df[j][l] = -DF[j] * DF[l];
}
// Solve [f'(x)]d=f(x)
- Tensor<1, dim> delta = invert(df) * static_cast<const Tensor<1,dim>&>(f);
+ const Tensor<1, dim> delta =
+ invert(df) * static_cast<const Tensor<1, dim> &>(f);
// do a line search
double step_length = 1;
do
// Solve [f'(x)]d=f(x)
Tensor<2,spacedim> df_inverse = invert(df);
- Tensor<1, spacedim> delta =
- df_inverse * static_cast<const Tensor<1, spacedim> &>(f);
+ const Tensor<1, spacedim> delta =
+ df_inverse * static_cast<const Tensor<1, spacedim> &>(f);
#ifdef DEBUG_TRANSFORM_REAL_TO_UNIT_CELL
std::cout << " delta=" << delta << std::endl;
deallog << std::endl;
};
- contract (tt,t,t);
+ tt = t * t;
deallog << "tt=" << std::endl;
for (unsigned int i=0; i<dim; ++i)
deallog << "norm(t)=" << t.norm() << std::endl;
- contract (tt,t,t);
+ tt = t * t;
deallog << "tt=" << std::endl;
for (unsigned int i=0; i<dim; ++i)
deallog << "norm(t)=" << t.norm() << std::endl;
- contract (tt,t,t);
+ tt = t * t;
deallog << "tt=" << std::endl;
for (unsigned int i=0; i<dim; ++i)
for (unsigned int i=0; i<dofs_per_cell; ++i)
{
- shape_directional_derivative[i]=
- contract(
- fe_values.shape_grad(i,0),
- cell_tangentials[0]);
+ shape_directional_derivative[i] =
+ fe_values.shape_grad(i, 0) * cell_tangentials[0];
// notice that the dof_index for
// fe_dgq(0) is the same as that of