]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Add a few spaces to formulas where necessary
authorbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 6 Sep 2006 01:49:41 +0000 (01:49 +0000)
committerbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 6 Sep 2006 01:49:41 +0000 (01:49 +0000)
git-svn-id: https://svn.dealii.org/trunk@13837 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-18/doc/intro.dox

index cfd60cad0d11e3cdc98573b2ef4d3675e6ca034c..8d44637c0b5829d5be32a502de170d1291e9ed79 100644 (file)
@@ -78,7 +78,8 @@ much larger than $\tau$. In that case, the dynamic nature of the change is
 unimportant: we can consider the body to always be in static equilibrium,
 i.e. we can assume that at all times the body satisfies
 @f{eqnarray*}
-  - \textrm{div}\  ( C \varepsilon(\mathbf{u})) &=& \mathbf{f}
+  - \textrm{div}\  ( C \varepsilon(\mathbf{u})) &=& \mathbf{f}(\mathbf{x},t)
+  \qquad
   \textrm{in}\ \Omega,
   \\
   \mathbf{u}(\mathbf{x},t) &=& \mathbf{d}(\mathbf{x},t)
@@ -102,7 +103,8 @@ large deformations is a little more complicated. To do so, let us first
 introduce a tensorial stress variable $\sigma$, and write the differential
 equations in terms of the stress:
 @f{eqnarray*}
-  - \textrm{div}\  \sigma &=& \mathbf{f}
+  - \textrm{div}\  \sigma &=& \mathbf{f}(\mathbf{x},t)
+  \qquad
   \textrm{in}\ \Omega(t),
   \\
   \mathbf{u}(\mathbf{x},t) &=& \mathbf{d}(\mathbf{x},t)
@@ -147,6 +149,7 @@ This way, if we want to solve for the displacement increment, we
 have to solve the following system:
 @f{eqnarray*}
   - \textrm{div}\   C \varepsilon(\Delta\mathbf{u}^n) &=& \mathbf{f} + \textrm{div}\  \sigma^{n-1}
+  \qquad
   \textrm{in}\ \Omega(t_{n-1}),
   \\
   \Delta \mathbf{u}^n(\mathbf{x},t) &=& \mathbf{d}(\mathbf{x},t_n) - \mathbf{d}(\mathbf{x},t_{n-1})

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.