F(u^n_l) &=& \left[ 1-k^2\theta^2\Delta \right] u^n_l -
\left[ 1+k^2\theta(1-\theta)\Delta\right] u^{n-1} - k v^{n-1}
+ k^2\theta\sin\left[\theta u^n_l + (1-\theta) u^{n-1}\right],\\
- F'(u^n_l) &=& 1-k^2\theta^2\Delta - k^2\theta^2\cos\left[\theta u^n_l
+ F'(u^n_l) &=& 1-k^2\theta^2\Delta + k^2\theta^2\cos\left[\theta u^n_l
+ (1-\theta) u^{n-1}\right].
\f}
Notice that while $F(u^n_l)$ is a function, $F'(u^n_l)$ is an operator.
U^{n,l+1} = U^{n,l} + \delta U^{n,l}, \qquad U^{n,0} = U^{n-1}; \\
MV^n &=& MV^{n-1} - k \theta AU^n -k (1-\theta) AU^{n-1} - k S(u^n,u^{n-1}).
@f}
-Above, the matrix $F_h'(\cdot)$ and the vector $F_h(\cdot)$ denote the discrete versions of the gadgets discussed above, i.e.
+Above, the matrix $F_h'(\cdot)$ and the vector $F_h(\cdot)$ denote the discrete versions of the gadgets discussed above, i.e.,
\f{eqnarray*}
F_h(U^{n,l}) &=& \left[ M+k^2\theta^2A \right] U^{n,l} -
\left[ M-k^2\theta(1-\theta)A \right] U^{n-1} - k MV^{n-1}
+ k^2\theta S(u^n_l, u^{n-1}),\\
F_h'(U^{n,l}) &=& M+k^2\theta^2A
- - k^2\theta^2N(u^n_l,u^{n-1})
+ + k^2\theta^2N(u^n_l,u^{n-1})
\f}
Again, note that the first matrix equation above is, in fact, the
definition of an iterative procedure, so it is solved multiple times
have to invert:
@f[
(M+k^2\theta^2(A-N))_{ij} =
- \int_\Omega (1-k^2\theta^2 \cos \alpha)
+ \int_\Omega (1+k^2\theta^2 \cos \alpha)
\varphi_i\varphi_j \; dx+\int_\Omega \nabla\varphi_i\nabla\varphi_j \; dx,
@f]
for some $\alpha$ that depends on the present and previous solution. First,
/* ---------------------------------------------------------------------
*
- * Copyright (C) 2006 - 2015 by the deal.II authors
+ * Copyright (C) 2006 - 2016 by the deal.II authors
*
* This file is part of the deal.II library.
*
// @sect4{SineGordonProblem::compute_nl_term}
// This function computes the vector $S(\cdot,\cdot)$, which appears in the
- // nonlinear term in the both equations of the split formulation. This
+ // nonlinear term in both equations of the split formulation. This
// function not only simplifies the repeated computation of this term, but
// it is also a fundamental part of the nonlinear iterative solver that we
// use when the time stepping is implicit (i.e. $\theta\ne 0$). Moreover, we