]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Make FETools a namespace, rather than a class with all static member functions.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Sun, 26 Sep 2010 02:57:21 +0000 (02:57 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Sun, 26 Sep 2010 02:57:21 +0000 (02:57 +0000)
git-svn-id: https://svn.dealii.org/trunk@22162 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/include/fe/fe_tools.h
deal.II/deal.II/source/fe/fe_tools.all_dimensions.cc
deal.II/deal.II/source/fe/fe_tools.cc
deal.II/doc/news/changes.h

index a2e2da8ed5315e0ace2baf05a61f0cfde26a5c29..20dd758f0996abdf61a98e0fbeedb853988338f9 100644 (file)
@@ -47,7 +47,7 @@ class ConstraintMatrix;
 
 
 /**
- * This class performs interpolations and extrapolations of discrete
+ * This namespace offers interpolations and extrapolations of discrete
  * functions of one @p FiniteElement @p fe1 to another @p FiniteElement
  * @p fe2.
  *
@@ -63,1396 +63,1388 @@ class ConstraintMatrix;
  * @author Wolfgang Bangerth, Ralf Hartmann, Guido Kanschat;
  * 2000, 2003, 2004, 2005, 2006
  */
-class FETools
+namespace FETools
 {
-  public:
-                                    /**
-                                     * A base class for factory
-                                     * objects creating finite
-                                     * elements of a given
-                                     * degree. Derived classes are
-                                     * called whenever one wants to
-                                     * have a transparent way to
-                                     * create a finite element
-                                     * object.
-                                     *
-                                     * This class is used in the
-                                     * FETools::get_fe_from_name()
-                                     * and FETools::add_fe_name()
-                                     * functions.
-                                     *
-                                     * @author Guido Kanschat, 2006
-                                     */
-    template <int dim, int spacedim=dim>
-    class FEFactoryBase
-    {
-      public:
-                                        /**
-                                         * Create a FiniteElement and
-                                         * return a pointer to it.
-                                         */
-       virtual FiniteElement<dim,spacedim>*
-       get (const unsigned int degree) const = 0;
-
-                                         /**
-                                         * Virtual destructor doing
-                                         * nothing but making the
-                                         * compiler happy.
-                                         */
-       virtual ~FEFactoryBase();
-    };
-
-                                    /**
-                                     * A concrete class for factory
-                                     * objects creating finite
-                                     * elements of a given degree.
-                                     *
-                                     * The class's get() function
-                                     * generates a finite element
-                                     * object of the type given as
-                                     * template argument, and with
-                                     * the degree (however the finite
-                                     * element class wishes to
-                                     * interpret this number) given
-                                     * as argument to get().
-                                     *
-                                     * @author Guido Kanschat, 2006
-                                     */
-    template <class FE>
-    class FEFactory : public FEFactoryBase<FE::dimension,FE::dimension>
-    {
-      public:
-                                        /**
-                                         * Create a FiniteElement and
-                                         * return a pointer to it.
-                                         */
-       virtual FiniteElement<FE::dimension,FE::dimension>*
-       get (const unsigned int degree) const;
-    };
-
-                                    /**
-                                     * @warning In most cases, you
-                                     * will probably want to use
-                                     * compute_base_renumbering().
-                                     *
-                                     * Compute the vector required to
-                                     * renumber the dofs of a cell by
-                                     * component. Furthermore,
-                                     * compute the vector storing the
-                                     * start indices of each
-                                     * component in the local block
-                                     * vector.
-                                     *
-                                     * The second vector is organized
-                                     * such that there is a vector
-                                     * for each base element
-                                     * containing the start index for
-                                     * each component served by this
-                                     * base element.
-                                     *
-                                     * While the first vector is
-                                     * checked to have the correct
-                                     * size, the second one is
-                                     * reinitialized for convenience.
-                                     */
-    template<int dim, int spacedim>
-    static void compute_component_wise(
-      const FiniteElement<dim,spacedim>&                fe,
-      std::vector<unsigned int>&               renumbering,
-      std::vector<std::vector<unsigned int> >& start_indices);
-
-                                    /**
-                                     * Compute the vector required to
-                                     * renumber the dofs of a cell by
-                                     * block. Furthermore, compute
-                                     * the vector storing either the
-                                     * start indices or the size of
-                                     * each local block vector.
-                                     *
-                                     * If the @p bool parameter is
-                                     * true, @p block_data is filled
-                                     * with the start indices of each
-                                     * local block. If it is false,
-                                     * then the block sizes are
-                                     * returned.
-                                     *
-                                     * @todo Which way does this
-                                     * vector map the numbers?
-                                     */
-    template<int dim, int spacedim>
-    static void compute_block_renumbering (
-      const FiniteElement<dim,spacedim>&  fe,
-      std::vector<unsigned int>& renumbering,
-      std::vector<unsigned int>& block_data,
-      bool return_start_indices = true);
-
-                                    /**
-                                     * @name Generation of local matrices
-                                     * @{
-                                     */
-                                    /**
-                                     * Gives the interpolation matrix
-                                     * that interpolates a @p fe1-
-                                     * function to a @p fe2-function on
-                                     * each cell. The interpolation_matrix
-                                     * needs to be of size
-                                     * <tt>(fe2.dofs_per_cell, fe1.dofs_per_cell)</tt>.
-                                     *
-                                     * Note, that if the finite element
-                                     * space @p fe1 is a subset of
-                                     * the finite element space
-                                     * @p fe2 then the @p interpolation_matrix
-                                     * is an embedding matrix.
-                                     */
-    template <int dim, typename number, int spacedim>
-    static
-    void
-    get_interpolation_matrix(const FiniteElement<dim,spacedim> &fe1,
-                             const FiniteElement<dim,spacedim> &fe2,
-                             FullMatrix<number> &interpolation_matrix);
-
-                                    /**
-                                     * Gives the interpolation matrix
-                                     * that interpolates a @p fe1-
-                                     * function to a @p fe2-function, and
-                                     * interpolates this to a second
-                                     * @p fe1-function on
-                                     * each cell. The interpolation_matrix
-                                     * needs to be of size
-                                     * <tt>(fe1.dofs_per_cell, fe1.dofs_per_cell)</tt>.
-                                     *
-                                     * Note, that this function only
-                                     * makes sense if the finite element
-                                     * space due to @p fe1 is not a subset of
-                                     * the finite element space due to
-                                     * @p fe2, as if it were a subset then
-                                     * the @p interpolation_matrix would be
-                                     * only the unit matrix.
-                                     */
-    template <int dim, typename number, int spacedim>
-    static
-    void
-    get_back_interpolation_matrix(const FiniteElement<dim,spacedim> &fe1,
-                                  const FiniteElement<dim,spacedim> &fe2,
-                                  FullMatrix<number> &interpolation_matrix);
-
-                                    /**
-                                     * Gives the unit matrix minus the
-                                     * back interpolation matrix.
-                                     * The @p difference_matrix
-                                     * needs to be of size
-                                     * <tt>(fe1.dofs_per_cell, fe1.dofs_per_cell)</tt>.
-                                     *
-                                     * This function gives
-                                     * the matrix that transforms a
-                                     * @p fe1 function $z$ to $z-I_hz$
-                                     * where $I_h$ denotes the interpolation
-                                     * operator from the @p fe1 space to
-                                     * the @p fe2 space. This matrix hence
-                                     * is useful to evaluate
-                                     * error-representations where $z$
-                                     * denotes the dual solution.
-                                     */
-    template <int dim, typename number, int spacedim>
-    static
-    void
-    get_interpolation_difference_matrix(const FiniteElement<dim,spacedim> &fe1,
-                                        const FiniteElement<dim,spacedim> &fe2,
-                                        FullMatrix<number> &difference_matrix);
-
-                                    /**
-                                     * Compute the local
-                                     * $L^2$-projection matrix from
-                                     * fe1 to fe2.
-                                     */
-    template <int dim, typename number, int spacedim>
-    static void get_projection_matrix(const FiniteElement<dim,spacedim> &fe1,
+                                  /**
+                                   * A base class for factory
+                                   * objects creating finite
+                                   * elements of a given
+                                   * degree. Derived classes are
+                                   * called whenever one wants to
+                                   * have a transparent way to
+                                   * create a finite element
+                                   * object.
+                                   *
+                                   * This class is used in the
+                                   * FETools::get_fe_from_name()
+                                   * and FETools::add_fe_name()
+                                   * functions.
+                                   *
+                                   * @author Guido Kanschat, 2006
+                                   */
+  template <int dim, int spacedim=dim>
+  class FEFactoryBase
+  {
+    public:
+                                      /**
+                                       * Create a FiniteElement and
+                                       * return a pointer to it.
+                                       */
+      virtual FiniteElement<dim,spacedim>*
+      get (const unsigned int degree) const = 0;
+
+                                      /**
+                                       * Virtual destructor doing
+                                       * nothing but making the
+                                       * compiler happy.
+                                       */
+      virtual ~FEFactoryBase();
+  };
+
+                                  /**
+                                   * A concrete class for factory
+                                   * objects creating finite
+                                   * elements of a given degree.
+                                   *
+                                   * The class's get() function
+                                   * generates a finite element
+                                   * object of the type given as
+                                   * template argument, and with
+                                   * the degree (however the finite
+                                   * element class wishes to
+                                   * interpret this number) given
+                                   * as argument to get().
+                                   *
+                                   * @author Guido Kanschat, 2006
+                                   */
+  template <class FE>
+  class FEFactory : public FEFactoryBase<FE::dimension,FE::dimension>
+  {
+    public:
+                                      /**
+                                       * Create a FiniteElement and
+                                       * return a pointer to it.
+                                       */
+      virtual FiniteElement<FE::dimension,FE::dimension>*
+      get (const unsigned int degree) const;
+  };
+
+                                  /**
+                                   * @warning In most cases, you
+                                   * will probably want to use
+                                   * compute_base_renumbering().
+                                   *
+                                   * Compute the vector required to
+                                   * renumber the dofs of a cell by
+                                   * component. Furthermore,
+                                   * compute the vector storing the
+                                   * start indices of each
+                                   * component in the local block
+                                   * vector.
+                                   *
+                                   * The second vector is organized
+                                   * such that there is a vector
+                                   * for each base element
+                                   * containing the start index for
+                                   * each component served by this
+                                   * base element.
+                                   *
+                                   * While the first vector is
+                                   * checked to have the correct
+                                   * size, the second one is
+                                   * reinitialized for convenience.
+                                   */
+  template<int dim, int spacedim>
+  void compute_component_wise(
+    const FiniteElement<dim,spacedim>&                fe,
+    std::vector<unsigned int>&               renumbering,
+    std::vector<std::vector<unsigned int> >& start_indices);
+
+                                  /**
+                                   * Compute the vector required to
+                                   * renumber the dofs of a cell by
+                                   * block. Furthermore, compute
+                                   * the vector storing either the
+                                   * start indices or the size of
+                                   * each local block vector.
+                                   *
+                                   * If the @p bool parameter is
+                                   * true, @p block_data is filled
+                                   * with the start indices of each
+                                   * local block. If it is false,
+                                   * then the block sizes are
+                                   * returned.
+                                   *
+                                   * @todo Which way does this
+                                   * vector map the numbers?
+                                   */
+  template<int dim, int spacedim>
+  void compute_block_renumbering (
+    const FiniteElement<dim,spacedim>&  fe,
+    std::vector<unsigned int>& renumbering,
+    std::vector<unsigned int>& block_data,
+    bool return_start_indices = true);
+
+                                  /**
+                                   * @name Generation of local matrices
+                                   * @{
+                                   */
+                                  /**
+                                   * Gives the interpolation matrix
+                                   * that interpolates a @p fe1-
+                                   * function to a @p fe2-function on
+                                   * each cell. The interpolation_matrix
+                                   * needs to be of size
+                                   * <tt>(fe2.dofs_per_cell, fe1.dofs_per_cell)</tt>.
+                                   *
+                                   * Note, that if the finite element
+                                   * space @p fe1 is a subset of
+                                   * the finite element space
+                                   * @p fe2 then the @p interpolation_matrix
+                                   * is an embedding matrix.
+                                   */
+  template <int dim, typename number, int spacedim>
+  void
+  get_interpolation_matrix(const FiniteElement<dim,spacedim> &fe1,
+                          const FiniteElement<dim,spacedim> &fe2,
+                          FullMatrix<number> &interpolation_matrix);
+
+                                  /**
+                                   * Gives the interpolation matrix
+                                   * that interpolates a @p fe1-
+                                   * function to a @p fe2-function, and
+                                   * interpolates this to a second
+                                   * @p fe1-function on
+                                   * each cell. The interpolation_matrix
+                                   * needs to be of size
+                                   * <tt>(fe1.dofs_per_cell, fe1.dofs_per_cell)</tt>.
+                                   *
+                                   * Note, that this function only
+                                   * makes sense if the finite element
+                                   * space due to @p fe1 is not a subset of
+                                   * the finite element space due to
+                                   * @p fe2, as if it were a subset then
+                                   * the @p interpolation_matrix would be
+                                   * only the unit matrix.
+                                   */
+  template <int dim, typename number, int spacedim>
+  void
+  get_back_interpolation_matrix(const FiniteElement<dim,spacedim> &fe1,
+                               const FiniteElement<dim,spacedim> &fe2,
+                               FullMatrix<number> &interpolation_matrix);
+
+                                  /**
+                                   * Gives the unit matrix minus the
+                                   * back interpolation matrix.
+                                   * The @p difference_matrix
+                                   * needs to be of size
+                                   * <tt>(fe1.dofs_per_cell, fe1.dofs_per_cell)</tt>.
+                                   *
+                                   * This function gives
+                                   * the matrix that transforms a
+                                   * @p fe1 function $z$ to $z-I_hz$
+                                   * where $I_h$ denotes the interpolation
+                                   * operator from the @p fe1 space to
+                                   * the @p fe2 space. This matrix hence
+                                   * is useful to evaluate
+                                   * error-representations where $z$
+                                   * denotes the dual solution.
+                                   */
+  template <int dim, typename number, int spacedim>
+  void
+  get_interpolation_difference_matrix(const FiniteElement<dim,spacedim> &fe1,
                                      const FiniteElement<dim,spacedim> &fe2,
-                                     FullMatrix<number> &matrix);
-
-                                    /**
-                                     * Compute the matrix of nodal
-                                     * values of a finite element
-                                     * applied to all its shape
-                                     * functions.
-                                     *
-                                     * This function is supposed to
-                                     * help building finite elements
-                                     * from polynomial spaces and
-                                     * should be called inside the
-                                     * constructor of an
-                                     * element. Applied to a
-                                     * completely initialized finite
-                                     * element, the result should be
-                                     * the unit matrix by definition
-                                     * of the node values.
-                                     *
-                                     * Using this matrix allows the
-                                     * construction of the basis of
-                                     * shape functions in two steps.
-                                     * <ol>
-                                     *
-                                     * <li>Define the space of shape
-                                     * functions using an arbitrary
-                                     * basis <i>w<sub>j</sub></i> and
-                                     * compute the matrix <i>M</i> of
-                                     * node functionals
-                                     * <i>N<sub>i</sub></i> applied
-                                     * to these basis functions.
-                                     *
-                                     * <li>Compute the basis
-                                     * <i>v<sub>j</sub></i> of the
-                                     * finite element shape function
-                                     * space by applying
-                                     * <i>M<sup>-1</sup></i> to the
-                                     * basis <i>w<sub>j</sub></i>.
-                                     * </ol>
-                                     *
-                                     * @note The FiniteElement must
-                                     * provide generalized support
-                                     * points and and interpolation
-                                     * functions.
-                                     */
-    template <int dim, int spacedim>
-    static void compute_node_matrix(FullMatrix<double>& M,
-                                   const FiniteElement<dim,spacedim>& fe);
-
-                                    /**
-                                     * For all possible (isotropic
-                                     * and anisotropic) refinement
-                                     * cases compute the embedding
-                                     * matrices from a coarse cell to
-                                     * the child cells. Each column
-                                     * of the resulting matrices
-                                     * contains the representation of
-                                     * a coarse grid basis functon by
-                                     * the fine grid basis; the
-                                     * matrices are split such that
-                                     * there is one matrix for every
-                                     * child.
-                                     *
-                                     * This function computes the
-                                     * coarse grid function in a
-                                     * sufficiently large number of
-                                     * quadrature points and fits the
-                                     * fine grid functions using
-                                     * least squares
-                                     * approximation. Therefore, the
-                                     * use of this function is
-                                     * restricted to the case that
-                                     * the finite element spaces are
-                                     * actually nested.
-                                     *
-                                     * Note, that
-                                     * <code>matrices[refinement_case-1][child]</code>
-                                     * includes the embedding (or prolongation)
-                                     * matrix of child
-                                     * <code>child</code> for the
-                                     * RefinementCase
-                                     * <code>refinement_case</code>. Here,
-                                     * we use
-                                     * <code>refinement_case-1</code>
-                                     * instead of
-                                     * <code>refinement_case</code>
-                                     * as for
-                                     * RefinementCase::no_refinement(=0)
-                                     * there are no prolongation
-                                     * matrices available.
-                                     *
-                                     * Typically this function is
-                                     * called by the various
-                                     * implementations of
-                                     * FiniteElement classes in order
-                                     * to fill the respective
-                                     * FiniteElement::prolongation
-                                     * matrices.
-                                     *
-                                     * @param fe The finite element
-                                     * class for which we compute the
-                                     * embedding matrices.
-                                     *
-                                     * @param matrices A reference to
-                                     * RefinementCase<dim>::isotropic_refinement
-                                     * vectors of FullMatrix
-                                     * objects. Each vector
-                                     * corresponds to one
-                                     * RefinementCase @p
-                                     * refinement_case and is of the
-                                     * vector size
-                                     * GeometryInfo<dim>::n_children(refinement_case). This
-                                     * is the format used in
-                                     * FiniteElement, where we want
-                                     * to use this function mostly.
-                                     *
-                                     * @param isotropic_only Set
-                                     * to <code>true</code> if you only
-                                     * want to compute matrices for
-                                     * isotropic refinement.
-                                     */
-    template <int dim, typename number, int spacedim>
-    static void compute_embedding_matrices(const FiniteElement<dim,spacedim> &fe,
-                                          std::vector<std::vector<FullMatrix<number> > >& matrices,
-                                          const bool isotropic_only = false);
-
-                                    /**
-                                     * Compute the embedding matrices
-                                     * on faces needed for constraint
-                                     * matrices.
-                                     *
-                                     * @param fe The finite element
-                                     * for which to compute these
-                                     * matrices.  @param matrices An
-                                     * array of
-                                     * <i>GeometryInfo<dim>::subfaces_per_face
-                                     * = 2<sup>dim-1</sup></i>
-                                     * FullMatrix objects,holding the
-                                     * embedding matrix for each
-                                     * subface.  @param face_coarse
-                                     * The number of the face on the
-                                     * coarse side of the face for
-                                     * which this is computed.
-                                     * @param face_fine The number of
-                                     * the face on the refined side
-                                     * of the face for which this is
-                                     * computed.
-                                     *
-                                     * @warning This function will be
-                                     * used in computing constraint
-                                     * matrices. It is not
-                                     * sufficiently tested yet.
-                                     */
-    template <int dim, typename number, int spacedim>
-    static void
-    compute_face_embedding_matrices(const FiniteElement<dim,spacedim>& fe,
-                                   FullMatrix<number> (&matrices)[GeometryInfo<dim>::max_children_per_face],
-                                   const unsigned int face_coarse,
-                                   const unsigned int face_fine);
-
-                                    /**
-                                     * For all possible (isotropic
-                                     * and anisotropic) refinement
-                                     * cases compute the
-                                     * <i>L<sup>2</sup></i>-projection
-                                     * matrices from the children to
-                                     * a coarse cell.
-                                     *
-                                     * Note, that
-                                     * <code>matrices[refinement_case-1][child]</code>
-                                     * includes the projection (or restriction)
-                                     * matrix of child
-                                     * <code>child</code> for the
-                                     * RefinementCase
-                                     * <code>refinement_case</code>. Here,
-                                     * we use
-                                     * <code>refinement_case-1</code>
-                                     * instead of
-                                     * <code>refinement_case</code>
-                                     * as for
-                                     * RefinementCase::no_refinement(=0)
-                                     * there are no projection
-                                     * matrices available.
-                                     *
-                                     * Typically this function is
-                                     * called by the various
-                                     * implementations of
-                                     * FiniteElement classes in order
-                                     * to fill the respective
-                                     * FiniteElement::restriction
-                                     * matrices.
-                                     *
-                                     * @arg fe The finite element
-                                     * class for which we compute the
-                                     * projection matrices.  @arg
-                                     * matrices A reference to
-                                     * <tt>RefinementCase<dim>::isotropic_refinement</tt>
-                                     * vectors of FullMatrix
-                                     * objects. Each vector
-                                     * corresponds to one
-                                     * RefinementCase @p
-                                     * refinement_case and is of the
-                                     * vector size
-                                     * <tt>GeometryInfo<dim>::n_children(refinement_case)</tt>. This
-                                     * is the format used in
-                                     * FiniteElement, where we want
-                                     * to use this function mostly.
-                                     *
-                                     * @arg isotropic_only Set
-                                     * to <code>true</code> if you only
-                                     * want to compute matrices for
-                                     * isotropic refinement.
-                                     */
-    template <int dim, typename number, int spacedim>
-    static void compute_projection_matrices(
-      const FiniteElement<dim,spacedim> &fe,
-      std::vector<std::vector<FullMatrix<number> > >& matrices,
-      const bool isotropic_only = false);
-
-                                    /**
-                                      * Projects scalar data defined in
-                                      * quadrature points to a finite element
-                                      * space on a single cell.
-                                      *
-                                      * What this function does is the
-                                      * following: assume that there is scalar
-                                      * data <tt>u<sub>q</sub>, 0 <= q <
-                                      * Q:=quadrature.size()</tt>
-                                      * defined at the quadrature points of a
-                                      * cell, with the points defined by the
-                                      * given <tt>rhs_quadrature</tt>
-                                      * object. We may then want to ask for
-                                      * that finite element function (on a
-                                      * single cell) <tt>v<sub>h</sub></tt> in
-                                      * the finite-dimensional space defined
-                                      * by the given FE object that is the
-                                      * projection of <tt>u</tt> in the
-                                      * following sense:
-                                      *
-                                      * Usually, the projection
-                                      * <tt>v<sub>h</sub></tt> is that
-                                      * function that satisfies
-                                      * <tt>(v<sub>h</sub>,w)=(u,w)</tt> for
-                                      * all discrete test functions
-                                      * <tt>w</tt>. In the present case, we
-                                      * can't evaluate the right hand side,
-                                      * since <tt>u</tt> is only defined in
-                                      * the quadrature points given by
-                                      * <tt>rhs_quadrature</tt>, so we replace
-                                      * it by a quadrature
-                                      * approximation. Likewise, the left hand
-                                      * side is approximated using the
-                                      * <tt>lhs_quadrature</tt> object; if
-                                      * this quadrature object is chosen
-                                      * appropriately, then the integration of
-                                      * the left hand side can be done
-                                      * exactly, without any
-                                      * approximation. The use of different
-                                      * quadrature objects is necessary if the
-                                      * quadrature object for the right hand
-                                      * side has too few quadrature points --
-                                      * for example, if data <tt>q</tt> is
-                                      * only defined at the cell center, then
-                                      * the corresponding one-point quadrature
-                                      * formula is obviously insufficient to
-                                      * approximate the scalar product on the
-                                      * left hand side by a definite form.
-                                      *
-                                      * After these quadrature approximations,
-                                      * we end up with a nodal representation
-                                      * <tt>V<sub>h</sub></tt> of
-                                      * <tt>v<sub>h</sub></tt> that satisfies
-                                      * the following system of linear
-                                      * equations: <tt>M V<sub>h</sub> = Q
-                                      * U</tt>, where
-                                      * <tt>M<sub>ij</sub>=(phi_i,phi_j)</tt>
-                                      * is the mass matrix approximated by
-                                      * <tt>lhs_quadrature</tt>, and
-                                      * <tt>Q</tt> is the matrix
-                                      * <tt>Q<sub>iq</sub>=phi<sub>i</sub>(x<sub>q</sub>)
-                                      * w<sub>q</sub></tt> where
-                                      * <tt>w<sub>q</sub></tt> are quadrature
-                                      * weights; <tt>U</tt> is the vector of
-                                      * quadrature point data
-                                      * <tt>u<sub>q</sub></tt>.
-                                      *
-                                      * In order to then get the nodal
-                                      * representation <tt>V<sub>h</sub></tt>
-                                      * of the projection of <tt>U</tt>, one
-                                      * computes <tt>V<sub>h</sub> = X U,
-                                      * X=M<sup>-1</sup> Q</tt>. The purpose
-                                      * of this function is to compute the
-                                      * matrix <tt>X</tt> and return it
-                                      * through the last argument of this
-                                      * function.
-                                      *
-                                      * Note that this function presently only
-                                      * supports scalar data. An extension of
-                                      * the mass matrix is of course trivial,
-                                      * but one has to define the order of
-                                      * data in the vector <tt>U</tt> if it
-                                      * contains vector valued data in all
-                                      * quadrature points.
-                                      *
-                                      * A use for this function is described
-                                      * in the introduction to the step-18
-                                      * example program.
-                                      *
-                                      * The opposite of this function,
-                                      * interpolation of a finite element
-                                      * function onto quadrature points is
-                                      * essentially what the
-                                      * <tt>FEValues::get_function_values</tt>
-                                      * functions do; to make things a little
-                                      * simpler, the
-                                      * <tt>FETools::compute_interpolation_to_quadrature_points_matrix</tt>
-                                      * provides the matrix form of this.
-                                     *
-                                     * Note that this function works
-                                     * on a single cell, rather than
-                                     * an entire triangulation. In
-                                     * effect, it therefore doesn't
-                                     * matter if you use a continuous
-                                     * or discontinuous version of
-                                     * the finite element.
-                                     *
-                                     * It is worth noting that there
-                                     * are a few confusing cases of
-                                     * this function. The first one
-                                     * is that it really only makes
-                                     * sense to project onto a finite
-                                     * element that has at most as
-                                     * many degrees of freedom per
-                                     * cell as there are quadrature
-                                     * points; the projection of N
-                                     * quadrature point data into a
-                                     * space with M>N unknowns is
-                                     * well-defined, but often yields
-                                     * funny and non-intuitive
-                                     * results. Secondly, one would
-                                     * think that if the quadrature
-                                     * point data is defined in the
-                                     * support points of the finite
-                                     * element, i.e. the quadrature
-                                     * points of
-                                     * <tt>ths_quadrature</tt> equal
-                                     * <tt>fe.get_unit_support_points()</tt>,
-                                     * then the projection should be
-                                     * the identity, i.e. each degree
-                                     * of freedom of the finite
-                                     * element equals the value of
-                                     * the given data in the support
-                                     * point of the corresponding
-                                     * shape function. However, this
-                                     * is not generally the case:
-                                     * while the matrix <tt>Q</tt> in
-                                     * that case is the identity
-                                     * matrix, the mass matrix
-                                     * <tt>M</tt> is not equal to the
-                                     * identity matrix, except for
-                                     * the special case that the
-                                     * quadrature formula
-                                     * <tt>lhs_quadrature</tt> also
-                                     * has its quadrature points in
-                                     * the support points of the
-                                     * finite element.
-                                     *
-                                     * Finally, this function only defines a
-                                     * cell wise projection, while one
-                                     * frequently wants to apply it to all
-                                     * cells in a triangulation. However, if
-                                     * it is applied to one cell after the
-                                     * other, the results from later cells
-                                     * may overwrite nodal values computed
-                                     * already from previous cells if degrees
-                                     * of freedom live on the interfaces
-                                     * between cells. The function is
-                                     * therefore most useful for
-                                     * discontinuous elements.
-                                      */
-    template <int dim, int spacedim>
-    static
-    void
-    compute_projection_from_quadrature_points_matrix (const FiniteElement<dim,spacedim> &fe,
-                                                      const Quadrature<dim>    &lhs_quadrature,
-                                                      const Quadrature<dim>    &rhs_quadrature,
-                                                      FullMatrix<double>       &X);
-
-                                     /**
-                                      * Given a (scalar) local finite element
-                                      * function, compute the matrix that maps
-                                      * the vector of nodal values onto the
-                                      * vector of values of this function at
-                                      * quadrature points as given by the
-                                      * second argument. In a sense, this
-                                      * function does the opposite of the @p
-                                      * compute_projection_from_quadrature_points_matrix
-                                      * function.
-                                      */
-    template <int dim, int spacedim>
-    static
-    void
-    compute_interpolation_to_quadrature_points_matrix (const FiniteElement<dim,spacedim> &fe,
-                                                       const Quadrature<dim>    &quadrature,
-                                                       FullMatrix<double>       &I_q);
-
-                                    /**
-                                     * Computes the projection of tensorial
-                                     * (first-order tensor)
-                                     * data stored at the quadrature points
-                                     * @p vector_of_tensors_at_qp
-                                     * to data @p vector_of_tensors_at_nodes
-                                     * at the support points of the cell.
-                                     * The data in
-                                     * @p vector_of_tensors_at_qp
-                                     * is ordered sequentially following the
-                                     * quadrature point numbering.
-                                     * The size of
-                                     * @p vector_of_tensors_at_qp
-                                     * must correspond to the number of columns
-                                     * of @p projection_matrix.
-                                     * The size of @p vector_of_tensors_at_nodes
-                                     * must correspond to the number of rows of
-                                     * @p vector_of_tensors_at_nodes .
-                                     * The projection matrix
-                                     * @p projection_matrix desribes the
-                                     * projection of scalar data from the
-                                     * quadrature points and can be obtained
-                                     * from the
-                                     * FETools::compute_projection_from_quadrature_points_matrix
-                                     * function.
-                                     */
-    template <int dim>
-    static
-    void
-    compute_projection_from_quadrature_points(
-      const FullMatrix<double>    &projection_matrix,
-      const std::vector< Tensor<1, dim > >    &vector_of_tensors_at_qp,
-      std::vector< Tensor<1, dim > >          &vector_of_tensors_at_nodes);
-
-
-
-                                    /**
-                                     * same as last function but for a
-                                     * @p SymmetricTensor .
-                                     */
-    template <int dim>
-    static
-    void
-    compute_projection_from_quadrature_points(
-      const FullMatrix<double>    &projection_matrix,
-      const std::vector< SymmetricTensor<2, dim > >   &vector_of_tensors_at_qp,
-      std::vector< SymmetricTensor<2, dim > >         &vector_of_tensors_at_nodes);
-
-
-
-
-                                    /**
-                                     * This method implements the
-                                     * FETools::compute_projection_from_quadrature_points_matrix
-                                     * method for faces of a mesh.
-                                     * The matrix that it returns, X, is face specific
-                                     * and its size is fe.dofs_per_cell by
-                                     * rhs_quadrature.size().
-                                     * The dimension, dim must be larger than 1 for this class,
-                                     * since Quadrature<dim-1> objects are required. See the
-                                     * documentation on the Quadrature class for more information.
-                                     */
-    template <int dim, int spacedim>
-    static
-    void
-    compute_projection_from_face_quadrature_points_matrix (const FiniteElement<dim, spacedim> &fe,
-                                                          const Quadrature<dim-1>    &lhs_quadrature,
-                                                          const Quadrature<dim-1>    &rhs_quadrature,
-                                                          const typename DoFHandler<dim, spacedim>::active_cell_iterator & cell,
-                                                          unsigned int face,
-                                                          FullMatrix<double>       &X);
-
-
-
-                                    //@}
-                                    /**
-                                     * @name Functions which should be in DoFTools
-                                     */
-                                    //@{
-                                    /**
-                                     * Gives the interpolation of a the
-                                     * @p dof1-function @p u1 to a
-                                     * @p dof2-function @p u2. @p dof1 and
-                                     * @p dof2 need to be DoFHandlers
-                                     * based on the same triangulation.
-                                     *
-                                     * If the elements @p fe1 and @p fe2
-                                     * are either both continuous or
-                                     * both discontinuous then this
-                                     * interpolation is the usual point
-                                     * interpolation. The same is true
-                                     * if @p fe1 is a continuous and
-                                     * @p fe2 is a discontinuous finite
-                                     * element. For the case that @p fe1
-                                     * is a discontinuous and @p fe2 is
-                                     * a continuous finite element
-                                     * there is no point interpolation
-                                     * defined at the discontinuities.
-                                     * Therefore the meanvalue is taken
-                                     * at the DoF values on the
-                                     * discontinuities.
-                                     *
-                                     * Note that for continuous
-                                     * elements on grids with hanging
-                                     * nodes (i.e. locally refined
-                                     * grids) this function does not
-                                     * give the expected output.
-                                     * Indeed, the resulting output
-                                     * vector does not necessarily
-                                     * respect continuity
-                                     * requirements at hanging nodes:
-                                     * if, for example, you are
-                                     * interpolating a Q2 field to a
-                                     * Q1 field, then at hanging
-                                     * nodes the output field will
-                                     * have the function value of the
-                                     * input field, which however is
-                                     * not usually the mean value of
-                                     * the two adjacent nodes. It is
-                                     * thus not part of the Q1
-                                     * function space on the whole
-                                     * triangulation, although it is
-                                     * of course Q1 on each cell.
-                                     *
-                                     * For this case (continuous
-                                     * elements on grids with hanging
-                                     * nodes), please use the
-                                     * @p interpolate function with
-                                     * an additional
-                                     * @p ConstraintMatrix argument,
-                                     * see below, or make the field
-                                     * conforming yourself by calling
-                                     * the @p distribute function of
-                                     * your hanging node constraints
-                                     * object.
-                                     */
-    template <int dim, int spacedim,
-              template <int,int> class DH1,
-              template <int,int> class DH2,
-              class InVector, class OutVector>
-    static
-    void
-    interpolate (const DH1<dim,spacedim> &dof1,
-                 const InVector          &u1,
-                 const DH2<dim,spacedim> &dof2,
-                 OutVector               &u2);
-
-                                    /**
-                                     * Gives the interpolation of a
-                                     * the @p dof1-function @p u1 to
-                                     * a @p dof2-function @p u2. @p
-                                     * dof1 and @p dof2 need to be
-                                     * DoFHandlers (or
-                                     * hp::DoFHandlers) based on the
-                                     * same triangulation.  @p
-                                     * constraints is a hanging node
-                                     * constraints object
-                                     * corresponding to @p dof2. This
-                                     * object is particular important
-                                     * when interpolating onto
-                                     * continuous elements on grids
-                                     * with hanging nodes (locally
-                                     * refined grids).
-                                     *
-                                     * If the elements @p fe1 and @p fe2
-                                     * are either both continuous or
-                                     * both discontinuous then this
-                                     * interpolation is the usual point
-                                     * interpolation. The same is true
-                                     * if @p fe1 is a continuous and
-                                     * @p fe2 is a discontinuous finite
-                                     * element. For the case that @p fe1
-                                     * is a discontinuous and @p fe2 is
-                                     * a continuous finite element
-                                     * there is no point interpolation
-                                     * defined at the discontinuities.
-                                     * Therefore the meanvalue is taken
-                                     * at the DoF values on the
-                                     * discontinuities.
-                                     */
-    template <int dim, int spacedim,
-             template <int, int> class DH1,
-             template <int, int> class DH2,
-             class InVector, class OutVector>
-    static void interpolate (const DH1<dim,spacedim>  &dof1,
-                            const InVector           &u1,
-                            const DH2<dim,spacedim>  &dof2,
-                            const ConstraintMatrix   &constraints,
-                            OutVector&                u2);
-
-                                    /**
-                                     * Gives the interpolation of the
-                                     * @p fe1-function @p u1 to a
-                                     * @p fe2-function, and
-                                     * interpolates this to a second
-                                     * @p fe1-function named
-                                     * @p u1_interpolated.
-                                     *
-                                     * Note, that this function does
-                                     * not work on continuous
-                                     * elements at hanging nodes. For
-                                     * that case use the
-                                     * @p back_interpolate function,
-                                     * below, that takes an
-                                     * additional
-                                     * @p ConstraintMatrix object.
-                                     *
-                                     * Furthermore note, that for the
-                                     * specific case when the finite
-                                     * element space corresponding to
-                                     * @p fe1 is a subset of the
-                                     * finite element space
-                                     * corresponding to @p fe2, this
-                                     * function is simply an identity
-                                     * mapping.
-                                     */
-    template <int dim, class InVector, class OutVector, int spacedim>
-    static void back_interpolate (const DoFHandler<dim,spacedim>    &dof1,
-                                 const InVector           &u1,
-                                 const FiniteElement<dim,spacedim> &fe2,
-                                 OutVector                &u1_interpolated);
-
-                                    /**
-                                     * Same as last function, except
-                                     * that the dof handler objects
-                                     * might be of type
-                                     * @p hp::DoFHandler.
-                                     */
-    template <int dim,
-             template <int> class DH,
-             class InVector, class OutVector, int spacedim>
-    static void back_interpolate (const DH<dim>            &dof1,
-                                 const InVector           &u1,
-                                 const FiniteElement<dim,spacedim> &fe2,
-                                 OutVector                &u1_interpolated);
-
-                                    /**
-                                     * Gives the interpolation of the
-                                     * @p dof1-function @p u1 to a
-                                     * @p dof2-function, and
-                                     * interpolates this to a second
-                                     * @p dof1-function named
-                                     * @p u1_interpolated.
-                                     * @p constraints1 and
-                                     * @p constraints2 are the
-                                     * hanging node constraints
-                                     * corresponding to @p dof1 and
-                                     * @p dof2, respectively. These
-                                     * objects are particular
-                                     * important when continuous
-                                     * elements on grids with hanging
-                                     * nodes (locally refined grids)
-                                     * are involved.
-                                     *
-                                     * Furthermore note, that for the
-                                     * specific case when the finite
-                                     * element space corresponding to
-                                     * @p dof1 is a subset of the
-                                     * finite element space
-                                     * corresponding to @p dof2, this
-                                     * function is simply an identity
-                                     * mapping.
-                                     */
-    template <int dim, class InVector, class OutVector, int spacedim>
-    static void back_interpolate (const DoFHandler<dim,spacedim>&  dof1,
-                                 const ConstraintMatrix& constraints1,
-                                 const InVector&         u1,
-                                 const DoFHandler<dim,spacedim>&  dof2,
-                                 const ConstraintMatrix& constraints2,
-                                 OutVector&              u1_interpolated);
-
-                                    /**
-                                     * Gives $(Id-I_h)z_1$ for a given
-                                     * @p dof1-function $z_1$, where $I_h$
-                                     * is the interpolation from @p fe1
-                                     * to @p fe2. The result $(Id-I_h)z_1$ is
-                                     * written into @p z1_difference.
-                                     *
-                                     * Note, that this function does
-                                     * not work for continuous
-                                     * elements at hanging nodes. For
-                                     * that case use the
-                                     * @p interpolation_difference
-                                     * function, below, that takes an
-                                     * additional
-                                     * @p ConstraintMatrix object.
-                                     */
-    template <int dim, class InVector, class OutVector, int spacedim>
-    static void interpolation_difference(const DoFHandler<dim,spacedim> &dof1,
-                                        const InVector &z1,
-                                        const FiniteElement<dim,spacedim> &fe2,
-                                        OutVector &z1_difference);
-
-                                    /**
-                                     * Gives $(Id-I_h)z_1$ for a given
-                                     * @p dof1-function $z_1$, where $I_h$
-                                     * is the interpolation from @p fe1
-                                     * to @p fe2. The result $(Id-I_h)z_1$ is
-                                     * written into @p z1_difference.
-                                     * @p constraints1 and
-                                     * @p constraints2 are the
-                                     * hanging node constraints
-                                     * corresponding to @p dof1 and
-                                     * @p dof2, respectively. These
-                                     * objects are particular
-                                     * important when continuous
-                                     * elements on grids with hanging
-                                     * nodes (locally refined grids)
-                                     * are involved.
-                                     */
-    template <int dim, class InVector, class OutVector, int spacedim>
-    static void interpolation_difference(const DoFHandler<dim,spacedim>&  dof1,
-                                        const ConstraintMatrix& constraints1,
-                                        const InVector&         z1,
-                                        const DoFHandler<dim,spacedim>&  dof2,
-                                        const ConstraintMatrix& constraints2,
-                                        OutVector&              z1_difference);
-
-                                    /**
-                                     * $L^2$ projection for
-                                     * discontinuous
-                                     * elements. Operates the same
-                                     * direction as interpolate.
-                                     *
-                                     * The global projection can be
-                                     * computed by local matrices if
-                                     * the finite element spaces are
-                                     * discontinuous. With continuous
-                                     * elements, this is impossible,
-                                     * since a global mass matrix
-                                     * must be inverted.
-                                     */
-    template <int dim, class InVector, class OutVector, int spacedim>
-    static void project_dg (const DoFHandler<dim,spacedim>& dof1,
-                           const InVector&        u1,
-                           const DoFHandler<dim,spacedim>& dof2,
-                           OutVector&             u2);
-
-                                    /**
-                                     * Gives the patchwise
-                                     * extrapolation of a @p dof1
-                                     * function @p z1 to a @p dof2
-                                     * function @p z2.  @p dof1 and
-                                     * @p dof2 need to be DoFHandler
-                                     * based on the same triangulation.
-                                     *
-                                     * This function is interesting
-                                     * for e.g. extrapolating
-                                     * patchwise a piecewise linear
-                                     * solution to a piecewise
-                                     * quadratic solution.
-                                     *
-                                     * Note that the resulting field
-                                     * does not satisfy continuity
-                                     * requirements of the given
-                                     * finite elements.
-                                     *
-                                     * When you use continuous
-                                     * elements on grids with hanging
-                                     * nodes, please use the
-                                     * @p extrapolate function with
-                                     * an additional
-                                     * ConstraintMatrix argument,
-                                     * see below.
-                                     *
-                                     * Since this function operates
-                                     * on patches of cells, it is
-                                     * required that the underlying
-                                     * grid is refined at least once
-                                     * for every coarse grid cell. If
-                                     * this is not the case, an
-                                     * exception will be raised.
-                                     */
-    template <int dim, class InVector, class OutVector, int spacedim>
-    static void extrapolate (const DoFHandler<dim,spacedim>& dof1,
-                            const InVector&        z1,
-                            const DoFHandler<dim,spacedim>& dof2,
-                            OutVector&             z2);
-
-                                    /**
-                                     * Gives the patchwise
-                                     * extrapolation of a @p dof1
-                                     * function @p z1 to a @p dof2
-                                     * function @p z2.  @p dof1 and
-                                     * @p dof2 need to be DoFHandler
-                                     * based on the same triangulation.
-                                     * @p constraints is a hanging
-                                     * node constraints object
-                                     * corresponding to
-                                     * @p dof2. This object is
-                                     * particular important when
-                                     * interpolating onto continuous
-                                     * elements on grids with hanging
-                                     * nodes (locally refined grids).
-                                     *
-                                     * Otherwise, the same holds as
-                                     * for the other @p extrapolate
-                                     * function.
-                                     */
-    template <int dim, class InVector, class OutVector, int spacedim>
-    static void extrapolate (const DoFHandler<dim,spacedim>&  dof1,
-                            const InVector&         z1,
-                            const DoFHandler<dim,spacedim>&  dof2,
-                            const ConstraintMatrix& constraints,
-                            OutVector&              z2);
-                                    //@}
-                                    /**
-                                     * The numbering of the degrees
-                                     * of freedom in continous finite
-                                     * elements is hierarchic,
-                                     * i.e. in such a way that we
-                                     * first number the vertex dofs,
-                                     * in the order of the vertices
-                                     * as defined by the
-                                     * triangulation, then the line
-                                     * dofs in the order and
-                                     * respecting the direction of
-                                     * the lines, then the dofs on
-                                     * quads, etc. However, we could
-                                     * have, as well, numbered them
-                                     * in a lexicographic way,
-                                     * i.e. with indices first
-                                     * running in x-direction, then
-                                     * in y-direction and finally in
-                                     * z-direction. Discontinuous
-                                     * elements of class FE_DGQ()
-                                     * are numbered in this way, for
-                                     * example.
-                                     *
-                                     * This function constructs a
-                                     * table which lexicographic
-                                     * index each degree of freedom
-                                     * in the hierarchic numbering
-                                     * would have. It operates on the
-                                     * continuous finite element
-                                     * given as first argument, and
-                                     * outputs the lexicographic
-                                     * indices in the second.
-                                     *
-                                     * Note that since this function
-                                     * uses specifics of the
-                                     * continuous finite elements, it
-                                     * can only operate on
-                                     * FiniteElementData<dim> objects
-                                     * inherent in FE_Q(). However,
-                                     * this function does not take a
-                                     * FE_Q object as it is also
-                                     * invoked by the FE_Q()
-                                     * constructor.
-                                     *
-                                     * It is assumed that the size of
-                                     * the output argument already
-                                     * matches the correct size,
-                                     * which is equal to the number
-                                     * of degrees of freedom in the
-                                     * finite element.
-                                     */
-    template <int dim>
-    static void
-    hierarchic_to_lexicographic_numbering (const FiniteElementData<dim> &fe_data,
-                                          std::vector<unsigned int>    &h2l);
-
-                                    /**
-                                     * Like the previous function but
-                                     * instead of returning its
-                                     * result through the last
-                                     * argument return it as a value.
-                                     */
-    template <int dim>
-    static
-    std::vector<unsigned int>
-    hierarchic_to_lexicographic_numbering (const FiniteElementData<dim> &fe_data);
-
-                                    /**
-                                     * This is the reverse function
-                                     * to the above one, generating
-                                     * the map from the lexicographic
-                                     * to the hierarchical
-                                     * numbering. All the remarks
-                                     * made about the above function
-                                     * are also valid here.
-                                     */
-    template <int dim>
-    static void
-    lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &fe_data,
-                                          std::vector<unsigned int>    &l2h);
-
-                                    /**
-                                     * Like the previous function but
-                                     * instead of returning its
-                                     * result through the last
-                                     * argument return it as a value.
-                                     */
-    template <int dim>
-    static
-    std::vector<unsigned int>
-    lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &fe_data);
-
-                                    /**
-                                     * Parse the name of a finite
-                                     * element and generate a finite
-                                     * element object accordingly.
-                                     *
-                                     * The name must be in the form which
-                                     * is returned by the
-                                     * FiniteElement::get_name
-                                     * function, where a few
-                                     * modifications are allowed:
-                                     *
-                                     * <ul><li> Dimension template
-                                     * parameters &lt;2&gt; etc. can
-                                     * be omitted. Alternatively, the
-                                     * explicit number can be
-                                     * replaced by <tt>dim</tt> or
-                                     * <tt>d</tt>. If a number is
-                                     * given, it <b>must</b> match
-                                     * the template parameter of this
-                                     * function.
-                                     *
-                                     * <li> The powers used for
-                                     * FESystem may either be numbers
-                                     * or can be
-                                     * replaced by <tt>dim</tt> or
-                                     * <tt>d</tt>.
-                                     * </ul>
-                                     *
-                                     * If no finite element can be
-                                     * reconstructed from this
-                                     * string, an exception of type
-                                     * @p FETools::ExcInvalidFEName
-                                     * is thrown.
-                                     *
-                                     * The function returns a pointer
-                                     * to a newly create finite
-                                     * element. It is in the caller's
-                                     * responsibility to destroy the
-                                     * object pointed to at an
-                                     * appropriate later time.
-                                     *
-                                     * Since the value of the template
-                                     * argument can't be deduced from the
-                                     * (string) argument given to this
-                                     * function, you have to explicitly
-                                     * specify it when you call this
-                                     * function.
-                                     *
-                                     * This function knows about all
-                                     * the standard elements defined
-                                     * in the library. However, it
-                                     * doesn't by default know about
-                                     * elements that you may have
-                                     * defined in your program. To
-                                     * make your own elements known
-                                     * to this function, use the
-                                     * add_fe_name() function.
-                                     * This function does not work
-                                     * if one wants to get a codimension
-                                     * 1 finite element.
-                                     */
-    template <int dim>
-    static
-    FiniteElement<dim, dim> *
-    get_fe_from_name (const std::string &name);
-
-
-                                    /**
-                                     * Extend the list of finite
-                                     * elements that can be generated
-                                     * by get_fe_from_name() by the
-                                     * one given as @p name. If
-                                     * get_fe_from_name() is later
-                                     * called with this name, it will
-                                     * use the object given as second
-                                     * argument to create a finite
-                                     * element object.
-                                     *
-                                     * The format of the @p name
-                                     * parameter should include the
-                                     * name of a finite
-                                     * element. However, it is safe
-                                     * to use either the class name
-                                     * alone or to use the result of
-                                     * FiniteElement::get_name (which
-                                     * includes the space dimension
-                                     * as well as the polynomial
-                                     * degree), since everything
-                                     * after the first non-name
-                                     * character will be ignored.
-                                     *
-                                     * The FEFactory object should be
-                                     * an object newly created with
-                                     * <tt>new</tt>. FETools will
-                                     * take ownership of this object
-                                     * and delete it once it is not
-                                     * used anymore.
-                                     *
-                                     * In most cases, if you want
-                                     * objects of type
-                                     * <code>MyFE</code> be created
-                                     * whenever the name
-                                     * <code>my_fe</code> is given to
-                                     * get_fe_from_name, you will
-                                     * want the second argument to
-                                     * this function be of type
-                                     * FEFactory@<MyFE@>, but you can
-                                     * of course create your custom
-                                     * finite element factory class.
-                                     *
-                                     * This function takes over
-                                     * ownership of the object given
-                                     * as second argument, i.e. you
-                                     * should never attempt to
-                                     * destroy it later on. The
-                                     * object will be deleted at the
-                                     * end of the program's lifetime.
-                                     *
-                                     * If the name of the element
-                                     * is already in use, an exception
-                                     * is thrown. Thus, functionality
-                                     * of get_fe_from_name() can only
-                                     * be added, not changed.
-                                     *
-                                     * @note This function
-                                     * manipulates a global table
-                                     * (one table for each space
-                                     * dimension). It is thread safe
-                                     * in the sense that every access
-                                     * to this table is secured by a
-                                     * lock. Nevertheless, since each
-                                     * name can be added only once,
-                                     * user code has to make sure
-                                     * that only one thread adds a
-                                     * new element.
-                                     *
-                                     * Note also that this table
-                                     * exists once for each space
-                                     * dimension. If you have a
-                                     * program that works with finite
-                                     * elements in different space
-                                     * dimensions (for example, @ref
-                                     * step_4 "step-4" does something
-                                     * like this), then you should
-                                     * call this function for each
-                                     * space dimension for which you
-                                     * want your finite element added
-                                     * to the map.
-                                     */
-    template <int dim, int spacedim>
-    static void add_fe_name (const std::string& name,
-                            const FEFactoryBase<dim,spacedim>* factory);
-
-                                    /**
-                                     * The string used for
-                                     * get_fe_from_name() cannot be
-                                     * translated to a finite
-                                     * element.
-                                     *
-                                     * Either the string is badly
-                                     * formatted or you are using a
-                                     * custom element that must be
-                                     * added using add_fe_name()
-                                     * first.
-                                     *
-                                     * @ingroup Exceptions
-                                     */
-    DeclException1 (ExcInvalidFEName,
-                   std::string,
-                   << "Can't re-generate a finite element from the string '"
-                   << arg1 << "'.");
-
-                                    /**
-                                     * The string used for
-                                     * get_fe_from_name() cannot be
-                                     * translated to a finite
-                                     * element.
-                                     *
-                                     * Dimension arguments in finite
-                                     * element names should be
-                                     * avoided. If they are there,
-                                     * the dimension should be
-                                     * <tt>dim</tt> or
-                                     * <tt>d</tt>. Here, you gave a
-                                     * numeric dimension argument,
-                                     * which does not match the
-                                     * template dimension of the
-                                     * finite element class.
-                                     *
-                                     * @ingroup Exceptions
-                                     */
-    DeclException2 (ExcInvalidFEDimension,
-                   char, int,
-                   << "The dimension " << arg1
-                   << " in the finite element string must match "
-                   << "the space dimension "
-                   << arg2 << ".");
-
-                                    /**
-                                     * Exception
-                                     *
-                                     * @ingroup Exceptions
-                                     */
-    DeclException0 (ExcInvalidFE);
-
-                                    /**
-                                     * The finite element must be
-                                     * @ref GlossPrimitive "primitive".
-                                     *
-                                     * @ingroup Exceptions
-                                     */
-    DeclException0 (ExcFENotPrimitive);
-                                    /**
-                                     * Exception
-                                     *
-                                     * @ingroup Exceptions
-                                     */
-    DeclException0 (ExcTriangulationMismatch);
-
-                                    /**
-                                     * A continuous element is used
-                                     * on a mesh with hanging nodes,
-                                     * but the constraint matrices
-                                     * are missing.
-                                     *
-                                     * @ingroup Exceptions
-                                     */
-    DeclException1 (ExcHangingNodesNotAllowed,
-                   int,
-                   << "You are using continuous elements on a grid with "
-                   << "hanging nodes but without providing hanging node "
-                   << "constraints. Use the respective function with "
-                   << "additional ConstraintMatrix argument(s), instead.");
-                                    /**
-                                     * You need at least two grid levels.
-                                     *
-                                     * @ingroup Exceptions
-                                     */
-    DeclException0 (ExcGridNotRefinedAtLeastOnce);
-                                    /**
-                                     * The dimensions of the matrix
-                                     * used did not match the
-                                     * expected dimensions.
-                                     *
-                                     * @ingroup Exceptions
-                                     */
-    DeclException4 (ExcMatrixDimensionMismatch,
-                   int, int, int, int,
-                   << "This is a " << arg1 << "x" << arg2 << " matrix, "
-                   << "but should be a " << arg3 << "x" << arg4 << " matrix.");
-
-                                    /**
-                                     * Exception thrown if an
-                                     * embedding matrix was computed
-                                     * inaccurately.
-                                     *
-                                     * @ingroup Exceptions
-                                     */
-    DeclException1(ExcLeastSquaresError, double,
-                  << "Least squares fit leaves a gap of " << arg1);
-
-                                    /**
-                                     * Exception thrown if one variable
-                                     * may not be greater than another.
-                                     *
-                                     * @ingroup Exceptions
-                                     */
-    DeclException2 (ExcNotGreaterThan,
-                   int,        int,
-                   << arg1 << " must be greater than " << arg2);
-};
-
-
-template<class FE>
-FiniteElement<FE::dimension, FE::dimension>*
-FETools::FEFactory<FE>::get (const unsigned int degree) const
-{
-  return new FE(degree);
+                                     FullMatrix<number> &difference_matrix);
+
+                                  /**
+                                   * Compute the local
+                                   * $L^2$-projection matrix from
+                                   * fe1 to fe2.
+                                   */
+  template <int dim, typename number, int spacedim>
+  void get_projection_matrix(const FiniteElement<dim,spacedim> &fe1,
+                            const FiniteElement<dim,spacedim> &fe2,
+                            FullMatrix<number> &matrix);
+
+                                  /**
+                                   * Compute the matrix of nodal
+                                   * values of a finite element
+                                   * applied to all its shape
+                                   * functions.
+                                   *
+                                   * This function is supposed to
+                                   * help building finite elements
+                                   * from polynomial spaces and
+                                   * should be called inside the
+                                   * constructor of an
+                                   * element. Applied to a
+                                   * completely initialized finite
+                                   * element, the result should be
+                                   * the unit matrix by definition
+                                   * of the node values.
+                                   *
+                                   * Using this matrix allows the
+                                   * construction of the basis of
+                                   * shape functions in two steps.
+                                   * <ol>
+                                   *
+                                   * <li>Define the space of shape
+                                   * functions using an arbitrary
+                                   * basis <i>w<sub>j</sub></i> and
+                                   * compute the matrix <i>M</i> of
+                                   * node functionals
+                                   * <i>N<sub>i</sub></i> applied
+                                   * to these basis functions.
+                                   *
+                                   * <li>Compute the basis
+                                   * <i>v<sub>j</sub></i> of the
+                                   * finite element shape function
+                                   * space by applying
+                                   * <i>M<sup>-1</sup></i> to the
+                                   * basis <i>w<sub>j</sub></i>.
+                                   * </ol>
+                                   *
+                                   * @note The FiniteElement must
+                                   * provide generalized support
+                                   * points and and interpolation
+                                   * functions.
+                                   */
+  template <int dim, int spacedim>
+  void compute_node_matrix(FullMatrix<double>& M,
+                          const FiniteElement<dim,spacedim>& fe);
+
+                                  /**
+                                   * For all possible (isotropic
+                                   * and anisotropic) refinement
+                                   * cases compute the embedding
+                                   * matrices from a coarse cell to
+                                   * the child cells. Each column
+                                   * of the resulting matrices
+                                   * contains the representation of
+                                   * a coarse grid basis functon by
+                                   * the fine grid basis; the
+                                   * matrices are split such that
+                                   * there is one matrix for every
+                                   * child.
+                                   *
+                                   * This function computes the
+                                   * coarse grid function in a
+                                   * sufficiently large number of
+                                   * quadrature points and fits the
+                                   * fine grid functions using
+                                   * least squares
+                                   * approximation. Therefore, the
+                                   * use of this function is
+                                   * restricted to the case that
+                                   * the finite element spaces are
+                                   * actually nested.
+                                   *
+                                   * Note, that
+                                   * <code>matrices[refinement_case-1][child]</code>
+                                   * includes the embedding (or prolongation)
+                                   * matrix of child
+                                   * <code>child</code> for the
+                                   * RefinementCase
+                                   * <code>refinement_case</code>. Here,
+                                   * we use
+                                   * <code>refinement_case-1</code>
+                                   * instead of
+                                   * <code>refinement_case</code>
+                                   * as for
+                                   * RefinementCase::no_refinement(=0)
+                                   * there are no prolongation
+                                   * matrices available.
+                                   *
+                                   * Typically this function is
+                                   * called by the various
+                                   * implementations of
+                                   * FiniteElement classes in order
+                                   * to fill the respective
+                                   * FiniteElement::prolongation
+                                   * matrices.
+                                   *
+                                   * @param fe The finite element
+                                   * class for which we compute the
+                                   * embedding matrices.
+                                   *
+                                   * @param matrices A reference to
+                                   * RefinementCase<dim>::isotropic_refinement
+                                   * vectors of FullMatrix
+                                   * objects. Each vector
+                                   * corresponds to one
+                                   * RefinementCase @p
+                                   * refinement_case and is of the
+                                   * vector size
+                                   * GeometryInfo<dim>::n_children(refinement_case). This
+                                   * is the format used in
+                                   * FiniteElement, where we want
+                                   * to use this function mostly.
+                                   *
+                                   * @param isotropic_only Set
+                                   * to <code>true</code> if you only
+                                   * want to compute matrices for
+                                   * isotropic refinement.
+                                   */
+  template <int dim, typename number, int spacedim>
+  void compute_embedding_matrices(const FiniteElement<dim,spacedim> &fe,
+                                 std::vector<std::vector<FullMatrix<number> > >& matrices,
+                                 const bool isotropic_only = false);
+
+                                  /**
+                                   * Compute the embedding matrices
+                                   * on faces needed for constraint
+                                   * matrices.
+                                   *
+                                   * @param fe The finite element
+                                   * for which to compute these
+                                   * matrices.  @param matrices An
+                                   * array of
+                                   * <i>GeometryInfo<dim>::subfaces_per_face
+                                   * = 2<sup>dim-1</sup></i>
+                                   * FullMatrix objects,holding the
+                                   * embedding matrix for each
+                                   * subface.  @param face_coarse
+                                   * The number of the face on the
+                                   * coarse side of the face for
+                                   * which this is computed.
+                                   * @param face_fine The number of
+                                   * the face on the refined side
+                                   * of the face for which this is
+                                   * computed.
+                                   *
+                                   * @warning This function will be
+                                   * used in computing constraint
+                                   * matrices. It is not
+                                   * sufficiently tested yet.
+                                   */
+  template <int dim, typename number, int spacedim>
+  void
+  compute_face_embedding_matrices(const FiniteElement<dim,spacedim>& fe,
+                                 FullMatrix<number> (&matrices)[GeometryInfo<dim>::max_children_per_face],
+                                 const unsigned int face_coarse,
+                                 const unsigned int face_fine);
+
+                                  /**
+                                   * For all possible (isotropic
+                                   * and anisotropic) refinement
+                                   * cases compute the
+                                   * <i>L<sup>2</sup></i>-projection
+                                   * matrices from the children to
+                                   * a coarse cell.
+                                   *
+                                   * Note, that
+                                   * <code>matrices[refinement_case-1][child]</code>
+                                   * includes the projection (or restriction)
+                                   * matrix of child
+                                   * <code>child</code> for the
+                                   * RefinementCase
+                                   * <code>refinement_case</code>. Here,
+                                   * we use
+                                   * <code>refinement_case-1</code>
+                                   * instead of
+                                   * <code>refinement_case</code>
+                                   * as for
+                                   * RefinementCase::no_refinement(=0)
+                                   * there are no projection
+                                   * matrices available.
+                                   *
+                                   * Typically this function is
+                                   * called by the various
+                                   * implementations of
+                                   * FiniteElement classes in order
+                                   * to fill the respective
+                                   * FiniteElement::restriction
+                                   * matrices.
+                                   *
+                                   * @arg fe The finite element
+                                   * class for which we compute the
+                                   * projection matrices.  @arg
+                                   * matrices A reference to
+                                   * <tt>RefinementCase<dim>::isotropic_refinement</tt>
+                                   * vectors of FullMatrix
+                                   * objects. Each vector
+                                   * corresponds to one
+                                   * RefinementCase @p
+                                   * refinement_case and is of the
+                                   * vector size
+                                   * <tt>GeometryInfo<dim>::n_children(refinement_case)</tt>. This
+                                   * is the format used in
+                                   * FiniteElement, where we want
+                                   * to use this function mostly.
+                                   *
+                                   * @arg isotropic_only Set
+                                   * to <code>true</code> if you only
+                                   * want to compute matrices for
+                                   * isotropic refinement.
+                                   */
+  template <int dim, typename number, int spacedim>
+  void compute_projection_matrices(
+    const FiniteElement<dim,spacedim> &fe,
+    std::vector<std::vector<FullMatrix<number> > >& matrices,
+    const bool isotropic_only = false);
+
+                                  /**
+                                   * Projects scalar data defined in
+                                   * quadrature points to a finite element
+                                   * space on a single cell.
+                                   *
+                                   * What this function does is the
+                                   * following: assume that there is scalar
+                                   * data <tt>u<sub>q</sub>, 0 <= q <
+                                   * Q:=quadrature.size()</tt>
+                                   * defined at the quadrature points of a
+                                   * cell, with the points defined by the
+                                   * given <tt>rhs_quadrature</tt>
+                                   * object. We may then want to ask for
+                                   * that finite element function (on a
+                                   * single cell) <tt>v<sub>h</sub></tt> in
+                                   * the finite-dimensional space defined
+                                   * by the given FE object that is the
+                                   * projection of <tt>u</tt> in the
+                                   * following sense:
+                                   *
+                                   * Usually, the projection
+                                   * <tt>v<sub>h</sub></tt> is that
+                                   * function that satisfies
+                                   * <tt>(v<sub>h</sub>,w)=(u,w)</tt> for
+                                   * all discrete test functions
+                                   * <tt>w</tt>. In the present case, we
+                                   * can't evaluate the right hand side,
+                                   * since <tt>u</tt> is only defined in
+                                   * the quadrature points given by
+                                   * <tt>rhs_quadrature</tt>, so we replace
+                                   * it by a quadrature
+                                   * approximation. Likewise, the left hand
+                                   * side is approximated using the
+                                   * <tt>lhs_quadrature</tt> object; if
+                                   * this quadrature object is chosen
+                                   * appropriately, then the integration of
+                                   * the left hand side can be done
+                                   * exactly, without any
+                                   * approximation. The use of different
+                                   * quadrature objects is necessary if the
+                                   * quadrature object for the right hand
+                                   * side has too few quadrature points --
+                                   * for example, if data <tt>q</tt> is
+                                   * only defined at the cell center, then
+                                   * the corresponding one-point quadrature
+                                   * formula is obviously insufficient to
+                                   * approximate the scalar product on the
+                                   * left hand side by a definite form.
+                                   *
+                                   * After these quadrature approximations,
+                                   * we end up with a nodal representation
+                                   * <tt>V<sub>h</sub></tt> of
+                                   * <tt>v<sub>h</sub></tt> that satisfies
+                                   * the following system of linear
+                                   * equations: <tt>M V<sub>h</sub> = Q
+                                   * U</tt>, where
+                                   * <tt>M<sub>ij</sub>=(phi_i,phi_j)</tt>
+                                   * is the mass matrix approximated by
+                                   * <tt>lhs_quadrature</tt>, and
+                                   * <tt>Q</tt> is the matrix
+                                   * <tt>Q<sub>iq</sub>=phi<sub>i</sub>(x<sub>q</sub>)
+                                   * w<sub>q</sub></tt> where
+                                   * <tt>w<sub>q</sub></tt> are quadrature
+                                   * weights; <tt>U</tt> is the vector of
+                                   * quadrature point data
+                                   * <tt>u<sub>q</sub></tt>.
+                                   *
+                                   * In order to then get the nodal
+                                   * representation <tt>V<sub>h</sub></tt>
+                                   * of the projection of <tt>U</tt>, one
+                                   * computes <tt>V<sub>h</sub> = X U,
+                                   * X=M<sup>-1</sup> Q</tt>. The purpose
+                                   * of this function is to compute the
+                                   * matrix <tt>X</tt> and return it
+                                   * through the last argument of this
+                                   * function.
+                                   *
+                                   * Note that this function presently only
+                                   * supports scalar data. An extension of
+                                   * the mass matrix is of course trivial,
+                                   * but one has to define the order of
+                                   * data in the vector <tt>U</tt> if it
+                                   * contains vector valued data in all
+                                   * quadrature points.
+                                   *
+                                   * A use for this function is described
+                                   * in the introduction to the step-18
+                                   * example program.
+                                   *
+                                   * The opposite of this function,
+                                   * interpolation of a finite element
+                                   * function onto quadrature points is
+                                   * essentially what the
+                                   * <tt>FEValues::get_function_values</tt>
+                                   * functions do; to make things a little
+                                   * simpler, the
+                                   * <tt>FETools::compute_interpolation_to_quadrature_points_matrix</tt>
+                                   * provides the matrix form of this.
+                                   *
+                                   * Note that this function works
+                                   * on a single cell, rather than
+                                   * an entire triangulation. In
+                                   * effect, it therefore doesn't
+                                   * matter if you use a continuous
+                                   * or discontinuous version of
+                                   * the finite element.
+                                   *
+                                   * It is worth noting that there
+                                   * are a few confusing cases of
+                                   * this function. The first one
+                                   * is that it really only makes
+                                   * sense to project onto a finite
+                                   * element that has at most as
+                                   * many degrees of freedom per
+                                   * cell as there are quadrature
+                                   * points; the projection of N
+                                   * quadrature point data into a
+                                   * space with M>N unknowns is
+                                   * well-defined, but often yields
+                                   * funny and non-intuitive
+                                   * results. Secondly, one would
+                                   * think that if the quadrature
+                                   * point data is defined in the
+                                   * support points of the finite
+                                   * element, i.e. the quadrature
+                                   * points of
+                                   * <tt>ths_quadrature</tt> equal
+                                   * <tt>fe.get_unit_support_points()</tt>,
+                                   * then the projection should be
+                                   * the identity, i.e. each degree
+                                   * of freedom of the finite
+                                   * element equals the value of
+                                   * the given data in the support
+                                   * point of the corresponding
+                                   * shape function. However, this
+                                   * is not generally the case:
+                                   * while the matrix <tt>Q</tt> in
+                                   * that case is the identity
+                                   * matrix, the mass matrix
+                                   * <tt>M</tt> is not equal to the
+                                   * identity matrix, except for
+                                   * the special case that the
+                                   * quadrature formula
+                                   * <tt>lhs_quadrature</tt> also
+                                   * has its quadrature points in
+                                   * the support points of the
+                                   * finite element.
+                                   *
+                                   * Finally, this function only defines a
+                                   * cell wise projection, while one
+                                   * frequently wants to apply it to all
+                                   * cells in a triangulation. However, if
+                                   * it is applied to one cell after the
+                                   * other, the results from later cells
+                                   * may overwrite nodal values computed
+                                   * already from previous cells if degrees
+                                   * of freedom live on the interfaces
+                                   * between cells. The function is
+                                   * therefore most useful for
+                                   * discontinuous elements.
+                                   */
+  template <int dim, int spacedim>
+  void
+  compute_projection_from_quadrature_points_matrix (const FiniteElement<dim,spacedim> &fe,
+                                                   const Quadrature<dim>    &lhs_quadrature,
+                                                   const Quadrature<dim>    &rhs_quadrature,
+                                                   FullMatrix<double>       &X);
+
+                                  /**
+                                   * Given a (scalar) local finite element
+                                   * function, compute the matrix that maps
+                                   * the vector of nodal values onto the
+                                   * vector of values of this function at
+                                   * quadrature points as given by the
+                                   * second argument. In a sense, this
+                                   * function does the opposite of the @p
+                                   * compute_projection_from_quadrature_points_matrix
+                                   * function.
+                                   */
+  template <int dim, int spacedim>
+  void
+  compute_interpolation_to_quadrature_points_matrix (const FiniteElement<dim,spacedim> &fe,
+                                                    const Quadrature<dim>    &quadrature,
+                                                    FullMatrix<double>       &I_q);
+
+                                  /**
+                                   * Computes the projection of tensorial
+                                   * (first-order tensor)
+                                   * data stored at the quadrature points
+                                   * @p vector_of_tensors_at_qp
+                                   * to data @p vector_of_tensors_at_nodes
+                                   * at the support points of the cell.
+                                   * The data in
+                                   * @p vector_of_tensors_at_qp
+                                   * is ordered sequentially following the
+                                   * quadrature point numbering.
+                                   * The size of
+                                   * @p vector_of_tensors_at_qp
+                                   * must correspond to the number of columns
+                                   * of @p projection_matrix.
+                                   * The size of @p vector_of_tensors_at_nodes
+                                   * must correspond to the number of rows of
+                                   * @p vector_of_tensors_at_nodes .
+                                   * The projection matrix
+                                   * @p projection_matrix desribes the
+                                   * projection of scalar data from the
+                                   * quadrature points and can be obtained
+                                   * from the
+                                   * FETools::compute_projection_from_quadrature_points_matrix
+                                   * function.
+                                   */
+  template <int dim>
+  void
+  compute_projection_from_quadrature_points(
+    const FullMatrix<double>    &projection_matrix,
+    const std::vector< Tensor<1, dim > >    &vector_of_tensors_at_qp,
+    std::vector< Tensor<1, dim > >          &vector_of_tensors_at_nodes);
+
+
+
+                                  /**
+                                   * same as last function but for a
+                                   * @p SymmetricTensor .
+                                   */
+  template <int dim>
+  void
+  compute_projection_from_quadrature_points(
+    const FullMatrix<double>    &projection_matrix,
+    const std::vector< SymmetricTensor<2, dim > >   &vector_of_tensors_at_qp,
+    std::vector< SymmetricTensor<2, dim > >         &vector_of_tensors_at_nodes);
+
+
+
+
+                                  /**
+                                   * This method implements the
+                                   * FETools::compute_projection_from_quadrature_points_matrix
+                                   * method for faces of a mesh.
+                                   * The matrix that it returns, X, is face specific
+                                   * and its size is fe.dofs_per_cell by
+                                   * rhs_quadrature.size().
+                                   * The dimension, dim must be larger than 1 for this class,
+                                   * since Quadrature<dim-1> objects are required. See the
+                                   * documentation on the Quadrature class for more information.
+                                   */
+  template <int dim, int spacedim>
+  void
+  compute_projection_from_face_quadrature_points_matrix (const FiniteElement<dim, spacedim> &fe,
+                                                        const Quadrature<dim-1>    &lhs_quadrature,
+                                                        const Quadrature<dim-1>    &rhs_quadrature,
+                                                        const typename DoFHandler<dim, spacedim>::active_cell_iterator & cell,
+                                                        unsigned int face,
+                                                        FullMatrix<double>       &X);
+
+
+
+                                  //@}
+                                  /**
+                                   * @name Functions which should be in DoFTools
+                                   */
+                                  //@{
+                                  /**
+                                   * Gives the interpolation of a the
+                                   * @p dof1-function @p u1 to a
+                                   * @p dof2-function @p u2. @p dof1 and
+                                   * @p dof2 need to be DoFHandlers
+                                   * based on the same triangulation.
+                                   *
+                                   * If the elements @p fe1 and @p fe2
+                                   * are either both continuous or
+                                   * both discontinuous then this
+                                   * interpolation is the usual point
+                                   * interpolation. The same is true
+                                   * if @p fe1 is a continuous and
+                                   * @p fe2 is a discontinuous finite
+                                   * element. For the case that @p fe1
+                                   * is a discontinuous and @p fe2 is
+                                   * a continuous finite element
+                                   * there is no point interpolation
+                                   * defined at the discontinuities.
+                                   * Therefore the meanvalue is taken
+                                   * at the DoF values on the
+                                   * discontinuities.
+                                   *
+                                   * Note that for continuous
+                                   * elements on grids with hanging
+                                   * nodes (i.e. locally refined
+                                   * grids) this function does not
+                                   * give the expected output.
+                                   * Indeed, the resulting output
+                                   * vector does not necessarily
+                                   * respect continuity
+                                   * requirements at hanging nodes:
+                                   * if, for example, you are
+                                   * interpolating a Q2 field to a
+                                   * Q1 field, then at hanging
+                                   * nodes the output field will
+                                   * have the function value of the
+                                   * input field, which however is
+                                   * not usually the mean value of
+                                   * the two adjacent nodes. It is
+                                   * thus not part of the Q1
+                                   * function space on the whole
+                                   * triangulation, although it is
+                                   * of course Q1 on each cell.
+                                   *
+                                   * For this case (continuous
+                                   * elements on grids with hanging
+                                   * nodes), please use the
+                                   * @p interpolate function with
+                                   * an additional
+                                   * @p ConstraintMatrix argument,
+                                   * see below, or make the field
+                                   * conforming yourself by calling
+                                   * the @p distribute function of
+                                   * your hanging node constraints
+                                   * object.
+                                   */
+  template <int dim, int spacedim,
+           template <int,int> class DH1,
+           template <int,int> class DH2,
+           class InVector, class OutVector>
+  void
+  interpolate (const DH1<dim,spacedim> &dof1,
+              const InVector          &u1,
+              const DH2<dim,spacedim> &dof2,
+              OutVector               &u2);
+
+                                  /**
+                                   * Gives the interpolation of a
+                                   * the @p dof1-function @p u1 to
+                                   * a @p dof2-function @p u2. @p
+                                   * dof1 and @p dof2 need to be
+                                   * DoFHandlers (or
+                                   * hp::DoFHandlers) based on the
+                                   * same triangulation.  @p
+                                   * constraints is a hanging node
+                                   * constraints object
+                                   * corresponding to @p dof2. This
+                                   * object is particular important
+                                   * when interpolating onto
+                                   * continuous elements on grids
+                                   * with hanging nodes (locally
+                                   * refined grids).
+                                   *
+                                   * If the elements @p fe1 and @p fe2
+                                   * are either both continuous or
+                                   * both discontinuous then this
+                                   * interpolation is the usual point
+                                   * interpolation. The same is true
+                                   * if @p fe1 is a continuous and
+                                   * @p fe2 is a discontinuous finite
+                                   * element. For the case that @p fe1
+                                   * is a discontinuous and @p fe2 is
+                                   * a continuous finite element
+                                   * there is no point interpolation
+                                   * defined at the discontinuities.
+                                   * Therefore the meanvalue is taken
+                                   * at the DoF values on the
+                                   * discontinuities.
+                                   */
+  template <int dim, int spacedim,
+           template <int, int> class DH1,
+           template <int, int> class DH2,
+           class InVector, class OutVector>
+  void interpolate (const DH1<dim,spacedim>  &dof1,
+                   const InVector           &u1,
+                   const DH2<dim,spacedim>  &dof2,
+                   const ConstraintMatrix   &constraints,
+                   OutVector&                u2);
+
+                                  /**
+                                   * Gives the interpolation of the
+                                   * @p fe1-function @p u1 to a
+                                   * @p fe2-function, and
+                                   * interpolates this to a second
+                                   * @p fe1-function named
+                                   * @p u1_interpolated.
+                                   *
+                                   * Note, that this function does
+                                   * not work on continuous
+                                   * elements at hanging nodes. For
+                                   * that case use the
+                                   * @p back_interpolate function,
+                                   * below, that takes an
+                                   * additional
+                                   * @p ConstraintMatrix object.
+                                   *
+                                   * Furthermore note, that for the
+                                   * specific case when the finite
+                                   * element space corresponding to
+                                   * @p fe1 is a subset of the
+                                   * finite element space
+                                   * corresponding to @p fe2, this
+                                   * function is simply an identity
+                                   * mapping.
+                                   */
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void back_interpolate (const DoFHandler<dim,spacedim>    &dof1,
+                        const InVector           &u1,
+                        const FiniteElement<dim,spacedim> &fe2,
+                        OutVector                &u1_interpolated);
+
+                                  /**
+                                   * Same as last function, except
+                                   * that the dof handler objects
+                                   * might be of type
+                                   * @p hp::DoFHandler.
+                                   */
+  template <int dim,
+           template <int> class DH,
+           class InVector, class OutVector, int spacedim>
+  void back_interpolate (const DH<dim>            &dof1,
+                        const InVector           &u1,
+                        const FiniteElement<dim,spacedim> &fe2,
+                        OutVector                &u1_interpolated);
+
+                                  /**
+                                   * Gives the interpolation of the
+                                   * @p dof1-function @p u1 to a
+                                   * @p dof2-function, and
+                                   * interpolates this to a second
+                                   * @p dof1-function named
+                                   * @p u1_interpolated.
+                                   * @p constraints1 and
+                                   * @p constraints2 are the
+                                   * hanging node constraints
+                                   * corresponding to @p dof1 and
+                                   * @p dof2, respectively. These
+                                   * objects are particular
+                                   * important when continuous
+                                   * elements on grids with hanging
+                                   * nodes (locally refined grids)
+                                   * are involved.
+                                   *
+                                   * Furthermore note, that for the
+                                   * specific case when the finite
+                                   * element space corresponding to
+                                   * @p dof1 is a subset of the
+                                   * finite element space
+                                   * corresponding to @p dof2, this
+                                   * function is simply an identity
+                                   * mapping.
+                                   */
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void back_interpolate (const DoFHandler<dim,spacedim>&  dof1,
+                        const ConstraintMatrix& constraints1,
+                        const InVector&         u1,
+                        const DoFHandler<dim,spacedim>&  dof2,
+                        const ConstraintMatrix& constraints2,
+                        OutVector&              u1_interpolated);
+
+                                  /**
+                                   * Gives $(Id-I_h)z_1$ for a given
+                                   * @p dof1-function $z_1$, where $I_h$
+                                   * is the interpolation from @p fe1
+                                   * to @p fe2. The result $(Id-I_h)z_1$ is
+                                   * written into @p z1_difference.
+                                   *
+                                   * Note, that this function does
+                                   * not work for continuous
+                                   * elements at hanging nodes. For
+                                   * that case use the
+                                   * @p interpolation_difference
+                                   * function, below, that takes an
+                                   * additional
+                                   * @p ConstraintMatrix object.
+                                   */
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void interpolation_difference(const DoFHandler<dim,spacedim> &dof1,
+                               const InVector &z1,
+                               const FiniteElement<dim,spacedim> &fe2,
+                               OutVector &z1_difference);
+
+                                  /**
+                                   * Gives $(Id-I_h)z_1$ for a given
+                                   * @p dof1-function $z_1$, where $I_h$
+                                   * is the interpolation from @p fe1
+                                   * to @p fe2. The result $(Id-I_h)z_1$ is
+                                   * written into @p z1_difference.
+                                   * @p constraints1 and
+                                   * @p constraints2 are the
+                                   * hanging node constraints
+                                   * corresponding to @p dof1 and
+                                   * @p dof2, respectively. These
+                                   * objects are particular
+                                   * important when continuous
+                                   * elements on grids with hanging
+                                   * nodes (locally refined grids)
+                                   * are involved.
+                                   */
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void interpolation_difference(const DoFHandler<dim,spacedim>&  dof1,
+                               const ConstraintMatrix& constraints1,
+                               const InVector&         z1,
+                               const DoFHandler<dim,spacedim>&  dof2,
+                               const ConstraintMatrix& constraints2,
+                               OutVector&              z1_difference);
+
+                                  /**
+                                   * $L^2$ projection for
+                                   * discontinuous
+                                   * elements. Operates the same
+                                   * direction as interpolate.
+                                   *
+                                   * The global projection can be
+                                   * computed by local matrices if
+                                   * the finite element spaces are
+                                   * discontinuous. With continuous
+                                   * elements, this is impossible,
+                                   * since a global mass matrix
+                                   * must be inverted.
+                                   */
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void project_dg (const DoFHandler<dim,spacedim>& dof1,
+                  const InVector&        u1,
+                  const DoFHandler<dim,spacedim>& dof2,
+                  OutVector&             u2);
+
+                                  /**
+                                   * Gives the patchwise
+                                   * extrapolation of a @p dof1
+                                   * function @p z1 to a @p dof2
+                                   * function @p z2.  @p dof1 and
+                                   * @p dof2 need to be DoFHandler
+                                   * based on the same triangulation.
+                                   *
+                                   * This function is interesting
+                                   * for e.g. extrapolating
+                                   * patchwise a piecewise linear
+                                   * solution to a piecewise
+                                   * quadratic solution.
+                                   *
+                                   * Note that the resulting field
+                                   * does not satisfy continuity
+                                   * requirements of the given
+                                   * finite elements.
+                                   *
+                                   * When you use continuous
+                                   * elements on grids with hanging
+                                   * nodes, please use the
+                                   * @p extrapolate function with
+                                   * an additional
+                                   * ConstraintMatrix argument,
+                                   * see below.
+                                   *
+                                   * Since this function operates
+                                   * on patches of cells, it is
+                                   * required that the underlying
+                                   * grid is refined at least once
+                                   * for every coarse grid cell. If
+                                   * this is not the case, an
+                                   * exception will be raised.
+                                   */
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void extrapolate (const DoFHandler<dim,spacedim>& dof1,
+                   const InVector&        z1,
+                   const DoFHandler<dim,spacedim>& dof2,
+                   OutVector&             z2);
+
+                                  /**
+                                   * Gives the patchwise
+                                   * extrapolation of a @p dof1
+                                   * function @p z1 to a @p dof2
+                                   * function @p z2.  @p dof1 and
+                                   * @p dof2 need to be DoFHandler
+                                   * based on the same triangulation.
+                                   * @p constraints is a hanging
+                                   * node constraints object
+                                   * corresponding to
+                                   * @p dof2. This object is
+                                   * particular important when
+                                   * interpolating onto continuous
+                                   * elements on grids with hanging
+                                   * nodes (locally refined grids).
+                                   *
+                                   * Otherwise, the same holds as
+                                   * for the other @p extrapolate
+                                   * function.
+                                   */
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void extrapolate (const DoFHandler<dim,spacedim>&  dof1,
+                   const InVector&         z1,
+                   const DoFHandler<dim,spacedim>&  dof2,
+                   const ConstraintMatrix& constraints,
+                   OutVector&              z2);
+                                  //@}
+                                  /**
+                                   * The numbering of the degrees
+                                   * of freedom in continous finite
+                                   * elements is hierarchic,
+                                   * i.e. in such a way that we
+                                   * first number the vertex dofs,
+                                   * in the order of the vertices
+                                   * as defined by the
+                                   * triangulation, then the line
+                                   * dofs in the order and
+                                   * respecting the direction of
+                                   * the lines, then the dofs on
+                                   * quads, etc. However, we could
+                                   * have, as well, numbered them
+                                   * in a lexicographic way,
+                                   * i.e. with indices first
+                                   * running in x-direction, then
+                                   * in y-direction and finally in
+                                   * z-direction. Discontinuous
+                                   * elements of class FE_DGQ()
+                                   * are numbered in this way, for
+                                   * example.
+                                   *
+                                   * This function constructs a
+                                   * table which lexicographic
+                                   * index each degree of freedom
+                                   * in the hierarchic numbering
+                                   * would have. It operates on the
+                                   * continuous finite element
+                                   * given as first argument, and
+                                   * outputs the lexicographic
+                                   * indices in the second.
+                                   *
+                                   * Note that since this function
+                                   * uses specifics of the
+                                   * continuous finite elements, it
+                                   * can only operate on
+                                   * FiniteElementData<dim> objects
+                                   * inherent in FE_Q(). However,
+                                   * this function does not take a
+                                   * FE_Q object as it is also
+                                   * invoked by the FE_Q()
+                                   * constructor.
+                                   *
+                                   * It is assumed that the size of
+                                   * the output argument already
+                                   * matches the correct size,
+                                   * which is equal to the number
+                                   * of degrees of freedom in the
+                                   * finite element.
+                                   */
+  template <int dim>
+  void
+  hierarchic_to_lexicographic_numbering (const FiniteElementData<dim> &fe_data,
+                                        std::vector<unsigned int>    &h2l);
+
+                                  /**
+                                   * Like the previous function but
+                                   * instead of returning its
+                                   * result through the last
+                                   * argument return it as a value.
+                                   */
+  template <int dim>
+  std::vector<unsigned int>
+  hierarchic_to_lexicographic_numbering (const FiniteElementData<dim> &fe_data);
+
+                                  /**
+                                   * This is the reverse function
+                                   * to the above one, generating
+                                   * the map from the lexicographic
+                                   * to the hierarchical
+                                   * numbering. All the remarks
+                                   * made about the above function
+                                   * are also valid here.
+                                   */
+  template <int dim>
+  void
+  lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &fe_data,
+                                        std::vector<unsigned int>    &l2h);
+
+                                  /**
+                                   * Like the previous function but
+                                   * instead of returning its
+                                   * result through the last
+                                   * argument return it as a value.
+                                   */
+  template <int dim>
+  std::vector<unsigned int>
+  lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &fe_data);
+
+                                  /**
+                                   * Parse the name of a finite
+                                   * element and generate a finite
+                                   * element object accordingly.
+                                   *
+                                   * The name must be in the form which
+                                   * is returned by the
+                                   * FiniteElement::get_name
+                                   * function, where a few
+                                   * modifications are allowed:
+                                   *
+                                   * <ul><li> Dimension template
+                                   * parameters &lt;2&gt; etc. can
+                                   * be omitted. Alternatively, the
+                                   * explicit number can be
+                                   * replaced by <tt>dim</tt> or
+                                   * <tt>d</tt>. If a number is
+                                   * given, it <b>must</b> match
+                                   * the template parameter of this
+                                   * function.
+                                   *
+                                   * <li> The powers used for
+                                   * FESystem may either be numbers
+                                   * or can be
+                                   * replaced by <tt>dim</tt> or
+                                   * <tt>d</tt>.
+                                   * </ul>
+                                   *
+                                   * If no finite element can be
+                                   * reconstructed from this
+                                   * string, an exception of type
+                                   * @p FETools::ExcInvalidFEName
+                                   * is thrown.
+                                   *
+                                   * The function returns a pointer
+                                   * to a newly create finite
+                                   * element. It is in the caller's
+                                   * responsibility to destroy the
+                                   * object pointed to at an
+                                   * appropriate later time.
+                                   *
+                                   * Since the value of the template
+                                   * argument can't be deduced from the
+                                   * (string) argument given to this
+                                   * function, you have to explicitly
+                                   * specify it when you call this
+                                   * function.
+                                   *
+                                   * This function knows about all
+                                   * the standard elements defined
+                                   * in the library. However, it
+                                   * doesn't by default know about
+                                   * elements that you may have
+                                   * defined in your program. To
+                                   * make your own elements known
+                                   * to this function, use the
+                                   * add_fe_name() function.
+                                   * This function does not work
+                                   * if one wants to get a codimension
+                                   * 1 finite element.
+                                   */
+  template <int dim>
+  FiniteElement<dim, dim> *
+  get_fe_from_name (const std::string &name);
+
+
+                                  /**
+                                   * Extend the list of finite
+                                   * elements that can be generated
+                                   * by get_fe_from_name() by the
+                                   * one given as @p name. If
+                                   * get_fe_from_name() is later
+                                   * called with this name, it will
+                                   * use the object given as second
+                                   * argument to create a finite
+                                   * element object.
+                                   *
+                                   * The format of the @p name
+                                   * parameter should include the
+                                   * name of a finite
+                                   * element. However, it is safe
+                                   * to use either the class name
+                                   * alone or to use the result of
+                                   * FiniteElement::get_name (which
+                                   * includes the space dimension
+                                   * as well as the polynomial
+                                   * degree), since everything
+                                   * after the first non-name
+                                   * character will be ignored.
+                                   *
+                                   * The FEFactory object should be
+                                   * an object newly created with
+                                   * <tt>new</tt>. FETools will
+                                   * take ownership of this object
+                                   * and delete it once it is not
+                                   * used anymore.
+                                   *
+                                   * In most cases, if you want
+                                   * objects of type
+                                   * <code>MyFE</code> be created
+                                   * whenever the name
+                                   * <code>my_fe</code> is given to
+                                   * get_fe_from_name, you will
+                                   * want the second argument to
+                                   * this function be of type
+                                   * FEFactory@<MyFE@>, but you can
+                                   * of course create your custom
+                                   * finite element factory class.
+                                   *
+                                   * This function takes over
+                                   * ownership of the object given
+                                   * as second argument, i.e. you
+                                   * should never attempt to
+                                   * destroy it later on. The
+                                   * object will be deleted at the
+                                   * end of the program's lifetime.
+                                   *
+                                   * If the name of the element
+                                   * is already in use, an exception
+                                   * is thrown. Thus, functionality
+                                   * of get_fe_from_name() can only
+                                   * be added, not changed.
+                                   *
+                                   * @note This function
+                                   * manipulates a global table
+                                   * (one table for each space
+                                   * dimension). It is thread safe
+                                   * in the sense that every access
+                                   * to this table is secured by a
+                                   * lock. Nevertheless, since each
+                                   * name can be added only once,
+                                   * user code has to make sure
+                                   * that only one thread adds a
+                                   * new element.
+                                   *
+                                   * Note also that this table
+                                   * exists once for each space
+                                   * dimension. If you have a
+                                   * program that works with finite
+                                   * elements in different space
+                                   * dimensions (for example, @ref
+                                   * step_4 "step-4" does something
+                                   * like this), then you should
+                                   * call this function for each
+                                   * space dimension for which you
+                                   * want your finite element added
+                                   * to the map.
+                                   */
+  template <int dim, int spacedim>
+  void add_fe_name (const std::string& name,
+                   const FEFactoryBase<dim,spacedim>* factory);
+
+                                  /**
+                                   * The string used for
+                                   * get_fe_from_name() cannot be
+                                   * translated to a finite
+                                   * element.
+                                   *
+                                   * Either the string is badly
+                                   * formatted or you are using a
+                                   * custom element that must be
+                                   * added using add_fe_name()
+                                   * first.
+                                   *
+                                   * @ingroup Exceptions
+                                   */
+  DeclException1 (ExcInvalidFEName,
+                 std::string,
+                 << "Can't re-generate a finite element from the string '"
+                 << arg1 << "'.");
+
+                                  /**
+                                   * The string used for
+                                   * get_fe_from_name() cannot be
+                                   * translated to a finite
+                                   * element.
+                                   *
+                                   * Dimension arguments in finite
+                                   * element names should be
+                                   * avoided. If they are there,
+                                   * the dimension should be
+                                   * <tt>dim</tt> or
+                                   * <tt>d</tt>. Here, you gave a
+                                   * numeric dimension argument,
+                                   * which does not match the
+                                   * template dimension of the
+                                   * finite element class.
+                                   *
+                                   * @ingroup Exceptions
+                                   */
+  DeclException2 (ExcInvalidFEDimension,
+                 char, int,
+                 << "The dimension " << arg1
+                 << " in the finite element string must match "
+                 << "the space dimension "
+                 << arg2 << ".");
+
+                                  /**
+                                   * Exception
+                                   *
+                                   * @ingroup Exceptions
+                                   */
+  DeclException0 (ExcInvalidFE);
+
+                                  /**
+                                   * The finite element must be
+                                   * @ref GlossPrimitive "primitive".
+                                   *
+                                   * @ingroup Exceptions
+                                   */
+  DeclException0 (ExcFENotPrimitive);
+                                  /**
+                                   * Exception
+                                   *
+                                   * @ingroup Exceptions
+                                   */
+  DeclException0 (ExcTriangulationMismatch);
+
+                                  /**
+                                   * A continuous element is used
+                                   * on a mesh with hanging nodes,
+                                   * but the constraint matrices
+                                   * are missing.
+                                   *
+                                   * @ingroup Exceptions
+                                   */
+  DeclException1 (ExcHangingNodesNotAllowed,
+                 int,
+                 << "You are using continuous elements on a grid with "
+                 << "hanging nodes but without providing hanging node "
+                 << "constraints. Use the respective function with "
+                 << "additional ConstraintMatrix argument(s), instead.");
+                                  /**
+                                   * You need at least two grid levels.
+                                   *
+                                   * @ingroup Exceptions
+                                   */
+  DeclException0 (ExcGridNotRefinedAtLeastOnce);
+                                  /**
+                                   * The dimensions of the matrix
+                                   * used did not match the
+                                   * expected dimensions.
+                                   *
+                                   * @ingroup Exceptions
+                                   */
+  DeclException4 (ExcMatrixDimensionMismatch,
+                 int, int, int, int,
+                 << "This is a " << arg1 << "x" << arg2 << " matrix, "
+                 << "but should be a " << arg3 << "x" << arg4 << " matrix.");
+
+                                  /**
+                                   * Exception thrown if an
+                                   * embedding matrix was computed
+                                   * inaccurately.
+                                   *
+                                   * @ingroup Exceptions
+                                   */
+  DeclException1(ExcLeastSquaresError, double,
+                << "Least squares fit leaves a gap of " << arg1);
+
+                                  /**
+                                   * Exception thrown if one variable
+                                   * may not be greater than another.
+                                   *
+                                   * @ingroup Exceptions
+                                   */
+  DeclException2 (ExcNotGreaterThan,
+                 int,  int,
+                 << arg1 << " must be greater than " << arg2);
 }
 
 
+#ifndef DOXYGEN
+
+namespace FETools
+{
+  template <class FE>
+  FiniteElement<FE::dimension, FE::dimension>*
+  FEFactory<FE>::get (const unsigned int degree) const
+  {
+    return new FE(degree);
+  }
+}
+
+#endif
 
 /*@}*/
 
index 18cceafaa9f7794b728ff888e4886c15122a54b9..4c40c955fbff29eb0945bca5392498e022b7868f 100644 (file)
@@ -2,7 +2,7 @@
 //    $Id$
 //    Version: $Name$
 //
-//    Copyright (C) 2005, 2006, 2008 by the deal.II authors
+//    Copyright (C) 2005, 2006, 2008, 2010 by the deal.II authors
 //
 //    This file is subject to QPL and may not be  distributed
 //    without copyright and license information. Please refer
 
 DEAL_II_NAMESPACE_OPEN
 
-
-template <int dim>
-void
-FETools::hierarchic_to_lexicographic_numbering (const FiniteElementData<dim> &fe,
-                                               std::vector<unsigned int> &h2l)
+namespace FETools
 {
-  Assert (h2l.size() == fe.dofs_per_cell,
-         ExcDimensionMismatch (h2l.size(), fe.dofs_per_cell));
-  h2l = hierarchic_to_lexicographic_numbering (fe);
-}
-
 
-
-template <int dim>
-std::vector<unsigned int>
-FETools::hierarchic_to_lexicographic_numbering (const FiniteElementData<dim> &fe)
-{
-  Assert (fe.n_components() == 1, ExcInvalidFE());
-
-  std::vector<unsigned int> h2l (fe.dofs_per_cell);
-  
-  const unsigned int dofs_per_cell = fe.dofs_per_cell;
-                                  // polynomial degree
-  const unsigned int degree = fe.dofs_per_line+1;
-                                  // number of grid points in each
-                                  // direction
-  const unsigned int n = degree+1;
-
-                                  // the following lines of code are
-                                  // somewhat odd, due to the way the
-                                  // hierarchic numbering is
-                                  // organized. if someone would
-                                  // really want to understand these
-                                  // lines, you better draw some
-                                  // pictures where you indicate the
-                                  // indices and orders of vertices,
-                                  // lines, etc, along with the
-                                  // numbers of the degrees of
-                                  // freedom in hierarchical and
-                                  // lexicographical order
-  switch (dim)
-    {
-      case 1:
+  template <int dim>
+  void
+  hierarchic_to_lexicographic_numbering (const FiniteElementData<dim> &fe,
+                                        std::vector<unsigned int> &h2l)
+  {
+    Assert (h2l.size() == fe.dofs_per_cell,
+           ExcDimensionMismatch (h2l.size(), fe.dofs_per_cell));
+    h2l = hierarchic_to_lexicographic_numbering (fe);
+  }
+
+
+
+  template <int dim>
+  std::vector<unsigned int>
+  hierarchic_to_lexicographic_numbering (const FiniteElementData<dim> &fe)
+  {
+    Assert (fe.n_components() == 1, ExcInvalidFE());
+
+    std::vector<unsigned int> h2l (fe.dofs_per_cell);
+
+    const unsigned int dofs_per_cell = fe.dofs_per_cell;
+                                    // polynomial degree
+    const unsigned int degree = fe.dofs_per_line+1;
+                                    // number of grid points in each
+                                    // direction
+    const unsigned int n = degree+1;
+
+                                    // the following lines of code are
+                                    // somewhat odd, due to the way the
+                                    // hierarchic numbering is
+                                    // organized. if someone would
+                                    // really want to understand these
+                                    // lines, you better draw some
+                                    // pictures where you indicate the
+                                    // indices and orders of vertices,
+                                    // lines, etc, along with the
+                                    // numbers of the degrees of
+                                    // freedom in hierarchical and
+                                    // lexicographical order
+    switch (dim)
       {
-       h2l[0] = 0;
-       h2l[1] = dofs_per_cell-1;
-       for (unsigned int i=2; i<dofs_per_cell; ++i)
-         h2l[i] = i-1;
-
-       break;
+       case 1:
+       {
+         h2l[0] = 0;
+         h2l[1] = dofs_per_cell-1;
+         for (unsigned int i=2; i<dofs_per_cell; ++i)
+           h2l[i] = i-1;
+
+         break;
+       }
+
+       case 2:
+       {
+         unsigned int next_index = 0;
+                                          // first the four vertices
+         h2l[next_index++] = 0;
+         h2l[next_index++] = n-1;
+         h2l[next_index++] = n*(n-1);
+         h2l[next_index++] = n*n-1;
+
+                                          // left   line
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = (1+i)*n;
+
+                                          // right  line
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = (2+i)*n-1;
+
+                                          // bottom line
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = 1+i;
+
+                                          // top    line
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = n*(n-1)+i+1;
+
+                                          // inside quad
+         Assert (fe.dofs_per_quad == fe.dofs_per_line*fe.dofs_per_line,
+                 ExcInternalError());
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           for (unsigned int j=0; j<fe.dofs_per_line; ++j)
+             h2l[next_index++] = n*(i+1)+j+1;
+
+         Assert (next_index == fe.dofs_per_cell, ExcInternalError());
+
+         break;
+       }
+
+       case 3:
+       {
+         unsigned int next_index = 0;
+                                          // first the eight vertices
+         h2l[next_index++] = 0;                 // 0
+         h2l[next_index++] = (      1)*degree;  // 1
+         h2l[next_index++] = (    n  )*degree;  // 2
+         h2l[next_index++] = (    n+1)*degree;  // 3
+         h2l[next_index++] = (n*n    )*degree;  // 4
+         h2l[next_index++] = (n*n  +1)*degree;  // 5
+         h2l[next_index++] = (n*n+n  )*degree;  // 6
+         h2l[next_index++] = (n*n+n+1)*degree;  // 7
+
+                                          // line 0
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = (i+1)*n;
+                                          // line 1
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = n-1+(i+1)*n;
+                                          // line 2
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = 1+i;
+                                          // line 3
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = 1+i+n*(n-1);
+
+                                          // line 4
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = (n-1)*n*n+(i+1)*n;
+                                          // line 5
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = (n-1)*(n*n+1)+(i+1)*n;
+                                          // line 6
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = n*n*(n-1)+i+1;
+                                          // line 7
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = n*n*(n-1)+i+1+n*(n-1);
+
+                                          // line 8
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = (i+1)*n*n;
+                                          // line 9
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = n-1+(i+1)*n*n;
+                                          // line 10
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = (i+1)*n*n+n*(n-1);
+                                          // line 11
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           h2l[next_index++] = n-1+(i+1)*n*n+n*(n-1);
+
+
+                                          // inside quads
+         Assert (fe.dofs_per_quad == fe.dofs_per_line*fe.dofs_per_line,
+                 ExcInternalError());
+                                          // face 0
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           for (unsigned int j=0; j<fe.dofs_per_line; ++j)
+             h2l[next_index++] = (i+1)*n*n+n*(j+1);
+                                          // face 1
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           for (unsigned int j=0; j<fe.dofs_per_line; ++j)
+             h2l[next_index++] = (i+1)*n*n+n-1+n*(j+1);
+                                          // face 2, note the orientation!
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           for (unsigned int j=0; j<fe.dofs_per_line; ++j)
+             h2l[next_index++] = (j+1)*n*n+i+1;
+                                          // face 3, note the orientation!
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           for (unsigned int j=0; j<fe.dofs_per_line; ++j)
+             h2l[next_index++] = (j+1)*n*n+n*(n-1)+i+1;
+                                          // face 4
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           for (unsigned int j=0; j<fe.dofs_per_line; ++j)
+             h2l[next_index++] = n*(i+1)+j+1;
+                                          // face 5
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           for (unsigned int j=0; j<fe.dofs_per_line; ++j)
+             h2l[next_index++] = (n-1)*n*n+n*(i+1)+j+1;
+
+                                          // inside hex
+         Assert (fe.dofs_per_hex == fe.dofs_per_quad*fe.dofs_per_line,
+                 ExcInternalError());
+         for (unsigned int i=0; i<fe.dofs_per_line; ++i)
+           for (unsigned int j=0; j<fe.dofs_per_line; ++j)
+             for (unsigned int k=0; k<fe.dofs_per_line; ++k)
+               h2l[next_index++]       = n*n*(i+1)+n*(j+1)+k+1;
+
+         Assert (next_index == fe.dofs_per_cell, ExcInternalError());
+
+         break;
+       }
+
+       default:
+             Assert (false, ExcNotImplemented());
       }
 
-      case 2:
-      {
-       unsigned int next_index = 0;
-                                        // first the four vertices
-       h2l[next_index++] = 0;
-       h2l[next_index++] = n-1;
-       h2l[next_index++] = n*(n-1);
-       h2l[next_index++] = n*n-1;
-
-                                        // left   line
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = (1+i)*n;
-       
-                                        // right  line
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = (2+i)*n-1;
-
-                                        // bottom line
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = 1+i;      
-       
-                                        // top    line
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = n*(n-1)+i+1;
-
-                                        // inside quad
-       Assert (fe.dofs_per_quad == fe.dofs_per_line*fe.dofs_per_line,
-               ExcInternalError());
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         for (unsigned int j=0; j<fe.dofs_per_line; ++j)
-           h2l[next_index++] = n*(i+1)+j+1;
-
-       Assert (next_index == fe.dofs_per_cell, ExcInternalError());
-
-       break;
-      }
+    return h2l;
+  }
 
-      case 3:
-      {
-       unsigned int next_index = 0;
-                                        // first the eight vertices
-       h2l[next_index++] = 0;                 // 0
-       h2l[next_index++] = (      1)*degree;  // 1
-       h2l[next_index++] = (    n  )*degree;  // 2
-       h2l[next_index++] = (    n+1)*degree;  // 3
-       h2l[next_index++] = (n*n    )*degree;  // 4
-       h2l[next_index++] = (n*n  +1)*degree;  // 5
-       h2l[next_index++] = (n*n+n  )*degree;  // 6
-       h2l[next_index++] = (n*n+n+1)*degree;  // 7
-
-                                        // line 0
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = (i+1)*n;
-                                        // line 1
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = n-1+(i+1)*n;
-                                        // line 2
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = 1+i;
-                                        // line 3
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = 1+i+n*(n-1);
-
-                                        // line 4
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = (n-1)*n*n+(i+1)*n;
-                                        // line 5
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = (n-1)*(n*n+1)+(i+1)*n;
-                                        // line 6
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = n*n*(n-1)+i+1;
-                                        // line 7
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = n*n*(n-1)+i+1+n*(n-1);
-
-                                        // line 8
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = (i+1)*n*n;
-                                        // line 9
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = n-1+(i+1)*n*n;
-                                        // line 10
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = (i+1)*n*n+n*(n-1);
-                                        // line 11
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         h2l[next_index++] = n-1+(i+1)*n*n+n*(n-1);
-
-
-                                        // inside quads
-       Assert (fe.dofs_per_quad == fe.dofs_per_line*fe.dofs_per_line,
-               ExcInternalError());
-                                        // face 0
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         for (unsigned int j=0; j<fe.dofs_per_line; ++j)
-           h2l[next_index++] = (i+1)*n*n+n*(j+1);
-                                        // face 1
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         for (unsigned int j=0; j<fe.dofs_per_line; ++j)
-           h2l[next_index++] = (i+1)*n*n+n-1+n*(j+1);
-                                        // face 2, note the orientation!
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         for (unsigned int j=0; j<fe.dofs_per_line; ++j)
-           h2l[next_index++] = (j+1)*n*n+i+1;
-                                        // face 3, note the orientation!
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         for (unsigned int j=0; j<fe.dofs_per_line; ++j)
-           h2l[next_index++] = (j+1)*n*n+n*(n-1)+i+1;
-                                        // face 4
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         for (unsigned int j=0; j<fe.dofs_per_line; ++j)
-           h2l[next_index++] = n*(i+1)+j+1;
-                                        // face 5
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         for (unsigned int j=0; j<fe.dofs_per_line; ++j)
-           h2l[next_index++] = (n-1)*n*n+n*(i+1)+j+1;
-
-                                        // inside hex
-       Assert (fe.dofs_per_hex == fe.dofs_per_quad*fe.dofs_per_line,
-               ExcInternalError());
-       for (unsigned int i=0; i<fe.dofs_per_line; ++i)
-         for (unsigned int j=0; j<fe.dofs_per_line; ++j)
-           for (unsigned int k=0; k<fe.dofs_per_line; ++k)
-             h2l[next_index++] = n*n*(i+1)+n*(j+1)+k+1;
-
-       Assert (next_index == fe.dofs_per_cell, ExcInternalError());
-       
-       break;
-      }       
-
-      default:
-           Assert (false, ExcNotImplemented());
-    }
-
-  return h2l;
-}
 
 
+  template <int dim>
+  void
+  lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &fe,
+                                        std::vector<unsigned int>    &l2h)
+  {
+    l2h = lexicographic_to_hierarchic_numbering (fe);
+  }
 
-template <int dim>
-void
-FETools::lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &fe,
-                                               std::vector<unsigned int>    &l2h)
-{
-  l2h = lexicographic_to_hierarchic_numbering (fe);
-}
 
 
+  template <int dim>
+  std::vector<unsigned int>
+  lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &fe)
+  {
+    return Utilities::invert_permutation(hierarchic_to_lexicographic_numbering (fe));
+  }
 
-template <int dim>
-std::vector<unsigned int>
-FETools::lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &fe)
-{
-  return Utilities::invert_permutation(hierarchic_to_lexicographic_numbering (fe));
 }
 
 
-
-
-template
-void
-FETools::hierarchic_to_lexicographic_numbering<1>
-(const FiniteElementData<1> &fe,
- std::vector<unsigned int> &h2l);
-template
-void
-FETools::hierarchic_to_lexicographic_numbering<2>
-(const FiniteElementData<2> &fe,
- std::vector<unsigned int> &h2l);
-template
-void
-FETools::hierarchic_to_lexicographic_numbering<3>
-(const FiniteElementData<3> &fe,
- std::vector<unsigned int> &h2l);
-
-
-template
-void
-FETools::lexicographic_to_hierarchic_numbering<1>
-(const FiniteElementData<1> &fe,
- std::vector<unsigned int> &l2h);
-template
-void
-FETools::lexicographic_to_hierarchic_numbering<2>
-(const FiniteElementData<2> &fe,
- std::vector<unsigned int> &l2h);
-template
-void
-FETools::lexicographic_to_hierarchic_numbering<3>
-(const FiniteElementData<3> &fe,
- std::vector<unsigned int> &l2h);
-
-
-
-template
-std::vector<unsigned int>
-FETools::hierarchic_to_lexicographic_numbering<1>
-(const FiniteElementData<1> &fe);
-template
-std::vector<unsigned int>
-FETools::hierarchic_to_lexicographic_numbering<2>
-(const FiniteElementData<2> &fe);
-template
-std::vector<unsigned int>
-FETools::hierarchic_to_lexicographic_numbering<3>
-(const FiniteElementData<3> &fe);
-
-
-template
-std::vector<unsigned int>
-FETools::lexicographic_to_hierarchic_numbering<1>
-(const FiniteElementData<1> &fe);
-template
-std::vector<unsigned int>
-FETools::lexicographic_to_hierarchic_numbering<2>
-(const FiniteElementData<2> &fe);
-template
-std::vector<unsigned int>
-FETools::lexicographic_to_hierarchic_numbering<3>
-(const FiniteElementData<3> &fe);
-
+// explicit instantiations
+namespace FETools
+{
+  template
+  void
+  hierarchic_to_lexicographic_numbering<1>
+  (const FiniteElementData<1> &fe,
+   std::vector<unsigned int> &h2l);
+  template
+  void
+  hierarchic_to_lexicographic_numbering<2>
+  (const FiniteElementData<2> &fe,
+   std::vector<unsigned int> &h2l);
+  template
+  void
+  hierarchic_to_lexicographic_numbering<3>
+  (const FiniteElementData<3> &fe,
+   std::vector<unsigned int> &h2l);
+
+
+  template
+  void
+  lexicographic_to_hierarchic_numbering<1>
+  (const FiniteElementData<1> &fe,
+   std::vector<unsigned int> &l2h);
+  template
+  void
+  lexicographic_to_hierarchic_numbering<2>
+  (const FiniteElementData<2> &fe,
+   std::vector<unsigned int> &l2h);
+  template
+  void
+  lexicographic_to_hierarchic_numbering<3>
+  (const FiniteElementData<3> &fe,
+   std::vector<unsigned int> &l2h);
+
+
+
+  template
+  std::vector<unsigned int>
+  hierarchic_to_lexicographic_numbering<1>
+  (const FiniteElementData<1> &fe);
+  template
+  std::vector<unsigned int>
+  hierarchic_to_lexicographic_numbering<2>
+  (const FiniteElementData<2> &fe);
+  template
+  std::vector<unsigned int>
+  hierarchic_to_lexicographic_numbering<3>
+  (const FiniteElementData<3> &fe);
+
+
+  template
+  std::vector<unsigned int>
+  lexicographic_to_hierarchic_numbering<1>
+  (const FiniteElementData<1> &fe);
+  template
+  std::vector<unsigned int>
+  lexicographic_to_hierarchic_numbering<2>
+  (const FiniteElementData<2> &fe);
+  template
+  std::vector<unsigned int>
+  lexicographic_to_hierarchic_numbering<3>
+  (const FiniteElementData<3> &fe);
+}
 
 
 DEAL_II_NAMESPACE_CLOSE
index 76082357d00f7dbbc89d146771099296d4d3ae83..fb7242f7fb5ce242960698274c4eaef0421d04fe 100644 (file)
@@ -238,397 +238,399 @@ namespace
 }
 
 
-template <int dim, int spacedim>
-FETools::FEFactoryBase<dim,spacedim>::~FEFactoryBase()
-{}
+namespace FETools
+{
+  template <int dim, int spacedim>
+  FEFactoryBase<dim,spacedim>::~FEFactoryBase()
+  {}
 
 
-template<int dim, int spacedim>
-void FETools::compute_component_wise(
-  const FiniteElement<dim,spacedim>& element,
-  std::vector<unsigned int>& renumbering,
-  std::vector<std::vector<unsigned int> >& comp_start)
-{
-  Assert(renumbering.size() == element.dofs_per_cell,
-        ExcDimensionMismatch(renumbering.size(),
-                             element.dofs_per_cell));
+  template<int dim, int spacedim>
+  void compute_component_wise(
+    const FiniteElement<dim,spacedim>& element,
+    std::vector<unsigned int>& renumbering,
+    std::vector<std::vector<unsigned int> >& comp_start)
+  {
+    Assert(renumbering.size() == element.dofs_per_cell,
+          ExcDimensionMismatch(renumbering.size(),
+                               element.dofs_per_cell));
 
-  comp_start.resize(element.n_base_elements());
+    comp_start.resize(element.n_base_elements());
 
-  unsigned int k=0;
-  for (unsigned int i=0;i<comp_start.size();++i)
-    {
-      comp_start[i].resize(element.element_multiplicity(i));
-      const unsigned int increment
-       = element.base_element(i).dofs_per_cell;
+    unsigned int k=0;
+    for (unsigned int i=0;i<comp_start.size();++i)
+      {
+       comp_start[i].resize(element.element_multiplicity(i));
+       const unsigned int increment
+         = element.base_element(i).dofs_per_cell;
+
+       for (unsigned int j=0;j<comp_start[i].size();++j)
+         {
+           comp_start[i][j] = k;
+           k += increment;
+         }
+      }
+
+                                    // For each index i of the
+                                    // unstructured cellwise
+                                    // numbering, renumbering
+                                    // contains the index of the
+                                    // cell-block numbering
+    for (unsigned int i=0;i<element.dofs_per_cell;++i)
+      {
+       std::pair<std::pair<unsigned int, unsigned int>, unsigned int>
+         indices = element.system_to_base_index(i);
+       renumbering[i] = comp_start[indices.first.first][indices.first.second]
+                        +indices.second;
+      }
+  }
 
-      for (unsigned int j=0;j<comp_start[i].size();++j)
+
+
+  template<int dim, int spacedim>
+  void compute_block_renumbering (
+    const FiniteElement<dim,spacedim>& element,
+    std::vector<unsigned int>& renumbering,
+    std::vector<unsigned int>& block_data,
+    bool return_start_indices)
+  {
+    Assert(renumbering.size() == element.dofs_per_cell,
+          ExcDimensionMismatch(renumbering.size(),
+                               element.dofs_per_cell));
+    Assert(block_data.size() == element.n_blocks(),
+          ExcDimensionMismatch(block_data.size(),
+                               element.n_blocks()));
+
+    unsigned int k=0;
+    unsigned int i=0;
+    for (unsigned int b=0;b<element.n_base_elements();++b)
+      for (unsigned int m=0;m<element.element_multiplicity(b);++m)
        {
-         comp_start[i][j] = k;
-         k += increment;
+         block_data[i++] = (return_start_indices)
+                           ? k
+                           : (element.base_element(b).n_dofs_per_cell());
+         k += element.base_element(b).n_dofs_per_cell();
        }
-    }
+    Assert (i == element.n_blocks(), ExcInternalError());
 
-                                  // For each index i of the
-                                  // unstructured cellwise
-                                  // numbering, renumbering
-                                  // contains the index of the
-                                  // cell-block numbering
-  for (unsigned int i=0;i<element.dofs_per_cell;++i)
-    {
-      std::pair<std::pair<unsigned int, unsigned int>, unsigned int>
-       indices = element.system_to_base_index(i);
-      renumbering[i] = comp_start[indices.first.first][indices.first.second]
-                            +indices.second;
-    }
-}
+    std::vector<unsigned int> start_indices(block_data.size());
+    k = 0;
+    for (unsigned int i=0;i<block_data.size();++i)
+      if (return_start_indices)
+       start_indices[i] = block_data[i];
+      else
+       {
+         start_indices[i] = k;
+         k += block_data[i];
+       }
 
+//TODO:[GK] This does not work for a single RT
+    for (unsigned int i=0;i<element.dofs_per_cell;++i)
+      {
+       std::pair<unsigned int, unsigned int>
+         indices = element.system_to_block_index(i);
+       renumbering[i] = start_indices[indices.first]
+                        +indices.second;
+      }
+  }
 
 
-template<int dim, int spacedim>
-void FETools::compute_block_renumbering (
-  const FiniteElement<dim,spacedim>& element,
-  std::vector<unsigned int>& renumbering,
-  std::vector<unsigned int>& block_data,
-  bool return_start_indices)
-{
-  Assert(renumbering.size() == element.dofs_per_cell,
-        ExcDimensionMismatch(renumbering.size(),
-                             element.dofs_per_cell));
-  Assert(block_data.size() == element.n_blocks(),
-        ExcDimensionMismatch(block_data.size(),
-                             element.n_blocks()));
-
-  unsigned int k=0;
-  unsigned int i=0;
-  for (unsigned int b=0;b<element.n_base_elements();++b)
-    for (unsigned int m=0;m<element.element_multiplicity(b);++m)
+
+  template <int dim, typename number, int spacedim>
+  void get_interpolation_matrix (const FiniteElement<dim,spacedim> &fe1,
+                                const FiniteElement<dim,spacedim> &fe2,
+                                FullMatrix<number> &interpolation_matrix)
+  {
+    Assert (fe1.n_components() == fe2.n_components(),
+           ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
+    Assert(interpolation_matrix.m()==fe2.dofs_per_cell &&
+          interpolation_matrix.n()==fe1.dofs_per_cell,
+          ExcMatrixDimensionMismatch(interpolation_matrix.m(),
+                                     interpolation_matrix.n(),
+                                     fe2.dofs_per_cell,
+                                     fe1.dofs_per_cell));
+
+                                    // first try the easy way: maybe
+                                    // the FE wants to implement things
+                                    // itself:
+    bool fe_implements_interpolation = true;
+    try
       {
-       block_data[i++] = (return_start_indices)
-                            ? k
-                            : (element.base_element(b).n_dofs_per_cell());
-       k += element.base_element(b).n_dofs_per_cell();
+       gim_forwarder (fe1, fe2, interpolation_matrix);
       }
-  Assert (i == element.n_blocks(), ExcInternalError());
-
-  std::vector<unsigned int> start_indices(block_data.size());
-  k = 0;
-  for (unsigned int i=0;i<block_data.size();++i)
-    if (return_start_indices)
-      start_indices[i] = block_data[i];
-    else
+    catch (typename FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented &)
       {
-       start_indices[i] = k;
-       k += block_data[i];
+                                        // too bad....
+       fe_implements_interpolation = false;
       }
-
-//TODO:[GK] This does not work for a single RT
-  for (unsigned int i=0;i<element.dofs_per_cell;++i)
-    {
-      std::pair<unsigned int, unsigned int>
-       indices = element.system_to_block_index(i);
-      renumbering[i] = start_indices[indices.first]
-                      +indices.second;
-    }
-}
+    if (fe_implements_interpolation == true)
+      return;
+
+                                    // uh, so this was not the
+                                    // case. hm. then do it the hard
+                                    // way. note that this will only
+                                    // work if the element is
+                                    // primitive, so check this first
+    Assert (fe1.is_primitive() == true, ExcFENotPrimitive());
+    Assert (fe2.is_primitive() == true, ExcFENotPrimitive());
+
+                                    // Initialize FEValues for fe1 at
+                                    // the unit support points of the
+                                    // fe2 element.
+    const std::vector<Point<dim> > &
+      fe2_support_points = fe2.get_unit_support_points ();
+
+    typedef FiniteElement<dim,spacedim> FEL;
+    Assert(fe2_support_points.size()==fe2.dofs_per_cell,
+          typename FEL::ExcFEHasNoSupportPoints());
+
+    for (unsigned int i=0; i<fe2.dofs_per_cell; ++i)
+      {
+       const unsigned int i1 = fe2.system_to_component_index(i).first;
+       for (unsigned int j=0; j<fe1.dofs_per_cell; ++j)
+         {
+           const unsigned int j1 = fe1.system_to_component_index(j).first;
+           if (i1==j1)
+             interpolation_matrix(i,j) = fe1.shape_value (j,fe2_support_points[i]);
+           else
+             interpolation_matrix(i,j)=0.;
+         }
+      }
+  }
 
 
 
-template <int dim, typename number, int spacedim>
-void FETools::get_interpolation_matrix (const FiniteElement<dim,spacedim> &fe1,
-                                        const FiniteElement<dim,spacedim> &fe2,
-                                        FullMatrix<number> &interpolation_matrix)
-{
-  Assert (fe1.n_components() == fe2.n_components(),
-         ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
-  Assert(interpolation_matrix.m()==fe2.dofs_per_cell &&
-        interpolation_matrix.n()==fe1.dofs_per_cell,
-        ExcMatrixDimensionMismatch(interpolation_matrix.m(),
-                                   interpolation_matrix.n(),
-                                   fe2.dofs_per_cell,
-                                   fe1.dofs_per_cell));
-
-                                  // first try the easy way: maybe
-                                  // the FE wants to implement things
-                                  // itself:
-  bool fe_implements_interpolation = true;
-  try
-    {
-      gim_forwarder (fe1, fe2, interpolation_matrix);
-    }
-  catch (typename FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented &)
-    {
-                                       // too bad....
-      fe_implements_interpolation = false;
-    }
-  if (fe_implements_interpolation == true)
-    return;
-
-                                  // uh, so this was not the
-                                  // case. hm. then do it the hard
-                                  // way. note that this will only
-                                  // work if the element is
-                                  // primitive, so check this first
-  Assert (fe1.is_primitive() == true, ExcFENotPrimitive());
-  Assert (fe2.is_primitive() == true, ExcFENotPrimitive());
-
-                                  // Initialize FEValues for fe1 at
-                                  // the unit support points of the
-                                  // fe2 element.
-  const std::vector<Point<dim> > &
-    fe2_support_points = fe2.get_unit_support_points ();
-
-  typedef FiniteElement<dim,spacedim> FEL;
-  Assert(fe2_support_points.size()==fe2.dofs_per_cell,
-        typename FEL::ExcFEHasNoSupportPoints());
-
-  for (unsigned int i=0; i<fe2.dofs_per_cell; ++i)
-    {
-      const unsigned int i1 = fe2.system_to_component_index(i).first;
-      for (unsigned int j=0; j<fe1.dofs_per_cell; ++j)
-       {
-         const unsigned int j1 = fe1.system_to_component_index(j).first;
-         if (i1==j1)
-           interpolation_matrix(i,j) = fe1.shape_value (j,fe2_support_points[i]);
-         else
-           interpolation_matrix(i,j)=0.;
-       }
-    }
-}
+  template <int dim, typename number, int spacedim>
+  void get_back_interpolation_matrix(const FiniteElement<dim,spacedim> &fe1,
+                                    const FiniteElement<dim,spacedim> &fe2,
+                                    FullMatrix<number> &interpolation_matrix)
+  {
+    Assert (fe1.n_components() == fe2.n_components(),
+           ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
+    Assert(interpolation_matrix.m()==fe1.dofs_per_cell &&
+          interpolation_matrix.n()==fe1.dofs_per_cell,
+          ExcMatrixDimensionMismatch(interpolation_matrix.m(),
+                                     interpolation_matrix.n(),
+                                     fe1.dofs_per_cell,
+                                     fe1.dofs_per_cell));
+
+    FullMatrix<number> first_matrix (fe2.dofs_per_cell, fe1.dofs_per_cell);
+    FullMatrix<number> second_matrix(fe1.dofs_per_cell, fe2.dofs_per_cell);
+
+    get_interpolation_matrix(fe1, fe2, first_matrix);
+    get_interpolation_matrix(fe2, fe1, second_matrix);
+
+                                    // int_matrix=second_matrix*first_matrix
+    second_matrix.mmult(interpolation_matrix, first_matrix);
+  }
 
 
 
-template <int dim, typename number, int spacedim>
-void FETools::get_back_interpolation_matrix(const FiniteElement<dim,spacedim> &fe1,
+  template <int dim, typename number, int spacedim>
+  void get_interpolation_difference_matrix (const FiniteElement<dim,spacedim> &fe1,
                                            const FiniteElement<dim,spacedim> &fe2,
-                                           FullMatrix<number> &interpolation_matrix)
-{
-  Assert (fe1.n_components() == fe2.n_components(),
-         ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
-  Assert(interpolation_matrix.m()==fe1.dofs_per_cell &&
-        interpolation_matrix.n()==fe1.dofs_per_cell,
-        ExcMatrixDimensionMismatch(interpolation_matrix.m(),
-                                   interpolation_matrix.n(),
-                                   fe1.dofs_per_cell,
-                                   fe1.dofs_per_cell));
-
-  FullMatrix<number> first_matrix (fe2.dofs_per_cell, fe1.dofs_per_cell);
-  FullMatrix<number> second_matrix(fe1.dofs_per_cell, fe2.dofs_per_cell);
-
-  get_interpolation_matrix(fe1, fe2, first_matrix);
-  get_interpolation_matrix(fe2, fe1, second_matrix);
-
-                                  // int_matrix=second_matrix*first_matrix
-  second_matrix.mmult(interpolation_matrix, first_matrix);
-}
+                                           FullMatrix<number> &difference_matrix)
+  {
+    Assert (fe1.n_components() == fe2.n_components(),
+           ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
+    Assert(difference_matrix.m()==fe1.dofs_per_cell &&
+          difference_matrix.n()==fe1.dofs_per_cell,
+          ExcMatrixDimensionMismatch(difference_matrix.m(),
+                                     difference_matrix.n(),
+                                     fe1.dofs_per_cell,
+                                     fe1.dofs_per_cell));
+
+    FullMatrix<number> interpolation_matrix(fe1.dofs_per_cell);
+    get_back_interpolation_matrix(fe1, fe2, interpolation_matrix);
+
+    for (unsigned int i=0; i<fe1.dofs_per_cell; ++i)
+      difference_matrix(i,i) = 1.;
+
+                                    // compute difference
+    difference_matrix.add (-1, interpolation_matrix);
+  }
 
 
 
-template <int dim, typename number, int spacedim>
-void FETools::get_interpolation_difference_matrix (const FiniteElement<dim,spacedim> &fe1,
-                                                  const FiniteElement<dim,spacedim> &fe2,
-                                                  FullMatrix<number> &difference_matrix)
-{
-  Assert (fe1.n_components() == fe2.n_components(),
-         ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
-  Assert(difference_matrix.m()==fe1.dofs_per_cell &&
-        difference_matrix.n()==fe1.dofs_per_cell,
-        ExcMatrixDimensionMismatch(difference_matrix.m(),
-                                   difference_matrix.n(),
-                                   fe1.dofs_per_cell,
-                                   fe1.dofs_per_cell));
-
-  FullMatrix<number> interpolation_matrix(fe1.dofs_per_cell);
-  get_back_interpolation_matrix(fe1, fe2, interpolation_matrix);
-
-  for (unsigned int i=0; i<fe1.dofs_per_cell; ++i)
-    difference_matrix(i,i) = 1.;
-
-                                  // compute difference
-  difference_matrix.add (-1, interpolation_matrix);
-}
+  template <int dim, typename number, int spacedim>
+  void get_projection_matrix (const FiniteElement<dim,spacedim> &fe1,
+                             const FiniteElement<dim,spacedim> &fe2,
+                             FullMatrix<number> &matrix)
+  {
+    Assert (fe1.n_components() == 1, ExcNotImplemented());
+    Assert (fe1.n_components() == fe2.n_components(),
+           ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
+    Assert(matrix.m()==fe2.dofs_per_cell && matrix.n()==fe1.dofs_per_cell,
+          ExcMatrixDimensionMismatch(matrix.m(), matrix.n(),
+                                     fe2.dofs_per_cell,
+                                     fe1.dofs_per_cell));
+    matrix = 0;
+
+    unsigned int n1 = fe1.dofs_per_cell;
+    unsigned int n2 = fe2.dofs_per_cell;
+
+                                    // First, create a local mass matrix for
+                                    // the unit cell
+    Triangulation<dim,spacedim> tr;
+    GridGenerator::hyper_cube(tr);
+
+                                    // Choose a quadrature rule
+                                    // Gauss is exact up to degree 2n-1
+    const unsigned int degree = std::max(fe1.tensor_degree(), fe2.tensor_degree());
+    Assert (degree != numbers::invalid_unsigned_int,
+           ExcNotImplemented());
+
+    QGauss<dim> quadrature(degree+1);
+                                    // Set up FEValues.
+    const UpdateFlags flags = update_values | update_quadrature_points | update_JxW_values;
+    FEValues<dim> val1 (fe1, quadrature, update_values);
+    val1.reinit (tr.begin_active());
+    FEValues<dim> val2 (fe2, quadrature, flags);
+    val2.reinit (tr.begin_active());
+
+                                    // Integrate and invert mass matrix
+                                    // This happens in the target space
+    FullMatrix<double> mass (n2, n2);
+
+    for (unsigned int k=0;k<quadrature.size();++k)
+      {
+       const double w = val2.JxW(k);
+       for (unsigned int i=0;i<n2;++i)
+         {
+           const double v = val2.shape_value(i,k);
+           for (unsigned int j=0;j<n2;++j)
+             mass(i,j) += w*v * val2.shape_value(j,k);
+         }
+      }
+                                    // Gauss-Jordan should be
+                                    // sufficient since we expect the
+                                    // mass matrix to be
+                                    // well-conditioned
+    mass.gauss_jordan();
 
+                                    // Now, test every function of fe1
+                                    // with test functions of fe2 and
+                                    // compute the projection of each
+                                    // unit vector.
+    Vector<double> b(n2);
+    Vector<double> x(n2);
 
+    for (unsigned int j=0;j<n1;++j)
+      {
+       b = 0.;
+       for (unsigned int i=0;i<n2;++i)
+         for (unsigned int k=0;k<quadrature.size();++k)
+           {
+             const double w = val2.JxW(k);
+             const double u = val1.shape_value(j,k);
+             const double v = val2.shape_value(i,k);
+             b(i) += u*v*w;
+           }
 
-template <int dim, typename number, int spacedim>
-void FETools::get_projection_matrix (const FiniteElement<dim,spacedim> &fe1,
-                                    const FiniteElement<dim,spacedim> &fe2,
-                                    FullMatrix<number> &matrix)
-{
-  Assert (fe1.n_components() == 1, ExcNotImplemented());
-  Assert (fe1.n_components() == fe2.n_components(),
-         ExcDimensionMismatch(fe1.n_components(), fe2.n_components()));
-  Assert(matrix.m()==fe2.dofs_per_cell && matrix.n()==fe1.dofs_per_cell,
-        ExcMatrixDimensionMismatch(matrix.m(), matrix.n(),
-                                   fe2.dofs_per_cell,
-                                   fe1.dofs_per_cell));
-  matrix = 0;
-
-  unsigned int n1 = fe1.dofs_per_cell;
-  unsigned int n2 = fe2.dofs_per_cell;
-
-                                  // First, create a local mass matrix for
-                                  // the unit cell
-  Triangulation<dim,spacedim> tr;
-  GridGenerator::hyper_cube(tr);
-
-                                  // Choose a quadrature rule
-                                  // Gauss is exact up to degree 2n-1
-  const unsigned int degree = std::max(fe1.tensor_degree(), fe2.tensor_degree());
-  Assert (degree != numbers::invalid_unsigned_int,
-         ExcNotImplemented());
-
-  QGauss<dim> quadrature(degree+1);
-                                  // Set up FEValues.
-  const UpdateFlags flags = update_values | update_quadrature_points | update_JxW_values;
-  FEValues<dim> val1 (fe1, quadrature, update_values);
-  val1.reinit (tr.begin_active());
-  FEValues<dim> val2 (fe2, quadrature, flags);
-  val2.reinit (tr.begin_active());
-
-                                  // Integrate and invert mass matrix
-                                  // This happens in the target space
-  FullMatrix<double> mass (n2, n2);
-
-  for (unsigned int k=0;k<quadrature.size();++k)
-    {
-      const double w = val2.JxW(k);
-      for (unsigned int i=0;i<n2;++i)
-       {
-         const double v = val2.shape_value(i,k);
-         for (unsigned int j=0;j<n2;++j)
-           mass(i,j) += w*v * val2.shape_value(j,k);
-       }
-    }
-                                  // Gauss-Jordan should be
-                                  // sufficient since we expect the
-                                  // mass matrix to be
-                                  // well-conditioned
-  mass.gauss_jordan();
-
-                                  // Now, test every function of fe1
-                                  // with test functions of fe2 and
-                                  // compute the projection of each
-                                  // unit vector.
-  Vector<double> b(n2);
-  Vector<double> x(n2);
-
-  for (unsigned int j=0;j<n1;++j)
-    {
-      b = 0.;
-      for (unsigned int i=0;i<n2;++i)
-        for (unsigned int k=0;k<quadrature.size();++k)
-          {
-            const double w = val2.JxW(k);
-            const double u = val1.shape_value(j,k);
-            const double v = val2.shape_value(i,k);
-            b(i) += u*v*w;
-          }
-
-                                      // Multiply by the inverse
-      mass.vmult(x,b);
-      for (unsigned int i=0;i<n2;++i)
-       matrix(i,j) = x(i);
-    }
-}
+                                        // Multiply by the inverse
+       mass.vmult(x,b);
+       for (unsigned int i=0;i<n2;++i)
+         matrix(i,j) = x(i);
+      }
+  }
 
 
-template<int dim, int spacedim>
-void
-FETools::compute_node_matrix(
-  FullMatrix<double>& N,
-  const FiniteElement<dim,spacedim>& fe)
-{
-  const unsigned int n_dofs = fe.dofs_per_cell;
-  Assert (fe.has_generalized_support_points(), ExcNotInitialized());
-  Assert (N.n()==n_dofs, ExcDimensionMismatch(N.n(), n_dofs));
-  Assert (N.m()==n_dofs, ExcDimensionMismatch(N.m(), n_dofs));
-
-  const std::vector<Point<dim> >& points = fe.get_generalized_support_points();
-
-                                  // We need the values of the
-                                  // polynomials in all generalized
-                                  // support points.
-  std::vector<std::vector<double> >
-    values (dim, std::vector<double>(points.size()));
-
-                                  // In this vector, we store the
-                                  // result of the interpolation
-  std::vector<double> local_dofs(n_dofs);
-
-                                  // One row per shape
-                                  // function. Remember that these
-                                  // are the 'raw' shape functions
-                                  // where the inverse node matrix is
-                                  // empty. Otherwise, this would
-                                  // yield identity.
-  for (unsigned int i=0;i<n_dofs;++i)
-    {
-       for (unsigned int k=0;k<values[0].size();++k)
-       for (unsigned int d=0;d<dim;++d)
-         values[d][k] = fe.shape_value_component(i,points[k],d);
-       fe.interpolate(local_dofs, values);
-                                      // Enter the interpolated dofs
-                                      // into the matrix
-       for (unsigned int j=0;j<n_dofs;++j)
-       N(j,i) = local_dofs[j];
-    }
-}
+  template<int dim, int spacedim>
+  void
+  compute_node_matrix(
+    FullMatrix<double>& N,
+    const FiniteElement<dim,spacedim>& fe)
+  {
+    const unsigned int n_dofs = fe.dofs_per_cell;
+    Assert (fe.has_generalized_support_points(), ExcNotInitialized());
+    Assert (N.n()==n_dofs, ExcDimensionMismatch(N.n(), n_dofs));
+    Assert (N.m()==n_dofs, ExcDimensionMismatch(N.m(), n_dofs));
+
+    const std::vector<Point<dim> >& points = fe.get_generalized_support_points();
+
+                                    // We need the values of the
+                                    // polynomials in all generalized
+                                    // support points.
+    std::vector<std::vector<double> >
+      values (dim, std::vector<double>(points.size()));
+
+                                    // In this vector, we store the
+                                    // result of the interpolation
+    std::vector<double> local_dofs(n_dofs);
+
+                                    // One row per shape
+                                    // function. Remember that these
+                                    // are the 'raw' shape functions
+                                    // where the inverse node matrix is
+                                    // empty. Otherwise, this would
+                                    // yield identity.
+    for (unsigned int i=0;i<n_dofs;++i)
+      {
+       for (unsigned int k=0;k<values[0].size();++k)
+         for (unsigned int d=0;d<dim;++d)
+           values[d][k] = fe.shape_value_component(i,points[k],d);
+       fe.interpolate(local_dofs, values);
+                                        // Enter the interpolated dofs
+                                        // into the matrix
+       for (unsigned int j=0;j<n_dofs;++j)
+         N(j,i) = local_dofs[j];
+      }
+  }
 
 #if deal_II_dimension == 1
-template<>
-void
-FETools::compute_embedding_matrices(const FiniteElement<1,2> &,
-                                   std::vector<std::vector<FullMatrix<double> > > &,
-                                   const bool)
-{
-  Assert(false, ExcNotImplemented());
-}
+  template<>
+  void
+  compute_embedding_matrices(const FiniteElement<1,2> &,
+                            std::vector<std::vector<FullMatrix<double> > > &,
+                            const bool)
+  {
+    Assert(false, ExcNotImplemented());
+  }
 
 #elif deal_II_dimension == 2
-template<>
-void
-FETools::compute_embedding_matrices(const FiniteElement<2,3>&,
-                                   std::vector<std::vector<FullMatrix<double> > >&,
-                                   const bool)
-{
-  Assert(false, ExcNotImplemented());
-}
+  template<>
+  void
+  compute_embedding_matrices(const FiniteElement<2,3>&,
+                            std::vector<std::vector<FullMatrix<double> > >&,
+                            const bool)
+  {
+    Assert(false, ExcNotImplemented());
+  }
 
 #endif
 
 
-namespace {
-  template<int dim, typename number, int spacedim>
-  void
-  compute_embedding_matrices_for_refinement_case (const FiniteElement<dim, spacedim>& fe,
-                                                  std::vector<FullMatrix<number> >& matrices,
-                                                  const unsigned int ref_case)
-  {
-    const unsigned int n  = fe.dofs_per_cell;
-    const unsigned int nc = GeometryInfo<dim>::n_children(RefinementCase<dim>(ref_case));
-    for (unsigned int i = 0; i < nc; ++i)
-         {
-           Assert(matrices[i].n() == n, ExcDimensionMismatch(matrices[i].n (), n));
-           Assert(matrices[i].m() == n, ExcDimensionMismatch(matrices[i].m (), n));
-         }
+  namespace {
+    template<int dim, typename number, int spacedim>
+    void
+    compute_embedding_matrices_for_refinement_case (const FiniteElement<dim, spacedim>& fe,
+                                                   std::vector<FullMatrix<number> >& matrices,
+                                                   const unsigned int ref_case)
+    {
+      const unsigned int n  = fe.dofs_per_cell;
+      const unsigned int nc = GeometryInfo<dim>::n_children(RefinementCase<dim>(ref_case));
+      for (unsigned int i = 0; i < nc; ++i)
+       {
+         Assert(matrices[i].n() == n, ExcDimensionMismatch(matrices[i].n (), n));
+         Assert(matrices[i].m() == n, ExcDimensionMismatch(matrices[i].m (), n));
+       }
 
-                                   // Set up meshes, one with a single
-                                   // reference cell and refine it once
-    Triangulation<dim,spacedim> tria;
-    GridGenerator::hyper_cube (tria, 0, 1);
-    tria.begin_active()->set_refine_flag (RefinementCase<dim>(ref_case));
-    tria.execute_coarsening_and_refinement ();
+                                      // Set up meshes, one with a single
+                                      // reference cell and refine it once
+      Triangulation<dim,spacedim> tria;
+      GridGenerator::hyper_cube (tria, 0, 1);
+      tria.begin_active()->set_refine_flag (RefinementCase<dim>(ref_case));
+      tria.execute_coarsening_and_refinement ();
 
-    MappingCartesian<dim> mapping;
-    const unsigned int degree = fe.degree;
-    QGauss<dim> q_fine (degree+1);
-    const unsigned int nq = q_fine.size();
+      MappingCartesian<dim> mapping;
+      const unsigned int degree = fe.degree;
+      QGauss<dim> q_fine (degree+1);
+      const unsigned int nq = q_fine.size();
 
-    FEValues<dim> fine (mapping, fe, q_fine,
-                                   update_quadrature_points |
-                                   update_JxW_values |
-                                   update_values);
+      FEValues<dim> fine (mapping, fe, q_fine,
+                         update_quadrature_points |
+                         update_JxW_values |
+                         update_values);
 
                                       // We search for the polynomial on
                                       // the small cell, being equal to
@@ -643,70 +645,70 @@ namespace {
 
                                       // This matrix is the same for all
                                       // children.
-    fine.reinit (tria.begin_active ());
-    const unsigned int nd = fe.n_components ();
-    FullMatrix<number> A (nq*nd, n);
-    
-    for (unsigned int j = 0; j < n; ++j)
-         for (unsigned int d = 0; d < nd; ++d)
-           for (unsigned int k = 0; k < nq; ++k)
-             A (k * nd + d, j) = fine.shape_value_component (j, k, d);
-    
-    Householder<double> H (A);
-    static Threads::Mutex mutex;
-    Vector<number> v_coarse (nq * nd);
-    Vector<number> v_fine (n);
-    unsigned int cell_number = 0;
-  
-    for (typename Triangulation<dim>::active_cell_iterator
-         fine_cell = tria.begin_active (); fine_cell != tria.end ();
-         ++fine_cell, ++cell_number)
-         {
-           fine.reinit (fine_cell);
+      fine.reinit (tria.begin_active ());
+      const unsigned int nd = fe.n_components ();
+      FullMatrix<number> A (nq*nd, n);
+
+      for (unsigned int j = 0; j < n; ++j)
+       for (unsigned int d = 0; d < nd; ++d)
+         for (unsigned int k = 0; k < nq; ++k)
+           A (k * nd + d, j) = fine.shape_value_component (j, k, d);
+
+      Householder<double> H (A);
+      static Threads::Mutex mutex;
+      Vector<number> v_coarse (nq * nd);
+      Vector<number> v_fine (n);
+      unsigned int cell_number = 0;
+
+      for (typename Triangulation<dim>::active_cell_iterator
+            fine_cell = tria.begin_active (); fine_cell != tria.end ();
+          ++fine_cell, ++cell_number)
+       {
+         fine.reinit (fine_cell);
 
                                           // evaluate on the coarse cell (which
                                           // is the first -- inactive -- cell on
                                           // the lowest level of the
                                           // triangulation we have created)
-           const Quadrature<dim> q_coarse (fine.get_quadrature_points (),
-                                                           fine.get_JxW_values ());
-           FEValues<dim> coarse (mapping, fe, q_coarse, update_values);
-           
-           coarse.reinit (tria.begin (0));
+         const Quadrature<dim> q_coarse (fine.get_quadrature_points (),
+                                         fine.get_JxW_values ());
+         FEValues<dim> coarse (mapping, fe, q_coarse, update_values);
 
-           FullMatrix<double> &this_matrix = matrices[cell_number];
-           
-           v_coarse = 0;
+         coarse.reinit (tria.begin (0));
+
+         FullMatrix<double> &this_matrix = matrices[cell_number];
+
+         v_coarse = 0;
 
                                           // Compute this once for each
                                           // coarse grid basis function
-           for (unsigned int i = 0;i < n; ++i)
-             {
+         for (unsigned int i = 0;i < n; ++i)
+           {
                                               // The right hand side of
                                               // the least squares
                                               // problem consists of the
                                               // function values of the
                                               // coarse grid function in
                                               // each quadrature point.
-               if (fe.is_primitive ())
-                     {
-                       const unsigned int
-                         d = fe.system_to_component_index (i).first;
-                       const double* phi_i = &coarse.shape_value (i, 0);
-                       
-                       for (unsigned int k = 0; k < nq; ++k)
-                         v_coarse (k * nd + d) = phi_i[k];
-                     }
-                   
-               else
-                     for (unsigned int d = 0; d < nd; ++d)
-                       for (unsigned int k = 0; k < nq; ++k)
-                         v_coarse (k * nd + d) = coarse.shape_value_component (i, k, d);
+             if (fe.is_primitive ())
+               {
+                 const unsigned int
+                   d = fe.system_to_component_index (i).first;
+                 const double* phi_i = &coarse.shape_value (i, 0);
+
+                 for (unsigned int k = 0; k < nq; ++k)
+                   v_coarse (k * nd + d) = phi_i[k];
+               }
+
+             else
+               for (unsigned int d = 0; d < nd; ++d)
+                 for (unsigned int k = 0; k < nq; ++k)
+                   v_coarse (k * nd + d) = coarse.shape_value_component (i, k, d);
 
                                               // solve the least squares
                                               // problem.
-               const double result = H.least_squares (v_fine, v_coarse);
-               Assert (result < 1.e-12, FETools::ExcLeastSquaresError (result));
+             const double result = H.least_squares (v_fine, v_coarse);
+             Assert (result < 1.e-12, ExcLeastSquaresError (result));
 
                                               // Copy into the result
                                               // matrix. Since the matrix
@@ -714,411 +716,411 @@ namespace {
                                               // function to a fine grid
                                               // function, the columns
                                               // are fine grid.
-                   mutex.acquire ();
-                   
-               for (unsigned int j = 0; j < n; ++j)
-                     this_matrix(j, i) = v_fine(j);
-                   
-                   mutex.release ();
-             }
-           
-           mutex.acquire ();
+             mutex.acquire ();
+
+             for (unsigned int j = 0; j < n; ++j)
+               this_matrix(j, i) = v_fine(j);
+
+             mutex.release ();
+           }
+
+         mutex.acquire ();
                                           // Remove small entries from
                                           // the matrix
-           for (unsigned int i = 0; i < this_matrix.m (); ++i)
-             for (unsigned int j = 0; j < this_matrix.n (); ++j)
-               if (std::fabs (this_matrix (i, j)) < 1e-12)
-                     this_matrix (i, j) = 0.;
-        
-        mutex.release ();
-         }
-         
-    Assert (cell_number == GeometryInfo<dim>::n_children (RefinementCase<dim> (ref_case)),
-               ExcInternalError ());
-  }
-}
+         for (unsigned int i = 0; i < this_matrix.m (); ++i)
+           for (unsigned int j = 0; j < this_matrix.n (); ++j)
+             if (std::fabs (this_matrix (i, j)) < 1e-12)
+               this_matrix (i, j) = 0.;
 
+         mutex.release ();
+       }
 
-// This function is tested by tests/fe/internals, since it produces the matrices printed there
-template <int dim, typename number, int spacedim>
-void
-FETools::compute_embedding_matrices(const FiniteElement<dim,spacedim>& fe,
-                                   std::vector<std::vector<FullMatrix<number> > >& matrices,
-                                   const bool isotropic_only)
-{
-  Threads::TaskGroup<void> task_group;
-
-                                  // loop over all possible refinement cases
-  unsigned int ref_case = (isotropic_only)
-                         ? RefinementCase<dim>::isotropic_refinement
-                         : RefinementCase<dim>::cut_x;
-
-  for (;ref_case <= RefinementCase<dim>::isotropic_refinement; ++ref_case)
-    task_group += Threads::new_task (&compute_embedding_matrices_for_refinement_case<dim, number, spacedim>,
-                                     fe, matrices[ref_case-1], ref_case);
-  
-  task_group.join_all ();
-}
+      Assert (cell_number == GeometryInfo<dim>::n_children (RefinementCase<dim> (ref_case)),
+             ExcInternalError ());
+    }
+  }
 
 
 // This function is tested by tests/fe/internals, since it produces the matrices printed there
+  template <int dim, typename number, int spacedim>
+  void
+  compute_embedding_matrices(const FiniteElement<dim,spacedim>& fe,
+                            std::vector<std::vector<FullMatrix<number> > >& matrices,
+                            const bool isotropic_only)
+  {
+    Threads::TaskGroup<void> task_group;
 
-//TODO:[GK] Is this correct for vector valued?
-template <int dim, typename number, int spacedim>
-void
-FETools::compute_face_embedding_matrices(const FiniteElement<dim,spacedim>& fe,
-                                        FullMatrix<number> (&matrices)[GeometryInfo<dim>::max_children_per_face],
-                                        const unsigned int face_coarse,
-                                        const unsigned int face_fine)
-{
-  const unsigned int nc = GeometryInfo<dim>::max_children_per_face;
-  const unsigned int n  = fe.dofs_per_face;
-  const unsigned int nd = fe.n_components();
-  const unsigned int degree = fe.degree;
+                                    // loop over all possible refinement cases
+    unsigned int ref_case = (isotropic_only)
+                           ? RefinementCase<dim>::isotropic_refinement
+                           : RefinementCase<dim>::cut_x;
 
-  for (unsigned int i=0;i<nc;++i)
-    {
-      Assert(matrices[i].n() == n, ExcDimensionMismatch(matrices[i].n(),n));
-      Assert(matrices[i].m() == n, ExcDimensionMismatch(matrices[i].m(),n));
-    }
+    for (;ref_case <= RefinementCase<dim>::isotropic_refinement; ++ref_case)
+      task_group += Threads::new_task (&compute_embedding_matrices_for_refinement_case<dim, number, spacedim>,
+                                      fe, matrices[ref_case-1], ref_case);
 
-                                   // Set up meshes, one with a single
-                                   // reference cell and refine it once
-  Triangulation<dim,spacedim> tria;
-  GridGenerator::hyper_cube (tria, 0, 1);
-  tria.refine_global(1);
-
-  MappingCartesian<dim> mapping;
-  QGauss<dim-1> q_gauss(degree+1);
-  const Quadrature<dim> q_fine = QProjector<dim>::project_to_face(q_gauss, face_fine);
-
-  const unsigned int nq = q_fine.size();
-
-                                  // In order to make the loops below
-                                  // simpler, we introduce vectors
-                                  // containing for indices 0-n the
-                                  // number of the corresponding
-                                  // shape value on the cell.
-  std::vector<unsigned int> face_c_dofs(n);
-  std::vector<unsigned int> face_f_dofs(n);
-  unsigned int k=0;
-  for (unsigned int i=0;i<GeometryInfo<dim>::vertices_per_face;++i)
-    {
-      const unsigned int offset_c = GeometryInfo<dim>::face_to_cell_vertices(face_coarse, i)
-                                   *fe.dofs_per_vertex;
-      const unsigned int offset_f = GeometryInfo<dim>::face_to_cell_vertices(face_fine, i)
-                                   *fe.dofs_per_vertex;
-      for (unsigned int j=0;j<fe.dofs_per_vertex;++j)
-       {
-         face_c_dofs[k] = offset_c + j;
-         face_f_dofs[k] = offset_f + j;
-         ++k;
-       }
-    }
-  for (unsigned int i=1;i<=GeometryInfo<dim>::lines_per_face;++i)
-    {
-      const unsigned int offset_c = fe.first_line_index
-                                   + GeometryInfo<dim>::face_to_cell_lines(face_coarse, i-1)
-                                   *fe.dofs_per_line;
-      const unsigned int offset_f = fe.first_line_index
-                                   + GeometryInfo<dim>::face_to_cell_lines(face_fine, i-1)
-                                   *fe.dofs_per_line;
-      for (unsigned int j=0;j<fe.dofs_per_line;++j)
-       {
-         face_c_dofs[k] = offset_c + j;
-         face_f_dofs[k] = offset_f + j;
-         ++k;
-       }
-    }
-  for (unsigned int i=1;i<=GeometryInfo<dim>::quads_per_face;++i)
-    {
-      const unsigned int offset_c = fe.first_quad_index
-                                   + face_coarse
-                                   *fe.dofs_per_quad;
-      const unsigned int offset_f = fe.first_quad_index
-                                   + face_fine
-                                   *fe.dofs_per_quad;
-      for (unsigned int j=0;j<fe.dofs_per_quad;++j)
-       {
-         face_c_dofs[k] = offset_c + j;
-         face_f_dofs[k] = offset_f + j;
-         ++k;
-       }
-    }
-  Assert (k == fe.dofs_per_face, ExcInternalError());
+    task_group.join_all ();
+  }
 
-  FEValues<dim> fine (mapping, fe, q_fine,
-                     update_quadrature_points | update_JxW_values | update_values);
 
-                                  // We search for the polynomial on
-                                  // the small cell, being equal to
-                                  // the coarse polynomial in all
-                                  // quadrature points.
+// This function is tested by tests/fe/internals, since it produces the matrices printed there
 
-                                  // First build the matrix for this
-                                  // least squares problem. This
-                                  // contains the values of the fine
-                                  // cell polynomials in the fine
-                                  // cell grid points.
+//TODO:[GK] Is this correct for vector valued?
+  template <int dim, typename number, int spacedim>
+  void
+  compute_face_embedding_matrices(const FiniteElement<dim,spacedim>& fe,
+                                 FullMatrix<number> (&matrices)[GeometryInfo<dim>::max_children_per_face],
+                                 const unsigned int face_coarse,
+                                 const unsigned int face_fine)
+  {
+    const unsigned int nc = GeometryInfo<dim>::max_children_per_face;
+    const unsigned int n  = fe.dofs_per_face;
+    const unsigned int nd = fe.n_components();
+    const unsigned int degree = fe.degree;
 
-                                  // This matrix is the same for all
-                                  // children.
-  fine.reinit(tria.begin_active());
-  FullMatrix<number> A(nq*nd, n);
-  for (unsigned int j=0;j<n;++j)
-    for (unsigned int d=0;d<nd;++d)
-      for (unsigned int k=0;k<nq;++k)
-       A(k*nd+d,j) = fine.shape_value_component(face_f_dofs[j],k,d);
+    for (unsigned int i=0;i<nc;++i)
+      {
+       Assert(matrices[i].n() == n, ExcDimensionMismatch(matrices[i].n(),n));
+       Assert(matrices[i].m() == n, ExcDimensionMismatch(matrices[i].m(),n));
+      }
 
-  Householder<double> H(A);
+                                    // Set up meshes, one with a single
+                                    // reference cell and refine it once
+    Triangulation<dim,spacedim> tria;
+    GridGenerator::hyper_cube (tria, 0, 1);
+    tria.refine_global(1);
 
-  Vector<number> v_coarse(nq*nd);
-  Vector<number> v_fine(n);
+    MappingCartesian<dim> mapping;
+    QGauss<dim-1> q_gauss(degree+1);
+    const Quadrature<dim> q_fine = QProjector<dim>::project_to_face(q_gauss, face_fine);
 
+    const unsigned int nq = q_fine.size();
 
+                                    // In order to make the loops below
+                                    // simpler, we introduce vectors
+                                    // containing for indices 0-n the
+                                    // number of the corresponding
+                                    // shape value on the cell.
+    std::vector<unsigned int> face_c_dofs(n);
+    std::vector<unsigned int> face_f_dofs(n);
+    unsigned int k=0;
+    for (unsigned int i=0;i<GeometryInfo<dim>::vertices_per_face;++i)
+      {
+       const unsigned int offset_c = GeometryInfo<dim>::face_to_cell_vertices(face_coarse, i)
+                                     *fe.dofs_per_vertex;
+       const unsigned int offset_f = GeometryInfo<dim>::face_to_cell_vertices(face_fine, i)
+                                     *fe.dofs_per_vertex;
+       for (unsigned int j=0;j<fe.dofs_per_vertex;++j)
+         {
+           face_c_dofs[k] = offset_c + j;
+           face_f_dofs[k] = offset_f + j;
+           ++k;
+         }
+      }
+    for (unsigned int i=1;i<=GeometryInfo<dim>::lines_per_face;++i)
+      {
+       const unsigned int offset_c = fe.first_line_index
+                                     + GeometryInfo<dim>::face_to_cell_lines(face_coarse, i-1)
+                                     *fe.dofs_per_line;
+       const unsigned int offset_f = fe.first_line_index
+                                     + GeometryInfo<dim>::face_to_cell_lines(face_fine, i-1)
+                                     *fe.dofs_per_line;
+       for (unsigned int j=0;j<fe.dofs_per_line;++j)
+         {
+           face_c_dofs[k] = offset_c + j;
+           face_f_dofs[k] = offset_f + j;
+           ++k;
+         }
+      }
+    for (unsigned int i=1;i<=GeometryInfo<dim>::quads_per_face;++i)
+      {
+       const unsigned int offset_c = fe.first_quad_index
+                                     + face_coarse
+                                     *fe.dofs_per_quad;
+       const unsigned int offset_f = fe.first_quad_index
+                                     + face_fine
+                                     *fe.dofs_per_quad;
+       for (unsigned int j=0;j<fe.dofs_per_quad;++j)
+         {
+           face_c_dofs[k] = offset_c + j;
+           face_f_dofs[k] = offset_f + j;
+           ++k;
+         }
+      }
+    Assert (k == fe.dofs_per_face, ExcInternalError());
 
-  for (unsigned int cell_number = 0; cell_number < GeometryInfo<dim>::max_children_per_face;
-       ++cell_number)
-    {
-      const Quadrature<dim> q_coarse
-       = QProjector<dim>::project_to_subface(q_gauss, face_coarse, cell_number);
-      FEValues<dim> coarse (mapping, fe, q_coarse, update_values);
+    FEValues<dim> fine (mapping, fe, q_fine,
+                       update_quadrature_points | update_JxW_values | update_values);
 
-      typename Triangulation<dim,spacedim>::active_cell_iterator fine_cell
-       = tria.begin(0)->child(GeometryInfo<dim>::child_cell_on_face(
-         tria.begin(0)->refinement_case(), face_coarse, cell_number));
-      fine.reinit(fine_cell);
-      coarse.reinit(tria.begin(0));
+                                    // We search for the polynomial on
+                                    // the small cell, being equal to
+                                    // the coarse polynomial in all
+                                    // quadrature points.
 
-      FullMatrix<double> &this_matrix = matrices[cell_number];
+                                    // First build the matrix for this
+                                    // least squares problem. This
+                                    // contains the values of the fine
+                                    // cell polynomials in the fine
+                                    // cell grid points.
 
-                                      // Compute this once for each
-                                      // coarse grid basis function
-      for (unsigned int i=0;i<n;++i)
-       {
-                                          // The right hand side of
-                                          // the least squares
-                                          // problem consists of the
-                                          // function values of the
-                                          // coarse grid function in
-                                          // each quadrature point.
-         for (unsigned int d=0;d<nd;++d)
-           for (unsigned int k=0;k<nq;++k)
-             v_coarse(k*nd+d) = coarse.shape_value_component (face_c_dofs[i],k,d);
-
-                                          // solve the least squares
-                                          // problem.
-         const double result = H.least_squares(v_fine, v_coarse);
-         Assert (result < 1.e-12, ExcLeastSquaresError(result));
-
-                                          // Copy into the result
-                                          // matrix. Since the matrix
-                                          // maps a coarse grid
-                                          // function to a fine grid
-                                          // function, the columns
-                                          // are fine grid.
-         for (unsigned int j=0;j<n;++j)
-           this_matrix(j,i) = v_fine(j);
-       }
-                                      // Remove small entries from
-                                      // the matrix
-      for (unsigned int i=0; i<this_matrix.m(); ++i)
-       for (unsigned int j=0; j<this_matrix.n(); ++j)
-         if (std::fabs(this_matrix(i,j)) < 1e-12)
-           this_matrix(i,j) = 0.;
-    }
-}
+                                    // This matrix is the same for all
+                                    // children.
+    fine.reinit(tria.begin_active());
+    FullMatrix<number> A(nq*nd, n);
+    for (unsigned int j=0;j<n;++j)
+      for (unsigned int d=0;d<nd;++d)
+       for (unsigned int k=0;k<nq;++k)
+         A(k*nd+d,j) = fine.shape_value_component(face_f_dofs[j],k,d);
 
-#if deal_II_dimension == 1
-template <>
-void
-FETools::compute_projection_matrices(const FiniteElement<1,2>&,
-                                    std::vector<std::vector<FullMatrix<double> > >&, bool)
-{
-  Assert(false, ExcNotImplemented());
-}
+    Householder<double> H(A);
 
-#elif deal_II_dimension == 2
-template <>
-void
-FETools::compute_projection_matrices(const FiniteElement<2,3>&,
-                                    std::vector<std::vector<FullMatrix<double> > >&, bool)
-{
-  Assert(false, ExcNotImplemented());
-}
+    Vector<number> v_coarse(nq*nd);
+    Vector<number> v_fine(n);
 
-#endif
 
 
-template <int dim, typename number, int spacedim>
-void
-FETools::compute_projection_matrices(const FiniteElement<dim,spacedim>& fe,
-                                    std::vector<std::vector<FullMatrix<number> > >& matrices,
-                                    const bool isotropic_only)
-{
-  const unsigned int n  = fe.dofs_per_cell;
-  const unsigned int nd = fe.n_components();
-  const unsigned int degree = fe.degree;
-
-                                  // prepare FEValues, quadrature etc on
-                                  // coarse cell
-  MappingCartesian<dim> mapping;
-  QGauss<dim> q_fine(degree+1);
-  const unsigned int nq = q_fine.size();
-
-                                  // create mass matrix on coarse cell.
-  FullMatrix<number> mass(n, n);
-  {
-                                  // set up a triangulation for coarse cell
-    Triangulation<dim,spacedim> tr;
-    GridGenerator::hyper_cube (tr, 0, 1);
+    for (unsigned int cell_number = 0; cell_number < GeometryInfo<dim>::max_children_per_face;
+        ++cell_number)
+      {
+       const Quadrature<dim> q_coarse
+         = QProjector<dim>::project_to_subface(q_gauss, face_coarse, cell_number);
+       FEValues<dim> coarse (mapping, fe, q_coarse, update_values);
 
-    FEValues<dim> coarse (mapping, fe, q_fine,
-                         update_JxW_values | update_values);
+       typename Triangulation<dim,spacedim>::active_cell_iterator fine_cell
+         = tria.begin(0)->child(GeometryInfo<dim>::child_cell_on_face(
+                                  tria.begin(0)->refinement_case(), face_coarse, cell_number));
+       fine.reinit(fine_cell);
+       coarse.reinit(tria.begin(0));
 
-    typename Triangulation<dim,spacedim>::cell_iterator coarse_cell
-      = tr.begin(0);
-    coarse.reinit (coarse_cell);
+       FullMatrix<double> &this_matrix = matrices[cell_number];
 
-    const std::vector<double> & JxW = coarse.get_JxW_values();
-    for (unsigned int i=0;i<n;++i)
-      for (unsigned int j=0;j<n;++j)
-       if (fe.is_primitive())
+                                        // Compute this once for each
+                                        // coarse grid basis function
+       for (unsigned int i=0;i<n;++i)
          {
-           const double * coarse_i = &coarse.shape_value(i,0);
-           const double * coarse_j = &coarse.shape_value(j,0);
-           double mass_ij = 0;
-           for (unsigned int k=0;k<nq;++k)
-             mass_ij += JxW[k] * coarse_i[k] * coarse_j[k];
-           mass(i,j) = mass_ij;
-         }
-       else
-         {
-           double mass_ij = 0;
+                                            // The right hand side of
+                                            // the least squares
+                                            // problem consists of the
+                                            // function values of the
+                                            // coarse grid function in
+                                            // each quadrature point.
            for (unsigned int d=0;d<nd;++d)
              for (unsigned int k=0;k<nq;++k)
-               mass_ij += JxW[k] * coarse.shape_value_component(i,k,d)
-                                 * coarse.shape_value_component(j,k,d);
-           mass(i,j) = mass_ij;
+               v_coarse(k*nd+d) = coarse.shape_value_component (face_c_dofs[i],k,d);
+
+                                            // solve the least squares
+                                            // problem.
+           const double result = H.least_squares(v_fine, v_coarse);
+           Assert (result < 1.e-12, ExcLeastSquaresError(result));
+
+                                            // Copy into the result
+                                            // matrix. Since the matrix
+                                            // maps a coarse grid
+                                            // function to a fine grid
+                                            // function, the columns
+                                            // are fine grid.
+           for (unsigned int j=0;j<n;++j)
+             this_matrix(j,i) = v_fine(j);
          }
+                                        // Remove small entries from
+                                        // the matrix
+       for (unsigned int i=0; i<this_matrix.m(); ++i)
+         for (unsigned int j=0; j<this_matrix.n(); ++j)
+           if (std::fabs(this_matrix(i,j)) < 1e-12)
+             this_matrix(i,j) = 0.;
+      }
+  }
 
-                                  // invert mass matrix
-    mass.gauss_jordan();
+#if deal_II_dimension == 1
+  template <>
+  void
+  compute_projection_matrices(const FiniteElement<1,2>&,
+                             std::vector<std::vector<FullMatrix<double> > >&, bool)
+  {
+    Assert(false, ExcNotImplemented());
   }
 
-                                  // loop over all possible
-                                  // refinement cases
-  unsigned int ref_case = (isotropic_only)
-                         ? RefinementCase<dim>::isotropic_refinement
-                         : RefinementCase<dim>::cut_x;
-  for (;ref_case <= RefinementCase<dim>::isotropic_refinement; ++ref_case)
-    {
-      const unsigned int
-       nc = GeometryInfo<dim>::n_children(RefinementCase<dim>(ref_case));
+#elif deal_II_dimension == 2
+  template <>
+  void
+  compute_projection_matrices(const FiniteElement<2,3>&,
+                             std::vector<std::vector<FullMatrix<double> > >&, bool)
+  {
+    Assert(false, ExcNotImplemented());
+  }
 
-      for (unsigned int i=0;i<nc;++i)
-       {
-         Assert(matrices[ref_case-1][i].n() == n,
-                ExcDimensionMismatch(matrices[ref_case-1][i].n(),n));
-         Assert(matrices[ref_case-1][i].m() == n,
-                ExcDimensionMismatch(matrices[ref_case-1][i].m(),n));
-       }
+#endif
 
-                                  // create a respective refinement on the
-                                  // triangulation
+
+  template <int dim, typename number, int spacedim>
+  void
+  compute_projection_matrices(const FiniteElement<dim,spacedim>& fe,
+                             std::vector<std::vector<FullMatrix<number> > >& matrices,
+                             const bool isotropic_only)
+  {
+    const unsigned int n  = fe.dofs_per_cell;
+    const unsigned int nd = fe.n_components();
+    const unsigned int degree = fe.degree;
+
+                                    // prepare FEValues, quadrature etc on
+                                    // coarse cell
+    MappingCartesian<dim> mapping;
+    QGauss<dim> q_fine(degree+1);
+    const unsigned int nq = q_fine.size();
+
+                                    // create mass matrix on coarse cell.
+    FullMatrix<number> mass(n, n);
+    {
+                                      // set up a triangulation for coarse cell
       Triangulation<dim,spacedim> tr;
       GridGenerator::hyper_cube (tr, 0, 1);
-      tr.begin_active()->set_refine_flag(RefinementCase<dim>(ref_case));
-      tr.execute_coarsening_and_refinement();
 
-      FEValues<dim> fine (mapping, fe, q_fine,
-                         update_quadrature_points | update_JxW_values |
-                         update_values);
+      FEValues<dim> coarse (mapping, fe, q_fine,
+                           update_JxW_values | update_values);
 
       typename Triangulation<dim,spacedim>::cell_iterator coarse_cell
        = tr.begin(0);
+      coarse.reinit (coarse_cell);
 
-      Vector<number> v_coarse(n);
-      Vector<number> v_fine(n);
+      const std::vector<double> & JxW = coarse.get_JxW_values();
+      for (unsigned int i=0;i<n;++i)
+       for (unsigned int j=0;j<n;++j)
+         if (fe.is_primitive())
+           {
+             const double * coarse_i = &coarse.shape_value(i,0);
+             const double * coarse_j = &coarse.shape_value(j,0);
+             double mass_ij = 0;
+             for (unsigned int k=0;k<nq;++k)
+               mass_ij += JxW[k] * coarse_i[k] * coarse_j[k];
+             mass(i,j) = mass_ij;
+           }
+         else
+           {
+             double mass_ij = 0;
+             for (unsigned int d=0;d<nd;++d)
+               for (unsigned int k=0;k<nq;++k)
+                 mass_ij += JxW[k] * coarse.shape_value_component(i,k,d)
+                            * coarse.shape_value_component(j,k,d);
+             mass(i,j) = mass_ij;
+           }
 
-      for (unsigned int cell_number=0;cell_number<nc;++cell_number)
-       {
-         FullMatrix<double> &this_matrix = matrices[ref_case-1][cell_number];
-
-                                          // Compute right hand side,
-                                          // which is a fine level basis
-                                          // function tested with the
-                                          // coarse level functions.
-         fine.reinit(coarse_cell->child(cell_number));
-         Quadrature<dim> q_coarse (fine.get_quadrature_points(),
-                                   fine.get_JxW_values());
-         FEValues<dim> coarse (mapping, fe, q_coarse, update_values);
-         coarse.reinit(coarse_cell);
+                                      // invert mass matrix
+      mass.gauss_jordan();
+    }
 
-                                          // Build RHS
+                                    // loop over all possible
+                                    // refinement cases
+    unsigned int ref_case = (isotropic_only)
+                           ? RefinementCase<dim>::isotropic_refinement
+                           : RefinementCase<dim>::cut_x;
+    for (;ref_case <= RefinementCase<dim>::isotropic_refinement; ++ref_case)
+      {
+       const unsigned int
+         nc = GeometryInfo<dim>::n_children(RefinementCase<dim>(ref_case));
 
-         const std::vector<double> & JxW = fine.get_JxW_values();
+       for (unsigned int i=0;i<nc;++i)
+         {
+           Assert(matrices[ref_case-1][i].n() == n,
+                  ExcDimensionMismatch(matrices[ref_case-1][i].n(),n));
+           Assert(matrices[ref_case-1][i].m() == n,
+                  ExcDimensionMismatch(matrices[ref_case-1][i].m(),n));
+         }
 
-                                          // Outer loop over all fine
-                                          // grid shape functions phi_j
-         for (unsigned int j=0;j<fe.dofs_per_cell;++j)
-           {
-             for (unsigned int i=0; i<fe.dofs_per_cell;++i)
-               {
-                 if (fe.is_primitive())
-                   {
-                     const double * coarse_i = &coarse.shape_value(i,0);
-                     const double * fine_j = &fine.shape_value(j,0);
+                                        // create a respective refinement on the
+                                        // triangulation
+       Triangulation<dim,spacedim> tr;
+       GridGenerator::hyper_cube (tr, 0, 1);
+       tr.begin_active()->set_refine_flag(RefinementCase<dim>(ref_case));
+       tr.execute_coarsening_and_refinement();
 
-                     double update = 0;
-                     for (unsigned int k=0; k<nq; ++k)
-                       update += JxW[k] * coarse_i[k] * fine_j[k];
-                     v_fine(i) = update;
-                   }
-                 else
-                   {
-                     double update = 0;
-                     for (unsigned int d=0; d<nd; ++d)
+       FEValues<dim> fine (mapping, fe, q_fine,
+                           update_quadrature_points | update_JxW_values |
+                           update_values);
+
+       typename Triangulation<dim,spacedim>::cell_iterator coarse_cell
+         = tr.begin(0);
+
+       Vector<number> v_coarse(n);
+       Vector<number> v_fine(n);
+
+       for (unsigned int cell_number=0;cell_number<nc;++cell_number)
+         {
+           FullMatrix<double> &this_matrix = matrices[ref_case-1][cell_number];
+
+                                            // Compute right hand side,
+                                            // which is a fine level basis
+                                            // function tested with the
+                                            // coarse level functions.
+           fine.reinit(coarse_cell->child(cell_number));
+           Quadrature<dim> q_coarse (fine.get_quadrature_points(),
+                                     fine.get_JxW_values());
+           FEValues<dim> coarse (mapping, fe, q_coarse, update_values);
+           coarse.reinit(coarse_cell);
+
+                                            // Build RHS
+
+           const std::vector<double> & JxW = fine.get_JxW_values();
+
+                                            // Outer loop over all fine
+                                            // grid shape functions phi_j
+           for (unsigned int j=0;j<fe.dofs_per_cell;++j)
+             {
+               for (unsigned int i=0; i<fe.dofs_per_cell;++i)
+                 {
+                   if (fe.is_primitive())
+                     {
+                       const double * coarse_i = &coarse.shape_value(i,0);
+                       const double * fine_j = &fine.shape_value(j,0);
+
+                       double update = 0;
                        for (unsigned int k=0; k<nq; ++k)
-                         update += JxW[k] * coarse.shape_value_component(i,k,d)
-                                          * fine.shape_value_component(j,k,d);
-                     v_fine(i) = update;
-                   }
-               }
+                         update += JxW[k] * coarse_i[k] * fine_j[k];
+                       v_fine(i) = update;
+                     }
+                   else
+                     {
+                       double update = 0;
+                       for (unsigned int d=0; d<nd; ++d)
+                         for (unsigned int k=0; k<nq; ++k)
+                           update += JxW[k] * coarse.shape_value_component(i,k,d)
+                                     * fine.shape_value_component(j,k,d);
+                       v_fine(i) = update;
+                     }
+                 }
 
-                                              // RHS ready. Solve system
-                                              // and enter row into
-                                              // matrix
-             mass.vmult (v_coarse, v_fine);
-             for (unsigned int i=0;i<fe.dofs_per_cell;++i)
-               this_matrix(i,j) = v_coarse(i);
-           }
+                                                // RHS ready. Solve system
+                                                // and enter row into
+                                                // matrix
+               mass.vmult (v_coarse, v_fine);
+               for (unsigned int i=0;i<fe.dofs_per_cell;++i)
+                 this_matrix(i,j) = v_coarse(i);
+             }
 
-                                          // Remove small entries from
-                                          // the matrix
-         for (unsigned int i=0; i<this_matrix.m(); ++i)
-           for (unsigned int j=0; j<this_matrix.n(); ++j)
-             if (std::fabs(this_matrix(i,j)) < 1e-12)
-               this_matrix(i,j) = 0.;
-       }
-    }
-}
+                                            // Remove small entries from
+                                            // the matrix
+           for (unsigned int i=0; i<this_matrix.m(); ++i)
+             for (unsigned int j=0; j<this_matrix.n(); ++j)
+               if (std::fabs(this_matrix(i,j)) < 1e-12)
+                 this_matrix(i,j) = 0.;
+         }
+      }
+  }
 
 
-template <int dim, int spacedim,
-          template <int, int> class DH1,
-          template <int, int> class DH2,
-          class InVector, class OutVector>
-void
-FETools::interpolate(const DH1<dim, spacedim> &dof1,
-                     const InVector           &u1,
-                     const DH2<dim, spacedim> &dof2,
-                     OutVector                &u2)
-{
-  ConstraintMatrix dummy;
-  dummy.close();
-  interpolate(dof1, u1, dof2, dummy, u2);
-}
+  template <int dim, int spacedim,
+           template <int, int> class DH1,
+           template <int, int> class DH2,
+           class InVector, class OutVector>
+  void
+  interpolate(const DH1<dim, spacedim> &dof1,
+             const InVector           &u1,
+             const DH2<dim, spacedim> &dof2,
+             OutVector                &u2)
+           {
+             ConstraintMatrix dummy;
+             dummy.close();
+             interpolate(dof1, u1, dof2, dummy, u2);
+           }
 
 
 
@@ -1127,11 +1129,11 @@ template <int dim, int spacedim,
           template <int, int> class DH2,
           class InVector, class OutVector>
 void
-FETools::interpolate (const DH1<dim, spacedim> &dof1,
-                      const InVector           &u1,
-                      const DH2<dim, spacedim> &dof2,
-                      const ConstraintMatrix   &constraints,
-                      OutVector                &u2)
+interpolate (const DH1<dim, spacedim> &dof1,
+            const InVector           &u1,
+            const DH2<dim, spacedim> &dof2,
+            const ConstraintMatrix   &constraints,
+            OutVector                &u2)
 {
   Assert(&dof1.get_tria()==&dof2.get_tria(), ExcTriangulationMismatch());
 
@@ -1152,8 +1154,8 @@ FETools::interpolate (const DH1<dim, spacedim> &dof1,
                                    // matrices. shared_ptr make sure
                                    // that memory is released again
   std::map<const FiniteElement<dim,spacedim> *,
-           std::map<const FiniteElement<dim,spacedim> *,
-                    std_cxx1x::shared_ptr<FullMatrix<double> > > >
+    std::map<const FiniteElement<dim,spacedim> *,
+    std_cxx1x::shared_ptr<FullMatrix<double> > > >
     interpolation_matrices;
 
   typename DH1<dim,spacedim>::active_cell_iterator cell1 = dof1.begin_active(),
@@ -1208,9 +1210,9 @@ FETools::interpolate (const DH1<dim, spacedim> &dof1,
           interpolation_matrices[&cell1->get_fe()][&cell2->get_fe()]
             = interpolation_matrix;
 
-          FETools::get_interpolation_matrix(cell1->get_fe(),
-                                            cell2->get_fe(),
-                                            *interpolation_matrix);
+          get_interpolation_matrix(cell1->get_fe(),
+                                  cell2->get_fe(),
+                                  *interpolation_matrix);
         }
 
       cell1->get_dof_values(u1, u1_local);
@@ -1245,1442 +1247,1440 @@ FETools::interpolate (const DH1<dim, spacedim> &dof1,
 
 
 
-template <int dim, class InVector, class OutVector, int spacedim>
-void
-FETools::back_interpolate(const DoFHandler<dim,spacedim>    &dof1,
-                          const InVector           &u1,
-                          const FiniteElement<dim,spacedim> &fe2,
-                          OutVector                &u1_interpolated)
-{
-  Assert(dof1.get_fe().n_components() == fe2.n_components(),
-        ExcDimensionMismatch(dof1.get_fe().n_components(), fe2.n_components()));
-  Assert(u1.size()==dof1.n_dofs(), ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
-  Assert(u1_interpolated.size()==dof1.n_dofs(),
-        ExcDimensionMismatch(u1_interpolated.size(), dof1.n_dofs()));
-
-                                  // For continuous elements on grids
-                                  // with hanging nodes we need
-                                  // hanging node
-                                  // constraints. Consequently, when
-                                  // the elements are continuous no
-                                  // hanging node constraints are
-                                  // allowed.
-  const bool hanging_nodes_not_allowed=
-    (dof1.get_fe().dofs_per_vertex != 0) || (fe2.dofs_per_vertex != 0);
-
-  const unsigned int dofs_per_cell1=dof1.get_fe().dofs_per_cell;
-
-  Vector<typename OutVector::value_type> u1_local(dofs_per_cell1);
-  Vector<typename OutVector::value_type> u1_int_local(dofs_per_cell1);
-
-  typename DoFHandler<dim,spacedim>::active_cell_iterator cell = dof1.begin_active(),
-                                                endc = dof1.end();
-
-  FullMatrix<double> interpolation_matrix(dofs_per_cell1, dofs_per_cell1);
-  FETools::get_back_interpolation_matrix(dof1.get_fe(), fe2,
-                                        interpolation_matrix);
-  for (; cell!=endc; ++cell)
-    {
-      if (hanging_nodes_not_allowed)
-       for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-         Assert (cell->at_boundary(face) ||
-                 cell->neighbor(face)->level() == cell->level(),
-                 ExcHangingNodesNotAllowed(0));
-
-      cell->get_dof_values(u1, u1_local);
-      interpolation_matrix.vmult(u1_int_local, u1_local);
-      cell->set_dof_values(u1_int_local, u1_interpolated);
-    }
-}
-
-
-
-template <int dim,
-          template <int> class DH,
-          class InVector, class OutVector, int spacedim>
-void
-FETools::back_interpolate(const DH<dim>            &dof1,
-                          const InVector           &u1,
-                          const FiniteElement<dim,spacedim> &fe2,
-                          OutVector                &u1_interpolated)
-{
-  Assert(u1.size() == dof1.n_dofs(),
-         ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
-  Assert(u1_interpolated.size() == dof1.n_dofs(),
-        ExcDimensionMismatch(u1_interpolated.size(), dof1.n_dofs()));
-
-  Vector<typename OutVector::value_type> u1_local(DoFTools::max_dofs_per_cell(dof1));
-  Vector<typename OutVector::value_type> u1_int_local(DoFTools::max_dofs_per_cell(dof1));
-
-  typename DH<dim>::active_cell_iterator cell = dof1.begin_active(),
-                                         endc = dof1.end();
-
-                                   // map from possible fe objects in
-                                   // dof1 to the back_interpolation
-                                   // matrices
-  std::map<const FiniteElement<dim> *,
-           std_cxx1x::shared_ptr<FullMatrix<double> > > interpolation_matrices;
-
-  for (; cell!=endc; ++cell)
-    {
-      Assert(cell->get_fe().n_components() == fe2.n_components(),
-             ExcDimensionMismatch(cell->get_fe().n_components(),
-                                  fe2.n_components()));
-
-                                       // For continuous elements on
-                                       // grids with hanging nodes we
-                                       // need hanging node
-                                       // constraints. Consequently,
-                                       // when the elements are
-                                       // continuous no hanging node
-                                       // constraints are allowed.
-      const bool hanging_nodes_not_allowed=
-        (cell->get_fe().dofs_per_vertex != 0) || (fe2.dofs_per_vertex != 0);
-
-      if (hanging_nodes_not_allowed)
-       for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-         Assert (cell->at_boundary(face) ||
-                 cell->neighbor(face)->level() == cell->level(),
-                 ExcHangingNodesNotAllowed(0));
-
-      const unsigned int dofs_per_cell1 = cell->get_fe().dofs_per_cell;
-
-                                       // make sure back_interpolation
-                                       // matrix is available
-      if (interpolation_matrices[&cell->get_fe()] != 0)
-        {
-          interpolation_matrices[&cell->get_fe()] =
-            std_cxx1x::shared_ptr<FullMatrix<double> >
-            (new FullMatrix<double>(dofs_per_cell1, dofs_per_cell1));
-          get_back_interpolation_matrix(dof1.get_fe(), fe2,
-                                        *interpolation_matrices[&cell->get_fe()]);
-        }
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void
+  back_interpolate(const DoFHandler<dim,spacedim>    &dof1,
+                  const InVector           &u1,
+                  const FiniteElement<dim,spacedim> &fe2,
+                  OutVector                &u1_interpolated)
+  {
+    Assert(dof1.get_fe().n_components() == fe2.n_components(),
+          ExcDimensionMismatch(dof1.get_fe().n_components(), fe2.n_components()));
+    Assert(u1.size()==dof1.n_dofs(), ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
+    Assert(u1_interpolated.size()==dof1.n_dofs(),
+          ExcDimensionMismatch(u1_interpolated.size(), dof1.n_dofs()));
+
+                                    // For continuous elements on grids
+                                    // with hanging nodes we need
+                                    // hanging node
+                                    // constraints. Consequently, when
+                                    // the elements are continuous no
+                                    // hanging node constraints are
+                                    // allowed.
+    const bool hanging_nodes_not_allowed=
+      (dof1.get_fe().dofs_per_vertex != 0) || (fe2.dofs_per_vertex != 0);
+
+    const unsigned int dofs_per_cell1=dof1.get_fe().dofs_per_cell;
+
+    Vector<typename OutVector::value_type> u1_local(dofs_per_cell1);
+    Vector<typename OutVector::value_type> u1_int_local(dofs_per_cell1);
+
+    typename DoFHandler<dim,spacedim>::active_cell_iterator cell = dof1.begin_active(),
+                                                           endc = dof1.end();
+
+    FullMatrix<double> interpolation_matrix(dofs_per_cell1, dofs_per_cell1);
+    get_back_interpolation_matrix(dof1.get_fe(), fe2,
+                                 interpolation_matrix);
+    for (; cell!=endc; ++cell)
+      {
+       if (hanging_nodes_not_allowed)
+         for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+           Assert (cell->at_boundary(face) ||
+                   cell->neighbor(face)->level() == cell->level(),
+                   ExcHangingNodesNotAllowed(0));
+
+       cell->get_dof_values(u1, u1_local);
+       interpolation_matrix.vmult(u1_int_local, u1_local);
+       cell->set_dof_values(u1_int_local, u1_interpolated);
+      }
+  }
 
-      u1_local.reinit (dofs_per_cell1);
-      u1_int_local.reinit (dofs_per_cell1);
 
-      cell->get_dof_values(u1, u1_local);
-      interpolation_matrices[&cell->get_fe()]->vmult(u1_int_local, u1_local);
-      cell->set_dof_values(u1_int_local, u1_interpolated);
-    }
-}
 
+  template <int dim,
+           template <int> class DH,
+           class InVector, class OutVector, int spacedim>
+  void
+  back_interpolate(const DH<dim>            &dof1,
+                  const InVector           &u1,
+                  const FiniteElement<dim,spacedim> &fe2,
+                  OutVector                &u1_interpolated)
+           {
+             Assert(u1.size() == dof1.n_dofs(),
+                    ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
+             Assert(u1_interpolated.size() == dof1.n_dofs(),
+                    ExcDimensionMismatch(u1_interpolated.size(), dof1.n_dofs()));
 
+             Vector<typename OutVector::value_type> u1_local(DoFTools::max_dofs_per_cell(dof1));
+             Vector<typename OutVector::value_type> u1_int_local(DoFTools::max_dofs_per_cell(dof1));
 
-template <int dim, class InVector, class OutVector, int spacedim>
-void FETools::back_interpolate(const DoFHandler<dim,spacedim> &dof1,
-                              const ConstraintMatrix &constraints1,
-                              const InVector &u1,
-                              const DoFHandler<dim,spacedim> &dof2,
-                              const ConstraintMatrix &constraints2,
-                              OutVector &u1_interpolated)
-{
-                                  // For discontinuous elements
-                                  // without constraints take the
-                                  // simpler version of the
-                                  // back_interpolate function.
-  if (dof1.get_fe().dofs_per_vertex==0 && dof2.get_fe().dofs_per_vertex==0
-      && constraints1.n_constraints()==0 && constraints2.n_constraints()==0)
-    back_interpolate(dof1, u1, dof2.get_fe(), u1_interpolated);
-  else
-    {
-      Assert(dof1.get_fe().n_components() == dof2.get_fe().n_components(),
-            ExcDimensionMismatch(dof1.get_fe().n_components(), dof2.get_fe().n_components()));
-      Assert(u1.size()==dof1.n_dofs(), ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
-      Assert(u1_interpolated.size()==dof1.n_dofs(),
-            ExcDimensionMismatch(u1_interpolated.size(), dof1.n_dofs()));
-
-                                      // For continuous elements
-                                      // first interpolate to dof2,
-                                      // taking into account
-                                      // constraints2, and then
-                                      // interpolate back to dof1
-                                      // taking into account
-                                      // constraints1
-      Vector<typename OutVector::value_type> u2(dof2.n_dofs());
-      interpolate(dof1, u1, dof2, constraints2, u2);
-      interpolate(dof2, u2, dof1, constraints1, u1_interpolated);
-    }
-}
+             typename DH<dim>::active_cell_iterator cell = dof1.begin_active(),
+                                                    endc = dof1.end();
 
+                                              // map from possible fe objects in
+                                              // dof1 to the back_interpolation
+                                              // matrices
+             std::map<const FiniteElement<dim> *,
+               std_cxx1x::shared_ptr<FullMatrix<double> > > interpolation_matrices;
 
+for (; cell!=endc; ++cell)
+  {
+    Assert(cell->get_fe().n_components() == fe2.n_components(),
+          ExcDimensionMismatch(cell->get_fe().n_components(),
+                               fe2.n_components()));
+
+                                    // For continuous elements on
+                                    // grids with hanging nodes we
+                                    // need hanging node
+                                    // constraints. Consequently,
+                                    // when the elements are
+                                    // continuous no hanging node
+                                    // constraints are allowed.
+    const bool hanging_nodes_not_allowed=
+      (cell->get_fe().dofs_per_vertex != 0) || (fe2.dofs_per_vertex != 0);
+
+    if (hanging_nodes_not_allowed)
+      for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+       Assert (cell->at_boundary(face) ||
+               cell->neighbor(face)->level() == cell->level(),
+               ExcHangingNodesNotAllowed(0));
+
+    const unsigned int dofs_per_cell1 = cell->get_fe().dofs_per_cell;
+
+                                    // make sure back_interpolation
+                                    // matrix is available
+    if (interpolation_matrices[&cell->get_fe()] != 0)
+      {
+       interpolation_matrices[&cell->get_fe()] =
+         std_cxx1x::shared_ptr<FullMatrix<double> >
+         (new FullMatrix<double>(dofs_per_cell1, dofs_per_cell1));
+       get_back_interpolation_matrix(dof1.get_fe(), fe2,
+                                     *interpolation_matrices[&cell->get_fe()]);
+      }
 
-template <int dim, class InVector, class OutVector, int spacedim>
-void FETools::interpolation_difference (const DoFHandler<dim,spacedim> &dof1,
-                                       const InVector &u1,
-                                       const FiniteElement<dim,spacedim> &fe2,
-                                       OutVector &u1_difference)
-{
-  Assert(dof1.get_fe().n_components() == fe2.n_components(),
-        ExcDimensionMismatch(dof1.get_fe().n_components(), fe2.n_components()));
-  Assert(u1.size()==dof1.n_dofs(), ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
-  Assert(u1_difference.size()==dof1.n_dofs(),
-        ExcDimensionMismatch(u1_difference.size(), dof1.n_dofs()));
-
-                                  // For continuous elements on grids
-                                  // with hanging nodes we need
-                                  // hnaging node
-                                  // constraints. Consequently, when
-                                  // the elements are continuous no
-                                  // hanging node constraints are
-                                  // allowed.
-  const bool hanging_nodes_not_allowed=
-    (dof1.get_fe().dofs_per_vertex != 0) || (fe2.dofs_per_vertex != 0);
-
-  const unsigned int dofs_per_cell=dof1.get_fe().dofs_per_cell;
-
-  Vector<typename OutVector::value_type> u1_local(dofs_per_cell);
-  Vector<typename OutVector::value_type> u1_diff_local(dofs_per_cell);
-
-  FullMatrix<double> difference_matrix(dofs_per_cell, dofs_per_cell);
-  FETools::get_interpolation_difference_matrix(dof1.get_fe(), fe2,
-                                              difference_matrix);
-
-  typename DoFHandler<dim,spacedim>::active_cell_iterator cell = dof1.begin_active(),
-                                                endc = dof1.end();
-
-  for (; cell!=endc; ++cell)
-    {
-      if (hanging_nodes_not_allowed)
-       for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-         Assert (cell->at_boundary(face) ||
-                 cell->neighbor(face)->level() == cell->level(),
-                 ExcHangingNodesNotAllowed(0));
+    u1_local.reinit (dofs_per_cell1);
+    u1_int_local.reinit (dofs_per_cell1);
 
-      cell->get_dof_values(u1, u1_local);
-      difference_matrix.vmult(u1_diff_local, u1_local);
-      cell->set_dof_values(u1_diff_local, u1_difference);
-    }
+    cell->get_dof_values(u1, u1_local);
+    interpolation_matrices[&cell->get_fe()]->vmult(u1_int_local, u1_local);
+    cell->set_dof_values(u1_int_local, u1_interpolated);
+  }
 }
 
 
 
-template <int dim, class InVector, class OutVector, int spacedim>
-void FETools::interpolation_difference(const DoFHandler<dim,spacedim> &dof1,
-                                      const ConstraintMatrix &constraints1,
-                                      const InVector &u1,
-                                      const DoFHandler<dim,spacedim> &dof2,
-                                      const ConstraintMatrix &constraints2,
-                                      OutVector &u1_difference)
-{
-                                  // For discontinuous elements
-                                  // without constraints take the
-                                  // cheaper version of the
-                                  // interpolation_difference function.
-  if (dof1.get_fe().dofs_per_vertex==0 && dof2.get_fe().dofs_per_vertex==0
-      && constraints1.n_constraints()==0 && constraints2.n_constraints()==0)
-    interpolation_difference(dof1, u1, dof2.get_fe(), u1_difference);
-  else
-    {
-      back_interpolate(dof1, constraints1, u1, dof2, constraints2, u1_difference);
-      u1_difference.sadd(-1, u1);
-    }
-}
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void back_interpolate(const DoFHandler<dim,spacedim> &dof1,
+                       const ConstraintMatrix &constraints1,
+                       const InVector &u1,
+                       const DoFHandler<dim,spacedim> &dof2,
+                       const ConstraintMatrix &constraints2,
+                       OutVector &u1_interpolated)
+  {
+                                    // For discontinuous elements
+                                    // without constraints take the
+                                    // simpler version of the
+                                    // back_interpolate function.
+    if (dof1.get_fe().dofs_per_vertex==0 && dof2.get_fe().dofs_per_vertex==0
+       && constraints1.n_constraints()==0 && constraints2.n_constraints()==0)
+      back_interpolate(dof1, u1, dof2.get_fe(), u1_interpolated);
+    else
+      {
+       Assert(dof1.get_fe().n_components() == dof2.get_fe().n_components(),
+              ExcDimensionMismatch(dof1.get_fe().n_components(), dof2.get_fe().n_components()));
+       Assert(u1.size()==dof1.n_dofs(), ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
+       Assert(u1_interpolated.size()==dof1.n_dofs(),
+              ExcDimensionMismatch(u1_interpolated.size(), dof1.n_dofs()));
+
+                                        // For continuous elements
+                                        // first interpolate to dof2,
+                                        // taking into account
+                                        // constraints2, and then
+                                        // interpolate back to dof1
+                                        // taking into account
+                                        // constraints1
+       Vector<typename OutVector::value_type> u2(dof2.n_dofs());
+       interpolate(dof1, u1, dof2, constraints2, u2);
+       interpolate(dof2, u2, dof1, constraints1, u1_interpolated);
+      }
+  }
 
 
-template <int dim, class InVector, class OutVector, int spacedim>
-void FETools::project_dg(const DoFHandler<dim,spacedim> &dof1,
-                        const InVector &u1,
-                        const DoFHandler<dim,spacedim> &dof2,
-                        OutVector &u2)
-{
-  Assert(&dof1.get_tria()==&dof2.get_tria(), ExcTriangulationMismatch());
-  Assert(dof1.get_fe().n_components() == dof2.get_fe().n_components(),
-        ExcDimensionMismatch(dof1.get_fe().n_components(), dof2.get_fe().n_components()));
-  Assert(u1.size()==dof1.n_dofs(), ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
-  Assert(u2.size()==dof2.n_dofs(), ExcDimensionMismatch(u2.size(), dof2.n_dofs()));
 
-  typename DoFHandler<dim,spacedim>::active_cell_iterator cell1 = dof1.begin_active();
-  typename DoFHandler<dim,spacedim>::active_cell_iterator cell2 = dof2.begin_active();
-  typename DoFHandler<dim,spacedim>::active_cell_iterator end = dof2.end();
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void interpolation_difference (const DoFHandler<dim,spacedim> &dof1,
+                                const InVector &u1,
+                                const FiniteElement<dim,spacedim> &fe2,
+                                OutVector &u1_difference)
+  {
+    Assert(dof1.get_fe().n_components() == fe2.n_components(),
+          ExcDimensionMismatch(dof1.get_fe().n_components(), fe2.n_components()));
+    Assert(u1.size()==dof1.n_dofs(), ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
+    Assert(u1_difference.size()==dof1.n_dofs(),
+          ExcDimensionMismatch(u1_difference.size(), dof1.n_dofs()));
+
+                                    // For continuous elements on grids
+                                    // with hanging nodes we need
+                                    // hnaging node
+                                    // constraints. Consequently, when
+                                    // the elements are continuous no
+                                    // hanging node constraints are
+                                    // allowed.
+    const bool hanging_nodes_not_allowed=
+      (dof1.get_fe().dofs_per_vertex != 0) || (fe2.dofs_per_vertex != 0);
+
+    const unsigned int dofs_per_cell=dof1.get_fe().dofs_per_cell;
+
+    Vector<typename OutVector::value_type> u1_local(dofs_per_cell);
+    Vector<typename OutVector::value_type> u1_diff_local(dofs_per_cell);
+
+    FullMatrix<double> difference_matrix(dofs_per_cell, dofs_per_cell);
+    get_interpolation_difference_matrix(dof1.get_fe(), fe2,
+                                       difference_matrix);
+
+    typename DoFHandler<dim,spacedim>::active_cell_iterator cell = dof1.begin_active(),
+                                                           endc = dof1.end();
+
+    for (; cell!=endc; ++cell)
+      {
+       if (hanging_nodes_not_allowed)
+         for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+           Assert (cell->at_boundary(face) ||
+                   cell->neighbor(face)->level() == cell->level(),
+                   ExcHangingNodesNotAllowed(0));
+
+       cell->get_dof_values(u1, u1_local);
+       difference_matrix.vmult(u1_diff_local, u1_local);
+       cell->set_dof_values(u1_diff_local, u1_difference);
+      }
+  }
 
-  const unsigned int n1 = dof1.get_fe().dofs_per_cell;
-  const unsigned int n2 = dof2.get_fe().dofs_per_cell;
 
-  Vector<double> u1_local(n1);
-  Vector<double> u2_local(n2);
-  std::vector<unsigned int> dofs(n2);
 
-  FullMatrix<double> matrix(n2,n1);
-  get_projection_matrix(dof1.get_fe(), dof2.get_fe(), matrix);
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void interpolation_difference(const DoFHandler<dim,spacedim> &dof1,
+                               const ConstraintMatrix &constraints1,
+                               const InVector &u1,
+                               const DoFHandler<dim,spacedim> &dof2,
+                               const ConstraintMatrix &constraints2,
+                               OutVector &u1_difference)
+  {
+                                    // For discontinuous elements
+                                    // without constraints take the
+                                    // cheaper version of the
+                                    // interpolation_difference function.
+    if (dof1.get_fe().dofs_per_vertex==0 && dof2.get_fe().dofs_per_vertex==0
+       && constraints1.n_constraints()==0 && constraints2.n_constraints()==0)
+      interpolation_difference(dof1, u1, dof2.get_fe(), u1_difference);
+    else
+      {
+       back_interpolate(dof1, constraints1, u1, dof2, constraints2, u1_difference);
+       u1_difference.sadd(-1, u1);
+      }
+  }
 
-  while (cell2 != end)
-    {
-      cell1->get_dof_values(u1, u1_local);
-      matrix.vmult(u2_local, u1_local);
-      cell2->get_dof_indices(dofs);
-      for (unsigned int i=0; i<n2; ++i)
-       {
-         u2(dofs[i])+=u2_local(i);
-       }
 
-      ++cell1;
-      ++cell2;
-    }
-}
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void project_dg(const DoFHandler<dim,spacedim> &dof1,
+                 const InVector &u1,
+                 const DoFHandler<dim,spacedim> &dof2,
+                 OutVector &u2)
+  {
+    Assert(&dof1.get_tria()==&dof2.get_tria(), ExcTriangulationMismatch());
+    Assert(dof1.get_fe().n_components() == dof2.get_fe().n_components(),
+          ExcDimensionMismatch(dof1.get_fe().n_components(), dof2.get_fe().n_components()));
+    Assert(u1.size()==dof1.n_dofs(), ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
+    Assert(u2.size()==dof2.n_dofs(), ExcDimensionMismatch(u2.size(), dof2.n_dofs()));
 
+    typename DoFHandler<dim,spacedim>::active_cell_iterator cell1 = dof1.begin_active();
+    typename DoFHandler<dim,spacedim>::active_cell_iterator cell2 = dof2.begin_active();
+    typename DoFHandler<dim,spacedim>::active_cell_iterator end = dof2.end();
 
-template <int dim, class InVector, class OutVector, int spacedim>
-void FETools::extrapolate(const DoFHandler<dim,spacedim> &dof1,
-                         const InVector &u1,
-                         const DoFHandler<dim,spacedim> &dof2,
-                         OutVector &u2)
-{
-  ConstraintMatrix dummy;
-  dummy.close();
-  extrapolate(dof1, u1, dof2, dummy, u2);
-}
+    const unsigned int n1 = dof1.get_fe().dofs_per_cell;
+    const unsigned int n2 = dof2.get_fe().dofs_per_cell;
 
+    Vector<double> u1_local(n1);
+    Vector<double> u2_local(n2);
+    std::vector<unsigned int> dofs(n2);
 
+    FullMatrix<double> matrix(n2,n1);
+    get_projection_matrix(dof1.get_fe(), dof2.get_fe(), matrix);
 
-template <int dim, class InVector, class OutVector, int spacedim>
-void FETools::extrapolate(const DoFHandler<dim,spacedim> &dof1,
-                         const InVector &u1,
-                         const DoFHandler<dim,spacedim> &dof2,
-                         const ConstraintMatrix &constraints,
-                         OutVector &u2)
-{
-  Assert(dof1.get_fe().n_components() == dof2.get_fe().n_components(),
-        ExcDimensionMismatch(dof1.get_fe().n_components(), dof2.get_fe().n_components()));
-  Assert(&dof1.get_tria()==&dof2.get_tria(), ExcTriangulationMismatch());
-  Assert(u1.size()==dof1.n_dofs(), ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
-  Assert(u2.size()==dof2.n_dofs(), ExcDimensionMismatch(u2.size(), dof2.n_dofs()));
+    while (cell2 != end)
+      {
+       cell1->get_dof_values(u1, u1_local);
+       matrix.vmult(u2_local, u1_local);
+       cell2->get_dof_indices(dofs);
+       for (unsigned int i=0; i<n2; ++i)
+         {
+           u2(dofs[i])+=u2_local(i);
+         }
 
-  OutVector u3;
-  u3.reinit(u2);
-  interpolate(dof1, u1, dof2, constraints, u3);
+       ++cell1;
+       ++cell2;
+      }
+  }
 
-  const unsigned int dofs_per_cell  = dof2.get_fe().dofs_per_cell;
-  Vector<typename OutVector::value_type> dof_values(dofs_per_cell);
 
-                                  // make sure that each cell on the
-                                  // coarsest level is at least once
-                                  // refined. otherwise, we can't
-                                  // treat these cells and would
-                                  // generate a bogus result
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void extrapolate(const DoFHandler<dim,spacedim> &dof1,
+                  const InVector &u1,
+                  const DoFHandler<dim,spacedim> &dof2,
+                  OutVector &u2)
   {
-    typename DoFHandler<dim,spacedim>::cell_iterator cell = dof2.begin(0),
-                                           endc = dof2.end(0);
-    for (; cell!=endc; ++cell)
-      Assert (cell->has_children(), ExcGridNotRefinedAtLeastOnce());
+    ConstraintMatrix dummy;
+    dummy.close();
+    extrapolate(dof1, u1, dof2, dummy, u2);
   }
 
-                                  // then traverse grid bottom up
-  for (unsigned int level=0; level<dof1.get_tria().n_levels()-1; ++level)
-    {
-      typename DoFHandler<dim,spacedim>::cell_iterator cell=dof2.begin(level),
-                                             endc=dof2.end(level);
 
+
+  template <int dim, class InVector, class OutVector, int spacedim>
+  void extrapolate(const DoFHandler<dim,spacedim> &dof1,
+                  const InVector &u1,
+                  const DoFHandler<dim,spacedim> &dof2,
+                  const ConstraintMatrix &constraints,
+                  OutVector &u2)
+  {
+    Assert(dof1.get_fe().n_components() == dof2.get_fe().n_components(),
+          ExcDimensionMismatch(dof1.get_fe().n_components(), dof2.get_fe().n_components()));
+    Assert(&dof1.get_tria()==&dof2.get_tria(), ExcTriangulationMismatch());
+    Assert(u1.size()==dof1.n_dofs(), ExcDimensionMismatch(u1.size(), dof1.n_dofs()));
+    Assert(u2.size()==dof2.n_dofs(), ExcDimensionMismatch(u2.size(), dof2.n_dofs()));
+
+    OutVector u3;
+    u3.reinit(u2);
+    interpolate(dof1, u1, dof2, constraints, u3);
+
+    const unsigned int dofs_per_cell  = dof2.get_fe().dofs_per_cell;
+    Vector<typename OutVector::value_type> dof_values(dofs_per_cell);
+
+                                    // make sure that each cell on the
+                                    // coarsest level is at least once
+                                    // refined. otherwise, we can't
+                                    // treat these cells and would
+                                    // generate a bogus result
+    {
+      typename DoFHandler<dim,spacedim>::cell_iterator cell = dof2.begin(0),
+                                                      endc = dof2.end(0);
       for (; cell!=endc; ++cell)
-       if (!cell->active())
-         {
-                                            // check whether this
-                                            // cell has active
-                                            // children
-           bool active_children=false;
-           for (unsigned int child_n=0; child_n<cell->n_children(); ++child_n)
-             if (cell->child(child_n)->active())
+       Assert (cell->has_children(), ExcGridNotRefinedAtLeastOnce());
+    }
+
+                                    // then traverse grid bottom up
+    for (unsigned int level=0; level<dof1.get_tria().n_levels()-1; ++level)
+      {
+       typename DoFHandler<dim,spacedim>::cell_iterator cell=dof2.begin(level),
+                                                        endc=dof2.end(level);
+
+       for (; cell!=endc; ++cell)
+         if (!cell->active())
+           {
+                                              // check whether this
+                                              // cell has active
+                                              // children
+             bool active_children=false;
+             for (unsigned int child_n=0; child_n<cell->n_children(); ++child_n)
+               if (cell->child(child_n)->active())
+                 {
+                   active_children=true;
+                   break;
+                 }
+
+                                              // if there are active
+                                              // children, the we have
+                                              // to work on this
+                                              // cell. get the data
+                                              // from the one vector
+                                              // and set it on the
+                                              // other
+             if (active_children)
                {
-                 active_children=true;
-                 break;
+                 cell->get_interpolated_dof_values(u3, dof_values);
+                 cell->set_dof_values_by_interpolation(dof_values, u2);
                }
+           }
+      }
 
-                                            // if there are active
-                                            // children, the we have
-                                            // to work on this
-                                            // cell. get the data
-                                            // from the one vector
-                                            // and set it on the
-                                            // other
-           if (active_children)
-             {
-               cell->get_interpolated_dof_values(u3, dof_values);
-               cell->set_dof_values_by_interpolation(dof_values, u2);
-             }
-         }
-    }
-
-                                  // Apply hanging node constraints.
-  constraints.distribute(u2);
-}
+                                    // Apply hanging node constraints.
+    constraints.distribute(u2);
+  }
 
 
-template <int dim, int spacedim>
-void
-FETools::add_fe_name(const std::string& parameter_name,
-                    const FEFactoryBase<dim,spacedim>* factory)
-{
-                                  // Erase everything after the
-                                  // actual class name
-  std::string name = parameter_name;
-  unsigned int name_end =
-    name.find_first_not_of(std::string("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"));
-  if (name_end < name.size())
-    name.erase(name_end);
-                                  // first make sure that no other
-                                  // thread intercepts the
-                                  // operation of this function;
-                                  // for this, acquire the lock
-                                  // until we quit this function
-  Threads::ThreadMutex::ScopedLock lock(fe_name_map_lock);
-
-  Assert(fe_name_map.find(name) == fe_name_map.end(),
-        ExcMessage("Cannot change existing element in finite element name list"));
-
-                                  // Insert the normalized name into
-                                  // the map
-  fe_name_map[name] = FEFactoryPointer(factory);
-}
+  template <int dim, int spacedim>
+  void
+  add_fe_name(const std::string& parameter_name,
+             const FEFactoryBase<dim,spacedim>* factory)
+  {
+                                    // Erase everything after the
+                                    // actual class name
+    std::string name = parameter_name;
+    unsigned int name_end =
+      name.find_first_not_of(std::string("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"));
+    if (name_end < name.size())
+      name.erase(name_end);
+                                    // first make sure that no other
+                                    // thread intercepts the
+                                    // operation of this function;
+                                    // for this, acquire the lock
+                                    // until we quit this function
+    Threads::ThreadMutex::ScopedLock lock(fe_name_map_lock);
+
+    Assert(fe_name_map.find(name) == fe_name_map.end(),
+          ExcMessage("Cannot change existing element in finite element name list"));
+
+                                    // Insert the normalized name into
+                                    // the map
+    fe_name_map[name] = FEFactoryPointer(factory);
+  }
 
 
-namespace internal
-{
-  namespace
+  namespace internal
   {
-    template <int dim, int spacedim>
-    FiniteElement<dim,spacedim>*
-    get_fe_from_name (std::string &name)
+    namespace
     {
-                                      // Extract the name of the
-                                      // finite element class, which only
-                                      // contains characters, numbers and
-                                      // underscores.
-      unsigned int name_end =
-       name.find_first_not_of(std::string("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"));
-      const std::string name_part(name, 0, name_end);
-      name.erase(0, name_part.size());
-
-                                      // now things get a little more
-                                      // complicated: FESystem. it's
-                                      // more complicated, since we
-                                      // have to figure out what the
-                                      // base elements are. this can
-                                      // only be done recursively
-      if (name_part == "FESystem")
-       {
-                                          // next we have to get at the
-                                          // base elements. start with
-                                          // the first. wrap the whole
-                                          // block into try-catch to
-                                          // make sure we destroy the
-                                          // pointers we got from
-                                          // recursive calls if one of
-                                          // these calls should throw
-                                          // an exception
-         std::vector<FiniteElement<dim,spacedim>*> base_fes;
-         std::vector<unsigned int>        base_multiplicities;
-         try
-           {
-                                              // Now, just the [...]
-                                              // part should be left.
-             if (name.size() == 0 || name[0] != '[')
-               throw (std::string("Invalid first character in ") + name);
-             do
-               {
-                                                  // Erase the
-                                                  // leading '[' or '-'
-                 name.erase(0,1);
-                                                  // Now, the name of the
-                                                  // first base element is
-                                                  // first... Let's get it
-                 base_fes.push_back (get_fe_from_name<dim,spacedim> (name));
-                                                  // next check whether
-                                                  // FESystem placed a
-                                                  // multiplicity after
-                                                  // the element name
-                 if (name[0] == '^')
-                   {
-                                                      // yes. Delete the '^'
-                                                      // and read this
-                                                      // multiplicity
-                     name.erase(0,1);
-
-                     const std::pair<int,unsigned int> tmp
-                       = Utilities::get_integer_at_position (name, 0);
-                     name.erase(0, tmp.second);
-                                                      // add to length,
-                                                      // including the '^'
-                     base_multiplicities.push_back (tmp.first);
-                   }
-                 else
-                                                    // no, so
-                                                    // multiplicity is
-                                                    // 1
-                   base_multiplicities.push_back (1);
-
-                                                  // so that's it for
-                                                  // this base
-                                                  // element. base
-                                                  // elements are
-                                                  // separated by '-',
-                                                  // and the list is
-                                                  // terminated by ']',
-                                                  // so loop while the
-                                                  // next character is
-                                                  // '-'
-               }
-             while (name[0] == '-');
-
-                                              // so we got to the end
-                                              // of the '-' separated
-                                              // list. make sure that
-                                              // we actually had a ']'
-                                              // there
-             if (name.size() == 0 || name[0] != ']')
-               throw (std::string("Invalid first character in ") + name);
-             name.erase(0,1);
-                                              // just one more sanity check
-             Assert ((base_fes.size() == base_multiplicities.size())
-                     &&
-                     (base_fes.size() > 0),
-                     ExcInternalError());
-
-                                              // ok, apparently
-                                              // everything went ok. so
-                                              // generate the composed
-                                              // element
-             FiniteElement<dim,spacedim> *system_element = 0;
-             switch (base_fes.size())
-               {
-                 case 1:
+      template <int dim, int spacedim>
+      FiniteElement<dim,spacedim>*
+      get_fe_from_name (std::string &name)
+      {
+                                        // Extract the name of the
+                                        // finite element class, which only
+                                        // contains characters, numbers and
+                                        // underscores.
+       unsigned int name_end =
+         name.find_first_not_of(std::string("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"));
+       const std::string name_part(name, 0, name_end);
+       name.erase(0, name_part.size());
+
+                                        // now things get a little more
+                                        // complicated: FESystem. it's
+                                        // more complicated, since we
+                                        // have to figure out what the
+                                        // base elements are. this can
+                                        // only be done recursively
+       if (name_part == "FESystem")
+         {
+                                            // next we have to get at the
+                                            // base elements. start with
+                                            // the first. wrap the whole
+                                            // block into try-catch to
+                                            // make sure we destroy the
+                                            // pointers we got from
+                                            // recursive calls if one of
+                                            // these calls should throw
+                                            // an exception
+           std::vector<FiniteElement<dim,spacedim>*> base_fes;
+           std::vector<unsigned int>        base_multiplicities;
+           try
+             {
+                                                // Now, just the [...]
+                                                // part should be left.
+               if (name.size() == 0 || name[0] != '[')
+                 throw (std::string("Invalid first character in ") + name);
+               do
                  {
-                   system_element = new FESystem<dim>(*base_fes[0],
-                                                      base_multiplicities[0]);
-                   break;
+                                                    // Erase the
+                                                    // leading '[' or '-'
+                   name.erase(0,1);
+                                                    // Now, the name of the
+                                                    // first base element is
+                                                    // first... Let's get it
+                   base_fes.push_back (get_fe_from_name<dim,spacedim> (name));
+                                                    // next check whether
+                                                    // FESystem placed a
+                                                    // multiplicity after
+                                                    // the element name
+                   if (name[0] == '^')
+                     {
+                                                        // yes. Delete the '^'
+                                                        // and read this
+                                                        // multiplicity
+                       name.erase(0,1);
+
+                       const std::pair<int,unsigned int> tmp
+                         = Utilities::get_integer_at_position (name, 0);
+                       name.erase(0, tmp.second);
+                                                        // add to length,
+                                                        // including the '^'
+                       base_multiplicities.push_back (tmp.first);
+                     }
+                   else
+                                                      // no, so
+                                                      // multiplicity is
+                                                      // 1
+                     base_multiplicities.push_back (1);
+
+                                                    // so that's it for
+                                                    // this base
+                                                    // element. base
+                                                    // elements are
+                                                    // separated by '-',
+                                                    // and the list is
+                                                    // terminated by ']',
+                                                    // so loop while the
+                                                    // next character is
+                                                    // '-'
                  }
-
-                 case 2:
+               while (name[0] == '-');
+
+                                                // so we got to the end
+                                                // of the '-' separated
+                                                // list. make sure that
+                                                // we actually had a ']'
+                                                // there
+               if (name.size() == 0 || name[0] != ']')
+                 throw (std::string("Invalid first character in ") + name);
+               name.erase(0,1);
+                                                // just one more sanity check
+               Assert ((base_fes.size() == base_multiplicities.size())
+                       &&
+                       (base_fes.size() > 0),
+                       ExcInternalError());
+
+                                                // ok, apparently
+                                                // everything went ok. so
+                                                // generate the composed
+                                                // element
+               FiniteElement<dim,spacedim> *system_element = 0;
+               switch (base_fes.size())
                  {
-                   system_element = new FESystem<dim>(*base_fes[0],
-                                                      base_multiplicities[0],
-                                                      *base_fes[1],
-                                                      base_multiplicities[1]);
-                   break;
-                 }
+                   case 1:
+                   {
+                     system_element = new FESystem<dim>(*base_fes[0],
+                                                        base_multiplicities[0]);
+                     break;
+                   }
 
-                 case 3:
-                 {
-                   system_element = new FESystem<dim>(*base_fes[0],
-                                                      base_multiplicities[0],
-                                                      *base_fes[1],
-                                                      base_multiplicities[1],
-                                                      *base_fes[2],
-                                                      base_multiplicities[2]);
-                   break;
-                 }
+                   case 2:
+                   {
+                     system_element = new FESystem<dim>(*base_fes[0],
+                                                        base_multiplicities[0],
+                                                        *base_fes[1],
+                                                        base_multiplicities[1]);
+                     break;
+                   }
 
-                 default:
-                       AssertThrow (false, ExcNotImplemented());
-               }
+                   case 3:
+                   {
+                     system_element = new FESystem<dim>(*base_fes[0],
+                                                        base_multiplicities[0],
+                                                        *base_fes[1],
+                                                        base_multiplicities[1],
+                                                        *base_fes[2],
+                                                        base_multiplicities[2]);
+                     break;
+                   }
 
-                                              // now we don't need the
-                                              // list of base elements
-                                              // any more
-             for (unsigned int i=0; i<base_fes.size(); ++i)
-               delete base_fes[i];
+                   default:
+                         AssertThrow (false, ExcNotImplemented());
+                 }
 
-                                              // finally return our
-                                              // findings
-                                              // Add the closing ']' to
-                                              // the length
-             return system_element;
+                                                // now we don't need the
+                                                // list of base elements
+                                                // any more
+               for (unsigned int i=0; i<base_fes.size(); ++i)
+                 delete base_fes[i];
 
-           }
-         catch (...)
-           {
-                                              // ups, some exception
-                                              // was thrown. prevent a
-                                              // memory leak, and then
-                                              // pass on the exception
-                                              // to the caller
-             for (unsigned int i=0; i<base_fes.size(); ++i)
-               delete base_fes[i];
-             throw;
-           }
+                                                // finally return our
+                                                // findings
+                                                // Add the closing ']' to
+                                                // the length
+               return system_element;
 
-                                          // this is a place where we
-                                          // should really never get,
-                                          // since above we have either
-                                          // returned from the
-                                          // try-clause, or have
-                                          // re-thrown in the catch
-                                          // clause. check that we
-                                          // never get here
-         Assert (false, ExcInternalError());
-       }
-      else
-       {
-                                          // Make sure no other thread
-                                          // is just adding an element
-         Threads::ThreadMutex::ScopedLock lock (fe_name_map_lock);
-
-         AssertThrow (fe_name_map.find(name_part) != fe_name_map.end(),
-                      FETools::ExcInvalidFEName(name));
-                                          // Now, just the (degree)
-                                          // or (Quadrature<1>(degree+1))
-                                          // part should be left.
-         if (name.size() == 0 || name[0] != '(')
-           throw (std::string("Invalid first character in ") + name);
-         name.erase(0,1);
-         if (name[0] != 'Q')
-           {
-             const std::pair<int,unsigned int> tmp
-               = Utilities::get_integer_at_position (name, 0);
-             name.erase(0, tmp.second+1);
-             return fe_name_map.find(name_part)->second->get(tmp.first);
-           }
-         else
-           {
-             unsigned int position = name.find('(');
-             const std::string quadrature_name(name, 0, position-1);
-             name.erase(0,position);
-             if (quadrature_name.compare("QGaussLobatto") == 0)
-               {
-                 const std::pair<int,unsigned int> tmp
-                   = Utilities::get_integer_at_position (name, 0);
-                 name.erase(0, tmp.second+1);
+             }
+           catch (...)
+             {
+                                                // ups, some exception
+                                                // was thrown. prevent a
+                                                // memory leak, and then
+                                                // pass on the exception
+                                                // to the caller
+               for (unsigned int i=0; i<base_fes.size(); ++i)
+                 delete base_fes[i];
+               throw;
+             }
+
+                                            // this is a place where we
+                                            // should really never get,
+                                            // since above we have either
+                                            // returned from the
+                                            // try-clause, or have
+                                            // re-thrown in the catch
+                                            // clause. check that we
+                                            // never get here
+           Assert (false, ExcInternalError());
+         }
+       else
+         {
+                                            // Make sure no other thread
+                                            // is just adding an element
+           Threads::ThreadMutex::ScopedLock lock (fe_name_map_lock);
+
+           AssertThrow (fe_name_map.find(name_part) != fe_name_map.end(),
+                        ExcInvalidFEName(name));
+                                            // Now, just the (degree)
+                                            // or (Quadrature<1>(degree+1))
+                                            // part should be left.
+           if (name.size() == 0 || name[0] != '(')
+             throw (std::string("Invalid first character in ") + name);
+           name.erase(0,1);
+           if (name[0] != 'Q')
+             {
+               const std::pair<int,unsigned int> tmp
+                 = Utilities::get_integer_at_position (name, 0);
+               name.erase(0, tmp.second+1);
+               return fe_name_map.find(name_part)->second->get(tmp.first);
+             }
+           else
+             {
+               unsigned int position = name.find('(');
+               const std::string quadrature_name(name, 0, position-1);
+               name.erase(0,position);
+               if (quadrature_name.compare("QGaussLobatto") == 0)
+                 {
+                   const std::pair<int,unsigned int> tmp
+                     = Utilities::get_integer_at_position (name, 0);
+                   name.erase(0, tmp.second+1);
 //TODO: Implement a get function taking Quadrature<1> in fe_tools.h.
 //return fe_name_map.find(name_part)->second->get(QGaussLobatto<1>(tmp.first));
-                 AssertThrow (false, ExcNotImplemented());
-               }
-             else
-               {
-                 AssertThrow (false,ExcNotImplemented());
-               }
-           }
-       }
+                   AssertThrow (false, ExcNotImplemented());
+                 }
+               else
+                 {
+                   AssertThrow (false,ExcNotImplemented());
+                 }
+             }
+         }
 
 
-                                      // hm, if we have come thus far, we
-                                      // didn't know what to do with the
-                                      // string we got. so do as the docs
-                                      // say: raise an exception
-      AssertThrow (false, FETools::ExcInvalidFEName(name));
+                                        // hm, if we have come thus far, we
+                                        // didn't know what to do with the
+                                        // string we got. so do as the docs
+                                        // say: raise an exception
+       AssertThrow (false, ExcInvalidFEName(name));
 
-                                      // make some compilers happy that
-                                      // do not realize that we can't get
-                                      // here after throwing
-      return 0;
+                                        // make some compilers happy that
+                                        // do not realize that we can't get
+                                        // here after throwing
+       return 0;
+      }
     }
   }
-}
 
 
 
 
 
-template <int dim>
-FiniteElement<dim, dim> *
-FETools::get_fe_from_name (const std::string &parameter_name)
-{
-                                  // Create a version of the name
-                                  // string where all template
-                                  // parameters are eliminated.
-  std::string name = parameter_name;
-  for (unsigned int pos1 = name.find('<');
-       pos1 < name.size();
-       pos1 = name.find('<'))
-    {
+  template <int dim>
+  FiniteElement<dim, dim> *
+  get_fe_from_name (const std::string &parameter_name)
+  {
+                                    // Create a version of the name
+                                    // string where all template
+                                    // parameters are eliminated.
+    std::string name = parameter_name;
+    for (unsigned int pos1 = name.find('<');
+        pos1 < name.size();
+        pos1 = name.find('<'))
+      {
 
-      const unsigned int pos2 = name.find('>');
-                                      // If there is only a single
-                                      // character between those two,
-                                      // it should be 'd' or the number
-                                      // representing the dimension.
-      if (pos2-pos1 == 2)
-       {
-         const char dimchar = '0' + dim;
-         if (name.at(pos1+1) != 'd')
-           Assert (name.at(pos1+1) == dimchar,
-                   ExcInvalidFEDimension(name.at(pos1+1), dim));
-       }
-      else
-        Assert(pos2-pos1 == 4, ExcInvalidFEName(name));
+       const unsigned int pos2 = name.find('>');
+                                        // If there is only a single
+                                        // character between those two,
+                                        // it should be 'd' or the number
+                                        // representing the dimension.
+       if (pos2-pos1 == 2)
+         {
+           const char dimchar = '0' + dim;
+           if (name.at(pos1+1) != 'd')
+             Assert (name.at(pos1+1) == dimchar,
+                     ExcInvalidFEDimension(name.at(pos1+1), dim));
+         }
+       else
+         Assert(pos2-pos1 == 4, ExcInvalidFEName(name));
 
-                                      // If pos1==pos2, then we are
-                                      // probably at the end of the
-                                      // string
-      if (pos2 != pos1)
-       name.erase(pos1, pos2-pos1+1);
-    }
-                                  // Replace all occurences of "^dim"
-                                  // by "^d" to be handled by the
-                                  // next loop
-  for (unsigned int pos = name.find("^dim");
-       pos < name.size();
-       pos = name.find("^dim"))
-    name.erase(pos+2, 2);
-
-                                  // Replace all occurences of "^d"
-                                  // by using the actual dimension
-  for (unsigned int pos = name.find("^d");
-       pos < name.size();
-       pos = name.find("^d"))
-    name.at(pos+1) = '0' + dim;
-
-  try
-    {
-      FiniteElement<dim,dim> *fe = internal::get_fe_from_name<dim,dim> (name);
-
-                                       // Make sure the auxiliary function
-                                       // ate up all characters of the name.
-      AssertThrow (name.size() == 0,
-                   ExcInvalidFEName(parameter_name
-                                    + std::string(" extra characters after "
-                                                  "end of name")));
-      return fe;
-    }
-  catch (const std::string &errline)
-    {
-      AssertThrow(false, ExcInvalidFEName(parameter_name
-                                         + std::string(" at ")
-                                         + errline));
-      return 0;
-    }
-}
+                                        // If pos1==pos2, then we are
+                                        // probably at the end of the
+                                        // string
+       if (pos2 != pos1)
+         name.erase(pos1, pos2-pos1+1);
+      }
+                                    // Replace all occurences of "^dim"
+                                    // by "^d" to be handled by the
+                                    // next loop
+    for (unsigned int pos = name.find("^dim");
+        pos < name.size();
+        pos = name.find("^dim"))
+      name.erase(pos+2, 2);
+
+                                    // Replace all occurences of "^d"
+                                    // by using the actual dimension
+    for (unsigned int pos = name.find("^d");
+        pos < name.size();
+        pos = name.find("^d"))
+      name.at(pos+1) = '0' + dim;
+
+    try
+      {
+       FiniteElement<dim,dim> *fe = internal::get_fe_from_name<dim,dim> (name);
+
+                                        // Make sure the auxiliary function
+                                        // ate up all characters of the name.
+       AssertThrow (name.size() == 0,
+                    ExcInvalidFEName(parameter_name
+                                     + std::string(" extra characters after "
+                                                   "end of name")));
+       return fe;
+      }
+    catch (const std::string &errline)
+      {
+       AssertThrow(false, ExcInvalidFEName(parameter_name
+                                           + std::string(" at ")
+                                           + errline));
+       return 0;
+      }
+  }
 
 
 // template <int dim>
 // FiniteElement<dim> *
-// FETools::get_fe_from_name (const std::string &parameter_name)
+// get_fe_from_name (const std::string &parameter_name)
 // {
 //     return internal::get_fe_from_name<dim,dim>(parameter_name);
 // }
 
 
-template <int dim, int spacedim>
-void
-FETools::
-compute_projection_from_quadrature_points_matrix (const FiniteElement<dim,spacedim> &fe,
-                                                  const Quadrature<dim>    &lhs_quadrature,
-                                                  const Quadrature<dim>    &rhs_quadrature,
-                                                  FullMatrix<double>       &X)
-{
-  Assert (fe.n_components() == 1, ExcNotImplemented());
-
-                                   // first build the matrices M and Q
-                                   // described in the documentation
-  FullMatrix<double> M (fe.dofs_per_cell, fe.dofs_per_cell);
-  FullMatrix<double> Q (fe.dofs_per_cell, rhs_quadrature.size());
-
-  for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
-    for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
-      for (unsigned int q=0; q<lhs_quadrature.size(); ++q)
-        M(i,j) += fe.shape_value (i, lhs_quadrature.point(q)) *
-                  fe.shape_value (j, lhs_quadrature.point(q)) *
-                  lhs_quadrature.weight(q);
-
-  for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
-    for (unsigned int q=0; q<rhs_quadrature.size(); ++q)
-      Q(i,q) += fe.shape_value (i, rhs_quadrature.point(q)) *
-                rhs_quadrature.weight(q);
-
-                                   // then invert M
-  FullMatrix<double> M_inverse (fe.dofs_per_cell, fe.dofs_per_cell);
-  M_inverse.invert (M);
-
-                                   // finally compute the result
-  X.reinit (fe.dofs_per_cell, rhs_quadrature.size());
-  M_inverse.mmult (X, Q);
-
-  Assert (X.m() == fe.dofs_per_cell, ExcInternalError());
-  Assert (X.n() == rhs_quadrature.size(), ExcInternalError());
-}
+  template <int dim, int spacedim>
+  void
 
+  compute_projection_from_quadrature_points_matrix (const FiniteElement<dim,spacedim> &fe,
+                                                   const Quadrature<dim>    &lhs_quadrature,
+                                                   const Quadrature<dim>    &rhs_quadrature,
+                                                   FullMatrix<double>       &X)
+  {
+    Assert (fe.n_components() == 1, ExcNotImplemented());
 
+                                    // first build the matrices M and Q
+                                    // described in the documentation
+    FullMatrix<double> M (fe.dofs_per_cell, fe.dofs_per_cell);
+    FullMatrix<double> Q (fe.dofs_per_cell, rhs_quadrature.size());
 
-template <int dim, int spacedim>
-void
-FETools::
-compute_interpolation_to_quadrature_points_matrix (const FiniteElement<dim,spacedim> &fe,
-                                                   const Quadrature<dim>    &quadrature,
-                                                   FullMatrix<double>       &I_q)
-{
-  Assert (fe.n_components() == 1, ExcNotImplemented());
-  Assert (I_q.m() == quadrature.size(),
-          ExcMessage ("Wrong matrix size"));
-  Assert (I_q.n() == fe.dofs_per_cell, ExcMessage ("Wrong matrix size"));
+    for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
+      for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
+       for (unsigned int q=0; q<lhs_quadrature.size(); ++q)
+         M(i,j) += fe.shape_value (i, lhs_quadrature.point(q)) *
+                   fe.shape_value (j, lhs_quadrature.point(q)) *
+                   lhs_quadrature.weight(q);
 
-  for (unsigned int q=0; q<quadrature.size(); ++q)
     for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
-      I_q(q,i) = fe.shape_value (i, quadrature.point(q));
-}
+      for (unsigned int q=0; q<rhs_quadrature.size(); ++q)
+       Q(i,q) += fe.shape_value (i, rhs_quadrature.point(q)) *
+                 rhs_quadrature.weight(q);
 
+                                    // then invert M
+    FullMatrix<double> M_inverse (fe.dofs_per_cell, fe.dofs_per_cell);
+    M_inverse.invert (M);
 
+                                    // finally compute the result
+    X.reinit (fe.dofs_per_cell, rhs_quadrature.size());
+    M_inverse.mmult (X, Q);
 
-template <int dim>
-void
-FETools::compute_projection_from_quadrature_points(
-                const FullMatrix<double>                &projection_matrix,
-                const std::vector< Tensor<1, dim > >    &vector_of_tensors_at_qp,
-                std::vector< Tensor<1, dim > >          &vector_of_tensors_at_nodes)
-{
+    Assert (X.m() == fe.dofs_per_cell, ExcInternalError());
+    Assert (X.n() == rhs_quadrature.size(), ExcInternalError());
+  }
+
+
+
+  template <int dim, int spacedim>
+  void
+  compute_interpolation_to_quadrature_points_matrix (const FiniteElement<dim,spacedim> &fe,
+                                                    const Quadrature<dim>    &quadrature,
+                                                    FullMatrix<double>       &I_q)
+  {
+    Assert (fe.n_components() == 1, ExcNotImplemented());
+    Assert (I_q.m() == quadrature.size(),
+           ExcMessage ("Wrong matrix size"));
+    Assert (I_q.n() == fe.dofs_per_cell, ExcMessage ("Wrong matrix size"));
+
+    for (unsigned int q=0; q<quadrature.size(); ++q)
+      for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
+       I_q(q,i) = fe.shape_value (i, quadrature.point(q));
+  }
+
+
+
+  template <int dim>
+  void
+  compute_projection_from_quadrature_points(
+    const FullMatrix<double>                &projection_matrix,
+    const std::vector< Tensor<1, dim > >    &vector_of_tensors_at_qp,
+    std::vector< Tensor<1, dim > >          &vector_of_tensors_at_nodes)
+  {
 
-                // check that the number columns of the projection_matrix
-                // matches the size of the vector_of_tensors_at_qp
+                                    // check that the number columns of the projection_matrix
+                                    // matches the size of the vector_of_tensors_at_qp
     Assert(projection_matrix.n_cols() == vector_of_tensors_at_qp.size(),
-    ExcDimensionMismatch(projection_matrix.n_cols(),
-                    vector_of_tensors_at_qp.size()));
+          ExcDimensionMismatch(projection_matrix.n_cols(),
+                               vector_of_tensors_at_qp.size()));
 
-                // check that the number rows of the projection_matrix
-                // matches the size of the vector_of_tensors_at_nodes
+                                    // check that the number rows of the projection_matrix
+                                    // matches the size of the vector_of_tensors_at_nodes
     Assert(projection_matrix.n_rows() == vector_of_tensors_at_nodes.size(),
-    ExcDimensionMismatch(projection_matrix.n_rows(),
-                    vector_of_tensors_at_nodes.size()));
+          ExcDimensionMismatch(projection_matrix.n_rows(),
+                               vector_of_tensors_at_nodes.size()));
 
-                // number of support points (nodes) to project to
+                                    // number of support points (nodes) to project to
     const unsigned int n_support_points = projection_matrix.n_rows();
-                // number of quadrature points to project from
+                                    // number of quadrature points to project from
     const unsigned int n_quad_points = projection_matrix.n_cols();
 
-                 // component projected to the nodes
+                                    // component projected to the nodes
     Vector<double> component_at_node(n_support_points);
-                 // component at the quadrature point
+                                    // component at the quadrature point
     Vector<double> component_at_qp(n_quad_points);
 
     for (unsigned int ii = 0; ii < dim; ++ii) {
 
-        component_at_qp = 0;
+      component_at_qp = 0;
 
-                // populate the vector of components at the qps
-                // from vector_of_tensors_at_qp
-                // vector_of_tensors_at_qp data is in form:
-                //      columns:        0, 1, ...,  dim
-                //      rows:           0,1,....,  n_quad_points
-                // so extract the ii'th column of vector_of_tensors_at_qp
-        for (unsigned int q = 0; q < n_quad_points; ++q) {
-            component_at_qp(q) = vector_of_tensors_at_qp[q][ii];
-        }
+                                      // populate the vector of components at the qps
+                                      // from vector_of_tensors_at_qp
+                                      // vector_of_tensors_at_qp data is in form:
+                                      //      columns:        0, 1, ...,  dim
+                                      //      rows:           0,1,....,  n_quad_points
+                                      // so extract the ii'th column of vector_of_tensors_at_qp
+      for (unsigned int q = 0; q < n_quad_points; ++q) {
+       component_at_qp(q) = vector_of_tensors_at_qp[q][ii];
+      }
 
-                // project from the qps -> nodes
-                // component_at_node = projection_matrix_u * component_at_qp
-        projection_matrix.vmult(component_at_node, component_at_qp);
+                                      // project from the qps -> nodes
+                                      // component_at_node = projection_matrix_u * component_at_qp
+      projection_matrix.vmult(component_at_node, component_at_qp);
 
-                // rewrite the projection of the components
-                // back into the vector of tensors
-        for (unsigned int nn =0; nn <n_support_points; ++nn) {
-            vector_of_tensors_at_nodes[nn][ii] = component_at_node(nn);
-        }
+                                      // rewrite the projection of the components
+                                      // back into the vector of tensors
+      for (unsigned int nn =0; nn <n_support_points; ++nn) {
+       vector_of_tensors_at_nodes[nn][ii] = component_at_node(nn);
+      }
     }
-}
+  }
 
 
 
-template <int dim>
-void
-FETools::compute_projection_from_quadrature_points(
-                const FullMatrix<double>                        &projection_matrix,
-                const std::vector< SymmetricTensor<2, dim > >   &vector_of_tensors_at_qp,
-                std::vector< SymmetricTensor<2, dim > >         &vector_of_tensors_at_nodes)
-{
+  template <int dim>
+  void
+  compute_projection_from_quadrature_points(
+    const FullMatrix<double>                        &projection_matrix,
+    const std::vector< SymmetricTensor<2, dim > >   &vector_of_tensors_at_qp,
+    std::vector< SymmetricTensor<2, dim > >         &vector_of_tensors_at_nodes)
+  {
 
-                // check that the number columns of the projection_matrix
-                // matches the size of the vector_of_tensors_at_qp
+                                    // check that the number columns of the projection_matrix
+                                    // matches the size of the vector_of_tensors_at_qp
     Assert(projection_matrix.n_cols() == vector_of_tensors_at_qp.size(),
-    ExcDimensionMismatch(projection_matrix.n_cols(),
-                    vector_of_tensors_at_qp.size()));
+          ExcDimensionMismatch(projection_matrix.n_cols(),
+                               vector_of_tensors_at_qp.size()));
 
-                // check that the number rows of the projection_matrix
-                // matches the size of the vector_of_tensors_at_nodes
+                                    // check that the number rows of the projection_matrix
+                                    // matches the size of the vector_of_tensors_at_nodes
     Assert(projection_matrix.n_rows() == vector_of_tensors_at_nodes.size(),
-    ExcDimensionMismatch(projection_matrix.n_rows(),
-                    vector_of_tensors_at_nodes.size()));
+          ExcDimensionMismatch(projection_matrix.n_rows(),
+                               vector_of_tensors_at_nodes.size()));
 
-                // number of support points (nodes)
+                                    // number of support points (nodes)
     const unsigned int n_support_points = projection_matrix.n_rows();
-                // number of quadrature points to project from
+                                    // number of quadrature points to project from
     const unsigned int n_quad_points = projection_matrix.n_cols();
 
-                // number of unique entries in a symmetric second-order tensor
+                                    // number of unique entries in a symmetric second-order tensor
     const unsigned int n_independent_components =
-            SymmetricTensor<2, dim >::n_independent_components;
+      SymmetricTensor<2, dim >::n_independent_components;
 
-                // component projected to the nodes
+                                    // component projected to the nodes
     Vector<double> component_at_node(n_support_points);
-                // component at the quadrature point
+                                    // component at the quadrature point
     Vector<double> component_at_qp(n_quad_points);
 
-                // loop over the number of unique dimensions of the tensor
+                                    // loop over the number of unique dimensions of the tensor
     for (unsigned int ii = 0; ii < n_independent_components; ++ii) {
 
-        component_at_qp = 0;
-
-                // row-column entry of tensor corresponding the unrolled index
-        TableIndices<2>  row_column_index = SymmetricTensor< 2, dim >::unrolled_to_component_indices(ii);
-        const unsigned int row = row_column_index[0];
-        const unsigned int column = row_column_index[1];
-
-        //  populate the vector of components at the qps
-        //  from vector_of_tensors_at_qp
-        //  vector_of_tensors_at_qp is in form:
-        //      columns:       0, 1, ..., n_independent_components
-        //      rows:           0,1,....,  n_quad_points
-        //  so extract the ii'th column of vector_of_tensors_at_qp
-        for (unsigned int q = 0; q < n_quad_points; ++q) {
-            component_at_qp(q) = (vector_of_tensors_at_qp[q])[row][column];
-        }
+      component_at_qp = 0;
+
+                                      // row-column entry of tensor corresponding the unrolled index
+      TableIndices<2>  row_column_index = SymmetricTensor< 2, dim >::unrolled_to_component_indices(ii);
+      const unsigned int row = row_column_index[0];
+      const unsigned int column = row_column_index[1];
+
+                                      //  populate the vector of components at the qps
+                                      //  from vector_of_tensors_at_qp
+                                      //  vector_of_tensors_at_qp is in form:
+                                      //      columns:       0, 1, ..., n_independent_components
+                                      //      rows:           0,1,....,  n_quad_points
+                                      //  so extract the ii'th column of vector_of_tensors_at_qp
+      for (unsigned int q = 0; q < n_quad_points; ++q) {
+       component_at_qp(q) = (vector_of_tensors_at_qp[q])[row][column];
+      }
 
-            // project from the qps -> nodes
-            // component_at_node = projection_matrix_u * component_at_qp
-        projection_matrix.vmult(component_at_node, component_at_qp);
+                                      // project from the qps -> nodes
+                                      // component_at_node = projection_matrix_u * component_at_qp
+      projection_matrix.vmult(component_at_node, component_at_qp);
 
-            // rewrite the projection of the components back into the vector of tensors
-        for (unsigned int nn =0; nn <n_support_points; ++nn) {
-            (vector_of_tensors_at_nodes[nn])[row][column] = component_at_node(nn);
-        }
+                                      // rewrite the projection of the components back into the vector of tensors
+      for (unsigned int nn =0; nn <n_support_points; ++nn) {
+       (vector_of_tensors_at_nodes[nn])[row][column] = component_at_node(nn);
+      }
     }
-}
+  }
 
 
 
-template <int dim, int spacedim>
-void
-FETools::
-compute_projection_from_face_quadrature_points_matrix (const FiniteElement<dim, spacedim> &fe,
-                                               const Quadrature<dim-1>    &lhs_quadrature,
-                                               const Quadrature<dim-1>    &rhs_quadrature,
-                                               const typename DoFHandler<dim, spacedim>::active_cell_iterator & cell,
-                                               unsigned int face,
-                                               FullMatrix<double>       &X)
-{
-  Assert (fe.n_components() == 1, ExcNotImplemented());
-  Assert (lhs_quadrature.size () > fe.degree, ExcNotGreaterThan (lhs_quadrature.size (), fe.degree));
+  template <int dim, int spacedim>
+  void
+  compute_projection_from_face_quadrature_points_matrix (const FiniteElement<dim, spacedim> &fe,
+                                                        const Quadrature<dim-1>    &lhs_quadrature,
+                                                        const Quadrature<dim-1>    &rhs_quadrature,
+                                                        const typename DoFHandler<dim, spacedim>::active_cell_iterator & cell,
+                                                        unsigned int face,
+                                                        FullMatrix<double>       &X)
+  {
+    Assert (fe.n_components() == 1, ExcNotImplemented());
+    Assert (lhs_quadrature.size () > fe.degree, ExcNotGreaterThan (lhs_quadrature.size (), fe.degree));
 
 
 
-                                   // build the matrices M and Q
-                                   // described in the documentation
-  FullMatrix<double> M (fe.dofs_per_cell, fe.dofs_per_cell);
-  FullMatrix<double> Q (fe.dofs_per_cell, rhs_quadrature.size());
+                                    // build the matrices M and Q
+                                    // described in the documentation
+    FullMatrix<double> M (fe.dofs_per_cell, fe.dofs_per_cell);
+    FullMatrix<double> Q (fe.dofs_per_cell, rhs_quadrature.size());
 
-  {
-                               // need an FEFaceValues object to evaluate shape function
-                               // values on the specified face.
-    FEFaceValues <dim> fe_face_values (fe, lhs_quadrature, update_values);
-    fe_face_values.reinit (cell, face); // setup shape_value on this face.
+    {
+                                      // need an FEFaceValues object to evaluate shape function
+                                      // values on the specified face.
+      FEFaceValues <dim> fe_face_values (fe, lhs_quadrature, update_values);
+      fe_face_values.reinit (cell, face); // setup shape_value on this face.
+
+      for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
+       for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
+         for (unsigned int q=0; q<lhs_quadrature.size(); ++q)
+           M(i,j) += fe_face_values.shape_value (i, q) *
+                     fe_face_values.shape_value (j, q) *
+                     lhs_quadrature.weight(q);
+      for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
+       {
+         M(i,i) = (M(i,i) == 0 ? 1 : M(i,i));
+       }
+    }
 
-    for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
-      for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
-        for (unsigned int q=0; q<lhs_quadrature.size(); ++q)
-          M(i,j) += fe_face_values.shape_value (i, q) *
-                    fe_face_values.shape_value (j, q) *
-                    lhs_quadrature.weight(q);
-    for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
     {
-      M(i,i) = (M(i,i) == 0 ? 1 : M(i,i));
+      FEFaceValues <dim> fe_face_values (fe, rhs_quadrature, update_values);
+      fe_face_values.reinit (cell, face); // setup shape_value on this face.
+
+      for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
+       for (unsigned int q=0; q<rhs_quadrature.size(); ++q)
+         Q(i,q) += fe_face_values.shape_value (i, q) *
+                   rhs_quadrature.weight(q);
     }
-  }
+                                    // then invert M
+    FullMatrix<double> M_inverse (fe.dofs_per_cell, fe.dofs_per_cell);
+    M_inverse.invert (M);
 
-  {
-    FEFaceValues <dim> fe_face_values (fe, rhs_quadrature, update_values);
-    fe_face_values.reinit (cell, face); // setup shape_value on this face.
+                                    // finally compute the result
+    X.reinit (fe.dofs_per_cell, rhs_quadrature.size());
+    M_inverse.mmult (X, Q);
 
-    for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
-      for (unsigned int q=0; q<rhs_quadrature.size(); ++q)
-        Q(i,q) += fe_face_values.shape_value (i, q) *
-                  rhs_quadrature.weight(q);
+    Assert (X.m() == fe.dofs_per_cell, ExcInternalError());
+    Assert (X.n() == rhs_quadrature.size(), ExcInternalError());
   }
-                                   // then invert M
-  FullMatrix<double> M_inverse (fe.dofs_per_cell, fe.dofs_per_cell);
-  M_inverse.invert (M);
 
-                                   // finally compute the result
-  X.reinit (fe.dofs_per_cell, rhs_quadrature.size());
-  M_inverse.mmult (X, Q);
-
-  Assert (X.m() == fe.dofs_per_cell, ExcInternalError());
-  Assert (X.n() == rhs_quadrature.size(), ExcInternalError());
 }
 
 
 
-
 /*-------------- Explicit Instantiations -------------------------------*/
 
-
-template class FETools::FEFactoryBase<deal_II_dimension>;
-
-template
-void FETools::compute_node_matrix(
-  FullMatrix<double>&,
-  const FiniteElement<deal_II_dimension>&);
-
-template
-void FETools::compute_component_wise(
-  const FiniteElement<deal_II_dimension>& element,
-  std::vector<unsigned int>&, std::vector<std::vector<unsigned int> >&);
-template
-void FETools::compute_block_renumbering (
-  const FiniteElement<deal_II_dimension>& element,
-  std::vector<unsigned int>&, std::vector<unsigned int>&_indices, bool);
-template
-void FETools::get_interpolation_matrix<deal_II_dimension>
-(const FiniteElement<deal_II_dimension> &,
- const FiniteElement<deal_II_dimension> &,
- FullMatrix<double> &);
-template
-void FETools::get_back_interpolation_matrix<deal_II_dimension>
-(const FiniteElement<deal_II_dimension> &,
- const FiniteElement<deal_II_dimension> &,
- FullMatrix<double> &);
-template
-void FETools::get_interpolation_difference_matrix<deal_II_dimension>
-(const FiniteElement<deal_II_dimension> &,
- const FiniteElement<deal_II_dimension> &,
- FullMatrix<double> &);
-template
-void FETools::get_interpolation_matrix<deal_II_dimension>
-(const FiniteElement<deal_II_dimension> &,
- const FiniteElement<deal_II_dimension> &,
- FullMatrix<float> &);
-template
-void FETools::get_back_interpolation_matrix<deal_II_dimension>
-(const FiniteElement<deal_II_dimension> &,
- const FiniteElement<deal_II_dimension> &,
- FullMatrix<float> &);
-template
-void FETools::get_interpolation_difference_matrix<deal_II_dimension>
-(const FiniteElement<deal_II_dimension> &,
- const FiniteElement<deal_II_dimension> &,
- FullMatrix<float> &);
-
-template
-void FETools::get_projection_matrix<deal_II_dimension>
-(const FiniteElement<deal_II_dimension> &,
- const FiniteElement<deal_II_dimension> &,
- FullMatrix<double> &);
-
-template
-void FETools::compute_embedding_matrices<deal_II_dimension>
-(const FiniteElement<deal_II_dimension> &, std::vector<std::vector<FullMatrix<double> > >&,bool);
-
-template
-void FETools::compute_face_embedding_matrices<deal_II_dimension,double>
-(const FiniteElement<deal_II_dimension> &, FullMatrix<double> (&matrices)[GeometryInfo<deal_II_dimension>::max_children_per_face],
- unsigned int, unsigned int);
-
-template
-void FETools::compute_projection_matrices<deal_II_dimension>
-(const FiniteElement<deal_II_dimension> &, std::vector<std::vector<FullMatrix<double> > >&, bool);
-
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<double> &,
- const DoFHandler<deal_II_dimension> &, Vector<double> &);
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<double> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<double> &);
+namespace FETools
+{
+  template class FEFactoryBase<deal_II_dimension>;
+
+  template
+  void compute_node_matrix(
+    FullMatrix<double>&,
+    const FiniteElement<deal_II_dimension>&);
+
+  template
+  void compute_component_wise(
+    const FiniteElement<deal_II_dimension>& element,
+    std::vector<unsigned int>&, std::vector<std::vector<unsigned int> >&);
+  template
+  void compute_block_renumbering (
+    const FiniteElement<deal_II_dimension>& element,
+    std::vector<unsigned int>&, std::vector<unsigned int>&_indices, bool);
+  template
+  void get_interpolation_matrix<deal_II_dimension>
+  (const FiniteElement<deal_II_dimension> &,
+   const FiniteElement<deal_II_dimension> &,
+   FullMatrix<double> &);
+  template
+  void get_back_interpolation_matrix<deal_II_dimension>
+  (const FiniteElement<deal_II_dimension> &,
+   const FiniteElement<deal_II_dimension> &,
+   FullMatrix<double> &);
+  template
+  void get_interpolation_difference_matrix<deal_II_dimension>
+  (const FiniteElement<deal_II_dimension> &,
+   const FiniteElement<deal_II_dimension> &,
+   FullMatrix<double> &);
+  template
+  void get_interpolation_matrix<deal_II_dimension>
+  (const FiniteElement<deal_II_dimension> &,
+   const FiniteElement<deal_II_dimension> &,
+   FullMatrix<float> &);
+  template
+  void get_back_interpolation_matrix<deal_II_dimension>
+  (const FiniteElement<deal_II_dimension> &,
+   const FiniteElement<deal_II_dimension> &,
+   FullMatrix<float> &);
+  template
+  void get_interpolation_difference_matrix<deal_II_dimension>
+  (const FiniteElement<deal_II_dimension> &,
+   const FiniteElement<deal_II_dimension> &,
+   FullMatrix<float> &);
+
+  template
+  void get_projection_matrix<deal_II_dimension>
+  (const FiniteElement<deal_II_dimension> &,
+   const FiniteElement<deal_II_dimension> &,
+   FullMatrix<double> &);
+
+  template
+  void compute_embedding_matrices<deal_II_dimension>
+  (const FiniteElement<deal_II_dimension> &, std::vector<std::vector<FullMatrix<double> > >&,bool);
+
+  template
+  void compute_face_embedding_matrices<deal_II_dimension,double>
+  (const FiniteElement<deal_II_dimension> &, FullMatrix<double> (&matrices)[GeometryInfo<deal_II_dimension>::max_children_per_face],
+   unsigned int, unsigned int);
+
+  template
+  void compute_projection_matrices<deal_II_dimension>
+  (const FiniteElement<deal_II_dimension> &, std::vector<std::vector<FullMatrix<double> > >&, bool);
+
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<double> &,
+   const DoFHandler<deal_II_dimension> &, Vector<double> &);
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<double> &,
+   const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
+   Vector<double> &);
 
 #if deal_II_dimension != 3
-template
-void FETools::compute_block_renumbering (
-  const FiniteElement<deal_II_dimension,deal_II_dimension+1>& element,
-  std::vector<unsigned int>&, std::vector<unsigned int>&_indices, bool);
-template
-void FETools::interpolate<deal_II_dimension,deal_II_dimension+1>
-(const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const Vector<double> &,
- const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, Vector<double> &);
-template
-void FETools::interpolate<deal_II_dimension,deal_II_dimension+1>
-(const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const Vector<double> &,
- const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const ConstraintMatrix &,
- Vector<double> &);
+  template
+  void compute_block_renumbering (
+    const FiniteElement<deal_II_dimension,deal_II_dimension+1>& element,
+    std::vector<unsigned int>&, std::vector<unsigned int>&_indices, bool);
+  template
+  void interpolate<deal_II_dimension,deal_II_dimension+1>
+  (const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const Vector<double> &,
  const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, Vector<double> &);
+  template
+  void interpolate<deal_II_dimension,deal_II_dimension+1>
+  (const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const Vector<double> &,
  const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const ConstraintMatrix &,
  Vector<double> &);
 #endif
 
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<double> &,
- const FiniteElement<deal_II_dimension> &, Vector<double> &);
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const Vector<double> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<double> &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<double> &,
- const FiniteElement<deal_II_dimension> &, Vector<double> &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const Vector<double> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<double> &);
-template
-void FETools::project_dg<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<double> &,
- const DoFHandler<deal_II_dimension> &, Vector<double> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<double> &,
- const DoFHandler<deal_II_dimension> &, Vector<double> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<double> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<double> &);
-
-
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<float> &,
- const DoFHandler<deal_II_dimension> &, Vector<float> &);
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<float> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<float> &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<double> &,
  const FiniteElement<deal_II_dimension> &, Vector<double> &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const Vector<double> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  Vector<double> &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<double> &,
  const FiniteElement<deal_II_dimension> &, Vector<double> &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const Vector<double> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  Vector<double> &);
+  template
+  void project_dg<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<double> &,
  const DoFHandler<deal_II_dimension> &, Vector<double> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<double> &,
  const DoFHandler<deal_II_dimension> &, Vector<double> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<double> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  Vector<double> &);
+
+
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<float> &,
  const DoFHandler<deal_II_dimension> &, Vector<float> &);
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<float> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  Vector<float> &);
 
 #if deal_II_dimension != 3
-template
-void FETools::interpolate<deal_II_dimension,deal_II_dimension+1>
-(const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const Vector<float> &,
- const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, Vector<float> &);
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const Vector<float> &,
- const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const ConstraintMatrix &,
- Vector<float> &);
+  template
+  void interpolate<deal_II_dimension,deal_II_dimension+1>
+  (const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const Vector<float> &,
  const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, Vector<float> &);
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const Vector<float> &,
  const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const ConstraintMatrix &,
  Vector<float> &);
 #endif
 
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<float> &,
- const FiniteElement<deal_II_dimension> &, Vector<float> &);
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const Vector<float> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<float> &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<float> &,
- const FiniteElement<deal_II_dimension> &, Vector<float> &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const Vector<float> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<float> &);
-template
-void FETools::project_dg<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<float> &,
- const DoFHandler<deal_II_dimension> &, Vector<float> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<float> &,
- const DoFHandler<deal_II_dimension> &, Vector<float> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const Vector<float> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<float> &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<float> &,
  const FiniteElement<deal_II_dimension> &, Vector<float> &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const Vector<float> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  Vector<float> &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<float> &,
  const FiniteElement<deal_II_dimension> &, Vector<float> &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const Vector<float> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  Vector<float> &);
+  template
+  void project_dg<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<float> &,
  const DoFHandler<deal_II_dimension> &, Vector<float> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<float> &,
  const DoFHandler<deal_II_dimension> &, Vector<float> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const Vector<float> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  Vector<float> &);
 
 
 #ifdef DEAL_II_USE_TRILINOS
 
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
- const DoFHandler<deal_II_dimension> &,  TrilinosWrappers::Vector &);
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- TrilinosWrappers::Vector &);
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
- const FiniteElement<deal_II_dimension> &,  TrilinosWrappers::Vector &);
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const TrilinosWrappers::Vector &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- TrilinosWrappers::Vector &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
- const FiniteElement<deal_II_dimension> &, TrilinosWrappers::Vector &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const TrilinosWrappers::Vector &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- TrilinosWrappers::Vector &);
-template
-void FETools::project_dg<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
- const DoFHandler<deal_II_dimension> &, TrilinosWrappers::Vector &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
- const DoFHandler<deal_II_dimension> &, TrilinosWrappers::Vector &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- TrilinosWrappers::Vector &);
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
  const DoFHandler<deal_II_dimension> &,  TrilinosWrappers::Vector &);
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  TrilinosWrappers::Vector &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
  const FiniteElement<deal_II_dimension> &,  TrilinosWrappers::Vector &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const TrilinosWrappers::Vector &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  TrilinosWrappers::Vector &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
  const FiniteElement<deal_II_dimension> &, TrilinosWrappers::Vector &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const TrilinosWrappers::Vector &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  TrilinosWrappers::Vector &);
+  template
+  void project_dg<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
  const DoFHandler<deal_II_dimension> &, TrilinosWrappers::Vector &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
  const DoFHandler<deal_II_dimension> &, TrilinosWrappers::Vector &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::Vector &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  TrilinosWrappers::Vector &);
 
 #endif
 
 
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
- const DoFHandler<deal_II_dimension> &, BlockVector<double> &);
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- BlockVector<double> &);
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
  const DoFHandler<deal_II_dimension> &, BlockVector<double> &);
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  BlockVector<double> &);
 
 #if deal_II_dimension != 3
-template
-void FETools::interpolate<deal_II_dimension,deal_II_dimension+1>
-(const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const BlockVector<double> &,
- const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, BlockVector<double> &);
-template
-void FETools::interpolate<deal_II_dimension,deal_II_dimension+1>
-(const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const BlockVector<double> &,
- const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const ConstraintMatrix &,
- BlockVector<double> &);
+  template
+  void interpolate<deal_II_dimension,deal_II_dimension+1>
+  (const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const BlockVector<double> &,
  const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, BlockVector<double> &);
+  template
+  void interpolate<deal_II_dimension,deal_II_dimension+1>
+  (const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const BlockVector<double> &,
  const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const ConstraintMatrix &,
  BlockVector<double> &);
 #endif
 
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
- const FiniteElement<deal_II_dimension> &, BlockVector<double> &);
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const BlockVector<double> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- BlockVector<double> &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
- const FiniteElement<deal_II_dimension> &, BlockVector<double> &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const BlockVector<double> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- BlockVector<double> &);
-template
-void FETools::project_dg<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
- const DoFHandler<deal_II_dimension> &, BlockVector<double> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
- const DoFHandler<deal_II_dimension> &, BlockVector<double> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- BlockVector<double> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
- const DoFHandler<deal_II_dimension> &, Vector<double> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<double> &);
-
-
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
- const DoFHandler<deal_II_dimension> &, BlockVector<float> &);
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- BlockVector<float> &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
  const FiniteElement<deal_II_dimension> &, BlockVector<double> &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const BlockVector<double> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  BlockVector<double> &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
  const FiniteElement<deal_II_dimension> &, BlockVector<double> &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const BlockVector<double> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  BlockVector<double> &);
+  template
+  void project_dg<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
  const DoFHandler<deal_II_dimension> &, BlockVector<double> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
  const DoFHandler<deal_II_dimension> &, BlockVector<double> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  BlockVector<double> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
  const DoFHandler<deal_II_dimension> &, Vector<double> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<double> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  Vector<double> &);
+
+
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
  const DoFHandler<deal_II_dimension> &, BlockVector<float> &);
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  BlockVector<float> &);
 
 #if deal_II_dimension != 3
-template
-void FETools::interpolate<deal_II_dimension,deal_II_dimension+1>
-(const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const BlockVector<float> &,
- const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, BlockVector<float> &);
-template
-void FETools::interpolate<deal_II_dimension,deal_II_dimension+1>
-(const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const BlockVector<float> &,
- const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const ConstraintMatrix &,
- BlockVector<float> &);
+  template
+  void interpolate<deal_II_dimension,deal_II_dimension+1>
+  (const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const BlockVector<float> &,
  const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, BlockVector<float> &);
+  template
+  void interpolate<deal_II_dimension,deal_II_dimension+1>
+  (const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const BlockVector<float> &,
  const DoFHandler<deal_II_dimension,deal_II_dimension+1> &, const ConstraintMatrix &,
  BlockVector<float> &);
 #endif
 
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
- const FiniteElement<deal_II_dimension> &, BlockVector<float> &);
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const BlockVector<float> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- BlockVector<float> &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
- const FiniteElement<deal_II_dimension> &, BlockVector<float> &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const BlockVector<float> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- BlockVector<float> &);
-template
-void FETools::project_dg<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
- const DoFHandler<deal_II_dimension> &, BlockVector<float> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
- const DoFHandler<deal_II_dimension> &, BlockVector<float> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- BlockVector<float> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
- const DoFHandler<deal_II_dimension> &, Vector<float> &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<float> &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
  const FiniteElement<deal_II_dimension> &, BlockVector<float> &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const BlockVector<float> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  BlockVector<float> &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
  const FiniteElement<deal_II_dimension> &, BlockVector<float> &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const BlockVector<float> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  BlockVector<float> &);
+  template
+  void project_dg<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
  const DoFHandler<deal_II_dimension> &, BlockVector<float> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
  const DoFHandler<deal_II_dimension> &, BlockVector<float> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  BlockVector<float> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
  const DoFHandler<deal_II_dimension> &, Vector<float> &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const BlockVector<float> &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  Vector<float> &);
 
 
 #ifdef DEAL_II_USE_TRILINOS
 
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
- const DoFHandler<deal_II_dimension> &,  TrilinosWrappers::BlockVector &);
-template
-void FETools::interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- TrilinosWrappers::BlockVector &);
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
- const FiniteElement<deal_II_dimension> &,  TrilinosWrappers::BlockVector &);
-template
-void FETools::back_interpolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const TrilinosWrappers::BlockVector &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- TrilinosWrappers::BlockVector &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
- const FiniteElement<deal_II_dimension> &, TrilinosWrappers::BlockVector &);
-template
-void FETools::interpolation_difference<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- const TrilinosWrappers::BlockVector &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- TrilinosWrappers::BlockVector &);
-template
-void FETools::project_dg<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
- const DoFHandler<deal_II_dimension> &, TrilinosWrappers::BlockVector &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
- const DoFHandler<deal_II_dimension> &, TrilinosWrappers::BlockVector &);
-template
-void FETools::extrapolate<deal_II_dimension>
-(const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
- const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- TrilinosWrappers::BlockVector &);
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
  const DoFHandler<deal_II_dimension> &,  TrilinosWrappers::BlockVector &);
+  template
+  void interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  TrilinosWrappers::BlockVector &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
  const FiniteElement<deal_II_dimension> &,  TrilinosWrappers::BlockVector &);
+  template
+  void back_interpolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const TrilinosWrappers::BlockVector &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  TrilinosWrappers::BlockVector &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
  const FiniteElement<deal_II_dimension> &, TrilinosWrappers::BlockVector &);
+  template
+  void interpolation_difference<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  const TrilinosWrappers::BlockVector &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  TrilinosWrappers::BlockVector &);
+  template
+  void project_dg<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
  const DoFHandler<deal_II_dimension> &, TrilinosWrappers::BlockVector &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
  const DoFHandler<deal_II_dimension> &, TrilinosWrappers::BlockVector &);
+  template
+  void extrapolate<deal_II_dimension>
+  (const DoFHandler<deal_II_dimension> &, const TrilinosWrappers::BlockVector &,
  const DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
  TrilinosWrappers::BlockVector &);
 
 #endif
 
 
-template
-void FETools::interpolate<deal_II_dimension>
-(const hp::DoFHandler<deal_II_dimension> &, const Vector<double> &,
- const hp::DoFHandler<deal_II_dimension> &, Vector<double> &);
-template
-void FETools::interpolate<deal_II_dimension>
-(const hp::DoFHandler<deal_II_dimension> &, const Vector<double> &,
- const hp::DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<double> &);
-template
-void FETools::interpolate<deal_II_dimension>
-(const hp::DoFHandler<deal_II_dimension> &, const Vector<float> &,
- const hp::DoFHandler<deal_II_dimension> &, Vector<float> &);
-template
-void FETools::interpolate<deal_II_dimension>
-(const hp::DoFHandler<deal_II_dimension> &, const Vector<float> &,
- const hp::DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
- Vector<float> &);
-
-
-template FiniteElement<deal_II_dimension,deal_II_dimension> *
-FETools::get_fe_from_name<deal_II_dimension> (const std::string &);
-
-
-template
-void FETools::add_fe_name<deal_II_dimension>(
-  const std::string& name,
-  const FEFactoryBase<deal_II_dimension>* factory);
-
-template
-void
-FETools::
-compute_projection_from_quadrature_points_matrix (const FiniteElement<deal_II_dimension> &fe,
-                                                  const Quadrature<deal_II_dimension>    &lhs_quadrature,
-                                                  const Quadrature<deal_II_dimension>    &rhs_quadrature,
-                                                  FullMatrix<double>       &X);
+  template
+  void interpolate<deal_II_dimension>
+  (const hp::DoFHandler<deal_II_dimension> &, const Vector<double> &,
+   const hp::DoFHandler<deal_II_dimension> &, Vector<double> &);
+  template
+  void interpolate<deal_II_dimension>
+  (const hp::DoFHandler<deal_II_dimension> &, const Vector<double> &,
+   const hp::DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
+   Vector<double> &);
+  template
+  void interpolate<deal_II_dimension>
+  (const hp::DoFHandler<deal_II_dimension> &, const Vector<float> &,
+   const hp::DoFHandler<deal_II_dimension> &, Vector<float> &);
+  template
+  void interpolate<deal_II_dimension>
+  (const hp::DoFHandler<deal_II_dimension> &, const Vector<float> &,
+   const hp::DoFHandler<deal_II_dimension> &, const ConstraintMatrix &,
+   Vector<float> &);
+
+
+  template FiniteElement<deal_II_dimension,deal_II_dimension> *
+  get_fe_from_name<deal_II_dimension> (const std::string &);
+
+
+  template
+  void add_fe_name<deal_II_dimension>(
+    const std::string& name,
+    const FEFactoryBase<deal_II_dimension>* factory);
+
+  template
+  void
+  compute_projection_from_quadrature_points_matrix (const FiniteElement<deal_II_dimension> &fe,
+                                                   const Quadrature<deal_II_dimension>    &lhs_quadrature,
+                                                   const Quadrature<deal_II_dimension>    &rhs_quadrature,
+                                                   FullMatrix<double>       &X);
 
-template
-void
-FETools::
-compute_projection_from_quadrature_points(
-                const FullMatrix<double>                &projection_matrix,
-                const std::vector< Tensor<1, deal_II_dimension > >    &vector_of_tensors_at_qp,
-                std::vector< Tensor<1, deal_II_dimension > >          &vector_of_tensors_at_nodes);
+  template
+  void
+  compute_projection_from_quadrature_points(
+    const FullMatrix<double>                &projection_matrix,
+    const std::vector< Tensor<1, deal_II_dimension > >    &vector_of_tensors_at_qp,
+    std::vector< Tensor<1, deal_II_dimension > >          &vector_of_tensors_at_nodes);
 
-template
-void
-FETools::compute_projection_from_quadrature_points(
-               const FullMatrix<double>                      &projection_matrix,
-               const std::vector<SymmetricTensor<2, deal_II_dimension> > &vector_of_tensors_at_qp,
-               std::vector<SymmetricTensor<2, deal_II_dimension> >       &vector_of_tensors_at_nodes);
+  template
+  void
+  compute_projection_from_quadrature_points(
+    const FullMatrix<double>                      &projection_matrix,
+    const std::vector<SymmetricTensor<2, deal_II_dimension> > &vector_of_tensors_at_qp,
+    std::vector<SymmetricTensor<2, deal_II_dimension> >       &vector_of_tensors_at_nodes);
 
 
-template
-void
-FETools::
-compute_interpolation_to_quadrature_points_matrix (const FiniteElement<deal_II_dimension> &fe,
-                                                   const Quadrature<deal_II_dimension>    &quadrature,
-                                                   FullMatrix<double>       &I_q);
+  template
+  void
+  compute_interpolation_to_quadrature_points_matrix (const FiniteElement<deal_II_dimension> &fe,
+                                                    const Quadrature<deal_II_dimension>    &quadrature,
+                                                    FullMatrix<double>       &I_q);
 
 #if deal_II_dimension != 1
-template
-void
-FETools::
-compute_projection_from_face_quadrature_points_matrix (const FiniteElement<deal_II_dimension> &fe,
-                                               const Quadrature<deal_II_dimension-1>    &lhs_quadrature,
-                                               const Quadrature<deal_II_dimension-1>    &rhs_quadrature,
-                                               const DoFHandler<deal_II_dimension>::active_cell_iterator & cell,
-                                               unsigned int face,
-                                               FullMatrix<double>       &X);
+  template
+  void
+  compute_projection_from_face_quadrature_points_matrix (const FiniteElement<deal_II_dimension> &fe,
+                                                        const Quadrature<deal_II_dimension-1>    &lhs_quadrature,
+                                                        const Quadrature<deal_II_dimension-1>    &rhs_quadrature,
+                                                        const DoFHandler<deal_II_dimension>::active_cell_iterator & cell,
+                                                        unsigned int face,
+                                                        FullMatrix<double>       &X);
 #endif
 
+}
+
 
 
 /*----------------------------   fe_tools.cc     ---------------------------*/
index 077d79902781eb0f7c56adf63cf74c4522403341..fdfca2971f1769d31b9f9d11fd155fe38b228d3c 100644 (file)
@@ -281,6 +281,12 @@ through DoFHandler::get_tria() and DoFHandler::get_fe(), respectively.
 
 <ol>
 
+  <li><p>Changed: FETools is now a namespace rather than a class with only
+  static member functions.
+  <br>
+  (WB 2010/09/25)
+  </p></li>
+
   <li><p>New: FE_DGVector implements discontinuous elements based on
   vector valued polynomial spaces.
   <br>

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.