1/4,1]):
-  constrained_face_support_points[14] := array(0..1, [3/4,1]):
-  constrained_face_support_points[15] := array(0..1, [0,1/4]):
-  constrained_face_support_points[16] := array(0..1, [0,3/4]):
-  constrained_face_support_points[17] := array(0..1, [1/4,1/4]):    # child quads
-  constrained_face_support_points[18] := array(0..1, [3/4,1/4]):
-  constrained_face_support_points[19] := array(0..1, [3/4,3/4]):
-  constrained_face_support_points[20] := array(0..1, [1/4,3/4]):
-
-
-  # do the real work
-  read "lagrange":
-
-
-  
-  # write data to files
-  print ("writing data to files"):
-  readlib(C):
-  C(phi_polynom,            filename=quadratic3d_shape_value):
-  C(grad_phi_polynom,       filename=quadratic3d_shape_grad):
-  C(grad_grad_phi_polynom,  filename=quadratic3d_shape_grad_grad):
-  C(prolongation,           filename=quadratic3d_prolongation):
-  C(restriction,            filename=quadratic3d_restriction):
-  C(interface_constraints,  filename=quadratic3d_constraints):
-  C(real_space_points,      optimized, filename=quadratic3d_real_points):
-
-  writeto (quadratic3d_unit_support_points):
-  print (support_points):
-
-  
\ No newline at end of file
diff --git a/deal.II/deal.II/source/fe/scripts/3d/lagrange-tools b/deal.II/deal.II/source/fe/scripts/3d/lagrange-tools
deleted file mode 100644 (file)
index 9a27c77..0000000
+++ /dev/null
@@ -1,196 +0,0 @@
-support_points_fill_vertices := proc (starting_index, support_points)
-  support_points[starting_index+0] := array(1..3, [0,0,0]):
-  support_points[starting_index+1] := array(1..3, [1,0,0]):
-  support_points[starting_index+2] := array(1..3, [1,0,1]):
-  support_points[starting_index+3] := array(1..3, [0,0,1]):
-  support_points[starting_index+4] := array(1..3, [0,1,0]):
-  support_points[starting_index+5] := array(1..3, [1,1,0]):
-  support_points[starting_index+6] := array(1..3, [1,1,1]):
-  support_points[starting_index+7] := array(1..3, [0,1,1]):
-end:
-
-
-
-support_points_fill_lines := proc (starting_index, dofs_per_line, support_points)
-
-  local next_index, increment, i:
-
-  next_index := starting_index:
-  increment := 1/(dofs_per_line+1):
-
-  # line 0
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [i*increment, 0, 0]):
-    next_index := next_index+1
-  od:
-
-  # line 1
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [1, 0, i*increment]):
-    next_index := next_index+1
-  od:
-
-  # line 2
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [i*increment, 0, 1]):
-    next_index := next_index+1
-  od:
-
-  # line 3
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [0, 0, i*increment]):
-    next_index := next_index+1
-  od:
-
-  # line 4
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [i*increment, 1, 0]):
-    next_index := next_index+1
-  od:
-
-  # line 5
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [1, 1, i*increment]):
-    next_index := next_index+1
-  od:
-
-  # line 6
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [i*increment, 1, 1]):
-    next_index := next_index+1
-  od:
-
-  # line 7
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [0, 1, i*increment]):
-    next_index := next_index+1
-  od:
-
-
-  # line 8
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [0, i*increment,0]):
-    next_index := next_index+1
-  od:
-
-  # line 9
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [1, i*increment, 0]):
-    next_index := next_index+1
-  od:
-
-  # line 10
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [1, i*increment, 1]):
-    next_index := next_index+1
-  od:
-
-  # line 11
-  for i from 1 to dofs_per_line do
-    support_points[next_index] 
-      := array (1..3, [0, i*increment, 1]):
-    next_index := next_index+1
-  od:
-end:
-
-
-
-
-support_points_fill_quads := 
-  proc (starting_index, dofs_per_direction, support_points)
-
-  local next_index, increment, i,j:
-
-  next_index := starting_index:
-  increment := 1/(dofs_per_direction+1):
-
-  # face 0
-  for i from 1 to dofs_per_direction do
-    for j from 1 to dofs_per_direction do
-      support_points[next_index]
-        := array (1..3, [j*increment, 0, i*increment]):
-      next_index := next_index+1:
-    od:
-  od:
-
-  # face 1
-  for i from 1 to dofs_per_direction do
-    for j from 1 to dofs_per_direction do
-      support_points[next_index]
-        := array (1..3, [j*increment, 1, i*increment]):
-      next_index := next_index+1:
-    od:
-  od:
-
-  # face 2
-  for i from 1 to dofs_per_direction do
-    for j from 1 to dofs_per_direction do
-      support_points[next_index]
-        := array (1..3, [j*increment, i*increment, 0]):
-      next_index := next_index+1:
-    od:
-  od:
-
-  # face 3
-  for i from 1 to dofs_per_direction do
-    for j from 1 to dofs_per_direction do
-      support_points[next_index]
-        := array (1..3, [1, j*increment, i*increment]):
-      next_index := next_index+1:
-    od:
-  od:
-
-
-
-  # face 4
-  for i from 1 to dofs_per_direction do
-    for j from 1 to dofs_per_direction do
-      support_points[next_index]
-        := array (1..3, [j*increment, i*increment, 1]):
-      next_index := next_index+1:
-    od:
-  od:
-
-  # face 5
-  for i from 1 to dofs_per_direction do
-    for j from 1 to dofs_per_direction do
-      support_points[next_index]
-        := array (1..3, [0, j*increment, i*increment]):
-      next_index := next_index+1:
-    od:
-  od:
-end:
-
-
-
-
-support_points_fill_hex := proc (starting_index, dofs_per_direction, support_points)
-
-  local next_index, increment, i, j, k:
-
-  next_index := starting_index:
-  increment := 1/(dofs_per_direction+1):
-
-  for i from 1 to dofs_per_direction do
-    for j from 1 to dofs_per_direction do
-      for k from 1 to dofs_per_direction do
-        support_points[next_index]
-          := array (1..3, [k*increment,
-                           j*increment,
-                           i*increment]):
-        next_index := next_index + 1:
-      od:
-    od:
-  od:
-end:
diff --git a/deal.II/deal.II/source/fe/scripts/3d/postprocess b/deal.II/deal.II/source/fe/scripts/3d/postprocess
deleted file mode 100644 (file)
index 1f26bb7..0000000
+++ /dev/null
@@ -1,60 +0,0 @@
-#  Use the following perl scripts to convert the output into a
-#  suitable format.
-#
-#  $Id$
-#  Wolfgang Bangerth, 1998
-  
-perl -pi -e 's/phi_polynom\[(\d+)\] =/case $1: return/g;' *3d_shape_value
-
-perl -pi -e 's/([^;])\n/$1/g;' *3d_shape_grad
-perl -pi -e 's/grad_phi_polynom\[(\d+)\]\[0\] = (.*);/case $1: return Point<3>($2,/g;' *3d_shape_grad
-perl -pi -e 's/grad_phi_polynom\[(\d+)\]\[[01]\] = (.*);/$2,/g;' *3d_shape_grad
-perl -pi -e 's/grad_phi_polynom\[(\d+)\]\[2\] = (.*);/$2);/g;' *3d_shape_grad
-
-
-#    concatenate all lines for each entry
-perl -pi -e 's/([^;])\n/$1/g;' *3d_shape_grad_grad
-#    rename the variable
-perl -pi -e 's/\s*grad_grad_phi_polynom/return_value/g;' *3d_shape_grad_grad
-#    insert 'case' and 'break' statements
-perl -pi -e 's/(return_value\[(\d)\]\[0\]\[0\] = .*;)/break;\ncase $2:\n$1/g;' *3d_shape_grad_grad
-#    eliminate first index, since that one is caught by the 'case' statement
-perl -pi -e 's/return_value\[\d+\]/return_value/g;' *3d_shape_grad_grad
-#    delete lines where only a zero is set, since this already is done in the constructor
-perl -pi -e 's/.*= 0.0;\n//g;' *3d_shape_grad_grad
-
-
-perl -pi -e 's/\[(\d+)\]\[(\d+)\]\[(\d+)\]/[$1]($2,$3)/g;' *3d_prolongation
-perl -pi -e 's/.*= 0.0;\n//g;' *3d_prolongation
-
-
-perl -pi -e 's/\[(\d+)\]\[(\d+)\]\[(\d+)\]/[$1]($2,$3)/g;' *3d_restriction
-perl -pi -e 's/.*= 0.0;\n//g;' *3d_restriction
-
-
-perl -pi -e 's/\[(\d+)\]\[(\d+)\]/($1,$2)/g;' *3d_constraints
-perl -pi -e 's/.*= 0.0;\n//g;' *3d_constraints
-
-perl -pi -e 's/([^;])\n/$1/g;' *3d_inverse_jacobian
-perl -pi -e 's/^\s*t/              const double t/g;' *3d_inverse_jacobian
-perl -pi -e 's/x\[(\d)\]/vertices[$1](0)/g;' *3d_inverse_jacobian
-perl -pi -e 's/y\[(\d)\]/vertices[$1](1)/g;' *3d_inverse_jacobian
-perl -pi -e 's/z\[(\d)\]/vertices[$1](2)/g;' *3d_inverse_jacobian
-perl -pi -e 's/^s*inverseJacobian/              jacobians[point]/g;' *3d_inverse_jacobian
-perl -pi -e 's/\[(\d)\]\[(\d)\] =/($1,$2) =/g;' *3d_inverse_jacobian
-
-perl -pi -e 's/([^;])\n/$1/g;' *3d_inverse_jacobian_grad
-perl -pi -e 's/^\s*t/              const double t/g;' *3d_inverse_jacobian_grad
-perl -pi -e 's/x\[(\d)\]/vertices[$1](0)/g;' *3d_inverse_jacobian_grad
-perl -pi -e 's/y\[(\d)\]/vertices[$1](1)/g;' *3d_inverse_jacobian_grad
-perl -pi -e 's/z\[(\d)\]/vertices[$1](2)/g;' *3d_inverse_jacobian_grad
-perl -pi -e 's/^\s*grad_inverseJacobian/              jacobians_grad[point]/g;' *3d_inverse_jacobian_grad
-
-
-perl -pi -e 's/^array.*\n//g; s/^\s*\]\)//g; s/^\n//g;' *3d_unit_support_points
-perl -pi -e 's/\s+\((\d+)\)/  unit_points[$1]/g;' *3d_unit_support_points
-perl -pi -e 's/= \[/= Point<3>(/g; s/\]\s*\n/);\n/g;' *3d_unit_support_points
-
-
-perl -pi -e 's/real_space_points\[(\d+)\]\[(\d+)\]/support_points[$1]($2)/g;' *3d_real_points
-perl -pi -e 's/x\[(\d+)\]/vertices[$1](0)/g; s/y\[(\d+)\]/vertices[$1](1)/g; s/z\[(\d+)\]/vertices[$1](2)/g;' *3d_real_points
\ No newline at end of file
diff --git a/deal.II/deal.II/source/fe/scripts/3d/restriction_dg b/deal.II/deal.II/source/fe/scripts/3d/restriction_dg
deleted file mode 100644 (file)
index 9bcc76e..0000000
+++ /dev/null
@@ -1,146 +0,0 @@
-  dim:=3;
-
-  print (`Computing basis functions`);
-  phi_polynom := array(0..n_functions-1);
-  for i from 0 to n_functions-1 do
-    print (i):
-    values := array(1..n_functions):
-    for j from 1 to n_functions do
-      values[j] := 0:
-    od:  
-    values[i+1] := 1:
-
-    equation_system := {}:
-    for j from 0 to n_functions-1 do
-      poly := subs(xi=support_points[j][1],
-                   eta=support_points[j][2],
-                  zeta=support_points[j][3],
-                  trial_function):
-      if (i=j) then
-        equation_system := equation_system union {poly = 1}:
-      else     
-        equation_system := equation_system union {poly = 0}:
-      fi:      
-    od:
-    
-    phi_polynom[i] := subs(solve(equation_system), trial_function);
-  od:
-
-  phi:= proc(i,x,y,z) subs(xi=x, eta=y, zeta=z, phi_polynom[i]): end:
-
-
-
-  #points on children: let them be indexed one-based, as are
-  #the support_points
-  #  child_phi[c](i, points[c][j, ])=delta_ij
-  points[0] := array(0..n_functions-1, 1..3):
-  points[1] := array(0..n_functions-1, 1..3):
-  points[2] := array(0..n_functions-1, 1..3):
-  points[3] := array(0..n_functions-1, 1..3):
-  points[4] := array(0..n_functions-1, 1..3):
-  points[5] := array(0..n_functions-1, 1..3):
-  points[6] := array(0..n_functions-1, 1..3):
-  points[7] := array(0..n_functions-1, 1..3):
-  for i from 0 to n_functions-1 do
-    points[0][i,1] := support_points[i][1]/2:
-    points[0][i,2] := support_points[i][2]/2:
-    points[0][i,3] := support_points[i][3]/2:
-    
-    points[1][i,1] := support_points[i][1]/2+1/2:
-    points[1][i,2] := support_points[i][2]/2:
-    points[1][i,3] := support_points[i][3]/2:
-
-    points[2][i,1] := support_points[i][1]/2+1/2:
-    points[2][i,2] := support_points[i][2]/2:
-    points[2][i,3] := support_points[i][3]/2+1/2:
-
-    points[3][i,1] := support_points[i][1]/2:
-    points[3][i,2] := support_points[i][2]/2:
-    points[3][i,3] := support_points[i][3]/2+1/2:
-
-    points[4][i,1] := support_points[i][1]/2:
-    points[4][i,2] := support_points[i][2]/2+1/2:
-    points[4][i,3] := support_points[i][3]/2:
-    
-    points[5][i,1] := support_points[i][1]/2+1/2:
-    points[5][i,2] := support_points[i][2]/2+1/2:
-    points[5][i,3] := support_points[i][3]/2:
-
-    points[6][i,1] := support_points[i][1]/2+1/2:
-    points[6][i,2] := support_points[i][2]/2+1/2:
-    points[6][i,3] := support_points[i][3]/2+1/2:
-
-    points[7][i,1] := support_points[i][1]/2:
-    points[7][i,2] := support_points[i][2]/2+1/2:
-    points[7][i,3] := support_points[i][3]/2+1/2:
-  od:  
-
-  # find the prolongation matrices such that
-  #  phi(k,x,y,z)|_K_i=prol[i,j,k] child_phi[i](j,x,y,z)
-  print (`Computing prolongation matrices`):
-  prolongation := array(0..7,0..n_functions-1, 0..n_functions-1):
-  for i from 0 to 7 do
-    for j from 0 to n_functions-1 do
-      for k from 0 to n_functions-1 do
-        prolongation[i,j,k] := phi(k, points[i][j,1], points[i][j,2], points[i][j,3]);
-      od:
-    od:
-  od:
-
-  # assemble the local mass matrix (on the unit square)
-  # m[i,j]=int_{0..1}int_{0..1}int_{0..1} phi[i]*phi[j] dxdydz
-  m := array(1..n_functions, 1..n_functions):
-  print (`Assembling mass matrix`):
-  for i from 1 to n_functions do
-    for j from 1 to n_functions do
-      m[i,j] := int(int(int(phi_polynom[i-1] * phi_polynom[j-1], xi=0..1), eta=0..1), zeta=0..1);      
-    od:
-  od:
-
-  print(`m=`, m);
-
-  # assemble the local mass matrix for child cell 0 
-  # m[i,j]=int_{0..0.5}int_{0..0.5}int_{0..0.5} child_phi[0]*child_phi[0] dxdydz
-  child_m := array(1..n_functions, 1..n_functions):
-  child_m:=linalg[scalarmul](m, 1/2**dim);
-
-  print(`Ausgabe=`);
-  print(`child_m=`,child_m);
-
-  # inverte the local mass matrix
-  inv_m := linalg[inverse](m):
-  print(`inv_m=`, inv_m);
-  
-  # assembling restriction matrices
-  restriction := array(0..7, 0..n_functions-1, 0..n_functions-1):
-  restr_child := array(1..n_functions, 1..n_functions):
-  prol_child:= array(1..n_functions, 1..n_functions):
-  for child from 0 to 7 do
-    print(`child=`, child);
-    # copy the prologation matrix with a shift 1 and take the transponent
-    for i from 1 to n_functions do
-      for j from 1 to n_functions do
-        prol_child[i,j] := prolongation[child,j-1,i-1]:
-      od:
-    od:
-    restr_child := linalg[multiply](inv_m, prol_child, child_m);
-    print(restr_child);
-    # copy the restriction of this child with a shift 1
-    for i from 1 to n_functions do
-      for j from 1 to n_functions do
-        restriction[child,i-1,j-1] := restr_child[i,j]:
-      od:
-    od:
-  od:
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/3d/restriction_dg1 b/deal.II/deal.II/source/fe/scripts/3d/restriction_dg1
deleted file mode 100644 (file)
index 05dae43..0000000
+++ /dev/null
@@ -1,50 +0,0 @@
-#  --------------------------------- For 3d ---------------------------------
-#  -- Use the following maple script to generate the restriction matrices
-#  -- for DG.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(1)
-
-  n_functions      := 8:
-
-  trial_function := ((a1 + a2*xi) +
-                     (b1 + b2*xi)*eta) +
-                    ((d1 + d2*xi) + 
-                     (e1 + e2*xi)*eta)*zeta:
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points := array(0..n_functions-1):
-  support_points[0] := array(1..3, [0,0,0]):
-  support_points[1] := array(1..3, [1,0,0]):
-  support_points[2] := array(1..3, [1,0,1]):
-  support_points[3] := array(1..3, [0,0,1]):
-  support_points[4] := array(1..3, [0,1,0]):
-  support_points[5] := array(1..3, [1,1,0]):
-  support_points[6] := array(1..3, [1,1,1]):
-  support_points[7] := array(1..3, [0,1,1]):
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg1_txt);
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/3d/restriction_dg2 b/deal.II/deal.II/source/fe/scripts/3d/restriction_dg2
deleted file mode 100644 (file)
index 14dcd93..0000000
+++ /dev/null
@@ -1,59 +0,0 @@
-#  --------------------------------- For 3d ---------------------------------
-#  -- Use the following maple script to generate the restriction matrices
-#  -- for DG.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(2)
-
-  read lagrange_tools:
-
-  n_functions      := 27:
-
-  trial_function := ((a1 + a2*xi + a3*xi*xi) +
-                     (b1 + b2*xi + b3*xi*xi)*eta +
-                     (c1 + c2*xi + c3*xi*xi)*eta*eta) +
-                    ((d1 + d2*xi + d3*xi*xi) + 
-                     (e1 + e2*xi + e3*xi*xi)*eta +
-                     (f1 + f2*xi + f3*xi*xi)*eta*eta)*zeta +
-                    ((g1 + g2*xi + g3*xi*xi) + 
-                     (h1 + h2*xi + h3*xi*xi)*eta +
-                     (i1 + i2*xi + i3*xi*xi)*eta*eta)*zeta*zeta:
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points := array(0..n_functions-1):
-
-  support_points_fill_vertices (0, support_points):
-  support_points_fill_lines (8, 1, support_points):
-  support_points[20] := array(1..3, [1/2, 0, 1/2]):  #faces
-  support_points[21] := array(1..3, [1/2, 1, 1/2]):
-  support_points[22] := array(1..3, [1/2, 1/2, 0]):
-  support_points[23] := array(1..3, [1, 1/2, 1/2]):
-  support_points[24] := array(1..3, [1/2, 1/2, 1]):
-  support_points[25] := array(1..3, [0, 1/2, 1/2]):
-  support_points[26] := array(1..3, [1/2, 1/2,1/2]):  #center
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg2_txt);
-
-
-
-
-
-
-
-
-
-
-
diff --git a/deal.II/deal.II/source/fe/scripts/3d/restriction_dg3 b/deal.II/deal.II/source/fe/scripts/3d/restriction_dg3
deleted file mode 100644 (file)
index a315aa5..0000000
+++ /dev/null
@@ -1,62 +0,0 @@
-#  --------------------------------- For 3d ---------------------------------
-#  -- Use the following maple script to generate the restriction matrices
-#  -- for DG.
-#  -- Make sure that the files do not exists beforehand, since output
-#  -- is appended instead of overwriting previous contents.
-#  --
-#  -- You should only have to change the very first lines for polynomials
-#  -- of higher order.
-#  --------------------------------------------------------------------------
-#
-# $Id$
-# Author: Ralf Hartmann, 2000
-
-# for DG(3)
-
-  read lagrange_tools:
-
-  n_functions      := 64:
-
-  trial_function := ((a1 + a2*xi + a3*xi*xi + a4*xi*xi*xi) +
-                     (b1 + b2*xi + b3*xi*xi + b4*xi*xi*xi)*eta +
-                     (c1 + c2*xi + c3*xi*xi + c4*xi*xi*xi)*eta*eta +
-                     (d1 + d2*xi + d3*xi*xi + d4*xi*xi*xi)*eta*eta*eta) +
-                    ((e1 + e2*xi + e3*xi*xi + e4*xi*xi*xi) + 
-                     (f1 + f2*xi + f3*xi*xi + f4*xi*xi*xi)*eta +
-                     (g1 + g2*xi + g3*xi*xi + g4*xi*xi*xi)*eta*eta +
-                     (h1 + h2*xi + h3*xi*xi + h4*xi*xi*xi)*eta*eta*eta)*zeta +
-                    ((i1 + i2*xi + i3*xi*xi + i4*xi*xi*xi) + 
-                     (j1 + j2*xi + j3*xi*xi + j4*xi*xi*xi)*eta +
-                     (k1 + k2*xi + k3*xi*xi + k4*xi*xi*xi)*eta*eta +
-                     (l1 + l2*xi + l3*xi*xi + l4*xi*xi*xi)*eta*eta*eta)*zeta*zeta +
-                    ((m1 + m2*xi + m3*xi*xi + m4*xi*xi*xi) + 
-                     (n1 + n2*xi + n3*xi*xi + n4*xi*xi*xi)*eta +
-                     (o1 + o2*xi + o3*xi*xi + o4*xi*xi*xi)*eta*eta +
-                     (p1 + p2*xi + p3*xi*xi + p4*xi*xi*xi)*eta*eta*eta)*zeta*zeta*zeta:
-  # note: support_points[i] is a vector which is indexed from
-  # one and not from zero!
-  #   phi(i,support_points[j])=delta_ij
-  support_points := array(0..n_functions-1):
-
-
-  support_points_fill_vertices (0, support_points):
-  support_points_fill_lines (8, 2, support_points):
-  support_points_fill_quads (32, 2, support_points):
-  support_points_fill_hex (56, 2, support_points):
-
-  read restriction_dg;
-
-  print (`writing data to files`):
-  readlib(C):
-  C(restriction, filename=restriction_dg3_txt);
-
-
-
-
-
-
-
-
-
-
-

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.