]> https://gitweb.dealii.org/ - dealii.git/commitdiff
new easy matrix
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Thu, 4 Jul 2002 14:06:51 +0000 (14:06 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Thu, 4 Jul 2002 14:06:51 +0000 (14:06 +0000)
git-svn-id: https://svn.dealii.org/trunk@6220 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/lac/include/lac/sparse_matrix_ez.h [new file with mode: 0644]
deal.II/lac/include/lac/sparse_matrix_ez.templates.h [new file with mode: 0644]

diff --git a/deal.II/lac/include/lac/sparse_matrix_ez.h b/deal.II/lac/include/lac/sparse_matrix_ez.h
new file mode 100644 (file)
index 0000000..3a4c61c
--- /dev/null
@@ -0,0 +1,1009 @@
+//----------------------------  sparse_matrix.h  ---------------------------
+//    $Id$
+//    Version: $Name$
+//
+//    Copyright (C) 1998, 1999, 2000, 2001, 2002 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//----------------------------  sparse_matrix.h  ---------------------------
+#ifndef __deal2__sparse_matrix_ez_h
+#define __deal2__sparse_matrix_ez_h
+
+
+#include <base/config.h>
+#include <base/exceptions.h>
+#include <base/subscriptor.h>
+#include <base/smartpointer.h>
+
+template<typename number> class Vector;
+template<typename number> class FullMatrix;
+
+/**
+ * Sparse matrix without sparsity pattern.
+ *
+ * Documentation follows.
+ *
+ * The name of this matrix is in reverence to a publication of the
+ * Internal Revenue Service of the United States of America. I hope
+ * some otheraliens will appreciate it. By the way, the suffix makes
+ * sense by pronouncing it the American way.
+ *
+ * @author Guido Kanschat, 2002
+ */
+template <typename number>
+class SparseMatrixEZ : public Subscriptor
+{
+  public:
+                                    /**
+                                     * Type of matrix entries. In analogy to
+                                     * the STL container classes.
+                                     */
+    typedef number value_type;
+    
+                                    /**
+                                     * Constructor. Initializes an
+                                     * empty matrix of dimension zero
+                                     * times zero.
+                                     */
+    SparseMatrixEZ ();
+
+                                    /**
+                                     * Copy constructor. This constructor is
+                                     * only allowed to be called if the matrix
+                                     * to be copied is empty. This is for the
+                                     * same reason as for the
+                                     * @p{SparsityPattern}, see there for the
+                                     * details.
+                                     *
+                                     * If you really want to copy a whole
+                                     * matrix, you can do so by using the
+                                     * @p{copy_from} function.
+                                     */
+    SparseMatrixEZ (const SparseMatrix &);
+
+                                    /**
+                                     * Constructor. Generates a
+                                     * matrix of the given size,
+                                     * ready to be filled.
+                                     */
+    explicit SparseMatrixEZ (unsigned int n_rows,
+                            unsigned int n_columns = n_rows);
+    
+                                    /**
+                                     * Destructor. Free all memory, but do not
+                                     * release the memory of the sparsity
+                                     * structure.
+                                     */
+    virtual ~SparseMatrixEZ ();
+
+                                    /** 
+                                     * Pseudo operator only copying
+                                     * empty objects.
+                                     */
+    SparseMatrixEZ<number>& operator = (const SparseMatrixEZ<number> &);
+
+                                    /**
+                                     * Reinitialize the sparse matrix
+                                     * to the dimensions provided.
+                                     * The matrix will have no
+                                     * entries at this point.
+                                     */
+    virtual void reinit (unsigned int n_rows,
+                        unsigned int n_columns = n_rows);
+
+                                    /**
+                                     * Release all memory and return
+                                     * to a state just like after
+                                     * having called the default
+                                     * constructor. It also forgets
+                                     * the sparsity pattern it was
+                                     * previously tied to.
+                                     */
+    virtual void clear ();
+    
+                                    /**
+                                     * Return whether the object is
+                                     * empty. It is empty if
+                                     * both dimensions are zero.
+                                     */
+    bool empty () const;
+
+                                    /**
+                                     * Return the dimension of the
+                                     * image space.  To remember: the
+                                     * matrix is of dimension
+                                     * $m \times n$.
+                                     */
+    unsigned int m () const;
+    
+                                    /**
+                                     * Return the dimension of the
+                                     * range space.  To remember: the
+                                     * matrix is of dimension
+                                     * $m \times n$.
+                                     */
+    unsigned int n () const;
+
+                                    /**
+                                     * Return the number of nonzero
+                                     * elements of this
+                                     * matrix. Actually, it returns
+                                     * the number of entries in the
+                                     * sparsity pattern; if any of
+                                     * the entries should happen to
+                                     * be zero, it is counted anyway.
+                                     */
+    unsigned int n_nonzero_elements () const;
+
+                                    /**
+                                     * Return the number of actually
+                                     * nonzero elements of this
+                                     * matrix.
+                                     *
+                                     * Note, that this function does
+                                     * (in contrary to the
+                                     * @p{n_nonzero_elements}) NOT
+                                     * count all entries of the
+                                     * sparsity pattern but only the
+                                     * ones that are nonzero.
+                                     */
+    unsigned int n_actually_nonzero_elements () const;
+    
+                                    /**
+                                     * Set the element @p{(i,j)} to
+                                     * @p{value}. Allocates the entry
+                                     * if it does not exist. Filters
+                                     * out zero automatically.
+                                     */
+    void set (const unsigned int i, const unsigned int j,
+             const number value);
+    
+                                    /**
+                                     * Add @p{value} to the element
+                                     * @p{(i,j)}. Allocates the entry
+                                     * if it does not exist. Filters
+                                     * out zero automatically.
+                                     */
+    void add (const unsigned int i, const unsigned int j,
+             const number value);
+
+                                    /**
+                                     * Symmetrize the matrix by
+                                     * forming the mean value between
+                                     * the existing matrix and its
+                                     * transpose, $A = \frac 12(A+A^T)$.
+                                     *
+                                     * This operation assumes that
+                                     * the underlying sparsity
+                                     * pattern represents a symmetric
+                                     * object. If this is not the
+                                     * case, then the result of this
+                                     * operation will not be a
+                                     * symmetric matrix, since it
+                                     * only explicitly symmetrizes
+                                     * by looping over the lower left
+                                     * triangular part for efficiency
+                                     * reasons; if there are entries
+                                     * in the upper right triangle,
+                                     * then these elements are missed
+                                     * in the
+                                     * symmetrization. Symmetrization
+                                     * of the sparsity pattern can be
+                                     * obtain by the
+                                     * @ref{SparsityPattern}@p{::symmetrize}
+                                     * function.
+                                     */
+//    void symmetrize ();
+    
+                                    /**
+                                     * Copy the given matrix to this
+                                     * one.  The operation throws an
+                                     * error if the sparsity patterns
+                                     * of the two involved matrices
+                                     * do not point to the same
+                                     * object, since in this case the
+                                     * copy operation is
+                                     * cheaper. Since this operation
+                                     * is notheless not for free, we
+                                     * do not make it available
+                                     * through @p{operator =}, since
+                                     * this may lead to unwanted
+                                     * usage, e.g. in copy arguments
+                                     * to functions, which should
+                                     * really be arguments by
+                                     * reference.
+                                     *
+                                     * The source matrix may be a matrix
+                                     * of arbitrary type, as long as its
+                                     * data type is convertible to the
+                                     * data type of this matrix.
+                                     *
+                                     * The function returns a reference to
+                                     * @p{this}.
+                                     */
+//    template <typename somenumber>
+//    SparseMatrix<number> &
+//    copy_from (const SparseMatrix<somenumber> &source);
+
+                                    /**
+                                     * This function is complete
+                                     * analogous to the
+                                     * @ref{SparsityPattern}@p{::copy_from}
+                                     * function in that it allows to
+                                     * initialize a whole matrix in
+                                     * one step. See there for more
+                                     * information on argument types
+                                     * and their meaning. You can
+                                     * also find a small example on
+                                     * how to use this function
+                                     * there.
+                                     *
+                                     * The only difference to the
+                                     * cited function is that the
+                                     * objects which the inner
+                                     * iterator points to need to be
+                                     * of type @p{std::pair<unsigned int, value},
+                                     * where @p{value}
+                                     * needs to be convertible to the
+                                     * element type of this class, as
+                                     * specified by the @p{number}
+                                     * template argument.
+                                     *
+                                     * Previous content of the matrix
+                                     * is overwritten. Note that the
+                                     * entries specified by the input
+                                     * parameters need not
+                                     * necessarily cover all elements
+                                     * of the matrix. Elements not
+                                     * covered remain untouched.
+                                     */
+//    template <typename ForwardIterator>
+//    void copy_from (const ForwardIterator begin,
+//                 const ForwardIterator end);    
+
+                                    /**
+                                     * Copy the nonzero entries of a
+                                     * full matrix into this
+                                     * object. Previous content is
+                                     * deleted. Note that the
+                                     * underlying sparsity pattern
+                                     * must be appropriate to hold
+                                     * the nonzero entries of the
+                                     * full matrix.
+                                     */
+//    template <typename somenumber>
+//    void copy_from (const FullMatrix<somenumber> &matrix);
+    
+                                    /**
+                                     * Add @p{matrix} scaled by
+                                     * @p{factor} to this matrix. The
+                                     * function throws an error if
+                                     * the sparsity patterns of the
+                                     * two involved matrices do not
+                                     * point to the same object,
+                                     * since in this case the
+                                     * operation is cheaper.
+                                     *
+                                     * The source matrix may be a matrix
+                                     * of arbitrary type, as long as its
+                                     * data type is convertible to the
+                                     * data type of this matrix.
+                                     */
+//    template <typename somenumber>
+//    void add_scaled (const number factor,
+//                  const SparseMatrix<somenumber> &matrix);
+    
+                                    /**
+                                     * Return the value of the entry
+                                     * (i,j).  This may be an
+                                     * expensive operation and you
+                                     * should always take care where
+                                     * to call this function.  In
+                                     * order to avoid abuse, this
+                                     * function throws an exception
+                                     * if the required element does
+                                     * not exist in the matrix.
+                                     *
+                                     * In case you want a function
+                                     * that returns zero instead (for
+                                     * entries that are not in the
+                                     * sparsity pattern of the
+                                     * matrix), use the @p{el}
+                                     * function.
+                                     */
+    number operator () (const unsigned int i,
+                       const unsigned int j) const;
+
+                                    /**
+                                     * This function is mostly like
+                                     * @p{operator()} in that it
+                                     * returns the value of the
+                                     * matrix entry @p{(i,j)}. The only
+                                     * difference is that if this
+                                     * entry does not exist in the
+                                     * sparsity pattern, then instead
+                                     * of raising an exception, zero
+                                     * is returned. While this may be
+                                     * convenient in some cases, note
+                                     * that it is simple to write
+                                     * algorithms that are slow
+                                     * compared to an optimal
+                                     * solution, since the sparsity
+                                     * of the matrix is not used.
+                                     */
+    number el (const unsigned int i,
+              const unsigned int j) const;
+
+                                    /**
+                                     * Return the main diagonal element in
+                                     * the @p{i}th row. This function throws an
+                                     * error if the matrix is not square.
+                                     *
+                                     * This function is considerably
+                                     * faster than the @p{operator()},
+                                     * since for square matrices, the
+                                     * diagonal entry is always the
+                                     * first to be stored in each row
+                                     * and access therefore does not
+                                     * involve searching for the
+                                     * right column number.
+                                     */
+    number diag_element (const unsigned int i) const;
+
+                                    /**
+                                     * Same as above, but return a
+                                     * writeable reference. You're
+                                     * sure you know what you do?
+                                     */
+    number & diag_element (const unsigned int i);
+    
+                                    /**
+                                     * Matrix-vector multiplication:
+                                     * let $dst = M*src$ with $M$
+                                     * being this matrix.
+                                     */
+    template <typename somenumber>
+    void vmult (Vector<somenumber>       &dst,
+               const Vector<somenumber> &src) const;
+    
+                                    /**
+                                     * Matrix-vector multiplication:
+                                     * let $dst = M^T*src$ with $M$
+                                     * being this matrix. This
+                                     * function does the same as
+                                     * @p{vmult} but takes the
+                                     * transposed matrix.
+                                     */
+    template <typename somenumber>
+    void Tvmult (Vector<somenumber>       &dst,
+                const Vector<somenumber> &src) const;
+  
+                                    /**
+                                     * Adding Matrix-vector
+                                     * multiplication. Add $M*src$ on
+                                     * $dst$ with $M$ being this
+                                     * matrix.
+                                     */
+    template <typename somenumber>
+    void vmult_add (Vector<somenumber>       &dst,
+                   const Vector<somenumber> &src) const;
+    
+                                    /**
+                                     * Adding Matrix-vector
+                                     * multiplication. Add $M^T*src$
+                                     * to $dst$ with $M$ being this
+                                     * matrix. This function does the
+                                     * same as @p{vmult_add} but takes
+                                     * the transposed matrix.
+                                     */
+    template <typename somenumber>
+    void Tvmult_add (Vector<somenumber>       &dst,
+                    const Vector<somenumber> &src) const;
+  
+                                    /**
+                                     * Return the square of the norm
+                                     * of the vector $v$ with respect
+                                     * to the norm induced by this
+                                     * matrix,
+                                     * i.e. $\left(v,Mv\right)$. This
+                                     * is useful, e.g. in the finite
+                                     * element context, where the
+                                     * $L_2$ norm of a function
+                                     * equals the matrix norm with
+                                     * respect to the mass matrix of
+                                     * the vector representing the
+                                     * nodal values of the finite
+                                     * element function.
+                                     *
+                                     * Obviously, the matrix needs to
+                                     * be square for this operation.
+                                     */
+    template <typename somenumber>
+    somenumber matrix_norm_square (const Vector<somenumber> &v) const;
+
+                                    /**
+                                     * Compute the matrix scalar
+                                     * product $\left(u,Mv\right)$.
+                                     */
+    template <typename somenumber>
+    somenumber matrix_scalar_product (const Vector<somenumber> &u,
+                                     const Vector<somenumber> &v) const;
+    
+                                    /**
+                                     * Return the l1-norm of the matrix, that is
+                                     * $|M|_1=max_{all columns j}\sum_{all 
+                                     * rows i} |M_ij|$,
+                                     * (max. sum of columns).
+                                     * This is the
+                                     * natural matrix norm that is compatible
+                                     * to the l1-norm for vectors, i.e.
+                                     * $|Mv|_1\leq |M|_1 |v|_1$.
+                                     * (cf. Haemmerlin-Hoffmann : Numerische Mathematik)
+                                     */
+    number l1_norm () const;
+
+                                    /**
+                                     * Return the linfty-norm of the
+                                     * matrix, that is
+                                     * $|M|_infty=max_{all rows i}\sum_{all 
+                                     * columns j} |M_ij|$,
+                                     * (max. sum of rows).
+                                     * This is the
+                                     * natural matrix norm that is compatible
+                                     * to the linfty-norm of vectors, i.e.
+                                     * $|Mv|_infty \leq |M|_infty |v|_infty$.
+                                     * (cf. Haemmerlin-Hoffmann : Numerische Mathematik)
+                                     */
+    number linfty_norm () const;
+
+                                    /**
+                                     * Apply the Jacobi
+                                     * preconditioner, which
+                                     * multiplies every element of
+                                     * the @p{src} vector by the
+                                     * inverse of the respective
+                                     * diagonal element and
+                                     * multiplies the result with the
+                                     * damping factor @p{omega}.
+                                     */
+    template <typename somenumber>
+    void precondition_Jacobi (Vector<somenumber>       &dst,
+                             const Vector<somenumber> &src,
+                             const number              omega = 1.) const;
+
+                                    /**
+                                     * Apply SSOR preconditioning to
+                                     * @p{src}.
+                                     */
+    template <typename somenumber>
+    void precondition_SSOR (Vector<somenumber>       &dst,
+                           const Vector<somenumber> &src,
+                           const number              om = 1.) const;
+
+                                    /**
+                                     * Apply SOR preconditioning matrix to @p{src}.
+                                     * The result of this method is
+                                     * $dst = (om D - L)^{-1} src$.
+                                     */
+    template <typename somenumber>
+    void precondition_SOR (Vector<somenumber>       &dst,
+                          const Vector<somenumber> &src,
+                          const number              om = 1.) const;
+    
+                                    /**
+                                     * Apply transpose SOR preconditioning matrix to @p{src}.
+                                     * The result of this method is
+                                     * $dst = (om D - U)^{-1} src$.
+                                     */
+    template <typename somenumber>
+    void precondition_TSOR (Vector<somenumber>       &dst,
+                           const Vector<somenumber> &src,
+                           const number              om = 1.) const;
+    
+                                    /**
+                                     * Perform SSOR preconditioning
+                                     * in-place.  Apply the
+                                     * preconditioner matrix without
+                                     * copying to a second vector.
+                                     * @p{omega} is the relaxation
+                                     * parameter.
+                                     */
+    template <typename somenumber>
+    void SSOR (Vector<somenumber> &v,
+              const number        omega = 1.) const;
+
+                                    /**
+                                     * Perform an SOR preconditioning in-place.
+                                     * The result is $v = (\omega D - L)^{-1} v$.
+                                     * @p{omega} is the damping parameter.
+                                     */
+    template <typename somenumber>
+    void SOR (Vector<somenumber> &v,
+             const number        om = 1.) const;
+
+                                    /**
+                                     * Perform a transpose SOR preconditioning in-place.
+                                     * The result is $v = (\omega D - L)^{-1} v$.
+                                     * @p{omega} is the damping parameter.
+                                     */
+    template <typename somenumber>
+    void TSOR (Vector<somenumber> &v,
+             const number        om = 1.) const;
+
+                                    /**
+                                     * Do one SOR step on @p{v}.
+                                     * Performs a direct SOR step
+                                     * with right hand side @p{b}.
+                                     */
+    template <typename somenumber>
+    void SOR_step (Vector<somenumber> &v,
+                  const Vector<somenumber> &b,
+                  const number        om = 1.) const;
+
+                                    /**
+                                     * Do one adjoint SOR step on
+                                     * @p{v}.  Performs a direct TSOR
+                                     * step with right hand side @p{b}.
+                                     */
+    template <typename somenumber>
+    void TSOR_step (Vector<somenumber> &v,
+                   const Vector<somenumber> &b,
+                   const number        om = 1.) const;
+
+                                    /**
+                                     * Do one adjoint SSOR step on
+                                     * @p{v}.  Performs a direct SSOR
+                                     * step with right hand side @p{b}
+                                     * by performing TSOR after SOR.
+                                     */
+    template <typename somenumber>
+    void SSOR_step (Vector<somenumber> &v,
+                   const Vector<somenumber> &b,
+                   const number        om = 1.) const;
+
+                                    /**
+                                     * Print the matrix to the given
+                                     * stream, using the format
+                                     * @p{(line,col) value}, i.e. one
+                                     * nonzero entry of the matrix
+                                     * per line.
+                                     */
+    void print (std::ostream &out) const;
+
+                                    /**
+                                     * Print the matrix in the usual
+                                     * format, i.e. as a matrix and
+                                     * not as a list of nonzero
+                                     * elements. For better
+                                     * readability, elements not in
+                                     * the matrix are displayed as
+                                     * empty space, while matrix
+                                     * elements which are explicitly
+                                     * set to zero are displayed as
+                                     * such.
+                                     *
+                                     * The parameters allow for a
+                                     * flexible setting of the output
+                                     * format: @p{precision} and
+                                     * @p{scientific} are used to
+                                     * determine the number format,
+                                     * where @p{scientific} = @p{false}
+                                     * means fixed point notation.  A
+                                     * zero entry for @p{width} makes
+                                     * the function compute a width,
+                                     * but it may be changed to a
+                                     * positive value, if output is
+                                     * crude.
+                                     *
+                                     * Additionally, a character for
+                                     * an empty value may be
+                                     * specified.
+                                     *
+                                     * Finally, the whole matrix can
+                                     * be multiplied with a common
+                                     * denominator to produce more
+                                     * readable output, even
+                                     * integers.
+                                     *
+                                     * This function
+                                     * may produce @em{large} amounts of
+                                     * output if applied to a large matrix!
+                                     */
+    void print_formatted (std::ostream       &out,
+                         const unsigned int  precision   = 3,
+                         const bool          scientific  = true,
+                         const unsigned int  width       = 0,
+                         const char         *zero_string = " ",
+                         const double        denominator = 1.) const;
+
+                                    /**
+                                     * Determine an estimate for the
+                                     * memory consumption (in bytes)
+                                     * of this object.
+                                     */
+    unsigned int memory_consumption () const;
+    
+                                    /**
+                                     * Exception
+                                     */
+    DeclException0 (ExcMatrixNotInitialized);
+                                    /**
+                                     * Exception
+                                     */
+    DeclException2 (ExcInvalidIndex,
+                   int, int,
+                   << "The entry with index <" << arg1 << ',' << arg2
+                   << "> does not exist.");
+                                    /**
+                                     * Exception
+                                     */
+    DeclException0 (ExcMatrixNotSquare);
+                                    /**
+                                     * Exception
+                                     */
+    DeclException2 (ExcIteratorRange,
+                   int, int,
+                   << "The iterators denote a range of " << arg1
+                   << " elements, but the given number of rows was " << arg2);
+    
+  private:
+                                    /**
+                                     * The class for storing the
+                                     * column number of an entry
+                                     * together with its value.
+                                     */
+    struct Entry
+    {
+                                        /**
+                                         * Standard constructor. Sets
+                                         * @p{column} to
+                                         * @p{invalid_entry}.
+                                         */
+       Entry();
+
+                                        /**
+                                         * Constructor. Fills column
+                                         * and value.
+                                         */
+       Entry(unsigned int column,
+             const number& value);
+       
+                                        /**
+                                         * The column number.
+                                         */
+       unsigned int column;
+                                        /**
+                                         * The value there.
+                                         */
+       number value;
+                                        /**
+                                         * Comparison operator for finding.
+                                         */
+       bool operator==(const Entry&) const;
+
+                                        /**
+                                         * Less than operator for sorting.
+                                         */
+       bool operator < (const Entry&) const;
+                                        /**
+                                         * Non-existent column number.
+                                         */
+       static const unsigned int invalid_entry = static_cast<unsigned int>(-1);
+    };
+
+                                    /**
+                                     * The class for storing each row.
+                                     */
+    class Row
+      {
+       public:
+                                        /**
+                                         * Set an entry to a value.
+                                         */
+       void set(unsigned int column,
+                const number& value);
+                                        /**
+                                         * Add value to an entry.
+                                         */
+       void add(unsigned int column,
+                const number& value);
+                                        /*
+                                         * Access to value.
+                                         */
+       number& operator() (unsigned int column);
+
+                                        /**
+                                         * Read-only access to value.
+                                         */
+       const number& operator() (unsigned int column) const;
+
+                                        /**
+                                         * Start of entry list.
+                                         */
+       std::vector<Entry>::iterator begin();
+       
+                                        /**
+                                         * Start of constant entry list.
+                                         */
+       std::vector<Entry>::const_iterator begin() const;
+       
+                                        /**
+                                         * End of entry list.
+                                         */
+       std::vector<Entry>::iterator end();
+       
+                                        /**
+                                         * End of constant entry list.
+                                         */
+       std::vector<Entry>::const_iterator end() const;
+       
+       
+       private:
+                                        /**
+                                         * Actual data storage.
+                                         */
+       std::vector<Entry> values;
+      };
+    
+    
+                                    /**
+                                     * Version of @p{vmult} which only
+                                     * performs its actions on the
+                                     * region defined by
+                                     * @p{[begin_row,end_row)}. This
+                                     * function is called by @p{vmult}
+                                     * in the case of enabled
+                                     * multithreading.
+                                     */
+    template <typename somenumber>
+    void threaded_vmult (Vector<somenumber>       &dst,
+                        const Vector<somenumber> &src,
+                        const unsigned int        begin_row,
+                        const unsigned int        end_row) const;
+
+                                    /**
+                                     * Version of
+                                     * @p{matrix_norm_square} which
+                                     * only performs its actions on
+                                     * the region defined by
+                                     * @p{[begin_row,end_row)}. This
+                                     * function is called by
+                                     * @p{matrix_norm_square} in the
+                                     * case of enabled
+                                     * multithreading.
+                                     */
+    template <typename somenumber>
+    void threaded_matrix_norm_square (const Vector<somenumber> &v,
+                                     const unsigned int        begin_row,
+                                     const unsigned int        end_row,
+                                     somenumber               *partial_sum) const;
+
+                                    /**
+                                     * Version of
+                                     * @p{matrix_scalar_product} which
+                                     * only performs its actions on
+                                     * the region defined by
+                                     * @p{[begin_row,end_row)}. This
+                                     * function is called by
+                                     * @p{matrix_scalar_product} in the
+                                     * case of enabled
+                                     * multithreading.
+                                     */
+    template <typename somenumber>
+    void threaded_matrix_scalar_product (const Vector<somenumber> &u,
+                                        const Vector<somenumber> &v,
+                                        const unsigned int        begin_row,
+                                        const unsigned int        end_row,
+                                        somenumber               *partial_sum) const;
+
+                                    /**
+                                     * Version of @p{residual} which
+                                     * only performs its actions on
+                                     * the region defined by
+                                     * @p{[begin_row,end_row)} (these
+                                     * numbers are the components of
+                                     * @p{interval}). This function is
+                                     * called by @p{residual} in the
+                                     * case of enabled
+                                     * multithreading.
+                                     */
+    template <typename somenumber>
+    void threaded_residual (Vector<somenumber>       &dst,
+                           const Vector<somenumber> &u,
+                           const Vector<somenumber> &b,
+                           const std::pair<unsigned int,unsigned int> interval,
+                           somenumber               *partial_norm) const;
+
+
+                                    /**
+                                     * Number of columns. This is
+                                     * used to check vector
+                                     * dimensions only.
+                                     */
+    unsigned int n_columns;
+
+                                    /**
+                                     * Data storage.
+                                     */
+    std::vector<Row> rows;
+    
+                                    // make all other sparse matrices
+                                    // friends
+    template <typename somenumber> friend class SparseMatrix;
+};
+
+
+/*---------------------- Inline functions -----------------------------------*/
+
+template <typename number>
+inline
+SparseMatrixEZ<number>::Entry::Entry(unsigned int column,
+                                    const number& value)
+               :
+               column(column),
+  value(value)
+{}
+
+
+
+template <typename number>
+inline
+SparseMatrixEZ<number>::Entry::Entry()
+               :
+               column(invalid_entry),
+  value(0)
+{}
+
+
+template <typename number>
+inline
+bool
+SparseMatrixEZ<number>::Entry::operator==(const Entry& e) const
+{
+  return column == e.column;
+}
+
+
+template <typename number>
+inline
+bool
+SparseMatrixEZ<number>::Entry::operator<(const Entry& e) const
+{
+  return column < e.column;
+}
+
+
+
+template <typename number>
+inline
+const number&
+SparseMatrixEZ<number>::Row::operator()(unsigned int column) const
+{
+                                  // find entry
+                                  // return its value
+  Assert(false, ExcNotImplemented());
+  return values[0].value;
+}
+
+
+template <typename number>
+inline
+number&
+SparseMatrixEZ<number>::Row::operator()(unsigned int column)
+{
+                                  // find entry
+                                  // return its value
+  Assert(false, ExcNotImplemented());
+  return values[0].value;
+}
+
+
+template <typename number>
+inline
+std::vector<Entry>::iterator
+SparseMatrixEZ<number>::Row::begin()
+{
+  return values.begin();
+}
+
+
+template <typename number>
+inline
+std::vector<Entry>::const_iterator
+SparseMatrixEZ<number>::Row::begin() const
+{
+  return values.begin();
+}
+
+
+template <typename number>
+inline
+std::vector<Entry>::iterator
+SparseMatrixEZ<number>::Row::end()
+{
+  return values.end();
+}
+
+
+template <typename number>
+inline
+std::vector<Entry>::const_iterator
+SparseMatrixEZ<number>::Row::end() const
+{
+  return values.end();
+}
+
+
+//----------------------------------------------------------------------//
+template <typename number>
+inline
+unsigned int SparseMatrixEZ<number>::m () const
+{
+  return rows.size();
+};
+
+
+template <typename number>
+inline
+unsigned int SparseMatrixEZ<number>::n () const
+{
+  return n_columns;
+};
+
+
+template <typename number>
+inline
+void SparseMatrixEZ<number>::set (const unsigned int i,
+                               const unsigned int j,
+                               const number value)
+{
+  Assert (i<m(), ExcIndexRange(i,0,m()));
+  Assert (j<n(), ExcIndexRange(j,0,n()));
+  rows[i].set(j, value);
+};
+
+
+
+template <typename number>
+inline
+void SparseMatrixEZ<number>::add (const unsigned int i,
+                               const unsigned int j,
+                               const number value)
+{
+  Assert (i<m(), ExcIndexRange(i,0,m()));
+  Assert (j<n(), ExcIndexRange(j,0,n()));
+  rows[i].add(j, value);
+};
+
+
+
+template <typename number>
+inline
+number SparseMatrixEZ<number>::diag_element (const unsigned int i) const
+{
+  Assert (i<m(), ExcIndexRange(i,0,m()));
+  Assert (i<n(), ExcIndexRange(i,0,n()));
+
+  return rows[i](i);
+};
+
+
+
+template <typename number>
+inline
+number & SparseMatrixEZ<number>::diag_element (const unsigned int i)
+{
+  Assert (i<m(), ExcIndexRange(i,0,m()));
+  Assert (i<n(), ExcIndexRange(i,0,n()));
+
+  return rows[i](i);
+};
+
+
+
+#endif
+/*----------------------------   sparse_matrix.h     ---------------------------*/
diff --git a/deal.II/lac/include/lac/sparse_matrix_ez.templates.h b/deal.II/lac/include/lac/sparse_matrix_ez.templates.h
new file mode 100644 (file)
index 0000000..54c3fa4
--- /dev/null
@@ -0,0 +1,95 @@
+#include <lac/sparse_matrix_ez.h>
+
+template <typename number>
+void
+SparseMatrixEZ<number>::Row::set(unsigned int column,
+                                const number& value)
+{
+  Assert(false, ExcNotImplemented());
+}
+
+
+template <typename number>
+void
+SparseMatrixEZ<number>::Row::add(unsigned int column,
+                                const number& value)
+{
+  Assert(false, ExcNotImplemented());
+}
+
+
+//----------------------------------------------------------------------//
+
+template <typename number>
+SparseMatrixEZ<number>::SparseMatrixEZ()
+{
+  n_columns = 0;
+}
+
+
+template <typename number>
+SparseMatrixEZ<number>::SparseMatrixEZ(const SparseMatrixEZ&)
+{
+  Assert(false, ExcNotImplemented());
+}
+
+
+template <typename number>
+SparseMatrixEZ<number>::SparseMatrixEZ(unsigned int n_rows,
+                                      unsigned int n_cols)
+{
+  reinit(n_rows, n_cols);
+}
+
+
+template <typename number>
+SparseMatrixEZ<number>::~SparseMatrixEZ()
+{}
+
+
+template <typename number>
+SparseMatrixEZ<number>&
+SparseMatrixEZ<number>::operator= (const SparseMatrixEZ<number>&)
+{
+  Assert (false, ExcNotImplemented());
+  return *this;
+}
+
+
+template <typename number>
+void
+SparseMatrixEZ<number>::reinit(unsigned int n_rows,
+                              unsigned int n_cols)
+{
+  n_columns = n_cols;
+  rows.resize(n_rows);
+}
+
+
+template <typename number>
+void
+SparseMatrixEZ<number>::clear()
+{
+  n_columns = 0;
+  rows.resize(0);
+}
+
+
+template <typename number>
+bool
+SparseMatrixEZ<number>::empty()
+{
+  return ((n_columns == 0) && (rows.size()==0));
+}
+
+
+template <typename number>
+template <typename somenumber>
+void
+SparseMatrixEZ<number>::vmult (Vector<somenumber>& dst,
+                              const Vector<somenumber>& src) const
+{
+  Assert(m() == dst.size(), ExcDimensionMismatch(m(),dst.size()));
+  Assert(n() == src.size(), ExcDimensionMismatch(n(),src.size()));
+}
+

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.