]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Add a version of step-16 to the tests.
authorbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Sat, 20 Mar 2010 10:56:29 +0000 (10:56 +0000)
committerbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Sat, 20 Mar 2010 10:56:29 +0000 (10:56 +0000)
git-svn-id: https://svn.dealii.org/trunk@20864 0785d39b-7218-0410-832d-ea1e28bc413d

tests/multigrid/Makefile
tests/multigrid/step-16.cc [new file with mode: 0644]
tests/multigrid/step-16/cmp/generic [new file with mode: 0644]

index 87fcec33c7565bfc43ed4efe823fb9201004c590..21e2cf2c1aef570586d90e80a779a727adeb8711 100644 (file)
@@ -1,6 +1,6 @@
 ############################################################
 # $Id$
-# Copyright (C) 2000, 2001, 2002, 2003, 2005, 2006, 2007 by the deal.II authors
+# Copyright (C) 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2010 by the deal.II authors
 ############################################################
 
 ############################################################
@@ -17,7 +17,7 @@ libraries = $(lib-deal2-1d.g) \
             $(lib-lac.g)  \
             $(lib-base.g)
 
-default: run-tests 
+default: run-tests
 
 ############################################################
 
@@ -25,7 +25,8 @@ tests_x = cycles dof_* count_* boundary_* renumbering_* \
        transfer* \
        smoother_block \
        mg_output \
-       mg_renumbered*
+       mg_renumbered* \
+       step-16
 
 # from above list of regular expressions, generate the real set of
 # tests
diff --git a/tests/multigrid/step-16.cc b/tests/multigrid/step-16.cc
new file mode 100644 (file)
index 0000000..5ec5bb2
--- /dev/null
@@ -0,0 +1,1024 @@
+/* $Id$ */
+/* Author: Guido Kanschat, University of Heidelberg, 2003  */
+/*         Baerbel Janssen, University of Heidelberg, 2010 */
+/*         Wolfgang Bangerth, Texas A&M University, 2010   */
+
+/*    $Id$       */
+/*                                                                */
+/*    Copyright (C) 2003, 2004, 2006, 2007, 2008, 2009, 2010 by the deal.II authors                   */
+/*                                                                */
+/*    This file is subject to QPL and may not be  distributed     */
+/*    without copyright and license information. Please refer     */
+/*    to the file deal.II/doc/license.html for the  text  and     */
+/*    further information on this license.                        */
+
+#include "../tests.h"
+#include <base/logstream.h>
+
+                                // As discussed in the introduction, most of
+                                // this program is copied almost verbatim
+                                // from step-6, which itself is only a slight
+                                // modification of step-5. Consequently, a
+                                // significant part of this program is not
+                                // new if you've read all the material up to
+                                // step-6, and we won't comment on that part
+                                // of the functionality that is
+                                // unchanged. Rather, we will focus on those
+                                // aspects of the program that have to do
+                                // with the multigrid functionality which
+                                // forms the new aspect of this tutorial
+                                // program.
+
+                                 // @sect3{Include files}
+
+                                // Again, the first few include files
+                                // are already known, so we won't
+                                // comment on them:
+#include <base/quadrature_lib.h>
+#include <base/function.h>
+#include <base/logstream.h>
+#include <base/utilities.h>
+
+#include <lac/constraint_matrix.h>
+#include <lac/vector.h>
+#include <lac/full_matrix.h>
+#include <lac/sparse_matrix.h>
+#include <lac/solver_cg.h>
+#include <lac/precondition.h>
+
+#include <grid/tria.h>
+#include <grid/tria_accessor.h>
+#include <grid/tria_iterator.h>
+#include <grid/grid_generator.h>
+#include <grid/grid_refinement.h>
+#include <grid/tria_boundary_lib.h>
+
+#include <dofs/dof_accessor.h>
+#include <dofs/dof_tools.h>
+
+#include <fe/fe_q.h>
+#include <fe/fe_values.h>
+
+#include <numerics/vectors.h>
+#include <numerics/data_out.h>
+#include <numerics/error_estimator.h>
+
+                                // These, now, are the include necessary for
+                                // the multi-level methods. The first two
+                                // declare classes that allow us to enumerate
+                                // degrees of freedom not only on the finest
+                                // mesh level, but also on intermediate
+                                // levels (that's what the MGDoFHandler class
+                                // does) as well as allow to access this
+                                // information (iterators and accessors over
+                                // these cells).
+                                //
+                                // The rest of the include files deals with
+                                // the mechanics of multigrid as a linear
+                                // operator (solver or preconditioner).
+#include <multigrid/mg_dof_handler.h>
+#include <multigrid/mg_dof_accessor.h>
+#include <multigrid/multigrid.h>
+#include <multigrid/mg_transfer.h>
+#include <multigrid/mg_tools.h>
+#include <multigrid/mg_coarse.h>
+#include <multigrid/mg_smoother.h>
+#include <multigrid/mg_matrix.h>
+
+                                // This is C++:
+#include <fstream>
+#include <sstream>
+
+                                // The last step is as in all
+                                // previous programs:
+using namespace dealii;
+
+
+                                 // @sect3{The <code>LaplaceProblem</code> class template}
+
+                                // This main class is basically the same
+                                // class as in step-6. As far as member
+                                // functions is concerned, the only addition
+                                // is the <code>assemble_multigrid</code>
+                                // function that assembles the matrices that
+                                // correspond to the discrete operators on
+                                // intermediate levels:
+template <int dim>
+class LaplaceProblem
+{
+  public:
+    LaplaceProblem (const unsigned int deg);
+    void run ();
+
+  private:
+    void setup_system ();
+    void assemble_system ();
+    void assemble_multigrid ();
+    void solve ();
+    void refine_grid ();
+    void output_results (const unsigned int cycle) const;
+
+    Triangulation<dim>   triangulation;
+    FE_Q<dim>            fe;
+    MGDoFHandler<dim>    mg_dof_handler;
+
+    SparsityPattern      sparsity_pattern;
+    SparseMatrix<double> system_matrix;
+
+    ConstraintMatrix     constraints;
+
+    Vector<double>       solution;
+    Vector<double>       system_rhs;
+
+    const unsigned int degree;
+
+                                    // The following three objects are the
+                                    // only additional member variables,
+                                    // compared to step-6. They represent the
+                                    // operators that act on individual
+                                    // levels of the multilevel hierarchy,
+                                    // rather than on the finest mesh as do
+                                    // the objects above.
+                                    //
+                                    // To facilitate having objects on each
+                                    // level of a multilevel hierarchy,
+                                    // deal.II has the MGLevelObject class
+                                    // template that provides storage for
+                                    // objects on each level. What we need
+                                    // here are matrices on each level, which
+                                    // implies that we also need sparsity
+                                    // patterns on each level. As outlined in
+                                    // the @ref mg_paper, the operators
+                                    // (matrices) that we need are actually
+                                    // twofold: one on the interior of each
+                                    // level, and one at the interface
+                                    // between each level and that part of
+                                    // the domain where the mesh is
+                                    // coarser. In fact, we will need the
+                                    // latter in two versions: for the
+                                    // direction from coarse to fine mesh and
+                                    // from fine to coarse. Fortunately,
+                                    // however, we here have a self-adjoint
+                                    // problem for which one of these is the
+                                    // transpose of the other, and so we only
+                                    // have to build one; we choose the one
+                                    // from coarse to fine.
+    MGLevelObject<SparsityPattern>       mg_sparsity_patterns;
+    MGLevelObject<SparseMatrix<double> > mg_matrices;
+    MGLevelObject<SparseMatrix<double> > mg_interface_matrices;
+};
+
+
+
+                                 // @sect3{Nonconstant coefficients}
+
+                                // The implementation of nonconstant
+                                // coefficients is copied verbatim
+                                // from step-5 and step-6:
+
+template <int dim>
+class Coefficient : public Function<dim>
+{
+  public:
+    Coefficient () : Function<dim>() {}
+
+    virtual double value (const Point<dim>   &p,
+                         const unsigned int  component = 0) const;
+
+    virtual void value_list (const std::vector<Point<dim> > &points,
+                            std::vector<double>            &values,
+                            const unsigned int              component = 0) const;
+};
+
+
+
+template <int dim>
+double Coefficient<dim>::value (const Point<dim> &p,
+                               const unsigned int) const
+{
+  if (p.square() < 0.5*0.5)
+    return 20;
+  else
+    return 1;
+}
+
+
+
+template <int dim>
+void Coefficient<dim>::value_list (const std::vector<Point<dim> > &points,
+                                  std::vector<double>            &values,
+                                  const unsigned int              component) const
+{
+  const unsigned int n_points = points.size();
+
+  Assert (values.size() == n_points,
+         ExcDimensionMismatch (values.size(), n_points));
+
+  Assert (component == 0,
+         ExcIndexRange (component, 0, 1));
+
+  for (unsigned int i=0; i<n_points; ++i)
+    values[i] = Coefficient<dim>::value (points[i]);
+}
+
+
+                                 // @sect3{The <code>LaplaceProblem</code> class implementation}
+
+                                 // @sect4{LaplaceProblem::LaplaceProblem}
+
+                                // The constructor is left mostly
+                                // unchanged. We take the polynomial degree
+                                // of the finite elements to be used as a
+                                // constructor argument and store it in a
+                                // member variable.
+                                //
+                                // By convention, all adaptively refined
+                                // triangulations in deal.II never change by
+                                // more than one level across a face between
+                                // cells. For our multigrid algorithms,
+                                // however, we need a slightly stricter
+                                // guarantee, namely that the mesh also does
+                                // not change by more than refinement level
+                                // across vertices that might connect two
+                                // cells. In other words, we must prevent the
+                                // following situation:
+                                //
+                                // @image html limit_level_difference_at_vertices.png ""
+                                //
+                                // This is achieved by passing the
+                                // Triangulation::limit_level_difference_at_vertices
+                                // flag to the constructor of the
+                                // triangulation class.
+template <int dim>
+LaplaceProblem<dim>::LaplaceProblem (const unsigned int degree)
+               :
+               triangulation (Triangulation<dim>::
+                              limit_level_difference_at_vertices),
+               fe (degree),
+               mg_dof_handler (triangulation),
+               degree(degree)
+{}
+
+
+
+                                 // @sect4{LaplaceProblem::setup_system}
+
+                                // The following function extends what the
+                                // corresponding one in step-6 did. The top
+                                // part, apart from the additional output,
+                                // does the same:
+template <int dim>
+void LaplaceProblem<dim>::setup_system ()
+{
+  mg_dof_handler.distribute_dofs (fe);
+
+                                  // Here we output not only the
+                                  // degrees of freedom on the finest
+                                  // level, but also in the
+                                  // multilevel structure
+  deallog << "Number of degrees of freedom: "
+         << mg_dof_handler.n_dofs();
+
+  for (unsigned int l=0;l<triangulation.n_levels();++l)
+    deallog << "   " << 'L' << l << ": "
+           << mg_dof_handler.n_dofs(l);
+  deallog  << std::endl;
+
+  sparsity_pattern.reinit (mg_dof_handler.n_dofs(),
+                          mg_dof_handler.n_dofs(),
+                          mg_dof_handler.max_couplings_between_dofs());
+  DoFTools::make_sparsity_pattern (
+    static_cast<const DoFHandler<dim>&>(mg_dof_handler),
+    sparsity_pattern);
+
+  solution.reinit (mg_dof_handler.n_dofs());
+  system_rhs.reinit (mg_dof_handler.n_dofs());
+
+                                  // But it starts to be a wee bit different
+                                  // here, although this still doesn't have
+                                  // anything to do with multigrid
+                                  // methods. step-6 took care of boundary
+                                  // values and hanging nodes in a separate
+                                  // step after assembling the global matrix
+                                  // from local contributions. This works,
+                                  // but the same can be done in a slightly
+                                  // simpler way if we already take care of
+                                  // these constraints at the time of copying
+                                  // local contributions into the global
+                                  // matrix. To this end, we here do not just
+                                  // compute the constraints do to hanging
+                                  // nodes, but also due to zero boundary
+                                  // conditions. Both kinds of constraints
+                                  // can be put into the same object
+                                  // (<code>constraints</code>), and we will
+                                  // use this set of constraints later on to
+                                  // help us copy local contributions
+                                  // correctly into the global linear system
+                                  // right away, without the need for a later
+                                  // clean-up stage:
+  constraints.clear ();
+  DoFTools::make_hanging_node_constraints (mg_dof_handler, constraints);
+  VectorTools::interpolate_boundary_values (mg_dof_handler,
+                                           0,
+                                           ZeroFunction<dim>(),
+                                           constraints);
+  constraints.close ();
+  constraints.condense (sparsity_pattern);
+  sparsity_pattern.compress();
+  system_matrix.reinit (sparsity_pattern);
+
+                                  // Now for the things that concern the
+                                  // multigrid data structures. First, we
+                                  // resize the multi-level objects to hold
+                                  // matrices and sparsity patterns for every
+                                  // level. The coarse level is zero (this is
+                                  // mandatory right now but may change in a
+                                  // future revision). Note that these
+                                  // functions take a complete, inclusive
+                                  // range here (not a starting index and
+                                  // size), so the finest level is
+                                  // <code>n_levels-1</code>.  We first have
+                                  // to resize the container holding the
+                                  // SparseMatrix classes, since they have to
+                                  // release their SparsityPattern before the
+                                  // can be destroyed upon resizing.
+  const unsigned int n_levels = triangulation.n_levels();
+
+  mg_interface_matrices.resize(0, n_levels-1);
+  mg_interface_matrices.clear ();
+  mg_matrices.resize(0, n_levels-1);
+  mg_matrices.clear ();
+  mg_sparsity_patterns.resize(0, n_levels-1);
+
+                                  // Now, we have to provide a matrix on each
+                                  // level. To this end, we first use the
+                                  // MGTools::make_sparsity_pattern function
+                                  // to first generate a preliminary
+                                  // compressed sparsity pattern on each
+                                  // level (see the @ref Sparsity module for
+                                  // more information on this topic) and then
+                                  // copy it over to the one we really
+                                  // want. The next step is to initialize
+                                  // both kinds of level matrices with these
+                                  // sparsity patterns.
+                                  //
+                                  // It may be worth pointing out that the
+                                  // interface matrices only have entries for
+                                  // degrees of freedom that sit at or next
+                                  // to the interface between coarser and
+                                  // finer levels of the mesh. They are
+                                  // therefore even sparser than the matrices
+                                  // on the individual levels of our
+                                  // multigrid hierarchy. If we were more
+                                  // concerned about memory usage (and
+                                  // possibly the speed with which we can
+                                  // multiply with these matrices), we should
+                                  // use separate and different sparsity
+                                  // patterns for these two kinds of
+                                  // matrices.
+  for (unsigned int level=0; level<n_levels; ++level)
+    {
+      CompressedSparsityPattern csp;
+      csp.reinit(mg_dof_handler.n_dofs(level),
+                mg_dof_handler.n_dofs(level));
+      MGTools::make_sparsity_pattern(mg_dof_handler, csp, level);
+
+      mg_sparsity_patterns[level].copy_from (csp);
+
+      mg_matrices[level].reinit(mg_sparsity_patterns[level]);
+      mg_interface_matrices[level].reinit(mg_sparsity_patterns[level]);
+    }
+}
+
+
+                                 // @sect4{LaplaceProblem::assemble_system}
+
+                                // The following function assembles the
+                                // linear system on the finesh level of the
+                                // mesh. It is almost exactly the same as in
+                                // step-6, with the exception that we don't
+                                // eliminate hanging nodes and boundary
+                                // values after assembling, but while copying
+                                // local contributions into the global
+                                // matrix. This is not only simpler but also
+                                // more efficient for large problems.
+template <int dim>
+void LaplaceProblem<dim>::assemble_system ()
+{
+  const QGauss<dim>  quadrature_formula(degree+1);
+
+  FEValues<dim> fe_values (fe, quadrature_formula,
+                          update_values    |  update_gradients |
+                          update_quadrature_points  |  update_JxW_values);
+
+  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
+  const unsigned int   n_q_points    = quadrature_formula.size();
+
+  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
+  Vector<double>       cell_rhs (dofs_per_cell);
+
+  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+  const Coefficient<dim> coefficient;
+  std::vector<double>    coefficient_values (n_q_points);
+
+  typename MGDoFHandler<dim>::active_cell_iterator
+    cell = mg_dof_handler.begin_active(),
+    endc = mg_dof_handler.end();
+  for (; cell!=endc; ++cell)
+    {
+      cell_matrix = 0;
+      cell_rhs = 0;
+
+      fe_values.reinit (cell);
+
+      coefficient.value_list (fe_values.get_quadrature_points(),
+                             coefficient_values);
+
+      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         {
+           for (unsigned int j=0; j<dofs_per_cell; ++j)
+             cell_matrix(i,j) += (coefficient_values[q_point] *
+                                  fe_values.shape_grad(i,q_point) *
+                                  fe_values.shape_grad(j,q_point) *
+                                  fe_values.JxW(q_point));
+
+           cell_rhs(i) += (fe_values.shape_value(i,q_point) *
+                           1.0 *
+                           fe_values.JxW(q_point));
+         }
+
+      cell->get_dof_indices (local_dof_indices);
+      constraints.distribute_local_to_global (cell_matrix, cell_rhs,
+                                             local_dof_indices,
+                                             system_matrix, system_rhs);
+    }
+}
+
+
+                                 // @sect4{LaplaceProblem::assemble_multigrid}
+
+                                // The next function is the one that builds
+                                // the linear operators (matrices) that
+                                // define the multigrid method on each level
+                                // of the mesh. The integration core is the
+                                // same as above, but the loop below will go
+                                // over all existing cells instead of just
+                                // the active ones, and the results must be
+                                // entered into the correct matrix. Note also
+                                // that since we only do multi-level
+                                // preconditioning, no right-hand side needs
+                                // to be assembled here.
+                                //
+                                // Before we go there, however, we have to
+                                // take care of a significant amount of book
+                                // keeping:
+template <int dim>
+void LaplaceProblem<dim>::assemble_multigrid ()
+{
+  QGauss<dim>  quadrature_formula(1+degree);
+
+  FEValues<dim> fe_values (fe, quadrature_formula,
+                          update_values   | update_gradients |
+                          update_quadrature_points | update_JxW_values);
+
+  const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
+  const unsigned int   n_q_points      = quadrature_formula.size();
+
+  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
+
+  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+  const Coefficient<dim> coefficient;
+  std::vector<double>    coefficient_values (n_q_points);
+
+                                  // Next a few things that are specific to
+                                  // building the multigrid data structures
+                                  // (since we only need them in the current
+                                  // function, rather than also elsewhere, we
+                                  // build them here instead of the
+                                  // <code>setup_system</code>
+                                  // function). Some of the following may be
+                                  // a bit obscure if you're not familiar
+                                  // with the algorithm actually implemented
+                                  // in deal.II to support multilevel
+                                  // algorithms on adaptive meshes; if some
+                                  // of the things below seem strange, take a
+                                  // look at the @ref mg_paper.
+                                  //
+                                  // Our first job is to identify those
+                                  // degrees of freedom on each level that
+                                  // are located on interfaces between
+                                  // adaptively refined levels, and those
+                                  // that lie on the interface but also on
+                                  // the exterior boundary of the domain. As
+                                  // in many other parts of the library, we
+                                  // do this by using boolean masks,
+                                  // i.e. vectors of booleans each element of
+                                  // which indicates whether the
+                                  // corresponding degree of freedom index is
+                                  // an interface DoF or not:
+  std::vector<std::vector<bool> > interface_dofs;
+  std::vector<std::vector<bool> > boundary_interface_dofs;
+  for (unsigned int level = 0; level<triangulation.n_levels(); ++level)
+    {
+      interface_dofs.push_back (std::vector<bool>
+                               (mg_dof_handler.n_dofs(level)));
+      boundary_interface_dofs.push_back (std::vector<bool>
+                                        (mg_dof_handler.n_dofs(level)));
+    }
+  MGTools::extract_inner_interface_dofs (mg_dof_handler,
+                                        interface_dofs,
+                                        boundary_interface_dofs);
+
+                                  // The indices just identified will later
+                                  // be used to impose zero boundary
+                                  // conditions for the operator that we will
+                                  // apply on each level. On the other hand,
+                                  // we also have to impose zero boundary
+                                  // conditions on the external boundary of
+                                  // each level. So let's identify these
+                                  // nodes as well (this time as a set of
+                                  // degrees of freedom, rather than a
+                                  // boolean mask; the reason for this being
+                                  // that we will not need fast tests whether
+                                  // a certain degree of freedom is in the
+                                  // boundary list, though we will need such
+                                  // access for the interface degrees of
+                                  // freedom further down below):
+  typename FunctionMap<dim>::type      dirichlet_boundary;
+  ZeroFunction<dim>                    homogeneous_dirichlet_bc (1);
+  dirichlet_boundary[0] = &homogeneous_dirichlet_bc;
+
+  std::vector<IndexSet> boundary_indices (triangulation.n_levels());
+  MGTools::make_boundary_list (mg_dof_handler, dirichlet_boundary,
+                              boundary_indices);
+
+                                  // The third step is to construct
+                                  // constraints on all those degrees of
+                                  // freedom: their value should be zero
+                                  // after each application of the level
+                                  // operators. To this end, we construct
+                                  // ConstraintMatrix objects for each level,
+                                  // and add to each of these constraints for
+                                  // each degree of freedom. Due to the way
+                                  // the ConstraintMatrix stores its data,
+                                  // the function to add a constraint on a
+                                  // single degree of freedom and force it to
+                                  // be zero is called
+                                  // Constraintmatrix::add_line(); doing so
+                                  // for several degrees of freedom at once
+                                  // can be done using
+                                  // Constraintmatrix::add_lines():
+  std::vector<ConstraintMatrix> boundary_constraints (triangulation.n_levels());
+  std::vector<ConstraintMatrix> boundary_interface_constraints (triangulation.n_levels());
+  for (unsigned int level=0; level<triangulation.n_levels(); ++level)
+    {
+      boundary_constraints[level].add_lines (interface_dofs[level]);
+      boundary_constraints[level].add_lines (boundary_indices[level]);
+      boundary_constraints[level].close ();
+
+      boundary_interface_constraints[level]
+       .add_lines (boundary_interface_dofs[level]);
+      boundary_interface_constraints[level].close ();
+    }
+
+                                  // Now that we're done with most of our
+                                  // preliminaries, let's start the
+                                  // integration loop. It looks mostly like
+                                  // the loop in
+                                  // <code>assemble_system</code>, with two
+                                  // exceptions: (i) we don't need a right
+                                  // han side, and more significantly (ii) we
+                                  // don't just loop over all active cells,
+                                  // but in fact all cells, active or
+                                  // not. Consequently, the correct iterator
+                                  // to use is MGDoFHandler::cell_iterator
+                                  // rather than
+                                  // MGDoFHandler::active_cell_iterator. Let's
+                                  // go about it:
+  typename MGDoFHandler<dim>::cell_iterator cell = mg_dof_handler.begin(),
+                                           endc = mg_dof_handler.end();
+
+  for (; cell!=endc; ++cell)
+    {
+      cell_matrix = 0;
+      fe_values.reinit (cell);
+
+      coefficient.value_list (fe_values.get_quadrature_points(),
+                             coefficient_values);
+
+      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         for (unsigned int j=0; j<dofs_per_cell; ++j)
+           cell_matrix(i,j) += (coefficient_values[q_point] *
+                                fe_values.shape_grad(i,q_point) *
+                                fe_values.shape_grad(j,q_point) *
+                                fe_values.JxW(q_point));
+
+                                      // The rest of the assembly is again
+                                      // slightly different. This starts with
+                                      // a gotcha that is easily forgotten:
+                                      // The indices of global degrees of
+                                      // freedom we want here are the ones
+                                      // for current level, not for the
+                                      // global matrix. We therefore need the
+                                      // function
+                                      // MGDoFAccessorLLget_mg_dof_indices,
+                                      // not MGDoFAccessor::get_dof_indices
+                                      // as used in the assembly of the
+                                      // global system:
+      cell->get_mg_dof_indices (local_dof_indices);
+
+                                      // Next, we need to copy local
+                                      // contributions into the level
+                                      // objects. We can do this in the same
+                                      // way as in the global assembly, using
+                                      // a constraint object that takes care
+                                      // of constrained degrees (which here
+                                      // are only boundary nodes, as the
+                                      // individual levels have no hanging
+                                      // node constraints). Note that the
+                                      // <code>boundary_constraints</code>
+                                      // object makes sure that the level
+                                      // matrices contains no contributions
+                                      // from degrees of freedom at the
+                                      // interface between cells of different
+                                      // refinement level.
+      boundary_constraints[cell->level()]
+       .distribute_local_to_global (cell_matrix,
+                                    local_dof_indices,
+                                    mg_matrices[cell->level()]);
+
+                                      // The next step is again slightly more
+                                      // obscure (but explained in the @ref
+                                      // mg_paper): We need the remainder of
+                                      // the operator that we just copied
+                                      // into the <code>mg_matrices</code>
+                                      // object, namely the part on the
+                                      // interface between cells at the
+                                      // current level and cells one level
+                                      // coarser. This matrix exists in two
+                                      // directions: for interior DoFs (index
+                                      // $i$) of the current level to those
+                                      // sitting on the interface (index
+                                      // $j$), and the other way around. Of
+                                      // course, since we have a symmetric
+                                      // operator, one of these matrices is
+                                      // the transpose of the other.
+                                      //
+                                      // The way we assemble these matrices
+                                      // is as follows: since the are formed
+                                      // from parts of the local
+                                      // contributions, we first delete all
+                                      // those parts of the local
+                                      // contributions that we are not
+                                      // interested in, namely all those
+                                      // elements of the local matrix for
+                                      // which not $i$ is an interface DoF
+                                      // and $j$ is not. The result is one of
+                                      // the two matrices that we are
+                                      // interested in, and we then copy it
+                                      // into the
+                                      // <code>mg_interface_matrices</code>
+                                      // object. The
+                                      // <code>boundary_interface_constraints</code>
+                                      // object at the same time makes sure
+                                      // that we delete contributions from
+                                      // all degrees of freedom that are not
+                                      // only on the interface but also on
+                                      // the external boundary of the domain.
+                                      //
+                                      // The last part to remember is how to
+                                      // get the other matrix. Since it is
+                                      // only the transpose, we will later
+                                      // (in the <code>solve()</code>
+                                      // function) be able to just pass the
+                                      // transpose matrix where necessary.
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       for (unsigned int j=0; j<dofs_per_cell; ++j)
+         if( !(interface_dofs[cell->level()][local_dof_indices[i]]==true &&
+               interface_dofs[cell->level()][local_dof_indices[j]]==false))
+           cell_matrix(i,j) = 0;
+
+      boundary_interface_constraints[cell->level()]
+       .distribute_local_to_global (cell_matrix,
+                                    local_dof_indices,
+                                    mg_interface_matrices[cell->level()]);
+    }
+}
+
+
+
+                                 // @sect4{LaplaceProblem::solve}
+
+                                // This is the other function that is
+                                // significantly different in support of the
+                                // multigrid solver (or, in fact, the
+                                // preconditioner for which we use the
+                                // multigrid method).
+                                //
+                                // Let us start out by setting up two of the
+                                // components of multilevel methods: transfer
+                                // operators between levels, and a solver on
+                                // the coarsest level. In finite element
+                                // methods, the transfer operators are
+                                // derived from the finite element function
+                                // spaces involved and can often be computed
+                                // in a generic way independent of the
+                                // problem under consideration. In that case,
+                                // we can use the MGTransferPrebuilt class
+                                // that, given the constraints on the global
+                                // level and an MGDoFHandler object computes
+                                // the matrices corresponding to these
+                                // transfer operators.
+                                //
+                                // The second part of the following lines
+                                // deals with the coarse grid solver. Since
+                                // our coarse grid is very coarse indeed, we
+                                // decide for a direct solver (a Householder
+                                // decomposition of the coarsest level
+                                // matrix), even if its implementation is not
+                                // particularly sophisticated. If our coarse
+                                // mesh had many more cells than the five we
+                                // have here, something better suited would
+                                // obviously be necessary here.
+template <int dim>
+void LaplaceProblem<dim>::solve ()
+{
+  MGTransferPrebuilt<Vector<double> > mg_transfer(constraints);
+  mg_transfer.build_matrices(mg_dof_handler);
+
+  FullMatrix<double> coarse_matrix;
+  coarse_matrix.copy_from (mg_matrices[0]);
+  MGCoarseGridHouseholder<> coarse_grid_solver;
+  coarse_grid_solver.initialize (coarse_matrix);
+
+                                  // The next component of a multilevel
+                                  // solver or preconditioner is that we need
+                                  // a smoother on each level. A common
+                                  // choice for this is to use the
+                                  // application of a relaxation method (such
+                                  // as the SOR, Jacobi or Richardson method)
+                                  // or a small number of iterations of a
+                                  // solver method (such as CG or GMRES). The
+                                  // MGSmootherRelaxation and
+                                  // MGSmootherPrecondition classes provide
+                                  // support for these two kinds of
+                                  // smoothers. Here, we opt for the
+                                  // application of a single SOR
+                                  // iteration. To this end, we define an
+                                  // appropriate <code>typedef</code> and
+                                  // then setup a smoother object.
+                                  //
+                                  // Since this smoother needs temporary
+                                  // vectors to store intermediate results,
+                                  // we need to provide a VectorMemory
+                                  // object. Since these vectors will be
+                                  // reused over and over, the
+                                  // GrowingVectorMemory is more time
+                                  // efficient than the PrimitiveVectorMemory
+                                  // class in the current case.
+                                  //
+                                  // The last step is to initialize the
+                                  // smoother object with our level matrices
+                                  // and to set some smoothing parameters.
+                                  // The <code>initialize()</code> function
+                                  // can optionally take additional arguments
+                                  // that will be passed to the smoother
+                                  // object on each level. In the current
+                                  // case for the SOR smoother, this could,
+                                  // for example, include a relaxation
+                                  // parameter. However, we here leave these
+                                  // at their default values. The call to
+                                  // <code>set_steps()</code> indicates that
+                                  // we will use two pre- and two
+                                  // post-smoothing steps on each level; to
+                                  // use a variable number of smoother steps
+                                  // on different levels, more options can be
+                                  // set in the constructor call to the
+                                  // <code>mg_smoother</code> object.
+                                  //
+                                  // The last step results from the fact that
+                                  // we use the SOR method as a smoother -
+                                  // which is not symmetric - but we use the
+                                  // conjugate gradient iteration (which
+                                  // requires a symmetric preconditioner)
+                                  // below, we need to let the multilevel
+                                  // preconditioner make sure that we get a
+                                  // symmetric operator even for nonsymmetric
+                                  // smoothers:
+  typedef PreconditionSOR<SparseMatrix<double> > Smoother;
+  GrowingVectorMemory<>   vector_memory;
+  MGSmootherRelaxation<SparseMatrix<double>, Smoother, Vector<double> >
+    mg_smoother(vector_memory);
+  mg_smoother.initialize(mg_matrices);
+  mg_smoother.set_steps(2);
+  mg_smoother.set_symmetric(true);
+
+                                  // The next preparatory step is that we
+                                  // must wrap our level and interface
+                                  // matrices in an object having the
+                                  // required multiplication functions. We
+                                  // will create two objects for the
+                                  // interface objects going from coarse to
+                                  // fine and the other way around; the
+                                  // multigrid algorithm will later use the
+                                  // transpose operator for the latter
+                                  // operation, allowing us to initialize
+                                  // both up and down versions of the
+                                  // operator with the matrices we already
+                                  // built:
+  MGMatrix<> mg_matrix(&mg_matrices);
+  MGMatrix<> mg_interface_up(&mg_interface_matrices);
+  MGMatrix<> mg_interface_down(&mg_interface_matrices);
+
+                                  // Now, we are ready to set up the
+                                  // V-cycle operator and the
+                                  // multilevel preconditioner.
+  Multigrid<Vector<double> > mg(mg_dof_handler,
+                               mg_matrix,
+                               coarse_grid_solver,
+                               mg_transfer,
+                               mg_smoother,
+                               mg_smoother);
+  mg.set_edge_matrices(mg_interface_down, mg_interface_up);
+
+  PreconditionMG<dim, Vector<double>, MGTransferPrebuilt<Vector<double> > >
+  preconditioner(mg_dof_handler, mg, mg_transfer);
+
+                                  // With all this together, we can finally
+                                  // get about solving the linear system in
+                                  // the usual way:
+  SolverControl solver_control (1000, 1e-12);
+  SolverCG<>    cg (solver_control);
+
+  solution = 0;
+
+  cg.solve (system_matrix, solution, system_rhs,
+           preconditioner);
+  constraints.distribute (solution);
+
+  deallog << "   " << solver_control.last_step()
+           << " CG iterations needed to obtain convergence."
+           << std::endl;
+}
+
+
+
+                                 // @sect4{Postprocessing}
+
+                                // The following two functions postprocess a
+                                // solution once it is computed. In
+                                // particular, the first one refines the mesh
+                                // at the beginning of each cycle while the
+                                // second one outputs results at the end of
+                                // each such cycle. The functions are almost
+                                // unchanged from those in step-6, with the
+                                // exception of two minor differences: The
+                                // KellyErrorEstimator::estimate function
+                                // wants an argument of type DoFHandler, not
+                                // MGDoFHandler, and so we have to cast from
+                                // derived to base class; and we generate
+                                // output in VTK format, to use the more
+                                // modern visualization programs available
+                                // today compared to those that were
+                                // available when step-6 was written.
+template <int dim>
+void LaplaceProblem<dim>::refine_grid ()
+{
+  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+  KellyErrorEstimator<dim>::estimate (static_cast<DoFHandler<dim>&>(mg_dof_handler),
+                                     QGauss<dim-1>(3),
+                                     typename FunctionMap<dim>::type(),
+                                     solution,
+                                     estimated_error_per_cell);
+  GridRefinement::refine_and_coarsen_fixed_number (triangulation,
+                                                  estimated_error_per_cell,
+                                                  0.3, 0.03);
+  triangulation.execute_coarsening_and_refinement ();
+}
+
+
+
+template <int dim>
+void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
+{
+  DataOut<dim> data_out;
+
+  data_out.attach_dof_handler (mg_dof_handler);
+  data_out.add_data_vector (solution, "solution");
+  data_out.build_patches ();
+
+  std::ostringstream filename;
+  filename << "solution-"
+          << cycle
+          << ".vtk";
+
+  std::ofstream output (filename.str().c_str());
+  data_out.write_vtk (output);
+}
+
+
+                                 // @sect4{LaplaceProblem::run}
+
+                                // Like several of the functions above, this
+                                // is almost exactly a copy of of the
+                                // corresponding function in step-6. The only
+                                // difference is the call to
+                                // <code>assemble_multigrid</code> that takes
+                                // care of forming the matrices on every
+                                // level that we need in the multigrid
+                                // method.
+template <int dim>
+void LaplaceProblem<dim>::run ()
+{
+  for (unsigned int cycle=0; cycle<8; ++cycle)
+    {
+      deallog << "Cycle " << cycle << ':' << std::endl;
+
+      if (cycle == 0)
+       {
+         GridGenerator::hyper_ball (triangulation);
+
+         static const HyperBallBoundary<dim> boundary;
+         triangulation.set_boundary (0, boundary);
+
+         triangulation.refine_global (1);
+       }
+      else
+       refine_grid ();
+
+
+      deallog << "   Number of active cells:       "
+               << triangulation.n_active_cells()
+               << std::endl;
+
+      setup_system ();
+
+      deallog << "   Number of degrees of freedom: "
+               << mg_dof_handler.n_dofs()
+               << " (by level: ";
+      for (unsigned int level=0; level<triangulation.n_levels(); ++level)
+       deallog << mg_dof_handler.n_dofs(level)
+                 << (level == triangulation.n_levels()-1
+                     ? ")" : ", ");
+      deallog << std::endl;
+
+      assemble_system ();
+      assemble_multigrid ();
+
+      solve ();
+//      output_results (cycle);
+    }
+}
+
+
+                                // @sect3{The main() function}
+                                //
+                                // This is again the same function as
+                                // in step-6:
+int main ()
+{
+  std::ofstream logfile("step-16/output");
+  deallog << std::setprecision(4);
+  deallog.attach(logfile);
+  deallog.depth_console(0);
+  deallog.threshold_double(1.e-10);
+
+  try
+    {
+      deallog.depth_console (0);
+
+      LaplaceProblem<2> laplace_problem(1);
+      laplace_problem.run ();
+    }
+  catch (std::exception &exc)
+    {
+      std::cerr << std::endl << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+      std::cerr << "Exception on processing: " << std::endl
+               << exc.what() << std::endl
+               << "Aborting!" << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+
+      return 1;
+    }
+  catch (...)
+    {
+      std::cerr << std::endl << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+      std::cerr << "Unknown exception!" << std::endl
+               << "Aborting!" << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+      return 1;
+    }
+
+  return 0;
+}
diff --git a/tests/multigrid/step-16/cmp/generic b/tests/multigrid/step-16/cmp/generic
new file mode 100644 (file)
index 0000000..4cbc822
--- /dev/null
@@ -0,0 +1,57 @@
+
+DEAL::Cycle 0:
+DEAL::   Number of active cells:       20
+DEAL::Number of degrees of freedom: 25   L0: 8   L1: 25
+DEAL::   Number of degrees of freedom: 25 (by level: 8, 25)
+DEAL:cg::Starting value 0.5107
+DEAL:cg::Convergence step 7 value 0
+DEAL::   7 CG iterations needed to obtain convergence.
+DEAL::Cycle 1:
+DEAL::   Number of active cells:       44
+DEAL::Number of degrees of freedom: 57   L0: 8   L1: 25   L2: 48
+DEAL::   Number of degrees of freedom: 57 (by level: 8, 25, 48)
+DEAL:cg::Starting value 0.4679
+DEAL:cg::Convergence step 8 value 0
+DEAL::   8 CG iterations needed to obtain convergence.
+DEAL::Cycle 2:
+DEAL::   Number of active cells:       92
+DEAL::Number of degrees of freedom: 117   L0: 8   L1: 25   L2: 80   L3: 60
+DEAL::   Number of degrees of freedom: 117 (by level: 8, 25, 80, 60)
+DEAL:cg::Starting value 0.3390
+DEAL:cg::Convergence step 9 value 0
+DEAL::   9 CG iterations needed to obtain convergence.
+DEAL::Cycle 3:
+DEAL::   Number of active cells:       188
+DEAL::Number of degrees of freedom: 221   L0: 8   L1: 25   L2: 80   L3: 200
+DEAL::   Number of degrees of freedom: 221 (by level: 8, 25, 80, 200)
+DEAL:cg::Starting value 0.2689
+DEAL:cg::Convergence step 12 value 0
+DEAL::   12 CG iterations needed to obtain convergence.
+DEAL::Cycle 4:
+DEAL::   Number of active cells:       416
+DEAL::Number of degrees of freedom: 485   L0: 8   L1: 25   L2: 89   L3: 288   L4: 280
+DEAL::   Number of degrees of freedom: 485 (by level: 8, 25, 89, 288, 280)
+DEAL:cg::Starting value 0.1841
+DEAL:cg::Convergence step 13 value 0
+DEAL::   13 CG iterations needed to obtain convergence.
+DEAL::Cycle 5:
+DEAL::   Number of active cells:       800
+DEAL::Number of degrees of freedom: 925   L0: 8   L1: 25   L2: 89   L3: 288   L4: 784   L5: 132
+DEAL::   Number of degrees of freedom: 925 (by level: 8, 25, 89, 288, 784, 132)
+DEAL:cg::Starting value 0.1440
+DEAL:cg::Convergence step 14 value 0
+DEAL::   14 CG iterations needed to obtain convergence.
+DEAL::Cycle 6:
+DEAL::   Number of active cells:       1628
+DEAL::Number of degrees of freedom: 1865   L0: 8   L1: 25   L2: 89   L3: 304   L4: 1000   L5: 1164   L6: 72
+DEAL::   Number of degrees of freedom: 1865 (by level: 8, 25, 89, 304, 1000, 1164, 72)
+DEAL:cg::Starting value 0.1174
+DEAL:cg::Convergence step 14 value 0
+DEAL::   14 CG iterations needed to obtain convergence.
+DEAL::Cycle 7:
+DEAL::   Number of active cells:       3194
+DEAL::Number of degrees of freedom: 3603   L0: 8   L1: 25   L2: 89   L3: 328   L4: 1032   L5: 2200   L6: 1392
+DEAL::   Number of degrees of freedom: 3603 (by level: 8, 25, 89, 328, 1032, 2200, 1392)
+DEAL:cg::Starting value 0.09098
+DEAL:cg::Convergence step 16 value 0
+DEAL::   16 CG iterations needed to obtain convergence.

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.