]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Rename further simplex-related files 11813/head
authorPeter Munch <peterrmuench@gmail.com>
Fri, 26 Feb 2021 06:51:55 +0000 (07:51 +0100)
committerPeter Munch <peterrmuench@gmail.com>
Fri, 26 Feb 2021 06:51:55 +0000 (07:51 +0100)
include/deal.II/base/polynomials_pyramid.h
include/deal.II/base/polynomials_wedge.h
include/deal.II/base/quadrature_lib.h
include/deal.II/grid/reference_cell.h
include/deal.II/matrix_free/util.h
source/base/polynomials_pyramid.cc
source/base/polynomials_wedge.cc
source/base/quadrature_lib.cc
source/fe/fe_pyramid_p.cc
source/fe/fe_wedge_p.cc
tests/simplex/q_witherden_vincent_01.cc

index b75d9ee082b247b6ff0c51815dcb81ccb7367146..640356ac0958b309da6177087f4dfa665d2f6dc9 100644 (file)
@@ -34,7 +34,7 @@ DEAL_II_NAMESPACE_OPEN
  * FE_PyramidP.
  */
 template <int dim>
-class ScalarPyramidPolynomial : public ScalarPolynomialsBase<dim>
+class ScalarLagrangePolynomialPyramid : public ScalarPolynomialsBase<dim>
 {
 public:
   /**
@@ -47,7 +47,7 @@ public:
    *
    * @note Currently, only linear polynomials (degree=1) are implemented.
    */
-  ScalarPyramidPolynomial(const unsigned int degree);
+  ScalarLagrangePolynomialPyramid(const unsigned int degree);
 
   /**
    * @copydoc ScalarPolynomialsBase::evaluate()
@@ -128,8 +128,9 @@ public:
 template <int dim>
 template <int order>
 Tensor<order, dim>
-ScalarPyramidPolynomial<dim>::compute_derivative(const unsigned int i,
-                                                 const Point<dim> & p) const
+ScalarLagrangePolynomialPyramid<dim>::compute_derivative(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   Tensor<order, dim> der;
 
index 296c80616337997534f32a9755d6cc9ccb65ab1d..5f9afefcb25c2f1b39a41d8eedc1eeb89df3b36b 100644 (file)
@@ -34,7 +34,7 @@ DEAL_II_NAMESPACE_OPEN
  * re-numerated to better match the definition of FiniteElement.
  */
 template <int dim>
-class ScalarWedgePolynomial : public ScalarPolynomialsBase<dim>
+class ScalarLagrangePolynomialWedge : public ScalarPolynomialsBase<dim>
 {
 public:
   /**
@@ -48,7 +48,7 @@ public:
    * @note Currently, only linear (degree=1) and quadratic polynomials
    *   (degree=2) are implemented.
    */
-  ScalarWedgePolynomial(const unsigned int degree);
+  ScalarLagrangePolynomialWedge(const unsigned int degree);
 
   /**
    * @copydoc ScalarPolynomialsBase::evaluate()
@@ -145,8 +145,9 @@ private:
 template <int dim>
 template <int order>
 Tensor<order, dim>
-ScalarWedgePolynomial<dim>::compute_derivative(const unsigned int i,
-                                               const Point<dim> & p) const
+ScalarLagrangePolynomialWedge<dim>::compute_derivative(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   Tensor<order, dim> der;
 
index a82e7373af0d50c59aec6a22282df912f5d73eab..388d0371778690ead0a3e34affb49034b244ec9c 100644 (file)
@@ -840,14 +840,14 @@ public:
  * @ingroup simplex
  */
 template <int dim>
-class QWitherdenVincent : public QSimplex<dim>
+class QWitherdenVincentSimplex : public QSimplex<dim>
 {
 public:
   /**
    * Constructor taking the number of quadrature points in 1D direction
    * @p n_points_1D.
    */
-  explicit QWitherdenVincent(const unsigned int n_points_1D);
+  explicit QWitherdenVincentSimplex(const unsigned int n_points_1D);
 };
 
 /**
index 28a856e6fdce9a8c4b86a8ce5d222b535770d8f9..7cb989897832af1aa23620935bea10456df1bdf6 100644 (file)
@@ -1539,8 +1539,9 @@ ReferenceCell::d_linear_shape_function(const Point<dim> & xi,
         }
     }
 
-  if (*this == ReferenceCells::Wedge) // see also
-                                      // ScalarWedgePolynomial::compute_value
+  if (*this ==
+      ReferenceCells::Wedge) // see also
+                             // ScalarLagrangePolynomialWedge::compute_value
     {
       return ReferenceCell(ReferenceCells::Triangle)
                .d_linear_shape_function<2>(Point<2>(xi[std::min(0, dim - 1)],
@@ -1553,7 +1554,7 @@ ReferenceCell::d_linear_shape_function(const Point<dim> & xi,
 
   if (*this ==
       ReferenceCells::Pyramid) // see also
-                               // ScalarPyramidPolynomial::compute_value
+                               // ScalarLagrangePolynomialPyramid::compute_value
     {
       const double Q14 = 0.25;
       double       ration;
index c1f6dce66a21ec76112227126c82a5068855698c..164b759e275189deb0befa2726c54d77ea3e1271 100644 (file)
@@ -69,9 +69,9 @@ namespace internal
               }
 
           for (unsigned int i = 1; i <= 5; ++i)
-            if (quad == QWitherdenVincent<dim>(i))
+            if (quad == QWitherdenVincentSimplex<dim>(i))
               {
-                QWitherdenVincent<dim - 1> tri(i);
+                QWitherdenVincentSimplex<dim - 1> tri(i);
 
                 if (dim == 2)
                   return {ReferenceCells::Triangle,
index dbab75b527b03124d245ed0b44238266d43bb313..e9b2bb9d0abffeb6ab2e1d719615d4a8af2d4b67 100644 (file)
@@ -40,7 +40,8 @@ namespace
 
 
 template <int dim>
-ScalarPyramidPolynomial<dim>::ScalarPyramidPolynomial(const unsigned int degree)
+ScalarLagrangePolynomialPyramid<dim>::ScalarLagrangePolynomialPyramid(
+  const unsigned int degree)
   : ScalarPolynomialsBase<dim>(degree,
                                compute_n_polynomials_pyramid(dim, degree))
 {}
@@ -48,8 +49,8 @@ ScalarPyramidPolynomial<dim>::ScalarPyramidPolynomial(const unsigned int degree)
 
 template <int dim>
 double
-ScalarPyramidPolynomial<dim>::compute_value(const unsigned int i,
-                                            const Point<dim> & p) const
+ScalarLagrangePolynomialPyramid<dim>::compute_value(const unsigned int i,
+                                                    const Point<dim> & p) const
 {
   AssertDimension(dim, 3);
   AssertIndexRange(this->degree(), 2);
@@ -86,8 +87,8 @@ ScalarPyramidPolynomial<dim>::compute_value(const unsigned int i,
 
 template <int dim>
 Tensor<1, dim>
-ScalarPyramidPolynomial<dim>::compute_grad(const unsigned int i,
-                                           const Point<dim> & p) const
+ScalarLagrangePolynomialPyramid<dim>::compute_grad(const unsigned int i,
+                                                   const Point<dim> & p) const
 {
   AssertDimension(dim, 3);
   AssertIndexRange(this->degree(), 4);
@@ -163,8 +164,9 @@ ScalarPyramidPolynomial<dim>::compute_grad(const unsigned int i,
 
 template <int dim>
 Tensor<2, dim>
-ScalarPyramidPolynomial<dim>::compute_grad_grad(const unsigned int i,
-                                                const Point<dim> & p) const
+ScalarLagrangePolynomialPyramid<dim>::compute_grad_grad(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   (void)i;
   (void)p;
@@ -177,7 +179,7 @@ ScalarPyramidPolynomial<dim>::compute_grad_grad(const unsigned int i,
 
 template <int dim>
 void
-ScalarPyramidPolynomial<dim>::evaluate(
+ScalarLagrangePolynomialPyramid<dim>::evaluate(
   const Point<dim> &           unit_point,
   std::vector<double> &        values,
   std::vector<Tensor<1, dim>> &grads,
@@ -203,8 +205,9 @@ ScalarPyramidPolynomial<dim>::evaluate(
 
 template <int dim>
 Tensor<1, dim>
-ScalarPyramidPolynomial<dim>::compute_1st_derivative(const unsigned int i,
-                                                     const Point<dim> & p) const
+ScalarLagrangePolynomialPyramid<dim>::compute_1st_derivative(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   return compute_grad(i, p);
 }
@@ -213,8 +216,9 @@ ScalarPyramidPolynomial<dim>::compute_1st_derivative(const unsigned int i,
 
 template <int dim>
 Tensor<2, dim>
-ScalarPyramidPolynomial<dim>::compute_2nd_derivative(const unsigned int i,
-                                                     const Point<dim> & p) const
+ScalarLagrangePolynomialPyramid<dim>::compute_2nd_derivative(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   (void)i;
   (void)p;
@@ -228,8 +232,9 @@ ScalarPyramidPolynomial<dim>::compute_2nd_derivative(const unsigned int i,
 
 template <int dim>
 Tensor<3, dim>
-ScalarPyramidPolynomial<dim>::compute_3rd_derivative(const unsigned int i,
-                                                     const Point<dim> & p) const
+ScalarLagrangePolynomialPyramid<dim>::compute_3rd_derivative(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   (void)i;
   (void)p;
@@ -243,8 +248,9 @@ ScalarPyramidPolynomial<dim>::compute_3rd_derivative(const unsigned int i,
 
 template <int dim>
 Tensor<4, dim>
-ScalarPyramidPolynomial<dim>::compute_4th_derivative(const unsigned int i,
-                                                     const Point<dim> & p) const
+ScalarLagrangePolynomialPyramid<dim>::compute_4th_derivative(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   (void)i;
   (void)p;
@@ -258,24 +264,24 @@ ScalarPyramidPolynomial<dim>::compute_4th_derivative(const unsigned int i,
 
 template <int dim>
 std::string
-ScalarPyramidPolynomial<dim>::name() const
+ScalarLagrangePolynomialPyramid<dim>::name() const
 {
-  return "ScalarPyramidPolynomial";
+  return "ScalarLagrangePolynomialPyramid";
 }
 
 
 
 template <int dim>
 std::unique_ptr<ScalarPolynomialsBase<dim>>
-ScalarPyramidPolynomial<dim>::clone() const
+ScalarLagrangePolynomialPyramid<dim>::clone() const
 {
-  return std::make_unique<ScalarPyramidPolynomial<dim>>(*this);
+  return std::make_unique<ScalarLagrangePolynomialPyramid<dim>>(*this);
 }
 
 
 
-template class ScalarPyramidPolynomial<1>;
-template class ScalarPyramidPolynomial<2>;
-template class ScalarPyramidPolynomial<3>;
+template class ScalarLagrangePolynomialPyramid<1>;
+template class ScalarLagrangePolynomialPyramid<2>;
+template class ScalarLagrangePolynomialPyramid<3>;
 
 DEAL_II_NAMESPACE_CLOSE
index 6517e624430c8c8debb75b96fb621b1885cb31c9..2db03b71676605a00b6e38be02ce957773912471 100644 (file)
@@ -42,7 +42,8 @@ namespace
 
 
 template <int dim>
-ScalarWedgePolynomial<dim>::ScalarWedgePolynomial(const unsigned int degree)
+ScalarLagrangePolynomialWedge<dim>::ScalarLagrangePolynomialWedge(
+  const unsigned int degree)
   : ScalarPolynomialsBase<dim>(degree, compute_n_polynomials_wedge(dim, degree))
   , poly_tri(BarycentricPolynomials<2>::get_fe_p_basis(degree))
   , poly_line(BarycentricPolynomials<1>::get_fe_p_basis(degree))
@@ -88,8 +89,8 @@ namespace
 
 template <int dim>
 double
-ScalarWedgePolynomial<dim>::compute_value(const unsigned int i,
-                                          const Point<dim> & p) const
+ScalarLagrangePolynomialWedge<dim>::compute_value(const unsigned int i,
+                                                  const Point<dim> & p) const
 {
   const auto pair = this->degree() == 1 ? wedge_table_1[i] : wedge_table_2[i];
 
@@ -106,8 +107,8 @@ ScalarWedgePolynomial<dim>::compute_value(const unsigned int i,
 
 template <int dim>
 Tensor<1, dim>
-ScalarWedgePolynomial<dim>::compute_grad(const unsigned int i,
-                                         const Point<dim> & p) const
+ScalarLagrangePolynomialWedge<dim>::compute_grad(const unsigned int i,
+                                                 const Point<dim> & p) const
 {
   const auto pair = this->degree() == 1 ? wedge_table_1[i] : wedge_table_2[i];
 
@@ -131,8 +132,8 @@ ScalarWedgePolynomial<dim>::compute_grad(const unsigned int i,
 
 template <int dim>
 Tensor<2, dim>
-ScalarWedgePolynomial<dim>::compute_grad_grad(const unsigned int i,
-                                              const Point<dim> & p) const
+ScalarLagrangePolynomialWedge<dim>::compute_grad_grad(const unsigned int i,
+                                                      const Point<dim> &p) const
 {
   (void)i;
   (void)p;
@@ -145,7 +146,7 @@ ScalarWedgePolynomial<dim>::compute_grad_grad(const unsigned int i,
 
 template <int dim>
 void
-ScalarWedgePolynomial<dim>::evaluate(
+ScalarLagrangePolynomialWedge<dim>::evaluate(
   const Point<dim> &           unit_point,
   std::vector<double> &        values,
   std::vector<Tensor<1, dim>> &grads,
@@ -171,8 +172,9 @@ ScalarWedgePolynomial<dim>::evaluate(
 
 template <int dim>
 Tensor<1, dim>
-ScalarWedgePolynomial<dim>::compute_1st_derivative(const unsigned int i,
-                                                   const Point<dim> & p) const
+ScalarLagrangePolynomialWedge<dim>::compute_1st_derivative(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   return compute_grad(i, p);
 }
@@ -181,8 +183,9 @@ ScalarWedgePolynomial<dim>::compute_1st_derivative(const unsigned int i,
 
 template <int dim>
 Tensor<2, dim>
-ScalarWedgePolynomial<dim>::compute_2nd_derivative(const unsigned int i,
-                                                   const Point<dim> & p) const
+ScalarLagrangePolynomialWedge<dim>::compute_2nd_derivative(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   (void)i;
   (void)p;
@@ -196,8 +199,9 @@ ScalarWedgePolynomial<dim>::compute_2nd_derivative(const unsigned int i,
 
 template <int dim>
 Tensor<3, dim>
-ScalarWedgePolynomial<dim>::compute_3rd_derivative(const unsigned int i,
-                                                   const Point<dim> & p) const
+ScalarLagrangePolynomialWedge<dim>::compute_3rd_derivative(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   (void)i;
   (void)p;
@@ -211,8 +215,9 @@ ScalarWedgePolynomial<dim>::compute_3rd_derivative(const unsigned int i,
 
 template <int dim>
 Tensor<4, dim>
-ScalarWedgePolynomial<dim>::compute_4th_derivative(const unsigned int i,
-                                                   const Point<dim> & p) const
+ScalarLagrangePolynomialWedge<dim>::compute_4th_derivative(
+  const unsigned int i,
+  const Point<dim> & p) const
 {
   (void)i;
   (void)p;
@@ -226,24 +231,24 @@ ScalarWedgePolynomial<dim>::compute_4th_derivative(const unsigned int i,
 
 template <int dim>
 std::string
-ScalarWedgePolynomial<dim>::name() const
+ScalarLagrangePolynomialWedge<dim>::name() const
 {
-  return "ScalarWedgePolynomial";
+  return "ScalarLagrangePolynomialWedge";
 }
 
 
 
 template <int dim>
 std::unique_ptr<ScalarPolynomialsBase<dim>>
-ScalarWedgePolynomial<dim>::clone() const
+ScalarLagrangePolynomialWedge<dim>::clone() const
 {
-  return std::make_unique<ScalarWedgePolynomial<dim>>(*this);
+  return std::make_unique<ScalarLagrangePolynomialWedge<dim>>(*this);
 }
 
 
 
-template class ScalarWedgePolynomial<1>;
-template class ScalarWedgePolynomial<2>;
-template class ScalarWedgePolynomial<3>;
+template class ScalarLagrangePolynomialWedge<1>;
+template class ScalarLagrangePolynomialWedge<2>;
+template class ScalarLagrangePolynomialWedge<3>;
 
 DEAL_II_NAMESPACE_CLOSE
index d2a21598e6a914a06626693f030fe1964c243892..e228aa3d0a01a0b485f2b13201a8fa723901d496 100644 (file)
@@ -1406,7 +1406,8 @@ QGaussSimplex<dim>::QGaussSimplex(const unsigned int n_points_1D)
         }
       else if (n_points_1D == 4)
         {
-          Quadrature<dim>::operator=(QWitherdenVincent<dim>(n_points_1D));
+          Quadrature<dim>::operator=(
+            QWitherdenVincentSimplex<dim>(n_points_1D));
         }
     }
   else if (dim == 3)
@@ -1464,7 +1465,8 @@ QGaussSimplex<dim>::QGaussSimplex(const unsigned int n_points_1D)
         }
       else if (n_points_1D == 4)
         {
-          Quadrature<dim>::operator=(QWitherdenVincent<dim>(n_points_1D));
+          Quadrature<dim>::operator=(
+            QWitherdenVincentSimplex<dim>(n_points_1D));
         }
     }
 
@@ -1503,7 +1505,8 @@ namespace
 
 
 template <int dim>
-QWitherdenVincent<dim>::QWitherdenVincent(const unsigned int n_points_1D)
+QWitherdenVincentSimplex<dim>::QWitherdenVincentSimplex(
+  const unsigned int n_points_1D)
   : QSimplex<dim>(Quadrature<dim>())
 {
   Assert(1 <= dim && dim <= 3, ExcNotImplemented());
@@ -1845,8 +1848,8 @@ template class QGaussPyramid<1>;
 template class QGaussPyramid<2>;
 template class QGaussPyramid<3>;
 
-template class QWitherdenVincent<1>;
-template class QWitherdenVincent<2>;
-template class QWitherdenVincent<3>;
+template class QWitherdenVincentSimplex<1>;
+template class QWitherdenVincentSimplex<2>;
+template class QWitherdenVincentSimplex<3>;
 
 DEAL_II_NAMESPACE_CLOSE
index 97e450c0f008885b525a0efe8d66d0eb2f674a03..6c06c03230a84393396b57d0cc71a0fd9443449a 100644 (file)
@@ -78,7 +78,7 @@ FE_Pyramid<dim, spacedim>::FE_Pyramid(
   const internal::GenericDoFsPerObject &            dpos,
   const typename FiniteElementData<dim>::Conformity conformity)
   : dealii::FE_Poly<dim, spacedim>(
-      ScalarPyramidPolynomial<dim>(degree),
+      ScalarLagrangePolynomialPyramid<dim>(degree),
       FiniteElementData<dim>(dpos,
                              ReferenceCells::Pyramid,
                              1,
index 4f4d4cf995e2234c15811a5e2ca25b46a5c1bf51..6e6f2db3a23bc9c137ead674d28cef530611f045 100644 (file)
@@ -86,7 +86,7 @@ FE_Wedge<dim, spacedim>::FE_Wedge(
   const internal::GenericDoFsPerObject &            dpos,
   const typename FiniteElementData<dim>::Conformity conformity)
   : dealii::FE_Poly<dim, spacedim>(
-      ScalarWedgePolynomial<dim>(degree),
+      ScalarLagrangePolynomialWedge<dim>(degree),
       FiniteElementData<dim>(dpos,
                              ReferenceCells::Wedge,
                              1,
index d060b3fb9854595a3dfb7f1d640af9487ab93afd..3a82f4ba43c85664cbc5b8fcd34d70282a552d46 100644 (file)
@@ -23,7 +23,7 @@ void
 print(const unsigned int n_points_1D)
 {
   deallog << "n_points_1D = " << n_points_1D << std::endl;
-  const QWitherdenVincent<dim> quad(n_points_1D);
+  const QWitherdenVincentSimplex<dim> quad(n_points_1D);
 
   deallog << "quad size = " << quad.size() << std::endl;
   for (unsigned int q = 0; q < quad.size(); ++q)
@@ -52,8 +52,8 @@ check_accuracy_1D(const unsigned int n_points_1D)
   // component
   monomial_powers[dim - 1] += accuracy - sum;
 
-  const Functions::Monomial<dim> func(monomial_powers);
-  const QWitherdenVincent<dim>   quad(n_points_1D);
+  const Functions::Monomial<dim>      func(monomial_powers);
+  const QWitherdenVincentSimplex<dim> quad(n_points_1D);
 
   deallog << "Monomial powers = " << monomial_powers << std::endl;
   double integrand = 0.0;

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.