/* $Id$ */
/* */
-/* Copyright (C) 2009 by the deal.II authors */
+/* Copyright (C) 2009, 2010 by the deal.II authors */
/* */
/* This file is subject to QPL and may not be distributed */
/* without copyright and license information. Please refer */
// local contributions of a set of cells. As
// mentioned in the introduction, if we were
// to deal with a single cell, this would
- // amount to performing the product
+ // amount to performing the product
// @f{eqnarray*}
- // P^T_\mathrm{cell,local-global} A_\mathrm{cell}
+ // P^T_\mathrm{cell,local-global} A_\mathrm{cell}
// P_\mathrm{cell,local-global} x
// @f}
- // where
+ // where
// @f{eqnarray*}
- // A_\mathrm{cell} =
- // B_\mathrm{ref\_cell}^T J_\mathrm{cell}^T
- // D_\mathrm{cell}
+ // A_\mathrm{cell} =
+ // B_\mathrm{ref\_cell}^T J_\mathrm{cell}^T
+ // D_\mathrm{cell}
// J_\mathrm{cell} B_\mathrm{ref\_cell}
// @f}
// and <i>P</i><sub>cell,local-global</sub>
LaplaceOperator<dim,number>&
operator = (const Tensor<2,dim> &tensor);
+ unsigned int memory_consumption () const;
+
private:
number transformation[dim*(dim+1)/2];
};
}
+template<int dim,typename number>
+unsigned int
+LaplaceOperator<dim,number>::memory_consumption () const
+{
+ return sizeof(*this);
+}
+
+
// @sect3{LaplaceProblem class}