]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Several renamings.
authorhartmann <hartmann@0785d39b-7218-0410-832d-ea1e28bc413d>
Thu, 11 Mar 2004 14:51:29 +0000 (14:51 +0000)
committerhartmann <hartmann@0785d39b-7218-0410-832d-ea1e28bc413d>
Thu, 11 Mar 2004 14:51:29 +0000 (14:51 +0000)
git-svn-id: https://svn.dealii.org/trunk@8714 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/include/base/polynomial_space.h
deal.II/base/source/polynomial_space.cc
deal.II/base/source/polynomials_p.cc

index b8e071105db746cea7626c18ece5c86deb41c34b..7d13f32c6f39b920bb2894df1f06d53cedaf257a 100644 (file)
  * Given a vector of <i>n</i> one-dimensional polynomials
  * <i>P<sub>0</sub></i> to <i>P<sub>n</sub></i>, where
  * <i>P<sub>i</sub></i> has degree <i>i</i>, this class generates all
- * multi-dimensional polynomials of the form <i>
+ * dim-dimensional polynomials of the form <i>
  * P<sub>ijk</sub>(x,y,z) =
  * P<sub>i</sub>(x)P<sub>j</sub>(y)P<sub>k</sub>(z)</i>, where the sum
  * of <i>i</i>, <i>j</i> and <i>k</i> is less than or equal <i>n</i>.
  *
  * The @ref{output_indices} function prints the ordering of the
- * polynomials, i.e. for each multi-dimensional polynomial in the
+ * polynomials, i.e. for each dim-dimensional polynomial in the
  * polynomial space it gives the indices i,j,k of the one-dimensional
  * polynomials in x,y and z direction. The ordering of the
- * multi-dimensional polynomials can be changed by using the
+ * dim-dimensional polynomials can be changed by using the
  * @p{set_polynomial_ordering} function.
  *
  * @author Guido Kanschat, 2002, Wolfgang Bangerth, 2003, Ralf Hartmann 2004
@@ -78,7 +78,7 @@ class PolynomialSpace
                                      * <tt>index_map.size()==n()</tt>. Stores
                                      * a copy of <tt>index_map</tt>.
                                      */
-    void set_polynomial_ordering(const std::vector<unsigned int> &index_map);
+    void set_renumbering(const std::vector<unsigned int> &index_map);
     
                                     /**
                                      * Computes the value and the
@@ -213,7 +213,7 @@ class PolynomialSpace
                                      * Index map for reordering the
                                      * polynomials.
                                      */
-    std::vector<unsigned int> reverse_index_map;
+    std::vector<unsigned int> index_map_inverse;
     
                                     /**
                                      * Static function used in the
@@ -248,16 +248,16 @@ PolynomialSpace<dim>::PolynomialSpace (const std::vector<Pol> &pols)
                polynomials (pols.begin(), pols.end()),
                n_pols (compute_n_pols(polynomials.size())),
                index_map(n_pols),
-               reverse_index_map(n_pols)
+               index_map_inverse(n_pols)
 {
                                   // per default set this index map
                                   // to identity. This map can be
                                   // changed by the user through the
-                                  // set_polynomial_ordering function
+                                  // set_renumbering function
   for (unsigned int i=0; i<n_pols; ++i)
     {
       index_map[i]=i;
-      reverse_index_map[i]=i;
+      index_map_inverse[i]=i;
     }
 }
 
index be0ebf6fae27567b77bd6833df7e74e8d4888ad6..6b873ec1983ebe0d125147182ae469804b5362ee 100644 (file)
@@ -125,15 +125,15 @@ PolynomialSpace<dim>::output_indices(std::ostream &out) const
 
 template <int dim>
 void
-PolynomialSpace<dim>::set_polynomial_ordering(
-  const std::vector<unsigned int> &imap)
+PolynomialSpace<dim>::set_renumbering(
+  const std::vector<unsigned int> &renumber)
 {
-  Assert(imap.size()==index_map.size(),
-        ExcDimensionMismatch(imap.size(), index_map.size()));
+  Assert(renumber.size()==index_map.size(),
+        ExcDimensionMismatch(renumber.size(), index_map.size()));
 
-  index_map=imap;
+  index_map=renumber;
   for (unsigned int i=0; i<index_map.size(); ++i)
-    reverse_index_map[index_map[i]]=i;
+    index_map_inverse[index_map[i]]=i;
 }
 
 
@@ -275,7 +275,7 @@ PolynomialSpace<dim>::compute (const Point<dim>            &p,
       for (unsigned int iz=0;iz<((dim>2) ? n_1d : 1);++iz)
        for (unsigned int iy=0;iy<((dim>1) ? n_1d-iz : 1);++iy)
          for (unsigned int ix=0; ix<n_1d-iy-iz; ++ix)
-           values[reverse_index_map[k++]] =
+           values[index_map_inverse[k++]] =
              v[0][ix][0]
              * ((dim>1) ? v[1][iy][0] : 1.)
              * ((dim>2) ? v[2][iz][0] : 1.);
@@ -289,7 +289,7 @@ PolynomialSpace<dim>::compute (const Point<dim>            &p,
        for (unsigned int iy=0;iy<((dim>1) ? n_1d-iz : 1);++iy)
          for (unsigned int ix=0; ix<n_1d-iy-iz; ++ix)
            {
-             const unsigned int k2=reverse_index_map[k++];
+             const unsigned int k2=index_map_inverse[k++];
              for (unsigned int d=0;d<dim;++d)
                grads[k2][d] = v[0][ix][(d==0) ? 1 : 0]
                   * ((dim>1) ? v[1][iy][(d==1) ? 1 : 0] : 1.)
@@ -305,7 +305,7 @@ PolynomialSpace<dim>::compute (const Point<dim>            &p,
        for (unsigned int iy=0;iy<((dim>1) ? n_1d-iz : 1);++iy)
          for (unsigned int ix=0; ix<n_1d-iy-iz; ++ix)
            {
-             const unsigned int k2=reverse_index_map[k++];
+             const unsigned int k2=index_map_inverse[k++];
              for (unsigned int d1=0; d1<dim; ++d1)
                for (unsigned int d2=0; d2<dim; ++d2)
                  {
index b97a47e4e84e5beebf1823b7e160837b3b9c9792..5e0722722572d7d13b45245c14a211216435d997 100644 (file)
@@ -22,7 +22,7 @@ PolynomialsP<dim>::PolynomialsP (const unsigned int p)
 {
   std::vector<unsigned int> index_map(this->n());
   create_polynomial_ordering(index_map);
-  this->set_polynomial_ordering(index_map);
+  this->set_renumbering(index_map);
 }
 
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.