When we run the program, we get the following kind of output:
@code
-T=3.14, Number of active cells: 2617
- Number of degrees of freedom: 11184
-NonLin Res: Lin Iter Lin Res
-______________________________________
-* 1.684e-02 0007 1.84e-13
-* 4.414e-05 0006 3.82e-15
-* 1.750e-09 0006 1.56e-19
-* 6.831e-16 0000 1.56e-19
-max_df:124
-T=3.16, Number of active cells: 2626
- Number of degrees of freedom: 11220
-NonLin Res: Lin Iter Lin Res
-______________________________________
-* 1.673e-02 0007 9.64e-14
-* 4.230e-05 0006 3.83e-15
-* 8.748e-10 0006 7.67e-20
-* 6.804e-16 0000 7.67e-20
-max_df:124
-T=3.18, Number of active cells: 2644
- Number of degrees of freedom: 11296
-NonLin Res: Lin Iter Lin Res
-______________________________________
-* 1.674e-02 0007 9.29e-14
-* 3.306e-05 0007 8.07e-17
-* 4.660e-10 0006 4.05e-20
-* 6.898e-16 0000 4.05e-20
-max_df:128
-T=3.2, Number of active cells: 2647
- Number of degrees of freedom: 11312
-NonLin Res: Lin Iter Lin Res
-______________________________________
+...
+T=0.08
+ Number of active cells: 1792
+ Number of degrees of freedom: 7656
+
+ NonLin Res Lin Iter Lin Res
+ _____________________________________
+ 2.424e-02 0008 1.56e-13
+ 7.498e-05 0008 1.10e-15
+ 8.871e-09 0008 8.58e-20
+ 5.998e-16 (converged)
+
+T=0.1
+ Number of active cells: 1798
+ Number of degrees of freedom: 7672
+
+ NonLin Res Lin Iter Lin Res
+ _____________________________________
+ 2.563e-02 0008 1.95e-13
+ 9.165e-05 0008 1.10e-15
+ 1.234e-08 0008 8.08e-20
+ 9.282e-16 (converged)
+
+T=0.12
+ Number of active cells: 1801
+ Number of degrees of freedom: 7676
+
+ NonLin Res Lin Iter Lin Res
+ _____________________________________
+ 2.732e-02 0008 1.72e-13
+ 1.147e-04 0008 1.15e-15
+ 1.952e-08 0008 1.49e-19
+ 1.432e-15 (converged)
...
@endcode
-This output reports the progress of the Newton iterations and the time stepping.
+This output reports the progress of the Newton iterations and the time
+stepping. Note that our implementation of the Newton iteration indeed shows
+the expected quadratic convergence order: the norm of the nonlinear residual
+in each step is roughly the norm of the previous step squared. This leads to
+the very rapid convergence we can see here.
The result of running these computations is a bunch of output files that we
can pass to our visualization program of choice. When we collate them into a