W[q][c] = 0;
W_old[q][c] = 0;
for (unsigned int d=0; d<dim; ++d)
- {
- grad_W[q][c][d] = 0;
- grad_W_old[q][c][d] = 0;
- }
+ {
+ grad_W[q][c][d] = 0;
+ grad_W_old[q][c][d] = 0;
+ }
}
for (unsigned int q=0; q<n_q_points; ++q)
fe_v.shape_value_component(i, q, c);
for (unsigned int d = 0; d < dim; d++)
- {
- grad_W[q][c][d] += independent_local_dof_values[i] *
- fe_v.shape_grad_component(i, q, c)[d];
- grad_W_old[q][c][d] += old_solution(dof_indices[i]) *
- fe_v.shape_grad_component(i, q, c)[d];
- }
+ {
+ grad_W[q][c][d] += independent_local_dof_values[i] *
+ fe_v.shape_grad_component(i, q, c)[d];
+ grad_W_old[q][c][d] += old_solution(dof_indices[i]) *
+ fe_v.shape_grad_component(i, q, c)[d];
+ }
}
// that the <code>fe_v</code> variable now is of type FEFaceValues or
// FESubfaceValues:
Table<2,Sacado::Fad::DFad<double> >
- Wplus (n_q_points, EulerEquations<dim>::n_components),
- Wminus (n_q_points, EulerEquations<dim>::n_components);
+ Wplus (n_q_points, EulerEquations<dim>::n_components),
+ Wminus (n_q_points, EulerEquations<dim>::n_components);
Table<2,double>
- Wplus_old(n_q_points, EulerEquations<dim>::n_components),
- Wminus_old(n_q_points, EulerEquations<dim>::n_components);
+ Wplus_old(n_q_points, EulerEquations<dim>::n_components),
+ Wminus_old(n_q_points, EulerEquations<dim>::n_components);
for (unsigned int q=0; q<n_q_points; ++q)
for (unsigned int i=0; i<dofs_per_cell; ++i)
boundary_values);
for (unsigned int q = 0; q < n_q_points; q++)
- {
- EulerEquations<dim>::compute_Wminus (parameters.boundary_conditions[boundary_id].kind,
- fe_v.normal_vector(q),
- Wplus[q],
- boundary_values[q],
- Wminus[q]);
- // Here we assume that boundary type, boundary normal vector and boundary data values
- // maintain the same during time advancing.
- EulerEquations<dim>::compute_Wminus (parameters.boundary_conditions[boundary_id].kind,
- fe_v.normal_vector(q),
- Wplus_old[q],
- boundary_values[q],
- Wminus_old[q]);
- }
+ {
+ EulerEquations<dim>::compute_Wminus (parameters.boundary_conditions[boundary_id].kind,
+ fe_v.normal_vector(q),
+ Wplus[q],
+ boundary_values[q],
+ Wminus[q]);
+ // Here we assume that boundary type, boundary normal vector and boundary data values
+ // maintain the same during time advancing.
+ EulerEquations<dim>::compute_Wminus (parameters.boundary_conditions[boundary_id].kind,
+ fe_v.normal_vector(q),
+ Wplus_old[q],
+ boundary_values[q],
+ Wminus_old[q]);
+ }
}
}
for (unsigned int q=0; q<n_q_points; ++q)
- {
- EulerEquations<dim>::numerical_normal_flux(fe_v.normal_vector(q),
- Wplus[q], Wminus[q], alpha,
- normal_fluxes[q]);
- EulerEquations<dim>::numerical_normal_flux(fe_v.normal_vector(q),
- Wplus_old[q], Wminus_old[q], alpha,
- normal_fluxes_old[q]);
- }
+ {
+ EulerEquations<dim>::numerical_normal_flux(fe_v.normal_vector(q),
+ Wplus[q], Wminus[q], alpha,
+ normal_fluxes[q]);
+ EulerEquations<dim>::numerical_normal_flux(fe_v.normal_vector(q),
+ Wplus_old[q], Wminus_old[q], alpha,
+ normal_fluxes_old[q]);
+ }
// Now assemble the face term in exactly the same way as for the cell
// contributions in the previous function. The only difference is that if