// functions against a
// singular weight on the
// reference cell.
- //
// Notice that singular
// integration requires a
// careful selection of
// possible to write
//
// \f[
- // \int_K f(x) s(x) dx = \Sum_{i=1}^N w_i f(q_i)
+ // \int_K f(x) s(x) dx = \sum_{i=1}^N w_i f(q_i)
// \f]
//
- // where $s(x)$ is a
- // given singularity.
+ // where $s(x)$ is a given
+ // singularity, and the weights
+ // and quadrature points
+ // $w_i,q_i$ are carefully
+ // selected to make the formula
+ // above an equality for a
+ // certain class of functions
+ // $f(x)$.
//
// In all the finite
// element examples we
// (namely, the function
// $s(x)$), was always
// constantly equal to 1.
- //
// For singular
// integration, we have
// two choices: we can
//
// \f[
// \int_K f(x) s(x) dx =
- // \int_K g(x) dx = \Sum_{i=1}^N \frac{w_i}{s(q_i)} g(q_i)
+ // \int_K g(x) dx = \sum_{i=1}^N \frac{w_i}{s(q_i)} g(q_i)
// \f]
//
// We use this second
// linearly with the
// determinant of the
// transformation. This
- // allows us to built the
+ // allows us to build the
// singular two
// dimensional quadrature
// rules once and for all
- // outside the loop on
- // the cells, using only
+ // outside the loop over
+ // all cells, using only
// a pointer where needed.
//
// Notice that in one