]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Generate intro in doxygen. Doesn't look great right now since I can't seem to find...
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 28 Mar 2006 00:45:40 +0000 (00:45 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 28 Mar 2006 00:45:40 +0000 (00:45 +0000)
git-svn-id: https://svn.dealii.org/trunk@12691 0785d39b-7218-0410-832d-ea1e28bc413d

64 files changed:
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro.dox [moved from deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro.tex with 56% similarity]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro.html [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img1.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img10.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img11.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img12.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img13.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img14.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img15.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img16.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img17.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img18.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img19.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img2.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img20.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img21.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img22.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img23.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img24.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img25.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img26.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img27.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img28.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img29.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img3.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img30.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img31.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img32.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img33.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img34.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img35.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img36.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img37.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img38.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img39.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img4.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img40.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img41.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img42.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img43.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img44.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img45.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img46.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img47.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img48.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img49.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img5.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img50.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img51.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img52.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img53.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img54.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img55.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img56.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img57.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img58.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img59.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img6.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img60.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img61.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img62.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img7.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img8.png [deleted file]
deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img9.png [deleted file]

similarity index 56%
rename from deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro.tex
rename to deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro.dox
index ab71ff1936aa7e73b7a728ade8bf4f6d1ae1065d..6f7bdb7fef314bbcf9714e36f8b7fe6d2138e312 100644 (file)
@@ -1,24 +1,25 @@
-\documentclass[11pt]{article}
-%\usepackage{a4wide}
-\usepackage{amsfonts, graphicx}
-\usepackage{amsmath}
+<a name="Intro"></a>
+<h1>Introduction</h1>
 
-\begin{document}
-\subsection{Overview}
-This example is devoted to the \emph{discontinuous Galerkin method}, or
+
+<h3>Overview</h3>
+
+This example is devoted to the <em>discontinuous Galerkin method</em>, or
 in short: DG method. It includes the following topics.
-\begin{itemize}
-\item Discretization of the linear transport equation with the DG method
-\item Two different assembling routines for the system matrix based on
+<ol>
+<li> Discretization of the linear transport equation with the DG method
+<li> Two different assembling routines for the system matrix based on
   face terms given as a sum of integrals that
 \begin{enumerate}
-\item loops over all cell and all their faces, or that
-\item loops over all faces, whereas each face is treated only once.
+<li> loops over all cell and all their faces, or that
+<li> loops over all faces, whereas each face is treated only once.
 \end{enumerate}
-\item Time comparison of the two assembling routines.
-\end{itemize}
+<li> Time comparison of the two assembling routines.
+</ol>
+
+
+<h3>Problem</h3>
 
-\subsection{Problem}
 The DG method was first introduced to discretize simple transport
 equations. Over the past years DG methods have been applied to a
 variety of problems and many different schemes were introduced
@@ -26,48 +27,51 @@ employing a big zoo of different convective and diffusive fluxes.  As
 this example's purpose is to illustrate some implementational issues
 of the DG discretization only, here we simply consider the linear
 transport equation
-\begin{equation}\label{transport-equation}
-  \nabla\cdot \left\{\boldsymbol\beta u\right\}=f  \qquad\mbox{in }\Omega,
-\end{equation}
+<a name="step-12.transport-equation">@f[
+  \nabla\cdot \left\{{\mathbf \beta} u\right\}=f  \qquad\mbox{in }\Omega,
+\qquad\qquad\qquad\mathrm{[transport-equation]}@f]</a>
 subject to the boundary conditions
-\[
+@f[
 u=g\quad\mbox{on }\Gamma_-,
-\]
+@f]
 on the inflow part $\Gamma_-$ of the boundary $\Gamma=\partial\Omega$
-of the domain.  Here, $\boldsymbol\beta=\boldsymbol\beta(x)$ denotes a
+of the domain.  Here, ${\mathbf \beta}={\mathbf \beta}(x)$ denotes a
 vector field, $f$ a source function, $u$ the (scalar) solution
 function, $g$ a boundary value function,
-\[
-\Gamma_-:=\{x\in\Gamma, \boldsymbol\beta(x)\cdot{\bf n}(x)<0\}
-\]
+@f[
+\Gamma_-:=\{x\in\Gamma, {\mathbf \beta}(x)\cdot{\bf n}(x)<0\}
+@f]
 the inflow part of the boundary of the domain and ${\bf n}$ denotes
 the unit outward normal to the boundary $\Gamma$. Equation
-\eqref{transport-equation} is the conservative version of the
+<a href="#step-12.transport-equation">[transport-equation]</a> is the conservative version of the
 transport equation already considered in step 9 of this tutorial.
 
-In particular, we consider problem \eqref{transport-equation} on
-$\Omega=[0,1]^2$ with $\boldsymbol\beta=\frac{1}{|x|}(-x_2, x_1)$
+In particular, we consider problem <a href="#step-12.transport-equation">[transport-equation]</a> on
+$\Omega=[0,1]^2$ with ${\mathbf \beta}=\frac{1}{|x|}(-x_2, x_1)$
 representing a circular counterclockwise flow field, $f=0$ and $g=1$
 on $x\in\Gamma_-^1:=[0,0.5]\times\{0\}$ and $g=0$ on $x\in
 \Gamma_-\setminus \Gamma_-^1$.
-\subsection{Discretization}
+
+
+<h3>Discretization</h3>
+
 Following the general paradigm of deriving DG discretizations for
 purely hyperbolic equations, we first consider the general hyperbolic
 problem
-\[
+@f[
   \nabla\cdot {\mathcal F}(u)=f  \qquad\mbox{in }\Omega,
-\]
+@f]
 subject to appropriate boundary conditions. Here ${\mathcal F}$
 denotes the flux function of the equation under consideration that in
-our case, see equation \eqref{transport-equation}, is represented by
-${\mathcal F}(u)=\boldsymbol\beta u$.  For deriving the DG
-discretization we start with a variational, mesh--dependent
+our case, see equation <a href="#step-12.transport-equation">[transport-equation]</a>, is represented by
+${\mathcal F}(u)={\mathbf \beta} u$.  For deriving the DG
+discretization we start with a variational, mesh-dependent
 formulation of the problem,
-\[
+@f[
   \sum_\kappa\left\{-({\mathcal F}(u),\nabla v)_\kappa+({\mathcal
   F}(u)\cdot{\bf n}, v)_{\partial\kappa}\right\}=(f,v)_\Omega,
-\]
-that originates from \eqref{transport-equation} by multiplication with
+@f]
+that originates from <a href="#step-12.transport-equation">[transport-equation]</a> by multiplication with
 a test function $v$ and integration by parts on each cell $\kappa$ of
 the triangulation. Here $(\cdot, \cdot)_\kappa$ and $(\cdot,
 \cdot)_{\partial\kappa}$ simply denote the integrals over the cell
@@ -78,96 +82,100 @@ discontinuous Galerkin methods belong to the space $V_h$ of
 discontinuous piecewise polynomial functions of some degree $p$. Due
 to the discontinuity of the discrete function $u_h$ on interelement
 faces, the flux ${\mathcal F}(u)\cdot{\bf n}$ must be replaced by a
-\emph{numerical flux} function ${\mathcal H}(u_h^+, u_h^-, {\bf n})$,
+<em>numerical flux</em> function ${\mathcal H}(u_h^+, u_h^-, {\bf n})$,
 where $u_h^+|_{\partial\kappa}$ denotes the inner trace (w.r.t.  the
 cell $\kappa$) of $u_h$ and $u_h^-|_{\partial\kappa}$ the outer trace,
 i.e. the value of $u_h$ on the neighboring cell. Furthermore the
 numerical flux function ${\mathcal H}$, among other things, must be
 consistent, i.e.
-\[
+@f[
 {\mathcal H}(u,u,{\bf n})={\mathcal F}(u)\cdot{\bf n},
-\]
+@f]
 and conservative, i.e.
-\begin{equation}\label{conservative}
+<a name="step-12.conservative">@f[
 {\mathcal H}(v,w,{\bf n})=-{\mathcal H}(w,v,-{\bf n}).
-\end{equation}
-This yields the following \emph{discontinuous Galerkin
-  discretization}: find $u_h\in V_h$ such that
-\begin{equation}\label{dg-scheme}
+\qquad\qquad\qquad\mathrm{[conservative]}@f]</a>
+This yields the following <em>discontinuous Galerkin
+  discretization</em>: find $u_h\in V_h$ such that
+<a name="step-12.dg-scheme">@f[
   \sum_\kappa\left\{-({\mathcal F}(u_h),\nabla v_h)_\kappa+({\mathcal H}(u_h^+,u_h^-,{\bf n}), v_h)_{\partial\kappa}\right\}=(f,v_h)_\Omega, \quad\forall v_h\in V_h.
-\end{equation}
+\qquad\qquad\qquad\mathrm{[dg-scheme]}@f]</a>
 Boundary conditions are realized by replacing $u_h^-$ on the inflow boundary $\Gamma_-$ by the boundary function $g$.
 In the special case of the transport equation
-\eqref{transport-equation} the numerical flux in its simplest form
+<a href="#step-12.transport-equation">[transport-equation]</a> the numerical flux in its simplest form
 is given by
-\begin{equation}\label{flux-transport-equation}
+<a name="step-12.flux-transport-equation">@f[
   {\mathcal H}(u_h^+,u_h^-,{\bf n})(x)=\left\{\begin{array}{ll}
-      (\boldsymbol\beta\cdot{\bf n}\, u_h^-)(x),&\mbox{for } \boldsymbol\beta(x)\cdot{\bf n}(x)<0,\\
-      (\boldsymbol\beta\cdot{\bf n}\, u_h^+)(x),&\mbox{for } \boldsymbol\beta(x)\cdot{\bf n}(x)\geq 0,
+      ({\mathbf \beta}\cdot{\bf n}\, u_h^-)(x),&\mbox{for } {\mathbf \beta}(x)\cdot{\bf n}(x)<0,\\
+      ({\mathbf \beta}\cdot{\bf n}\, u_h^+)(x),&\mbox{for } {\mathbf \beta}(x)\cdot{\bf n}(x)\geq 0,
 \end{array}
 \right.
-\end{equation}
+\qquad\qquad\qquad\mathrm{[flux-transport-equation]}@f]</a>
 where on the inflow part of the cell the value is taken from the
 neighboring cell, $u_h^-$, and on the outflow part the value is
 taken from the current cell, $u_h^+$.  Hence, the discontinuous Galerkin
-scheme for the transport equation \eqref{transport-equation} is given
+scheme for the transport equation <a href="#step-12.transport-equation">[transport-equation]</a> is given
 by: find $u_h\in V_h$ such that for all $v_h\in V_h$ following
 equation holds:
-\begin{equation}\label{dg-transport}
-  \sum_\kappa\left\{-(u_h,\boldsymbol\beta\cdot\nabla v_h)_\kappa
-  +(\boldsymbol\beta\cdot{\bf n}\, u_h, v_h)_{\partial\kappa_+}
-  +(\boldsymbol\beta\cdot{\bf n}\, u_h^-, v_h)_{\partial\kappa_-\setminus\Gamma}\right\}
-  =(f,v_h)_\Omega-(\boldsymbol\beta\cdot{\bf n}\, g, v_h)_{\Gamma_-},
-\end{equation}
+<a name="step-12.dg-transport">@f[
+  \sum_\kappa\left\{-(u_h,{\mathbf \beta}\cdot\nabla v_h)_\kappa
+  +({\mathbf \beta}\cdot{\bf n}\, u_h, v_h)_{\partial\kappa_+}
+  +({\mathbf \beta}\cdot{\bf n}\, u_h^-, v_h)_{\partial\kappa_-\setminus\Gamma}\right\}
+  =(f,v_h)_\Omega-({\mathbf \beta}\cdot{\bf n}\, g, v_h)_{\Gamma_-},
+\qquad\qquad\qquad\mathrm{[dg-transport]}@f]</a>
 where $\partial\kappa_-:=\{x\in\partial\kappa,
-\boldsymbol\beta(x)\cdot{\bf n}(x)<0\}$ denotes the inflow boundary
+{\mathbf \beta}(x)\cdot{\bf n}(x)<0\}$ denotes the inflow boundary
 and $\partial\kappa_+=\partial\kappa\setminus \partial \kappa_-$ the
 outflow part of cell $\kappa$. Below, this equation will be referred
-to as \emph{first version} of the DG method. We note that after a
+to as <em>first version</em> of the DG method. We note that after a
 second integration by parts, we obtain: find $u_h\in V_h$ such that
-\[
-  \sum_\kappa\left\{(\nabla\cdot\{\boldsymbol\beta u_h\},v_h)_\kappa
-  -(\boldsymbol\beta\cdot{\bf n} [u_h], v_h)_{\partial\kappa_-}\right\}
+@f[
+  \sum_\kappa\left\{(\nabla\cdot\{{\mathbf \beta} u_h\},v_h)_\kappa
+  -({\mathbf \beta}\cdot{\bf n} [u_h], v_h)_{\partial\kappa_-}\right\}
   =(f,v_h)_\Omega, \quad\forall v_h\in V_h,
-\]
+@f]
 where $[u_h]=u_h^+-u_h^-$ denotes the jump of the discrete function
 between two neighboring cells and is defined to be $[u_h]=u_h^+-g$ on
 the boundary of the domain. This is the discontinuous Galerkin scheme
 for the transport equation given in its original notation.
 Nevertheless, we will base the implementation of the scheme on the
-form given by \eqref{dg-scheme} and \eqref{flux-transport-equation},
-or \eqref{dg-transport}, respectively.
+form given by <a href="#step-12.dg-scheme">[dg-scheme]</a> and <a href="#step-12.flux-transport-equation">[flux-transport-equation]</a>,
+or <a href="#step-12.dg-transport">[dg-transport]</a>, respectively.
 
-Finally, we rewrite \eqref{dg-scheme} in terms of a summation over all
+Finally, we rewrite <a href="#step-12.dg-scheme">[dg-scheme]</a> in terms of a summation over all
 faces where each face $e=\partial \kappa\cap\partial \kappa'$
 between two neighboring cells $\kappa$ and $\kappa'$ occurs twice:
 Find $u_h\in V_h$ such that
-\begin{equation}\label{dg-scheme-faces-long}
+<a name="step-12.dg-scheme-faces-long">@f[
   -\sum_\kappa({\mathcal F}(u_h),\nabla v_h)_\kappa+\sum_e\left\{({\mathcal H}(u_h^+,u_h^-,{\bf n}), v_h)_e+({\mathcal H}(u_h^-, u_h^+,-{\bf n}), v_h^-)_{e\setminus\Gamma}\right\}=(f,v_h)_\Omega \quad\forall v_h\in V_h,
-\end{equation}
-By employing conservativity \eqref{conservative} of the numerical flux
+\qquad\qquad\qquad\mathrm{[dg-scheme-faces-long]}@f]</a>
+By employing conservativity <a href="#step-12.conservative">[conservative]</a> of the numerical flux
 this equation simplifies to: find $u_h\in V_h$ such that
-\begin{equation}\label{dg-scheme-faces}
+<a name="step-12.dg-scheme-faces">@f[
   -\sum_\kappa({\mathcal F}(u_h),\nabla v_h)_\kappa+\sum_e({\mathcal H}(u_h^+,u_h^-,{\bf n}), [v_h])_{e\setminus\Gamma}+({\mathcal H}(u_h,g,{\bf n}), v_h)_{\Gamma}=(f,v_h)_\Omega \quad\forall v_h\in V_h.
-\end{equation}
+\qquad\qquad\qquad\mathrm{[dg-scheme-faces]}@f]</a>
 Whereas the outer unit normal ${\bf n}|_{\partial\kappa}$ is uniquely
 defined this is not so for ${\bf n}_e$ as the latter might be the
 normal from either side of the face. Hence, we need to fix the normal
 ${\bf n}$ on the face to be one of the two normals and denote the
 other normal by $-{\bf n}$.  This way we get $-{\bf n}$ in the second
-face term in \eqref{dg-scheme-faces-long} that finally produces the
-minus sign in the jump $[v_h]$ in equation \eqref{dg-scheme-faces}.
+face term in <a href="#step-12.dg-scheme-faces-long">[dg-scheme-faces-long]</a> that finally produces the
+minus sign in the jump $[v_h]$ in equation <a href="#step-12.dg-scheme-faces">[dg-scheme-faces]</a>.
+
+For the linear transport equation <a href="#step-12.transport-equation">[transport-equation]</a>
+equation <a href="#step-12.dg-scheme-faces">[dg-scheme-faces]</a> simplifies to
+<a name="step-12.dg-transport-gamma">@f[
+  -\sum_\kappa(u_h,{\mathbf \beta}\cdot\nabla v_h)_\kappa+\sum_e\left\{({\mathbf \beta}\cdot{\bf n}\, u_h, [v_h])_{e_+\setminus\Gamma}+({\mathbf \beta}\cdot{\bf n}\, u_h^-, [v_h])_{e_-\setminus\Gamma}\right\}=(f,v_h)_\Omega-({\mathbf \beta}\cdot{\bf n}\, g, v_h)_{\Gamma_-},
+\qquad\qquad\qquad\mathrm{[dg-transport-gamma]}@f]</a>
+which will be refered to as <em>second version</em> of the DG method.
+
+
+<h3>Implementation</h3>
+
 
-For the linear transport equation \eqref{transport-equation}
-equation \eqref{dg-scheme-faces} simplifies to
-\begin{equation}\label{dg-transport-gamma}
-  -\sum_\kappa(u_h,\boldsymbol\beta\cdot\nabla v_h)_\kappa+\sum_e\left\{(\boldsymbol\beta\cdot{\bf n}\, u_h, [v_h])_{e_+\setminus\Gamma}+(\boldsymbol\beta\cdot{\bf n}\, u_h^-, [v_h])_{e_-\setminus\Gamma}\right\}=(f,v_h)_\Omega-(\boldsymbol\beta\cdot{\bf n}\, g, v_h)_{\Gamma_-},
-\end{equation}
-which will be refered to as \emph{second version} of the DG method.
-\subsection{Implementation}
 As already mentioned at the beginning of this example we will
 implement assembling the system matrix in two different ways.
-The first one will be based on the first version \eqref{dg-transport}
+The first one will be based on the first version <a href="#step-12.dg-transport">[dg-transport]</a>
 of the DG method that includes a sum of integrals over all cell
 boundaries $\partial\kappa$. This is realized by a loop over all cells and
 a nested loop over all faces of each cell.  Thereby each inner face
@@ -178,47 +186,46 @@ values at quadrature points on faces need to be computed twice.
 
 To overcome this overhead and for comparison, we implement
 assembling of matrix also in a second and different way. This will
-be based on the second version \eqref{dg-transport-gamma} that
+be based on the second version <a href="#step-12.dg-transport-gamma">[dg-transport-gamma]</a> that
 includes a sum of integrals over all faces $e$. Here, several
 difficulties occurs.
-\begin{itemize}
-\item As degrees of freedom are associated with cells (and not to faces)
+<ol>
+<li> As degrees of freedom are associated with cells (and not to faces)
   and as a normal is only defined w.r.t. a cell adjacent to the face we
   cannot simply run over all faces of the triangulation but need to
   perform the nested loop over all cells and all faces of each cell
-  like in the first implementation.  This, because in {\tt deal.II}
+  like in the first implementation.  This, because in <code>deal.II</code>
   faces are accessible from cells but not visa versa.
-\item Due to the nested loop we arrive twice at each face. In order to
+<li> Due to the nested loop we arrive twice at each face. In order to
   assemble face terms only once we either need to track which
   faces we have treated before, or we introduce a simple rule that decides
   which of the two adjacent cells the face should be accessed and
   treated from.  Here, we employ the second approach and define the
   following rule:
-  \begin{enumerate}
-  \renewcommand{\labelenumi}{\alph{enumi})}
-  \item If the two cells adjacent to a face are of the same refinement level we access and treat the face from the cell with lower index on this level.
-  \item If the two cells are of different refinement levels we access
+  <ol>
+  <li> If the two cells adjacent to a face are of the same refinement level we access and treat the face from the cell with lower index on this level.
+  <li> If the two cells are of different refinement levels we access
     and treat the face from the coarser cell.
-  \end{enumerate}
-\end{itemize}
+  </ol>
+</ol>
 Before we start with the description of the code we first introduce
 its main ingredients. The main class is called
-{\tt DGMethod}. It comprises all basic objects like the
+<code>DGMethod</code>. It comprises all basic objects like the
 triangulation, the dofhandler, the system matrix and solution vectors.
 Furthermore it has got some member functions, the most prominent of
-which are the {\tt assemble\_system1} and {\tt assemble\_system2}
+which are the <code>assemble_system1</code> and <code>assemble_system2</code>
 functions that implement the two different ways mentioned above for
 assembling the system matrix. Within these assembling routines several
 different cases must be distinguished while performing the nested
 loops over all cells and all faces of each cell and assembling the
 respective face terms. While sitting on the current cell and looking
 at a specific face there are the cases
-\begin{enumerate}
-\item face is at boundary,
-\item neighboring cell is finer,
-\item neighboring cell is of the same refinement level, and
-\item neighboring cell is coarser
-\end{enumerate}
+<ol>
+<li> face is at boundary,
+<li> neighboring cell is finer,
+<li> neighboring cell is of the same refinement level, and
+<li> neighboring cell is coarser
+</ol>
 where the `neighboring cell' and the current cell have the mentioned
 faces in common. In last three cases the assembling of the face terms
 are almost the same. Hence, we can implement the assembling of the
@@ -229,28 +236,27 @@ three cases. To be kind of educational within this tutorial we perform
 the latter approach, of course. We go even further and encapsulate
 this function and everything that is needed for assembling the
 specific equation under consideration within a class called
-{\tt DGTransportEquation}. This class includes objects of all
-equation--specific functions, the {\tt RHS} and the
-{\tt BoundaryValues} class, both derived from the {\tt Function}
-class, and the {\tt Beta} class representing the vector field.
-Furthermore, the {\tt DGTransportEquation} class comprises member
-functions {\tt assemble\_face\_terms1} and
-{\tt assemble\_face\_terms2} that are invoked by the
-{\tt assemble\_system1} and {\tt assemble\_system2} functions of the
-{\tt DGMethod}, respectively, and the functions
-{\tt assemble\_cell\_term} and {\tt assemble\_boundary\_term} that
+<code>DGTransportEquation</code>. This class includes objects of all
+equation--specific functions, the <code>RHS</code> and the
+<code>BoundaryValues</code> class, both derived from the <code>Function</code>
+class, and the <code>Beta</code> class representing the vector field.
+Furthermore, the <code>DGTransportEquation</code> class comprises member
+functions <code>assemble_face_terms1</code> and
+<code>assemble_face_terms2</code> that are invoked by the
+<code>assemble_system1</code> and <code>assemble_system2</code> functions of the
+<code>DGMethod</code>, respectively, and the functions
+<code>assemble_cell_term</code> and <code>assemble_boundary_term</code> that
 are the same for both assembling routines. Due to the encapsulation of
 all equation- and scheme-specific functions, the
-{\tt DGTransportEquation} class can easily be replaced by a similar
+<code>DGTransportEquation</code> class can easily be replaced by a similar
 class that implements a different equation and a different DG method.
-Indeed, the implementation of the {\tt assemble\_system1} and
-{\tt assemble\_system2} functions of the {\tt DGMethod} class will
+Indeed, the implementation of the <code>assemble_system1</code> and
+<code>assemble_system2</code> functions of the <code>DGMethod</code> class will
 be general enough to serve for different DG methods, different
 equations, even for systems of equations (!) and, under small
 modifications, for nonlinear problems. Finally, we note that the
 program is dimension independent, i.e. after replacing
-{\tt DGMethod<2>} by {\tt DGMethod<3>} the code runs in 3d.
-\end{document}
+<code>DGMethod<2></code> by <code>DGMethod<3></code> the code runs in 3d.
 
 
 
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro.html b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro.html
deleted file mode 100644 (file)
index fae1537..0000000
+++ /dev/null
@@ -1,833 +0,0 @@
-<a name="Intro"></a>
-<h1>Introduction</h1>
-
-
-
-<H2><A NAME="SECTION00001000000000000000">
-Overview</A>
-</H2>
-This example is devoted to the <I>discontinuous Galerkin method</I>, or
-in short: DG method. It includes the following topics.
-
-<UL>
-<LI>Discretization of the linear transport equation with the DG method
-</LI>
-<LI>Two different assembling routines for the system matrix based on
-  face terms given as a sum of integrals that
-
-<OL>
-<LI>loops over all cell and all their faces, or that
-</LI>
-<LI>loops over all faces, whereas each face is treated only once.
-</LI>
-</OL>
-</LI>
-<LI>Time comparison of the two assembling routines.
-</LI>
-</UL>
-
-<P>
-
-<H2><A NAME="SECTION00002000000000000000">
-Problem</A>
-</H2>
-The DG method was first introduced to discretize simple transport
-equations. Over the past years DG methods have been applied to a
-variety of problems and many different schemes were introduced
-employing a big zoo of different convective and diffusive fluxes.  As
-this example's purpose is to illustrate some implementational issues
-of the DG discretization only, here we simply consider the linear
-transport equation
-<P></P>
-<DIV ALIGN="CENTER"><A NAME="transport-equation"></A><!-- MATH
- \begin{equation}
-\nabla\cdot \left\{\boldsymbol\beta u\right\}=f  \qquad\mbox{in }\Omega,
-\end{equation}
- -->
-<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
-<TR VALIGN="MIDDLE">
-<TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="105" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img1.png"
- ALT="$\displaystyle \nabla\cdot \left\{\boldsymbol\beta u\right\}=f$">&nbsp; &nbsp;in <IMG
- WIDTH="22" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img2.png"
- ALT="$\displaystyle \Omega,$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-(1)</TD></TR>
-</TABLE></DIV>
-<BR CLEAR="ALL"><P></P>
-subject to the boundary conditions
-<P><!-- MATH
- \begin{displaymath}
-u=g\quad\mbox{on }\Gamma_-,
-\end{displaymath}
- -->
-</P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="46" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img3.png"
- ALT="$\displaystyle u=g$">&nbsp; &nbsp;on <IMG
- WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img4.png"
- ALT="$\displaystyle \Gamma_-,
-$">
-</DIV><P>
-</P>
-on the inflow part <IMG
- WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img5.png"
- ALT="$ \Gamma_-$">
- of the boundary <!-- MATH
- $\Gamma=\partial\Omega$
- -->
-<IMG
- WIDTH="61" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img6.png"
- ALT="$ \Gamma=\partial\Omega$">
-
-of the domain.  Here, <!-- MATH
- $\boldsymbol\beta=\boldsymbol\beta(x)$
- -->
-<IMG
- WIDTH="75" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img7.png"
- ALT="$ \boldsymbol\beta=\boldsymbol\beta(x)$">
- denotes a
-vector field, <IMG
- WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img8.png"
- ALT="$ f$">
- a source function, <IMG
- WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img9.png"
- ALT="$ u$">
- the (scalar) solution
-function, <IMG
- WIDTH="13" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img10.png"
- ALT="$ g$">
- a boundary value function,
-<P><!-- MATH
- \begin{displaymath}
-\Gamma_-:=\{x\in\Gamma, \boldsymbol\beta(x)\cdot{\bf n}(x)<0\}
-\end{displaymath}
- -->
-</P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="237" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img11.png"
- ALT="$\displaystyle \Gamma_-:=\{x\in\Gamma, \boldsymbol\beta(x)\cdot{\bf n}(x)&lt;0\}
-$">
-</DIV><P>
-</P>
-the inflow part of the boundary of the domain and <IMG
- WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img12.png"
- ALT="$ {\bf n}$">
- denotes
-the unit outward normal to the boundary <IMG
- WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img13.png"
- ALT="$ \Gamma$">
-. Equation
-(<A HREF="#transport-equation">1</A>) is the conservative version of the
-transport equation already considered in step 9 of this tutorial.
-
-<P>
-In particular, we consider problem (<A HREF="#transport-equation">1</A>) on
-<!-- MATH
- $\Omega=[0,1]^2$
- -->
-<IMG
- WIDTH="83" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img14.png"
- ALT="$ \Omega=[0,1]^2$">
- with <!-- MATH
- $\boldsymbol\beta=\frac{1}{|x|}(-x_2, x_1)$
- -->
-<IMG
- WIDTH="129" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img15.png"
- ALT="$ \boldsymbol\beta=\frac{1}{\vert x\vert}(-x_2, x_1)$">
-
-representing a circular counterclockwise flow field, <IMG
- WIDTH="47" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img16.png"
- ALT="$ f=0$">
- and <IMG
- WIDTH="45" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img17.png"
- ALT="$ g=1$">
-
-on <!-- MATH
- $x\in\Gamma_-^1:=[0,0.5]\times\{0\}$
- -->
-<IMG
- WIDTH="182" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img18.png"
- ALT="$ x\in\Gamma_-^1:=[0,0.5]\times\{0\}$">
- and <IMG
- WIDTH="45" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img19.png"
- ALT="$ g=0$">
- on <!-- MATH
- $x\in
-\Gamma_-\setminus \Gamma_-^1$
- -->
-<IMG
- WIDTH="96" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img20.png"
- ALT="$ x\in
-\Gamma_-\setminus \Gamma_-^1$">
-.
-
-<H2><A NAME="SECTION00003000000000000000">
-Discretization</A>
-</H2>
-Following the general paradigm of deriving DG discretizations for
-purely hyperbolic equations, we first consider the general hyperbolic
-problem
-<P><!-- MATH
- \begin{displaymath}
-\nabla\cdot {\mathcal F}(u)=f  \qquad\mbox{in }\Omega,
-\end{displaymath}
- -->
-</P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="103" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img21.png"
- ALT="$\displaystyle \nabla\cdot {\mathcal F}(u)=f$">&nbsp; &nbsp;in <IMG
- WIDTH="22" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img2.png"
- ALT="$\displaystyle \Omega,$">
-</DIV><P>
-</P>
-subject to appropriate boundary conditions. Here <!-- MATH
- ${\mathcal F}$
- -->
-<IMG
- WIDTH="19" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img22.png"
- ALT="$ {\mathcal F}$">
-
-denotes the flux function of the equation under consideration that in
-our case, see equation (<A HREF="#transport-equation">1</A>), is represented by
-<!-- MATH
- ${\mathcal F}(u)=\boldsymbol\beta u$
- -->
-<IMG
- WIDTH="87" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img23.png"
- ALT="$ {\mathcal F}(u)=\boldsymbol\beta u$">
-.  For deriving the DG
-discretization we start with a variational, mesh-dependent
-formulation of the problem,
-<P><!-- MATH
- \begin{displaymath}
-\sum_\kappa\left\{-({\mathcal F}(u),\nabla v)_\kappa+({\mathcal
-  F}(u)\cdot{\bf n}, v)_{\partial\kappa}\right\}=(f,v)_\Omega,
-\end{displaymath}
- -->
-</P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="363" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img24.png"
- ALT="$\displaystyle \sum_\kappa\left\{-({\mathcal F}(u),\nabla v)_\kappa+({\mathcal
-F}(u)\cdot{\bf n}, v)_{\partial\kappa}\right\}=(f,v)_\Omega,
-$">
-</DIV><P>
-</P>
-that originates from (<A HREF="#transport-equation">1</A>) by multiplication with
-a test function <IMG
- WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img25.png"
- ALT="$ v$">
- and integration by parts on each cell <IMG
- WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img26.png"
- ALT="$ \kappa$">
- of
-the triangulation. Here <!-- MATH
- $(\cdot, \cdot)_\kappa$
- -->
-<IMG
- WIDTH="44" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img27.png"
- ALT="$ (\cdot, \cdot)_\kappa$">
- and <!-- MATH
- $(\cdot,
-\cdot)_{\partial\kappa}$
- -->
-<IMG
- WIDTH="52" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img28.png"
- ALT="$ (\cdot,
-\cdot)_{\partial\kappa}$">
- simply denote the integrals over the cell
-<IMG
- WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img26.png"
- ALT="$ \kappa$">
- and the boundary <!-- MATH
- $\partial\kappa$
- -->
-<IMG
- WIDTH="25" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img29.png"
- ALT="$ \partial\kappa$">
- of the cell,
-respectively. To discretize the problem, the functions <IMG
- WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img9.png"
- ALT="$ u$">
- and <IMG
- WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img25.png"
- ALT="$ v$">
- are
-replaced by discrete functions <IMG
- WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img30.png"
- ALT="$ u_h$">
- and <IMG
- WIDTH="21" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img31.png"
- ALT="$ v_h$">
- that in the case of
-discontinuous Galerkin methods belong to the space <IMG
- WIDTH="23" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img32.png"
- ALT="$ V_h$">
- of
-discontinuous piecewise polynomial functions of some degree <IMG
- WIDTH="13" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img33.png"
- ALT="$ p$">
-. Due
-to the discontinuity of the discrete function <IMG
- WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img30.png"
- ALT="$ u_h$">
- on interelement
-faces, the flux <!-- MATH
- ${\mathcal F}(u)\cdot{\bf n}$
- -->
-<IMG
- WIDTH="66" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img34.png"
- ALT="$ {\mathcal F}(u)\cdot{\bf n}$">
- must be replaced by a
-<I>numerical flux</I> function <!-- MATH
- ${\mathcal H}(u_h^+, u_h^-, {\bf n})$
- -->
-<IMG
- WIDTH="102" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img35.png"
- ALT="$ {\mathcal H}(u_h^+, u_h^-, {\bf n})$">
-,
-where <!-- MATH
- $u_h^+|_{\partial\kappa}$
- -->
-<IMG
- WIDTH="47" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img36.png"
- ALT="$ u_h^+\vert _{\partial\kappa}$">
- denotes the inner trace (w.r.t.  the
-cell <IMG
- WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img26.png"
- ALT="$ \kappa$">
-) of <IMG
- WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img30.png"
- ALT="$ u_h$">
- and <!-- MATH
- $u_h^-|_{\partial\kappa}$
- -->
-<IMG
- WIDTH="47" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img37.png"
- ALT="$ u_h^-\vert _{\partial\kappa}$">
- the outer trace,
-i.e. the value of <IMG
- WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img30.png"
- ALT="$ u_h$">
- on the neighboring cell. Furthermore the
-numerical flux function <!-- MATH
- ${\mathcal H}$
- -->
-<IMG
- WIDTH="19" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img38.png"
- ALT="$ {\mathcal H}$">
-, among other things, must be
-consistent, i.e.
-<P><!-- MATH
- \begin{displaymath}
-{\mathcal H}(u,u,{\bf n})={\mathcal F}(u)\cdot{\bf n},
-\end{displaymath}
- -->
-</P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="169" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img39.png"
- ALT="$\displaystyle {\mathcal H}(u,u,{\bf n})={\mathcal F}(u)\cdot{\bf n},
-$">
-</DIV><P>
-</P>
-and conservative, i.e.
-<P></P>
-<DIV ALIGN="CENTER"><A NAME="conservative"></A><!-- MATH
- \begin{equation}
-{\mathcal H}(v,w,{\bf n})=-{\mathcal H}(w,v,-{\bf n}).
-\end{equation}
- -->
-<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
-<TR VALIGN="MIDDLE">
-<TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="214" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img40.png"
- ALT="$\displaystyle {\mathcal H}(v,w,{\bf n})=-{\mathcal H}(w,v,-{\bf n}).$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-(2)</TD></TR>
-</TABLE></DIV>
-<BR CLEAR="ALL"><P></P>
-This yields the following <I>discontinuous Galerkin
-  discretization</I>: find <!-- MATH
- $u_h\in V_h$
- -->
-<IMG
- WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img41.png"
- ALT="$ u_h\in V_h$">
- such that
-<P></P>
-<DIV ALIGN="CENTER"><A NAME="dg-scheme"></A><!-- MATH
- \begin{equation}
-\sum_\kappa\left\{-({\mathcal F}(u_h),\nabla v_h)_\kappa+({\mathcal H}(u_h^+,u_h^-,{\bf n}), v_h)_{\partial\kappa}\right\}=(f,v_h)_\Omega, \quad\forall v_h\in V_h.
-\end{equation}
- -->
-<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
-<TR VALIGN="MIDDLE">
-<TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="526" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img42.png"
- ALT="$\displaystyle \sum_\kappa\left\{-({\mathcal F}(u_h),\nabla v_h)_\kappa+({\mathc...
-...\bf n}), v_h)_{\partial\kappa}\right\}=(f,v_h)_\Omega, \quad\forall v_h\in V_h.$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-(3)</TD></TR>
-</TABLE></DIV>
-<BR CLEAR="ALL"><P></P>
-Boundary conditions are realized by replacing <IMG
- WIDTH="26" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img43.png"
- ALT="$ u_h^-$">
- on the inflow boundary <IMG
- WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img5.png"
- ALT="$ \Gamma_-$">
- by the boundary function <IMG
- WIDTH="13" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img10.png"
- ALT="$ g$">
-.
-In the special case of the transport equation
-(<A HREF="#transport-equation">1</A>) the numerical flux in its simplest form
-is given by
-<P></P>
-<DIV ALIGN="CENTER"><A NAME="flux-transport-equation"></A><!-- MATH
- \begin{equation}
-{\mathcal H}(u_h^+,u_h^-,{\bf n})(x)=\left\{\begin{array}{ll}
-      (\boldsymbol\beta\cdot{\bf n}\, u_h^-)(x),&\mbox{for } \boldsymbol\beta(x)\cdot{\bf n}(x)<0,\\
-      (\boldsymbol\beta\cdot{\bf n}\, u_h^+)(x),&\mbox{for } \boldsymbol\beta(x)\cdot{\bf n}(x)\geq 0,
-\end{array}
-\right.
-\end{equation}
- -->
-<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
-<TR VALIGN="MIDDLE">
-<TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="444" HEIGHT="61" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img44.png"
- ALT="$\displaystyle {\mathcal H}(u_h^+,u_h^-,{\bf n})(x)=\left\{\begin{array}{ll} (\b...
-...)(x),&amp;\mbox{for } \boldsymbol\beta(x)\cdot{\bf n}(x)\geq 0, \end{array} \right.$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-(4)</TD></TR>
-</TABLE></DIV>
-<BR CLEAR="ALL"><P></P>
-where on the inflow part of the cell the value is taken from the
-neighboring cell, <IMG
- WIDTH="26" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img43.png"
- ALT="$ u_h^-$">
-, and on the outflow part the value is
-taken from the current cell, <IMG
- WIDTH="26" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img45.png"
- ALT="$ u_h^+$">
-.  Hence, the discontinuous Galerkin
-scheme for the transport equation (<A HREF="#transport-equation">1</A>) is given
-by: find <!-- MATH
- $u_h\in V_h$
- -->
-<IMG
- WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img41.png"
- ALT="$ u_h\in V_h$">
- such that for all <!-- MATH
- $v_h\in V_h$
- -->
-<IMG
- WIDTH="61" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img46.png"
- ALT="$ v_h\in V_h$">
- following
-equation holds:
-<P></P>
-<DIV ALIGN="CENTER"><A NAME="dg-transport"></A><!-- MATH
- \begin{equation}
-\sum_\kappa\left\{-(u_h,\boldsymbol\beta\cdot\nabla v_h)_\kappa+(\boldsymbol\beta\cdot{\bf n}\, u_h, v_h)_{\partial\kappa_+\setminus\Gamma}+(\boldsymbol\beta\cdot{\bf n}\, u_h^-, v_h)_{\partial\kappa_-\setminus\Gamma}\right\}=(f,v_h)_\Omega-(\boldsymbol\beta\cdot{\bf n}\, g, v_h)_{\Gamma_-},
-\end{equation}
- -->
-<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
-<TR VALIGN="MIDDLE">
-<TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="701" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img47.png"
- ALT="$\displaystyle \sum_\kappa\left\{-(u_h,\boldsymbol\beta\cdot\nabla v_h)_\kappa+(...
-...mma}\right\}=(f,v_h)_\Omega-(\boldsymbol\beta\cdot{\bf n}\, g, v_h)_{\Gamma_-},$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-(5)</TD></TR>
-</TABLE></DIV>
-<BR CLEAR="ALL"><P></P>
-where <!-- MATH
- $\partial\kappa_-:=\{x\in\partial\kappa,
-\boldsymbol\beta(x)\cdot{\bf n}(x)<0\}$
- -->
-<IMG
- WIDTH="255" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img48.png"
- ALT="$ \partial\kappa_-:=\{x\in\partial\kappa,
-\boldsymbol\beta(x)\cdot{\bf n}(x)&lt;0\}$">
- denotes the inflow boundary
-and <!-- MATH
- $\partial\kappa_+=\partial\kappa\setminus \partial \kappa_-$
- -->
-<IMG
- WIDTH="127" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img49.png"
- ALT="$ \partial\kappa_+=\partial\kappa\setminus \partial \kappa_-$">
- the
-outflow part of cell <IMG
- WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img26.png"
- ALT="$ \kappa$">
-. Below, this equation will be referred
-to as <I>first version</I> of the DG method. We note that after a
-second integration by parts, we obtain: find <!-- MATH
- $u_h\in V_h$
- -->
-<IMG
- WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img41.png"
- ALT="$ u_h\in V_h$">
- such that
-<P><!-- MATH
- \begin{displaymath}
-\sum_\kappa\left\{(\nabla\cdot\{\boldsymbol\beta u_h\},\nabla v_h)_\kappa-(\boldsymbol\beta\cdot{\bf n} [u_h], v_h)_{\partial\kappa_-}\right\}=(f,v_h)_\Omega, \quad\forall v_h\in V_h,
-\end{displaymath}
- -->
-</P>
-<DIV ALIGN="CENTER">
-<IMG
- WIDTH="518" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img50.png"
- ALT="$\displaystyle \sum_\kappa\left\{(\nabla\cdot\{\boldsymbol\beta u_h\},\nabla v_h...
-...u_h], v_h)_{\partial\kappa_-}\right\}=(f,v_h)_\Omega, \quad\forall v_h\in V_h,
-$">
-</DIV><P>
-</P>
-where <!-- MATH
- $[u_h]=u_h^+-u_h^-$
- -->
-<IMG
- WIDTH="120" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img51.png"
- ALT="$ [u_h]=u_h^+-u_h^-$">
- denotes the jump of the discrete function
-between two neighboring cells and is defined to be <!-- MATH
- $[u_h]=u_h^+-g$
- -->
-<IMG
- WIDTH="107" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img52.png"
- ALT="$ [u_h]=u_h^+-g$">
- on
-the boundary of the domain. This is the discontinuous Galerkin scheme
-for the transport equation given in its original notation.
-Nevertheless, we will base the implementation of the scheme on the
-form given by (<A HREF="#dg-scheme">3</A>) and (<A HREF="#flux-transport-equation">4</A>),
-or (<A HREF="#dg-transport">5</A>), respectively.
-
-<P>
-Finally, we rewrite (<A HREF="#dg-scheme">3</A>) in terms of a summation over all
-faces where each face <!-- MATH
- $e=\partial \kappa\cap\partial \kappa'$
- -->
-<IMG
- WIDTH="100" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img53.png"
- ALT="$ e=\partial \kappa\cap\partial \kappa'$">
-
-between two neighboring cells <IMG
- WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img26.png"
- ALT="$ \kappa$">
- and <IMG
- WIDTH="19" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img54.png"
- ALT="$ \kappa'$">
- occurs twice:
-Find <!-- MATH
- $u_h\in V_h$
- -->
-<IMG
- WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img41.png"
- ALT="$ u_h\in V_h$">
- such that
-<P></P>
-<DIV ALIGN="CENTER"><A NAME="dg-scheme-faces-long"></A><!-- MATH
- \begin{equation}
--\sum_\kappa({\mathcal F}(u_h),\nabla v_h)_\kappa+\sum_e\left\{({\mathcal H}(u_h^+,u_h^-,{\bf n}), v_h)_e+({\mathcal H}(u_h^-, u_h^+,-{\bf n}), v_h^-)_{e\setminus\Gamma}\right\}=(f,v_h)_\Omega \quad\forall v_h\in V_h,
-\end{equation}
- -->
-<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
-<TR VALIGN="MIDDLE">
-<TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="731" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img55.png"
- ALT="$\displaystyle -\sum_\kappa({\mathcal F}(u_h),\nabla v_h)_\kappa+\sum_e\left\{({...
-... n}), v_h^-)_{e\setminus\Gamma}\right\}=(f,v_h)_\Omega \quad\forall v_h\in V_h,$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-(6)</TD></TR>
-</TABLE></DIV>
-<BR CLEAR="ALL"><P></P>
-By employing conservativity (<A HREF="#conservative">2</A>) of the numerical flux
-this equation simplifies to: find <!-- MATH
- $u_h\in V_h$
- -->
-<IMG
- WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img41.png"
- ALT="$ u_h\in V_h$">
- such that
-<P></P>
-<DIV ALIGN="CENTER"><A NAME="dg-scheme-faces"></A><!-- MATH
- \begin{equation}
--\sum_\kappa({\mathcal F}(u_h),\nabla v_h)_\kappa+\sum_e({\mathcal H}(u_h^+,u_h^-,{\bf n}), [v_h])_{e\setminus\Gamma}+({\mathcal H}(u_h,g,{\bf n}), v_h)_{\Gamma}=(f,v_h)_\Omega \quad\forall v_h\in V_h.
-\end{equation}
- -->
-<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
-<TR VALIGN="MIDDLE">
-<TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="687" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img56.png"
- ALT="$\displaystyle -\sum_\kappa({\mathcal F}(u_h),\nabla v_h)_\kappa+\sum_e({\mathca...
-...athcal H}(u_h,g,{\bf n}), v_h)_{\Gamma}=(f,v_h)_\Omega \quad\forall v_h\in V_h.$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-(7)</TD></TR>
-</TABLE></DIV>
-<BR CLEAR="ALL"><P></P>
-Whereas the outer unit normal <!-- MATH
- ${\bf n}|_{\partial\kappa}$
- -->
-<IMG
- WIDTH="37" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img57.png"
- ALT="$ {\bf n}\vert _{\partial\kappa}$">
- is uniquely
-defined this is not so for <IMG
- WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img58.png"
- ALT="$ {\bf n}_e$">
- as the latter might be the
-normal from either side of the face. Hence, we need to fix the normal
-<IMG
- WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img12.png"
- ALT="$ {\bf n}$">
- on the face to be one of the two normals and denote the
-other normal by <IMG
- WIDTH="29" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img59.png"
- ALT="$ -{\bf n}$">
-.  This way we get <IMG
- WIDTH="29" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img59.png"
- ALT="$ -{\bf n}$">
- in the second
-face term in (<A HREF="#dg-scheme-faces-long">6</A>) that finally produces the
-minus sign in the jump <IMG
- WIDTH="31" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img60.png"
- ALT="$ [v_h]$">
- in equation (<A HREF="#dg-scheme-faces">7</A>).
-
-<P>
-For the linear transport equation (<A HREF="#transport-equation">1</A>)
-equation (<A HREF="#dg-scheme-faces">7</A>) simplifies to
-<P></P>
-<DIV ALIGN="CENTER"><A NAME="dg-transport-gamma"></A><!-- MATH
- \begin{equation}
--\sum_\kappa(u_h,\boldsymbol\beta\cdot\nabla v_h)_\kappa+\sum_e\left\{(\boldsymbol\beta\cdot{\bf n}\, u_h, [v_h])_{e_+\setminus\Gamma}+(\boldsymbol\beta\cdot{\bf n}\, u_h^-, [v_h])_{e_-\setminus\Gamma}\right\}=(f,v_h)_\Omega-(\boldsymbol\beta\cdot{\bf n}\, g, v_h)_{\Gamma_-},
-\end{equation}
- -->
-<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
-<TR VALIGN="MIDDLE">
-<TD NOWRAP ALIGN="CENTER"><IMG
- WIDTH="730" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
- SRC="step-12.data/intro/img61.png"
- ALT="$\displaystyle -\sum_\kappa(u_h,\boldsymbol\beta\cdot\nabla v_h)_\kappa+\sum_e\l...
-...mma}\right\}=(f,v_h)_\Omega-(\boldsymbol\beta\cdot{\bf n}\, g, v_h)_{\Gamma_-},$"></TD>
-<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
-(8)</TD></TR>
-</TABLE></DIV>
-<BR CLEAR="ALL"><P></P>
-which will be refered to as <I>second version</I> of the DG method.
-
-<H2><A NAME="SECTION00004000000000000000">
-Implementation</A>
-</H2>
-As already mentioned at the beginning of this example we will
-implement assembling the system matrix in two different ways.
-The first one will be based on the first version (<A HREF="#dg-transport">5</A>)
-of the DG method that includes a sum of integrals over all cell
-boundaries <!-- MATH
- $\partial\kappa$
- -->
-<IMG
- WIDTH="25" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img29.png"
- ALT="$ \partial\kappa$">
-. This is realized by a loop over all cells and
-a nested loop over all faces of each cell.  Thereby each inner face
-<!-- MATH
- $e=\partial\kappa\cap\partial \kappa'$
- -->
-<IMG
- WIDTH="100" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img53.png"
- ALT="$ e=\partial \kappa\cap\partial \kappa'$">
- is treated twice, the first
-time when the outer loop treats cell <IMG
- WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img26.png"
- ALT="$ \kappa$">
- and the second time when it
-treats cell <IMG
- WIDTH="19" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img54.png"
- ALT="$ \kappa'$">
-. This way some values like the shape function
-values at quadrature points on faces need to be computed twice.
-
-<P>
-To overcome this overhead and for comparison, we implement
-assembling of matrix also in a second and different way. This will
-be based on the second version (<A HREF="#dg-transport-gamma">8</A>) that
-includes a sum of integrals over all faces <IMG
- WIDTH="12" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
- SRC="step-12.data/intro/img62.png"
- ALT="$ e$">
-. Here, several
-difficulties occurs.
-
-<UL>
-<LI>As degrees of freedom are associated with cells (and not to faces)
-  and as a normal is only defined w.r.t. a cell adjacent to the face we
-  cannot simply run over all faces of the triangulation but need to
-  perform the nested loop over all cells and all faces of each cell
-  like in the first implementation.  This, because in <TT>deal.II</TT>
-  faces are accessible from cells but not visa versa.
-</LI>
-<LI>Due to the nested loop we arrive twice at each face. In order to
-  assemble face terms only once we either need to track which
-  faces we have treated before, or we introduce a simple rule that decides
-  which of the two adjacent cells the face should be accessed and
-  treated from.  Here, we employ the second approach and define the
-  following rule:
-  <DL COMPACT>
-<DT>a).</DT>
-<DD>If the two cells adjacent to a face are of the same refinement level we access and treat the face from the cell with lower index on this level.
-  
-</DD>
-<DT>b).</DT>
-<DD>If the two cells are of different refinement levels we access
-    and treat the face from the coarser cell.
-  
-</DD>
-</DL>
-</LI>
-</UL>
-Before we start with the description of the code we first introduce
-its main ingredients. The main class is called
-<TT>DGMethod</TT>. It comprises all basic objects like the
-triangulation, the dofhandler, the system matrix and solution vectors.
-Furthermore it has got some member functions, the most prominent of
-which are the <TT>assemble_system1</TT> and <TT>assemble_system2</TT>
-functions that implement the two different ways mentioned above for
-assembling the system matrix. Within these assembling routines several
-different cases must be distinguished while performing the nested
-loops over all cells and all faces of each cell and assembling the
-respective face terms. While sitting on the current cell and looking
-at a specific face there are the cases
-
-<OL>
-<LI>face is at boundary,
-</LI>
-<LI>neighboring cell is finer,
-</LI>
-<LI>neighboring cell is of the same refinement level, and
-</LI>
-<LI>neighboring cell is coarser
-</LI>
-</OL>
-where the `neighboring cell' and the current cell have the mentioned
-faces in common. In last three cases the assembling of the face terms
-are almost the same. Hence, we can implement the assembling of the
-face terms either by `copy and paste' (the lazy way, whose
-disadvantages come up when the scheme or the equation might want to be
-changed afterwards) or by calling a separate function that covers all
-three cases. To be kind of educational within this tutorial we perform
-the latter approach, of course. We go even further and encapsulate
-this function and everything that is needed for assembling the
-specific equation under consideration within a class called
-<TT>DGTransportEquation</TT>. This class includes objects of all
-equation-specific functions, the <TT>RHS</TT> and the
-<TT>BoundaryValues</TT> class, both derived from the <TT>Function</TT>
-class, and the <TT>Beta</TT> class representing the vector field.
-Furthermore, the <TT>DGTransportEquation</TT> class comprises member
-functions <TT>assemble_face_terms1</TT> and
-<TT>assemble_face_terms2</TT> that are invoked by the
-<TT>assemble_system1</TT> and <TT>assemble_system2</TT> functions of the
-<TT>DGMethod</TT>, respectively, and the functions
-<TT>assemble_cell_term</TT> and <TT>assemble_boundary_term</TT> that
-are the same for both assembling routines. Due to the encapsulation of
-all equation- and scheme-specific functions, the
-<TT>DGTransportEquation</TT> class can easily be replaced by a similar
-class that implements a different equation and a different DG method.
-Indeed, the implementation of the <TT>assemble_system1</TT> and
-<TT>assemble_system2</TT> functions of the <TT>DGMethod</TT> class will
-be general enough to serve for different DG methods, different
-equations, even for systems of equations (!) and, under small
-modifications, for nonlinear problems. Finally, we note that the
-program is dimension independent, i.e. after replacing
-<TT>DGMethod&lt;2&gt;</TT> by <TT>DGMethod&lt;3&gt;</TT> the code runs in 3d.
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img1.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img1.png
deleted file mode 100644 (file)
index b9eae85..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img1.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img10.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img10.png
deleted file mode 100644 (file)
index 4323488..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img10.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img11.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img11.png
deleted file mode 100644 (file)
index d7019bf..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img11.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img12.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img12.png
deleted file mode 100644 (file)
index deb67d1..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img12.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img13.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img13.png
deleted file mode 100644 (file)
index d881b99..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img13.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img14.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img14.png
deleted file mode 100644 (file)
index b3e0283..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img14.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img15.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img15.png
deleted file mode 100644 (file)
index 8f33189..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img15.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img16.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img16.png
deleted file mode 100644 (file)
index e180988..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img16.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img17.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img17.png
deleted file mode 100644 (file)
index c8b8f11..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img17.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img18.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img18.png
deleted file mode 100644 (file)
index 3d0c27a..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img18.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img19.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img19.png
deleted file mode 100644 (file)
index bf1ea97..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img19.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img2.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img2.png
deleted file mode 100644 (file)
index 385a8a3..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img2.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img20.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img20.png
deleted file mode 100644 (file)
index 32ca7ab..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img20.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img21.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img21.png
deleted file mode 100644 (file)
index 28c341c..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img21.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img22.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img22.png
deleted file mode 100644 (file)
index 9493bc2..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img22.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img23.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img23.png
deleted file mode 100644 (file)
index fd83fe6..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img23.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img24.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img24.png
deleted file mode 100644 (file)
index a2cf469..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img24.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img25.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img25.png
deleted file mode 100644 (file)
index bc8a4de..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img25.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img26.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img26.png
deleted file mode 100644 (file)
index 93e647e..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img26.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img27.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img27.png
deleted file mode 100644 (file)
index ad58966..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img27.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img28.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img28.png
deleted file mode 100644 (file)
index 081f466..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img28.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img29.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img29.png
deleted file mode 100644 (file)
index 2cd49c0..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img29.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img3.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img3.png
deleted file mode 100644 (file)
index 6ec7a7b..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img3.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img30.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img30.png
deleted file mode 100644 (file)
index b64a7ef..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img30.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img31.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img31.png
deleted file mode 100644 (file)
index cfe898a..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img31.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img32.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img32.png
deleted file mode 100644 (file)
index 3473724..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img32.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img33.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img33.png
deleted file mode 100644 (file)
index 6776e19..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img33.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img34.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img34.png
deleted file mode 100644 (file)
index ae6eb75..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img34.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img35.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img35.png
deleted file mode 100644 (file)
index 2f66c74..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img35.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img36.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img36.png
deleted file mode 100644 (file)
index 8125a08..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img36.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img37.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img37.png
deleted file mode 100644 (file)
index cf01050..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img37.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img38.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img38.png
deleted file mode 100644 (file)
index a36f30a..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img38.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img39.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img39.png
deleted file mode 100644 (file)
index 20611f5..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img39.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img4.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img4.png
deleted file mode 100644 (file)
index dbf2e4a..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img4.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img40.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img40.png
deleted file mode 100644 (file)
index f9ae6a4..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img40.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img41.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img41.png
deleted file mode 100644 (file)
index 18a0320..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img41.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img42.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img42.png
deleted file mode 100644 (file)
index 6d4acd5..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img42.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img43.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img43.png
deleted file mode 100644 (file)
index f0adf1e..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img43.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img44.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img44.png
deleted file mode 100644 (file)
index d262857..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img44.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img45.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img45.png
deleted file mode 100644 (file)
index f86c244..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img45.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img46.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img46.png
deleted file mode 100644 (file)
index 4d2a879..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img46.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img47.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img47.png
deleted file mode 100644 (file)
index f1f1847..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img47.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img48.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img48.png
deleted file mode 100644 (file)
index 53629d4..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img48.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img49.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img49.png
deleted file mode 100644 (file)
index a04de18..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img49.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img5.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img5.png
deleted file mode 100644 (file)
index 5c7b629..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img5.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img50.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img50.png
deleted file mode 100644 (file)
index 9eb3df9..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img50.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img51.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img51.png
deleted file mode 100644 (file)
index 89dc91e..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img51.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img52.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img52.png
deleted file mode 100644 (file)
index 50b34df..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img52.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img53.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img53.png
deleted file mode 100644 (file)
index 6fc079b..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img53.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img54.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img54.png
deleted file mode 100644 (file)
index 51e959f..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img54.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img55.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img55.png
deleted file mode 100644 (file)
index 5e80634..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img55.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img56.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img56.png
deleted file mode 100644 (file)
index ef28421..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img56.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img57.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img57.png
deleted file mode 100644 (file)
index 96d7133..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img57.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img58.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img58.png
deleted file mode 100644 (file)
index f733cb1..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img58.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img59.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img59.png
deleted file mode 100644 (file)
index d1023cb..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img59.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img6.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img6.png
deleted file mode 100644 (file)
index 392f70d..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img6.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img60.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img60.png
deleted file mode 100644 (file)
index fb86675..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img60.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img61.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img61.png
deleted file mode 100644 (file)
index 4049568..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img61.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img62.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img62.png
deleted file mode 100644 (file)
index 3638263..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img62.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img7.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img7.png
deleted file mode 100644 (file)
index c4d16d9..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img7.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img8.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img8.png
deleted file mode 100644 (file)
index 51d284f..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img8.png and /dev/null differ
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img9.png b/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img9.png
deleted file mode 100644 (file)
index efa4fbd..0000000
Binary files a/deal.II/doc/tutorial/chapter-2.step-by-step/step-12.data/intro/img9.png and /dev/null differ

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.