// the matrix in the global row i.
Vector<double> local_matrix_row_i(fe.dofs_per_cell);
- Point<dim> R;
-
// The index i runs on the collocation points, which are the
// support of the ith basis function, while j runs on inner
// integration. We perform this check here to ensure that we are
// Distance between the external support point
// and the quadrature point on the internal
// cell.
- R = q_points[q] - support_points[i];
+ const Point<dim> R = q_points[q] - support_points[i];
system_rhs(i) += ( LaplaceKernel::single_layer(R) *
normal_wind *
wind.vector_value_list(singular_q_points, singular_cell_wind);
for(unsigned int q=0; q<singular_quadrature->size(); ++q) {
- R = singular_q_points[q]- support_points[i];
+ const Point<dim> R = singular_q_points[q]- support_points[i];
double normal_wind = 0;
for(unsigned int d=0; d<dim; ++d)
normal_wind += (singular_cell_wind[q](d)*
std::vector<double> normal_wind(n_q_points);
std::vector<Vector<double> > local_wind(n_q_points, Vector<double>(dim) );
- Point<dim> R;
-
-
typename DoFHandler<dim>::active_cell_iterator
external_cell = external_dh.begin_active(),
external_endc = external_dh.end();
for(unsigned int q=0; q<n_q_points; ++q) {
- R = q_points[q] - external_support_points[i];
+ const Point<dim> R = q_points[q] - external_support_points[i];
external_phi(i) += ( ( LaplaceKernel::single_layer(R) *
normal_wind[q] +