<ol>
+ <li> New: Add a base class for matrix-free operators MatrixFreeOperators::Base.
+ <br>
+ (Denis Davydov, 2016/10/16)
+ </li>
+
<li> New: There is now a function FEEvaluation::JxW() to return the Jacobian
determinant times the quadrature weight in the matrix-free evaluation
routines similary to FEValues.
namespace MatrixFreeOperators
{
+ /**
+ * Abstract base class for matrix-free operators which can be used both at
+ * the finest mesh or at a certain level in geometric multigrid.
+ *
+ * A derived class has to implement apply_add() method as well as
+ * compute_diagonal() to fill the protected member inverse_diagonal_entries.
+ * In case of a non-symmetric operator, Tapply_add() should be additionally
+ * implemented.
+ *
+ * @author Denis Davydov, 2016
+ */
+ template <int dim, typename number = double>
+ class Base : public Subscriptor
+ {
+ public:
+ /**
+ * Number typedef.
+ */
+ typedef number number_type;
+
+ /**
+ * size_type needed for preconditioner classes.
+ */
+ typedef typename LinearAlgebra::distributed::Vector<number>::size_type size_type;
+
+ /**
+ * Default constructor.
+ */
+ Base ();
+
+ /**
+ * Virtual destructor.
+ */
+ virtual ~Base();
+
+ /**
+ * Release all memory and return to a state just like after having called
+ * the default constructor.
+ */
+ void clear();
+
+ /**
+ * Initialize operator on fine scale.
+ */
+ void initialize (const MatrixFree<dim,number> &data);
+
+ /**
+ * Initialize operator on a level @p level.
+ */
+ void initialize (const MatrixFree<dim,number> &data,
+ const MGConstrainedDoFs &mg_constrained_dofs,
+ const unsigned int level);
+
+ /**
+ * Return the dimension of the codomain (or range) space.
+ */
+ size_type m () const;
+
+ /**
+ * Return the dimension of the domain space.
+ */
+ size_type n () const;
+
+ /**
+ * vmult operator for interface.
+ */
+ void vmult_interface_down(LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const;
+
+ /**
+ * vmult operator for interface.
+ */
+ void vmult_interface_up(LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const;
+
+ /**
+ * Matrix-vector multiplication.
+ */
+ void vmult (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const;
+
+ /**
+ * Transpose matrix-vector multiplication.
+ */
+ void Tvmult (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const;
+
+ /**
+ * Adding Matrix-vector multiplication.
+ */
+ void vmult_add (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const;
+
+ /**
+ * Adding transpose matrix-vector multiplication.
+ */
+ void Tvmult_add (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const;
+
+ /**
+ * Returns the value of the matrix entry (row,col). In matrix-free context
+ * this function is valid only for row==col when diagonal is initialized.
+ */
+ number el (const unsigned int row,
+ const unsigned int col) const;
+
+ /**
+ * Determine an estimate for the memory consumption (in bytes) of this object.
+ */
+ virtual std::size_t memory_consumption () const;
+
+ /**
+ * A wrapper for initialize_dof_vector() of MatrixFree object.
+ */
+ void initialize_dof_vector (LinearAlgebra::distributed::Vector<number> &vec) const;
+
+ /**
+ * Compute diagonal of this operator.
+ *
+ * A derived class needs to implement this function and resize and fill
+ * the protected member inverse_diagonal_entries accordingly.
+ */
+ virtual void compute_diagonal () = 0;
+
+ /**
+ * Get read access to diagonal of this operator.
+ */
+ const LinearAlgebra::distributed::Vector<number> &get_matrix_diagonal_inverse() const;
+
+ /**
+ * Apply the Jacobi preconditioner, which multiplies every element of the
+ * <tt>src</tt> vector by the inverse of the respective diagonal element and
+ * multiplies the result with the relaxation factor <tt>omega</tt>.
+ */
+ void precondition_Jacobi(LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src,
+ const number omega) const;
+
+ protected:
+
+ /**
+ * Apply operator to @p src and add result in @p dst.
+ */
+ virtual void apply_add(LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const = 0;
+
+ /**
+ * Apply transpose operator to @p src and add result in @p dst.
+ *
+ * Default implementation is to call apply_add().
+ */
+ virtual void Tapply_add(LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const;
+
+ /**
+ * MatrixFree object to be used with this operator.
+ */
+ SmartPointer<const MatrixFree<dim,number>, Base<dim,number> > data;
+
+ /**
+ * A vector to store inverse of diagonal elements.
+ */
+ LinearAlgebra::distributed::Vector<number> inverse_diagonal_entries;
+
+ /**
+ * Indices of DoFs on edge in case the operator is used in GMG context.
+ */
+ std::vector<unsigned int> edge_constrained_indices;
+
+ private:
+ /**
+ * Auxiliary vector.
+ */
+ mutable std::vector<std::pair<number,number> > edge_constrained_values;
+
+ /**
+ * A flag which determines whether or not this operator has interface
+ * matrices in GMG context.
+ */
+ bool have_interface_matrices;
+
+ /**
+ * Function which implements vmult_add (@p transpose = false) and
+ * Tvmult_add (@p transpose = true).
+ */
+ void mult_add (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src,
+ const bool transpose) const;
+ };
+
+
+
/**
* This class implements the operation of the action of the inverse of a
* mass matrix on an element for the special case of an evaluation object
}
}
+ //----------------- Base operator -----------------------------
+ template <int dim, typename number>
+ Base<dim,number>::~Base ()
+ {
+ }
+
+
+
+ template <int dim, typename number>
+ Base<dim,number>::Base ()
+ :
+ Subscriptor(),
+ data(NULL),
+ have_interface_matrices(false)
+ {
+ }
+
+
+
+ template <int dim, typename number>
+ typename Base<dim,number>::size_type
+ Base<dim,number>::m () const
+ {
+ Assert(data != NULL,
+ ExcNotInitialized());
+ return data->get_vector_partitioner()->size();
+ }
+
+
+
+ template <int dim, typename number>
+ typename Base<dim,number>::size_type
+ Base<dim,number>::n () const
+ {
+ return m();
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::clear ()
+ {
+ data = NULL;
+ inverse_diagonal_entries.reinit(0);
+ }
+
+
+
+ template <int dim, typename number>
+ number
+ Base<dim,number>::el (const unsigned int row,
+ const unsigned int col) const
+ {
+ Assert (row == col, ExcNotImplemented());
+ Assert (inverse_diagonal_entries.size() > 0, ExcNotInitialized());
+ return 1.0/inverse_diagonal_entries(row);
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::initialize_dof_vector (LinearAlgebra::distributed::Vector<number> &vec) const
+ {
+ Assert(data != NULL,
+ ExcNotInitialized());
+ if (!vec.partitioners_are_compatible(*data->get_dof_info(0).vector_partitioner))
+ data->initialize_dof_vector(vec);
+ Assert(vec.partitioners_are_globally_compatible(*data->get_dof_info(0).vector_partitioner),
+ ExcInternalError());
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::
+ initialize (const MatrixFree<dim,number> &data_)
+ {
+ data = SmartPointer<const MatrixFree<dim,number>, Base<dim,number> >(&data_,typeid(*this).name());
+ edge_constrained_indices.clear();
+ have_interface_matrices = false;
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::
+ initialize (const MatrixFree<dim,number> &data_,
+ const MGConstrainedDoFs &mg_constrained_dofs,
+ const unsigned int level)
+ {
+ AssertThrow (level != numbers::invalid_unsigned_int,
+ ExcMessage("level is not set"));
+
+ data = SmartPointer<const MatrixFree<dim,number>, Base<dim,number> >(&data_,typeid(*this).name());
+
+ // setup edge_constrained indices
+ std::vector<types::global_dof_index> interface_indices;
+ mg_constrained_dofs.get_refinement_edge_indices(level).fill_index_vector(interface_indices);
+ edge_constrained_indices.clear();
+ edge_constrained_indices.reserve(interface_indices.size());
+ edge_constrained_values.resize(interface_indices.size());
+ const IndexSet &locally_owned = data->get_dof_handler().locally_owned_mg_dofs(level);
+ for (unsigned int i=0; i<interface_indices.size(); ++i)
+ if (locally_owned.is_element(interface_indices[i]))
+ edge_constrained_indices.push_back(locally_owned.index_within_set(interface_indices[i]));
+ have_interface_matrices = Utilities::MPI::max((unsigned int)edge_constrained_indices.size(),
+ data_.get_vector_partitioner()->get_communicator()) > 0;
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::vmult (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const
+ {
+ dst = 0;
+ vmult_add (dst, src);
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::vmult_add (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const
+ {
+ mult_add (dst, src, false);
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::Tvmult_add (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const
+ {
+ mult_add (dst, src, true);
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::mult_add (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src,
+ const bool transpose) const
+ {
+ Assert(src.partitioners_are_globally_compatible(*data->get_dof_info(0).vector_partitioner), ExcInternalError());
+ Assert(dst.partitioners_are_globally_compatible(*data->get_dof_info(0).vector_partitioner), ExcInternalError());
+
+ // set zero Dirichlet values on the input vector (and remember the src and
+ // dst values because we need to reset them at the end)
+ for (unsigned int i=0; i<edge_constrained_indices.size(); ++i)
+ {
+ edge_constrained_values[i] =
+ std::pair<number,number>(src.local_element(edge_constrained_indices[i]),
+ dst.local_element(edge_constrained_indices[i]));
+ const_cast<LinearAlgebra::distributed::Vector<number>&>(src).local_element(edge_constrained_indices[i]) = 0.;
+ }
+
+ if (transpose)
+ Tapply_add(dst,src);
+ else
+ apply_add(dst,src);
+
+ const std::vector<unsigned int> &
+ constrained_dofs = data->get_constrained_dofs();
+ for (unsigned int i=0; i<constrained_dofs.size(); ++i)
+ dst.local_element(constrained_dofs[i]) += src.local_element(constrained_dofs[i]);
+
+ // reset edge constrained values, multiply by unit matrix and add into
+ // destination
+ for (unsigned int i=0; i<edge_constrained_indices.size(); ++i)
+ {
+ const_cast<LinearAlgebra::distributed::Vector<number>&>(src).local_element(edge_constrained_indices[i]) = edge_constrained_values[i].first;
+ dst.local_element(edge_constrained_indices[i]) = edge_constrained_values[i].second + edge_constrained_values[i].first;
+ }
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::
+ vmult_interface_down(LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const
+ {
+ Assert(src.partitioners_are_globally_compatible(*data->get_dof_info(0).vector_partitioner), ExcInternalError());
+ Assert(dst.partitioners_are_globally_compatible(*data->get_dof_info(0).vector_partitioner), ExcInternalError());
+
+ dst = 0;
+
+ if (!have_interface_matrices)
+ return;
+
+ // set zero Dirichlet values on the input vector (and remember the src and
+ // dst values because we need to reset them at the end)
+ for (unsigned int i=0; i<edge_constrained_indices.size(); ++i)
+ {
+ edge_constrained_values[i] =
+ std::pair<number,number>(src.local_element(edge_constrained_indices[i]),
+ dst.local_element(edge_constrained_indices[i]));
+ const_cast<LinearAlgebra::distributed::Vector<number>&>(src).local_element(edge_constrained_indices[i]) = 0.;
+ }
+
+ apply_add(dst,src);
+
+ unsigned int c=0;
+ for (unsigned int i=0; i<edge_constrained_indices.size(); ++i)
+ {
+ for ( ; c<edge_constrained_indices[i]; ++c)
+ dst.local_element(c) = 0.;
+ ++c;
+
+ // reset the src values
+ const_cast<LinearAlgebra::distributed::Vector<number>&>(src).local_element(edge_constrained_indices[i]) = edge_constrained_values[i].first;
+ }
+ for ( ; c<dst.local_size(); ++c)
+ dst.local_element(c) = 0.;
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::
+ vmult_interface_up(LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const
+ {
+ Assert(src.partitioners_are_globally_compatible(*data->get_dof_info(0).vector_partitioner), ExcInternalError());
+ Assert(dst.partitioners_are_globally_compatible(*data->get_dof_info(0).vector_partitioner), ExcInternalError());
+
+ dst = 0;
+
+ if (!have_interface_matrices)
+ return;
+
+ LinearAlgebra::distributed::Vector<number> src_cpy (src);
+ unsigned int c=0;
+ for (unsigned int i=0; i<edge_constrained_indices.size(); ++i)
+ {
+ for ( ; c<edge_constrained_indices[i]; ++c)
+ src_cpy.local_element(c) = 0.;
+ ++c;
+ }
+ for ( ; c<src_cpy.local_size(); ++c)
+ src_cpy.local_element(c) = 0.;
+
+ apply_add(dst,src_cpy);
+
+ for (unsigned int i=0; i<edge_constrained_indices.size(); ++i)
+ {
+ dst.local_element(edge_constrained_indices[i]) = 0.;
+ }
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::Tvmult (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const
+ {
+ dst = 0;
+ Tvmult_add (dst,src);
+ }
+
+
+
+ template <int dim, typename number>
+ std::size_t
+ Base<dim,number>::memory_consumption () const
+ {
+ return inverse_diagonal_entries.memory_consumption();
+ }
+
+
+
+ template <int dim, typename number>
+ const LinearAlgebra::distributed::Vector<number> &
+ Base<dim,number>::get_matrix_diagonal_inverse() const
+ {
+ Assert(inverse_diagonal_entries.size() > 0, ExcNotInitialized());
+ return inverse_diagonal_entries;
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::Tapply_add(LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const
+ {
+ apply_add(dst,src);
+ }
+
+
+
+ template <int dim, typename number>
+ void
+ Base<dim,number>::precondition_Jacobi(LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src,
+ const number omega) const
+ {
+ Assert(inverse_diagonal_entries.size() > 0, ExcNotInitialized());
+
+ dst = src;
+ dst.scale(inverse_diagonal_entries);
+ dst*= omega;
+ }
+
} // end of namespace MatrixFreeOperators
--- /dev/null
+// ---------------------------------------------------------------------
+//
+// Copyright (C) 2016 by the deal.II authors
+//
+// This file is part of the deal.II library.
+//
+// The deal.II library is free software; you can use it, redistribute
+// it, and/or modify it under the terms of the GNU Lesser General
+// Public License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+// The full text of the license can be found in the file LICENSE at
+// the top level of the deal.II distribution.
+//
+// ---------------------------------------------------------------------
+
+
+
+// same as parallel_multigird_adaptive, but derive from
+// MatrixFreeOperators::Base class.
+
+#include "../tests.h"
+
+#include <deal.II/base/logstream.h>
+#include <deal.II/base/utilities.h>
+#include <deal.II/lac/la_parallel_vector.h>
+#include <deal.II/lac/solver_cg.h>
+#include <deal.II/lac/precondition.h>
+#include <deal.II/grid/tria.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/dofs/dof_handler.h>
+#include <deal.II/lac/constraint_matrix.h>
+#include <deal.II/fe/fe_q.h>
+#include <deal.II/fe/mapping_q.h>
+#include <deal.II/numerics/vector_tools.h>
+#include <deal.II/distributed/tria.h>
+
+#include <deal.II/multigrid/multigrid.h>
+#include <deal.II/multigrid/mg_transfer.h>
+#include <deal.II/multigrid/mg_tools.h>
+#include <deal.II/multigrid/mg_coarse.h>
+#include <deal.II/multigrid/mg_smoother.h>
+#include <deal.II/multigrid/mg_matrix.h>
+
+#include <deal.II/matrix_free/operators.h>
+#include <deal.II/matrix_free/matrix_free.h>
+#include <deal.II/matrix_free/fe_evaluation.h>
+
+std::ofstream logfile("output");
+
+using namespace dealii::MatrixFreeOperators;
+
+
+template <int dim, int fe_degree, int n_q_points_1d = fe_degree+1, typename number=double>
+class LaplaceOperator : public MatrixFreeOperators::Base<dim, number>
+{
+public:
+ LaplaceOperator()
+ :
+ MatrixFreeOperators::Base<dim, number>()
+ {};
+
+ void compute_diagonal ()
+ {
+ unsigned int dummy = 0;
+ LinearAlgebra::distributed::Vector<number> &inverse_diagonal_entries = Base<dim,number>::inverse_diagonal_entries;
+ this->initialize_dof_vector(inverse_diagonal_entries);
+ Base<dim,number>::
+ data->cell_loop (&LaplaceOperator::local_diagonal_cell,
+ this, inverse_diagonal_entries, dummy);
+
+ const std::vector<unsigned int> &
+ constrained_dofs = Base<dim,number>::data->get_constrained_dofs();
+ for (unsigned int i=0; i<constrained_dofs.size(); ++i)
+ inverse_diagonal_entries.local_element(constrained_dofs[i]) = 0.;
+ for (unsigned int i=0; i<Base<dim,number>::edge_constrained_indices.size(); ++i)
+ inverse_diagonal_entries.local_element(Base<dim,number>::edge_constrained_indices[i]) = 0.;
+
+ for (unsigned int i=0; i<inverse_diagonal_entries.local_size(); ++i)
+ if (std::abs(inverse_diagonal_entries.local_element(i)) > 1e-10)
+ inverse_diagonal_entries.local_element(i) = 1./inverse_diagonal_entries.local_element(i);
+ else
+ inverse_diagonal_entries.local_element(i) = 1.;
+ }
+
+protected:
+
+
+ void apply_add (LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src) const
+ {
+ Base<dim,number>::
+ data->cell_loop (&LaplaceOperator::local_apply, this, dst, src);
+ }
+
+
+private:
+
+ void
+ local_apply (const MatrixFree<dim,number> &data,
+ LinearAlgebra::distributed::Vector<number> &dst,
+ const LinearAlgebra::distributed::Vector<number> &src,
+ const std::pair<unsigned int,unsigned int> &cell_range) const
+ {
+ FEEvaluation<dim,fe_degree,n_q_points_1d,1,number> phi (data);
+
+ for (unsigned int cell=cell_range.first; cell<cell_range.second; ++cell)
+ {
+ phi.reinit (cell);
+ phi.read_dof_values(src);
+ phi.evaluate (false,true,false);
+ for (unsigned int q=0; q<phi.n_q_points; ++q)
+ phi.submit_gradient (phi.get_gradient(q), q);
+ phi.integrate (false,true);
+ phi.distribute_local_to_global (dst);
+ }
+ }
+
+ void
+ local_diagonal_cell (const MatrixFree<dim,number> &data,
+ LinearAlgebra::distributed::Vector<number> &dst,
+ const unsigned int &,
+ const std::pair<unsigned int,unsigned int> &cell_range) const
+ {
+ FEEvaluation<dim,fe_degree,n_q_points_1d,1,number> phi (data);
+
+ for (unsigned int cell=cell_range.first; cell<cell_range.second; ++cell)
+ {
+ phi.reinit (cell);
+
+ VectorizedArray<number> local_diagonal_vector[phi.tensor_dofs_per_cell];
+ for (unsigned int i=0; i<phi.dofs_per_cell; ++i)
+ {
+ for (unsigned int j=0; j<phi.dofs_per_cell; ++j)
+ phi.begin_dof_values()[j] = VectorizedArray<number>();
+ phi.begin_dof_values()[i] = 1.;
+ phi.evaluate (false,true,false);
+ for (unsigned int q=0; q<phi.n_q_points; ++q)
+ phi.submit_gradient (phi.get_gradient(q), q);
+ phi.integrate (false,true);
+ local_diagonal_vector[i] = phi.begin_dof_values()[i];
+ }
+ for (unsigned int i=0; i<phi.tensor_dofs_per_cell; ++i)
+ phi.begin_dof_values()[i] = local_diagonal_vector[i];
+ phi.distribute_local_to_global (dst);
+ }
+ }
+
+};
+
+
+
+template <typename LAPLACEOPERATOR>
+class MGInterfaceMatrix : public Subscriptor
+{
+public:
+ void initialize (const LAPLACEOPERATOR &laplace)
+ {
+ this->laplace = &laplace;
+ }
+
+ void vmult (LinearAlgebra::distributed::Vector<double> &dst,
+ const LinearAlgebra::distributed::Vector<double> &src) const
+ {
+ laplace->vmult_interface_down(dst, src);
+ }
+
+ void Tvmult (LinearAlgebra::distributed::Vector<double> &dst,
+ const LinearAlgebra::distributed::Vector<double> &src) const
+ {
+ laplace->vmult_interface_up(dst, src);
+ }
+
+private:
+ SmartPointer<const LAPLACEOPERATOR> laplace;
+};
+
+
+
+template <typename LAPLACEOPERATOR>
+class MGTransferMF : public MGTransferPrebuilt<LinearAlgebra::distributed::Vector<double> >
+{
+public:
+ MGTransferMF(const MGLevelObject<LAPLACEOPERATOR> &laplace,
+ const MGConstrainedDoFs &mg_constrained_dofs)
+ :
+ MGTransferPrebuilt<LinearAlgebra::distributed::Vector<double> >(mg_constrained_dofs),
+ laplace_operator (laplace)
+ {
+ }
+
+ /**
+ * Overload copy_to_mg from MGTransferPrebuilt to get the vectors compatible
+ * with MatrixFree and bypass the crude vector initialization in
+ * MGTransferPrebuilt
+ */
+ template <int dim, class InVector, int spacedim>
+ void
+ copy_to_mg (const DoFHandler<dim,spacedim> &mg_dof_handler,
+ MGLevelObject<LinearAlgebra::distributed::Vector<double> > &dst,
+ const InVector &src) const
+ {
+ for (unsigned int level=dst.min_level();
+ level<=dst.max_level(); ++level)
+ laplace_operator[level].initialize_dof_vector(dst[level]);
+ MGTransferPrebuilt<LinearAlgebra::distributed::Vector<double> >::
+ copy_to_mg(mg_dof_handler, dst, src);
+ }
+
+private:
+ const MGLevelObject<LAPLACEOPERATOR> &laplace_operator;
+};
+
+
+
+template<typename MatrixType, typename Number>
+class MGCoarseIterative : public MGCoarseGridBase<LinearAlgebra::distributed::Vector<Number> >
+{
+public:
+ MGCoarseIterative() {}
+
+ void initialize(const MatrixType &matrix)
+ {
+ coarse_matrix = &matrix;
+ }
+
+ virtual void operator() (const unsigned int level,
+ LinearAlgebra::distributed::Vector<double> &dst,
+ const LinearAlgebra::distributed::Vector<double> &src) const
+ {
+ ReductionControl solver_control (1e4, 1e-50, 1e-10);
+ SolverCG<LinearAlgebra::distributed::Vector<double> > solver_coarse (solver_control);
+ solver_coarse.solve (*coarse_matrix, dst, src, PreconditionIdentity());
+ }
+
+ const MatrixType *coarse_matrix;
+};
+
+
+
+
+template <int dim, int fe_degree, int n_q_points_1d, typename number>
+void do_test (const DoFHandler<dim> &dof)
+{
+ if (types_are_equal<number,float>::value == true)
+ {
+ deallog.push("float");
+ deallog.threshold_double(1e-6);
+ }
+ else
+ {
+ deallog.threshold_double(5.e-11);
+ }
+
+ deallog << "Testing " << dof.get_fe().get_name();
+ deallog << std::endl;
+ deallog << "Number of degrees of freedom: " << dof.n_dofs() << std::endl;
+
+ IndexSet locally_relevant_dofs;
+ DoFTools::extract_locally_relevant_dofs(dof, locally_relevant_dofs);
+
+ // Dirichlet BC
+ ZeroFunction<dim> zero_function;
+ typename FunctionMap<dim>::type dirichlet_boundary;
+ dirichlet_boundary[0] = &zero_function;
+
+ // fine-level constraints
+ ConstraintMatrix constraints;
+ constraints.reinit(locally_relevant_dofs);
+ DoFTools::make_hanging_node_constraints(dof, constraints);
+ VectorTools::interpolate_boundary_values(dof, dirichlet_boundary,
+ constraints);
+ constraints.close();
+
+ // level constraints:
+ MGConstrainedDoFs mg_constrained_dofs;
+ mg_constrained_dofs.initialize(dof, dirichlet_boundary);
+
+ MappingQ<dim> mapping(fe_degree+1);
+
+ LaplaceOperator<dim,fe_degree,n_q_points_1d,number> fine_matrix;
+ MatrixFree<dim,number> fine_level_data;
+
+ typename MatrixFree<dim,number>::AdditionalData fine_level_additional_data;
+ fine_level_additional_data.tasks_parallel_scheme = MatrixFree<dim,number>::AdditionalData::none;
+ fine_level_additional_data.tasks_block_size = 3;
+ fine_level_additional_data.mpi_communicator = MPI_COMM_WORLD;
+ fine_level_data.reinit (mapping, dof, constraints, QGauss<1>(n_q_points_1d),
+ fine_level_additional_data);
+
+ fine_matrix.initialize(fine_level_data);
+ fine_matrix.compute_diagonal();
+
+
+ LinearAlgebra::distributed::Vector<number> in, sol;
+ fine_matrix.initialize_dof_vector(in);
+ fine_matrix.initialize_dof_vector(sol);
+
+ // set constant rhs vector
+ {
+ // this is to make it consistent with parallel_multigrid_adaptive.cc
+ ConstraintMatrix hanging_node_constraints;
+ hanging_node_constraints.reinit(locally_relevant_dofs);
+ DoFTools::make_hanging_node_constraints(dof, hanging_node_constraints);
+ hanging_node_constraints.close();
+
+ for (unsigned int i=0; i<in.local_size(); ++i)
+ if (!hanging_node_constraints.is_constrained(in.get_partitioner()->local_to_global(i)))
+ in.local_element(i) = 1.;
+ }
+
+ // set up multigrid in analogy to step-37
+ typedef LaplaceOperator<dim,fe_degree,n_q_points_1d,number> LevelMatrixType;
+
+ MGLevelObject<LevelMatrixType> mg_matrices;
+ MGLevelObject<MatrixFree<dim,number> > mg_level_data;
+ mg_matrices.resize(0, dof.get_triangulation().n_global_levels()-1);
+ mg_level_data.resize(0, dof.get_triangulation().n_global_levels()-1);
+ for (unsigned int level = 0; level<dof.get_triangulation().n_global_levels(); ++level)
+ {
+ typename MatrixFree<dim,number>::AdditionalData mg_additional_data;
+ mg_additional_data.tasks_parallel_scheme = MatrixFree<dim,number>::AdditionalData::none;
+ mg_additional_data.tasks_block_size = 3;
+ mg_additional_data.mpi_communicator = MPI_COMM_WORLD;
+ mg_additional_data.level_mg_handler = level;
+
+ ConstraintMatrix level_constraints;
+ IndexSet relevant_dofs;
+ DoFTools::extract_locally_relevant_level_dofs(dof, level,
+ relevant_dofs);
+ level_constraints.reinit(relevant_dofs);
+ level_constraints.add_lines(mg_constrained_dofs.get_boundary_indices(level));
+ level_constraints.close();
+
+ mg_level_data[level].reinit (mapping, dof, level_constraints, QGauss<1>(n_q_points_1d),
+ mg_additional_data);
+ mg_matrices[level].initialize(mg_level_data[level],
+ mg_constrained_dofs,
+ level);
+ mg_matrices[level].compute_diagonal();
+ }
+ MGLevelObject<MGInterfaceMatrix<LevelMatrixType> > mg_interface_matrices;
+ mg_interface_matrices.resize(0, dof.get_triangulation().n_global_levels()-1);
+ for (unsigned int level=0; level<dof.get_triangulation().n_global_levels(); ++level)
+ mg_interface_matrices[level].initialize(mg_matrices[level]);
+
+ MGTransferMF<LevelMatrixType> mg_transfer(mg_matrices,
+ mg_constrained_dofs);
+ mg_transfer.build_matrices(dof);
+
+ MGCoarseIterative<LevelMatrixType,number> mg_coarse;
+ mg_coarse.initialize(mg_matrices[0]);
+
+ typedef PreconditionChebyshev<LevelMatrixType,LinearAlgebra::distributed::Vector<number> > SMOOTHER;
+ MGSmootherPrecondition<LevelMatrixType, SMOOTHER, LinearAlgebra::distributed::Vector<number> >
+ mg_smoother;
+
+ MGLevelObject<typename SMOOTHER::AdditionalData> smoother_data;
+ smoother_data.resize(0, dof.get_triangulation().n_global_levels()-1);
+ for (unsigned int level = 0; level<dof.get_triangulation().n_global_levels(); ++level)
+ {
+ smoother_data[level].smoothing_range = 15.;
+ smoother_data[level].degree = 5;
+ smoother_data[level].eig_cg_n_iterations = 15;
+ smoother_data[level].matrix_diagonal_inverse =
+ mg_matrices[level].get_matrix_diagonal_inverse();
+ }
+ mg_smoother.initialize(mg_matrices, smoother_data);
+
+ mg::Matrix<LinearAlgebra::distributed::Vector<double> >
+ mg_matrix(mg_matrices);
+ mg::Matrix<LinearAlgebra::distributed::Vector<double> >
+ mg_interface(mg_interface_matrices);
+
+ Multigrid<LinearAlgebra::distributed::Vector<double> > mg(dof,
+ mg_matrix,
+ mg_coarse,
+ mg_transfer,
+ mg_smoother,
+ mg_smoother);
+ mg.set_edge_matrices(mg_interface, mg_interface);
+ PreconditionMG<dim, LinearAlgebra::distributed::Vector<double>,
+ MGTransferMF<LevelMatrixType> >
+ preconditioner(dof, mg, mg_transfer);
+
+ {
+ ReductionControl control(30, 1e-20, 1e-7);
+ SolverCG<LinearAlgebra::distributed::Vector<double> > solver(control);
+ solver.solve(fine_matrix, sol, in, preconditioner);
+ }
+
+ if (types_are_equal<number,float>::value == true)
+ deallog.pop();
+
+ fine_matrix.clear();
+ for (unsigned int level = 0; level<dof.get_triangulation().n_global_levels(); ++level)
+ mg_matrices[level].clear();
+}
+
+
+
+template <int dim, int fe_degree>
+void test ()
+{
+ parallel::distributed::Triangulation<dim> tria(MPI_COMM_WORLD,
+ Triangulation<dim>::limit_level_difference_at_vertices,
+ parallel::distributed::Triangulation<dim>::construct_multigrid_hierarchy);
+ GridGenerator::hyper_cube (tria);
+ tria.refine_global(6-dim);
+ const unsigned int n_runs = fe_degree == 1 ? 6-dim : 5-dim;
+ for (unsigned int i=0; i<n_runs; ++i)
+ {
+ for (typename Triangulation<dim>::active_cell_iterator cell=tria.begin_active();
+ cell != tria.end(); ++cell)
+ if (cell->is_locally_owned() &&
+ (cell->center().norm() < 0.5 && (cell->level() < 5 ||
+ cell->center().norm() > 0.45)
+ ||
+ (dim == 2 && cell->center().norm() > 1.2)))
+ cell->set_refine_flag();
+ tria.execute_coarsening_and_refinement();
+ FE_Q<dim> fe (fe_degree);
+ DoFHandler<dim> dof (tria);
+ dof.distribute_dofs(fe);
+ dof.distribute_mg_dofs(fe);
+
+ do_test<dim, fe_degree, fe_degree+1, double> (dof);
+ }
+}
+
+
+
+int main (int argc, char **argv)
+{
+ Utilities::MPI::MPI_InitFinalize mpi_init(argc, argv);
+
+ if (Utilities::MPI::this_mpi_process(MPI_COMM_WORLD) == 0)
+ {
+ deallog.attach(logfile);
+ deallog << std::setprecision (4);
+ }
+
+ {
+ deallog.threshold_double(1.e-10);
+ deallog.push("2d");
+ test<2,1>();
+ test<2,3>();
+ deallog.pop();
+ deallog.push("3d");
+ test<3,1>();
+ test<3,2>();
+ deallog.pop();
+ }
+}
--- /dev/null
+
+DEAL:2d::Testing FE_Q<2>(1)
+DEAL:2d::Number of degrees of freedom: 507
+DEAL:2d:cg::Starting value 0.8660
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9428
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9798
+DEAL:2d:cg::Convergence step 4 value 0
+DEAL:2d:cg::Starting value 0.9938
+DEAL:2d:cg::Convergence step 10 value 0
+DEAL:2d:cg::Starting value 0.9983
+DEAL:2d:cg::Failure step 15 value 2.432e-05
+DEAL:2d:cg::Starting value 0.9984
+DEAL:2d:cg::Failure step 15 value 0.001385
+DEAL:2d:cg::Starting value 21.93
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg::Convergence step 5 value 7.812e-07
+DEAL:2d::Testing FE_Q<2>(1)
+DEAL:2d::Number of degrees of freedom: 881
+DEAL:2d:cg::Starting value 0.8660
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9428
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9798
+DEAL:2d:cg::Convergence step 4 value 0
+DEAL:2d:cg::Starting value 0.9938
+DEAL:2d:cg::Convergence step 10 value 0
+DEAL:2d:cg::Starting value 0.9983
+DEAL:2d:cg::Failure step 15 value 2.432e-05
+DEAL:2d:cg::Starting value 0.9988
+DEAL:2d:cg::Failure step 15 value 0.002581
+DEAL:2d:cg::Starting value 0.9989
+DEAL:2d:cg::Failure step 15 value 0.0001487
+DEAL:2d:cg::Starting value 27.77
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg::Convergence step 6 value 9.245e-07
+DEAL:2d::Testing FE_Q<2>(1)
+DEAL:2d::Number of degrees of freedom: 2147
+DEAL:2d:cg::Starting value 0.8660
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9428
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9798
+DEAL:2d:cg::Convergence step 4 value 0
+DEAL:2d:cg::Starting value 0.9938
+DEAL:2d:cg::Convergence step 10 value 0
+DEAL:2d:cg::Starting value 0.9983
+DEAL:2d:cg::Failure step 15 value 2.432e-05
+DEAL:2d:cg::Starting value 0.9988
+DEAL:2d:cg::Failure step 15 value 0.003288
+DEAL:2d:cg::Starting value 0.9993
+DEAL:2d:cg::Failure step 15 value 0.005495
+DEAL:2d:cg::Starting value 0.9997
+DEAL:2d:cg::Failure step 15 value 0.05100
+DEAL:2d:cg::Starting value 43.26
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg::Convergence step 6 value 1.145e-06
+DEAL:2d::Testing FE_Q<2>(1)
+DEAL:2d::Number of degrees of freedom: 6517
+DEAL:2d:cg::Starting value 0.8660
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9428
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9798
+DEAL:2d:cg::Convergence step 4 value 0
+DEAL:2d:cg::Starting value 0.9938
+DEAL:2d:cg::Convergence step 10 value 0
+DEAL:2d:cg::Starting value 0.9983
+DEAL:2d:cg::Failure step 15 value 2.432e-05
+DEAL:2d:cg::Starting value 0.9989
+DEAL:2d:cg::Failure step 15 value 0.005519
+DEAL:2d:cg::Starting value 0.9994
+DEAL:2d:cg::Failure step 15 value 0.01098
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 0.09572
+DEAL:2d:cg::Starting value 0.9999
+DEAL:2d:cg::Failure step 15 value 0.7527
+DEAL:2d:cg::Starting value 76.92
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg::Convergence step 6 value 1.559e-06
+DEAL:2d::Testing FE_Q<2>(3)
+DEAL:2d::Number of degrees of freedom: 4259
+DEAL:2d:cg::Starting value 0.9682
+DEAL:2d:cg::Convergence step 2 value 0
+DEAL:2d:cg::Starting value 0.9897
+DEAL:2d:cg::Convergence step 7 value 0
+DEAL:2d:cg::Starting value 0.9970
+DEAL:2d:cg::Failure step 15 value 2.456e-05
+DEAL:2d:cg::Starting value 0.9992
+DEAL:2d:cg::Failure step 15 value 0.2156
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 1.976
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 1.763
+DEAL:2d:cg::Starting value 64.26
+DEAL:2d:cg:cg::Starting value 108.9
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.03777
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.0007755
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 7.094e-06
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 2.710e-07
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg::Convergence step 5 value 1.631e-06
+DEAL:2d::Testing FE_Q<2>(3)
+DEAL:2d::Number of degrees of freedom: 7457
+DEAL:2d:cg::Starting value 0.9682
+DEAL:2d:cg::Convergence step 2 value 0
+DEAL:2d:cg::Starting value 0.9897
+DEAL:2d:cg::Convergence step 7 value 0
+DEAL:2d:cg::Starting value 0.9970
+DEAL:2d:cg::Failure step 15 value 2.456e-05
+DEAL:2d:cg::Starting value 0.9992
+DEAL:2d:cg::Failure step 15 value 0.2156
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 1.976
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 1.672
+DEAL:2d:cg::Starting value 0.9999
+DEAL:2d:cg::Failure step 15 value 0.9896
+DEAL:2d:cg::Starting value 83.11
+DEAL:2d:cg:cg::Starting value 165.9
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.07398
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.003378
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 2.891e-05
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 1.842e-06
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg::Convergence step 5 value 7.691e-06
+DEAL:2d::Testing FE_Q<2>(3)
+DEAL:2d::Number of degrees of freedom: 18535
+DEAL:2d:cg::Starting value 0.9682
+DEAL:2d:cg::Convergence step 2 value 0
+DEAL:2d:cg::Starting value 0.9897
+DEAL:2d:cg::Convergence step 7 value 0
+DEAL:2d:cg::Starting value 0.9970
+DEAL:2d:cg::Failure step 15 value 2.456e-05
+DEAL:2d:cg::Starting value 0.9992
+DEAL:2d:cg::Failure step 15 value 0.2156
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 1.976
+DEAL:2d:cg::Starting value 0.9999
+DEAL:2d:cg::Failure step 15 value 1.886
+DEAL:2d:cg::Starting value 0.9999
+DEAL:2d:cg::Failure step 15 value 0.8395
+DEAL:2d:cg::Starting value 1.000
+DEAL:2d:cg::Failure step 15 value 2.204
+DEAL:2d:cg::Starting value 131.0
+DEAL:2d:cg:cg::Starting value 384.0
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.2113
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.002203
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 3.160e-05
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 1.004e-06
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg::Convergence step 5 value 6.045e-06
+DEAL:3d::Testing FE_Q<3>(1)
+DEAL:3d::Number of degrees of freedom: 1103
+DEAL:3d:cg::Starting value 0.9354
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9813
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9960
+DEAL:3d:cg::Convergence step 5 value 0
+DEAL:3d:cg::Starting value 0.9993
+DEAL:3d:cg::Convergence step 13 value 9.706e-11
+DEAL:3d:cg::Starting value 0.9989
+DEAL:3d:cg::Convergence step 14 value 6.535e-11
+DEAL:3d:cg::Starting value 31.21
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg::Convergence step 6 value 3.615e-08
+DEAL:3d::Testing FE_Q<3>(1)
+DEAL:3d::Number of degrees of freedom: 3694
+DEAL:3d:cg::Starting value 0.9354
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9813
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9960
+DEAL:3d:cg::Convergence step 5 value 0
+DEAL:3d:cg::Starting value 0.9993
+DEAL:3d:cg::Convergence step 13 value 9.706e-11
+DEAL:3d:cg::Starting value 0.9994
+DEAL:3d:cg::Failure step 15 value 1.839e-08
+DEAL:3d:cg::Starting value 0.9998
+DEAL:3d:cg::Failure step 15 value 7.469e-05
+DEAL:3d:cg::Starting value 55.00
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg::Convergence step 7 value 3.941e-06
+DEAL:3d::Testing FE_Q<3>(1)
+DEAL:3d::Number of degrees of freedom: 9566
+DEAL:3d:cg::Starting value 0.9354
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9813
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9960
+DEAL:3d:cg::Convergence step 5 value 0
+DEAL:3d:cg::Starting value 0.9993
+DEAL:3d:cg::Convergence step 13 value 9.706e-11
+DEAL:3d:cg::Starting value 0.9995
+DEAL:3d:cg::Failure step 15 value 1.479e-07
+DEAL:3d:cg::Starting value 0.9999
+DEAL:3d:cg::Failure step 15 value 0.0004644
+DEAL:3d:cg::Starting value 0.9999
+DEAL:3d:cg::Failure step 15 value 1.830e-10
+DEAL:3d:cg::Starting value 76.18
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg::Convergence step 8 value 5.376e-06
+DEAL:3d::Testing FE_Q<3>(2)
+DEAL:3d::Number of degrees of freedom: 7494
+DEAL:3d:cg::Starting value 0.9813
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9960
+DEAL:3d:cg::Convergence step 5 value 0
+DEAL:3d:cg::Starting value 0.9993
+DEAL:3d:cg::Convergence step 15 value 5.276e-11
+DEAL:3d:cg::Starting value 0.9999
+DEAL:3d:cg::Failure step 15 value 0.001572
+DEAL:3d:cg::Starting value 0.9998
+DEAL:3d:cg::Failure step 15 value 0.0008241
+DEAL:3d:cg::Starting value 82.90
+DEAL:3d:cg:cg::Starting value 7.225
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.01157
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.0009262
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.0001114
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 3.295e-06
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 2.088e-07
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 2.026e-08
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg::Convergence step 7 value 8.696e-07
+DEAL:3d::Testing FE_Q<3>(2)
+DEAL:3d::Number of degrees of freedom: 26548
+DEAL:3d:cg::Starting value 0.9813
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9960
+DEAL:3d:cg::Convergence step 5 value 0
+DEAL:3d:cg::Starting value 0.9993
+DEAL:3d:cg::Convergence step 15 value 5.276e-11
+DEAL:3d:cg::Starting value 0.9999
+DEAL:3d:cg::Failure step 15 value 0.001572
+DEAL:3d:cg::Starting value 0.9999
+DEAL:3d:cg::Failure step 15 value 0.008306
+DEAL:3d:cg::Starting value 1.000
+DEAL:3d:cg::Failure step 15 value 0.1026
+DEAL:3d:cg::Starting value 152.6
+DEAL:3d:cg:cg::Starting value 17.46
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.008363
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.001190
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.0001843
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 8.789e-06
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 7.697e-07
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 6.053e-08
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg::Convergence step 7 value 3.971e-06
--- /dev/null
+
+DEAL:2d::Testing FE_Q<2>(1)
+DEAL:2d::Number of degrees of freedom: 507
+DEAL:2d:cg::Starting value 0.8660
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9428
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9798
+DEAL:2d:cg::Convergence step 4 value 0
+DEAL:2d:cg::Starting value 0.9938
+DEAL:2d:cg::Convergence step 10 value 0
+DEAL:2d:cg::Starting value 0.9983
+DEAL:2d:cg::Failure step 15 value 2.432e-05
+DEAL:2d:cg::Starting value 0.9984
+DEAL:2d:cg::Failure step 15 value 0.001385
+DEAL:2d:cg::Starting value 21.93
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg::Convergence step 5 value 7.812e-07
+DEAL:2d::Testing FE_Q<2>(1)
+DEAL:2d::Number of degrees of freedom: 881
+DEAL:2d:cg::Starting value 0.8660
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9428
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9798
+DEAL:2d:cg::Convergence step 4 value 0
+DEAL:2d:cg::Starting value 0.9938
+DEAL:2d:cg::Convergence step 10 value 0
+DEAL:2d:cg::Starting value 0.9983
+DEAL:2d:cg::Failure step 15 value 2.432e-05
+DEAL:2d:cg::Starting value 0.9988
+DEAL:2d:cg::Failure step 15 value 0.002581
+DEAL:2d:cg::Starting value 0.9989
+DEAL:2d:cg::Failure step 15 value 0.0001487
+DEAL:2d:cg::Starting value 27.77
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg::Convergence step 6 value 9.245e-07
+DEAL:2d::Testing FE_Q<2>(1)
+DEAL:2d::Number of degrees of freedom: 2147
+DEAL:2d:cg::Starting value 0.8660
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9428
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9798
+DEAL:2d:cg::Convergence step 4 value 0
+DEAL:2d:cg::Starting value 0.9938
+DEAL:2d:cg::Convergence step 10 value 0
+DEAL:2d:cg::Starting value 0.9983
+DEAL:2d:cg::Failure step 15 value 2.432e-05
+DEAL:2d:cg::Starting value 0.9988
+DEAL:2d:cg::Failure step 15 value 0.003288
+DEAL:2d:cg::Starting value 0.9993
+DEAL:2d:cg::Failure step 15 value 0.005495
+DEAL:2d:cg::Starting value 0.9997
+DEAL:2d:cg::Failure step 15 value 0.05100
+DEAL:2d:cg::Starting value 43.26
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg::Convergence step 6 value 1.145e-06
+DEAL:2d::Testing FE_Q<2>(1)
+DEAL:2d::Number of degrees of freedom: 6517
+DEAL:2d:cg::Starting value 0.8660
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9428
+DEAL:2d:cg::Convergence step 1 value 0
+DEAL:2d:cg::Starting value 0.9798
+DEAL:2d:cg::Convergence step 4 value 0
+DEAL:2d:cg::Starting value 0.9938
+DEAL:2d:cg::Convergence step 10 value 0
+DEAL:2d:cg::Starting value 0.9983
+DEAL:2d:cg::Failure step 15 value 2.432e-05
+DEAL:2d:cg::Starting value 0.9989
+DEAL:2d:cg::Failure step 15 value 0.005519
+DEAL:2d:cg::Starting value 0.9994
+DEAL:2d:cg::Failure step 15 value 0.01098
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 0.09572
+DEAL:2d:cg::Starting value 0.9999
+DEAL:2d:cg::Failure step 15 value 0.7527
+DEAL:2d:cg::Starting value 76.92
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg:cg::Convergence step 0 value 0
+DEAL:2d:cg::Convergence step 6 value 1.559e-06
+DEAL:2d::Testing FE_Q<2>(3)
+DEAL:2d::Number of degrees of freedom: 4259
+DEAL:2d:cg::Starting value 0.9682
+DEAL:2d:cg::Convergence step 2 value 0
+DEAL:2d:cg::Starting value 0.9897
+DEAL:2d:cg::Convergence step 7 value 0
+DEAL:2d:cg::Starting value 0.9970
+DEAL:2d:cg::Failure step 15 value 2.456e-05
+DEAL:2d:cg::Starting value 0.9992
+DEAL:2d:cg::Failure step 15 value 0.2156
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 1.976
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 1.763
+DEAL:2d:cg::Starting value 64.26
+DEAL:2d:cg:cg::Starting value 108.9
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.03777
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.0007755
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 7.094e-06
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 2.710e-07
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg::Convergence step 5 value 1.631e-06
+DEAL:2d::Testing FE_Q<2>(3)
+DEAL:2d::Number of degrees of freedom: 7457
+DEAL:2d:cg::Starting value 0.9682
+DEAL:2d:cg::Convergence step 2 value 0
+DEAL:2d:cg::Starting value 0.9897
+DEAL:2d:cg::Convergence step 7 value 0
+DEAL:2d:cg::Starting value 0.9970
+DEAL:2d:cg::Failure step 15 value 2.456e-05
+DEAL:2d:cg::Starting value 0.9992
+DEAL:2d:cg::Failure step 15 value 0.2156
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 1.976
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 1.672
+DEAL:2d:cg::Starting value 0.9999
+DEAL:2d:cg::Failure step 15 value 0.9896
+DEAL:2d:cg::Starting value 83.11
+DEAL:2d:cg:cg::Starting value 165.9
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.07398
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.003378
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 2.891e-05
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 1.842e-06
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg::Convergence step 5 value 7.691e-06
+DEAL:2d::Testing FE_Q<2>(3)
+DEAL:2d::Number of degrees of freedom: 18535
+DEAL:2d:cg::Starting value 0.9682
+DEAL:2d:cg::Convergence step 2 value 0
+DEAL:2d:cg::Starting value 0.9897
+DEAL:2d:cg::Convergence step 7 value 0
+DEAL:2d:cg::Starting value 0.9970
+DEAL:2d:cg::Failure step 15 value 2.456e-05
+DEAL:2d:cg::Starting value 0.9992
+DEAL:2d:cg::Failure step 15 value 0.2156
+DEAL:2d:cg::Starting value 0.9998
+DEAL:2d:cg::Failure step 15 value 1.976
+DEAL:2d:cg::Starting value 0.9999
+DEAL:2d:cg::Failure step 15 value 1.886
+DEAL:2d:cg::Starting value 0.9999
+DEAL:2d:cg::Failure step 15 value 0.8395
+DEAL:2d:cg::Starting value 1.000
+DEAL:2d:cg::Failure step 15 value 2.204
+DEAL:2d:cg::Starting value 131.0
+DEAL:2d:cg:cg::Starting value 384.0
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.2113
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 0.002203
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 3.160e-05
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg:cg::Starting value 1.004e-06
+DEAL:2d:cg:cg::Convergence step 3 value 0
+DEAL:2d:cg::Convergence step 5 value 6.045e-06
+DEAL:3d::Testing FE_Q<3>(1)
+DEAL:3d::Number of degrees of freedom: 1103
+DEAL:3d:cg::Starting value 0.9354
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9813
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9960
+DEAL:3d:cg::Convergence step 5 value 0
+DEAL:3d:cg::Starting value 0.9993
+DEAL:3d:cg::Convergence step 13 value 9.706e-11
+DEAL:3d:cg::Starting value 0.9989
+DEAL:3d:cg::Convergence step 14 value 6.535e-11
+DEAL:3d:cg::Starting value 31.21
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg::Convergence step 6 value 3.615e-08
+DEAL:3d::Testing FE_Q<3>(1)
+DEAL:3d::Number of degrees of freedom: 3694
+DEAL:3d:cg::Starting value 0.9354
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9813
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9960
+DEAL:3d:cg::Convergence step 5 value 0
+DEAL:3d:cg::Starting value 0.9993
+DEAL:3d:cg::Convergence step 13 value 9.706e-11
+DEAL:3d:cg::Starting value 0.9994
+DEAL:3d:cg::Failure step 15 value 1.839e-08
+DEAL:3d:cg::Starting value 0.9998
+DEAL:3d:cg::Failure step 15 value 7.469e-05
+DEAL:3d:cg::Starting value 55.00
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg::Convergence step 7 value 3.941e-06
+DEAL:3d::Testing FE_Q<3>(1)
+DEAL:3d::Number of degrees of freedom: 9566
+DEAL:3d:cg::Starting value 0.9354
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9813
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9960
+DEAL:3d:cg::Convergence step 5 value 0
+DEAL:3d:cg::Starting value 0.9993
+DEAL:3d:cg::Convergence step 13 value 9.706e-11
+DEAL:3d:cg::Starting value 0.9995
+DEAL:3d:cg::Failure step 15 value 1.479e-07
+DEAL:3d:cg::Starting value 0.9999
+DEAL:3d:cg::Failure step 15 value 0.0004644
+DEAL:3d:cg::Starting value 0.9999
+DEAL:3d:cg::Failure step 15 value 1.830e-10
+DEAL:3d:cg::Starting value 76.18
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg:cg::Convergence step 0 value 0
+DEAL:3d:cg::Convergence step 8 value 5.376e-06
+DEAL:3d::Testing FE_Q<3>(2)
+DEAL:3d::Number of degrees of freedom: 7494
+DEAL:3d:cg::Starting value 0.9813
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9960
+DEAL:3d:cg::Convergence step 5 value 0
+DEAL:3d:cg::Starting value 0.9993
+DEAL:3d:cg::Convergence step 15 value 5.276e-11
+DEAL:3d:cg::Starting value 0.9999
+DEAL:3d:cg::Failure step 15 value 0.001572
+DEAL:3d:cg::Starting value 0.9998
+DEAL:3d:cg::Failure step 15 value 0.0008241
+DEAL:3d:cg::Starting value 82.90
+DEAL:3d:cg:cg::Starting value 7.225
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.01157
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.0009262
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.0001114
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 3.295e-06
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 2.088e-07
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 2.026e-08
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg::Convergence step 7 value 8.696e-07
+DEAL:3d::Testing FE_Q<3>(2)
+DEAL:3d::Number of degrees of freedom: 26548
+DEAL:3d:cg::Starting value 0.9813
+DEAL:3d:cg::Convergence step 1 value 0
+DEAL:3d:cg::Starting value 0.9960
+DEAL:3d:cg::Convergence step 5 value 0
+DEAL:3d:cg::Starting value 0.9993
+DEAL:3d:cg::Convergence step 15 value 5.276e-11
+DEAL:3d:cg::Starting value 0.9999
+DEAL:3d:cg::Failure step 15 value 0.001572
+DEAL:3d:cg::Starting value 0.9999
+DEAL:3d:cg::Failure step 15 value 0.008306
+DEAL:3d:cg::Starting value 1.000
+DEAL:3d:cg::Failure step 15 value 0.1026
+DEAL:3d:cg::Starting value 152.6
+DEAL:3d:cg:cg::Starting value 17.46
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.008363
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.001190
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 0.0001843
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 8.789e-06
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 7.697e-07
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg:cg::Starting value 6.053e-08
+DEAL:3d:cg:cg::Convergence step 1 value 0
+DEAL:3d:cg::Convergence step 7 value 3.971e-06