*/
typedef dealii::Tensor<1, spacedim> divergence_type;
+ /**
+ * A struct that provides the output type for the product of the value
+ * and derivatives of basis functions of the SymmetricTensor view and any @p Number type.
+ */
+ template <typename Number>
+ struct OutputType
+ {
+ /**
+ * A typedef for the data type of the product of a @p Number and the
+ * values of the view the SymmetricTensor class.
+ */
+ typedef typename ProductType<typename std::remove_cv<Number>::type, typename SymmetricTensor<2,dim,spacedim>::value_type>::type value_type;
+
+ /**
+ * A typedef for the data type of the product of a @p Number and the
+ * divergences of the view the SymmetricTensor class.
+ */
+ typedef typename ProductType<typename std::remove_cv<Number>::type, typename SymmetricTensor<2,dim,spacedim>::divergence_type>::type divergence_type;
+ };
+
/**
* A structure where for each shape function we pre-compute a bunch of
* data that will make later accesses much cheaper.
void get_function_values (const InputVector &fe_function,
std::vector<typename ProductType<value_type,typename InputVector::value_type>::type> &values) const;
+ /**
+ * Same as above, but using a vector of local degree-of-freedom values.
+ *
+ * The @p dof_values vector must have a length equal to number of DoFs on
+ * a cell, and each entry @p dof_values[i] is the value of the local DoF
+ * @p i. The fundamental prerequisite for the @p InputVector is that it must
+ * be possible to create an ArrayView from it; this is satisfied by the
+ * @p std::vector class.
+ *
+ * The DoF values typically would be obtained in the following way:
+ * @code
+ * Vector<double> local_dof_values(cell->get_fe().dofs_per_cell);
+ * cell->get_dof_values(solution, local_dof_values);
+ * @endcode
+ * or, for a generic @p Number type,
+ * @code
+ * std::vector<Number> local_dof_values(cell->get_fe().dofs_per_cell);
+ * cell->get_dof_values(solution, local_dof_values.begin(), local_dof_values.end());
+ * @endcode
+ */
+ template <class InputVector>
+ void get_function_values_from_local_dof_values (const InputVector &dof_values,
+ std::vector<typename OutputType<typename InputVector::value_type>::value_type> &values) const;
+
+
/**
* Return the divergence of the selected vector components of the finite
* element function characterized by <tt>fe_function</tt> at the
+ template <int dim, int spacedim>
+ template <class InputVector>
+ void
+ SymmetricTensor<2, dim, spacedim>::
+ get_function_values_from_local_dof_values(const InputVector &dof_values,
+ std::vector<typename OutputType<typename InputVector::value_type>::value_type> &values) const
+ {
+ Assert(fe_values->update_flags & update_values,
+ (typename FEValuesBase<dim,spacedim>::ExcAccessToUninitializedField("update_values")));
+ Assert(fe_values->present_cell.get() != nullptr,
+ ExcMessage("FEValues object is not reinit'ed to any cell"));
+ AssertDimension (dof_values.size(), fe_values->dofs_per_cell);
+
+ internal::do_function_values<dim,spacedim>
+ (make_array_view(dof_values.begin(), dof_values.end()),
+ fe_values->finite_element_output.shape_values, shape_function_data, values);
+ }
+
+
+
template <int dim, int spacedim>
template <class InputVector>
void
void FEValuesViews::Vector<deal_II_dimension, deal_II_space_dimension>
::get_function_third_derivatives_from_local_dof_values<VEC<Number>>
(const VEC<Number>&, std::vector<typename OutputType<Number>::third_derivative_type>&) const;
+
+
+
+ template
+ void FEValuesViews::SymmetricTensor<2,deal_II_dimension, deal_II_space_dimension>
+ ::get_function_values_from_local_dof_values<VEC<Number>>
+ (const VEC<Number>&, std::vector<typename OutputType<Number>::value_type>&) const;
#endif
}