]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Use formulas instead of plain text
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 29 Aug 2007 15:09:58 +0000 (15:09 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 29 Aug 2007 15:09:58 +0000 (15:09 +0000)
git-svn-id: https://svn.dealii.org/trunk@15086 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-10/step-10.cc

index ac6c1b53a7d55e329e31b62986aeeef81a0b2551..a29e810cb7bc3b08c1ed7f5efff686123446ba41 100644 (file)
@@ -4,7 +4,7 @@
 /*    $Id$       */
 /*    Version: $Name$                                          */
 /*                                                                */
-/*    Copyright (C) 2001, 2002, 2003, 2004, 2006 by the deal.II authors */
+/*    Copyright (C) 2001, 2002, 2003, 2004, 2006, 2007 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 using namespace dealii;
 
                                 // Now, as we want to compute the
-                                // value of pi, we have to compare to
+                                // value of $\pi$, we have to compare to
                                 // somewhat. These are the first few
-                                // digits of pi, which we define
+                                // digits of $\pi$, which we define
                                 // beforehand for later use. Since we
                                 // would like to compute the
                                 // difference between two numbers
                                 // which are quite accurate, with the
                                 // accuracy of the computed
-                                // approximation to pi being in the
+                                // approximation to $\pi$ being in the
                                 // range of the number of digits
                                 // which a double variable can hold,
                                 // we rather declare the reference
@@ -260,21 +260,22 @@ void gnuplot_output()
 
                                 // Now we proceed with the main part
                                 // of the code, the approximation of
-                                // pi. The area of a circle is given
-                                // by pi*radius^2, so having a circle
-                                // of radius 1, the area represents
-                                // just the number that is searched
-                                // for. The numerical computation of
-                                // the area is performed by
-                                // integrating the constant function
-                                // of value 1 over the whole
-                                // computational domain, i.e. by
-                                // computing the areas $\int_K 1
-                                // dx=\int_{\hat K} 1\ \textrm{det}\ J(\hat x)
-                                // d\hat x \approx \sum_i \textrm{det}\ J(\hat
-                                // x_i)w(\hat x_i)$, where the sum
-                                // extends over all quadrature points
-                                // on all active cells in the
+                                // $\pi$. The area of a circle is of
+                                // course given by $\pi r^2$, so
+                                // having a circle of radius 1, the
+                                // area represents just the number
+                                // that is searched for. The
+                                // numerical computation of the area
+                                // is performed by integrating the
+                                // constant function of value 1 over
+                                // the whole computational domain,
+                                // i.e. by computing the areas
+                                // $\int_K 1 dx=\int_{\hat K} 1\
+                                // \textrm{det}\ J(\hat x) d\hat x
+                                // \approx \sum_i \textrm{det}\
+                                // J(\hat x_i)w(\hat x_i)$, where the
+                                // sum extends over all quadrature
+                                // points on all active cells in the
                                 // triangulation, with $w(x_i)$ being
                                 // the weight of quadrature point
                                 // $x_i$. The integrals on each cell
@@ -420,13 +421,13 @@ void compute_pi_by_area ()
                                       // ConvergenceTable class to
                                       // store all important data
                                       // like the approximated values
-                                      // for pi and the error with
+                                      // for $\pi$ and the error with
                                       // respect to the true value of
-                                      // pi. We will also use
+                                      // $\pi$. We will also use
                                       // functions provided by the
                                       // ConvergenceTable class to
                                       // compute convergence rates of
-                                      // the approximations to pi.
+                                      // the approximations to $\pi$.
       ConvergenceTable table;
 
                                       // Now we loop over several
@@ -536,9 +537,9 @@ void compute_pi_by_area ()
 
 
                                 // The following, second function also
-                                // computes an approximation of pi
+                                // computes an approximation of $\pi$
                                 // but this time via the perimeter
-                                // 2*pi*radius of the domain instead
+                                // $2\pi r$ of the domain instead
                                 // of the area. This function is only
                                 // a variation of the previous
                                 // function. So we will mainly give

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.