]> https://gitweb.dealii.org/ - dealii.git/commitdiff
add vector values not using Vector to Function
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Fri, 24 Sep 2010 21:23:31 +0000 (21:23 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Fri, 24 Sep 2010 21:23:31 +0000 (21:23 +0000)
add Functions::CosineGradFunction

git-svn-id: https://svn.dealii.org/trunk@22155 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/include/base/function.h
deal.II/base/include/base/function_lib.h
deal.II/base/source/function.cc
deal.II/base/source/function_lib.cc

index b5c151a6a8aa35c0caf9add20dad8e93264440f3..56259c135703d963f35fb29d17bf4241d5af5866 100644 (file)
@@ -2,7 +2,7 @@
 //    $Id$
 //    Version: $Name$
 //
-//    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2009 by the deal.II authors
+//    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2009, 2010 by the deal.II authors
 //
 //    This file is subject to QPL and may not be  distributed
 //    without copyright and license information. Please refer
@@ -247,6 +247,22 @@ class Function : public FunctionTime,
     virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                    std::vector<Vector<double> >   &values) const;
     
+                                    /**
+                                     * For each component of the
+                                     * function, fill a vector of
+                                     * values, one for each point.
+                                     *
+                                     * The default implementation of
+                                     * this function in Function calls
+                                     * value_list() for each
+                                     * component. In order to improve
+                                     * performance, this can be
+                                     * reimplemented in derived
+                                     * classes to speed up performance.
+                                     */
+    virtual void vector_values (const std::vector<Point<dim> >& points,
+                               std::vector<std::vector<double> >& values) const;
+
                                     /**
                                      * Return the gradient of the
                                      * specified component of the
@@ -276,6 +292,22 @@ class Function : public FunctionTime,
                                std::vector<Tensor<1,dim> >    &gradients,
                                const unsigned int              component = 0) const;
     
+                                    /**
+                                     * For each component of the
+                                     * function, fill a vector of
+                                     * gradient values, one for each point.
+                                     *
+                                     * The default implementation of
+                                     * this function in Function calls
+                                     * value_list() for each
+                                     * component. In order to improve
+                                     * performance, this can be
+                                     * reimplemented in derived
+                                     * classes to speed up performance.
+                                     */
+    virtual void vector_gradients (const std::vector<Point<dim> >            &points,
+                                  std::vector<std::vector<Tensor<1,dim> > > &gradients) const;
+      
                                     /**
                                      * Set <tt>gradients</tt> to the gradients of
                                      * the function at the <tt>points</tt>,
index 045809c60a25238247593f0ddc23c3fb7cf57707..9d49aeee99e7a9404023297fd85e640db0c47470 100644 (file)
@@ -250,6 +250,55 @@ namespace Functions
   
   
   
+/**
+ * Gradient of the cosine-shaped pillow function.
+ *
+ * This is a vector-valued function with @p dim components, the
+ * gradient of CosineFunction. On the square [-1,1], it has tangential
+ * boundary conditions zero. Thus, it can be used to test
+ * implementations of Maxwell operators without bothering about
+ * boundary terms.
+ *
+ * @ingroup functions
+ * @author Guido Kanschat, 2010
+ */
+  template<int dim>
+  class CosineGradFunction : public Function<dim>
+  {
+    public:
+                                      /**
+                                       * Constructor, creating a
+                                       * function with @p dim components.
+                                       */
+      CosineGradFunction ();
+      
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component) const;      
+      virtual void vector_value (const Point<dim>   &p,
+                                Vector<double>     &values) const;
+      virtual void value_list (const std::vector<Point<dim> > &points,
+                              std::vector<double>            &values,
+                              const unsigned int              component) const;
+      
+      virtual void vector_value_list (const std::vector<Point<dim> >& points,
+                                     std::vector<Vector<double> >& values) const;
+      
+      virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                     const unsigned int  component) const;
+      
+      virtual void gradient_list (const std::vector<Point<dim> > &points,
+                                 std::vector<Tensor<1,dim> >    &gradients,
+                                 const unsigned int              component) const;
+      
+      virtual void vector_gradient_list (const std::vector<Point<dim> >            &points,
+                                        std::vector<std::vector<Tensor<1,dim> > > &gradients) const;
+
+      virtual double laplacian (const Point<dim>   &p,
+                               const unsigned int  component) const;
+  };
+  
+  
+  
 /**
  * Product of exponential functions in each coordinate direction.
  *
index ac2a5faef81fbc4f9c197a9bbf2b5f269d307164..3705d7545c9893fe2a4427a12aa7a1d4aa98a6cf 100644 (file)
@@ -107,6 +107,18 @@ void Function<dim>::vector_value_list (const std::vector<Point<dim> > &points,
 }
 
 
+template <int dim>
+void Function<dim>::vector_values (
+  const std::vector<Point<dim> >& points,
+  std::vector<std::vector<double> >& values) const
+{
+  const unsigned int n = this->n_components;
+  AssertDimension (values.size(), n);
+  for (unsigned int i=0;i<n;++i)
+    value_list(points, values[i], i);
+}
+
+
 template <int dim>
 Tensor<1,dim> Function<dim>::gradient (const Point<dim> &,
                                       const unsigned int) const
@@ -156,6 +168,18 @@ void Function<dim>::vector_gradient_list (const std::vector<Point<dim> >
 }
 
 
+template <int dim>
+void Function<dim>::vector_gradients (
+  const std::vector<Point<dim> >& points,
+  std::vector<std::vector<Tensor<1,dim> > >& values) const
+{
+  const unsigned int n = this->n_components;
+  AssertDimension (values.size(), n);
+  for (unsigned int i=0;i<n;++i)
+    gradient_list(points, values[i], i);
+}
+
+
 
 template <int dim>
 double Function<dim>::laplacian (const Point<dim> &,
index 11248ef0354a1ff56203b073fbc39f96d9dd0d6a..fdcf8fe1aafcd79fab2820596bbf7bf086b9ab57 100644 (file)
@@ -436,8 +436,8 @@ namespace Functions
   template <int dim>
   CosineFunction<dim>::CosineFunction (const unsigned int n_components)
                  :
-               Function<dim> (n_components)
-{}
+                 Function<dim> (n_components)
+  {}
 
 
 
@@ -686,6 +686,270 @@ namespace Functions
       }
   }
   
+//////////////////////////////////////////////////////////////////////
+  
+  template <int dim>
+  CosineGradFunction<dim>::CosineGradFunction ()
+                 :
+                 Function<dim> (dim)
+  {}
+  
+  
+  template<int dim>
+  double
+  CosineGradFunction<dim>::value (
+    const Point<dim>   &p,
+    const unsigned int d) const
+  {
+    AssertIndexRange(d, dim);
+    const unsigned int d1 = (d+1) % dim;
+    const unsigned int d2 = (d+2) % dim;
+    switch(dim)
+      {
+       case 1:
+             return (-M_PI_2* std::sin(M_PI_2*p(0)));
+       case 2:
+             return (-M_PI_2* std::sin(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)));
+       case 3:
+             return (-M_PI_2* std::sin(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)) * std::cos(M_PI_2*p(d2)));
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return 0.;
+  }
+
+  
+  template<int dim>
+  void
+  CosineGradFunction<dim>::vector_value (
+    const Point<dim>& p,
+    Vector<double>& result) const
+  {
+    AssertDimension(result.size(), dim);
+    switch(dim)
+      {
+       case 1:
+             result(0) = -M_PI_2* std::sin(M_PI_2*p(0));
+             break;
+       case 2:
+             result(0) = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+             result(1) = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
+             break;
+       case 3:
+             result(0) = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+             result(1) = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+             result(2) = -M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
+             break;
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+  }
+  
+
+  template<int dim>
+  void
+  CosineGradFunction<dim>::value_list (
+    const std::vector<Point<dim> >& points,
+    std::vector<double>& values,
+    const unsigned int d) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    AssertIndexRange(d, dim);
+    const unsigned int d1 = (d+1) % dim;
+    const unsigned int d2 = (d+2) % dim;
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 values[i] = -M_PI_2* std::sin(M_PI_2*p(d));
+                 break;
+           case 2:
+                 values[i] = -M_PI_2* std::sin(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1));
+                 break;
+           case 3:
+                 values[i] = -M_PI_2* std::sin(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)) * std::cos(M_PI_2*p(d2));
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+  
+  
+  template<int dim>
+  void
+  CosineGradFunction<dim>::vector_value_list (
+    const std::vector<Point<dim> > &points,
+    std::vector<Vector<double> >   &values) const
+  {
+    Assert (values.size() == points.size(),
+           ExcDimensionMismatch(values.size(), points.size()));
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 values[i](0) = -M_PI_2* std::sin(M_PI_2*p(0));
+                 break;
+           case 2:
+                 values[i](0) = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+                 values[i](1) = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
+                 break;
+           case 3:
+                 values[i](0) = -M_PI_2* std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                 values[i](1) = -M_PI_2* std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                 values[i](2) = -M_PI_2* std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+  
+  
+  template<int dim>
+  double
+  CosineGradFunction<dim>::laplacian (
+    const Point<dim>   &p,
+    const unsigned int d) const
+  {
+    return -M_PI_2*M_PI_2* value(p,d);
+  }
+
+
+  template<int dim>
+  Tensor<1,dim>
+  CosineGradFunction<dim>::gradient (
+    const Point<dim>& p,
+    const unsigned int d) const
+  {
+    AssertIndexRange(d, dim);
+    const unsigned int d1 = (d+1) % dim;
+    const unsigned int d2 = (d+2) % dim;
+    const double pi2 = M_PI_2*M_PI_2;
+    
+    Tensor<1,dim> result;
+    switch(dim)
+      {
+       case 1:
+             result[0] = -pi2* std::cos(M_PI_2*p(0));
+             break;
+       case 2:
+             result[d ] = -pi2*std::cos(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1));
+             result[d1] =  pi2*std::sin(M_PI_2*p(d)) * std::sin(M_PI_2*p(d1));
+             break;
+       case 3:
+             result[d ] = -pi2*std::cos(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)) * std::cos(M_PI_2*p(d2));
+             result[d1] =  pi2*std::sin(M_PI_2*p(d)) * std::sin(M_PI_2*p(d1)) * std::cos(M_PI_2*p(d2));
+             result[d2] =  pi2*std::sin(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)) * std::sin(M_PI_2*p(d2));
+             break;
+       default:
+             Assert(false, ExcNotImplemented());
+      }
+    return result;
+  }
+
+  
+  template<int dim>
+  void
+  CosineGradFunction<dim>::gradient_list (
+    const std::vector<Point<dim> > &points,
+    std::vector<Tensor<1,dim> >    &gradients,
+    const unsigned int d) const
+  {
+    AssertIndexRange(d, dim);
+    const unsigned int d1 = (d+1) % dim;
+    const unsigned int d2 = (d+2) % dim;
+    const double pi2 = M_PI_2*M_PI_2;
+    
+    Assert (gradients.size() == points.size(),
+           ExcDimensionMismatch(gradients.size(), points.size()));
+     for (unsigned int i=0;i<points.size();++i)
+       {
+        const Point<dim>& p = points[i];
+        Tensor<1,dim>& result = gradients[i];
+        
+        switch(dim)
+          {
+            case 1:
+                  result[0] = -pi2* std::cos(M_PI_2*p(0));
+                  break;
+            case 2:
+                  result[d ] = -pi2*std::cos(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1));
+                  result[d1] =  pi2*std::sin(M_PI_2*p(d)) * std::sin(M_PI_2*p(d1));
+                  break;
+            case 3:
+                  result[d ] = -pi2*std::cos(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)) * std::cos(M_PI_2*p(d2));
+                  result[d1] =  pi2*std::sin(M_PI_2*p(d)) * std::sin(M_PI_2*p(d1)) * std::cos(M_PI_2*p(d2));
+                  result[d2] =  pi2*std::sin(M_PI_2*p(d)) * std::cos(M_PI_2*p(d1)) * std::sin(M_PI_2*p(d2));
+                  break;
+            default:
+                  Assert(false, ExcNotImplemented());
+          }
+       }
+  }
+  
+  
+  template<int dim>
+  void
+  CosineGradFunction<dim>::vector_gradient_list (
+    const std::vector<Point<dim> > &points,
+    std::vector<std::vector<Tensor<1,dim> > >& gradients) const
+  {
+    AssertVectorVectorDimension(gradients, points.size(), dim);      
+    const double pi2 = M_PI_2*M_PI_2;
+    
+    for (unsigned int i=0;i<points.size();++i)
+      {
+       const Point<dim>& p = points[i];
+       switch(dim)
+         {
+           case 1:
+                 gradients[i][0][0] = -pi2* std::cos(M_PI_2*p(0));
+                 break;
+           case 2:
+                 if (true)
+                   {
+                     const double coco = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1));
+                     const double sisi = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1));
+                     gradients[i][0][0] = coco;
+                     gradients[i][1][1] = coco;
+                     gradients[i][0][1] = sisi;
+                     gradients[i][1][0] = sisi;
+                   }
+                 break;
+           case 3:
+                 if (true)
+                   {
+                     const double cococo = -pi2*std::cos(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                     const double sisico = pi2*std::sin(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::cos(M_PI_2*p(2));
+                     const double sicosi = pi2*std::sin(M_PI_2*p(0)) * std::cos(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
+                     const double cosisi = pi2*std::cos(M_PI_2*p(0)) * std::sin(M_PI_2*p(1)) * std::sin(M_PI_2*p(2));
+                       
+                     gradients[i][0][0] = cococo;
+                     gradients[i][1][1] = cococo;
+                     gradients[i][2][2] = cococo;
+                     gradients[i][0][1] = sisico;
+                     gradients[i][1][0] = sisico;
+                     gradients[i][0][2] = sicosi;
+                     gradients[i][2][0] = sicosi;
+                     gradients[i][1][2] = cosisi;
+                     gradients[i][2][1] = cosisi;
+                   }
+                 break;
+           default:
+                 Assert(false, ExcNotImplemented());
+         }
+      }
+  }
+    
+    
 //////////////////////////////////////////////////////////////////////
   
   template<int dim>
@@ -1021,7 +1285,7 @@ namespace Functions
                  (d==0
                   ? (std::cos(2./3.*phi)*y)
                   : (-std::cos(2./3.*phi)*x)))
-                 /r43;
+      /r43;
   }
   
   
@@ -1046,7 +1310,7 @@ namespace Functions
                           (d==0
                            ? (std::cos(2./3.*phi)*y)
                            : (-std::cos(2./3.*phi)*x)))
-                          /r43;
+                   /r43;
       }
   }
   
@@ -1076,7 +1340,7 @@ namespace Functions
   
   double
   LSingularityGradFunction::laplacian (const Point<2>   &,
-                                  const unsigned int) const
+                                      const unsigned int) const
   {
     return 0.;
   }
@@ -1084,8 +1348,8 @@ namespace Functions
   
   void
   LSingularityGradFunction::laplacian_list (const std::vector<Point<2> > &points,
-                                       std::vector<double>            &values,
-                                       const unsigned int) const
+                                           std::vector<double>            &values,
+                                           const unsigned int) const
   {
     Assert (values.size() == points.size(),
            ExcDimensionMismatch(values.size(), points.size()));
@@ -1193,7 +1457,7 @@ namespace Functions
   template <int dim>
   double
   SlitSingularityFunction<dim>::laplacian (const Point<dim>   &,
-                                     const unsigned int) const
+                                          const unsigned int) const
   {
     return 0.;
   }
@@ -1217,7 +1481,7 @@ namespace Functions
   template <int dim>
   Tensor<1,dim>
   SlitSingularityFunction<dim>::gradient (const Point<dim>   &p,
-                                    const unsigned int) const
+                                         const unsigned int) const
   {
     double x = p(0);
     double y = p(1);
@@ -1234,8 +1498,8 @@ namespace Functions
   template <int dim>
   void
   SlitSingularityFunction<dim>::gradient_list (const std::vector<Point<dim> > &points,
-                                         std::vector<Tensor<1,dim> >    &gradients,
-                                         const unsigned int) const
+                                              std::vector<Tensor<1,dim> >    &gradients,
+                                              const unsigned int) const
   {
     Assert (gradients.size() == points.size(),
            ExcDimensionMismatch(gradients.size(), points.size()));
@@ -1575,7 +1839,7 @@ namespace Functions
   FourierCosineFunction (const Point<dim> &fourier_coefficients)
                  :
                  Function<dim> (1),
-    fourier_coefficients (fourier_coefficients)
+                 fourier_coefficients (fourier_coefficients)
   {}
   
   
@@ -1623,7 +1887,7 @@ namespace Functions
   FourierSineFunction (const Point<dim> &fourier_coefficients)
                  :
                  Function<dim> (1),
-    fourier_coefficients (fourier_coefficients)
+                 fourier_coefficients (fourier_coefficients)
   {}
   
   
@@ -1672,8 +1936,8 @@ namespace Functions
                  const std::vector<double>      &weights)
                  :
                  Function<dim> (1),
-                  fourier_coefficients (fourier_coefficients),
-                  weights (weights)
+                 fourier_coefficients (fourier_coefficients),
+                 weights (weights)
   {
     Assert (fourier_coefficients.size() > 0, ExcZero());
     Assert (fourier_coefficients.size() == weights.size(),
@@ -1742,10 +2006,10 @@ namespace Functions
   FourierCosineSum<dim>::
   FourierCosineSum (const std::vector<Point<dim> > &fourier_coefficients,
                    const std::vector<double>      &weights)
-                    :
-                    Function<dim> (1),
-                    fourier_coefficients (fourier_coefficients),
-                    weights (weights)
+                 :
+                 Function<dim> (1),
+                 fourier_coefficients (fourier_coefficients),
+                 weights (weights)
   {
     Assert (fourier_coefficients.size() > 0, ExcZero());
     Assert (fourier_coefficients.size() == weights.size(),
@@ -1907,6 +2171,9 @@ namespace Functions
   template class CosineFunction<1>;
   template class CosineFunction<2>;
   template class CosineFunction<3>;
+  template class CosineGradFunction<1>;
+  template class CosineGradFunction<2>;
+  template class CosineGradFunction<3>;
   template class ExpFunction<1>;
   template class ExpFunction<2>;
   template class ExpFunction<3>;

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.