]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Added the header file for the polynomial space, which builds the
authoroliver <oliver@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 25 Apr 2006 19:04:04 +0000 (19:04 +0000)
committeroliver <oliver@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 25 Apr 2006 19:04:04 +0000 (19:04 +0000)
basis of the ABF elements.

git-svn-id: https://svn.dealii.org/trunk@12892 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/include/base/polynomials_abf.h [new file with mode: 0644]

diff --git a/deal.II/base/include/base/polynomials_abf.h b/deal.II/base/include/base/polynomials_abf.h
new file mode 100644 (file)
index 0000000..91944c0
--- /dev/null
@@ -0,0 +1,179 @@
+//---------------------------------------------------------------------------
+//    $Id$
+//    Version: $Name$
+//
+//    Copyright (C) 2004, 2005 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//---------------------------------------------------------------------------
+#ifndef __deal2__polynomials_abf_h
+#define __deal2__polynomials_abf_h
+
+
+#include <base/config.h>
+#include <base/exceptions.h>
+#include <base/tensor.h>
+#include <base/point.h>
+#include <base/polynomial.h>
+#include <base/polynomial_space.h>
+#include <base/tensor_product_polynomials.h>
+#include <base/table.h>
+
+#include <vector>
+
+/**
+ * @addtogroup Polynomials
+ * @{
+ */
+
+/**
+ * This class implements the <i>H<sup>div</sup></i>-conforming,
+ * vector-valued Arnold-Boffi-Falk polynomials as described in the
+ * article by Arnold-Boffi-Falk:
+ * Quadrilateral H(div) finite elements, SIAM J. Numer. Anal.
+ * Vol.42, No.6, pp.2429-2451
+ *
+ *
+ * The ABF polynomials are constructed such that the
+ * divergence is in the tensor product polynomial space
+ * <i>Q<sub>k</sub></i>. Therefore, the polynomial order of each
+ * component must be two orders higher in the corresponding direction,
+ * yielding the polynomial spaces <i>(Q<sub>k+2,k</sub>,
+ * Q<sub>k,k+2</sub>)</i> and <i>(Q<sub>k+2,k,k</sub>,
+ * Q<sub>k,k+2,k</sub>, Q<sub>k,k,k+2</sub>)</i> in 2D and 3D, resp.
+ *
+ * @author Oliver Kayser-Herold, 2006 based on code from Guido Kanschat
+ */
+template <int dim>
+class PolynomialsABF
+{
+  public:
+                                    /**
+                                     * Constructor. Creates all basis
+                                     * functions for Raviart-Thomas polynomials
+                                     * of given degree.
+                                     *
+                                     * @arg k: the degree of the
+                                     * Raviart-Thomas-space, which is the degree
+                                     * of the largest tensor product
+                                     * polynomial space
+                                     * <i>Q<sub>k</sub></i> contained.
+                                     */
+    PolynomialsABF (const unsigned int k);
+
+                                    /**
+                                     * Destructor deleting the polynomials.
+                                     */
+    ~PolynomialsABF ();
+    
+                                    /**
+                                     * Computes the value and the
+                                     * first and second derivatives
+                                     * of each Raviart-Thomas
+                                     * polynomial at @p unit_point.
+                                     *
+                                     * The size of the vectors must
+                                     * either be zero or equal
+                                     * <tt>n()</tt>.  In the
+                                     * first case, the function will
+                                     * not compute these values.
+                                     *
+                                     * If you need values or
+                                     * derivatives of all tensor
+                                     * product polynomials then use
+                                     * this function, rather than
+                                     * using any of the
+                                     * <tt>compute_value</tt>,
+                                     * <tt>compute_grad</tt> or
+                                     * <tt>compute_grad_grad</tt>
+                                     * functions, see below, in a
+                                     * loop over all tensor product
+                                     * polynomials.
+                                     */
+    void compute (const Point<dim>            &unit_point,
+                  std::vector<Tensor<1,dim> > &values,
+                  std::vector<Tensor<2,dim> > &grads,
+                  std::vector<Tensor<3,dim> > &grad_grads) const;    
+    
+                                    /**
+                                     * Returns the number of ABF polynomials.
+                                     */
+    unsigned int n () const;
+    
+                                    /**
+                                     * Returns the degree of the ABF
+                                     * space, which is two less than
+                                     * the highest polynomial degree.
+                                     */
+    unsigned int degree () const;
+    
+                                    /**
+                                     * Return the number of
+                                     * polynomials in the space
+                                     * <TT>RT(degree)</tt> without
+                                     * requiring to build an object
+                                     * of PolynomialsABF. This is
+                                     * required by the FiniteElement
+                                     * classes.
+                                     */
+    static unsigned int compute_n_pols(unsigned int degree);
+    
+  private:
+                                    /**
+                                     * The degree of this object as
+                                     * given to the constructor.
+                                     */
+    const unsigned int my_degree;
+    
+                                    /**
+                                     * An object representing the
+                                     * polynomial space for a single
+                                     * component. We can re-use it by
+                                     * rotating the coordinates of
+                                     * the evaluation point.
+                                     */
+    AnisotropicPolynomials<dim>* polynomial_space;
+
+                                    /**
+                                     * Number of Raviart-Thomas
+                                     * polynomials.
+                                     */
+    unsigned int n_pols;
+    
+                                    /**
+                                     * Auxiliary memory.
+                                     */
+    mutable std::vector<double> p_values;    
+    
+                                    /**
+                                     * Auxiliary memory.
+                                     */
+    mutable std::vector<Tensor<1,dim> > p_grads;
+    
+                                    /**
+                                     * Auxiliary memory.
+                                     */
+    mutable std::vector<Tensor<2,dim> > p_grad_grads;
+};
+
+/** @} */
+
+template <int dim>
+inline unsigned int
+PolynomialsABF<dim>::n() const
+{
+  return n_pols;
+}
+
+template <int dim>
+inline unsigned int
+PolynomialsABF<dim>::degree() const
+{
+  return my_degree;
+}
+
+#endif

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.