]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Add Annas Nedelec report.
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 30 Apr 2003 22:27:55 +0000 (22:27 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 30 Apr 2003 22:27:55 +0000 (22:27 +0000)
git-svn-id: https://svn.dealii.org/trunk@7519 0785d39b-7218-0410-832d-ea1e28bc413d

434 files changed:
deal.II/doc/documentation.html
deal.II/doc/reports/nedelec/images.aux [new file with mode: 0644]
deal.II/doc/reports/nedelec/images.bbl [new file with mode: 0644]
deal.II/doc/reports/nedelec/images.log [new file with mode: 0644]
deal.II/doc/reports/nedelec/images.tex [new file with mode: 0644]
deal.II/doc/reports/nedelec/img1.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img10.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img100.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img101.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img102.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img103.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img104.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img105.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img106.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img107.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img108.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img109.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img11.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img110.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img111.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img112.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img113.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img114.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img115.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img116.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img117.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img118.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img119.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img12.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img120.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img121.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img122.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img123.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img124.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img125.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img126.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img127.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img128.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img129.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img13.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img130.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img131.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img132.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img133.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img134.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img135.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img136.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img137.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img138.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img139.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img14.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img140.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img141.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img142.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img143.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img144.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img145.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img146.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img147.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img148.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img149.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img15.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img150.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img151.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img152.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img153.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img154.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img155.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img156.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img157.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img158.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img159.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img16.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img160.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img161.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img162.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img163.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img164.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img165.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img166.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img167.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img168.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img169.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img17.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img170.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img171.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img172.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img173.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img174.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img175.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img176.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img177.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img178.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img179.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img18.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img180.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img181.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img182.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img183.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img184.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img185.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img186.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img187.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img188.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img189.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img19.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img190.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img191.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img192.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img193.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img194.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img195.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img196.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img197.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img198.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img199.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img2.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img20.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img200.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img201.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img202.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img203.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img204.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img205.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img206.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img207.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img208.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img209.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img21.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img210.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img211.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img212.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img213.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img214.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img215.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img216.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img217.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img218.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img219.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img22.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img220.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img221.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img222.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img223.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img224.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img225.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img226.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img227.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img228.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img229.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img23.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img230.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img231.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img232.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img233.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img234.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img235.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img236.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img237.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img238.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img239.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img24.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img240.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img241.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img242.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img243.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img244.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img245.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img246.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img247.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img248.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img249.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img25.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img250.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img251.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img252.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img253.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img254.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img255.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img256.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img257.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img258.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img259.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img26.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img260.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img261.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img262.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img263.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img264.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img265.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img266.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img267.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img268.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img269.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img27.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img270.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img271.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img272.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img273.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img274.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img275.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img276.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img277.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img278.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img279.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img28.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img280.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img281.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img282.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img283.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img284.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img285.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img286.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img287.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img288.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img289.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img29.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img290.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img291.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img292.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img293.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img294.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img295.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img296.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img297.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img298.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img299.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img3.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img30.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img300.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img301.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img302.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img303.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img304.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img305.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img306.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img307.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img308.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img309.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img31.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img310.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img311.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img312.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img313.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img314.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img315.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img316.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img317.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img318.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img319.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img32.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img320.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img321.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img322.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img323.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img324.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img325.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img326.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img327.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img328.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img329.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img33.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img330.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img331.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img332.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img333.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img334.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img335.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img336.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img337.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img338.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img339.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img34.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img340.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img341.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img342.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img343.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img344.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img345.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img346.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img347.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img348.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img349.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img35.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img350.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img351.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img352.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img353.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img354.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img355.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img356.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img357.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img358.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img359.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img36.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img360.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img361.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img362.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img363.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img364.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img365.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img366.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img367.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img368.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img369.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img37.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img370.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img371.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img372.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img373.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img374.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img375.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img376.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img377.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img378.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img379.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img38.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img380.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img381.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img382.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img383.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img384.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img385.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img386.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img387.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img388.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img389.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img39.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img390.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img391.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img392.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img393.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img394.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img395.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img396.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img397.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img398.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img399.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img4.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img40.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img400.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img401.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img402.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img403.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img404.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img405.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img406.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img407.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img408.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img409.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img41.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img410.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img411.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img412.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img413.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img414.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img415.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img416.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img417.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img418.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img42.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img43.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img44.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img45.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img46.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img47.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img48.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img49.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img5.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img50.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img51.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img52.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img53.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img54.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img55.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img56.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img57.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img58.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img59.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img6.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img60.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img61.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img62.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img63.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img64.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img65.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img66.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img67.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img68.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img69.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img7.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img70.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img71.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img72.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img73.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img74.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img75.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img76.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img77.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img78.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img79.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img8.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img80.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img81.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img82.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img83.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img84.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img85.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img86.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img87.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img88.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img89.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img9.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img90.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img91.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img92.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img93.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img94.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img95.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img96.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img97.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img98.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/img99.gif [new file with mode: 0644]
deal.II/doc/reports/nedelec/index.html [new file with mode: 0644]
deal.II/doc/reports/nedelec/main.css [new file with mode: 0644]
deal.II/doc/reports/nedelec/main.html [new file with mode: 0644]
deal.II/doc/reports/nedelec/nedelec.ps [new file with mode: 0644]
deal.II/doc/reports/nedelec/node1.html [new file with mode: 0644]
deal.II/doc/reports/nedelec/node2.html [new file with mode: 0644]
deal.II/doc/reports/nedelec/node3.html [new file with mode: 0644]
deal.II/doc/reports/nedelec/node4.html [new file with mode: 0644]
deal.II/doc/reports/nedelec/node5.html [new file with mode: 0644]
deal.II/doc/reports/nedelec/node6.html [new file with mode: 0644]
deal.II/doc/toc.html

index 2fa0d85a2666aef4c57a0957b844f773b64ca969..f0f5c52c3fe4143cf08b3df50ca962569d7880ba 100644 (file)
               target="body">printable version of the report</a>.
              </p>
 
+         <li> <p>
+              A very detailed report on 
+             <a href="reports/nedelec/main.html"
+                 target="body">Nedelec elements</a> (by Anna
+              Schneebeli, University of Basel, Switzerland). It
+              explains the construction and application of Nedelec
+              edge elements for H-curl spaces, as used, for example,
+              in the numerical solution of the Maxwell equations. It
+              also gives numerical results obtained with deal.II.
+             Since the report has quite a number of formulas, there
+              is also a <a href="reports/nedelec/nedelec.ps"
+              target="body">printable version of the report</a>.
+             </p>
+
         </ul>
 
 
diff --git a/deal.II/doc/reports/nedelec/images.aux b/deal.II/doc/reports/nedelec/images.aux
new file mode 100644 (file)
index 0000000..c4cb964
--- /dev/null
@@ -0,0 +1,2 @@
+\relax 
+\bibstyle{abbrv}
diff --git a/deal.II/doc/reports/nedelec/images.bbl b/deal.II/doc/reports/nedelec/images.bbl
new file mode 100644 (file)
index 0000000..581abba
--- /dev/null
@@ -0,0 +1,78 @@
+\begin{thebibliography}{10}
+
+\bibitem{Alonso-Valli}
+A.~Alonso and A.~Valli.
+\newblock An optimal domain decomposition preconditioner for low-frequency
+  time-harmonic {M}axwell equations.
+\newblock {\em Math.~Comp.}, 68(226):607--631, 1999.
+
+\bibitem{Deal}
+W.~Bangerth, R.~Hartmann, and G.~Kanschat.
+\newblock {\em {\tt deal.{I}{I}} Differential Equations Analysis Library,
+  Technical Reference}.
+\newblock IWR, Universit{\"a}t Heidelberg.
+\newblock \texttt{http://www.dealii.org}.
+
+\bibitem{Brezzi-Fortin}
+F.~Brezzi and M.~Fortin.
+\newblock {\em Mixed and Hybrid Finite Element Methods}, volume~15 of {\em
+  Springer Series in Computational Mathematics}.
+\newblock Springer-Verlag, New York, 1991.
+
+\bibitem{Girault-Raviart}
+V.~Girault and P.-A. Raviart.
+\newblock {\em Finite Element Approximation of the Navier-Stokes Equations},
+  volume 749 of {\em Lecture Notes in Mathematics}.
+\newblock Springer-Verlag, Berlin, Heidelberg, 1979, 1981.
+
+\bibitem{Hipt}
+R.~Hiptmair.
+\newblock Finite elements in computational electromagnetism.
+\newblock In {\em Acta Numerica}, pages 1--103. {C}ambridge {U}niversity press,
+  2002.
+
+\bibitem{Monk'92}
+P.~Monk.
+\newblock Analysis of a finite element method for {M}axwell's equations.
+\newblock {\em SIAM J.~Numer.~Anal}, 29:714--729, 1992.
+
+\bibitem{Monk}
+P.~Monk.
+\newblock A simple proof for an edge element discretization of {M}axwell's
+  equations.
+\newblock Submitted for publication. Download version available on Monk's
+  webpage: www.math.udel.edu./~monk, 2001.
+
+\bibitem{Ned1}
+J.~C. N\'ed\'elec.
+\newblock Mixed finite elements in $\mathbb{R}^3$.
+\newblock {\em Numer.~Math.}, 35:315--341, 1980.
+
+\bibitem{Ned3}
+J.~C. N\'ed\'elec.
+\newblock Elements finis mixtes incompressibles pour l'\'equation de {S}tokes
+  dans $\mathbb{R}^3$.
+\newblock {\em Numer.~Math.}, 39:97--112, 1982.
+
+\bibitem{Ned2}
+J.~C. N\'ed\'elec.
+\newblock A new family of mixed finite elements in $\mathbb{R}^3$.
+\newblock {\em Numer.~Math.}, 50:57--81, 1986.
+
+\bibitem{Demko}
+W.~Rachowicz and L.~Demkowicz.
+\newblock A two-dimensional hp-adaptive finite element package for
+  electromagnetics (2{D}hp90\_{E}{M}).
+\newblock Ticam Report 98--16, TICAM, 1998.
+\newblock Download version available on Demkowicz' webpage:
+  www.ticam.utexas.edu/~{L}eszek.
+
+\bibitem{Demko3d}
+W.~Rachowicz and L.~Demkowicz.
+\newblock A three-dimensional hp-adaptive finite element package for
+  electromagnetics (3{D}hp90\_{E}{M}).
+\newblock Ticam Report 00-04.2000, TICAM, 2000.
+\newblock Download version available on Demkowicz' webpage:
+  www.ticam.utexas.edu/~{L}eszek.
+
+\end{thebibliography}
diff --git a/deal.II/doc/reports/nedelec/images.log b/deal.II/doc/reports/nedelec/images.log
new file mode 100644 (file)
index 0000000..d036f77
--- /dev/null
@@ -0,0 +1,2433 @@
+This is TeX, Version 3.14159 (Web2C 7.3.1) (format=latex 2002.9.6)  30 APR 2003 17:04
+**./images.tex
+(./images.tex
+LaTeX2e <2000/06/01>
+Babel <v3.7h> and hyphenation patterns for american, french, german, ngerman, i
+talian, nohyphenation, loaded.
+
+(/usr/share/texmf/tex/latex/base/article.cls
+Document Class: article 2000/05/19 v1.4b Standard LaTeX document class
+(/usr/share/texmf/tex/latex/base/size11.clo
+File: size11.clo 2000/05/19 v1.4b Standard LaTeX file (size option)
+)
+\c@part=\count79
+\c@section=\count80
+\c@subsection=\count81
+\c@subsubsection=\count82
+\c@paragraph=\count83
+\c@subparagraph=\count84
+\c@figure=\count85
+\c@table=\count86
+\abovecaptionskip=\skip41
+\belowcaptionskip=\skip42
+\bibindent=\dimen102
+) (/usr/share/texmf/tex/latex/base/ifthen.sty
+Package: ifthen 1999/09/10 v1.1b Standard LaTeX ifthen package (DPC)
+) (/usr/share/texmf/tex/latex/base/exscale.sty
+Package: exscale 1997/06/16 v2.1g Standard LaTeX package exscale
+LaTeX Font Info:    Redeclaring symbol font `largesymbols' on input line 47.
+LaTeX Font Info:    Overwriting symbol font `largesymbols' in version `normal'
+(Font)                  OMX/cmex/m/n --> OMX/cmex/m/n on input line 47.
+LaTeX Font Info:    Overwriting symbol font `largesymbols' in version `bold'
+(Font)                  OMX/cmex/m/n --> OMX/cmex/m/n on input line 47.
+\big@size=\dimen103
+) (/usr/share/texmf/tex/latex/graphics/graphicx.sty
+Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
+(/usr/share/texmf/tex/latex/graphics/keyval.sty
+Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
+\KV@toks@=\toks14
+) (/usr/share/texmf/tex/latex/graphics/graphics.sty
+Package: graphics 1999/02/16 v1.0l Standard LaTeX Graphics (DPC,SPQR)
+(/usr/share/texmf/tex/latex/graphics/trig.sty
+Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
+) (/usr/share/texmf/tex/latex/config/graphics.cfg)
+Package graphics Info: Driver file: dvips.def on input line 80.
+(/usr/share/texmf/tex/latex/graphics/dvips.def
+File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR)
+))
+\Gin@req@height=\dimen104
+\Gin@req@width=\dimen105
+) (/usr/share/texmf/tex/latex/base/shortvrb.sty
+Package: shortvrb 2000/07/04 v2.0m Standard LaTeX documentation package (FMi)
+) (/usr/share/texmf/tex/latex/amsmath/amsmath.sty
+Package: amsmath 2000/07/18 v2.13 AMS math features
+\@mathmargin=\skip43
+For additional information on amsmath, use the `?' option.
+(/usr/share/texmf/tex/latex/amsmath/amstext.sty
+Package: amstext 2000/06/29 v2.01
+(/usr/share/texmf/tex/latex/amsmath/amsgen.sty
+File: amsgen.sty 1999/11/30 v2.0
+\@emptytoks=\toks15
+\ex@=\dimen106
+)) (/usr/share/texmf/tex/latex/amsmath/amsbsy.sty
+Package: amsbsy 1999/11/29 v1.2d
+\pmbraise@=\dimen107
+) (/usr/share/texmf/tex/latex/amsmath/amsopn.sty
+Package: amsopn 1999/12/14 v2.01 operator names
+)
+\inf@bad=\count87
+LaTeX Info: Redefining \frac on input line 211.
+\uproot@=\count88
+\leftroot@=\count89
+LaTeX Info: Redefining \overline on input line 307.
+\classnum@=\count90
+\DOTSCASE@=\count91
+LaTeX Info: Redefining \ldots on input line 379.
+LaTeX Info: Redefining \dots on input line 382.
+LaTeX Info: Redefining \cdots on input line 467.
+\Mathstrutbox@=\box26
+\strutbox@=\box27
+\big@size=\dimen108
+LaTeX Font Info:    Redeclaring font encoding OML on input line 567.
+LaTeX Font Info:    Redeclaring font encoding OMS on input line 568.
+\macc@depth=\count92
+\c@MaxMatrixCols=\count93
+\dotsspace@=\muskip10
+\c@parentequation=\count94
+\dspbrk@lvl=\count95
+\tag@help=\toks16
+\row@=\count96
+\column@=\count97
+\maxfields@=\count98
+\andhelp@=\toks17
+\eqnshift@=\dimen109
+\alignsep@=\dimen110
+\tagshift@=\dimen111
+\tagwidth@=\dimen112
+\totwidth@=\dimen113
+\lineht@=\dimen114
+\@envbody=\toks18
+\multlinegap=\skip44
+\multlinetaggap=\skip45
+\mathdisplay@stack=\toks19
+LaTeX Info: Redefining \[ on input line 2666.
+LaTeX Info: Redefining \] on input line 2667.
+) (/usr/share/texmf/tex/latex/amsfonts/amssymb.sty
+Package: amssymb 1996/11/03 v2.2b
+(/usr/share/texmf/tex/latex/amsfonts/amsfonts.sty
+Package: amsfonts 1997/09/17 v2.2e
+\symAMSa=\mathgroup4
+\symAMSb=\mathgroup5
+LaTeX Font Info:    Overwriting math alphabet `\mathfrak' in version `bold'
+(Font)                  U/euf/m/n --> U/euf/b/n on input line 133.
+))
+\c@remark=\count99
+\c@conjecture=\count100
+\c@definition=\count101
+\c@theorem=\count102
+\c@prop=\count103
+\c@example=\count104
+\c@corollary=\count105
+\c@lemma=\count106
+\c@convention=\count107
+(/usr/share/texmf/tex/latex/graphics/color.sty
+Package: color 1999/02/16 v1.0i Standard LaTeX Color (DPC)
+(/usr/share/texmf/tex/latex/config/color.cfg)
+Package color Info: Driver file: dvips.def on input line 125.
+(/usr/share/texmf/tex/latex/graphics/dvipsnam.def
+File: dvipsnam.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR)
+)) (/usr/share/texmf/tex/latex/base/inputenc.sty
+Package: inputenc 2000/07/01 v0.996 Input encoding file 
+(/usr/share/texmf/tex/latex/base/latin1.def
+File: latin1.def 2000/07/01 v0.996 Input encoding file 
+))
+\sizebox=\box28
+\lthtmlwrite=\write3
+(images.aux (/homes/csm2/bangerth/tmp/g/xx/Report/appendixA.aux) (/homes/csm2/b
+angerth/tmp/g/xx/Report/appendixB.aux))
+\openout1 = `images.aux'.
+
+LaTeX Font Info:    Checking defaults for OML/cmm/m/it on input line 179.
+LaTeX Font Info:    ... okay on input line 179.
+LaTeX Font Info:    Checking defaults for T1/cmr/m/n on input line 179.
+LaTeX Font Info:    ... okay on input line 179.
+LaTeX Font Info:    Checking defaults for OT1/cmr/m/n on input line 179.
+LaTeX Font Info:    ... okay on input line 179.
+LaTeX Font Info:    Checking defaults for OMS/cmsy/m/n on input line 179.
+LaTeX Font Info:    ... okay on input line 179.
+LaTeX Font Info:    Checking defaults for OMX/cmex/m/n on input line 179.
+LaTeX Font Info:    ... okay on input line 179.
+LaTeX Font Info:    Checking defaults for U/cmr/m/n on input line 179.
+LaTeX Font Info:    ... okay on input line 179.
+
+latex2htmlLength hsize=349.0pt
+
+latex2htmlLength vsize=688.80026pt
+
+latex2htmlLength hoffset=0.0pt
+
+latex2htmlLength voffset=0.0pt
+
+latex2htmlLength topmargin=0.0pt
+
+latex2htmlLength topskip=0.00003pt
+
+latex2htmlLength headheight=0.0pt
+
+latex2htmlLength headsep=0.0pt
+
+latex2htmlLength parskip=0.0pt plus 1.0pt
+
+latex2htmlLength oddsidemargin=3.32088pt
+
+latex2htmlLength evensidemargin=3.32088pt
+
+LaTeX Font Info:    Try loading font information for U+msa on input line 203.
+(/usr/share/texmf/tex/latex/amsfonts/umsa.fd
+File: umsa.fd 1995/01/05 v2.2e AMS font definitions
+)
+LaTeX Font Info:    Try loading font information for U+msb on input line 203.
+(/usr/share/texmf/tex/latex/amsfonts/umsb.fd
+File: umsb.fd 1995/01/05 v2.2e AMS font definitions
+)
+l2hSize :tex2html_wrap_inline5220:8.7125pt::8.7125pt::50.1115pt.
+[1
+
+
+
+]
+l2hSize :tex2html_wrap_inline5236:9.62923pt::9.62923pt::29.17471pt.
+[2
+
+
+]
+l2hSize :tex2html_wrap_inline5250:8.7125pt::8.7125pt::58.62819pt.
+[3
+
+
+]
+l2hSize :tex2html_wrap_inline5451:10.02922pt::10.02922pt::34.62111pt.
+[4
+
+
+]
+l2hSize :tex2html_wrap_inline5453:8.10416pt::8.10416pt::36.66342pt.
+[5
+
+
+]
+l2hSize :tex2html_wrap_indisplay5455:8.7125pt::8.7125pt::151.13159pt.
+[6
+
+
+]
+l2hSize :tex2html_wrap_inline5457:10.02922pt::10.02922pt::53.97122pt.
+[7
+
+
+]
+l2hSize :tex2html_wrap_indisplay5459:7.57185pt::7.57185pt::45.63002pt.
+[8
+
+
+]
+l2hSize :tex2html_wrap_inline5461:7.60416pt::0.0pt::14.87758pt.
+[9
+
+
+]
+l2hSize :tex2html_wrap_inline5463:7.48248pt::0.0pt::8.45587pt.
+[10
+
+
+]
+l2hSize :tex2html_wrap_inline5465:8.7125pt::8.7125pt::20.06113pt.
+[11
+
+
+]
+l2hSize :tex2html_wrap_inline5469:7.57185pt::7.57185pt::4.50171pt.
+[12
+
+
+]
+l2hSize :tex2html_wrap_inline5471:7.60416pt::0.0pt::26.32178pt.
+[13
+
+
+]
+l2hSize :tex2html_wrap_inline5473:16.83748pt::16.83748pt::131.8223pt.
+[14
+
+
+]
+l2hSize :tex2html_wrap_inline5475:10.17242pt::10.17242pt::46.26984pt.
+[15
+
+
+]
+l2hSize :tex2html_wrap_indisplay5477:16.83748pt::16.83748pt::245.26126pt.
+[16
+
+
+]
+l2hSize :tex2html_wrap_inline5479:7.60416pt::0.0pt::38.93338pt.
+[17
+
+
+]
+l2hSize :tex2html_wrap_inline5481:8.10416pt::8.10416pt::38.93338pt.
+[18
+
+
+]
+l2hSize :tex2html_wrap_inline5484:7.60416pt::0.0pt::18.82797pt.
+[19
+
+
+]
+l2hSize :tex2html_wrap_inline5486:7.57185pt::7.57185pt::6.24812pt.
+[20
+
+
+]
+l2hSize :tex2html_wrap_inline5488:8.10416pt::8.10416pt::18.82797pt.
+[21
+
+
+]
+l2hSize :tex2html_wrap_inline5490:7.57185pt::7.57185pt::7.71065pt.
+[22
+
+
+]
+l2hSize :tex2html_wrap_indisplay5492:16.83748pt::16.83748pt::87.02493pt.
+[23
+
+
+]
+l2hSize :tex2html_wrap_indisplay5494:8.71248pt::8.71248pt::81.65027pt.
+[24
+
+
+]
+l2hSize :tex2html_wrap_indisplay5496:8.10416pt::8.10416pt::73.16904pt.
+[25
+
+
+]
+l2hSize :tex2html_wrap_inline5500:10.3129pt::10.3129pt::41.90175pt.
+[26
+
+
+]
+l2hSize :tex2html_wrap_inline5504:7.60416pt::0.0pt::26.32178pt.
+[27
+
+
+]
+l2hSize :tex2html_wrap_inline5506:10.17242pt::10.17242pt::55.64072pt.
+[28
+
+
+]
+l2hSize :tex2html_wrap_indisplay5508:23.63748pt::23.63748pt::173.1903pt.
+[29
+
+
+]
+l2hSize :tex2html_wrap_inline5513:10.20264pt::0.0pt::26.32178pt.
+[30
+
+
+]
+l2hSize :tex2html_wrap_inline5517:10.20264pt::0.0pt::26.32178pt.
+[31
+
+
+]
+l2hSize :tex2html_wrap_indisplay5521:12.49736pt::12.49736pt::225.26942pt.
+[32
+
+
+]
+l2hSize :tex2html_wrap_indisplay5525:8.7125pt::8.7125pt::231.61888pt.
+[33
+
+
+]
+l2hSize :tex2html_wrap_inline5539:10.17242pt::10.17242pt::36.68048pt.
+[34
+
+
+]
+l2hSize :tex2html_wrap_inline5546:7.57185pt::7.57185pt::6.81593pt.
+[35
+
+
+]
+l2hSize :tex2html_wrap_inline5548:9.62923pt::9.62923pt::60.9449pt.
+[36
+
+
+]
+l2hSize :tex2html_wrap_inline5552:9.62923pt::9.62923pt::31.71448pt.
+[37
+
+
+]
+l2hSize :tex2html_wrap_indisplay5554:15.40428pt::15.40428pt::235.26239pt.
+[38
+
+
+]
+l2hSize :tex2html_wrap_inline5558:9.62923pt::9.62923pt::60.9449pt.
+[39
+
+
+]
+l2hSize :tex2html_wrap_inline5562:9.62923pt::9.62923pt::42.54788pt.
+[40
+
+
+]
+l2hSize :tex2html_wrap_indisplay5564:15.40428pt::15.40428pt::248.09315pt.
+[41
+
+
+]
+l2hSize :tex2html_wrap_inline5566:11.95328pt::11.95328pt::110.3094pt.
+[42
+
+
+]
+l2hSize :tex2html_wrap_indisplay5568:8.7125pt::8.7125pt::158.02954pt.
+[43
+
+
+]
+l2hSize :tex2html_wrap_inline5570:8.7125pt::8.7125pt::44.36517pt.
+[44
+
+
+]
+l2hSize :tex2html_wrap_indisplay5572:15.40428pt::15.40428pt::405.50572pt.
+
+Overfull \hbox (59.71474pt too wide) in paragraph at lines 491--492
+[]|[] 
+ []
+
+[45
+
+
+]
+l2hSize :tex2html_wrap_inline5574:8.7125pt::8.7125pt::37.33652pt.
+[46
+
+
+]
+l2hSize :tex2html_wrap_inline5581:7.57185pt::7.57185pt::7.1201pt.
+[47
+
+
+]
+l2hSize :tex2html_wrap_indisplay5591:8.7125pt::8.7125pt::81.99094pt.
+[48
+
+
+]
+l2hSize :tex2html_wrap_indisplay5595:8.7125pt::8.7125pt::88.86768pt.
+[49
+
+
+]
+l2hSize :tex2html_wrap_inline5599:11.95328pt::11.95328pt::57.52094pt.
+[50
+
+
+]
+l2hSize :tex2html_wrap_inline5603:11.94986pt::11.94986pt::42.67148pt.
+[51
+
+
+]
+l2hSize :tex2html_wrap_inline5605:11.95328pt::11.95328pt::50.90973pt.
+[52
+
+
+]
+l2hSize :tex2html_wrap_indisplay5610:8.7125pt::8.7125pt::251.42244pt.
+[53
+
+
+]
+l2hSize :tex2html_wrap_inline5615:10.02922pt::10.02922pt::36.68048pt.
+[54
+
+
+]
+l2hSize :tex2html_wrap_inline5617:8.7125pt::8.7125pt::53.9719pt.
+[55
+
+
+]
+l2hSize :tex2html_wrap_inline5622:7.98248pt::7.98248pt::16.95863pt.
+[56
+
+
+]
+l2hSize :tex2html_wrap_inline5624:7.98248pt::7.98248pt::16.95863pt.
+[57
+
+
+]
+l2hSize :tex2html_wrap_inline5626:9.52922pt::0.0pt::13.32953pt.
+[58
+
+
+]
+l2hSize :tex2html_wrap_inline5628:8.7125pt::8.7125pt::98.15318pt.
+[59
+
+
+]
+l2hSize :tex2html_wrap_inline5630:8.10416pt::8.10416pt::80.888pt.
+[60
+
+
+]
+l2hSize :tex2html_wrap_inline5632:7.07185pt::0.0pt::6.24812pt.
+[61
+
+
+]
+l2hSize :tex2html_wrap_inline5636:7.57185pt::7.57185pt::12.96646pt.
+[62
+
+
+]
+l2hSize :tex2html_wrap_inline5642:8.7125pt::8.7125pt::58.61426pt.
+[63
+
+
+]
+l2hSize :tex2html_wrap_inline5644:7.57185pt::7.57185pt::12.96646pt.
+[64
+
+
+]
+l2hSize :tex2html_wrap_inline5650:8.7125pt::8.7125pt::58.61426pt.
+[65
+
+
+]
+l2hSize :tex2html_wrap_inline5652:7.07185pt::0.0pt::5.64613pt.
+[66
+
+
+]
+l2hSize :tex2html_wrap_inline5654:7.57185pt::7.57185pt::110.54433pt.
+[67
+
+
+]
+l2hSize :tex2html_wrap_inline5658:14.5463pt::14.5463pt::32.26514pt.
+[68
+
+
+]
+l2hSize :tex2html_wrap_inline5662:11.95328pt::11.95328pt::39.95273pt.
+[69
+
+
+]
+l2hSize :tex2html_wrap_inline5674:11.95328pt::11.95328pt::37.33249pt.
+[70
+
+
+]
+l2hSize :tex2html_wrap_inline5676:7.57185pt::7.57185pt::13.35933pt.
+[71
+
+
+]
+l2hSize :tex2html_wrap_inline5678:7.57185pt::7.57185pt::13.35933pt.
+[72
+
+
+]
+l2hSize :tex2html_wrap_inline5680:9.62923pt::9.62923pt::26.36497pt.
+[73
+
+
+]
+l2hSize :tex2html_wrap_inline5684:9.12923pt::0.0pt::15.28944pt.
+[74
+
+
+]
+l2hSize :tex2html_wrap_inline5694:8.7125pt::8.7125pt::73.62354pt.
+[75
+
+
+]
+l2hSize :tex2html_wrap_inline5696:8.7125pt::8.7125pt::73.05573pt.
+[76
+
+
+]
+l2hSize :tex2html_wrap_indisplay5698:15.40428pt::15.40428pt::234.36406pt.
+[77
+
+
+]
+l2hSize :displaymath5701:54.66718pt::0.0pt::349.0pt.
+[78
+
+
+]
+l2hSize :tex2html_wrap_inline5703:8.7125pt::8.7125pt::25.80226pt.
+[79
+
+
+]
+l2hSize :tex2html_wrap_inline5705:8.7125pt::8.7125pt::120.77953pt.
+[80
+
+
+]
+l2hSize :tex2html_wrap_inline5717:10.37207pt::0.0pt::10.63065pt.
+[81
+
+
+]
+l2hSize :tex2html_wrap_inline5719:8.7125pt::8.7125pt::30.59734pt.
+[82
+
+
+]
+l2hSize :tex2html_wrap_inline5721:10.87207pt::10.87207pt::59.10526pt.
+[83
+
+
+]
+l2hSize :tex2html_wrap_inline5723:10.37207pt::0.0pt::8.94633pt.
+[84
+
+
+]
+l2hSize :tex2html_wrap_inline5727:7.98248pt::7.98248pt::17.09517pt.
+[85
+
+
+]
+l2hSize :tex2html_wrap_inline5729:7.48248pt::0.0pt::10.63065pt.
+[86
+
+
+]
+l2hSize :tex2html_wrap_inline5731:9.94032pt::9.94032pt::71.05298pt.
+[87
+
+
+]
+l2hSize :tex2html_wrap_inline5735:7.98248pt::7.98248pt::36.08932pt.
+[88
+
+
+]
+l2hSize :tex2html_wrap_inline5739:7.48248pt::0.0pt::9.29079pt.
+[89
+
+
+]
+l2hSize :tex2html_wrap_inline5741:8.7125pt::8.7125pt::22.50458pt.
+[90
+
+
+]
+l2hSize :tex2html_wrap_inline5749:10.37207pt::0.0pt::37.96535pt.
+[91
+
+
+]
+l2hSize :tex2html_wrap_inline5751:10.87207pt::10.87207pt::28.80319pt.
+[92
+
+
+]
+l2hSize :tex2html_wrap_inline5753:7.60416pt::0.0pt::6.59285pt.
+[93
+
+
+]
+l2hSize :tex2html_wrap_inline5755:10.37207pt::0.0pt::8.45587pt.
+[94
+
+
+]
+l2hSize :tex2html_wrap_inline5759:10.6418pt::10.6418pt::12.37816pt.
+[95
+
+
+]
+l2hSize :tex2html_wrap_inline5765:7.60416pt::0.0pt::6.24686pt.
+[96
+
+
+]
+l2hSize :tex2html_wrap_indisplay5770:20.83809pt::20.83809pt::195.85751pt.
+[97
+
+
+]
+l2hSize :tex2html_wrap_inline5772:10.87207pt::10.87207pt::30.27211pt.
+[98
+
+
+]
+l2hSize :tex2html_wrap_inline5778:8.7125pt::8.7125pt::40.01314pt.
+[99
+
+
+]
+l2hSize :tex2html_wrap_indisplay5785:15.48146pt::15.48146pt::119.652pt.
+[100
+
+
+]
+l2hSize :displaymath5787:42.28815pt::0.0pt::349.0pt.
+[101
+
+
+]
+l2hSize :tex2html_wrap_inline5789:9.52922pt::0.0pt::14.96663pt.
+[102
+
+
+]
+l2hSize :tex2html_wrap_indisplay5791:16.83748pt::16.83748pt::180.75006pt.
+[103
+
+
+]
+l2hSize :tex2html_wrap_indisplay5795:16.83748pt::16.83748pt::99.72612pt.
+[104
+
+
+]
+l2hSize :tex2html_wrap_inline5797:10.6418pt::10.6418pt::23.23943pt.
+[105
+
+
+]
+l2hSize :tex2html_wrap_inline5799:8.10416pt::8.10416pt::25.45113pt.
+[106
+
+
+]
+l2hSize :tex2html_wrap_inline5803:9.52922pt::0.0pt::13.13852pt.
+[107
+
+
+]
+l2hSize :tex2html_wrap_inline5809:7.60416pt::0.0pt::26.66777pt.
+[108
+
+
+]
+l2hSize :tex2html_wrap_inline5811:7.60416pt::0.0pt::26.66777pt.
+[109
+
+
+]
+l2hSize :tex2html_wrap_indisplay5814:16.83748pt::16.83748pt::171.1124pt.
+[110
+
+
+]
+l2hSize :tex2html_wrap_indisplay5816:16.83748pt::16.83748pt::223.63432pt.
+[111
+
+
+]
+l2hSize :tex2html_wrap_inline5823:9.12923pt::0.0pt::12.74963pt.
+[112
+
+
+]
+l2hSize :tex2html_wrap_inline5825:7.57185pt::7.57185pt::6.05675pt.
+[113
+
+
+]
+l2hSize :tex2html_wrap_inline5827:10.87207pt::10.87207pt::43.85583pt.
+[114
+
+
+]
+l2hSize :tex2html_wrap_indisplay5829:20.4381pt::20.4381pt::143.41861pt.
+[115
+
+
+]
+l2hSize :tex2html_wrap_indisplay5835:24.21109pt::24.21109pt::202.25897pt.
+[116
+
+
+]
+l2hSize :displaymath5839:31.2pt::0.0pt::349.0pt.
+[117
+
+
+]
+l2hSize :tex2html_wrap_inline5843:7.57185pt::7.57185pt::33.70305pt.
+[118
+
+
+]
+l2hSize :tex2html_wrap_inline5845:7.72179pt::7.72179pt::45.07816pt.
+[119
+
+
+]
+l2hSize :tex2html_wrap_inline5847:7.72179pt::7.72179pt::24.05594pt.
+[120
+
+
+]
+l2hSize :tex2html_wrap_indisplay5849:23.63748pt::23.63748pt::248.90797pt.
+[121
+
+
+]
+l2hSize :tex2html_wrap_inline5853:10.87207pt::10.87207pt::44.36832pt.
+[122
+
+
+]
+l2hSize :tex2html_wrap_inline5868:7.07185pt::0.0pt::7.1201pt.
+[123
+
+
+]
+
+Package amsmath Warning: Foreign command \atopwithdelims;
+(amsmath)                \frac or \genfrac should be used instead
+(amsmath)                 on input line 982.
+
+l2hSize :tex2html_wrap_inline5870:10.91441pt::10.91441pt::37.85396pt.
+[124
+
+
+]
+l2hSize :tex2html_wrap_inline5875:10.12471pt::10.12471pt::4.50171pt.
+[125
+
+
+]
+l2hSize :tex2html_wrap_indisplay5883:15.40428pt::15.40428pt::177.59218pt.
+[126
+
+
+]
+l2hSize :tex2html_wrap_inline5885:7.60416pt::0.0pt::5.64613pt.
+[127
+
+
+]
+l2hSize :tex2html_wrap_inline5889:7.60416pt::0.0pt::12.06786pt.
+[128
+
+
+]
+l2hSize :tex2html_wrap_indisplay5891:15.40428pt::15.40428pt::188.28831pt.
+[129
+
+
+]
+l2hSize :tex2html_wrap_inline5893:8.7125pt::8.7125pt::40.01314pt.
+[130
+
+
+]
+l2hSize :tex2html_wrap_inline5900:8.10416pt::8.10416pt::7.1201pt.
+[131
+
+
+]
+l2hSize :tex2html_wrap_inline5915:7.60416pt::0.0pt::12.06786pt.
+[132
+
+
+]
+l2hSize :tex2html_wrap_indisplay5917:15.40428pt::15.40428pt::206.93742pt.
+[133
+
+
+]
+l2hSize :tex2html_wrap_inline5919:10.99374pt::10.99374pt::7.08714pt.
+[134
+
+
+]
+l2hSize :tex2html_wrap_inline5923:8.7125pt::8.7125pt::45.48814pt.
+[135
+
+
+]
+l2hSize :tex2html_wrap_indisplay5925:15.40428pt::15.40428pt::188.28831pt.
+[136
+
+
+]
+l2hSize :tex2html_wrap_inline5927:11.89447pt::11.89447pt::51.80931pt.
+[137
+
+
+]
+l2hSize :tex2html_wrap_inline5933:8.10416pt::8.10416pt::26.66777pt.
+[138
+
+
+]
+l2hSize :tex2html_wrap_inline5944:10.02922pt::10.02922pt::34.61827pt.
+[139
+
+
+]
+l2hSize :tex2html_wrap_inline5946:8.7125pt::8.7125pt::22.37788pt.
+[140
+
+
+]
+l2hSize :tex2html_wrap_inline5949:10.87207pt::10.87207pt::231.82753pt.
+[141
+
+
+]
+l2hSize :tex2html_wrap_inline5951:10.90244pt::10.90244pt::78.52943pt.
+[142
+
+
+]
+l2hSize :tex2html_wrap_indisplay5953:16.83748pt::16.83748pt::246.73082pt.
+[143
+
+
+]
+l2hSize :tex2html_wrap_inline5955:9.12923pt::0.0pt::14.57774pt.
+[144
+
+
+]
+l2hSize :tex2html_wrap_inline5961:10.12471pt::10.12471pt::123.40009pt.
+[145
+
+
+]
+l2hSize :tex2html_wrap_inline5963:7.57185pt::7.57185pt::27.78557pt.
+[146
+
+
+]
+l2hSize :tex2html_wrap_inline5965:8.7125pt::8.7125pt::28.99852pt.
+[147
+
+
+]
+l2hSize :tex2html_wrap_indisplay5967:15.40428pt::15.40428pt::153.6832pt.
+[148
+
+
+]
+l2hSize :tex2html_wrap_inline5969:10.87207pt::10.87207pt::54.50655pt.
+[149
+
+
+]
+l2hSize :tex2html_wrap_inline5973:10.87207pt::10.87207pt::60.61246pt.
+[150
+
+
+]
+l2hSize :tex2html_wrap_inline5975:10.87207pt::10.87207pt::13.93333pt.
+[151
+
+
+]
+l2hSize :tex2html_wrap_indisplay5979:16.83748pt::16.83748pt::276.57481pt.
+[152
+
+
+]
+l2hSize :tex2html_wrap_indisplay5984:8.7125pt::8.7125pt::138.63513pt.
+[153
+
+
+]
+l2hSize :tex2html_wrap_inline5988:7.98248pt::7.98248pt::12.7395pt.
+[154
+
+
+]
+l2hSize :tex2html_wrap_inline5992:10.87207pt::10.87207pt::12.7395pt.
+[155
+
+
+]
+l2hSize :tex2html_wrap_indisplay5996:13.09258pt::13.09258pt::114.25053pt.
+[156
+
+
+]
+l2hSize :tex2html_wrap_inline6000:10.87207pt::10.87207pt::52.28627pt.
+[157
+
+
+]
+l2hSize :tex2html_wrap_inline6002:8.7125pt::8.7125pt::52.28627pt.
+[158
+
+
+]
+l2hSize :tex2html_wrap_inline6011:8.7125pt::8.7125pt::28.70825pt.
+[159
+
+
+]
+l2hSize :tex2html_wrap_indisplay6015:13.09258pt::13.09258pt::203.2047pt.
+[160
+
+
+]
+l2hSize :tex2html_wrap_inline6017:10.87207pt::10.87207pt::25.19228pt.
+[161
+
+
+]
+l2hSize :tex2html_wrap_inline6019:10.36691pt::10.36691pt::42.15576pt.
+[162
+
+
+]
+l2hSize :tex2html_wrap_inline6022:8.7125pt::8.7125pt::46.88733pt.
+[163
+
+
+]
+l2hSize :tex2html_wrap_inline6026:8.7125pt::8.7125pt::91.21616pt.
+[164
+
+
+]
+l2hSize :tex2html_wrap_inline6030:7.98248pt::7.98248pt::17.08662pt.
+[165
+
+
+]
+l2hSize :tex2html_wrap_indisplay6032:10.57169pt::10.57169pt::171.68022pt.
+[166
+
+
+]
+l2hSize :tex2html_wrap_inline6035:9.62923pt::9.62923pt::35.71419pt.
+[167
+
+
+]
+l2hSize :tex2html_wrap_indisplay6041:10.57169pt::10.57169pt::122.97511pt.
+[168
+
+
+]
+l2hSize :tex2html_wrap_inline6043:7.48248pt::0.0pt::8.94633pt.
+[169
+
+
+]
+l2hSize :tex2html_wrap_inline6048:8.7125pt::8.7125pt::65.69003pt.
+[170
+
+
+]
+l2hSize :tex2html_wrap_inline6050:10.26059pt::10.26059pt::101.15117pt.
+[171
+
+
+]
+l2hSize :tex2html_wrap_inline6052:10.26059pt::10.26059pt::56.10416pt.
+[172
+
+
+]
+l2hSize :tex2html_wrap_inline6054:7.98248pt::7.98248pt::15.82242pt.
+[173
+
+
+]
+l2hSize :tex2html_wrap_inline6058:7.98248pt::7.98248pt::15.61798pt.
+[174
+
+
+]
+l2hSize :tex2html_wrap_indisplay6060:10.87207pt::10.87207pt::96.11673pt.
+[175
+
+
+]
+l2hSize :tex2html_wrap_indisplay6062:11.60208pt::11.60208pt::107.05075pt.
+[176
+
+
+]
+l2hSize :tex2html_wrap_inline6074:7.48248pt::0.0pt::25.84175pt.
+[177
+
+
+]
+l2hSize :tex2html_wrap_inline6076:10.57169pt::10.57169pt::22.64304pt.
+[178
+
+
+]
+l2hSize :tex2html_wrap_inline6080:10.87207pt::10.87207pt::64.91635pt.
+[179
+
+
+]
+l2hSize :tex2html_wrap_indisplay6085:15.40428pt::15.40428pt::147.6258pt.
+[180
+
+
+]
+l2hSize :tex2html_wrap_indisplay6087:15.40428pt::15.40428pt::223.68082pt.
+[181
+
+
+]
+l2hSize :tex2html_wrap_inline6092:8.10416pt::8.10416pt::6.24812pt.
+[182
+
+
+]
+l2hSize :tex2html_wrap_inline6096:7.60416pt::0.0pt::29.3952pt.
+[183
+
+
+]
+l2hSize :tex2html_wrap_indisplay6098:15.57265pt::15.57265pt::111.19415pt.
+[184
+
+
+]
+l2hSize :tex2html_wrap_inline6100:9.94032pt::9.94032pt::94.14854pt.
+[185
+
+
+]
+l2hSize :tex2html_wrap_indisplay6102:11.60208pt::11.60208pt::116.97957pt.
+[186
+
+
+]
+l2hSize :tex2html_wrap_inline6109:8.7125pt::8.7125pt::21.02304pt.
+[187
+
+
+]
+l2hSize :tex2html_wrap_inline6113:8.7125pt::8.7125pt::21.02304pt.
+[188
+
+
+]
+l2hSize :tex2html_wrap_indisplay6115:8.7125pt::8.7125pt::189.11813pt.
+[189
+
+
+]
+l2hSize :tex2html_wrap_inline6117:7.98248pt::7.98248pt::13.4462pt.
+[190
+
+
+]
+l2hSize :tex2html_wrap_inline6119:10.26059pt::10.26059pt::73.17387pt.
+[191
+
+
+]
+l2hSize :tex2html_wrap_inline6121:11.60208pt::11.60208pt::79.9103pt.
+[192
+
+
+]
+l2hSize :tex2html_wrap_indisplay6123:17.74886pt::17.74886pt::217.08208pt.
+[193
+
+
+]
+l2hSize :tex2html_wrap_indisplay6125:23.63748pt::23.63748pt::123.17207pt.
+[194
+
+
+]
+l2hSize :tex2html_wrap_inline6127:8.7125pt::8.7125pt::92.068pt.
+[195
+
+
+]
+l2hSize :tex2html_wrap_inline6129:10.26059pt::10.26059pt::66.20657pt.
+[196
+
+
+]
+l2hSize :tex2html_wrap_indisplay6131:11.60208pt::11.60208pt::136.4669pt.
+[197
+
+
+]
+l2hSize :tex2html_wrap_indisplay6135:11.60208pt::11.60208pt::462.33238pt.
+
+Overfull \hbox (116.5414pt too wide) in paragraph at lines 1439--1440
+[]|[] 
+ []
+
+[198
+
+
+]
+l2hSize :tex2html_wrap_indisplay6137:26.2327pt::26.2327pt::155.30258pt.
+[199
+
+
+]
+l2hSize :tex2html_wrap_indisplay6148:14.9644pt::14.9644pt::166.56937pt.
+[200
+
+
+]
+l2hSize :tex2html_wrap_inline6150:8.7125pt::8.7125pt::39.62029pt.
+[201
+
+
+]
+l2hSize :tex2html_wrap_indisplay6152:14.9644pt::14.9644pt::206.26682pt.
+[202
+
+
+]
+l2hSize :tex2html_wrap_inline6154:8.10416pt::8.10416pt::32.36844pt.
+[203
+
+
+]
+l2hSize :tex2html_wrap_indisplay6158:11.60208pt::11.60208pt::313.90208pt.
+[204
+
+
+]
+l2hSize :tex2html_wrap_inline6160:9.76236pt::9.76236pt::21.05pt.
+[205
+
+
+]
+l2hSize :tex2html_wrap_inline6162:7.57185pt::7.57185pt::24.88081pt.
+[206
+
+
+]
+l2hSize :tex2html_wrap_inline6164:10.26059pt::10.26059pt::20.76384pt.
+[207
+
+
+]
+l2hSize :tex2html_wrap_inline6166:9.62923pt::9.62923pt::45.66295pt.
+[208
+
+
+]
+l2hSize :tex2html_wrap_indisplay6168:14.9644pt::14.9644pt::154.34915pt.
+[209
+
+
+]
+l2hSize :tex2html_wrap_inline6170:7.98248pt::7.98248pt::16.58333pt.
+[210
+
+
+]
+l2hSize :tex2html_wrap_inline6174:7.48248pt::0.0pt::8.76004pt.
+[211
+
+
+]
+l2hSize :tex2html_wrap_inline6178:10.26059pt::10.26059pt::43.57626pt.
+[212
+
+
+]
+l2hSize :tex2html_wrap_indisplay6180:14.9644pt::14.9644pt::521.7993pt.
+
+Overfull \hbox (176.00832pt too wide) in paragraph at lines 1540--1541
+[]|[] 
+ []
+
+[213
+
+
+]
+l2hSize :tex2html_wrap_inline6183:7.48248pt::0.0pt::9.15694pt.
+[214
+
+
+]
+l2hSize :tex2html_wrap_inline6185:10.87207pt::10.87207pt::50.5305pt.
+[215
+
+
+]
+l2hSize :tex2html_wrap_indisplay6187:10.87207pt::10.87207pt::195.5511pt.
+[216
+
+
+]
+l2hSize :tex2html_wrap_inline6191:7.98248pt::7.98248pt::22.50179pt.
+[217
+
+
+]
+l2hSize :tex2html_wrap_inline6193:10.37207pt::0.0pt::9.15694pt.
+[218
+
+
+]
+l2hSize :tex2html_wrap_inline6195:7.60416pt::0.0pt::4.03026pt.
+[219
+
+
+]
+l2hSize :tex2html_wrap_inline6197:8.10416pt::8.10416pt::11.55582pt.
+[220
+
+
+]
+l2hSize :tex2html_wrap_inline6199:7.07185pt::0.0pt::10.16177pt.
+[221
+
+
+]
+l2hSize :tex2html_wrap_inline6201:8.10416pt::8.10416pt::11.55582pt.
+[222
+
+
+]
+l2hSize :tex2html_wrap_inline6203:7.98248pt::7.98248pt::30.0204pt.
+[223
+
+
+]
+l2hSize :tex2html_wrap_inline6217:8.10416pt::8.10416pt::11.55582pt.
+[224
+
+
+]
+l2hSize :tex2html_wrap_indisplay6221:16.83748pt::16.83748pt::249.38298pt.
+[225
+
+
+]
+l2hSize :tex2html_wrap_indisplay6223:23.63748pt::23.63748pt::339.50275pt.
+[226
+
+
+]
+l2hSize :tex2html_wrap_inline6228:10.87207pt::10.87207pt::36.41525pt.
+[227
+
+
+]
+l2hSize :tex2html_wrap_inline6237:9.52922pt::0.0pt::14.20317pt.
+[228
+
+
+]
+l2hSize :tex2html_wrap_indisplay6241:15.40428pt::15.40428pt::186.10875pt.
+[229
+
+
+]
+l2hSize :tex2html_wrap_inline6247:7.60416pt::0.0pt::12.06786pt.
+[230
+
+
+]
+l2hSize :tex2html_wrap_indisplay6249:16.83748pt::16.83748pt::353.69643pt.
+
+Overfull \hbox (7.90544pt too wide) in paragraph at lines 1652--1653
+[]|[] 
+ []
+
+[231
+
+
+]
+l2hSize :tex2html_wrap_inline6251:8.7125pt::8.7125pt::45.48814pt.
+[232
+
+
+]
+l2hSize :tex2html_wrap_inline6273:7.60416pt::0.0pt::17.54286pt.
+[233
+
+
+]
+l2hSize :tex2html_wrap_indisplay6275:16.83748pt::16.83748pt::407.11166pt.
+
+Overfull \hbox (61.32068pt too wide) in paragraph at lines 1670--1671
+[]|[] 
+ []
+
+[234
+
+
+]
+l2hSize :tex2html_wrap_inline6281:8.7125pt::8.7125pt::58.8714pt.
+[235
+
+
+]
+l2hSize :tex2html_wrap_indisplay6283:23.63748pt::23.63748pt::496.06432pt.
+
+Overfull \hbox (150.27333pt too wide) in paragraph at lines 1682--1683
+[]|[] 
+ []
+
+[236
+
+
+]
+l2hSize :tex2html_wrap_inline6285:9.62923pt::9.62923pt::50.2382pt.
+[237
+
+
+]
+l2hSize :tex2html_wrap_inline6288:9.62923pt::9.62923pt::27.19759pt.
+[238
+
+
+]
+l2hSize :tex2html_wrap_indisplay6290:16.83748pt::16.83748pt::302.27248pt.
+[239
+
+
+]
+l2hSize :tex2html_wrap_indisplay6292:16.83748pt::16.83748pt::357.76234pt.
+
+Overfull \hbox (11.97136pt too wide) in paragraph at lines 1710--1711
+[]|[] 
+ []
+
+[240
+
+
+]
+l2hSize :tex2html_wrap_inline6296:10.87207pt::10.87207pt::31.8385pt.
+[241
+
+
+]
+l2hSize :tex2html_wrap_inline6300:10.87207pt::10.87207pt::38.85718pt.
+[242
+
+
+]
+l2hSize :tex2html_wrap_inline6302:7.98248pt::7.98248pt::14.7124pt.
+[243
+
+
+]
+l2hSize :tex2html_wrap_indisplay6307:10.87207pt::10.87207pt::129.44688pt.
+[244
+
+
+]
+l2hSize :tex2html_wrap_inline6315:8.10416pt::8.10416pt::26.35353pt.
+[245
+
+
+]
+l2hSize :tex2html_wrap_inline6317:11.60208pt::11.60208pt::26.35353pt.
+[246
+
+
+]
+l2hSize :tex2html_wrap_indisplay6330:11.60208pt::11.60208pt::228.80638pt.
+[247
+
+
+]
+l2hSize :tex2html_wrap_inline6334:7.48248pt::0.0pt::9.10983pt.
+[248
+
+
+]
+l2hSize :tex2html_wrap_inline6338:10.87207pt::10.87207pt::148.75778pt.
+[249
+
+
+]
+l2hSize :tex2html_wrap_inline6340:10.66966pt::10.66966pt::105.85217pt.
+[250
+
+
+]
+l2hSize :tex2html_wrap_indisplay6342:15.57265pt::15.57265pt::195.66408pt.
+[251
+
+
+]
+l2hSize :displaymath6344:53.33109pt::0.0pt::349.0pt.
+[252
+
+
+]
+l2hSize :displaymath6346:56.38123pt::0.0pt::349.0pt.
+[253
+
+
+]
+l2hSize :tex2html_wrap_indisplay6348:15.5119pt::15.5119pt::340.944pt.
+[254
+
+
+]
+l2hSize :tex2html_wrap_inline6353:10.26059pt::10.26059pt::53.13257pt.
+[255
+
+
+]
+l2hSize :tex2html_wrap_inline6355:11.83633pt::11.83633pt::45.38943pt.
+[256
+
+
+]
+l2hSize :tex2html_wrap_inline6357:7.72179pt::7.72179pt::55.08087pt.
+[257
+
+
+]
+l2hSize :tex2html_wrap_inline6359:9.94032pt::9.94032pt::94.14854pt.
+[258
+
+
+]
+l2hSize :tex2html_wrap_indisplay6361:11.60208pt::11.60208pt::420.78574pt.
+
+Overfull \hbox (74.99475pt too wide) in paragraph at lines 1835--1836
+[]|[] 
+ []
+
+[259
+
+
+]
+l2hSize :tex2html_wrap_inline6363:7.98248pt::7.98248pt::15.97661pt.
+[260
+
+
+]
+l2hSize :tex2html_wrap_inline6365:11.60208pt::11.60208pt::47.37387pt.
+[261
+
+
+]
+l2hSize :tex2html_wrap_inline6370:10.87207pt::10.87207pt::55.04782pt.
+[262
+
+
+]
+l2hSize :tex2html_wrap_indisplay6376:16.37761pt::16.37761pt::188.16483pt.
+[263
+
+
+]
+l2hSize :tex2html_wrap_inline6383:10.02922pt::10.02922pt::14.62901pt.
+[264
+
+
+]
+l2hSize :tex2html_wrap_inline6389:7.98248pt::7.98248pt::16.39732pt.
+[265
+
+
+]
+l2hSize :tex2html_wrap_inline6393:10.87207pt::10.87207pt::52.39267pt.
+[266
+
+
+]
+l2hSize :tex2html_wrap_inline6399:8.7125pt::8.7125pt::102.0933pt.
+[267
+
+
+]
+l2hSize :tex2html_wrap_inline6401:8.7125pt::8.7125pt::102.0933pt.
+[268
+
+
+]
+l2hSize :tex2html_wrap_inline6411:11.25003pt::11.25003pt::12.10596pt.
+[269
+
+
+]
+l2hSize :tex2html_wrap_inline6413:11.25003pt::11.25003pt::12.10596pt.
+[270
+
+
+]
+l2hSize :tex2html_wrap_indisplay6422:16.12024pt::16.12024pt::77.23875pt.
+[271
+
+
+]
+l2hSize :tex2html_wrap_inline6424:8.7125pt::8.7125pt::11.72948pt.
+[272
+
+
+]
+l2hSize :tex2html_wrap_inline6426:8.7125pt::8.7125pt::11.72948pt.
+[273
+
+
+]
+l2hSize :tex2html_wrap_indisplay6432:15.57265pt::15.57265pt::185.13663pt.
+[274
+
+
+]
+l2hSize :tex2html_wrap_inline6434:8.7125pt::8.7125pt::64.88548pt.
+[275
+
+
+]
+l2hSize :tex2html_wrap_inline6436:8.7125pt::8.7125pt::63.76006pt.
+[276
+
+
+]
+l2hSize :tex2html_wrap_indisplay6438:16.37761pt::16.37761pt::309.38104pt.
+[277
+
+
+]
+l2hSize :tex2html_wrap_inline6440:11.89447pt::11.89447pt::36.9171pt.
+[278
+
+
+]
+l2hSize :tex2html_wrap_inline6451:10.47366pt::10.47366pt::108.48906pt.
+[279
+
+
+]
+l2hSize :tex2html_wrap_indisplay6453:15.40428pt::15.40428pt::440.38493pt.
+
+Overfull \hbox (94.59395pt too wide) in paragraph at lines 1970--1971
+[]|[] 
+ []
+
+[280
+
+
+]
+l2hSize :tex2html_wrap_inline6455:10.87207pt::10.87207pt::64.31102pt.
+[281
+
+
+]
+l2hSize :tex2html_wrap_inline6457:10.87207pt::10.87207pt::64.31102pt.
+[282
+
+
+]
+l2hSize :tex2html_wrap_inline6461:7.98248pt::7.98248pt::10.53938pt.
+[283
+
+
+]
+l2hSize :tex2html_wrap_inline6465:7.98248pt::7.98248pt::17.65059pt.
+[284
+
+
+]
+l2hSize :tex2html_wrap_inline6467:7.98248pt::7.98248pt::17.65059pt.
+[285
+
+
+]
+l2hSize :tex2html_wrap_inline6475:8.7125pt::8.7125pt::58.51917pt.
+[286
+
+
+]
+l2hSize :tex2html_wrap_inline6477:8.7125pt::8.7125pt::59.5238pt.
+[287
+
+
+]
+l2hSize :tex2html_wrap_inline6479:7.57185pt::7.57185pt::11.61292pt.
+[288
+
+
+]
+l2hSize :tex2html_wrap_inline6485:7.57185pt::7.57185pt::45.7949pt.
+[289
+
+
+]
+l2hSize :tex2html_wrap_inline6491:9.32088pt::9.32088pt::16.27254pt.
+[290
+
+
+]
+l2hSize :tex2html_wrap_inline6495:9.32088pt::9.32088pt::16.43921pt.
+[291
+
+
+]
+l2hSize :tex2html_wrap_inline6499:7.57185pt::7.57185pt::11.61292pt.
+[292
+
+
+]
+l2hSize :tex2html_wrap_indisplay6503:7.98248pt::7.98248pt::111.02574pt.
+[293
+
+
+]
+l2hSize :tex2html_wrap_inline6505:9.97366pt::0.0pt::26.09428pt.
+[294
+
+
+]
+l2hSize :tex2html_wrap_inline6507:9.97366pt::0.0pt::26.26096pt.
+[295
+
+
+]
+l2hSize :tex2html_wrap_inline6514:10.12471pt::10.12471pt::86.66194pt.
+[296
+
+
+]
+l2hSize :tex2html_wrap_inline6516:10.02922pt::10.02922pt::32.03098pt.
+[297
+
+
+]
+l2hSize :tex2html_wrap_indisplay6520:10.12471pt::10.12471pt::88.47772pt.
+[298
+
+
+]
+l2hSize :tex2html_wrap_indisplay6522:20.4381pt::20.4381pt::338.93625pt.
+[299
+
+
+]
+l2hSize :tex2html_wrap_inline6526:8.7125pt::8.7125pt::20.45525pt.
+[300
+
+
+]
+l2hSize :tex2html_wrap_indisplay6528:20.4381pt::20.4381pt::241.78934pt.
+[301
+
+
+]
+l2hSize :tex2html_wrap_inline6530:8.7125pt::8.7125pt::87.05078pt.
+[302
+
+
+]
+l2hSize :tex2html_wrap_indisplay6532:22.94768pt::22.94768pt::195.53827pt.
+[303
+
+
+]
+l2hSize :tex2html_wrap_inline6534:9.52922pt::0.0pt::10.81927pt.
+[304
+
+
+]
+l2hSize :tex2html_wrap_inline6536:10.12471pt::10.12471pt::30.39005pt.
+[305
+
+
+]
+l2hSize :tex2html_wrap_inline6543:10.37207pt::0.0pt::37.20189pt.
+[306
+
+
+]
+l2hSize :tex2html_wrap_inline6547:10.12471pt::10.12471pt::83.80246pt.
+[307
+
+
+]
+l2hSize :tex2html_wrap_indisplay6560:10.87207pt::10.87207pt::315.93956pt.
+[308
+
+
+]
+l2hSize :tex2html_wrap_inline6566:8.7125pt::8.7125pt::53.95679pt.
+[309
+
+
+]
+l2hSize :tex2html_wrap_inline6570:10.87207pt::10.87207pt::28.03017pt.
+[310
+
+
+]
+l2hSize :tex2html_wrap_inline6584:8.7125pt::8.7125pt::83.80246pt.
+[311
+
+
+]
+l2hSize :tex2html_wrap_indisplay6590:15.40428pt::15.40428pt::248.44124pt.
+[312
+
+
+]
+l2hSize :tex2html_wrap_inline6592:9.32088pt::9.32088pt::189.5829pt.
+[313
+
+
+]
+l2hSize :tex2html_wrap_indisplay6598:15.40428pt::15.40428pt::463.26921pt.
+
+Overfull \hbox (117.47823pt too wide) in paragraph at lines 2184--2185
+[]|[] 
+ []
+
+[314
+
+
+]
+l2hSize :tex2html_wrap_inline6602:10.12471pt::10.12471pt::90.74307pt.
+[315
+
+
+]
+l2hSize :tex2html_wrap_inline6604:10.87207pt::10.87207pt::60.61246pt.
+[316
+
+
+]
+l2hSize :tex2html_wrap_indisplay6606:10.87207pt::10.87207pt::193.28955pt.
+[317
+
+
+]
+l2hSize :tex2html_wrap_inline6608:8.7125pt::8.7125pt::26.16814pt.
+[318
+
+
+]
+l2hSize :tex2html_wrap_inline6610:7.57185pt::7.57185pt::10.04472pt.
+[319
+
+
+]
+l2hSize :tex2html_wrap_inline6612:9.80754pt::9.80754pt::59.26193pt.
+[320
+
+
+]
+l2hSize :tex2html_wrap_inline6615:9.97366pt::0.0pt::20.54851pt.
+[321
+
+
+]
+l2hSize :tex2html_wrap_inline6619:11.89447pt::11.89447pt::64.21999pt.
+[322
+
+
+]
+l2hSize :tex2html_wrap_inline6623:10.87207pt::10.87207pt::51.32962pt.
+[323
+
+
+]
+l2hSize :tex2html_wrap_inline6626:8.7125pt::8.7125pt::76.49712pt.
+[324
+
+
+]
+l2hSize :tex2html_wrap_indisplay6628:10.57672pt::10.57672pt::219.86836pt.
+[325
+
+
+]
+l2hSize :tex2html_wrap_inline6630:10.02922pt::10.02922pt::48.22899pt.
+[326
+
+
+]
+l2hSize :tex2html_wrap_inline6632:10.02922pt::10.02922pt::47.46553pt.
+[327
+
+
+]
+l2hSize :tex2html_wrap_inline6636:10.02922pt::10.02922pt::72.41887pt.
+[328
+
+
+]
+l2hSize :tex2html_wrap_inline6638:7.07185pt::0.0pt::7.59279pt.
+[329
+
+
+]
+l2hSize :tex2html_wrap_inline6640:10.02922pt::10.02922pt::14.15825pt.
+[330
+
+
+]
+l2hSize :tex2html_wrap_inline6642:8.7125pt::8.7125pt::60.99216pt.
+[331
+
+
+]
+l2hSize :tex2html_wrap_inline6644:9.96692pt::9.96692pt::27.04185pt.
+[332
+
+
+]
+l2hSize :tex2html_wrap_inline6647:7.98248pt::7.98248pt::11.90959pt.
+[333
+
+
+]
+l2hSize :tex2html_wrap_inline6649:8.10416pt::8.10416pt::26.93138pt.
+[334
+
+
+]
+l2hSize :tex2html_wrap_inline6655:7.98248pt::7.98248pt::29.23186pt.
+[335
+
+
+]
+l2hSize :tex2html_wrap_inline6657:7.07185pt::0.0pt::5.79189pt.
+[336
+
+
+]
+l2hSize :tex2html_wrap_inline6659:7.60416pt::0.0pt::6.85646pt.
+[337
+
+
+]
+l2hSize :tex2html_wrap_indisplay6663:11.02116pt::11.02116pt::215.46109pt.
+[338
+
+
+]
+l2hSize :tex2html_wrap_inline6665:8.7125pt::8.7125pt::73.76714pt.
+[339
+
+
+]
+l2hSize :tex2html_wrap_inline6675:10.02922pt::10.02922pt::29.5337pt.
+[340
+
+
+]
+l2hSize :tex2html_wrap_inline6677:10.02922pt::10.02922pt::100.41505pt.
+[341
+
+
+]
+l2hSize :tex2html_wrap_indisplay6679:10.57672pt::10.57672pt::149.83704pt.
+[342
+
+
+]
+l2hSize :tex2html_wrap_inline6681:10.02922pt::10.02922pt::156.4024pt.
+[343
+
+
+]
+l2hSize :tex2html_wrap_inline6685:10.02922pt::10.02922pt::34.27814pt.
+[344
+
+
+]
+l2hSize :tex2html_wrap_inline6687:10.02922pt::10.02922pt::33.56644pt.
+[345
+
+
+]
+l2hSize :tex2html_wrap_inline6691:8.7125pt::8.7125pt::66.01326pt.
+[346
+
+
+]
+l2hSize :tex2html_wrap_inline6696:9.96692pt::9.96692pt::26.9303pt.
+[347
+
+
+]
+l2hSize :tex2html_wrap_indisplay6698:8.7125pt::8.7125pt::184.48088pt.
+[348
+
+
+]
+l2hSize :tex2html_wrap_inline6702:7.07185pt::0.0pt::25.75525pt.
+[349
+
+
+]
+l2hSize :tex2html_wrap_inline6704:10.02922pt::10.02922pt::23.33516pt.
+[350
+
+
+]
+l2hSize :tex2html_wrap_inline6711:10.02922pt::10.02922pt::58.34613pt.
+[351
+
+
+]
+l2hSize :tex2html_wrap_indisplay6715:16.83748pt::16.83748pt::163.17436pt.
+[352
+
+
+]
+l2hSize :tex2html_wrap_indisplay6717:16.83748pt::16.83748pt::248.57803pt.
+[353
+
+
+]
+l2hSize :tex2html_wrap_inline6721:9.12923pt::0.0pt::10.7726pt.
+[354
+
+
+]
+l2hSize :tex2html_wrap_inline6723:9.12923pt::0.0pt::15.02266pt.
+[355
+
+
+]
+l2hSize :tex2html_wrap_inline6731:8.7125pt::8.7125pt::24.39476pt.
+[356
+
+
+]
+l2hSize :tex2html_wrap_inline6733:9.12923pt::0.0pt::12.74968pt.
+[357
+
+
+]
+l2hSize :tex2html_wrap_inline6735:8.10416pt::8.10416pt::9.67255pt.
+[358
+
+
+]
+l2hSize :tex2html_wrap_inline6818:8.7125pt::8.7125pt::50.1115pt.
+[359
+
+
+]
+File: example1_errors.eps Graphic file (type eps)
+<example1_errors.eps>
+l2hSize :tex2html_wrap4265:199.16998pt::0.0pt::349.0pt.
+[360
+
+
+]
+l2hSize :tex2html_wrap_inline6830:8.7125pt::8.7125pt::58.62819pt.
+[361
+
+
+]
+File: example2_errors.eps Graphic file (type eps)
+<example2_errors.eps>
+l2hSize :tex2html_wrap4271:199.16998pt::0.0pt::349.0pt.
+[362
+
+
+]
+File: grid.eps Graphic file (type eps)
+<grid.eps>
+l2hSize :tex2html_wrap4293:156.49048pt::0.0pt::349.0pt.
+[363
+
+
+]
+l2hSize :tex2html_wrap_indisplay6913:23.63748pt::23.63748pt::346.74382pt.
+
+Overfull \hbox (0.95284pt too wide) in paragraph at lines 2491--2492
+[]|[] 
+ []
+
+[364
+
+
+]
+File: field1.eps Graphic file (type eps)
+<field1.eps>
+l2hSize :tex2html_wrap4329:199.16893pt::0.0pt::349.0pt.
+[365
+
+
+]
+File: field2.eps Graphic file (type eps)
+<field2.eps>
+l2hSize :tex2html_wrap4335:199.16893pt::0.0pt::349.0pt.
+[366
+
+
+]
+l2hSize :tex2html_wrap_inline7106:9.12923pt::0.0pt::13.20593pt.
+[367
+
+
+]
+l2hSize :tex2html_wrap_inline7119:9.12923pt::0.0pt::13.20593pt.
+[368
+
+
+]
+l2hSize :tex2html_wrap_inline7121:8.7125pt::8.7125pt::33.11365pt.
+[369
+
+
+]
+l2hSize :tex2html_wrap_inline7125:7.57185pt::7.57185pt::25.36113pt.
+[370
+
+
+]
+l2hSize :tex2html_wrap_inline7127:7.07185pt::0.0pt::8.68147pt.
+[371
+
+
+]
+l2hSize :displaymath7129:31.2pt::0.0pt::349.0pt.
+[372
+
+
+]
+l2hSize :tex2html_wrap_inline7131:10.02922pt::10.02922pt::51.27365pt.
+[373
+
+
+]
+! Missing { inserted.
+<to be read again> 
+                   }
+l.2552 ...ad \partial \Omega \,, ^^I^^I\end{split}
+                                                  \end{displaymath}%
+A left brace was mandatory here, so I've put one in.
+You might want to delete and/or insert some corrections
+so that I will find a matching right brace soon.
+(If you're confused by all this, try typing `I}' now.)
+
+! Missing } inserted.
+<inserted text> 
+                }
+l.2552 ...ad \partial \Omega \,, ^^I^^I\end{split}
+                                                  \end{displaymath}%
+I've put in what seems to be necessary to fix
+the current column of the current alignment.
+Try to go on, since this might almost work.
+
+! Missing { inserted.
+<to be read again> 
+                   }
+l.2552 ...ad \partial \Omega \,, ^^I^^I\end{split}
+                                                  \end{displaymath}%
+A left brace was mandatory here, so I've put one in.
+You might want to delete and/or insert some corrections
+so that I will find a matching right brace soon.
+(If you're confused by all this, try typing `I}' now.)
+
+! Missing } inserted.
+<inserted text> 
+                }
+l.2552 ...ad \partial \Omega \,, ^^I^^I\end{split}
+                                                  \end{displaymath}%
+I've put in what seems to be necessary to fix
+the current column of the current alignment.
+Try to go on, since this might almost work.
+
+l2hSize :displaymath7133:34.629pt::0.0pt::349.0pt.
+[374
+
+
+]
+l2hSize :tex2html_wrap_inline7135:10.02922pt::10.02922pt::48.12807pt.
+[375
+
+
+]
+l2hSize :tex2html_wrap_inline7137:16.83748pt::16.83748pt::134.97365pt.
+[376
+
+
+]
+l2hSize :tex2html_wrap_indisplay7141:10.48782pt::10.48782pt::187.09563pt.
+[377
+
+
+]
+l2hSize :tex2html_wrap_inline7143:7.98248pt::7.98248pt::9.2619pt.
+[378
+
+
+]
+l2hSize :tex2html_wrap_inline7147:9.52922pt::0.0pt::62.02588pt.
+[379
+
+
+]
+! Missing { inserted.
+<to be read again> 
+                   }
+l.2590 $ \underline \mathop
+                           {\rm curl}\mathop{\rm curl}\underline E = \nabla(...
+A left brace was mandatory here, so I've put one in.
+You might want to delete and/or insert some corrections
+so that I will find a matching right brace soon.
+(If you're confused by all this, try typing `I}' now.)
+
+! Missing } inserted.
+<inserted text> 
+                }
+l.2590 ...\cdot\underline E) - \Delta\underline E$
+                                                  %
+I've inserted something that you may have forgotten.
+(See the <inserted text> above.)
+With luck, this will get me unwedged. But if you
+really didn't forget anything, try typing `2' now; then
+my insertion and my current dilemma will both disappear.
+
+l2hSize :tex2html_wrap_inline7151:8.7125pt::8.7125pt::140.5096pt.
+[380
+
+
+]
+! Missing { inserted.
+<to be read again> 
+                   }
+l.2596 $ \underline \mathop
+                           {\rm curl}\mathop{\rm curl}\underline E = - \Delt...
+A left brace was mandatory here, so I've put one in.
+You might want to delete and/or insert some corrections
+so that I will find a matching right brace soon.
+(If you're confused by all this, try typing `I}' now.)
+
+! Missing } inserted.
+<inserted text> 
+                }
+l.2596 ...url}\underline E = - \Delta\underline E$
+                                                  %
+I've inserted something that you may have forgotten.
+(See the <inserted text> above.)
+With luck, this will get me unwedged. But if you
+really didn't forget anything, try typing `2' now; then
+my insertion and my current dilemma will both disappear.
+
+l2hSize :tex2html_wrap_inline7153:8.10416pt::8.10416pt::92.25368pt.
+[381
+
+
+]
+l2hSize :tex2html_wrap_inline7155:9.52922pt::0.0pt::24.9177pt.
+[382
+
+
+]
+l2hSize :tex2html_wrap_inline7157:10.02922pt::10.02922pt::23.94687pt.
+[383
+
+
+]
+l2hSize :displaymath7162:31.2pt::0.0pt::349.0pt.
+[384
+
+
+]
+l2hSize :tex2html_wrap_inline7164:8.7125pt::8.7125pt::65.29562pt.
+[385
+
+
+]
+l2hSize :tex2html_wrap_inline7166:9.62923pt::9.62923pt::58.22253pt.
+[386
+
+
+]
+l2hSize :tex2html_wrap_inline7168:9.12923pt::0.0pt::38.39468pt.
+[387
+
+
+]
+l2hSize :tex2html_wrap_inline7170:7.57185pt::7.57185pt::83.36696pt.
+[388
+
+
+]
+l2hSize :tex2html_wrap_indisplay7172:16.83748pt::16.83748pt::333.1901pt.
+[389
+
+
+]
+l2hSize :tex2html_wrap_inline7179:9.62923pt::9.62923pt::134.45424pt.
+[390
+
+
+]
+l2hSize :tex2html_wrap_inline7181:7.98248pt::7.98248pt::52.36223pt.
+[391
+
+
+]
+l2hSize :tex2html_wrap_inline7183:9.62923pt::9.62923pt::42.13599pt.
+[392
+
+
+]
+l2hSize :tex2html_wrap_inline7185:7.98248pt::7.98248pt::74.3421pt.
+[393
+
+
+]
+l2hSize :displaymath7188:50.04611pt::0.0pt::349.0pt.
+[394
+
+
+]
+l2hSize :tex2html_wrap_inline7190:7.48248pt::0.0pt::7.3061pt.
+[395
+
+
+]
+l2hSize :tex2html_wrap_inline7192:7.48248pt::0.0pt::9.90068pt.
+[396
+
+
+]
+l2hSize :tex2html_wrap_inline7194:8.7125pt::8.7125pt::46.66809pt.
+[397
+
+
+]
+l2hSize :tex2html_wrap_inline7196:8.7125pt::8.7125pt::21.97229pt.
+[398
+
+
+]
+l2hSize :tex2html_wrap_inline7202:10.02922pt::10.02922pt::49.2833pt.
+[399
+
+
+]
+l2hSize :tex2html_wrap_inline7204:8.7125pt::8.7125pt::20.42862pt.
+[400
+
+
+]
+l2hSize :tex2html_wrap_inline7206:8.7125pt::8.7125pt::21.92036pt.
+[401
+
+
+]
+l2hSize :tex2html_wrap_inline7211:8.7125pt::8.7125pt::30.90184pt.
+[402
+
+
+]
+l2hSize :tex2html_wrap_inline7213:8.7125pt::8.7125pt::33.49641pt.
+[403
+
+
+]
+l2hSize :displaymath7215:31.2pt::0.0pt::349.0pt.
+[404
+
+
+]
+l2hSize :tex2html_wrap_inline7217:8.7125pt::8.7125pt::53.67023pt.
+[405
+
+
+]
+l2hSize :tex2html_wrap_inline7219:8.10416pt::8.10416pt::27.83119pt.
+[406
+
+
+]
+l2hSize :tex2html_wrap_inline7222:8.7125pt::8.7125pt::66.04301pt.
+[407
+
+
+]
+l2hSize :tex2html_wrap_inline7224:8.7125pt::8.7125pt::67.3205pt.
+[408
+
+
+]
+l2hSize :tex2html_wrap_inline7226:8.7125pt::8.7125pt::25.3143pt.
+[409
+
+
+]
+l2hSize :tex2html_wrap_indisplay7228:10.17673pt::10.17673pt::174.91476pt.
+[410
+
+
+]
+l2hSize :tex2html_wrap_inline7230:8.7125pt::8.7125pt::13.83961pt.
+[411
+
+
+]
+l2hSize :tex2html_wrap_indisplay7232:10.17673pt::10.17673pt::123.07pt.
+[412
+
+
+]
+l2hSize :tex2html_wrap_inline7234:9.62923pt::9.62923pt::41.10179pt.
+[413
+
+
+]
+l2hSize :tex2html_wrap_indisplay7236:10.17673pt::10.17673pt::135.75215pt.
+[414
+
+
+]
+l2hSize :tex2html_wrap_indisplay7242:8.10416pt::8.10416pt::103.16441pt.
+[415
+
+
+]
+l2hSize :tex2html_wrap_inline7244:10.08096pt::0.0pt::9.2619pt.
+[416
+
+
+]
+l2hSize :tex2html_wrap_inline7246:10.58096pt::10.58096pt::52.22786pt.
+[417
+
+
+]
+l2hSize :displaymath7248:31.35677pt::0.0pt::349.0pt.
+[418
+
+
+] (images.aux) ) 
+Here is how much of TeX's memory you used:
+ 1913 strings out of 20887
+ 22032 string characters out of 196242
+ 69275 words of memory out of 350001
+ 4846 multiletter control sequences out of 10000+15000
+ 11067 words of font info for 41 fonts, out of 400000 for 1000
+ 14 hyphenation exceptions out of 10000
+ 27i,18n,24p,614b,233s stack positions out of 3000i,100n,1500p,50000b,4000s
+
+Output written on images.dvi (418 pages, 129636 bytes).
diff --git a/deal.II/doc/reports/nedelec/images.tex b/deal.II/doc/reports/nedelec/images.tex
new file mode 100644 (file)
index 0000000..1d80be3
--- /dev/null
@@ -0,0 +1,2830 @@
+\batchmode
+
+
+\documentclass[a4paper,11pt]{article}
+\RequirePackage{ifthen}
+
+
+\NeedsTeXFormat{LaTeX2e}
+\usepackage{exscale} 
+\usepackage[dvips]{graphicx}
+\usepackage{shortvrb}  
+\usepackage{amsmath}   
+\usepackage{amssymb}   
+\usepackage{amsfonts}  
+\usepackage{graphicx}  
+
+\addtolength{\topmargin}{-35pt}\addtolength{\headsep}{-2pt}\addtolength{\topskip}{-5pt}\addtolength{\oddsidemargin}{-1.5cm}\addtolength{\evensidemargin}{-1.5cm}\addtolength{\textheight}{45pt}%% less white space at bottom of page
+
+\addtolength{\textwidth}{4cm}%% larger columns
+
+
+%
+\providecommand{\vect}[1]{\underline{#1}}%% vectors%
+\providecommand{\matr}[1]{\mathbf{#1}}%% matrices%
+\providecommand{\ofx}{(\underline{x})}%
+\providecommand{\oftx}{(t,\underline{x})}%
+\providecommand{\R}{\mathbb{R}}%% number sets%
+\providecommand{\Z}{\mathbb{Z}}%
+\providecommand{\C}{\mathbb{C}}%
+\providecommand{\N}{\mathbb{N}}%
+\providecommand{\inR}[1]{\in \mathbb{R}^{#1}}%
+\providecommand{\EE}[1]{\mathbb{E}\,#1}%% mathematical expectation%
+\providecommand{\PP}[1]{\mathbb{P}\,#1}%% mathematical probability%
+\providecommand{\Or}[2]{\mathcal{O}(#1^#2)}%% order%
+\providecommand{\eye}[1]{\,\mathbb{I}_{#1}\,}%% identity matrix%
+\providecommand{\Laplace}{\Delta}%% Laplace operator%
+\providecommand{\Grad}{\underline{\nabla}}%% Gradient operator%
+\providecommand{\ond}[1]{\in \partial#1}%% on (physical domain .. ) boundary%
+\providecommand{\etime}{\tau^D_{\underline{x}}}%
+\providecommand{\twovec}[2]{\left(\begin{array}{c}#1\\#2\end{array}\right)}%
+\providecommand{\threevec}[3]{\left(\begin{array}{c}#1\\#2\\#3\end{array}\right)}
+
+\parindent 0pt
+
+%
+\providecommand{\Title}[1]{\title{\Large{#1}}  \author{\small{Anna Schneebeli, \today}}\date{}}%
+\providecommand{\Abstract}[1]{\noindent \small \textbf{Abstract:} #1}%
+\providecommand{\Section}[1]{\section{\large{#1}}}%
+\providecommand{\SectionS}[1]{\section*{\large{#1}}}%
+\providecommand{\Subsection}[1]{\subsection{\normalsize{#1}}}%
+\providecommand{\SubsectionS}[1]{\subsection*{\normalsize{#1}}}%
+\providecommand{\Subsubsection}[1]{\subsubsection{\normalsize{#1}}}%
+\providecommand{\SubsubsectionS}[1]{\subsubsection*{\normalsize{#1}}}
+\newtheorem{remark}{\mdseries{\textsc{Remark}}}\newtheorem{conjecture}{\mdseries{\textsc{Conjecture}}}
+\bibliographystyle{abbrv}
+
+%
+\providecommand{\proof}{\mdseries{\textsc{Proof. }}}%
+\providecommand{\qed}{\begin{flushright} $\square$\  \end{flushright}}
+\newtheorem{definition}{\mdseries{\textsc{Definition}}}\newtheorem{theorem}{\mdseries{\textsc{Theorem}}}\newtheorem{prop}{\mdseries{\textsc{Proposition}}}\newtheorem{example}{\mdseries{\textsc{Example}}}\newtheorem{corollary}{\mdseries{\textsc{Corollary}}}\newtheorem{lemma}{\mdseries{\textsc{Lemma}}}\newtheorem{convention}{\mdseries{\textsc{Convention}}}
+\title{\Large {An $H(\mathop{\rm curl};\Omega )$-conforming FEM: \\
+               N\'ed\'elec's elements of first type}}  \author{\small{Anna Schneebeli, \today}}\date{}
+
+
+\usepackage[dvips]{color}
+
+
+\pagecolor[gray]{.7}
+
+\usepackage[latin1]{inputenc}
+
+
+
+\makeatletter
+
+\makeatletter
+\count@=\the\catcode`\_ \catcode`\_=8 
+\newenvironment{tex2html_wrap}{}{}%
+\catcode`\<=12\catcode`\_=\count@
+\newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}%
+\newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}%
+  \expandafter\renewcommand\csname #1\endcsname}%
+\newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}%
+\let\newedcommand\renewedcommand
+\let\renewedenvironment\newedenvironment
+\makeatother
+\let\mathon=$
+\let\mathoff=$
+\ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi
+\newbox\sizebox
+\setlength{\hoffset}{0pt}\setlength{\voffset}{0pt}
+\addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt}
+\addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt}
+\addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt}
+\addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt}
+\setlength{\textwidth}{349pt}
+\newwrite\lthtmlwrite
+\makeatletter
+\let\realnormalsize=\normalsize
+\global\topskip=2sp
+\def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float
+\def\@float{\let\@savefreelist\@freelist\real@float}
+\def\liih@math{\ifmmode$\else\bad@math\fi}
+\def\end@float{\realend@float\global\let\@freelist\@savefreelist}
+\let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float
+\let\@largefloatcheck=\relax
+\let\if@boxedmulticols=\iftrue
+\def\@dbflt{\let\@savefreelist\@freelist\real@dbflt}
+\def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize
+ \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}%
+ \def\phantompar{\csname par\endcsname}\normalsize}%
+\def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}%
+\newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }%
+\newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }%
+\newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup %
+ \let\ifinner=\iffalse \let\)\liih@math }%
+\newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}%
+ \expandafter\box\next\egroup}%
+\newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}%
+\newcommand\lthtmllogmath{\lthtmltypeout{l2hSize %
+:\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}%
+\newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist
+       \lthtmlmathtype{#1}\lthtmlvboxmathA}%
+\newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}%
+\newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup
+       \let\@savefreelist\@freelist \lthtmlhboxmathB}%
+\newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}%
+\newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox
+       \global\let\@freelist\@savefreelist}%
+\newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}%
+\newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}%
+\newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}%
+  \lthtmldisplayA{#1}\let\@eqnnum\relax}%
+\newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}%
+\newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB}
+\newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA
+  \vrule height1.5ex width0pt }%
+\newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}%
+\newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}%
+\newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
+  \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline}
+\newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
+  \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath}
+\newcommand\lthtmlindisplaymathZ{\egroup %
+  \centerinlinemath\lthtmllogmath\lthtmlsetmath}
+\def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{%
+  \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi
+  \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
+\def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{%
+  \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt%
+  \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt%
+  \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
+\def\centerinlinemath{%
+  \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi
+  \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 
+ \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax}
+
+\def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize 
+  \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill
+  \else\expandafter\vss\fi}%
+\providecommand{\selectlanguage}[1]{}%
+\makeatletter \tracingstats = 1 
+\providecommand{\Eta}{\textrm{H}}
+\providecommand{\Mu}{\textrm{M}}
+\providecommand{\Alpha}{\textrm{A}}
+\providecommand{\Iota}{\textrm{J}}
+\providecommand{\Nu}{\textrm{N}}
+\providecommand{\Omicron}{\textrm{O}}
+\providecommand{\omicron}{\textrm{o}}
+\providecommand{\Chi}{\textrm{X}}
+\providecommand{\Beta}{\textrm{B}}
+\providecommand{\Kappa}{\textrm{K}}
+\providecommand{\Tau}{\textrm{T}}
+\providecommand{\Epsilon}{\textrm{E}}
+\providecommand{\Zeta}{\textrm{Z}}
+\providecommand{\Rho}{\textrm{R}}
+
+
+\begin{document}
+\pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}%
+\lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}%
+\lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}%
+\lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}%
+\lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}%
+\lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}%
+\lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}%
+\lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}%
+\lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}%
+\lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}%
+\lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}%
+\makeatletter
+\if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}%
+\else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi%
+\lthtmltypeout{}%
+\makeatother
+\setcounter{page}{1}
+\onecolumn
+
+% !!! IMAGES START HERE !!!
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5220}%
+$ H(\mathop {\rm curl};\Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5236}%
+$ L^2(\Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5250}%
+$ H(\mathop {\rm curl};(\Omega ))$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{section}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5451}%
+$ \Omega \in \mathbb{R}^d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5453}%
+$ d=2,3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5455}%
+$\displaystyle \mathop{\rm curl}\mathop{\rm curl}\underline u + c(x) \underline u  = \underline f \quad \mathrm{in} \quad \Omega \,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5457}%
+$ \underline f \in L^2(\Omega )^d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5459}%
+$\displaystyle \underline u \wedge \underline n  = 0$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5461}%
+$ \partial \Omega $%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5463}%
+$ \Omega $%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5465}%
+$ c(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5469}%
+$ \underline t$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5471}%
+$ d=2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5473}%
+$ \underline v = \left(\begin{array}{c} v_1(x,y) \\   v_2(x,y)\end{array} \right) \in [\mathcal{D}(\overline{\Omega })]^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5475}%
+$ \varphi \in \mathcal{D}(\overline{\Omega })$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5477}%
+$\displaystyle \mathop{\rm curl}\underline v := \partial _x v_2 - \partial _y v_1   \quad \mathrm{and} \quad \mathop{\underline{\rm curl}}\varphi := \left(\begin{array}{c} \partial _y\varphi \\  -\partial _x\varphi \end{array}
+\right) \,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5479}%
+$ \mathop{\rm curl}\mathop{\rm curl}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5481}%
+$ \mathop{\underline{\rm curl}}\mathop{\rm curl}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5484}%
+$ \mathop{\rm curl}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5486}%
+$ \underline v$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5488}%
+$ \mathop{\underline{\rm curl}}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5490}%
+$ \varphi $%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5492}%
+$\displaystyle \boldsymbol{R} = \left(\begin{array}{cc}
+0 & 1 \\ 
+-1 & 0
+\end{array}\right) \,,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5494}%
+$\displaystyle \mathop{\rm curl}\underline v = \mathrm{div} \left(\boldsymbol{R} \underline v\right) 
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5496}%
+$\displaystyle \mathop{\underline{\rm curl}}\varphi = \boldsymbol{R} \nabla\varphi \,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5500}%
+$ \underline t = \boldsymbol{R}^T\underline n$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5504}%
+$ d=3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5506}%
+$ \underline v \in [\mathcal{D}(\overline{\Omega })]^3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5508}%
+$\displaystyle \mathop{\rm curl}\underline v := \nabla \wedge \underline v := \left(\begin{array}{c} 
+\partial _y v_3 - \partial _z v_2 \\ 
+\partial _z v_1 - \partial _x v_3 \\                                            
+\partial _x v_2 - \partial _y v_1                                               
+\end{array} \right)
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5513}%
+$ \tilde{d}=1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5517}%
+$ \tilde{d}=3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5521}%
+$\displaystyle H(\mathop{\rm curl}; \Omega ) := \{ \underline v \in [L^2(\Omega )]^d:  \mathop{\rm curl}\underline v \in [L^2(\Omega )]^{\tilde{d}} \}
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5525}%
+$\displaystyle (\underline v, \underline u)_{H(\mathop{\rm curl};\Omega )} := (\underline v, \underline u)_{L^2(\Omega )} + (\mathop{\rm curl}\underline v, \mathop{\rm curl}\underline u)_{L^2(\Omega )}
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5539}%
+$ [\mathcal{D}(\overline{\Omega })]^d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5546}%
+$ \underline u$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5548}%
+$ [H(\mathop{\rm curl};\Omega )]^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5552}%
+$ H^1(\Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5554}%
+$\displaystyle \int_{\Omega } \mathop{\rm curl}\underline u \,\,\varphi \,dx  = \int_{\Omega } \underline u \cdot \mathop{\underline{\rm curl}}\varphi \,dx  + \int_{\partial \Omega } (\underline u\cdot \underline t) \, \varphi \,ds \:,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5558}%
+$ [H(\mathop{\rm curl};\Omega )]^3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5562}%
+$ [H^1(\Omega )]^3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5564}%
+$\displaystyle \int_{\Omega } \underline v \cdot \mathop{\rm curl}\underline u \,dx  = \int_{\Omega } \underline u \cdot \mathop{\rm curl}\underline v \,dx  + \int_{\partial \Omega } (\underline v\wedge \underline n) \cdot \underline u\,ds \:,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5566}%
+$ [H^{-\frac{1}{2}}(\partial \Omega )]^{\tilde{d}} \times H^{\frac{1}{2}}(\partial \Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5568}%
+$\displaystyle \mathrm{div}\, (\underline u \wedge \underline v) = \underline v \cdot \mathop{\rm curl}\underline u - \underline u \cdot \mathop{\rm curl}\underline v 
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5570}%
+$ (\underline a\wedge\underline b)\cdot \underline c$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5572}%
+$\displaystyle \int_{\Omega } \underline v\cdot \mathop{\rm curl}\underline u - \underline u\cdot \mathop{\rm curl}\underline v  \, dx = \int_{\Omega } \mathrm{div}\, (\underline u \wedge \underline v) \, dx
+= \int_{\partial \Omega } (\underline u \wedge \underline v)\cdot \underline n \,ds = \int_{\partial \Omega } (\underline v \wedge \underline n)\cdot \underline u \,ds \,\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5574}%
+$ H(\mathop{\rm curl})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5581}%
+$ \underline n$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5591}%
+$\displaystyle \gamma: \quad \underline v \mapsto \gamma(\underline v) \cdot \underline t
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5595}%
+$\displaystyle \gamma: \quad \underline v \mapsto \gamma(\underline v) \wedge \underline n
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5599}%
+$ [H^{-\frac{1}{2}}(\partial \Omega )]^{\tilde{d}}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5603}%
+$ [H^1(\Omega )]^{\tilde{d}}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5605}%
+$ [H^{\frac{1}{2}}(\partial \Omega )]^{\tilde{d}}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5610}%
+$\displaystyle H_0(\mathop{\rm curl};\Omega ) := \left\{ \underline v \in H(\mathop{\rm curl};\Omega ): \quad \underline v\wedge \underline n = 0 \:\:\mathrm{on}\:\: \partial \Omega \right\}
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5615}%
+$ [\mathcal{D}(\Omega )]^d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5617}%
+$ H_0(\mathop{\rm curl};\Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5622}%
+$ K_-$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5624}%
+$ K_+$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5626}%
+$ \mathbb{R}^d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5628}%
+$ e = \partial K_-\cap\partial K_+ \neq \emptyset$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5630}%
+$ \Omega = \partial K_-\cup\partial K_+$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5632}%
+$ v$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5636}%
+$ v_-$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5642}%
+$ H(\mathop{\rm curl}; K_-)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5644}%
+$ v_+$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5650}%
+$ H(\mathop{\rm curl}; K_+)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5652}%
+$ e$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5654}%
+$ v_-\wedge n_- + v_+\wedge n_+ = 0$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5658}%
+$ H^{\frac{1}{2}}_{00}(e)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5662}%
+$ H^{\frac{1}{2}}(\partial \Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5674}%
+$ H^{-\frac{1}{2}}(e)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5676}%
+$ \underline v_-$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5678}%
+$ \underline v_+$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5680}%
+$ L^2(e)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5684}%
+$ H^1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5694}%
+$ \underline u \in H_0(\mathop{\rm curl};\Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5696}%
+$ \underline v \in H_0(\mathop{\rm curl};\Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5698}%
+$\displaystyle \int_{\Omega } \mathop{\rm curl}\underline u\, \mathop{\rm curl}\underline v\,dx + \int_{\Omega } c(x)\, \underline u\, \cdot \underline v\,dx =  \int_{\Omega } \underline f\, \cdot \underline v\,dx$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmldisplayA{displaymath5701}%
+\begin{displaymath}\begin{split}       a(\underline u,\underline v) &:= \int_{\Omega } \mathop{\rm curl}\underline u\, \mathop{\rm curl}\underline v\,dx + \int_{\Omega } c(x)\, \underline u\, \cdot \underline v\,dx \\      l(\underline v) & := \int_{\Omega } \underline f\, \cdot \underline v\,dx \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5703}%
+$ a(\cdot,\cdot)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5705}%
+$ H_0(\mathop{\rm curl};\Omega )\times H_0(\mathop{\rm curl};\Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{section}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5717}%
+$ \hat{K}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5719}%
+$ F_K(\hat{x})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5721}%
+$ K = F_K(\hat{K})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5723}%
+$ \hat{R}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5727}%
+$ R_K$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5729}%
+$ K$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5731}%
+$ \mathcal{A} = \{\alpha_i(\cdot)\}_{i=1}^N$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5735}%
+$ N < \infty$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5739}%
+$ \mathcal{A}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5741}%
+$ \alpha_i(\cdot)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsection}
+\stepcounter{subsubsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5749}%
+$ \hat{R} = \mathcal{R}^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5751}%
+$ \mathbb{P}_k(\hat{\Sigma})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5753}%
+$ k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5755}%
+$ \hat{\Sigma}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5759}%
+$ \tilde{\mathbb{P}}_k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5765}%
+$ d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5770}%
+$\displaystyle \mathcal{S}^k := \{\, \underline p \in (\tilde{\mathbb{P}}_k)^d : \underline p \cdot \hat{\underline x} = \sum_{i=1}^{d} p_i\,\hat{x}_i \equiv 0 \,\}\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5772}%
+$ \hat{x} \in \hat{K}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5778}%
+$ k(k+2)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5785}%
+$\displaystyle \mathcal{R}^k = \left(\mathbb{P}_{k-1}(\hat{K}) \right)^d \oplus \mathcal{S}^k\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmldisplayA{displaymath5787}%
+\begin{displaymath}\begin{split}                                       \mathrm{dim} (\mathcal{R}^k) &= k(k+2) \qquad \textrm{for} \quad d=2\,, \\                                      \mathrm{dim} (\mathcal{R}^k) &= \frac{(k+3)(k+2)k}{2} \qquad \textrm{for} \quad d=3\,.                          \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5789}%
+$ \mathcal{R}^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5791}%
+$\displaystyle \mathcal{R}^k = \left(\mathbb{P}_{k-1}(\hat{K}) \right)^2 \oplus \tilde{\mathbb{P}}_{k-1}\, \left(\begin{array}{cc} \hat{x}_2 \\  -\hat{x}_1                            \end{array}\right)\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5795}%
+$\displaystyle \tilde{\mathbb{P}}_{k-1}\, \left(\begin{array}{cc} \hat{x}_2 \\  -\hat{x}_1 \end{array}\right) \subseteq \mathcal{S}^k
+%%\left\{\v p\quad \big|\quad \v p = \tilde{p} \left(\begin{array}{cc} x_2 \\-x_1 \end{array}\right)\,,\, \tilde{p}
+                               $%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5797}%
+$ \tilde{\mathbb{P}}_{k-1}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5799}%
+$ k-1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5803}%
+$ \mathcal{S}^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5809}%
+$ k=1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5811}%
+$ k=2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5814}%
+$\displaystyle \mathcal{R}^1 = \left\langle                                                            \left(\begin{array}{cc} 1 \\  0 \end{array}\right)\,_,                                                          \left(\begin{array}{cc} 0 \\  1 \end{array}\right)\,_,                                                          \left(\begin{array}{cc} \hat{x}_2 \\  -\hat{x}_1 \end{array}\right) \right\rangle$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5816}%
+$\displaystyle \mathcal{R}^2 = \left(\mathbb{P}_{1}(\hat{K}) \right)^2 \oplus 
+\left\langle 
+\left(\begin{array}{cc} \hat{x}_1\,\hat{x}_2 \\  -{\hat{x}_1}^2 \end{array}\right)\,_,
+\left(\begin{array}{cc} {\hat{x}_2}^2 \\  -\hat{x}_1\,\hat{x}_2 \end{array}\right)
+\right\rangle                                  
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5823}%
+$ \mathcal{S}^1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5825}%
+$ \underline p$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5827}%
+$ (\mathbb{P}_{1}(\hat{K}))^3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5829}%
+$\displaystyle p_i = \sum_{j=1}^3 a_{ij} \hat{x}_j\,, \qquad i=1,2,3\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5835}%
+$\displaystyle \underline p \cdot \hat{\underline x} = 
+\sum_{i=1}^3 a_{ii}\hat{x}_i^2 + \sum_{\substack{i,j=1 \\  j>i}}^3 (a_{ij}+a_{ji})\hat{x}_i \hat{x}_j \equiv 0\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmldisplayA{displaymath5839}%
+\begin{displaymath}\begin{split}                                       &a_{11}=a_{22}=a_{33} = 0 \\                                    &a_{12}= - a_{21}\,,\quad a_{13}= - a_{31}\,,\quad a_{23}= - a_{32}\,.                          \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5843}%
+$ a_{ij} = 1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5845}%
+$ i=1,2,3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5847}%
+$ j>i$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5849}%
+$\displaystyle \mathcal{R}^1 = \left(\mathbb{P}_{0}(\hat{K}) \right)^3 \oplus                                                                                                           \left\langle                                                                                                           \left(\begin{array}{ccc} 0 \\  \hat{x}_3 \\  \hat{x}_2 \end{array}\right)\,_,\,                                                                                                                 \left(\begin{array}{ccc} \hat{x}_3 \\  0 \\  \hat{x}_1 \end{array}\right)\,_,\,                                                                                                                 \left(\begin{array}{ccc} \hat{x}_2 \\  \hat{x}_1 \\  0 \end{array}\right)                                                                                                               \right\rangle$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5853}%
+$ (\mathbb{P}_{k}(\hat{K}) )^d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsubsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5868}%
+$ n$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5870}%
+$ n+k+2 \choose n$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5875}%
+$ \hat{\underline t}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5883}%
+$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s} \quad \forall \hat{\varphi }                                                 \in \mathbb{P}_{k-1}(\hat{e})\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5885}%
+$ \hat{e}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5889}%
+$ 3k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5891}%
+$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{K}} \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x} \quad \forall \hat{\underline \varphi }                                                  \in (\mathbb{P}_{k-2}(\hat{K}))^2\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5893}%
+$ k(k-1)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5900}%
+$ \hat{\underline n}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5915}%
+$ 6k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5917}%
+$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{f}} (\hat{\underline u}\wedge \hat{\underline n})\cdot \hat{\underline \varphi }\,d\hat{a} \quad                                                 \forall \hat{\varphi } \in (\mathbb{P}_{k-2}(\hat{f}) )^2\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5919}%
+$ \hat{f}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5923}%
+$ 4k(k-1)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5925}%
+$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{K}} \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x} \quad                                            \forall \hat{\underline \varphi } \in (\mathbb{P}_{k-3}(\hat{K}))^3\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5927}%
+$ \frac{k(k-1)(k-2)}{2}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5933}%
+$ k\leq3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5944}%
+$ \hat{\underline u}\in \mathcal{R}^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5946}%
+$ \hat{\alpha}(\hat{\underline u})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5949}%
+$ \hat{K} = \left\{ (\hat{x},\hat{y})\in\mathbb{R}^2:\quad 0\leq \hat{x}\leq 1\,,\,\, 0\leq \hat{y}\leq 1-\hat{x} \right\}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5951}%
+$ \hat{e}_0 = \overline{(0,0),(1,0)}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5953}%
+$\displaystyle \hat{\underline t}_0 = \left(\begin{array}{cc} 1 \\  0 \end{array}\right)\,,\quad
+\hat{\underline t}_1 = \frac{1}{\sqrt{2}}\left(\begin{array}{cc} -1 \\  1 \end{array}\right)\,,\quad
+\hat{\underline t}_2 = \left(\begin{array}{cc} 0 \\  -1 \end{array}\right)\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5955}%
+$ \mathcal{R}^1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5961}%
+$ \int_{\hat{e}_i} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s}\,, \forall \hat{\varphi } \in \mathbb{P}_{0}(\hat{e}_i)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5963}%
+$ \varphi \equiv 1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5965}%
+$ \mathbb{P}_{0}(\hat{e}_i)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5967}%
+$\displaystyle \hat{\alpha}_i(\hat{\underline u}) = \int_{\hat{e}_i} (\hat{\underline t}\cdot \hat{\underline u})\,d\hat{s} \quad i=0,1,2\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5969}%
+$ \hat{\underline N}_0,\hat{\underline N}_1,\hat{\underline N}_2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5973}%
+$ \hat{\alpha}_i(\hat{\underline N}_j) = \delta_{ij}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5975}%
+$ \hat{\underline N}_i$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5979}%
+$\displaystyle \hat{\underline N}_0 = \left(\begin{array}{cc} 1-\hat{y} \\  \hat{x} \end{array}\right)\,,\quad                                         \hat{\underline N}_1 = \left(\begin{array}{cc} -\hat{y} \\  \hat{x} \end{array}\right)\,,\quad                                  \hat{\underline N}_2 = \left(\begin{array}{cc} -\hat{y} \\  \hat{x}-1 \end{array}\right)\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsubsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5984}%
+$\displaystyle K \ni x = F_K(\hat{x}) = B_K \hat{x} + b_K
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5988}%
+$ N_i$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline5992}%
+$ \hat{N}_i$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay5996}%
+$\displaystyle N_i(x) = \left( \hat{N}_i \circ F_K^{-1} \right)(x)$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6000}%
+$ H(\mathop{\rm curl};\hat{K})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6002}%
+$ H(\mathop{\rm curl}; K)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6011}%
+$ \underline N_i(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6015}%
+$\displaystyle \underline N_i(x) = \mathcal{P}_K (\hat{\underline N}_i) =  \left(\hat{D}F_K^{-T} \hat{\underline N}_i\right) \circ F_K^{-1} (x)\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6017}%
+$ \hat{D}F_K$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6019}%
+$ \frac{d}{d\hat{x}}F_K(\hat{x})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6022}%
+$ H(\mathop{\rm div}; \Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6026}%
+$ F_K(\hat{x}) = B_K \hat{x} + b_k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6030}%
+$ B_K$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6032}%
+$\displaystyle \underline v(x) = \mathcal{P}_K (\hat{\underline v}) =  B_K^{-T} \left(\hat{\underline v} \circ F_K^{-1} \right)(x)\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsubsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6035}%
+$ \Omega \subset\mathbb{R}^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6041}%
+$\displaystyle B_K^{-T} = \det B_K^{-1}\,R^T B_K\,R \,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6043}%
+$ R$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6048}%
+$ \underline v(x) = \mathcal{P}_K(\hat{\underline v})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6050}%
+$ \varphi (x) = \left( \hat{\varphi }\circ F_K^{-1} \right)(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6052}%
+$ \hat{x} = 
+F_K^{-1}(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6054}%
+$ F_K$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6058}%
+$ D\underline v$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6060}%
+$\displaystyle D\underline v = B_K^{-T}\, \hat{D}\hat{\underline v}\, B_K^{-1}\, .$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6062}%
+$\displaystyle \mathop{\rm curl}\underline v = \det B_K^{-1} \widehat{\mathop{\rm curl}} \hat{\underline v}\, .$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6074}%
+$ R\,Dv$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6076}%
+$ B_K^{-T}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6080}%
+$ \det B_K^{-1}\,R\,\hat{D}\hat{v}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6085}%
+$\displaystyle \int_{K} \mathop{\rm curl}\underline v\, \varphi \, dx = \int_{\hat{K}} \widehat{\mathop{\rm curl}}\hat{\underline v}\, \hat{\varphi } \,d\hat{x}\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6087}%
+$\displaystyle \int_{K} \mathop{\rm curl}\underline v\, \mathop{\rm curl}\underline u \, dx = | B_K |^{-1}\,\int_{\hat{K}} \widehat{\mathop{\rm curl}}\hat{\underline v}\,                                             \widehat{\mathop{\rm curl}}\hat{\underline u}  \,d\hat{x}\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsubsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6092}%
+$ \hat{\underline v}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6096}%
+$ \mathop{\rm Curl}v$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6098}%
+$\displaystyle \left({\mathop{\rm Curl}v}\right)_{ij} = \frac{\partial v_j}{\partial x_i} - \frac{\partial v_i}{\partial x_j}$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6100}%
+$ \mathop{\rm Curl}v = D\underline v^T - D\underline v$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6102}%
+$\displaystyle \mathop{\rm Curl}v = B_K^{-T} \widehat{\mathop{\rm Curl}}\,\hat{v} \,B_K^{-1}$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6109}%
+$ \underline v(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6113}%
+$ \hat{\underline v}(\hat{x})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6115}%
+$\displaystyle \left(\mathop{\rm curl}\underline v\right)_i(x) = \det \mathrm{M_i}(x) \,, \qquad i= 1,2,3\,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6117}%
+$ \mathrm{M_i}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6119}%
+$ D(F_K^{-1}) = B_K^{-1}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6121}%
+$ (\widehat{\mathop{\rm curl}}\,\hat{\underline v}\circ F_K^{-1})(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6123}%
+$\displaystyle \left(\mathrm{M_i}\right)_{kl}(x) := \left\{ \begin{array}{ll}                                                                                                                                  (\widehat{\mathop{\rm curl}}\,\hat{v} \circ F_K^{-1})_k (x) & \textrm{if} \quad l=i \\                                                                                                                                  (B_K^{-1})_{kl} & \textrm{if} \quad l\neq i                                                                                             \end{array} \right.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6125}%
+$\displaystyle \mathop{\rm curl}\underline v = \left( \begin{array}{ccc} ({\mathop{\rm Curl}v})_{23} \\  ({\mathop{\rm Curl}v})_{31}  \\  ({\mathop{\rm Curl}v})_{12} \end{array}\right)\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6127}%
+$ (\mathop{\rm curl}\underline v)_1 = {\mathop{\rm Curl}v}_{23}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6129}%
+$ b_{ij} := (B_K^{-1})_{ij}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6131}%
+$\displaystyle ({\mathop{\rm Curl}v})_{23} = b_{k2}\, (\widehat{\mathop{\rm Curl}}\, \hat{v})_{kl}\,b_{l3}
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6135}%
+$\displaystyle ({\mathop{\rm Curl}v})_{23} = (b_{12}b_{23} - b_{22}b_{13})(\widehat{\mathop{\rm Curl}} \,\hat{v})_{12}
+-(b_{12}b_{33} - b_{32}b_{13})(\widehat{\mathop{\rm Curl}}\, \hat{v})_{31}
++(b_{22}b_{33} - b_{32}b_{23})(\widehat{\mathop{\rm Curl}}\, \hat{v})_{23}\,,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6137}%
+$\displaystyle \mathrm{M_1} := \left(\begin{array}{ccc} (\widehat{\mathop{\rm curl}}\, v)_1 & b_{12} & b_{13} \\ 
+(\widehat{\mathop{\rm curl}}\, v)_2 & b_{22} & b_{23} \\       
+(\widehat{\mathop{\rm curl}}\, v)_3 & b_{32} & b_{33} 
+\end{array}\right) \,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6148}%
+$\displaystyle \mathop{\rm curl}\underline v = \frac{1}{\det B_K}\,B_K\,(\widehat{\mathop{\rm curl}}\,\hat{\underline v} \circ F_K^{-1})\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6150}%
+$ (\mathop{\rm curl}\underline v)_1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6152}%
+$\displaystyle (\mathop{\rm curl}\underline v)_1 = \frac{1}{\det B_K} (B_K)_{1j} ((\widehat{\mathop{\rm curl}}\,\hat{\underline v})_j \circ F^{-1})\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6154}%
+$ \det \mathrm{M_1}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6158}%
+$\displaystyle \det  \mathrm{M_1} = (\widehat{\mathop{\rm curl}}\, \hat{\underline v})_1 \det\mathcal{B}^{inv}_{11} 
+-(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_2 \det\mathcal{B}^{inv}_{21}
++(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_3 \det\mathcal{B}^{inv}_{31} \,,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6160}%
+$ \mathcal{B}^{inv}_{ij}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6162}%
+$ 2 \times 2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6164}%
+$ B_K^{-1}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6166}%
+$ A \in \mathbb{R}^{3\times 3}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6168}%
+$\displaystyle (A^{-1})_{ij} = \frac{1}{\det A} (-1)^{i+j} \det \mathcal{A}_{ji} \,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6170}%
+$ \mathcal{A}_{ij}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6174}%
+$ A$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6178}%
+$ A = B_K^{-1}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6180}%
+$\displaystyle \frac{1}{\det B_K}\,\frac{1}{\det B_K^{-1}} (-1)^{1+j} \det \mathcal{B}^{inv}_{j1} (\widehat{\mathop{\rm curl}}\, \hat{\underline v})_j
+= (\widehat{\mathop{\rm curl}}\, \hat{\underline v})_1 \det \mathcal{B}^{inv}_{11} 
+-(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_2 \det \mathcal{B}^{inv}_{21}
++(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_3 \det \mathcal{B}^{inv}_{31} = \det  \mathrm{M_1}\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6183}%
+$ C$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6185}%
+$ \hat{C} = [0,1]^d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6187}%
+$\displaystyle C = F_C(\hat{C}) \quad C \ni x = B_C \hat{x} + \underline b_C \,, \hat{x} \in \hat{C}\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsubsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6191}%
+$ \mathcal{Q}_{l,m}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6193}%
+$ \hat{C}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6195}%
+$ l$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6197}%
+$ \hat{x}_1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6199}%
+$ m$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6201}%
+$ \hat{x}_2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6203}%
+$ \mathcal{Q}_{l,m,n}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6217}%
+$ \hat{x}_3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6221}%
+$\displaystyle \mathcal{P}^k = \left\{ \hat{\underline u} =                    \left(\begin{array}{cc} \hat{u}_1 \\  \hat{u}_2 \end{array}\right): \quad                                                \hat{u}_1 \in \mathcal{Q}_{k-1,k}\,,                                                           \hat{u}_2 \in \mathcal{Q}_{k,k-1} \right\}\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6223}%
+$\displaystyle \mathcal{P}^k = \left\{ \hat{\underline u} = \left(\begin{array}{ccc}                                   \hat{u}_1 \\  \hat{u}_2 \\ \hat{u}_3 \end{array}\right):\quad                                                           \hat{u}_1 \in \mathcal{Q}_{k-1,k,k}\,,                                                          \hat{u}_2 \in \mathcal{Q}_{k,k-1,k}\,,                                                                  \hat{u}_3 \in \mathcal{Q}_{k,k,k-1}\right\}\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsubsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6228}%
+$ \hat{C}\subset \mathbb{R}^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6237}%
+$ \mathcal{P}^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6241}%
+$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s}\,, \quad                     \forall\, \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6247}%
+$ 4k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6249}%
+$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{C}}  \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x}\,, \quad                        \forall\, \hat{\underline \varphi } = \left(\begin{array}{cc} \hat{\varphi }_1 \\  \hat{\varphi }_2 \end{array}\right) \,,                      \quad\hat{\varphi }_1\in\mathcal{Q}_{k-2,k-1}\,,\quad\hat{\varphi }_2\in\mathcal{Q}_{k-1,k-2}\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6251}%
+$ 2k(k-1)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6273}%
+$ 12k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6275}%
+$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{f}} (\hat{\underline u}\wedge \hat{\underline n})\cdot \hat{\underline \varphi }\,d\hat{a} \,,\quad                      \forall \,\hat{\underline \varphi } = \left(\begin{array}{cc} \hat{\varphi }_1 \\  \hat{\varphi }_2 \end{array}\right) \,,                      \quad\hat{\varphi }_1\in\mathcal{Q}_{k-2,k-1}(\hat{f})\,,\quad\hat{\varphi }_2\in\mathcal{Q}_{k-1,k-2}(\hat{f})\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6281}%
+$ 6\cdot 2k(k-1)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6283}%
+$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{C}}  \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x} \,,\quad                        \forall\, \hat{\underline \varphi } = \left(\begin{array}{ccc} \hat{\varphi }_1 \\  \hat{\varphi }_2 \\                         \hat{\varphi }_3\end{array}\right) \,,\quad\hat{\varphi }_1\in\mathcal{Q}_{k-1,k-2,k-2}\,,\quad\hat{\varphi _2}\in\mathcal{Q}_{k-2,k-1,k-2}\,,                  \quad\hat{\varphi _3}\in\mathcal{Q}_{k-2,k-2,k-1}\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6285}%
+$ 3k(k-1)^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6288}%
+$ [0,1]^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6290}%
+$\displaystyle \hat{\underline t}_0 = \left(\begin{array}{cc} 1 \\  0 \end{array}\right)\,,\quad
+\hat{\underline t}_1 = \left(\begin{array}{cc} 0 \\  1 \end{array}\right)\,,\quad
+\hat{\underline t}_2 = \left(\begin{array}{cc} -1 \\  0 \end{array}\right)\,, \quad
+\hat{\underline t}_3 = \left(\begin{array}{cc} 0 \\  -1 \end{array}\right)\,,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6292}%
+$\displaystyle \hat{\underline N}_0 = \left(\begin{array}{cc} 1-\hat{y} \\  0 \end{array}\right)\,,\quad               \hat{\underline N}_1 = \left(\begin{array}{cc} 0 \\  \hat{x} \end{array}\right)\,,\quad                 \hat{\underline N}_2 = \left(\begin{array}{cc} -\hat{y} \\  0 \end{array}\right)\,,\quad                \hat{\underline N}_3 = \left(\begin{array}{cc} 0 \\  \hat{x}-1 \end{array}\right)\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsubsection}
+\stepcounter{subsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6296}%
+$ F_C(\hat{C})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6300}%
+$ \hat{D}F_C(\hat{x})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6302}%
+$ F_C$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsubsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6307}%
+$\displaystyle \underline v(x) = (\hat{D}F_C^{-T} \hat{\underline v}_i) \circ F_C^{-1} (x)$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6315}%
+$ \mathop{\rm curl}\underline v$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6317}%
+$ \widehat{\mathop{\rm curl}}\,\hat{\underline v}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6330}%
+$\displaystyle \mathop{\rm curl}\underline v(x) = (\det \hat{D}F)^{-1} \widehat{\mathop{\rm curl}}\, \hat{\underline v}(\hat{x})\,, \qquad  x = F(\hat{x})\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6334}%
+$ F$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6338}%
+$ (\hat{D}F(F^{-1}(x)))^{-1} = D(F^{-1})(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6340}%
+$ D(F^{-1})_{ij}(x)=
+\frac{\partial \hat{x}_i}{\partial x_j}(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6342}%
+$\displaystyle v_i(x) = \frac{\partial \hat{x}_j}{\partial x_i}(x) \,\hat{\underline v}_j (F^{-1}(x)) \,, \qquad i=1,2\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmldisplayA{displaymath6344}%
+\begin{displaymath}\begin{split}                        \frac{\partial v_2}{\partial x_1} &= \frac{\partial \hat{x}_i}{\partial x_2}(x) \,\frac{\partial }{\partial x_1}\hat{\underline v}_i(F^{-1}(x)) \\                      \frac{\partial v_1}{\partial x_2} &= \frac{\partial \hat{x}_i}{\partial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,,                    \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmldisplayA{displaymath6346}%
+\begin{displaymath}\begin{split}                        \frac{\partial v_2}{\partial x_1} &= \frac{\partial ^2 \hat{x}_i}{\partial x_1\partial x_2}(x)\, \hat{\underline v}_i(F^{-1}(x)) +                                                                       \frac{\partial \hat{x}_i}{\partial x_2}(x) \,\frac{\partial }{\partial x_1}\hat{\underline v}_i(F^{-1}(x)) \\                          \frac{\partial v_1}{\partial x_2} &= \frac{\partial ^2 \hat{x}_i}{\partial x_1\partial x_2}(x) \,\hat{\underline v}_i(F^{-1}(x)) +                                                                       \frac{\partial \hat{x}_i}{\partial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,.                        \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6348}%
+$\displaystyle \mathop{\rm curl}\underline v = \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2} = 
+\frac{\partial \hat{x}_i}{\partial x_2}(x) \,\frac{\partial }{\partial x_1}\hat{\underline v}_i(F^{-1}(x)) 
+- \frac{\partial \hat{x}_i}{\partial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsubsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6353}%
+$ D(F_C^{-1})(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6355}%
+$ \frac{\partial v_i}{\partial x_j} - \frac{\partial v_j}{\partial x_i}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6357}%
+$ i,j = 1,2,3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6359}%
+$ \mathop{\rm Curl}v = Dv^T - Dv$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6361}%
+$\displaystyle \mathop{\rm Curl}v (x) = ((\hat{D}F_C^{-T} \widehat{\mathop{\rm Curl}}\,\hat{v} \,\hat{D}F_C^{-1}) \circ F_C^{-1})(x)
+= (DF_C^{-1})^T(x)\, (\widehat{\mathop{\rm Curl}}\,\hat{v}\circ F_C^{-1})(x)\,DF_C^{-1}(x) \,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6363}%
+$ B_C$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6365}%
+$ \hat{D}F_C(\hat(x))$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6370}%
+$ C = F_C(\hat{C})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6376}%
+$\displaystyle \mathop{\rm curl}\underline v =                                 \left(\frac{1}{\det \hat{D}F_C}\,\hat{D}F_C\, \widehat{\mathop{\rm curl}}\,\hat{\underline v} \right) \circ F_C^{-1}\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6383}%
+$ \mathcal{Q}^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6389}%
+$ \mathcal{P}_K$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6393}%
+$ K=F(\hat{K})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6399}%
+$ [0,|e|] \ni s \mapsto \underline x(s) \in e$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6401}%
+$ [0,|\hat{e}|] \ni \hat{s} \mapsto \hat{\underline x}(\hat{s}) \in \hat{e}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6411}%
+$ \frac{d \underline x}{ds}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6413}%
+$ \frac{d \hat{\underline x}}{d\hat{s}}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6422}%
+$\displaystyle \underline v\cdot \underline t = \frac{|\hat{e}|}{|e|} (\hat{\underline v}\cdot \hat{\underline t})\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6424}%
+$ |\hat{e}|$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6426}%
+$ |e|$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6432}%
+$\displaystyle (\underline v(x))_i = (D(F^{-1})^T \hat{\underline v})_i = \frac{\partial \hat{x}_j}{\partial x_i}(x) \hat{\underline v}_j(\hat{x})\,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6434}%
+$ \hat{x}_j = \hat{x}_j(\underline x(s))$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6436}%
+$ \hat{x}_j = \hat{x}_j(\hat{s}(s))$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6438}%
+$\displaystyle \underline v\cdot \underline t= \underline v \cdot \frac{d \underline x}{ds} = \left( \hat{\underline v}_j\frac{\partial \hat{x}_j}{\partial x_i}\right) (x)\frac{dx_i}{ds}
+= \hat{\underline v}_j \frac{d \hat{x}_j}{ds} = \hat{\underline v}_j \frac{d \hat{x}_j}{d\hat{s}} \frac{d\hat{s}}{ds} 
+= (\hat{\underline v}\cdot \hat{\underline t}) \frac{d\hat{s}}{ds} 
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6440}%
+$ \frac{d\hat{s}}{ds}=\frac{|\hat{e}|}{|e|}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6451}%
+$ \alpha^{[K]}(\underline u) := \int_e (\underline v\cdot \underline t)\varphi \,ds$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6453}%
+$\displaystyle \alpha^{[K]}(\underline u) = \int_e (\underline v\cdot \underline t)\varphi \,ds = 
+\int_{\hat{e}} (\hat{\underline v} \cdot \hat{\underline t}) \hat{\varphi } \, d\hat{s}\, = \hat{\alpha}(\hat{\underline u})\,,
+\qquad \forall\, \hat{\varphi } \in
+\mathbb{P}_{k-1}(\hat{e})\,, \quad \varphi = \hat{\varphi } \circ F^{-1} \in \mathbb{P}_{k-1}(e)\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6455}%
+$ K_- = F_-(\hat{K})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6457}%
+$ K_+ = F_+(\hat{K})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6461}%
+$ \underline N$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6465}%
+$ \underline N_-$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6467}%
+$ \underline N_+$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6475}%
+$ e_+ =F_+(\hat{e}_i)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6477}%
+$ e_- =F_-(\hat{e}_j)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6479}%
+$ \underline t_+ $%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6485}%
+$ \underline t_- = -\underline t_+$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6491}%
+$ \int_{e_+}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6495}%
+$ \int_{e_-}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6499}%
+$ \underline t_-$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6503}%
+$\displaystyle \underline N_+\cdot\underline t_+ + \underline N_-\cdot\underline t_- = 0\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6505}%
+$ \alpha^{[K_+]}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6507}%
+$ \alpha^{[K_-]}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6514}%
+$ \hat{e} \ni \hat{x}(s) := \underline a +
+s\, \hat{\underline t}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6516}%
+$ \hat{\underline p} \in \mathcal{S}^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6520}%
+$\displaystyle (\hat{\underline p}\cdot \hat{\underline t})|_{\hat{e}} \in \mathbb{P}_{k-1}(\hat{e})\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6522}%
+$\displaystyle \hat{\underline p} \in \mathcal{S}^k \quad \Longrightarrow \quad \textrm{for } i=1,2,3: 
+\quad \hat{p}_i(\hat{x}) = \prod_{j=1}^3 \hat{x}_j^{k_{ij}}\,, \quad
+\textrm{where } \sum_{j=1}^3 k_{ij} = k\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6526}%
+$ \hat{x}(s)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6528}%
+$\displaystyle \hat{p}_i(\hat{x}(s)) = \prod_{j=1}^3 (a_j + s\,\hat{t}_j)^{k_{ij}} = s^k\,\prod_{j=1}^3 \hat{t}_j^{k_{ij}} + 
+\hat{\varphi }_{k-1}(s)\,,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6530}%
+$ \hat{\varphi }_{k-1}(s) \in \mathbb{P}_{k-1}(\hat{e})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6532}%
+$\displaystyle (\hat{\underline p}\cdot \hat{\underline t})|_{\hat{e}} = s^k\,\sum_{i=1}^3\hat{t}_i\left(\prod_{j=1}^3 \hat{t}_j^{k_{ij}}\right) +
+\hat{\varphi }_{k-1}(s)\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6534}%
+$ s^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6536}%
+$ \hat{\underline p}(\hat{\underline t}) \cdot \hat{\underline t}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6543}%
+$ \hat{R} = \mathcal{P}^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6547}%
+$ (\hat{\underline v}\cdot \hat{\underline t})|_{\hat{e}} \in \mathbb{P}_{k-1}(\hat{e})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6560}%
+$\displaystyle \underline N_+ := \mathcal{P}_+(\hat{\underline N}_i) = \hat{D}F_+^{-T} \hat{\underline N}_i \,,                        \qquad \underline N_- := -\,\mathcal{P}_-(\hat{\underline N}_j) = -\hat{D}F_-^{-T}\hat{\underline N}_j\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6566}%
+$ \underline v := \mathcal{P}_K(\hat{\underline v})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6570}%
+$ \hat{\underline v} \in \hat{R}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6584}%
+$ (\underline v\cdot \underline t)|_{e} \in \mathbb{P}_{k-1}(e)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6590}%
+$\displaystyle \int_{e_+} \left((\underline N_+\cdot \underline t_+) + (\underline N_-\cdot \underline t_-)\right)\,\varphi \,ds\,, \qquad \forall\,\varphi \in\mathbb{P}_{k-1}(e)
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6592}%
+$ \int_{e_+}(\underline N_-\cdot \underline t_-)\,\varphi \,ds = -\int_{e_-}(\underline N_-\cdot \underline t_-)\,\varphi \,ds$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6598}%
+$\displaystyle \int_{e_+} (\underline N_+ \cdot \underline t_+)\varphi \,ds = \int_{\hat{e}_i}  (\hat{\underline N}_i\cdot \hat{\underline t}_i)\hat{\varphi }\,d\hat{s} = 1                   \qquad \textrm{and} \qquad                      \int_{e_-} (\underline N_- \cdot \underline t_-)\varphi \,ds = -\int_{\hat{e}_j}  (\hat{\underline N}_j\cdot \hat{\underline t}_j)\hat{\varphi }\,d\hat{s} = -1\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6602}%
+$ \hat{\alpha}_j(\hat{\underline 
+v}) = \int_{\hat{e}_j} \hat{\underline v} \cdot \hat{\underline t}_j\,d\hat{s}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6604}%
+$ \hat{\alpha}_j(\hat{\underline N}_i) = \delta_{ij}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6606}%
+$\displaystyle v_j = \hat{\alpha}_j(\hat{\underline v}) = (\hat{\underline N}_j \cdot \hat{\underline t})\,|\hat{e}_j| = ({\underline N}_j \cdot {\underline t}_j)\, |e_j|\,,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6608}%
+$ \alpha_j(\underline v)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6610}%
+$ e_j$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6612}%
+$ |e_j|\left(\underline v\cdot \underline t_j\right)|_e$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6615}%
+$ \alpha^{[K]}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6619}%
+$ \underline t = \frac{|\hat{e}|}{|e|}\,(\hat{D}F)\,\hat{\underline t}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6623}%
+$ \tilde{\underline t} = (\hat{D}F)\,\hat{\underline t}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{subsection}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6626}%
+$ V_h \subset H(\mathop{\rm curl};\Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6628}%
+$\displaystyle \| \underline u - \Pi_h^k \underline u\|_{H(\mathop{\rm curl}; \Omega )} = C\,\inf_{w\in V_h}\| \underline u -  \underline w\|_{H(\mathop{\rm curl}; \Omega )}\,,
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6630}%
+$ \Pi_h^k \underline u \in \mathcal{R}^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6632}%
+$ \Pi_h^k \underline u \in \mathcal{P}^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6636}%
+$ \alpha(\underline u) = \alpha(\Pi_h^k \underline u)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6638}%
+$ \alpha$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6640}%
+$ \Pi_h^k$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6642}%
+$ \underline v\in H^r(\mathop{\rm curl})$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6644}%
+$ r>\frac{1}{2}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6647}%
+$ \mathcal{T}_h$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6649}%
+$ h>0$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6655}%
+$ C>0$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6657}%
+$ r$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6659}%
+$ h$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6663}%
+$\displaystyle \| \underline v - \Pi_h^k \underline v\|_{H(\mathop{\rm curl}; \Omega )} \leq C\,h^{\min\{r,k\}} \|\underline v\|_{H^r(\mathop{\rm curl};\Omega )}\,,$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6665}%
+$ \underline v\in H^r(\mathop{\rm curl};\Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6675}%
+$ \mathcal{O}(h^k)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6677}%
+$ [\mathbb{P}^{k-1}(K)]^d \subseteq \mathcal{R}^k(K)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6679}%
+$\displaystyle \| \underline v - \Pi_h^k \underline v\|_{L^2(\Omega )} \leq C h^k |\underline v|_{H^k(\Omega )}\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6681}%
+$ [\mathbb{P}^{k-1}(K)]^d \subseteq \mathcal{R}^k(K) \subsetneq [\mathbb{P}^k(K)]^d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6685}%
+$ H^k(K)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6687}%
+$ \mathcal{R}^k(K)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6691}%
+$ \| \underline u - \underline u_h\|_{L^2(\Omega )}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6696}%
+$ s>\frac{1}{2}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6698}%
+$\displaystyle \| \underline u -  \underline u_h\|_{L^2(\Omega )} \leq C h^s \| \underline u - \underline u_h\|_{H(\mathop{\rm curl}; \Omega )}\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6702}%
+$ s=1$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6704}%
+$ [\mathbb{P}_k]^d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\stepcounter{section}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6711}%
+$ \Omega = [-1,1]^d$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6715}%
+$\displaystyle c\equiv 1 \,, \qquad \underline f(x,y) = \left(\begin{array}{cc} 3 - y^2 \\  3 - x^2 \end{array}\right)\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6717}%
+$\displaystyle c\equiv 1 \,, \qquad            \underline f(x,y) = (2\pi^2 + 1)\left(\begin{array}{cc} \cos\pi x\sin\pi y \\  -\sin\pi x\cos\pi y \end{array}\right)\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6721}%
+$ 2^5$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6723}%
+$ 2^{13}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6731}%
+$ \mathcal{O}(h)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6733}%
+$ L^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6735}%
+$ \#$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6818}%
+$ H(\mathop{\rm curl};\Omega )$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlpictureA{tex2html_wrap4265}%
+% latex2html id marker 4265
+\includegraphics[width=9.5cm, height=7cm]{example1_errors.eps}%
+\lthtmlpictureZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline6830}%
+$ H(\mathop{\rm curl};(\Omega ))$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlpictureA{tex2html_wrap4271}%
+% latex2html id marker 4271
+\includegraphics[width=9.5cm, height=7cm]{example2_errors.eps}%
+\lthtmlpictureZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlpictureA{tex2html_wrap4293}%
+\includegraphics[width=5.5cm, height=5.5cm]{grid.eps}%
+\lthtmlpictureZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay6913}%
+$\displaystyle c\equiv 1 \,, \qquad \underline f(x,y,z) = \left(\begin{array}{ccc}   xy(1 - y^2)(1-z^2) + 2xy(1-z^2) \\                                                                                                                                          y^2(1 - x^2)(1-z^2) + (1-y^2)(2-x^2-z^2) \\                                                                                                                                     yz(1 - x^2)(1-y^2) + 2yz(1-x^2)                                                                                        \end{array}\right)\,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlpictureA{tex2html_wrap4329}%
+\includegraphics[width=9.5cm, height=7cm]{field1.eps}%
+\lthtmlpictureZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlpictureA{tex2html_wrap4335}%
+\includegraphics[width=9.5cm, height=7cm]{field2.eps}%
+\lthtmlpictureZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7106}%
+$ \mathbb{R}^3$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\appendix
+\stepcounter{section}
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7119}%
+$ \mathbb{R}^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7121}%
+$ \varphi (x,y)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7125}%
+$ c>0$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7127}%
+$ w$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmldisplayA{displaymath7129}%
+\begin{displaymath}\begin{split}                       -\Delta w + c\, w &= \varphi \quad \mathrm{in} \quad \Omega \\                          \underline n \cdot \nabla w &= 0 \quad \mathrm{on} \quad \partial \Omega \,.            \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7131}%
+$ \underline E := \nabla^{\perp} w$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmldisplayA{displaymath7133}%
+\begin{displaymath}\begin{split}                       \underline \mathop{\rm curl}\mathop{\rm curl}\underline E + c\, \underline E  = \underline f \quad \mathrm{in} \quad \Omega \,, \\                      \underline E \wedge \underline n = 0 \quad \mathrm{on} \quad \partial \Omega \,,                \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7135}%
+$ \underline f := \nabla^{\perp} \varphi $%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7137}%
+$ \nabla^{\perp} \varphi := \boldsymbol{R}\nabla\varphi = \left(\begin{array}{cc} \partial _y\varphi \\  -\partial _x\varphi 
+\end{array}\right)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay7141}%
+$\displaystyle \underline E \wedge \underline n = \underline E \cdot \underline t = {\nabla w}^T \boldsymbol{R}^T\boldsymbol{R}\, \underline n = \nabla w \cdot \underline n \,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7143}%
+$ \underline E$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7147}%
+$ \nabla\cdot\nabla^{\perp}w = 0$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7151}%
+$ \underline \mathop{\rm curl}\mathop{\rm curl}\underline E = \nabla(\nabla\cdot\underline E) - \Delta\underline E$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7153}%
+$ \underline \mathop{\rm curl}\mathop{\rm curl}\underline E = - \Delta\underline E$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7155}%
+$ \nabla^{\perp}w$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7157}%
+$ \nabla^{\perp} \varphi $%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmldisplayA{displaymath7162}%
+\begin{displaymath}\begin{split}                       -\Delta w  &= \lambda \, w \quad \mathrm{in} \quad \Omega \\                    \underline n \cdot \nabla w &= 0 \quad \mathrm{on} \quad \partial \Omega \,,            \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7164}%
+$ \varphi = (\lambda + c)\,w$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7166}%
+$ \Omega = [-1,1]^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7168}%
+$ \lambda = 2\pi^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7170}%
+$ w = \cos\pi x\cos\pi y$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay7172}%
+$\displaystyle \underline f = (2\pi^2 + c)\pi \left(\begin{array}{cc} \cos\pi x\sin\pi y \\  -\sin\pi x\cos\pi y \end{array}\right)\,, \qquad
+\underline E = \pi \left(\begin{array}{cc} \cos\pi x\sin\pi y \\  -\sin\pi x\cos\pi y \end{array}\right)\,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7179}%
+$ w(x,y) = (1-x^2)^2(1-y^2)^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7181}%
+$ \underline n \cdot \nabla w = 0$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7183}%
+$ \partial [-1,1]^2$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7185}%
+$ \varphi = -\Delta w + c w$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+\appendix
+\stepcounter{section}
+{\newpage\clearpage
+\lthtmldisplayA{displaymath7188}%
+\begin{displaymath}\begin{split}       \varepsilon \frac{\partial \mathcal{E}}{\partial t} & = \mathop{\rm curl}\mathcal{H} - \sigma \mathcal{E} \,, \\        \mu \frac{\partial \mathcal{H}}{\partial t} & = -\mathop{\rm curl}\mathcal{E}\,, \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7190}%
+$ \mathcal{E}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7192}%
+$ \mathcal{H}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7194}%
+$ \varepsilon (x), \mu(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7196}%
+$ \sigma(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7202}%
+$ L^{\infty}(\Omega )^{d\times d}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7204}%
+$ \varepsilon (x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7206}%
+$ \mu(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7211}%
+$ \mathcal{E}(x,t)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7213}%
+$ \mathcal{H}(x,t)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmldisplayA{displaymath7215}%
+\begin{displaymath}\begin{split}       \mathcal{E}(x,t) &= \mathrm{Re} \left(E(x) \exp(i\omega t)\right) \,, \\        \mathcal{H}(x,t) &= \mathrm{Re} \left(H(x) \exp(i\omega t)\right) \,. \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7217}%
+$ E(x), H(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7219}%
+$ \omega\neq 0$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7222}%
+$ E(x) \exp(i\omega t)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7224}%
+$ H(x) \exp(i\omega t)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7226}%
+$ H(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay7228}%
+$\displaystyle \mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}E) - \omega^2\varepsilon E + i\omega\sigma E = 0
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7230}%
+$ |\omega|$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay7232}%
+$\displaystyle \omega^2\varepsilon \ll \mu^{-1} \,,\quad \omega^2\varepsilon \ll \omega\sigma \,.
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7234}%
+$ \omega^2\varepsilon E(x)$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay7236}%
+$\displaystyle \mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}E) + i\omega\sigma E = 0
+$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_indisplay7242}%
+$\displaystyle E \wedge n = \Phi \quad \mathrm{on} \quad \partial \Omega \,.$%
+\lthtmlindisplaymathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7244}%
+$ \tilde{E}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmlinlinemathA{tex2html_wrap_inline7246}%
+$ \underline u = E - \tilde{E}$%
+\lthtmlinlinemathZ
+\lthtmlcheckvsize\clearpage}
+
+{\newpage\clearpage
+\lthtmldisplayA{displaymath7248}%
+\begin{displaymath}\begin{split}       \mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}u) + i\omega\sigma u &= F \quad \mathrm{in} \quad \Omega \,, \\     u \wedge n &= 0 \quad \mathrm{on} \quad \partial \Omega \,. \end{split}\end{displaymath}%
+\lthtmldisplayZ
+\lthtmlcheckvsize\clearpage}
+
+
+\end{document}
diff --git a/deal.II/doc/reports/nedelec/img1.gif b/deal.II/doc/reports/nedelec/img1.gif
new file mode 100644 (file)
index 0000000..6cbf0cf
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img1.gif differ
diff --git a/deal.II/doc/reports/nedelec/img10.gif b/deal.II/doc/reports/nedelec/img10.gif
new file mode 100644 (file)
index 0000000..8271ff5
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img10.gif differ
diff --git a/deal.II/doc/reports/nedelec/img100.gif b/deal.II/doc/reports/nedelec/img100.gif
new file mode 100644 (file)
index 0000000..b6a7230
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img100.gif differ
diff --git a/deal.II/doc/reports/nedelec/img101.gif b/deal.II/doc/reports/nedelec/img101.gif
new file mode 100644 (file)
index 0000000..7ca04de
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img101.gif differ
diff --git a/deal.II/doc/reports/nedelec/img102.gif b/deal.II/doc/reports/nedelec/img102.gif
new file mode 100644 (file)
index 0000000..6945631
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img102.gif differ
diff --git a/deal.II/doc/reports/nedelec/img103.gif b/deal.II/doc/reports/nedelec/img103.gif
new file mode 100644 (file)
index 0000000..8c5d203
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img103.gif differ
diff --git a/deal.II/doc/reports/nedelec/img104.gif b/deal.II/doc/reports/nedelec/img104.gif
new file mode 100644 (file)
index 0000000..5068719
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img104.gif differ
diff --git a/deal.II/doc/reports/nedelec/img105.gif b/deal.II/doc/reports/nedelec/img105.gif
new file mode 100644 (file)
index 0000000..18540a3
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img105.gif differ
diff --git a/deal.II/doc/reports/nedelec/img106.gif b/deal.II/doc/reports/nedelec/img106.gif
new file mode 100644 (file)
index 0000000..b2aa890
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img106.gif differ
diff --git a/deal.II/doc/reports/nedelec/img107.gif b/deal.II/doc/reports/nedelec/img107.gif
new file mode 100644 (file)
index 0000000..7efd6d8
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img107.gif differ
diff --git a/deal.II/doc/reports/nedelec/img108.gif b/deal.II/doc/reports/nedelec/img108.gif
new file mode 100644 (file)
index 0000000..7bded24
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img108.gif differ
diff --git a/deal.II/doc/reports/nedelec/img109.gif b/deal.II/doc/reports/nedelec/img109.gif
new file mode 100644 (file)
index 0000000..9427885
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img109.gif differ
diff --git a/deal.II/doc/reports/nedelec/img11.gif b/deal.II/doc/reports/nedelec/img11.gif
new file mode 100644 (file)
index 0000000..bafbfc0
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img11.gif differ
diff --git a/deal.II/doc/reports/nedelec/img110.gif b/deal.II/doc/reports/nedelec/img110.gif
new file mode 100644 (file)
index 0000000..c496f94
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img110.gif differ
diff --git a/deal.II/doc/reports/nedelec/img111.gif b/deal.II/doc/reports/nedelec/img111.gif
new file mode 100644 (file)
index 0000000..fcd2adb
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img111.gif differ
diff --git a/deal.II/doc/reports/nedelec/img112.gif b/deal.II/doc/reports/nedelec/img112.gif
new file mode 100644 (file)
index 0000000..72d9586
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img112.gif differ
diff --git a/deal.II/doc/reports/nedelec/img113.gif b/deal.II/doc/reports/nedelec/img113.gif
new file mode 100644 (file)
index 0000000..ccf93f0
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img113.gif differ
diff --git a/deal.II/doc/reports/nedelec/img114.gif b/deal.II/doc/reports/nedelec/img114.gif
new file mode 100644 (file)
index 0000000..45ff3fa
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img114.gif differ
diff --git a/deal.II/doc/reports/nedelec/img115.gif b/deal.II/doc/reports/nedelec/img115.gif
new file mode 100644 (file)
index 0000000..6e8ad92
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img115.gif differ
diff --git a/deal.II/doc/reports/nedelec/img116.gif b/deal.II/doc/reports/nedelec/img116.gif
new file mode 100644 (file)
index 0000000..06fa7a6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img116.gif differ
diff --git a/deal.II/doc/reports/nedelec/img117.gif b/deal.II/doc/reports/nedelec/img117.gif
new file mode 100644 (file)
index 0000000..6146a63
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img117.gif differ
diff --git a/deal.II/doc/reports/nedelec/img118.gif b/deal.II/doc/reports/nedelec/img118.gif
new file mode 100644 (file)
index 0000000..195efbd
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img118.gif differ
diff --git a/deal.II/doc/reports/nedelec/img119.gif b/deal.II/doc/reports/nedelec/img119.gif
new file mode 100644 (file)
index 0000000..7e89b2e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img119.gif differ
diff --git a/deal.II/doc/reports/nedelec/img12.gif b/deal.II/doc/reports/nedelec/img12.gif
new file mode 100644 (file)
index 0000000..1345d64
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img12.gif differ
diff --git a/deal.II/doc/reports/nedelec/img120.gif b/deal.II/doc/reports/nedelec/img120.gif
new file mode 100644 (file)
index 0000000..32eb0f9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img120.gif differ
diff --git a/deal.II/doc/reports/nedelec/img121.gif b/deal.II/doc/reports/nedelec/img121.gif
new file mode 100644 (file)
index 0000000..53382ad
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img121.gif differ
diff --git a/deal.II/doc/reports/nedelec/img122.gif b/deal.II/doc/reports/nedelec/img122.gif
new file mode 100644 (file)
index 0000000..9ad1c1c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img122.gif differ
diff --git a/deal.II/doc/reports/nedelec/img123.gif b/deal.II/doc/reports/nedelec/img123.gif
new file mode 100644 (file)
index 0000000..7d47822
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img123.gif differ
diff --git a/deal.II/doc/reports/nedelec/img124.gif b/deal.II/doc/reports/nedelec/img124.gif
new file mode 100644 (file)
index 0000000..ba1bcd3
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img124.gif differ
diff --git a/deal.II/doc/reports/nedelec/img125.gif b/deal.II/doc/reports/nedelec/img125.gif
new file mode 100644 (file)
index 0000000..f7a1476
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img125.gif differ
diff --git a/deal.II/doc/reports/nedelec/img126.gif b/deal.II/doc/reports/nedelec/img126.gif
new file mode 100644 (file)
index 0000000..2a76268
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img126.gif differ
diff --git a/deal.II/doc/reports/nedelec/img127.gif b/deal.II/doc/reports/nedelec/img127.gif
new file mode 100644 (file)
index 0000000..5ffce91
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img127.gif differ
diff --git a/deal.II/doc/reports/nedelec/img128.gif b/deal.II/doc/reports/nedelec/img128.gif
new file mode 100644 (file)
index 0000000..eabe506
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img128.gif differ
diff --git a/deal.II/doc/reports/nedelec/img129.gif b/deal.II/doc/reports/nedelec/img129.gif
new file mode 100644 (file)
index 0000000..3c4eab3
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img129.gif differ
diff --git a/deal.II/doc/reports/nedelec/img13.gif b/deal.II/doc/reports/nedelec/img13.gif
new file mode 100644 (file)
index 0000000..0998cdb
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img13.gif differ
diff --git a/deal.II/doc/reports/nedelec/img130.gif b/deal.II/doc/reports/nedelec/img130.gif
new file mode 100644 (file)
index 0000000..87a2265
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img130.gif differ
diff --git a/deal.II/doc/reports/nedelec/img131.gif b/deal.II/doc/reports/nedelec/img131.gif
new file mode 100644 (file)
index 0000000..4997e55
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img131.gif differ
diff --git a/deal.II/doc/reports/nedelec/img132.gif b/deal.II/doc/reports/nedelec/img132.gif
new file mode 100644 (file)
index 0000000..7ad2aa2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img132.gif differ
diff --git a/deal.II/doc/reports/nedelec/img133.gif b/deal.II/doc/reports/nedelec/img133.gif
new file mode 100644 (file)
index 0000000..fb50c68
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img133.gif differ
diff --git a/deal.II/doc/reports/nedelec/img134.gif b/deal.II/doc/reports/nedelec/img134.gif
new file mode 100644 (file)
index 0000000..f6a45a8
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img134.gif differ
diff --git a/deal.II/doc/reports/nedelec/img135.gif b/deal.II/doc/reports/nedelec/img135.gif
new file mode 100644 (file)
index 0000000..42d33b7
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img135.gif differ
diff --git a/deal.II/doc/reports/nedelec/img136.gif b/deal.II/doc/reports/nedelec/img136.gif
new file mode 100644 (file)
index 0000000..4d36f6f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img136.gif differ
diff --git a/deal.II/doc/reports/nedelec/img137.gif b/deal.II/doc/reports/nedelec/img137.gif
new file mode 100644 (file)
index 0000000..23c3dba
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img137.gif differ
diff --git a/deal.II/doc/reports/nedelec/img138.gif b/deal.II/doc/reports/nedelec/img138.gif
new file mode 100644 (file)
index 0000000..67be493
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img138.gif differ
diff --git a/deal.II/doc/reports/nedelec/img139.gif b/deal.II/doc/reports/nedelec/img139.gif
new file mode 100644 (file)
index 0000000..362b81e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img139.gif differ
diff --git a/deal.II/doc/reports/nedelec/img14.gif b/deal.II/doc/reports/nedelec/img14.gif
new file mode 100644 (file)
index 0000000..a22ecf9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img14.gif differ
diff --git a/deal.II/doc/reports/nedelec/img140.gif b/deal.II/doc/reports/nedelec/img140.gif
new file mode 100644 (file)
index 0000000..3f2ee26
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img140.gif differ
diff --git a/deal.II/doc/reports/nedelec/img141.gif b/deal.II/doc/reports/nedelec/img141.gif
new file mode 100644 (file)
index 0000000..459e9b3
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img141.gif differ
diff --git a/deal.II/doc/reports/nedelec/img142.gif b/deal.II/doc/reports/nedelec/img142.gif
new file mode 100644 (file)
index 0000000..58c7976
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img142.gif differ
diff --git a/deal.II/doc/reports/nedelec/img143.gif b/deal.II/doc/reports/nedelec/img143.gif
new file mode 100644 (file)
index 0000000..5ef586a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img143.gif differ
diff --git a/deal.II/doc/reports/nedelec/img144.gif b/deal.II/doc/reports/nedelec/img144.gif
new file mode 100644 (file)
index 0000000..7314d5a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img144.gif differ
diff --git a/deal.II/doc/reports/nedelec/img145.gif b/deal.II/doc/reports/nedelec/img145.gif
new file mode 100644 (file)
index 0000000..8c30aed
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img145.gif differ
diff --git a/deal.II/doc/reports/nedelec/img146.gif b/deal.II/doc/reports/nedelec/img146.gif
new file mode 100644 (file)
index 0000000..4285ae8
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img146.gif differ
diff --git a/deal.II/doc/reports/nedelec/img147.gif b/deal.II/doc/reports/nedelec/img147.gif
new file mode 100644 (file)
index 0000000..a9a8ef7
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img147.gif differ
diff --git a/deal.II/doc/reports/nedelec/img148.gif b/deal.II/doc/reports/nedelec/img148.gif
new file mode 100644 (file)
index 0000000..851a316
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img148.gif differ
diff --git a/deal.II/doc/reports/nedelec/img149.gif b/deal.II/doc/reports/nedelec/img149.gif
new file mode 100644 (file)
index 0000000..3168a14
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img149.gif differ
diff --git a/deal.II/doc/reports/nedelec/img15.gif b/deal.II/doc/reports/nedelec/img15.gif
new file mode 100644 (file)
index 0000000..76e1d31
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img15.gif differ
diff --git a/deal.II/doc/reports/nedelec/img150.gif b/deal.II/doc/reports/nedelec/img150.gif
new file mode 100644 (file)
index 0000000..436b154
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img150.gif differ
diff --git a/deal.II/doc/reports/nedelec/img151.gif b/deal.II/doc/reports/nedelec/img151.gif
new file mode 100644 (file)
index 0000000..bd7d29b
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img151.gif differ
diff --git a/deal.II/doc/reports/nedelec/img152.gif b/deal.II/doc/reports/nedelec/img152.gif
new file mode 100644 (file)
index 0000000..b9f63c9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img152.gif differ
diff --git a/deal.II/doc/reports/nedelec/img153.gif b/deal.II/doc/reports/nedelec/img153.gif
new file mode 100644 (file)
index 0000000..65c5b9e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img153.gif differ
diff --git a/deal.II/doc/reports/nedelec/img154.gif b/deal.II/doc/reports/nedelec/img154.gif
new file mode 100644 (file)
index 0000000..b3a07ff
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img154.gif differ
diff --git a/deal.II/doc/reports/nedelec/img155.gif b/deal.II/doc/reports/nedelec/img155.gif
new file mode 100644 (file)
index 0000000..538b74d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img155.gif differ
diff --git a/deal.II/doc/reports/nedelec/img156.gif b/deal.II/doc/reports/nedelec/img156.gif
new file mode 100644 (file)
index 0000000..97fe926
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img156.gif differ
diff --git a/deal.II/doc/reports/nedelec/img157.gif b/deal.II/doc/reports/nedelec/img157.gif
new file mode 100644 (file)
index 0000000..e4cd862
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img157.gif differ
diff --git a/deal.II/doc/reports/nedelec/img158.gif b/deal.II/doc/reports/nedelec/img158.gif
new file mode 100644 (file)
index 0000000..25a9bbe
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img158.gif differ
diff --git a/deal.II/doc/reports/nedelec/img159.gif b/deal.II/doc/reports/nedelec/img159.gif
new file mode 100644 (file)
index 0000000..0ab5524
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img159.gif differ
diff --git a/deal.II/doc/reports/nedelec/img16.gif b/deal.II/doc/reports/nedelec/img16.gif
new file mode 100644 (file)
index 0000000..cc59f0f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img16.gif differ
diff --git a/deal.II/doc/reports/nedelec/img160.gif b/deal.II/doc/reports/nedelec/img160.gif
new file mode 100644 (file)
index 0000000..fbafab0
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img160.gif differ
diff --git a/deal.II/doc/reports/nedelec/img161.gif b/deal.II/doc/reports/nedelec/img161.gif
new file mode 100644 (file)
index 0000000..1f6e697
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img161.gif differ
diff --git a/deal.II/doc/reports/nedelec/img162.gif b/deal.II/doc/reports/nedelec/img162.gif
new file mode 100644 (file)
index 0000000..0390d9c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img162.gif differ
diff --git a/deal.II/doc/reports/nedelec/img163.gif b/deal.II/doc/reports/nedelec/img163.gif
new file mode 100644 (file)
index 0000000..d79ddb5
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img163.gif differ
diff --git a/deal.II/doc/reports/nedelec/img164.gif b/deal.II/doc/reports/nedelec/img164.gif
new file mode 100644 (file)
index 0000000..648e028
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img164.gif differ
diff --git a/deal.II/doc/reports/nedelec/img165.gif b/deal.II/doc/reports/nedelec/img165.gif
new file mode 100644 (file)
index 0000000..575a303
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img165.gif differ
diff --git a/deal.II/doc/reports/nedelec/img166.gif b/deal.II/doc/reports/nedelec/img166.gif
new file mode 100644 (file)
index 0000000..a762bb2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img166.gif differ
diff --git a/deal.II/doc/reports/nedelec/img167.gif b/deal.II/doc/reports/nedelec/img167.gif
new file mode 100644 (file)
index 0000000..8855254
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img167.gif differ
diff --git a/deal.II/doc/reports/nedelec/img168.gif b/deal.II/doc/reports/nedelec/img168.gif
new file mode 100644 (file)
index 0000000..89a8137
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img168.gif differ
diff --git a/deal.II/doc/reports/nedelec/img169.gif b/deal.II/doc/reports/nedelec/img169.gif
new file mode 100644 (file)
index 0000000..f9a6873
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img169.gif differ
diff --git a/deal.II/doc/reports/nedelec/img17.gif b/deal.II/doc/reports/nedelec/img17.gif
new file mode 100644 (file)
index 0000000..5d848f2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img17.gif differ
diff --git a/deal.II/doc/reports/nedelec/img170.gif b/deal.II/doc/reports/nedelec/img170.gif
new file mode 100644 (file)
index 0000000..f5da41f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img170.gif differ
diff --git a/deal.II/doc/reports/nedelec/img171.gif b/deal.II/doc/reports/nedelec/img171.gif
new file mode 100644 (file)
index 0000000..0f68ec5
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img171.gif differ
diff --git a/deal.II/doc/reports/nedelec/img172.gif b/deal.II/doc/reports/nedelec/img172.gif
new file mode 100644 (file)
index 0000000..5754bff
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img172.gif differ
diff --git a/deal.II/doc/reports/nedelec/img173.gif b/deal.II/doc/reports/nedelec/img173.gif
new file mode 100644 (file)
index 0000000..5d113d2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img173.gif differ
diff --git a/deal.II/doc/reports/nedelec/img174.gif b/deal.II/doc/reports/nedelec/img174.gif
new file mode 100644 (file)
index 0000000..40d2fe4
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img174.gif differ
diff --git a/deal.II/doc/reports/nedelec/img175.gif b/deal.II/doc/reports/nedelec/img175.gif
new file mode 100644 (file)
index 0000000..a17d2bc
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img175.gif differ
diff --git a/deal.II/doc/reports/nedelec/img176.gif b/deal.II/doc/reports/nedelec/img176.gif
new file mode 100644 (file)
index 0000000..331bd92
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img176.gif differ
diff --git a/deal.II/doc/reports/nedelec/img177.gif b/deal.II/doc/reports/nedelec/img177.gif
new file mode 100644 (file)
index 0000000..765027a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img177.gif differ
diff --git a/deal.II/doc/reports/nedelec/img178.gif b/deal.II/doc/reports/nedelec/img178.gif
new file mode 100644 (file)
index 0000000..c8d977a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img178.gif differ
diff --git a/deal.II/doc/reports/nedelec/img179.gif b/deal.II/doc/reports/nedelec/img179.gif
new file mode 100644 (file)
index 0000000..4841921
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img179.gif differ
diff --git a/deal.II/doc/reports/nedelec/img18.gif b/deal.II/doc/reports/nedelec/img18.gif
new file mode 100644 (file)
index 0000000..6c2cd98
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img18.gif differ
diff --git a/deal.II/doc/reports/nedelec/img180.gif b/deal.II/doc/reports/nedelec/img180.gif
new file mode 100644 (file)
index 0000000..62f6821
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img180.gif differ
diff --git a/deal.II/doc/reports/nedelec/img181.gif b/deal.II/doc/reports/nedelec/img181.gif
new file mode 100644 (file)
index 0000000..fe54c83
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img181.gif differ
diff --git a/deal.II/doc/reports/nedelec/img182.gif b/deal.II/doc/reports/nedelec/img182.gif
new file mode 100644 (file)
index 0000000..0741dc6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img182.gif differ
diff --git a/deal.II/doc/reports/nedelec/img183.gif b/deal.II/doc/reports/nedelec/img183.gif
new file mode 100644 (file)
index 0000000..55ddc4d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img183.gif differ
diff --git a/deal.II/doc/reports/nedelec/img184.gif b/deal.II/doc/reports/nedelec/img184.gif
new file mode 100644 (file)
index 0000000..1bff6cb
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img184.gif differ
diff --git a/deal.II/doc/reports/nedelec/img185.gif b/deal.II/doc/reports/nedelec/img185.gif
new file mode 100644 (file)
index 0000000..f08a3d5
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img185.gif differ
diff --git a/deal.II/doc/reports/nedelec/img186.gif b/deal.II/doc/reports/nedelec/img186.gif
new file mode 100644 (file)
index 0000000..c0e8094
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img186.gif differ
diff --git a/deal.II/doc/reports/nedelec/img187.gif b/deal.II/doc/reports/nedelec/img187.gif
new file mode 100644 (file)
index 0000000..88180d0
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img187.gif differ
diff --git a/deal.II/doc/reports/nedelec/img188.gif b/deal.II/doc/reports/nedelec/img188.gif
new file mode 100644 (file)
index 0000000..a01cf02
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img188.gif differ
diff --git a/deal.II/doc/reports/nedelec/img189.gif b/deal.II/doc/reports/nedelec/img189.gif
new file mode 100644 (file)
index 0000000..819d3d6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img189.gif differ
diff --git a/deal.II/doc/reports/nedelec/img19.gif b/deal.II/doc/reports/nedelec/img19.gif
new file mode 100644 (file)
index 0000000..5bc2b33
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img19.gif differ
diff --git a/deal.II/doc/reports/nedelec/img190.gif b/deal.II/doc/reports/nedelec/img190.gif
new file mode 100644 (file)
index 0000000..0f7af34
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img190.gif differ
diff --git a/deal.II/doc/reports/nedelec/img191.gif b/deal.II/doc/reports/nedelec/img191.gif
new file mode 100644 (file)
index 0000000..83a2063
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img191.gif differ
diff --git a/deal.II/doc/reports/nedelec/img192.gif b/deal.II/doc/reports/nedelec/img192.gif
new file mode 100644 (file)
index 0000000..11c49c2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img192.gif differ
diff --git a/deal.II/doc/reports/nedelec/img193.gif b/deal.II/doc/reports/nedelec/img193.gif
new file mode 100644 (file)
index 0000000..3d34d7a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img193.gif differ
diff --git a/deal.II/doc/reports/nedelec/img194.gif b/deal.II/doc/reports/nedelec/img194.gif
new file mode 100644 (file)
index 0000000..3c4b338
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img194.gif differ
diff --git a/deal.II/doc/reports/nedelec/img195.gif b/deal.II/doc/reports/nedelec/img195.gif
new file mode 100644 (file)
index 0000000..581aadf
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img195.gif differ
diff --git a/deal.II/doc/reports/nedelec/img196.gif b/deal.II/doc/reports/nedelec/img196.gif
new file mode 100644 (file)
index 0000000..a0a5590
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img196.gif differ
diff --git a/deal.II/doc/reports/nedelec/img197.gif b/deal.II/doc/reports/nedelec/img197.gif
new file mode 100644 (file)
index 0000000..ee6e0cd
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img197.gif differ
diff --git a/deal.II/doc/reports/nedelec/img198.gif b/deal.II/doc/reports/nedelec/img198.gif
new file mode 100644 (file)
index 0000000..63e329c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img198.gif differ
diff --git a/deal.II/doc/reports/nedelec/img199.gif b/deal.II/doc/reports/nedelec/img199.gif
new file mode 100644 (file)
index 0000000..e59e447
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img199.gif differ
diff --git a/deal.II/doc/reports/nedelec/img2.gif b/deal.II/doc/reports/nedelec/img2.gif
new file mode 100644 (file)
index 0000000..c4e0711
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img2.gif differ
diff --git a/deal.II/doc/reports/nedelec/img20.gif b/deal.II/doc/reports/nedelec/img20.gif
new file mode 100644 (file)
index 0000000..ef4b409
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img20.gif differ
diff --git a/deal.II/doc/reports/nedelec/img200.gif b/deal.II/doc/reports/nedelec/img200.gif
new file mode 100644 (file)
index 0000000..93a135f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img200.gif differ
diff --git a/deal.II/doc/reports/nedelec/img201.gif b/deal.II/doc/reports/nedelec/img201.gif
new file mode 100644 (file)
index 0000000..bfc12ea
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img201.gif differ
diff --git a/deal.II/doc/reports/nedelec/img202.gif b/deal.II/doc/reports/nedelec/img202.gif
new file mode 100644 (file)
index 0000000..614c328
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img202.gif differ
diff --git a/deal.II/doc/reports/nedelec/img203.gif b/deal.II/doc/reports/nedelec/img203.gif
new file mode 100644 (file)
index 0000000..0a2e4f4
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img203.gif differ
diff --git a/deal.II/doc/reports/nedelec/img204.gif b/deal.II/doc/reports/nedelec/img204.gif
new file mode 100644 (file)
index 0000000..165606a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img204.gif differ
diff --git a/deal.II/doc/reports/nedelec/img205.gif b/deal.II/doc/reports/nedelec/img205.gif
new file mode 100644 (file)
index 0000000..807ead1
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img205.gif differ
diff --git a/deal.II/doc/reports/nedelec/img206.gif b/deal.II/doc/reports/nedelec/img206.gif
new file mode 100644 (file)
index 0000000..71563ed
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img206.gif differ
diff --git a/deal.II/doc/reports/nedelec/img207.gif b/deal.II/doc/reports/nedelec/img207.gif
new file mode 100644 (file)
index 0000000..9120e26
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img207.gif differ
diff --git a/deal.II/doc/reports/nedelec/img208.gif b/deal.II/doc/reports/nedelec/img208.gif
new file mode 100644 (file)
index 0000000..3903d3a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img208.gif differ
diff --git a/deal.II/doc/reports/nedelec/img209.gif b/deal.II/doc/reports/nedelec/img209.gif
new file mode 100644 (file)
index 0000000..dc27688
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img209.gif differ
diff --git a/deal.II/doc/reports/nedelec/img21.gif b/deal.II/doc/reports/nedelec/img21.gif
new file mode 100644 (file)
index 0000000..33ee15e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img21.gif differ
diff --git a/deal.II/doc/reports/nedelec/img210.gif b/deal.II/doc/reports/nedelec/img210.gif
new file mode 100644 (file)
index 0000000..4b5848b
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img210.gif differ
diff --git a/deal.II/doc/reports/nedelec/img211.gif b/deal.II/doc/reports/nedelec/img211.gif
new file mode 100644 (file)
index 0000000..43716a2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img211.gif differ
diff --git a/deal.II/doc/reports/nedelec/img212.gif b/deal.II/doc/reports/nedelec/img212.gif
new file mode 100644 (file)
index 0000000..a8f212a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img212.gif differ
diff --git a/deal.II/doc/reports/nedelec/img213.gif b/deal.II/doc/reports/nedelec/img213.gif
new file mode 100644 (file)
index 0000000..b61c949
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img213.gif differ
diff --git a/deal.II/doc/reports/nedelec/img214.gif b/deal.II/doc/reports/nedelec/img214.gif
new file mode 100644 (file)
index 0000000..f5c2336
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img214.gif differ
diff --git a/deal.II/doc/reports/nedelec/img215.gif b/deal.II/doc/reports/nedelec/img215.gif
new file mode 100644 (file)
index 0000000..a768e4d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img215.gif differ
diff --git a/deal.II/doc/reports/nedelec/img216.gif b/deal.II/doc/reports/nedelec/img216.gif
new file mode 100644 (file)
index 0000000..3a0fd6e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img216.gif differ
diff --git a/deal.II/doc/reports/nedelec/img217.gif b/deal.II/doc/reports/nedelec/img217.gif
new file mode 100644 (file)
index 0000000..b2944b8
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img217.gif differ
diff --git a/deal.II/doc/reports/nedelec/img218.gif b/deal.II/doc/reports/nedelec/img218.gif
new file mode 100644 (file)
index 0000000..26a145c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img218.gif differ
diff --git a/deal.II/doc/reports/nedelec/img219.gif b/deal.II/doc/reports/nedelec/img219.gif
new file mode 100644 (file)
index 0000000..fe81f80
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img219.gif differ
diff --git a/deal.II/doc/reports/nedelec/img22.gif b/deal.II/doc/reports/nedelec/img22.gif
new file mode 100644 (file)
index 0000000..4ba365c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img22.gif differ
diff --git a/deal.II/doc/reports/nedelec/img220.gif b/deal.II/doc/reports/nedelec/img220.gif
new file mode 100644 (file)
index 0000000..bc8026d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img220.gif differ
diff --git a/deal.II/doc/reports/nedelec/img221.gif b/deal.II/doc/reports/nedelec/img221.gif
new file mode 100644 (file)
index 0000000..73605a1
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img221.gif differ
diff --git a/deal.II/doc/reports/nedelec/img222.gif b/deal.II/doc/reports/nedelec/img222.gif
new file mode 100644 (file)
index 0000000..3f10d33
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img222.gif differ
diff --git a/deal.II/doc/reports/nedelec/img223.gif b/deal.II/doc/reports/nedelec/img223.gif
new file mode 100644 (file)
index 0000000..cd19761
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img223.gif differ
diff --git a/deal.II/doc/reports/nedelec/img224.gif b/deal.II/doc/reports/nedelec/img224.gif
new file mode 100644 (file)
index 0000000..20de769
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img224.gif differ
diff --git a/deal.II/doc/reports/nedelec/img225.gif b/deal.II/doc/reports/nedelec/img225.gif
new file mode 100644 (file)
index 0000000..7e82a54
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img225.gif differ
diff --git a/deal.II/doc/reports/nedelec/img226.gif b/deal.II/doc/reports/nedelec/img226.gif
new file mode 100644 (file)
index 0000000..fd7880f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img226.gif differ
diff --git a/deal.II/doc/reports/nedelec/img227.gif b/deal.II/doc/reports/nedelec/img227.gif
new file mode 100644 (file)
index 0000000..427fce4
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img227.gif differ
diff --git a/deal.II/doc/reports/nedelec/img228.gif b/deal.II/doc/reports/nedelec/img228.gif
new file mode 100644 (file)
index 0000000..d80516e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img228.gif differ
diff --git a/deal.II/doc/reports/nedelec/img229.gif b/deal.II/doc/reports/nedelec/img229.gif
new file mode 100644 (file)
index 0000000..8a42fc0
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img229.gif differ
diff --git a/deal.II/doc/reports/nedelec/img23.gif b/deal.II/doc/reports/nedelec/img23.gif
new file mode 100644 (file)
index 0000000..fbefef3
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img23.gif differ
diff --git a/deal.II/doc/reports/nedelec/img230.gif b/deal.II/doc/reports/nedelec/img230.gif
new file mode 100644 (file)
index 0000000..c41a913
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img230.gif differ
diff --git a/deal.II/doc/reports/nedelec/img231.gif b/deal.II/doc/reports/nedelec/img231.gif
new file mode 100644 (file)
index 0000000..ea1d3be
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img231.gif differ
diff --git a/deal.II/doc/reports/nedelec/img232.gif b/deal.II/doc/reports/nedelec/img232.gif
new file mode 100644 (file)
index 0000000..6aed78e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img232.gif differ
diff --git a/deal.II/doc/reports/nedelec/img233.gif b/deal.II/doc/reports/nedelec/img233.gif
new file mode 100644 (file)
index 0000000..6022c21
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img233.gif differ
diff --git a/deal.II/doc/reports/nedelec/img234.gif b/deal.II/doc/reports/nedelec/img234.gif
new file mode 100644 (file)
index 0000000..6b041c5
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img234.gif differ
diff --git a/deal.II/doc/reports/nedelec/img235.gif b/deal.II/doc/reports/nedelec/img235.gif
new file mode 100644 (file)
index 0000000..02046d1
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img235.gif differ
diff --git a/deal.II/doc/reports/nedelec/img236.gif b/deal.II/doc/reports/nedelec/img236.gif
new file mode 100644 (file)
index 0000000..8fee559
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img236.gif differ
diff --git a/deal.II/doc/reports/nedelec/img237.gif b/deal.II/doc/reports/nedelec/img237.gif
new file mode 100644 (file)
index 0000000..25ab77e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img237.gif differ
diff --git a/deal.II/doc/reports/nedelec/img238.gif b/deal.II/doc/reports/nedelec/img238.gif
new file mode 100644 (file)
index 0000000..ea5d0f8
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img238.gif differ
diff --git a/deal.II/doc/reports/nedelec/img239.gif b/deal.II/doc/reports/nedelec/img239.gif
new file mode 100644 (file)
index 0000000..170cade
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img239.gif differ
diff --git a/deal.II/doc/reports/nedelec/img24.gif b/deal.II/doc/reports/nedelec/img24.gif
new file mode 100644 (file)
index 0000000..218d68b
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img24.gif differ
diff --git a/deal.II/doc/reports/nedelec/img240.gif b/deal.II/doc/reports/nedelec/img240.gif
new file mode 100644 (file)
index 0000000..8f4fb49
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img240.gif differ
diff --git a/deal.II/doc/reports/nedelec/img241.gif b/deal.II/doc/reports/nedelec/img241.gif
new file mode 100644 (file)
index 0000000..bf991ff
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img241.gif differ
diff --git a/deal.II/doc/reports/nedelec/img242.gif b/deal.II/doc/reports/nedelec/img242.gif
new file mode 100644 (file)
index 0000000..fd55c13
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img242.gif differ
diff --git a/deal.II/doc/reports/nedelec/img243.gif b/deal.II/doc/reports/nedelec/img243.gif
new file mode 100644 (file)
index 0000000..0b1f9a1
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img243.gif differ
diff --git a/deal.II/doc/reports/nedelec/img244.gif b/deal.II/doc/reports/nedelec/img244.gif
new file mode 100644 (file)
index 0000000..1c958ec
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img244.gif differ
diff --git a/deal.II/doc/reports/nedelec/img245.gif b/deal.II/doc/reports/nedelec/img245.gif
new file mode 100644 (file)
index 0000000..bcf9ea7
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img245.gif differ
diff --git a/deal.II/doc/reports/nedelec/img246.gif b/deal.II/doc/reports/nedelec/img246.gif
new file mode 100644 (file)
index 0000000..6209a60
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img246.gif differ
diff --git a/deal.II/doc/reports/nedelec/img247.gif b/deal.II/doc/reports/nedelec/img247.gif
new file mode 100644 (file)
index 0000000..d5ae9c3
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img247.gif differ
diff --git a/deal.II/doc/reports/nedelec/img248.gif b/deal.II/doc/reports/nedelec/img248.gif
new file mode 100644 (file)
index 0000000..e117220
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img248.gif differ
diff --git a/deal.II/doc/reports/nedelec/img249.gif b/deal.II/doc/reports/nedelec/img249.gif
new file mode 100644 (file)
index 0000000..b78ae4e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img249.gif differ
diff --git a/deal.II/doc/reports/nedelec/img25.gif b/deal.II/doc/reports/nedelec/img25.gif
new file mode 100644 (file)
index 0000000..9b98022
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img25.gif differ
diff --git a/deal.II/doc/reports/nedelec/img250.gif b/deal.II/doc/reports/nedelec/img250.gif
new file mode 100644 (file)
index 0000000..7d66016
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img250.gif differ
diff --git a/deal.II/doc/reports/nedelec/img251.gif b/deal.II/doc/reports/nedelec/img251.gif
new file mode 100644 (file)
index 0000000..ca69e53
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img251.gif differ
diff --git a/deal.II/doc/reports/nedelec/img252.gif b/deal.II/doc/reports/nedelec/img252.gif
new file mode 100644 (file)
index 0000000..dd74440
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img252.gif differ
diff --git a/deal.II/doc/reports/nedelec/img253.gif b/deal.II/doc/reports/nedelec/img253.gif
new file mode 100644 (file)
index 0000000..8e3441a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img253.gif differ
diff --git a/deal.II/doc/reports/nedelec/img254.gif b/deal.II/doc/reports/nedelec/img254.gif
new file mode 100644 (file)
index 0000000..0b9a693
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img254.gif differ
diff --git a/deal.II/doc/reports/nedelec/img255.gif b/deal.II/doc/reports/nedelec/img255.gif
new file mode 100644 (file)
index 0000000..e6e4e2a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img255.gif differ
diff --git a/deal.II/doc/reports/nedelec/img256.gif b/deal.II/doc/reports/nedelec/img256.gif
new file mode 100644 (file)
index 0000000..27d8550
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img256.gif differ
diff --git a/deal.II/doc/reports/nedelec/img257.gif b/deal.II/doc/reports/nedelec/img257.gif
new file mode 100644 (file)
index 0000000..80daada
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img257.gif differ
diff --git a/deal.II/doc/reports/nedelec/img258.gif b/deal.II/doc/reports/nedelec/img258.gif
new file mode 100644 (file)
index 0000000..d553cb2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img258.gif differ
diff --git a/deal.II/doc/reports/nedelec/img259.gif b/deal.II/doc/reports/nedelec/img259.gif
new file mode 100644 (file)
index 0000000..a4d0530
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img259.gif differ
diff --git a/deal.II/doc/reports/nedelec/img26.gif b/deal.II/doc/reports/nedelec/img26.gif
new file mode 100644 (file)
index 0000000..2a37f75
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img26.gif differ
diff --git a/deal.II/doc/reports/nedelec/img260.gif b/deal.II/doc/reports/nedelec/img260.gif
new file mode 100644 (file)
index 0000000..ad76243
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img260.gif differ
diff --git a/deal.II/doc/reports/nedelec/img261.gif b/deal.II/doc/reports/nedelec/img261.gif
new file mode 100644 (file)
index 0000000..9608ca2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img261.gif differ
diff --git a/deal.II/doc/reports/nedelec/img262.gif b/deal.II/doc/reports/nedelec/img262.gif
new file mode 100644 (file)
index 0000000..8084d5d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img262.gif differ
diff --git a/deal.II/doc/reports/nedelec/img263.gif b/deal.II/doc/reports/nedelec/img263.gif
new file mode 100644 (file)
index 0000000..2a1be8a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img263.gif differ
diff --git a/deal.II/doc/reports/nedelec/img264.gif b/deal.II/doc/reports/nedelec/img264.gif
new file mode 100644 (file)
index 0000000..9e29823
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img264.gif differ
diff --git a/deal.II/doc/reports/nedelec/img265.gif b/deal.II/doc/reports/nedelec/img265.gif
new file mode 100644 (file)
index 0000000..4970b87
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img265.gif differ
diff --git a/deal.II/doc/reports/nedelec/img266.gif b/deal.II/doc/reports/nedelec/img266.gif
new file mode 100644 (file)
index 0000000..9ef835a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img266.gif differ
diff --git a/deal.II/doc/reports/nedelec/img267.gif b/deal.II/doc/reports/nedelec/img267.gif
new file mode 100644 (file)
index 0000000..9d311d2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img267.gif differ
diff --git a/deal.II/doc/reports/nedelec/img268.gif b/deal.II/doc/reports/nedelec/img268.gif
new file mode 100644 (file)
index 0000000..5f3feeb
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img268.gif differ
diff --git a/deal.II/doc/reports/nedelec/img269.gif b/deal.II/doc/reports/nedelec/img269.gif
new file mode 100644 (file)
index 0000000..7b030b6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img269.gif differ
diff --git a/deal.II/doc/reports/nedelec/img27.gif b/deal.II/doc/reports/nedelec/img27.gif
new file mode 100644 (file)
index 0000000..37cb317
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img27.gif differ
diff --git a/deal.II/doc/reports/nedelec/img270.gif b/deal.II/doc/reports/nedelec/img270.gif
new file mode 100644 (file)
index 0000000..39c50b6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img270.gif differ
diff --git a/deal.II/doc/reports/nedelec/img271.gif b/deal.II/doc/reports/nedelec/img271.gif
new file mode 100644 (file)
index 0000000..789bbc9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img271.gif differ
diff --git a/deal.II/doc/reports/nedelec/img272.gif b/deal.II/doc/reports/nedelec/img272.gif
new file mode 100644 (file)
index 0000000..5e8de0d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img272.gif differ
diff --git a/deal.II/doc/reports/nedelec/img273.gif b/deal.II/doc/reports/nedelec/img273.gif
new file mode 100644 (file)
index 0000000..b12a45e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img273.gif differ
diff --git a/deal.II/doc/reports/nedelec/img274.gif b/deal.II/doc/reports/nedelec/img274.gif
new file mode 100644 (file)
index 0000000..df6dff3
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img274.gif differ
diff --git a/deal.II/doc/reports/nedelec/img275.gif b/deal.II/doc/reports/nedelec/img275.gif
new file mode 100644 (file)
index 0000000..a3b8b96
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img275.gif differ
diff --git a/deal.II/doc/reports/nedelec/img276.gif b/deal.II/doc/reports/nedelec/img276.gif
new file mode 100644 (file)
index 0000000..46cbe6a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img276.gif differ
diff --git a/deal.II/doc/reports/nedelec/img277.gif b/deal.II/doc/reports/nedelec/img277.gif
new file mode 100644 (file)
index 0000000..3016ac1
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img277.gif differ
diff --git a/deal.II/doc/reports/nedelec/img278.gif b/deal.II/doc/reports/nedelec/img278.gif
new file mode 100644 (file)
index 0000000..ef4cd4a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img278.gif differ
diff --git a/deal.II/doc/reports/nedelec/img279.gif b/deal.II/doc/reports/nedelec/img279.gif
new file mode 100644 (file)
index 0000000..5acb2a9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img279.gif differ
diff --git a/deal.II/doc/reports/nedelec/img28.gif b/deal.II/doc/reports/nedelec/img28.gif
new file mode 100644 (file)
index 0000000..bb8b998
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img28.gif differ
diff --git a/deal.II/doc/reports/nedelec/img280.gif b/deal.II/doc/reports/nedelec/img280.gif
new file mode 100644 (file)
index 0000000..267810e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img280.gif differ
diff --git a/deal.II/doc/reports/nedelec/img281.gif b/deal.II/doc/reports/nedelec/img281.gif
new file mode 100644 (file)
index 0000000..83898d0
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img281.gif differ
diff --git a/deal.II/doc/reports/nedelec/img282.gif b/deal.II/doc/reports/nedelec/img282.gif
new file mode 100644 (file)
index 0000000..75f3551
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img282.gif differ
diff --git a/deal.II/doc/reports/nedelec/img283.gif b/deal.II/doc/reports/nedelec/img283.gif
new file mode 100644 (file)
index 0000000..dd3eba7
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img283.gif differ
diff --git a/deal.II/doc/reports/nedelec/img284.gif b/deal.II/doc/reports/nedelec/img284.gif
new file mode 100644 (file)
index 0000000..23d5374
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img284.gif differ
diff --git a/deal.II/doc/reports/nedelec/img285.gif b/deal.II/doc/reports/nedelec/img285.gif
new file mode 100644 (file)
index 0000000..2a38222
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img285.gif differ
diff --git a/deal.II/doc/reports/nedelec/img286.gif b/deal.II/doc/reports/nedelec/img286.gif
new file mode 100644 (file)
index 0000000..2701c3f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img286.gif differ
diff --git a/deal.II/doc/reports/nedelec/img287.gif b/deal.II/doc/reports/nedelec/img287.gif
new file mode 100644 (file)
index 0000000..fd46d23
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img287.gif differ
diff --git a/deal.II/doc/reports/nedelec/img288.gif b/deal.II/doc/reports/nedelec/img288.gif
new file mode 100644 (file)
index 0000000..a289203
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img288.gif differ
diff --git a/deal.II/doc/reports/nedelec/img289.gif b/deal.II/doc/reports/nedelec/img289.gif
new file mode 100644 (file)
index 0000000..c94378d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img289.gif differ
diff --git a/deal.II/doc/reports/nedelec/img29.gif b/deal.II/doc/reports/nedelec/img29.gif
new file mode 100644 (file)
index 0000000..1b675dd
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img29.gif differ
diff --git a/deal.II/doc/reports/nedelec/img290.gif b/deal.II/doc/reports/nedelec/img290.gif
new file mode 100644 (file)
index 0000000..ecfc4ea
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img290.gif differ
diff --git a/deal.II/doc/reports/nedelec/img291.gif b/deal.II/doc/reports/nedelec/img291.gif
new file mode 100644 (file)
index 0000000..12a8fc9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img291.gif differ
diff --git a/deal.II/doc/reports/nedelec/img292.gif b/deal.II/doc/reports/nedelec/img292.gif
new file mode 100644 (file)
index 0000000..1a90228
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img292.gif differ
diff --git a/deal.II/doc/reports/nedelec/img293.gif b/deal.II/doc/reports/nedelec/img293.gif
new file mode 100644 (file)
index 0000000..c4011f9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img293.gif differ
diff --git a/deal.II/doc/reports/nedelec/img294.gif b/deal.II/doc/reports/nedelec/img294.gif
new file mode 100644 (file)
index 0000000..c4b74fd
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img294.gif differ
diff --git a/deal.II/doc/reports/nedelec/img295.gif b/deal.II/doc/reports/nedelec/img295.gif
new file mode 100644 (file)
index 0000000..88097cf
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img295.gif differ
diff --git a/deal.II/doc/reports/nedelec/img296.gif b/deal.II/doc/reports/nedelec/img296.gif
new file mode 100644 (file)
index 0000000..3acdd6b
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img296.gif differ
diff --git a/deal.II/doc/reports/nedelec/img297.gif b/deal.II/doc/reports/nedelec/img297.gif
new file mode 100644 (file)
index 0000000..1f1e226
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img297.gif differ
diff --git a/deal.II/doc/reports/nedelec/img298.gif b/deal.II/doc/reports/nedelec/img298.gif
new file mode 100644 (file)
index 0000000..788dffa
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img298.gif differ
diff --git a/deal.II/doc/reports/nedelec/img299.gif b/deal.II/doc/reports/nedelec/img299.gif
new file mode 100644 (file)
index 0000000..294c93d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img299.gif differ
diff --git a/deal.II/doc/reports/nedelec/img3.gif b/deal.II/doc/reports/nedelec/img3.gif
new file mode 100644 (file)
index 0000000..b6cf9ef
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img3.gif differ
diff --git a/deal.II/doc/reports/nedelec/img30.gif b/deal.II/doc/reports/nedelec/img30.gif
new file mode 100644 (file)
index 0000000..d9e3e59
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img30.gif differ
diff --git a/deal.II/doc/reports/nedelec/img300.gif b/deal.II/doc/reports/nedelec/img300.gif
new file mode 100644 (file)
index 0000000..f201112
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img300.gif differ
diff --git a/deal.II/doc/reports/nedelec/img301.gif b/deal.II/doc/reports/nedelec/img301.gif
new file mode 100644 (file)
index 0000000..7759003
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img301.gif differ
diff --git a/deal.II/doc/reports/nedelec/img302.gif b/deal.II/doc/reports/nedelec/img302.gif
new file mode 100644 (file)
index 0000000..70d00e9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img302.gif differ
diff --git a/deal.II/doc/reports/nedelec/img303.gif b/deal.II/doc/reports/nedelec/img303.gif
new file mode 100644 (file)
index 0000000..5768a92
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img303.gif differ
diff --git a/deal.II/doc/reports/nedelec/img304.gif b/deal.II/doc/reports/nedelec/img304.gif
new file mode 100644 (file)
index 0000000..651c919
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img304.gif differ
diff --git a/deal.II/doc/reports/nedelec/img305.gif b/deal.II/doc/reports/nedelec/img305.gif
new file mode 100644 (file)
index 0000000..be12db5
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img305.gif differ
diff --git a/deal.II/doc/reports/nedelec/img306.gif b/deal.II/doc/reports/nedelec/img306.gif
new file mode 100644 (file)
index 0000000..1470676
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img306.gif differ
diff --git a/deal.II/doc/reports/nedelec/img307.gif b/deal.II/doc/reports/nedelec/img307.gif
new file mode 100644 (file)
index 0000000..37de64c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img307.gif differ
diff --git a/deal.II/doc/reports/nedelec/img308.gif b/deal.II/doc/reports/nedelec/img308.gif
new file mode 100644 (file)
index 0000000..fcc6230
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img308.gif differ
diff --git a/deal.II/doc/reports/nedelec/img309.gif b/deal.II/doc/reports/nedelec/img309.gif
new file mode 100644 (file)
index 0000000..e5c9049
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img309.gif differ
diff --git a/deal.II/doc/reports/nedelec/img31.gif b/deal.II/doc/reports/nedelec/img31.gif
new file mode 100644 (file)
index 0000000..1b845cf
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img31.gif differ
diff --git a/deal.II/doc/reports/nedelec/img310.gif b/deal.II/doc/reports/nedelec/img310.gif
new file mode 100644 (file)
index 0000000..c9a61a2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img310.gif differ
diff --git a/deal.II/doc/reports/nedelec/img311.gif b/deal.II/doc/reports/nedelec/img311.gif
new file mode 100644 (file)
index 0000000..d8c2eb4
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img311.gif differ
diff --git a/deal.II/doc/reports/nedelec/img312.gif b/deal.II/doc/reports/nedelec/img312.gif
new file mode 100644 (file)
index 0000000..9d33ef2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img312.gif differ
diff --git a/deal.II/doc/reports/nedelec/img313.gif b/deal.II/doc/reports/nedelec/img313.gif
new file mode 100644 (file)
index 0000000..a33597c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img313.gif differ
diff --git a/deal.II/doc/reports/nedelec/img314.gif b/deal.II/doc/reports/nedelec/img314.gif
new file mode 100644 (file)
index 0000000..a6182db
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img314.gif differ
diff --git a/deal.II/doc/reports/nedelec/img315.gif b/deal.II/doc/reports/nedelec/img315.gif
new file mode 100644 (file)
index 0000000..976d354
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img315.gif differ
diff --git a/deal.II/doc/reports/nedelec/img316.gif b/deal.II/doc/reports/nedelec/img316.gif
new file mode 100644 (file)
index 0000000..34b261d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img316.gif differ
diff --git a/deal.II/doc/reports/nedelec/img317.gif b/deal.II/doc/reports/nedelec/img317.gif
new file mode 100644 (file)
index 0000000..8f4c154
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img317.gif differ
diff --git a/deal.II/doc/reports/nedelec/img318.gif b/deal.II/doc/reports/nedelec/img318.gif
new file mode 100644 (file)
index 0000000..863ac86
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img318.gif differ
diff --git a/deal.II/doc/reports/nedelec/img319.gif b/deal.II/doc/reports/nedelec/img319.gif
new file mode 100644 (file)
index 0000000..d17a73a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img319.gif differ
diff --git a/deal.II/doc/reports/nedelec/img32.gif b/deal.II/doc/reports/nedelec/img32.gif
new file mode 100644 (file)
index 0000000..dbfb48a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img32.gif differ
diff --git a/deal.II/doc/reports/nedelec/img320.gif b/deal.II/doc/reports/nedelec/img320.gif
new file mode 100644 (file)
index 0000000..f8af152
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img320.gif differ
diff --git a/deal.II/doc/reports/nedelec/img321.gif b/deal.II/doc/reports/nedelec/img321.gif
new file mode 100644 (file)
index 0000000..24374f2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img321.gif differ
diff --git a/deal.II/doc/reports/nedelec/img322.gif b/deal.II/doc/reports/nedelec/img322.gif
new file mode 100644 (file)
index 0000000..12c112f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img322.gif differ
diff --git a/deal.II/doc/reports/nedelec/img323.gif b/deal.II/doc/reports/nedelec/img323.gif
new file mode 100644 (file)
index 0000000..cf4ed07
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img323.gif differ
diff --git a/deal.II/doc/reports/nedelec/img324.gif b/deal.II/doc/reports/nedelec/img324.gif
new file mode 100644 (file)
index 0000000..cd1adac
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img324.gif differ
diff --git a/deal.II/doc/reports/nedelec/img325.gif b/deal.II/doc/reports/nedelec/img325.gif
new file mode 100644 (file)
index 0000000..7807ade
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img325.gif differ
diff --git a/deal.II/doc/reports/nedelec/img326.gif b/deal.II/doc/reports/nedelec/img326.gif
new file mode 100644 (file)
index 0000000..3774386
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img326.gif differ
diff --git a/deal.II/doc/reports/nedelec/img327.gif b/deal.II/doc/reports/nedelec/img327.gif
new file mode 100644 (file)
index 0000000..216a0a0
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img327.gif differ
diff --git a/deal.II/doc/reports/nedelec/img328.gif b/deal.II/doc/reports/nedelec/img328.gif
new file mode 100644 (file)
index 0000000..294d83d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img328.gif differ
diff --git a/deal.II/doc/reports/nedelec/img329.gif b/deal.II/doc/reports/nedelec/img329.gif
new file mode 100644 (file)
index 0000000..a6aca11
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img329.gif differ
diff --git a/deal.II/doc/reports/nedelec/img33.gif b/deal.II/doc/reports/nedelec/img33.gif
new file mode 100644 (file)
index 0000000..e60a47d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img33.gif differ
diff --git a/deal.II/doc/reports/nedelec/img330.gif b/deal.II/doc/reports/nedelec/img330.gif
new file mode 100644 (file)
index 0000000..1e892af
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img330.gif differ
diff --git a/deal.II/doc/reports/nedelec/img331.gif b/deal.II/doc/reports/nedelec/img331.gif
new file mode 100644 (file)
index 0000000..d8b4e61
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img331.gif differ
diff --git a/deal.II/doc/reports/nedelec/img332.gif b/deal.II/doc/reports/nedelec/img332.gif
new file mode 100644 (file)
index 0000000..f7924ca
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img332.gif differ
diff --git a/deal.II/doc/reports/nedelec/img333.gif b/deal.II/doc/reports/nedelec/img333.gif
new file mode 100644 (file)
index 0000000..d5b951c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img333.gif differ
diff --git a/deal.II/doc/reports/nedelec/img334.gif b/deal.II/doc/reports/nedelec/img334.gif
new file mode 100644 (file)
index 0000000..145c443
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img334.gif differ
diff --git a/deal.II/doc/reports/nedelec/img335.gif b/deal.II/doc/reports/nedelec/img335.gif
new file mode 100644 (file)
index 0000000..6d2b45d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img335.gif differ
diff --git a/deal.II/doc/reports/nedelec/img336.gif b/deal.II/doc/reports/nedelec/img336.gif
new file mode 100644 (file)
index 0000000..6e5259c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img336.gif differ
diff --git a/deal.II/doc/reports/nedelec/img337.gif b/deal.II/doc/reports/nedelec/img337.gif
new file mode 100644 (file)
index 0000000..a811d78
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img337.gif differ
diff --git a/deal.II/doc/reports/nedelec/img338.gif b/deal.II/doc/reports/nedelec/img338.gif
new file mode 100644 (file)
index 0000000..5ab0dc6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img338.gif differ
diff --git a/deal.II/doc/reports/nedelec/img339.gif b/deal.II/doc/reports/nedelec/img339.gif
new file mode 100644 (file)
index 0000000..b99ee51
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img339.gif differ
diff --git a/deal.II/doc/reports/nedelec/img34.gif b/deal.II/doc/reports/nedelec/img34.gif
new file mode 100644 (file)
index 0000000..0dba656
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img34.gif differ
diff --git a/deal.II/doc/reports/nedelec/img340.gif b/deal.II/doc/reports/nedelec/img340.gif
new file mode 100644 (file)
index 0000000..bb1958d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img340.gif differ
diff --git a/deal.II/doc/reports/nedelec/img341.gif b/deal.II/doc/reports/nedelec/img341.gif
new file mode 100644 (file)
index 0000000..c7d5898
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img341.gif differ
diff --git a/deal.II/doc/reports/nedelec/img342.gif b/deal.II/doc/reports/nedelec/img342.gif
new file mode 100644 (file)
index 0000000..e9174cb
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img342.gif differ
diff --git a/deal.II/doc/reports/nedelec/img343.gif b/deal.II/doc/reports/nedelec/img343.gif
new file mode 100644 (file)
index 0000000..0ed0b2c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img343.gif differ
diff --git a/deal.II/doc/reports/nedelec/img344.gif b/deal.II/doc/reports/nedelec/img344.gif
new file mode 100644 (file)
index 0000000..c182506
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img344.gif differ
diff --git a/deal.II/doc/reports/nedelec/img345.gif b/deal.II/doc/reports/nedelec/img345.gif
new file mode 100644 (file)
index 0000000..1261848
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img345.gif differ
diff --git a/deal.II/doc/reports/nedelec/img346.gif b/deal.II/doc/reports/nedelec/img346.gif
new file mode 100644 (file)
index 0000000..c5d4e31
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img346.gif differ
diff --git a/deal.II/doc/reports/nedelec/img347.gif b/deal.II/doc/reports/nedelec/img347.gif
new file mode 100644 (file)
index 0000000..6bb1e84
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img347.gif differ
diff --git a/deal.II/doc/reports/nedelec/img348.gif b/deal.II/doc/reports/nedelec/img348.gif
new file mode 100644 (file)
index 0000000..fcfb3ea
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img348.gif differ
diff --git a/deal.II/doc/reports/nedelec/img349.gif b/deal.II/doc/reports/nedelec/img349.gif
new file mode 100644 (file)
index 0000000..52ae5e4
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img349.gif differ
diff --git a/deal.II/doc/reports/nedelec/img35.gif b/deal.II/doc/reports/nedelec/img35.gif
new file mode 100644 (file)
index 0000000..fe127ee
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img35.gif differ
diff --git a/deal.II/doc/reports/nedelec/img350.gif b/deal.II/doc/reports/nedelec/img350.gif
new file mode 100644 (file)
index 0000000..7c73623
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img350.gif differ
diff --git a/deal.II/doc/reports/nedelec/img351.gif b/deal.II/doc/reports/nedelec/img351.gif
new file mode 100644 (file)
index 0000000..6757b7d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img351.gif differ
diff --git a/deal.II/doc/reports/nedelec/img352.gif b/deal.II/doc/reports/nedelec/img352.gif
new file mode 100644 (file)
index 0000000..63a5b77
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img352.gif differ
diff --git a/deal.II/doc/reports/nedelec/img353.gif b/deal.II/doc/reports/nedelec/img353.gif
new file mode 100644 (file)
index 0000000..829d74d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img353.gif differ
diff --git a/deal.II/doc/reports/nedelec/img354.gif b/deal.II/doc/reports/nedelec/img354.gif
new file mode 100644 (file)
index 0000000..e1a34d6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img354.gif differ
diff --git a/deal.II/doc/reports/nedelec/img355.gif b/deal.II/doc/reports/nedelec/img355.gif
new file mode 100644 (file)
index 0000000..bfe195c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img355.gif differ
diff --git a/deal.II/doc/reports/nedelec/img356.gif b/deal.II/doc/reports/nedelec/img356.gif
new file mode 100644 (file)
index 0000000..11844c0
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img356.gif differ
diff --git a/deal.II/doc/reports/nedelec/img357.gif b/deal.II/doc/reports/nedelec/img357.gif
new file mode 100644 (file)
index 0000000..e1489ed
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img357.gif differ
diff --git a/deal.II/doc/reports/nedelec/img358.gif b/deal.II/doc/reports/nedelec/img358.gif
new file mode 100644 (file)
index 0000000..4f8a888
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img358.gif differ
diff --git a/deal.II/doc/reports/nedelec/img359.gif b/deal.II/doc/reports/nedelec/img359.gif
new file mode 100644 (file)
index 0000000..6cbf0cf
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img359.gif differ
diff --git a/deal.II/doc/reports/nedelec/img36.gif b/deal.II/doc/reports/nedelec/img36.gif
new file mode 100644 (file)
index 0000000..33c10f6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img36.gif differ
diff --git a/deal.II/doc/reports/nedelec/img360.gif b/deal.II/doc/reports/nedelec/img360.gif
new file mode 100644 (file)
index 0000000..611d44f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img360.gif differ
diff --git a/deal.II/doc/reports/nedelec/img361.gif b/deal.II/doc/reports/nedelec/img361.gif
new file mode 100644 (file)
index 0000000..b6cf9ef
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img361.gif differ
diff --git a/deal.II/doc/reports/nedelec/img362.gif b/deal.II/doc/reports/nedelec/img362.gif
new file mode 100644 (file)
index 0000000..cf195f8
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img362.gif differ
diff --git a/deal.II/doc/reports/nedelec/img363.gif b/deal.II/doc/reports/nedelec/img363.gif
new file mode 100644 (file)
index 0000000..9c29332
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img363.gif differ
diff --git a/deal.II/doc/reports/nedelec/img364.gif b/deal.II/doc/reports/nedelec/img364.gif
new file mode 100644 (file)
index 0000000..f5e33d4
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img364.gif differ
diff --git a/deal.II/doc/reports/nedelec/img365.gif b/deal.II/doc/reports/nedelec/img365.gif
new file mode 100644 (file)
index 0000000..e2b70d8
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img365.gif differ
diff --git a/deal.II/doc/reports/nedelec/img366.gif b/deal.II/doc/reports/nedelec/img366.gif
new file mode 100644 (file)
index 0000000..fbd80ba
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img366.gif differ
diff --git a/deal.II/doc/reports/nedelec/img367.gif b/deal.II/doc/reports/nedelec/img367.gif
new file mode 100644 (file)
index 0000000..0836f70
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img367.gif differ
diff --git a/deal.II/doc/reports/nedelec/img368.gif b/deal.II/doc/reports/nedelec/img368.gif
new file mode 100644 (file)
index 0000000..8820c72
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img368.gif differ
diff --git a/deal.II/doc/reports/nedelec/img369.gif b/deal.II/doc/reports/nedelec/img369.gif
new file mode 100644 (file)
index 0000000..c7bf32e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img369.gif differ
diff --git a/deal.II/doc/reports/nedelec/img37.gif b/deal.II/doc/reports/nedelec/img37.gif
new file mode 100644 (file)
index 0000000..526b0f9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img37.gif differ
diff --git a/deal.II/doc/reports/nedelec/img370.gif b/deal.II/doc/reports/nedelec/img370.gif
new file mode 100644 (file)
index 0000000..266909f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img370.gif differ
diff --git a/deal.II/doc/reports/nedelec/img371.gif b/deal.II/doc/reports/nedelec/img371.gif
new file mode 100644 (file)
index 0000000..2cf358d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img371.gif differ
diff --git a/deal.II/doc/reports/nedelec/img372.gif b/deal.II/doc/reports/nedelec/img372.gif
new file mode 100644 (file)
index 0000000..fe0478d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img372.gif differ
diff --git a/deal.II/doc/reports/nedelec/img373.gif b/deal.II/doc/reports/nedelec/img373.gif
new file mode 100644 (file)
index 0000000..32e3ae5
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img373.gif differ
diff --git a/deal.II/doc/reports/nedelec/img374.gif b/deal.II/doc/reports/nedelec/img374.gif
new file mode 100644 (file)
index 0000000..3678839
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img374.gif differ
diff --git a/deal.II/doc/reports/nedelec/img375.gif b/deal.II/doc/reports/nedelec/img375.gif
new file mode 100644 (file)
index 0000000..ad1dfe4
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img375.gif differ
diff --git a/deal.II/doc/reports/nedelec/img376.gif b/deal.II/doc/reports/nedelec/img376.gif
new file mode 100644 (file)
index 0000000..fab2275
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img376.gif differ
diff --git a/deal.II/doc/reports/nedelec/img377.gif b/deal.II/doc/reports/nedelec/img377.gif
new file mode 100644 (file)
index 0000000..40a991d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img377.gif differ
diff --git a/deal.II/doc/reports/nedelec/img378.gif b/deal.II/doc/reports/nedelec/img378.gif
new file mode 100644 (file)
index 0000000..c806a27
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img378.gif differ
diff --git a/deal.II/doc/reports/nedelec/img379.gif b/deal.II/doc/reports/nedelec/img379.gif
new file mode 100644 (file)
index 0000000..d6110f6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img379.gif differ
diff --git a/deal.II/doc/reports/nedelec/img38.gif b/deal.II/doc/reports/nedelec/img38.gif
new file mode 100644 (file)
index 0000000..dc85604
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img38.gif differ
diff --git a/deal.II/doc/reports/nedelec/img380.gif b/deal.II/doc/reports/nedelec/img380.gif
new file mode 100644 (file)
index 0000000..75324b6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img380.gif differ
diff --git a/deal.II/doc/reports/nedelec/img381.gif b/deal.II/doc/reports/nedelec/img381.gif
new file mode 100644 (file)
index 0000000..a96e94d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img381.gif differ
diff --git a/deal.II/doc/reports/nedelec/img382.gif b/deal.II/doc/reports/nedelec/img382.gif
new file mode 100644 (file)
index 0000000..3c409fa
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img382.gif differ
diff --git a/deal.II/doc/reports/nedelec/img383.gif b/deal.II/doc/reports/nedelec/img383.gif
new file mode 100644 (file)
index 0000000..ce23aa2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img383.gif differ
diff --git a/deal.II/doc/reports/nedelec/img384.gif b/deal.II/doc/reports/nedelec/img384.gif
new file mode 100644 (file)
index 0000000..e7e34b5
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img384.gif differ
diff --git a/deal.II/doc/reports/nedelec/img385.gif b/deal.II/doc/reports/nedelec/img385.gif
new file mode 100644 (file)
index 0000000..b368226
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img385.gif differ
diff --git a/deal.II/doc/reports/nedelec/img386.gif b/deal.II/doc/reports/nedelec/img386.gif
new file mode 100644 (file)
index 0000000..2e8cc19
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img386.gif differ
diff --git a/deal.II/doc/reports/nedelec/img387.gif b/deal.II/doc/reports/nedelec/img387.gif
new file mode 100644 (file)
index 0000000..81a9b93
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img387.gif differ
diff --git a/deal.II/doc/reports/nedelec/img388.gif b/deal.II/doc/reports/nedelec/img388.gif
new file mode 100644 (file)
index 0000000..ac2ebb9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img388.gif differ
diff --git a/deal.II/doc/reports/nedelec/img389.gif b/deal.II/doc/reports/nedelec/img389.gif
new file mode 100644 (file)
index 0000000..7604bde
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img389.gif differ
diff --git a/deal.II/doc/reports/nedelec/img39.gif b/deal.II/doc/reports/nedelec/img39.gif
new file mode 100644 (file)
index 0000000..2022b4e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img39.gif differ
diff --git a/deal.II/doc/reports/nedelec/img390.gif b/deal.II/doc/reports/nedelec/img390.gif
new file mode 100644 (file)
index 0000000..c0c84f2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img390.gif differ
diff --git a/deal.II/doc/reports/nedelec/img391.gif b/deal.II/doc/reports/nedelec/img391.gif
new file mode 100644 (file)
index 0000000..19abb91
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img391.gif differ
diff --git a/deal.II/doc/reports/nedelec/img392.gif b/deal.II/doc/reports/nedelec/img392.gif
new file mode 100644 (file)
index 0000000..b083856
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img392.gif differ
diff --git a/deal.II/doc/reports/nedelec/img393.gif b/deal.II/doc/reports/nedelec/img393.gif
new file mode 100644 (file)
index 0000000..b8fbc78
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img393.gif differ
diff --git a/deal.II/doc/reports/nedelec/img394.gif b/deal.II/doc/reports/nedelec/img394.gif
new file mode 100644 (file)
index 0000000..8fc5f12
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img394.gif differ
diff --git a/deal.II/doc/reports/nedelec/img395.gif b/deal.II/doc/reports/nedelec/img395.gif
new file mode 100644 (file)
index 0000000..a13a07f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img395.gif differ
diff --git a/deal.II/doc/reports/nedelec/img396.gif b/deal.II/doc/reports/nedelec/img396.gif
new file mode 100644 (file)
index 0000000..b478383
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img396.gif differ
diff --git a/deal.II/doc/reports/nedelec/img397.gif b/deal.II/doc/reports/nedelec/img397.gif
new file mode 100644 (file)
index 0000000..37294c5
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img397.gif differ
diff --git a/deal.II/doc/reports/nedelec/img398.gif b/deal.II/doc/reports/nedelec/img398.gif
new file mode 100644 (file)
index 0000000..dd5bd00
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img398.gif differ
diff --git a/deal.II/doc/reports/nedelec/img399.gif b/deal.II/doc/reports/nedelec/img399.gif
new file mode 100644 (file)
index 0000000..d894371
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img399.gif differ
diff --git a/deal.II/doc/reports/nedelec/img4.gif b/deal.II/doc/reports/nedelec/img4.gif
new file mode 100644 (file)
index 0000000..a200bb2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img4.gif differ
diff --git a/deal.II/doc/reports/nedelec/img40.gif b/deal.II/doc/reports/nedelec/img40.gif
new file mode 100644 (file)
index 0000000..3572a0c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img40.gif differ
diff --git a/deal.II/doc/reports/nedelec/img400.gif b/deal.II/doc/reports/nedelec/img400.gif
new file mode 100644 (file)
index 0000000..1d27255
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img400.gif differ
diff --git a/deal.II/doc/reports/nedelec/img401.gif b/deal.II/doc/reports/nedelec/img401.gif
new file mode 100644 (file)
index 0000000..b46afa7
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img401.gif differ
diff --git a/deal.II/doc/reports/nedelec/img402.gif b/deal.II/doc/reports/nedelec/img402.gif
new file mode 100644 (file)
index 0000000..dab1b5f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img402.gif differ
diff --git a/deal.II/doc/reports/nedelec/img403.gif b/deal.II/doc/reports/nedelec/img403.gif
new file mode 100644 (file)
index 0000000..e581f9b
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img403.gif differ
diff --git a/deal.II/doc/reports/nedelec/img404.gif b/deal.II/doc/reports/nedelec/img404.gif
new file mode 100644 (file)
index 0000000..ce2c957
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img404.gif differ
diff --git a/deal.II/doc/reports/nedelec/img405.gif b/deal.II/doc/reports/nedelec/img405.gif
new file mode 100644 (file)
index 0000000..a2372c9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img405.gif differ
diff --git a/deal.II/doc/reports/nedelec/img406.gif b/deal.II/doc/reports/nedelec/img406.gif
new file mode 100644 (file)
index 0000000..d60c9bd
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img406.gif differ
diff --git a/deal.II/doc/reports/nedelec/img407.gif b/deal.II/doc/reports/nedelec/img407.gif
new file mode 100644 (file)
index 0000000..277eaaf
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img407.gif differ
diff --git a/deal.II/doc/reports/nedelec/img408.gif b/deal.II/doc/reports/nedelec/img408.gif
new file mode 100644 (file)
index 0000000..223550a
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img408.gif differ
diff --git a/deal.II/doc/reports/nedelec/img409.gif b/deal.II/doc/reports/nedelec/img409.gif
new file mode 100644 (file)
index 0000000..4f89d33
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img409.gif differ
diff --git a/deal.II/doc/reports/nedelec/img41.gif b/deal.II/doc/reports/nedelec/img41.gif
new file mode 100644 (file)
index 0000000..d951798
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img41.gif differ
diff --git a/deal.II/doc/reports/nedelec/img410.gif b/deal.II/doc/reports/nedelec/img410.gif
new file mode 100644 (file)
index 0000000..15a1c9f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img410.gif differ
diff --git a/deal.II/doc/reports/nedelec/img411.gif b/deal.II/doc/reports/nedelec/img411.gif
new file mode 100644 (file)
index 0000000..d971122
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img411.gif differ
diff --git a/deal.II/doc/reports/nedelec/img412.gif b/deal.II/doc/reports/nedelec/img412.gif
new file mode 100644 (file)
index 0000000..e12cedc
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img412.gif differ
diff --git a/deal.II/doc/reports/nedelec/img413.gif b/deal.II/doc/reports/nedelec/img413.gif
new file mode 100644 (file)
index 0000000..04eaed2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img413.gif differ
diff --git a/deal.II/doc/reports/nedelec/img414.gif b/deal.II/doc/reports/nedelec/img414.gif
new file mode 100644 (file)
index 0000000..67f1aec
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img414.gif differ
diff --git a/deal.II/doc/reports/nedelec/img415.gif b/deal.II/doc/reports/nedelec/img415.gif
new file mode 100644 (file)
index 0000000..387d0e6
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img415.gif differ
diff --git a/deal.II/doc/reports/nedelec/img416.gif b/deal.II/doc/reports/nedelec/img416.gif
new file mode 100644 (file)
index 0000000..1d01be7
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img416.gif differ
diff --git a/deal.II/doc/reports/nedelec/img417.gif b/deal.II/doc/reports/nedelec/img417.gif
new file mode 100644 (file)
index 0000000..fc4a7d8
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img417.gif differ
diff --git a/deal.II/doc/reports/nedelec/img418.gif b/deal.II/doc/reports/nedelec/img418.gif
new file mode 100644 (file)
index 0000000..05f01bd
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img418.gif differ
diff --git a/deal.II/doc/reports/nedelec/img42.gif b/deal.II/doc/reports/nedelec/img42.gif
new file mode 100644 (file)
index 0000000..da55052
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img42.gif differ
diff --git a/deal.II/doc/reports/nedelec/img43.gif b/deal.II/doc/reports/nedelec/img43.gif
new file mode 100644 (file)
index 0000000..5e67630
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img43.gif differ
diff --git a/deal.II/doc/reports/nedelec/img44.gif b/deal.II/doc/reports/nedelec/img44.gif
new file mode 100644 (file)
index 0000000..72e9039
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img44.gif differ
diff --git a/deal.II/doc/reports/nedelec/img45.gif b/deal.II/doc/reports/nedelec/img45.gif
new file mode 100644 (file)
index 0000000..bdb7499
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img45.gif differ
diff --git a/deal.II/doc/reports/nedelec/img46.gif b/deal.II/doc/reports/nedelec/img46.gif
new file mode 100644 (file)
index 0000000..21145b2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img46.gif differ
diff --git a/deal.II/doc/reports/nedelec/img47.gif b/deal.II/doc/reports/nedelec/img47.gif
new file mode 100644 (file)
index 0000000..3261cf5
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img47.gif differ
diff --git a/deal.II/doc/reports/nedelec/img48.gif b/deal.II/doc/reports/nedelec/img48.gif
new file mode 100644 (file)
index 0000000..5353a48
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img48.gif differ
diff --git a/deal.II/doc/reports/nedelec/img49.gif b/deal.II/doc/reports/nedelec/img49.gif
new file mode 100644 (file)
index 0000000..362f3d3
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img49.gif differ
diff --git a/deal.II/doc/reports/nedelec/img5.gif b/deal.II/doc/reports/nedelec/img5.gif
new file mode 100644 (file)
index 0000000..103a1c9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img5.gif differ
diff --git a/deal.II/doc/reports/nedelec/img50.gif b/deal.II/doc/reports/nedelec/img50.gif
new file mode 100644 (file)
index 0000000..fd83706
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img50.gif differ
diff --git a/deal.II/doc/reports/nedelec/img51.gif b/deal.II/doc/reports/nedelec/img51.gif
new file mode 100644 (file)
index 0000000..179d964
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img51.gif differ
diff --git a/deal.II/doc/reports/nedelec/img52.gif b/deal.II/doc/reports/nedelec/img52.gif
new file mode 100644 (file)
index 0000000..19de754
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img52.gif differ
diff --git a/deal.II/doc/reports/nedelec/img53.gif b/deal.II/doc/reports/nedelec/img53.gif
new file mode 100644 (file)
index 0000000..42f236f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img53.gif differ
diff --git a/deal.II/doc/reports/nedelec/img54.gif b/deal.II/doc/reports/nedelec/img54.gif
new file mode 100644 (file)
index 0000000..16ddc0f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img54.gif differ
diff --git a/deal.II/doc/reports/nedelec/img55.gif b/deal.II/doc/reports/nedelec/img55.gif
new file mode 100644 (file)
index 0000000..d2e7454
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img55.gif differ
diff --git a/deal.II/doc/reports/nedelec/img56.gif b/deal.II/doc/reports/nedelec/img56.gif
new file mode 100644 (file)
index 0000000..1ffc453
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img56.gif differ
diff --git a/deal.II/doc/reports/nedelec/img57.gif b/deal.II/doc/reports/nedelec/img57.gif
new file mode 100644 (file)
index 0000000..fbe17fb
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img57.gif differ
diff --git a/deal.II/doc/reports/nedelec/img58.gif b/deal.II/doc/reports/nedelec/img58.gif
new file mode 100644 (file)
index 0000000..871b3e2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img58.gif differ
diff --git a/deal.II/doc/reports/nedelec/img59.gif b/deal.II/doc/reports/nedelec/img59.gif
new file mode 100644 (file)
index 0000000..d7d7270
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img59.gif differ
diff --git a/deal.II/doc/reports/nedelec/img6.gif b/deal.II/doc/reports/nedelec/img6.gif
new file mode 100644 (file)
index 0000000..46574e9
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img6.gif differ
diff --git a/deal.II/doc/reports/nedelec/img60.gif b/deal.II/doc/reports/nedelec/img60.gif
new file mode 100644 (file)
index 0000000..ddc1dbf
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img60.gif differ
diff --git a/deal.II/doc/reports/nedelec/img61.gif b/deal.II/doc/reports/nedelec/img61.gif
new file mode 100644 (file)
index 0000000..9866303
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img61.gif differ
diff --git a/deal.II/doc/reports/nedelec/img62.gif b/deal.II/doc/reports/nedelec/img62.gif
new file mode 100644 (file)
index 0000000..f904229
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img62.gif differ
diff --git a/deal.II/doc/reports/nedelec/img63.gif b/deal.II/doc/reports/nedelec/img63.gif
new file mode 100644 (file)
index 0000000..1c0bb4e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img63.gif differ
diff --git a/deal.II/doc/reports/nedelec/img64.gif b/deal.II/doc/reports/nedelec/img64.gif
new file mode 100644 (file)
index 0000000..626618f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img64.gif differ
diff --git a/deal.II/doc/reports/nedelec/img65.gif b/deal.II/doc/reports/nedelec/img65.gif
new file mode 100644 (file)
index 0000000..fa68d6f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img65.gif differ
diff --git a/deal.II/doc/reports/nedelec/img66.gif b/deal.II/doc/reports/nedelec/img66.gif
new file mode 100644 (file)
index 0000000..59fc11c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img66.gif differ
diff --git a/deal.II/doc/reports/nedelec/img67.gif b/deal.II/doc/reports/nedelec/img67.gif
new file mode 100644 (file)
index 0000000..ef6a435
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img67.gif differ
diff --git a/deal.II/doc/reports/nedelec/img68.gif b/deal.II/doc/reports/nedelec/img68.gif
new file mode 100644 (file)
index 0000000..74bf10b
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img68.gif differ
diff --git a/deal.II/doc/reports/nedelec/img69.gif b/deal.II/doc/reports/nedelec/img69.gif
new file mode 100644 (file)
index 0000000..0c88846
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img69.gif differ
diff --git a/deal.II/doc/reports/nedelec/img7.gif b/deal.II/doc/reports/nedelec/img7.gif
new file mode 100644 (file)
index 0000000..f7e8d1f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img7.gif differ
diff --git a/deal.II/doc/reports/nedelec/img70.gif b/deal.II/doc/reports/nedelec/img70.gif
new file mode 100644 (file)
index 0000000..847f73c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img70.gif differ
diff --git a/deal.II/doc/reports/nedelec/img71.gif b/deal.II/doc/reports/nedelec/img71.gif
new file mode 100644 (file)
index 0000000..f54e587
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img71.gif differ
diff --git a/deal.II/doc/reports/nedelec/img72.gif b/deal.II/doc/reports/nedelec/img72.gif
new file mode 100644 (file)
index 0000000..3cbbd40
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img72.gif differ
diff --git a/deal.II/doc/reports/nedelec/img73.gif b/deal.II/doc/reports/nedelec/img73.gif
new file mode 100644 (file)
index 0000000..77d8b59
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img73.gif differ
diff --git a/deal.II/doc/reports/nedelec/img74.gif b/deal.II/doc/reports/nedelec/img74.gif
new file mode 100644 (file)
index 0000000..bfbb1ed
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img74.gif differ
diff --git a/deal.II/doc/reports/nedelec/img75.gif b/deal.II/doc/reports/nedelec/img75.gif
new file mode 100644 (file)
index 0000000..5ea7f4d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img75.gif differ
diff --git a/deal.II/doc/reports/nedelec/img76.gif b/deal.II/doc/reports/nedelec/img76.gif
new file mode 100644 (file)
index 0000000..2a10f7c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img76.gif differ
diff --git a/deal.II/doc/reports/nedelec/img77.gif b/deal.II/doc/reports/nedelec/img77.gif
new file mode 100644 (file)
index 0000000..2a2ed6f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img77.gif differ
diff --git a/deal.II/doc/reports/nedelec/img78.gif b/deal.II/doc/reports/nedelec/img78.gif
new file mode 100644 (file)
index 0000000..55450f2
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img78.gif differ
diff --git a/deal.II/doc/reports/nedelec/img79.gif b/deal.II/doc/reports/nedelec/img79.gif
new file mode 100644 (file)
index 0000000..3b6b4f3
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img79.gif differ
diff --git a/deal.II/doc/reports/nedelec/img8.gif b/deal.II/doc/reports/nedelec/img8.gif
new file mode 100644 (file)
index 0000000..febf2a3
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img8.gif differ
diff --git a/deal.II/doc/reports/nedelec/img80.gif b/deal.II/doc/reports/nedelec/img80.gif
new file mode 100644 (file)
index 0000000..0f84b42
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img80.gif differ
diff --git a/deal.II/doc/reports/nedelec/img81.gif b/deal.II/doc/reports/nedelec/img81.gif
new file mode 100644 (file)
index 0000000..96b99cc
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img81.gif differ
diff --git a/deal.II/doc/reports/nedelec/img82.gif b/deal.II/doc/reports/nedelec/img82.gif
new file mode 100644 (file)
index 0000000..3e6d26c
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img82.gif differ
diff --git a/deal.II/doc/reports/nedelec/img83.gif b/deal.II/doc/reports/nedelec/img83.gif
new file mode 100644 (file)
index 0000000..cad7366
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img83.gif differ
diff --git a/deal.II/doc/reports/nedelec/img84.gif b/deal.II/doc/reports/nedelec/img84.gif
new file mode 100644 (file)
index 0000000..86303ce
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img84.gif differ
diff --git a/deal.II/doc/reports/nedelec/img85.gif b/deal.II/doc/reports/nedelec/img85.gif
new file mode 100644 (file)
index 0000000..3004020
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img85.gif differ
diff --git a/deal.II/doc/reports/nedelec/img86.gif b/deal.II/doc/reports/nedelec/img86.gif
new file mode 100644 (file)
index 0000000..9b4535f
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img86.gif differ
diff --git a/deal.II/doc/reports/nedelec/img87.gif b/deal.II/doc/reports/nedelec/img87.gif
new file mode 100644 (file)
index 0000000..e9c964b
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img87.gif differ
diff --git a/deal.II/doc/reports/nedelec/img88.gif b/deal.II/doc/reports/nedelec/img88.gif
new file mode 100644 (file)
index 0000000..0cdb5cf
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img88.gif differ
diff --git a/deal.II/doc/reports/nedelec/img89.gif b/deal.II/doc/reports/nedelec/img89.gif
new file mode 100644 (file)
index 0000000..a436902
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img89.gif differ
diff --git a/deal.II/doc/reports/nedelec/img9.gif b/deal.II/doc/reports/nedelec/img9.gif
new file mode 100644 (file)
index 0000000..e3b8203
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img9.gif differ
diff --git a/deal.II/doc/reports/nedelec/img90.gif b/deal.II/doc/reports/nedelec/img90.gif
new file mode 100644 (file)
index 0000000..2948f2d
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img90.gif differ
diff --git a/deal.II/doc/reports/nedelec/img91.gif b/deal.II/doc/reports/nedelec/img91.gif
new file mode 100644 (file)
index 0000000..7839b70
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img91.gif differ
diff --git a/deal.II/doc/reports/nedelec/img92.gif b/deal.II/doc/reports/nedelec/img92.gif
new file mode 100644 (file)
index 0000000..c6b5f2e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img92.gif differ
diff --git a/deal.II/doc/reports/nedelec/img93.gif b/deal.II/doc/reports/nedelec/img93.gif
new file mode 100644 (file)
index 0000000..08f422e
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img93.gif differ
diff --git a/deal.II/doc/reports/nedelec/img94.gif b/deal.II/doc/reports/nedelec/img94.gif
new file mode 100644 (file)
index 0000000..89ba2bb
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img94.gif differ
diff --git a/deal.II/doc/reports/nedelec/img95.gif b/deal.II/doc/reports/nedelec/img95.gif
new file mode 100644 (file)
index 0000000..e90a6ff
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img95.gif differ
diff --git a/deal.II/doc/reports/nedelec/img96.gif b/deal.II/doc/reports/nedelec/img96.gif
new file mode 100644 (file)
index 0000000..27f1c32
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img96.gif differ
diff --git a/deal.II/doc/reports/nedelec/img97.gif b/deal.II/doc/reports/nedelec/img97.gif
new file mode 100644 (file)
index 0000000..9c73223
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img97.gif differ
diff --git a/deal.II/doc/reports/nedelec/img98.gif b/deal.II/doc/reports/nedelec/img98.gif
new file mode 100644 (file)
index 0000000..6d2a9df
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img98.gif differ
diff --git a/deal.II/doc/reports/nedelec/img99.gif b/deal.II/doc/reports/nedelec/img99.gif
new file mode 100644 (file)
index 0000000..faf65ff
Binary files /dev/null and b/deal.II/doc/reports/nedelec/img99.gif differ
diff --git a/deal.II/doc/reports/nedelec/index.html b/deal.II/doc/reports/nedelec/index.html
new file mode 100644 (file)
index 0000000..c7412e0
--- /dev/null
@@ -0,0 +1,157 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
+
+<!--Converted with LaTeX2HTML 2K.1beta (1.47)
+original version by:  Nikos Drakos, CBLU, University of Leeds
+* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
+* with significant contributions from:
+  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
+<HTML>
+<HEAD>
+<TITLE>An -conforming FEM: N&#233;d&#233;lec's elements of first type</TITLE>
+<META NAME="description" CONTENT="An -conforming FEM: N&#233;d&#233;lec's elements of first type">
+<META NAME="keywords" CONTENT="main">
+<META NAME="resource-type" CONTENT="document">
+<META NAME="distribution" CONTENT="global">
+
+<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
+<META NAME="Generator" CONTENT="LaTeX2HTML v2K.1beta">
+<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
+
+<LINK REL="STYLESHEET" HREF="main.css">
+
+</HEAD>
+
+<BODY >
+<H1 ALIGN=CENTER><FONT SIZE="+2">An <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming FEM: 
+<BR>
+N&#233;d&#233;lec's elements of first type</FONT></H1>
+<P ALIGN=CENTER><STRONG><FONT SIZE="-1">Anna Schneebeli, April 30, 2003</FONT></STRONG></P>
+<P ALIGN=LEFT></P>
+<FONT SIZE="-1"><B>Abstract:</B> The aim of this report is to give an introduction to N&#233;d&#233;lec's <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming finite element method of first 
+type. As the name suggests, this method has been introduced in 1980 by J.&nbsp;C.&nbsp;N&#233;d&#233;lec in [<A
+ HREF="node4.html#Ned1">8</A>].
+<BR>
+In the first section, we present the model problem and introduce the framework for its variational formulation.
+<BR>
+In the second section, we present N&#233;d&#233;lec's elements of first type for <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">. 
+We start by considering the case of affine grids in two and three space dimensions. We introduce the Piola transformation for vector
+fields and discuss the choice of function spaces and degrees of freedom. These results are then extendend to bi- and
+trilinear grids. We explain the practical construction of global shape functions and conclude this section with some remarks
+on approximation results.
+<BR>
+Numerical results, which serve to illustrate the convergence of the method, are presented in the third section.
+In Appendix A, we demonstrate how solutions of the two-dimensional model problem can be constructed from solutions of the scalar Laplace
+equation.
+<BR>
+In Appendix B we motivate the model problem studied in the report by considering the 
+time-harmonic Maxwell's equations in the low-frequency case. 
+</FONT>
+<P>
+<FONT SIZE="-1"></FONT>
+<BR><HR>
+<!--Table of Child-Links-->
+<A NAME="CHILD_LINKS"></A>
+
+<UL>
+<LI><A NAME="tex2html11"
+  HREF="node1.html">1 <FONT SIZE="+1">The model problem and the space <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"></FONT></A>
+<UL>
+<LI><A NAME="tex2html12"
+  HREF="node1.html#SECTION00011000000000000000">1.1 Definitions</A>
+<LI><A NAME="tex2html13"
+  HREF="node1.html#SECTION00012000000000000000">1.2 Trace theorem, integration by parts</A>
+<LI><A NAME="tex2html14"
+  HREF="node1.html#SECTION00013000000000000000">1.3 Variational formulation of the model problem</A>
+</UL>
+<BR>
+<LI><A NAME="tex2html15"
+  HREF="node2.html">2 <FONT SIZE="+1">N&#233;d&#233;lec's elements of first type for <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"></FONT></A>
+<UL>
+<LI><A NAME="tex2html16"
+  HREF="node2.html#SECTION00021000000000000000">2.1 Construction of N&#233;d&#233;lec elements on tetrahedral grids</A>
+<UL>
+<LI><A NAME="tex2html17"
+  HREF="node2.html#SECTION00021100000000000000">2.1.1 Polynomial spaces on the reference element</A>
+<LI><A NAME="tex2html18"
+  HREF="node2.html#SECTION00021200000000000000">2.1.2 Degrees of freedom on the reference element</A>
+<LI><A NAME="tex2html19"
+  HREF="node2.html#SECTION00021300000000000000">2.1.3 Piola transformation</A>
+<LI><A NAME="tex2html20"
+  HREF="node2.html#SECTION00021400000000000000">2.1.4 Transformation of the curl in 2d</A>
+<LI><A NAME="tex2html21"
+  HREF="node2.html#SECTION00021500000000000000">2.1.5 Transformation of the curl in 3d</A>
+</UL>
+<LI><A NAME="tex2html22"
+  HREF="node2.html#SECTION00022000000000000000">2.2 N&#233;d&#233;lec Elements on affine quadrilateral or hexahedral grids</A>
+<UL>
+<LI><A NAME="tex2html23"
+  HREF="node2.html#SECTION00022100000000000000">2.2.1 Polynomial spaces on the reference element</A>
+<LI><A NAME="tex2html24"
+  HREF="node2.html#SECTION00022200000000000000">2.2.2 Degrees of freedom on the reference element</A>
+<LI><A NAME="tex2html25"
+  HREF="node2.html#SECTION00022300000000000000">2.2.3 Transformation of the vector field</A>
+</UL>
+<LI><A NAME="tex2html26"
+  HREF="node2.html#SECTION00023000000000000000">2.3 Construction of N&#233;d&#233;lec elements on bi- or trilinear elements</A>
+<UL>
+<LI><A NAME="tex2html27"
+  HREF="node2.html#SECTION00023100000000000000">2.3.1 Bilinear elements in 2d</A>
+<LI><A NAME="tex2html28"
+  HREF="node2.html#SECTION00023200000000000000">2.3.2 Trilinear elements in 3d</A>
+</UL>
+<LI><A NAME="tex2html29"
+  HREF="node2.html#SECTION00024000000000000000">2.4 Construction of global shape functions</A>
+<LI><A NAME="tex2html30"
+  HREF="node2.html#SECTION00025000000000000000">2.5 Approximation and convergence results</A>
+</UL>
+<BR>
+<LI><A NAME="tex2html31"
+  HREF="node3.html">3 <FONT SIZE="+1">Numerical results</FONT></A>
+<LI><A NAME="tex2html32"
+  HREF="node4.html">Bibliography</A>
+<LI><A NAME="tex2html33"
+  HREF="node5.html">A. <FONT SIZE="+1">Construction of solutions in 2d</FONT></A>
+<LI><A NAME="tex2html34"
+  HREF="node6.html">A. <FONT SIZE="+1">Time-harmonic Maxwell's equations with low-frequency approximation</FONT></A>
+<UL>
+<LI><A NAME="tex2html35"
+  HREF="node6.html#SECTION00061000000000000000">Time-harmonic, low-frequency case</A>
+</UL></UL>
+<!--End of Table of Child-Links-->
+<BR><HR>
+<ADDRESS>
+
+2003-04-30
+</ADDRESS>
+</BODY>
+</HTML>
diff --git a/deal.II/doc/reports/nedelec/main.css b/deal.II/doc/reports/nedelec/main.css
new file mode 100644 (file)
index 0000000..aad8978
--- /dev/null
@@ -0,0 +1,30 @@
+/* Century Schoolbook font is very similar to Computer Modern Math: cmmi */
+.MATH    { font-family: "Century Schoolbook", serif; }
+.MATH I  { font-family: "Century Schoolbook", serif; font-shape: italic }
+.BOLDMATH { font-family: "Century Schoolbook", serif; font-weight: bold }
+
+/* implement both fixed-size and relative sizes */
+SMALL.XTINY            { font-size : xx-small }
+SMALL.TINY             { font-size : x-small  }
+SMALL.SCRIPTSIZE       { font-size : smaller  }
+SMALL.FOOTNOTESIZE     { font-size : small    }
+SMALL.SMALL            {  }
+BIG.LARGE              {  }
+BIG.XLARGE             { font-size : large    }
+BIG.XXLARGE            { font-size : x-large  }
+BIG.HUGE               { font-size : larger   }
+BIG.XHUGE              { font-size : xx-large }
+
+/* heading styles */
+H1             {  }
+H2             {  }
+H3             {  }
+H4             {  }
+H5             {  }
+
+/* mathematics styles */
+DIV.displaymath                { }     /* math displays */
+TD.eqno                        { }     /* equation-number cells */
+
+
+/* document-specific styles come next */
diff --git a/deal.II/doc/reports/nedelec/main.html b/deal.II/doc/reports/nedelec/main.html
new file mode 100644 (file)
index 0000000..c7412e0
--- /dev/null
@@ -0,0 +1,157 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
+
+<!--Converted with LaTeX2HTML 2K.1beta (1.47)
+original version by:  Nikos Drakos, CBLU, University of Leeds
+* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
+* with significant contributions from:
+  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
+<HTML>
+<HEAD>
+<TITLE>An -conforming FEM: N&#233;d&#233;lec's elements of first type</TITLE>
+<META NAME="description" CONTENT="An -conforming FEM: N&#233;d&#233;lec's elements of first type">
+<META NAME="keywords" CONTENT="main">
+<META NAME="resource-type" CONTENT="document">
+<META NAME="distribution" CONTENT="global">
+
+<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
+<META NAME="Generator" CONTENT="LaTeX2HTML v2K.1beta">
+<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
+
+<LINK REL="STYLESHEET" HREF="main.css">
+
+</HEAD>
+
+<BODY >
+<H1 ALIGN=CENTER><FONT SIZE="+2">An <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming FEM: 
+<BR>
+N&#233;d&#233;lec's elements of first type</FONT></H1>
+<P ALIGN=CENTER><STRONG><FONT SIZE="-1">Anna Schneebeli, April 30, 2003</FONT></STRONG></P>
+<P ALIGN=LEFT></P>
+<FONT SIZE="-1"><B>Abstract:</B> The aim of this report is to give an introduction to N&#233;d&#233;lec's <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming finite element method of first 
+type. As the name suggests, this method has been introduced in 1980 by J.&nbsp;C.&nbsp;N&#233;d&#233;lec in [<A
+ HREF="node4.html#Ned1">8</A>].
+<BR>
+In the first section, we present the model problem and introduce the framework for its variational formulation.
+<BR>
+In the second section, we present N&#233;d&#233;lec's elements of first type for <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">. 
+We start by considering the case of affine grids in two and three space dimensions. We introduce the Piola transformation for vector
+fields and discuss the choice of function spaces and degrees of freedom. These results are then extendend to bi- and
+trilinear grids. We explain the practical construction of global shape functions and conclude this section with some remarks
+on approximation results.
+<BR>
+Numerical results, which serve to illustrate the convergence of the method, are presented in the third section.
+In Appendix A, we demonstrate how solutions of the two-dimensional model problem can be constructed from solutions of the scalar Laplace
+equation.
+<BR>
+In Appendix B we motivate the model problem studied in the report by considering the 
+time-harmonic Maxwell's equations in the low-frequency case. 
+</FONT>
+<P>
+<FONT SIZE="-1"></FONT>
+<BR><HR>
+<!--Table of Child-Links-->
+<A NAME="CHILD_LINKS"></A>
+
+<UL>
+<LI><A NAME="tex2html11"
+  HREF="node1.html">1 <FONT SIZE="+1">The model problem and the space <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"></FONT></A>
+<UL>
+<LI><A NAME="tex2html12"
+  HREF="node1.html#SECTION00011000000000000000">1.1 Definitions</A>
+<LI><A NAME="tex2html13"
+  HREF="node1.html#SECTION00012000000000000000">1.2 Trace theorem, integration by parts</A>
+<LI><A NAME="tex2html14"
+  HREF="node1.html#SECTION00013000000000000000">1.3 Variational formulation of the model problem</A>
+</UL>
+<BR>
+<LI><A NAME="tex2html15"
+  HREF="node2.html">2 <FONT SIZE="+1">N&#233;d&#233;lec's elements of first type for <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"></FONT></A>
+<UL>
+<LI><A NAME="tex2html16"
+  HREF="node2.html#SECTION00021000000000000000">2.1 Construction of N&#233;d&#233;lec elements on tetrahedral grids</A>
+<UL>
+<LI><A NAME="tex2html17"
+  HREF="node2.html#SECTION00021100000000000000">2.1.1 Polynomial spaces on the reference element</A>
+<LI><A NAME="tex2html18"
+  HREF="node2.html#SECTION00021200000000000000">2.1.2 Degrees of freedom on the reference element</A>
+<LI><A NAME="tex2html19"
+  HREF="node2.html#SECTION00021300000000000000">2.1.3 Piola transformation</A>
+<LI><A NAME="tex2html20"
+  HREF="node2.html#SECTION00021400000000000000">2.1.4 Transformation of the curl in 2d</A>
+<LI><A NAME="tex2html21"
+  HREF="node2.html#SECTION00021500000000000000">2.1.5 Transformation of the curl in 3d</A>
+</UL>
+<LI><A NAME="tex2html22"
+  HREF="node2.html#SECTION00022000000000000000">2.2 N&#233;d&#233;lec Elements on affine quadrilateral or hexahedral grids</A>
+<UL>
+<LI><A NAME="tex2html23"
+  HREF="node2.html#SECTION00022100000000000000">2.2.1 Polynomial spaces on the reference element</A>
+<LI><A NAME="tex2html24"
+  HREF="node2.html#SECTION00022200000000000000">2.2.2 Degrees of freedom on the reference element</A>
+<LI><A NAME="tex2html25"
+  HREF="node2.html#SECTION00022300000000000000">2.2.3 Transformation of the vector field</A>
+</UL>
+<LI><A NAME="tex2html26"
+  HREF="node2.html#SECTION00023000000000000000">2.3 Construction of N&#233;d&#233;lec elements on bi- or trilinear elements</A>
+<UL>
+<LI><A NAME="tex2html27"
+  HREF="node2.html#SECTION00023100000000000000">2.3.1 Bilinear elements in 2d</A>
+<LI><A NAME="tex2html28"
+  HREF="node2.html#SECTION00023200000000000000">2.3.2 Trilinear elements in 3d</A>
+</UL>
+<LI><A NAME="tex2html29"
+  HREF="node2.html#SECTION00024000000000000000">2.4 Construction of global shape functions</A>
+<LI><A NAME="tex2html30"
+  HREF="node2.html#SECTION00025000000000000000">2.5 Approximation and convergence results</A>
+</UL>
+<BR>
+<LI><A NAME="tex2html31"
+  HREF="node3.html">3 <FONT SIZE="+1">Numerical results</FONT></A>
+<LI><A NAME="tex2html32"
+  HREF="node4.html">Bibliography</A>
+<LI><A NAME="tex2html33"
+  HREF="node5.html">A. <FONT SIZE="+1">Construction of solutions in 2d</FONT></A>
+<LI><A NAME="tex2html34"
+  HREF="node6.html">A. <FONT SIZE="+1">Time-harmonic Maxwell's equations with low-frequency approximation</FONT></A>
+<UL>
+<LI><A NAME="tex2html35"
+  HREF="node6.html#SECTION00061000000000000000">Time-harmonic, low-frequency case</A>
+</UL></UL>
+<!--End of Table of Child-Links-->
+<BR><HR>
+<ADDRESS>
+
+2003-04-30
+</ADDRESS>
+</BODY>
+</HTML>
diff --git a/deal.II/doc/reports/nedelec/nedelec.ps b/deal.II/doc/reports/nedelec/nedelec.ps
new file mode 100644 (file)
index 0000000..7ca06c5
--- /dev/null
@@ -0,0 +1,7846 @@
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: main.dvi
+%%Pages: 23
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%DocumentFonts: Helvetica
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips main -o nedelec.ps
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource:  TeX output 2003.04.30:1719
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (main.dvi)
+@start
+%DVIPSBitmapFont: Fa cmtt10 10.95 11
+/Fa 11 109 df<120FEA3FC0EA7FE0A2EAFFF0A4EA7FE0A2EA3FC0EA0F000C0C6E8B30>
+46 D<147F4A7EA2497FA4497F14F7A401077F14E3A3010F7FA314C1A2011F7FA490383F
+80FEA590387F007FA4498049133F90B6FCA34881A39038FC001F00038149130FA4000781
+491307A2D87FFFEB7FFFB56CB51280A46C496C130029397DB830>65
+D<007FB512F0B612FE6F7E82826C813A03F8001FF815076F7E1501A26F7EA615015EA24B
+5A1507ED1FF0ED7FE090B65A5E4BC7FC6F7E16E0829039F8000FF8ED03FC6F7E1500167F
+A3EE3F80A6167F1700A25E4B5A1503ED1FFC007FB6FCB75A5E16C05E6C02FCC7FC29387E
+B730>I<007FB6FCB71280A46C1500260007F0C7FCB3B3A8007FB6FCB71280A46C150021
+3879B730>73 D<383FFFF8487FB57EA26C5B6C5BD801FCC9FCB3B0EE0F80EE1FC0A9003F
+B7FC5AB8FCA27E6C16802A387EB730>76 D<D83FF8ECFFE0486C4913F0486C4913F8A200
+7F16F06C6C4913E00007160001EF14BFEC800FA39039E7C01F3FA4ECE03F01E3133EA2EC
+F07EA201E1137CA2ECF8FCA201E013F8A214FDEC7DF0A3147FEC3FE0A3EC1FC0A2EC0700
+91C7FCADD83FFC903801FFE0486C4913F0B54913F8A26C486D13F06C486D13E02D387FB7
+30>I<003FB712C04816E0B8FCA43AFE003F800FA8007CED07C0C791C7FCB3B1011FB5FC
+4980A46D91C7FC2B387EB730>84 D<EB7FF80003B5FC4814C04880488048809038E01FFC
+9038C003FE14016E7E6C487F6CC77FC8123FA491B5FC130F137F48B6FC12075A48EB803F
+383FF800EA7FE0138048C7FC5AA4157F7E6C6C13FFEBC003263FF01FEBFF8090B712C07E
+6C14EF000314876CD9FE01138026003FE0C8FC2A2A7BA830>97 D<913801FFE04A7F5CA2
+8080EC0007AAEB03FE90381FFF874913E790B6FC5A5A481303380FFC00D81FF0133F4913
+1F485A150F4848130790C7FCA25AA25AA87E6C140FA27F003F141F6D133F6C7E6D137F39
+0FF801FF2607FE07EBFFC06CB712E06C16F06C14F76D01C713E0011F010313C0D907FCC8
+FC2C397DB730>100 D<49B4FC010713E0011F13F8017F7F90B57E488048018113803A07
+FC007FC04848133FD81FE0EB1FE0150F484814F0491307127F90C7FCED03F85A5AB7FCA5
+16F048C9FC7E7EA27F003FEC01F06DEB03F86C7E6C7E6D1307D807FEEB1FF03A03FFC07F
+E06C90B5FC6C15C0013F14806DEBFE00010713F8010013C0252A7CA830>I<387FFFF8B5
+7EA47EEA0001B3B3A8007FB612F0B712F8A46C15F025387BB730>108
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmr8 8 1
+/Fb 1 51 df<EB7F803801FFF0380780FC380E003F48EB1F8048EB0FC05A0060EB07E012
+F000FC14F07E1403A3007C1307C7FCA215E0140F15C0141F1580EC3F00147E147C5C495A
+495A495A495A011EC7FC5B5B4913305B485A4848136048C7FC000E14E0001FB5FC5A4814
+C0B6FCA21C2C7DAB23>50 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fc cmmi10 10.95 2
+/Fc 2 77 df<49B6D8C03FB512F81BF01780D900010180C7383FF00093C85B4B5EA2197F
+14034B5EA219FF14074B93C7FCA260140F4B5DA21803141F4B5DA21807143F4B5DA2180F
+4AB7FC61A20380C7121F14FF92C85BA2183F5B4A5EA2187F13034A5EA218FF13074A93C8
+FCA25F130F4A5DA21703131F4A5DA2013F1507A24A5D496C4A7EB6D8E01FB512FCA2614D
+3E7DBD4C>72 D<49B612F0A3D900010180C7FC93C8FC5DA314035DA314075DA3140F5DA3
+141F5DA3143F5DA3147F5DA314FF92C9FCA35B5C180C181E0103161C5C183C183813074A
+1578187018F0130F4AEC01E0A21703011FED07C04A140F171F013FED3F8017FF4A130301
+7F021F1300B9FCA25F373E7DBD3E>76 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fd cmtt10 10 30
+/Fd 30 121 df<007FB6FCB71280A46C150021067B9B2C>45 D<121FEA3F80EA7FC0EAFF
+E0A5EA7FC0EA3F80EA1F000B0B708A2C>I<1507ED0F80151FA2153F16005D157E15FE5D
+14015D14035DA214075D140F5D141F5D143F92C7FC5C147E14FE5CA213015C13035C1307
+5C130F5C131F5CA2133F91C8FC5B137E13FE5B12015B12035B12075BA2120F5B121F5B12
+3F90C9FC5A127E12FE5AA25A127821417BB92C>I<121FEA3F80EA7FC0EAFFE0A5EA7FC0
+EA3F80EA1F00C7FCAE121FEA3F80EA7FC0EAFFE0A5EA7FC0EA3F80EA1F000B2470A32C>
+58 D<14FE497EA4497FA214EFA2130781A214C7A2010F7FA314C390381F83F0A590383F
+01F8A490387E00FCA549137E90B512FEA34880A29038F8003FA34848EB1F80A4000715C0
+49130FD87FFEEBFFFC6D5AB514FE6C15FC497E27347EB32C>65 D<007FB512E015F8B612
+FE6C8016C03903F0003FED0FE0ED07F01503A2ED01F8A6ED03F0A21507ED0FE0ED1FC0ED
+FF8090B612005D5D15FF16C09039F0001FE0ED07F0ED03F81501ED00FCA216FE167EA616
+FE16FC1501ED03F8150FED3FF0007FB612E016C0B712806CECFE0015F027337FB22C>I<
+007FB5FCB612C015F0816C803907E003FEEC00FFED7F80153FED1FC0ED0FE0A2150716F0
+150316F81501A4ED00FCACED01F8A3150316F0A2150716E0150FED1FC0153FED7F80EDFF
+00EC03FE007FB55AB65A5D15C06C91C7FC26337EB22C>68 D<007FB612F0B712F8A37E39
+03F00001A7ED00F01600A4EC01E04A7EA490B5FCA5EBF003A46E5A91C8FCA5163C167EA8
+007FB612FEB7FCA36C15FC27337EB22C>I<007FB512F8B612FCA36C14F839000FC000B3
+B3A5007FB512F8B612FCA36C14F81E3379B22C>73 D<387FFFE0B57EA36C5BD803F0C8FC
+B3AE16F0ED01F8A8007FB6FCB7FCA36C15F025337DB22C>76 D<D87FE0EB0FFC486CEB1F
+FEA26D133F007F15FC000F15E001BC137BA4019E13F3A3EB9F01A2018F13E3A21483A201
+8713C314C7A201831383A214EFA201811303A214FFEB80FEA3147C14381400ACD87FF0EB
+1FFC486CEB3FFEA36C48EB1FFC27337EB22C>I<007FB512C0B612F88115FF6C15802603
+F00013C0153FED0FE0ED07F0A2150316F81501A6150316F01507A2ED0FE0ED3FC015FF90
+B61280160015FC5D15C001F0C8FCB0387FFF80B57EA36C5B25337EB22C>80
+D<007FB612FCB712FEA43AFC007E007EA70078153CC71400B3AF90383FFFFCA2497F6D5B
+A227337EB22C>84 D<3801FFF0000713FE001F6D7E15E048809038C01FF81407EC01FC38
+1F80000006C77EC8127EA3ECFFFE131F90B5FC1203120F48EB807E383FF800EA7FC090C7
+FC12FE5AA47E007F14FEEB8003383FE01F6CB612FC6C15FE6C14BF0001EBFE1F3A003FF0
+07FC27247CA32C>97 D<EA7FF0487EA3127F1201AAEC1FE0ECFFF801FB13FE90B6FC1680
+9138F07FC09138801FE091380007F049EB03F85BED01FC491300A216FE167EA816FE6D14
+FCA2ED01F86D13036DEB07F0150F9138801FE09138E07FC091B51280160001FB5B01F813
+F83900F03FC027337FB22C>I<903803FFE0011F13F8017F13FE48B5FC48804848C6FCEA
+0FF0485A49137E4848131890C9FC5A127EA25AA8127EA2127F6C140F6DEB1F806C7E6D13
+3F6C6CEB7F003907FE03FF6CB55A6C5C6C6C5B011F13E0010390C7FC21247AA32C>I<EC
+0FFE4A7EA380EC003FAAEB07F8EB3FFE90B512BF4814FF5A3807FC0F380FF00348487E49
+7E48487F90C7FC007E80A212FE5AA87E007E5CA2007F5C6C7E5C6C6C5A380FF0073807FC
+1F6CB612FC6CECBFFE6C143FEB3FFC90390FF01FFC27337DB22C>I<EB03FE90381FFFC0
+017F13F048B57E48803907FE03FE390FF800FFD81FE0EB3F805B4848EB1FC090C7120F5A
+007E15E015075AB7FCA416C000FCC9FC7E127EA2127F6CEC03C06DEB07E06C7ED80FF013
+0F6C6CEB3FC001FF13FF000190B512806C1500013F13FC010F13F00101138023247CA32C
+>I<EC0FF8EC3FFE91B5FC4914805B903807FC7F14F090390FE03F0014C092C7FCA6007F
+B512FEB7FCA36C5C26000FC0C7FCB3A8003FB512F04880A36C5C21337DB22C>I<ED03F8
+903907F80FFC90391FFE3FFE017FB6FC48B7FC48ECFE7F9038FC0FF82607F003133E3A0F
+E001FC1CD9C0001300001F8049137EA66D13FE000F5CEBE0016C6C485A3903FC0FF048B5
+FC5D481480D99FFEC7FCEB87F80180C8FCA37F6C7E90B512F06C14FE48ECFF804815E048
+15F03A3FC0001FF848C7EA03FC007E1400007C157C00FC157E48153EA46C157E007E15FC
+D87F801303D83FE0EB0FF8D81FFCEB7FF06CB612E0000315806C1500D8003F13F8010713
+C028387EA42C>I<EA7FF0487EA3127F1201AAEC1FE0EC7FFC9038F9FFFE01FB7F90B6FC
+9138F03F80ECC01F02807FEC000F5B5BA25BB3267FFFE0B5FCB500F11480A36C01E01400
+29337FB22C>I<1307EB1FC0A2497EA36D5AA20107C7FC90C8FCA7387FFFC080B5FC7EA2
+EA0007B3A8007FB512FCB612FEA36C14FC1F3479B32C>I<387FFFE0B57EA37EEA0003B3
+B3A5007FB61280B712C0A36C158022337BB22C>108 D<397FF01FE039FFF87FFC9038F9
+FFFE01FB7F6CB6FC00019038F03F80ECC01F02807FEC000F5B5BA25BB3267FFFE0B5FCB5
+00F11480A36C01E0140029247FA32C>110 D<EB07FCEB1FFF017F13C048B512F0488039
+07FC07FC390FF001FE48486C7E0180133F003F158090C7121F007EEC0FC0A348EC07E0A7
+6C140F007E15C0A2007F141F6C15806D133F6C6CEB7F006D5B6C6C485A3907FC07FC6CB5
+5A6C5C6C6C13C0011F90C7FCEB07FC23247CA32C>I<397FF01FE039FFF8FFF801FB13FE
+90B6FC6C158000019038F07FC09138801FE091380007F049EB03F85BED01FC491300A216
+FE167EA816FE6D14FCA2ED01F86D13036DEB07F0150F9138801FE09138E07FC091B51280
+160001FB5B01F813F8EC3FC091C8FCAD387FFFE0B57EA36C5B27367FA32C>I<D87FFEEB
+3FC0B53801FFF0020713F8021F13FC6C5B39003F7FE1ECFF019138FC00F84A13704A1300
+5CA25C5CA391C8FCAF007FB512E0B67EA36C5C26247EA32C>114
+D<131E133FA9007FB6FCB71280A36C1500D8003FC8FCB1ED03C0ED07E0A5EC800F011FEB
+1FC0ECE07F6DB51280160001035B6D13F89038003FE0232E7EAD2C>116
+D<D87FFFEB7FFF6EB5FCB515806C16004A7ED807C0EB01F0A66C6C495AA3143E147FA2D8
+01F0495AECFF87A214F7A201F113C700005D9038F9E3CFA201FB13EFA3D97BC190C7FC01
+7F13FFA21480A2013F5B90381F007C29247FA32C>119 D<3A3FFF03FFF048018713F8A3
+6C010313F03A00FC007E005D90387E01F8013F5BEB1F83EC87E090380FCFC0903807EF80
+EB03FF6D90C7FC5C6D5A147C14FE130180903803EF80903807CFC0EB0FC7EC83E090381F
+01F0013F7FEB7E00017C137C49137E0001803A7FFF01FFFC1483B514FE6C15FC14012724
+7EA32C>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fe cmsy5 5 1
+/Fe 1 1 df<B612FEA31F037A8B2D>0 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Ff cmmi5 5 5
+/Ff 5 115 df<EA1FE0A212035BA4485AA4380F0FC0EB3FF0EB70F8EBC078EA1F801300
+121EA2485BA3903801E080007813E1EB03C1ECC30014C738F001FE386000F8191D7C9C22
+>104 D<137013F8A213F013E01300A6EA0F80EA1FC0EA31E01261A2EAC3C01203EA0780
+A3EA0F001308EA1E18A213301370EA0FE0EA07800D1D7D9C16>I<EB0180EB03C01307A2
+EB038090C7FCA6137CEA01FEEA038FEA070F1206120C1200A2131EA45BA45BA4EA70F012
+F8EAF9E0485AB45A007EC7FC12257E9C18>I<EA1FE0A212035BA4485AA4380F00F8EB01
+FCEB070CEB0C1C381E383CEB607CEA1FC0EBE038383FF800EA3C7C131E14040078130CA2
+1418130F00F013F0386003E0161D7C9C1F>I<380F07E0383F8FF83833D81CEA63F038C3
+E03CEBC07C1203143838078000A448C7FCA4121E120C16127D911C>114
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fg msam10 10 1
+/Fg 1 4 df<007FB812F8B912FCA300F0CA123CB3B3ACB912FCA36C17F836387BB741>3
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fh cmsy7 7 8
+/Fh 8 107 df<B712FEA327037A8F34>0 D<0060140600F0140E0078141E6C143C6C1478
+6C14F039078001E03903C003C03901E007803900F00F00EB781E6D5A6D5A6D5A6D5A6D5A
+497E497EEB1E78497E497E497E3901E007803903C003C039078001E048C712F0001E1478
+48143C48141E48140E006014061F1F769D34>2 D<017F157F2601FFE0903803FFC00007
+01F890380FF1F0260F83FC90381F0038261E00FF013C7F001890263F8078130C4890261F
+C0E07F007090260FE1C07F0060EB07E3913803F780486DB4C7EA01806E5A157E157F8182
+4B7E0060DAF7E0EB0300913801E3F0DBC3F85B6C90260381FC13066C90260F00FE5B001C
+011E90387F803C6C017C90381FE0F82607C7F86DB45A2601FFE0010313C06C6CC86CC7FC
+391B7C9942>49 D<49B5FC130F133F01FFC7FCEA01F8EA03E0EA078048C8FC121E121C12
+3C123812781270A212F05AA2B7FCA300E0C8FCA27E1270A212781238123C121C121E7E6C
+7EEA03E0EA01F86CB4FC013FB5FC130F130120277AA12D>I<1406140EB3B2007FB712E0
+B8FC7E2B287CA734>63 D<147EEB03FEEB0FE0EB1F00133E5BB35BA2485AEA07E0EAFF80
+00FCC7FCB47EEA07E0EA01F06C7EA2137CB37F7FEB0FE0EB03FEEB007E173B7BAB22>
+102 D<12FCB47EEA0FE0EA01F06C7E137CB37FA27FEB0FC0EB03FEEB007EEB03FEEB0FC0
+EB1F00133EA25BB35B485AEA0FE0EAFF8000FCC7FC173B7BAB22>I<12E0B3B3B3A5033B
+78AB14>106 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fi cmr5 5 3
+/Fi 3 51 df<14E0B0B712C0A3C700E0C7FCB022237C9B2B>43 D<1360EA01E0120F12FF
+12F11201B3A3387FFF80A2111C7B9B1C>49 D<EA03FCEA0FFF383C0FC0387003E0387801
+F0EAFC0014F8A214781278C712F814F0A2EB01E0EB03C0EB0780EB0F00131C5B13E03801
+C018EA0380EA0600481338383FFFF05AB5FCA2151C7D9B1C>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fj cmmib10 10 1
+/Fj 1 83 df<0103B712E04916FEF0FFC085D90007D9800113F89438003FFCF00FFE5C93
+C76C7EA21A805C5DA3023F4B13005DA24E5A147F4B5D4E5A4E5A02FF4B5A4B495B050790
+C7FCEF3FFC4990B612F0188018E0DBE0017F496E6C7E4B6D7E717EA2496F7E5DA25F495E
+92C7FCA2173F5B4A5DA3013F037F14604A4B13F0A21901017F033F14E04A1603B600F890
+391FFC07C094390FFE1F8071B51200050113FCCBEA3FF0443A7CB848>82
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fk cmr10 10.95 51
+/Fk 51 124 df<913801FFC0021F13FC9139FF007F80D903F8EB0FE0D90FF0EB07F8D91F
+C0EB01FCD97F806DB4FC49C86C7E48486F7E00038348486F7E000F8349150F001F834915
+07003F83A348486F7EAA6C6C4B5AA3001F5FA26C6C4B5AA200075F6D151F00035FA26C6C
+4B5A00005FA2017F4BC7FC6D157EA26D6C5C010F5DA26D6C495A00E0EF0380010315E0D8
+70019238C007006E130301001580A36C0160EC000E003C017049131E263FFFF0ECFFFEA3
+6C5FA339407CBF42>10 D<EC03FE91383FFF809138FE03E0903903F800F0D90FE0133849
+48137C90393F8001FE90387F00035B5BA2485A6F5AED007093C7FCAA16FEB7FCA33901FC
+000315011500B3AC486C497EB5D8F87F13FCA32E407EBF33>12 D<DA03FE49B4FC91273F
+FF801F13C0913BFE03E07F01F0903C03F000F1FC0078D90FE0D97FF0131C49484948133E
+4948484913FF494848495A5B491500A248485C03016E5A0300153896C7FCAA197FBBFCA3
+D801FCC738FE00018485B3AC486C496CECFF80B5D8F87FD9FC3F13FEA347407EBF4C>14
+D<4B6C130C4B6C131EA20307143EA24C133CA2030F147CA293C71278A24B14F8A2031E5C
+A2033E1301A2033C5CA3037C1303A203785CA203F81307A24B5CA20201140F007FBAFCBB
+1280A26C1900C72707C0003EC8FC4B133CA3020F147CA292C71278A24A14F8A2021E5CA3
+023E1301007FBAFCBB1280A26C1900C727F80007C0C8FC4A5CA20101140FA24A91C9FCA3
+01035CA24A131EA20107143EA24A133CA2010F147CA291C71278A34914F8A2011E5CA201
+3E1301A2013C5CA201186D5A41517BBE4C>35 D<1430147014E0EB01C0EB03801307EB0F
+00131E133E133C5B13F85B12015B1203A2485AA2120F5BA2121F90C7FCA25AA3123E127E
+A6127C12FCB2127C127EA6123E123FA37EA27F120FA27F1207A26C7EA212017F12007F13
+787F133E131E7FEB07801303EB01C0EB00E014701430145A77C323>40
+D<12C07E12707E7E121E7E6C7E7F12036C7E7F12007F1378137CA27FA2133F7FA2148013
+0FA214C0A3130714E0A6130314F0B214E01307A614C0130FA31480A2131F1400A25B133E
+A25BA2137813F85B12015B485A12075B48C7FC121E121C5A5A5A5A145A7BC323>I<1506
+150FB3A9007FB912E0BA12F0A26C18E0C8000FC9FCB3A915063C3C7BB447>43
+D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A
+120E5A1218123812300B1C798919>I<B512FEA617067F961E>I<121EEA7F80A2EAFFC0A4
+EA7F80A2EA1E000A0A798919>I<EB01FE90380FFFC090383F03F090387C00F849137C48
+487F48487F4848EB0F80A2000F15C04848EB07E0A3003F15F0A290C712034815F8A64815
+FCB3A26C15F8A56C6CEB07F0A3001F15E0A36C6CEB0FC0A26C6CEB1F80000315006C6C13
+3E6C6C5B017C5B90383F03F090380FFFC0D901FEC7FC263F7DBC2D>48
+D<EB01C013031307131F137FEA07FFB5FC139FEAF81F1200B3B3ACEB7FF0B612F8A31D3D
+78BC2D>I<EB07FC90383FFF8090B512E03903F01FF83907C007FC390F0001FE001E6D7E
+001C1580003CEC7FC05AED3FE01270B4FC6DEB1FF07FA56C5A6CC7FC120CC813E0153FA2
+16C0157F168015FF16004A5A5D4A5A4A5A5D4A5A4A5A4AC7FC147E147C5C495A495A495A
+495A49C71270133E133C5B4914E0485A485A485A48C7120148B6FCA25A4815C0B7FCA324
+3D7CBC2D>I<EB07FC90383FFF809038F80FE03901E003F839078001FCD80F007F000E6D
+7E001E1580D81F80137F486C14C07FA27F5BA2121F6C5AC8138015FF1600A24A5AA24A5A
+5DEC07E04A5A023FC7FCEB1FFCECFF809038000FE0EC07F86E7E6E7E6E7E1680ED7FC0A2
+16E0153FA216F0A2120C123F487E487EA316E0A249137F6CC713C01278EDFF807E6C4913
+006C495A3907C007FC3903F80FF0C6B55A013F1380D907F8C7FC243F7CBC2D>I<150E15
+1E153EA2157EA215FE1401A21403EC077E1406140E141CA214381470A214E0EB01C0A2EB
+0380EB0700A2130E5BA25B5BA25B5B1201485A90C7FC5A120E120C121C5AA25A5AB8FCA3
+C8EAFE00AC4A7E49B6FCA3283E7EBD2D>I<00061403D80780131F01F813FE90B5FC5D5D
+5D15C092C7FC14FCEB3FE090C9FCACEB01FE90380FFF8090383E03E090387001F8496C7E
+49137E497F90C713800006141FC813C0A216E0150FA316F0A3120C127F7F12FFA416E090
+C7121F12FC007015C012780038EC3F80123C6CEC7F00001F14FE6C6C485A6C6C485A3903
+F80FE0C6B55A013F90C7FCEB07F8243F7CBC2D>I<EC1FE0ECFFF8903803F03E90380FC0
+0F90391F000780133E017EEB1FC049133F4848137F12035B12074848EB3F80ED1F00001F
+91C7FC5BA2123FA3485AA214FE903887FF8039FF8F07E090389C01F09038B800FC01B013
+7E13F0497F16804914C0A2ED1FE0A34914F0A5127FA6123F6D14E0A2121FED3FC0A26C6C
+1480A20007EC7F006C6C137E6C6C5B6C6C485A90387E07F06DB45A010F1380D903FCC7FC
+243F7CBC2D>I<1238123C123F90B612FCA316F85A16F016E00078C712010070EC03C0ED
+078016005D48141E151C153C5DC8127015F04A5A5D14034A5A92C7FC5C141EA25CA2147C
+147814F8A213015C1303A31307A3130F5CA2131FA6133FAA6D5A0107C8FC26407BBD2D>
+I<EB03FC90381FFF8090387C07E09038F001F83901E0007C48487F48487F48C7FCED0F80
+121E16C0003E1407A4123FA26DEB0F807F6C6C131F6D140001FC133E6C6C5B9038FF8078
+6C6D5A6CEBF3E06CEBFF806C91C7FC133F6D13C06D7F013F13F801787F48486C7E3903E0
+1FFF48486C1380260F800313C048487E489038007FE0003E143F007E141F007CEC0FF015
+07481403A31501A46C15E0007C1403A2007E15C06C14076CEC0F806DEB1F006C6C133ED8
+07F05B3901FC03F86CB512E0011F1380D903FCC7FC243F7CBC2D>I<EB03FCEB1FFF9038
+7E07C09038FC03F048486C7E48486C7E4848137C000F147E4848137F81003F15805B007F
+15C0A2151F12FF16E0A516F0A5127F153FA36C7EA2001F147F120F6C6C13FF6D13DF0003
+13013900F8039F90387E0F1FD91FFE13E0EB07F090C7FCA2ED3FC0A41680157FD80F8014
+00487E486C13FEA24A5A5D49485AEB8007391E000FE0001F495A260FC07FC7FC3803FFFE
+6C13F838003FC0243F7CBC2D>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3121E
+EA7F80A2EAFFC0A4EA7F80A2EA1E000A2779A619>I<121EEA7F80A2EAFFC0A4EA7F80A2
+EA1E00C7FCB3121E127FEAFF80A213C0A4127F121E1200A412011380A3120313005A1206
+120E120C121C5A1230A20A3979A619>I<DB3FF01306912603FFFE130E020F9038FF801E
+913A3FF007E03E9139FF8000F8D903FEC7EA7C7ED907F8EC1EFE4948140FD93FE0140749
+481403495A91C812014848150012034848167E5B000F173EA24848161EA2123F5B180E12
+7FA349160012FFAC127F7F180EA2123FA27F001F171E181C6C7EA20007173C6D16386C6C
+1678000117706C6C16F06EEC01E06D6C15C06D6C1403D90FF0EC07806D6CEC1F00D903FE
+143E902600FF8013F891393FF007F0020FB512C0020391C7FC9138003FF037427BBF42>
+67 D<B912E0A300019038C000016C6C48EB001FEF0FF01703A217011700A31870A41838
+1638A41800A21678A216F81501150791B5FCA3EC8007150115001678A21638A2180EA318
+1C93C7FCA4183C1838A21878A318F8EF01F0A21707170F173F48486CEB03FFB912E0A337
+3E7DBD3E>69 D<B91280A300019038C000036C6C48EB007FEF1FC0170F1707A21703A317
+01A4EF00E0A21638A31800A31678A216F81501150791B5FCA3EC8007150115001678A216
+38A693C8FCAF3801FFE0B612F0A3333E7DBD3B>I<B56C91B512F88080D8007F03071300
+6EEC01FC6E6E5A1870EB77FCEB73FEA2EB71FF01707FA26E7E6E7EA26E7E6E7EA26E7E6E
+7EA26E7E6E7FA26F7E6F7EA26F7E6F7EA26F7E6F7EA26F7E6F1380A2EE7FC0EE3FE0A2EE
+1FF0EE0FF8A2EE07FCEE03FEA2EE01FF7013F0A2177F173FA2171F170FA2170701F81503
+487ED807FF1501B500F81400A218703D3E7DBD44>78 D<003FB91280A3903AF0007FE001
+018090393FC0003F48C7ED1FC0007E1707127C00781703A300701701A548EF00E0A5C816
+00B3B14B7E4B7E0107B612FEA33B3D7DBC42>84 D<B691380FFFFEA3000301E0020113E0
+6C01809138007F806CEF3F00017F163E181C6E153C013F1638A26E1578011F1670A26D6C
+5DA26E140101075EA26E140301035EA26D6C4AC7FCA2806D150EA26F131E027F141CA26F
+133C023F1438A26E6C5BA26F13F0020F5CA2EDF80102075CA26E6C485AA2EDFE07020191
+C8FCA26F5A6E130EA2ED7F9CA216DCED3FF8A36F5AA36F5AA26F5AA36F5A3F407EBD44>
+86 D<EB0FF8EBFFFE3903F01F8039078007E0000F6D7E9038E001F8D81FF07F6E7EA315
+7F6C5AEA0380C8FCA4EC1FFF0103B5FC90381FF87FEB7F803801FC00EA07F8EA0FE0485A
+485AA248C7FCEE038012FEA315FFA3007F5BEC03BF3B3F80071F8700261FC00E13CF3A07
+F03C0FFE3A01FFF807FC3A003FC001F0292A7DA82D>97 D<EA01FC12FFA3120712031201
+B1EC03FC91381FFF8091387C07E09039FDE001F09039FFC000FC4A137E91C77E49158049
+141F17C0EE0FE0A217F0A2160717F8AA17F0A2160FA217E0161F17C06D1580EE3F006D5C
+6E13FE9039F3C001F89039F1E003F09039E0780FC09026C03FFFC7FCC7EA07F82D407EBE
+33>I<49B4FC010F13E090383F00F8017C131E4848131F4848137F0007ECFF80485A5B12
+1FA24848EB7F00151C007F91C7FCA290C9FC5AAB6C7EA3003FEC01C07F001F140316806C
+6C13076C6C14000003140E6C6C131E6C6C137890383F01F090380FFFC0D901FEC7FC222A
+7DA828>I<ED01FC15FFA3150715031501B114FF010713E190381F80F990387E003D4913
+1FD803F81307485A49130348481301121F123F5B127FA290C7FCA25AAA7E7FA2123FA26C
+7E000F14037F000714076C6C497E6C6C497ED8007C017913F890383F01F190380FFFC190
+3A01FE01FC002D407DBE33>I<EB01FE90380FFFC090383F03F09038FC01F848486C7E48
+48137E48487F000F158049131F001F15C04848130FA2127F16E090C7FCA25AA290B6FCA2
+90C9FCA67EA27F123F16E06C7E1501000F15C06C6C13036DEB07806C6C1400C66C131E01
+7E5B90381F80F8903807FFE0010090C7FC232A7EA828>I<EC1FC0EC7FF8903801F83C90
+3807E07E90380FC0FFEB1FC1EB3F811401137FEC00FE01FE137C1500AEB6FCA3C648C7FC
+B3AE487E007F13FFA320407EBF1C>I<167C903903F801FF903A1FFF078F8090397E0FDE
+1F9038F803F83803F001A23B07E000FC0600000F6EC7FC49137E001F147FA8000F147E6D
+13FE00075C6C6C485AA23901F803E03903FE0FC026071FFFC8FCEB03F80006CAFC120EA3
+120FA27F7F6CB512E015FE6C6E7E6C15E06C810003813A0FC0001FFC48C7EA01FE003E14
+0048157E825A82A46C5D007C153E007E157E6C5D6C6C495A6C6C495AD803F0EB0FC0D800
+FE017FC7FC90383FFFFC010313C0293D7EA82D>I<EA01FC12FFA3120712031201B1EC01
+FE913807FFC091381E07E091387803F09138E001F8D9FDC07F148001FF6D7E91C7FCA25B
+A25BB3A6486C497EB5D8F87F13FCA32E3F7DBE33>I<EA01E0EA07F8A2487EA46C5AA2EA
+01E0C8FCACEA01FC127FA3120712031201B3AC487EB512F0A3143E7DBD1A>I<EA01FC12
+FFA3120712031201B3B3B1487EB512F8A3153F7DBE1A>108 D<2701F801FE14FF00FF90
+2707FFC00313E0913B1E07E00F03F0913B7803F03C01F80007903BE001F87000FC2603F9
+C06D487F000101805C01FBD900FF147F91C75B13FF4992C7FCA2495CB3A6486C496CECFF
+80B5D8F87FD9FC3F13FEA347287DA74C>I<3901F801FE00FF903807FFC091381E07E091
+387803F000079038E001F82603F9C07F0001138001FB6D7E91C7FC13FF5BA25BB3A6486C
+497EB5D8F87F13FCA32E287DA733>I<14FF010713E090381F81F890387E007E01F8131F
+4848EB0F804848EB07C04848EB03E0000F15F04848EB01F8A2003F15FCA248C812FEA448
+15FFA96C15FEA36C6CEB01FCA3001F15F86C6CEB03F0A26C6CEB07E06C6CEB0FC06C6CEB
+1F80D8007EEB7E0090383F81FC90380FFFF0010090C7FC282A7EA82D>I<3901FC03FC00
+FF90381FFF8091387C0FE09039FDE003F03A07FFC001FC6C496C7E6C90C7127F49EC3F80
+5BEE1FC017E0A2EE0FF0A3EE07F8AAEE0FF0A4EE1FE0A2EE3FC06D1580EE7F007F6E13FE
+9138C001F89039FDE007F09039FC780FC0DA3FFFC7FCEC07F891C9FCAD487EB512F8A32D
+3A7EA733>I<3901F807E000FFEB1FF8EC787CECE1FE3807F9C100031381EA01FB1401EC
+00FC01FF1330491300A35BB3A5487EB512FEA31F287EA724>114
+D<90383FC0603901FFF8E03807C03F381F000F003E1307003C1303127C0078130112F814
+00A27E7E7E6D1300EA7FF8EBFFC06C13F86C13FE6C7F6C1480000114C0D8003F13E00103
+13F0EB001FEC0FF800E01303A214017E1400A27E15F07E14016C14E06CEB03C090388007
+8039F3E01F0038E0FFFC38C01FE01D2A7DA824>I<131CA6133CA4137CA213FCA2120112
+031207001FB512C0B6FCA2D801FCC7FCB3A215E0A912009038FE01C0A2EB7F03013F1380
+90381F8700EB07FEEB01F81B397EB723>I<D801FC14FE00FF147FA30007140300031401
+00011400B3A51501A31503120015076DEB06FF017E010E13806D4913FC90381FC0789038
+07FFE00100903880FE002E297DA733>I<B539E00FFFE0A32707FE000313006C48EB00FC
+5E00015D7F00005DA26D13016D5CA26D6C485AA2ECC007011F91C7FCA290380FE00EA2EC
+F01E0107131CA26D6C5AA2ECFC7801011370A2ECFEF001005BA2EC7FC0A36E5AA26EC8FC
+A3140E2B287EA630>I<B53BC3FFFE03FFF8A3290FFE003FE00013C06C486D48EB3F806C
+4817006D010F141E00016F131C15076D163C00004A6C1338A2017F5E4B7E151DD93F805D
+ED3DFC1538D91FC04A5AED78FE9238707E03D90FE0017F5BEDE03F02F0140701070387C7
+FC9138F1C01F02F9148F010315CE9138FB800F02FF14DE6D15FCED00076D5DA24A130302
+7E5CA2027C1301023C5C023813003D287EA642>I<B539F01FFFE0A30003D9C00F1300C6
+90388007F8D97F0013E002805BD93FC05B011F49C7FC90380FE00EECF01E6D6C5A01035B
+6D6C5A6E5AEB00FF6E5A6E5A81141F814A7E81147BECF1FC903801E1FEECC0FF01037F49
+486C7ED90F007F011E6D7E013E130F496D7E01FC80486C80000F4A7EB539803FFFF8A32D
+277FA630>I<B539E00FFFE0A32707FE000313006C48EB01FC6F5A00015D7F00005DA201
+7F495AA2EC8003013F5CA26D6C48C7FCA26E5A010F130EA26D6C5AA2ECF83C01031338A2
+6D6C5AA2ECFEF001005BA2EC7FC0A36E5AA36EC8FCA2140EA2141E141C143C1438A21478
+00181370127EB45BA2495AA248485AD87E07C9FCEA780EEA3C3CEA1FF8EA07E02B3A7EA6
+30>I<B812F0A22C0280982D>123 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fl cmex10 10 31
+/Fl 31 101 df<1430147014E0EB01C01303EB0780EB0F00A2131E5BA25B13F85B12015B
+1203A2485AA3485AA3121F90C7FCA25AA3123EA2127EA6127C12FCB3A2127C127EA6123E
+A2123FA37EA27F120FA36C7EA36C7EA212017F12007F13787FA27F7FA2EB0780EB03C013
+01EB00E0147014301462738226>0 D<12C07E12707E123C7E7EA26C7E6C7EA26C7E7F12
+007F1378137CA27FA37FA31480130FA214C0A31307A214E0A6130314F0B3A214E01307A6
+14C0A2130FA31480A2131F1400A3133EA35BA2137813F85B12015B485AA2485A48C7FCA2
+121E5A12385A5A5A14627C8226>I<1538EC01F8EC07E0EC1F80EC7E005CEB03F85C495A
+A2495AB3AB131F5CA249C7FC137E5BEA03F8EA07E0EA3F8000FCC8FCA2EA3F80EA07E0EA
+03F8C67E137E7F6D7EA280130FB3AB6D7EA26D7E80EB00FC147EEC1F80EC07E0EC01F8EC
+00381D62778230>8 D<12E012FCEA3F80EA07E0EA03F8C67E137E7F6D7EA280130FB3AB
+6D7EA26D7E80EB00FC147EEC1F80EC07E0EC01F8A2EC07E0EC1F80EC7E005CEB03F85C49
+5AA2495AB3AB131F5CA249C7FC137E5BEA03F8EA07E0EA3F8000FCC8FC12E01D62778230
+>I<151E153E157C15F8EC01F0EC03E01407EC0FC0EC1F8015005C147E5CA2495A495AA2
+495AA2495AA2495AA249C7FCA2137EA213FE5B12015BA212035BA21207A25B120FA35B12
+1FA45B123FA548C8FCA912FEB3A8127FA96C7EA5121F7FA4120F7FA312077FA21203A27F
+1201A27F12007F137EA27FA26D7EA26D7EA26D7EA26D7EA26D7E6D7EA2147E80801580EC
+0FC0EC07E01403EC01F0EC00F8157C153E151E1F94718232>16 D<12F07E127C7E7E6C7E
+7F6C7E6C7E12017F6C7E137EA27F6D7EA26D7EA26D7EA26D7EA26D7EA26D7EA280147E14
+7F80A21580141FA215C0A2140F15E0A3140715F0A4140315F8A5EC01FCA9EC00FEB3A8EC
+01FCA9EC03F8A515F01407A415E0140FA315C0141FA21580A2143F1500A25C147E14FE5C
+A2495AA2495AA2495AA2495AA2495AA249C7FC137EA25B485A5B1203485A485A5B48C8FC
+123E5A5A5A1F947D8232>I<160F161F163E167C16F8ED01F0ED03E0ED07C0150FED1F80
+1600153E157E5D4A5A5D14034A5A5D140F4A5AA24AC7FC143E147E5CA2495AA2495AA249
+5AA2130F5CA2495AA2133F91C8FCA25B137E13FEA25B1201A25B1203A35B1207A35B120F
+A35BA2121FA45B123FA690C9FC5AAA12FEB3AC127FAA7E7FA6121F7FA4120FA27FA31207
+7FA312037FA312017FA212007FA2137E137F7FA280131FA26D7EA2801307A26D7EA26D7E
+A26D7EA2147E143E143F6E7EA26E7E1407816E7E1401816E7E157E153E811680ED0FC015
+07ED03E0ED01F0ED00F8167C163E161F160F28C66E823D>I<12F07E127C7E7E6C7E6C7E
+6C7E7F6C7E1200137C137E7F6D7E130F806D7E1303806D7EA26D7E147C147E80A26E7EA2
+6E7EA26E7EA2811403A26E7EA2811400A281157E157FA2811680A2151F16C0A3150F16E0
+A3150716F0A31503A216F8A4150116FCA6150016FEAA167FB3AC16FEAA16FC1501A616F8
+1503A416F0A21507A316E0150FA316C0151FA31680153FA216005DA2157E15FE5DA21401
+5DA24A5AA214075DA24A5AA24A5AA24AC7FCA2147E147C14FC495AA2495A5C1307495A5C
+131F49C8FC137E137C5B1201485A5B485A485A48C9FC123E5A5A5A28C67E823D>I<161E
+167EED01FE1507ED0FF8ED3FE0ED7FC0EDFF80913801FE004A5A4A5A5D140F4A5A5D143F
+5D147F92C7FCA25C5CB3B3B3A313015CA3495AA213075C495AA2495A495A137F49C8FC48
+5A485AEA07F0EA1FE0485AB4C9FC12FCA2B4FCEA3FC06C7EEA07F0EA03FC6C7E6C7E6D7E
+133F6D7E6D7EA26D7E801303A26D7EA3801300B3B3B3A38080A281143F81141F816E7E14
+07816E7E6E7E913800FF80ED7FC0ED3FE0ED0FF8ED07FE1501ED007E161E27C675823E>
+26 D<12F012FCB4FC13C0EA3FE0EA0FF86C7E6C7EC67E6D7E6D7E131F806D7E13078013
+03801301A2801300B3B3B3A38080A36E7EA281141F6E7EA26E7E6E7E816E7E6E7EED7F80
+ED1FC0ED0FF0ED07F8ED01FEED007EA2ED01FEED07F8ED0FF0ED1FC0ED7F80EDFF004A5A
+4A5A5D4A5A4A5AA24A5A143F5DA24AC7FCA35C5CB3B3B3A313015CA213035C13075C130F
+495A5C133F495A49C8FCEA03FE485A485AEA3FE0B45A90C9FC12FC12F027C675823E>I<
+EE01C0EE03E0A2160717C0A2160F1780161F1700A25E163E167E167CA216FC5EA215015E
+15035EA215075E150F5EA2151F93C7FC5D153EA2157E157C15FC5DA214015DA214035D14
+075DA2140F5D141F92C8FCA25C143E147E147CA214FC5C13015CA213035CA213075C130F
+5CA2131F91C9FC5B133EA2137E137C13FC5BA212015B12035BA212075BA2120F5B121F90
+CAFCA25A123E127E127CA212FC5A7E127CA2127E123E123F7EA27F120F7F1207A27F1203
+A27F12017F1200A27F137C137E133EA2133F7F80130FA2801307801303A2801301A28013
+0080147CA2147E143E143F80A281140F811407A2811403811401A2811400A281157C157E
+153EA2153F8182150FA2821507821503A2821501821500A282167CA2167E163E163F82A2
+1780160F17C01607A217E01603A2EE01C02BC776823E>I<127012F8A27E127CA2127E12
+3E123F7EA27F120F7F1207A27F1203A27F12017F1200A27F137C137E133EA2133F7F8013
+0FA2801307801303A2801301A280130080147CA2147E143E143F80A281140F811407A281
+1403811401A2811400A281157C157E153EA2153F8182150FA2821507821503A282150182
+1500A282167CA2167E163E163F82A21780160F17C01607A217E01603160717C0A2160F17
+80161F1700A25E163E167E167CA216FC5EA215015E15035EA215075E150F5EA2151F93C7
+FC5D153EA2157E157C15FC5DA214015DA214035D14075DA2140F5D141F92C8FCA25C143E
+147E147CA214FC5C13015CA213035CA213075C130F5CA2131F91C9FC5B133EA2137E137C
+13FC5BA212015B12035BA212075BA2120F5B121F90CAFCA25A123E127E127CA212FC5AA2
+12702BC778823E>I<176017F0EE01F8A3EE03F0A3EE07E0A3EE0FC0A3EE1F80A3EE3F00
+A3167EA35EA34B5AA34B5AA34B5AA44B5AA34B5AA34BC7FCA3157EA35DA34A5AA34A5AA3
+4A5AA34A5AA34A5AA44AC8FCA3147EA35CA3495AA3495AA3495AA3495AA3495AA349C9FC
+A4137EA35BA3485AA3485AA3485AA3485AA3485AA348CAFCA3127EA35AA4127EA37EA36C
+7EA36C7EA36C7EA36C7EA36C7EA36C7EA3137EA37FA46D7EA36D7EA36D7EA36D7EA36D7E
+A36D7EA3147EA380A36E7EA46E7EA36E7EA36E7EA36E7EA36E7EA3157EA381A36F7EA36F
+7EA36F7EA46F7EA36F7EA36F7EA3167EA382A3EE1F80A3EE0FC0A3EE07E0A3EE03F0A3EE
+01F8A3EE00F017602DF8748243>42 D<1230127812FCA3127EA37EA36C7EA36C7EA36C7E
+A36C7EA36C7EA36C7EA3137EA37FA46D7EA36D7EA36D7EA36D7EA36D7EA36D7EA3147EA3
+80A36E7EA36E7EA46E7EA36E7EA36E7EA36E7EA3157EA381A36F7EA36F7EA36F7EA46F7E
+A36F7EA36F7EA3167EA382A3EE1F80A3EE0FC0A3EE07E0A3EE03F0A3EE01F8A4EE03F0A3
+EE07E0A3EE0FC0A3EE1F80A3EE3F00A3167EA35EA34B5AA34B5AA34B5AA44B5AA34B5AA3
+4BC7FCA3157EA35DA34A5AA34A5AA34A5AA34A5AA44A5AA34AC8FCA3147EA35CA3495AA3
+495AA3495AA3495AA3495AA349C9FCA4137EA35BA3485AA3485AA3485AA3485AA3485AA3
+48CAFCA3127EA35AA3127812302DF8778243>I<177C17FCEE01F8A2EE03F0EE07E0EE0F
+C0A2EE1F80EE3F005E167E5E15015E15034B5A5E150F5E151F4B5AA24BC7FCA215FEA24A
+5AA24A5AA24A5AA2140F5D141F5D143F5DA2147F92C8FC5CA25C13015C1303A25C1307A3
+495AA3495AA3133F5CA3137F5CA313FF91C9FCA35A5BA31203A25BA31207A35BA3120FA4
+5BA2121FA65BA2123FA85BA2127FAE5B12FFB3A62E95688149>48
+D<12F87E127EA27E6C7E6C7EA26C7E6C7E7F12016C7E7F137E137F6D7E131F80130F806D
+7EA26D7EA26D7EA26D7EA2147FA26E7EA281141F81140F811407A281140381A214018114
+0081A28182A36F7EA36F7EA382150FA3821507A3821503A3821501A382A281A31780A316
+7FA317C0A4163FA217E0A6161FA217F0A8160FA217F8AE160717FCB3A62E957E8149>I<
+EC01F01407140F143F147F903801FFC0491380491300495A495A495A495A5C495A485B5A
+91C7FC485AA2485AA2485AA2123F5BA2127F5BA412FF5BB3B3A71C4B607E4A>56
+D<12F812FE6C7E7F13F0EA3FF86C7E6C7EEA03FF6C7F6C7F6D7E6D7E806D7E130F6D7E80
+7F15807F15C07FA2EC7FE0A3EC3FF0A415F8141FB3B3A71D4B737E4A>I<EAFFC0B3B3A7
+7F127FA47F123FA27F121FA26C7EA26C7EA26C7E807E6C7F6D7E806D7E6D7E6D7E6D7E6D
+13806D13C09038007FF0143F140F140714011C4B60804A>I<EC1FF8B3B3A7143F15F0A4
+EC7FE0A3ECFFC0A25B15805B15005B5C495A131F495A5C495A495A485B4890C7FCEA0FFE
+485A485AB45A13C05B48C8FC12F81D4B73804A>I<EC1FF8B3B3A7143F15F0A4EC7FE0A3
+15C014FFA2491380A215005B5C1307495A5C131F495A5C495A495A4890C7FC485A485A48
+5A485AEA7FE0EAFF8090C8FC12FCB4FC7FEA7FE0EA1FF06C7E6C7E6C7E6C7E6C7F6D7E6D
+7E806D7E130F806D7E1303807F1580A26D13C0A2147F15E0A3EC3FF0A415F8141FB3B3A7
+1D9773804A>I<EAFFC0B3B3A86C7EA56C7EA36C7EA2120F7FA26C7E12037F7E807E6D7E
+6D7E80131F6D7E6D7E6D7E6D7E6D1380EC3FE0EC1FF0140714031407141FEC3FE0ECFF80
+491300495A495A495A495A133F5C495A495A5A91C7FC5A5B1207485AA25B121FA2485AA3
+485AA5485AB3B3A81C9760804A>I<B47EB3A6127F7FAE123FA27FA8121FA27FA6120FA2
+7FA41207A37FA31203A37FA21201A37F7EA380137FA380133FA380131FA36D7EA36D7EA3
+130380A2130180130080A28081143FA281141F81140F811407A26E7EA26E7EA26E7EA215
+7FA26F7EA26F7E150F821507826F7E1501821500167E167F82EE1F80EE0FC0A2EE07E0EE
+03F0EE01F8A2EE00FC177C2E95688349>64 D<EE07FCB3A617F8160FAE17F0A2161FA817
+E0A2163FA617C0A2167FA41780A316FFA31700A35DA25EA315035EA315075EA3150F5EA3
+151F5EA34B5AA34B5AA393C7FC5DA25D14015D1403A25D14075DA2140F5D141F5D143F5D
+A24AC8FCA214FEA2495AA2495AA2495AA2495A5C131F5C133F49C9FC137E13FE5B485A12
+035B485A485AA2485A48CAFC127EA25A5A2E957E8349>I<EAFF80B3B3B00934688049>I<
+EAFF80B3B3B00934598049>I<167F923801FFC0923803C0F0923807803892380F007892
+381F01FC151E153EA2157E92387C0070170015FCA44A5AA81403A45DA41407A94A5AAA4A
+5AA95DA4143FA492C8FCA7143E147EA4147C123800FE13FC5CA2495A5CEA7803387007C0
+383C0F80D80FFEC9FCEA03F82E5C7C7F27>82 D<BF12E08AA38A6C90CCFC0900806C6D19
+076C6D07007F6C6D1A1F1D076C6DF201FF6C6D747E6C6DF33F801E0F6C6D1B076D6CF303
+C06D6D1A01F600E06D7F6D6D1B706D1D30816D6D1B186D6D1B007F816E7E6E7FA26E7F6E
+7F6E7FA26E7F6E7F6E7FA26F7E6F7F6F7FA26F7F6F7F81836F7F6F7F167F83707F707F82
+84707F707FA2707F82715A60173F715A604D5A4DCDFC17FEA24C5A4C5A4C5A4C5A4C5A5F
+163F4CCEFC16FE4B5A4B5A4B5AA24B5A4B5A4B5A4BCFFC15FEA24A5A4A5A4A481B184A48
+1B304A5A4B1B70023F1C604ACF12E002FE1B014948F303C049481B074948F30F801E1F49
+481B7F4948F3FF0049481A0349CE120F01FEF37FFEF403FF48481A7F4848077FB55A48BE
+FC48655AA248655ABFFC666D747B7F78>88 D<BE12FEA5000302E0C9000F1480C66CF2FC
+00011F1AF06D626D62A26D62B3B3B3B3B3A4496D4C7FA2496D4C7F496D4C7F017F01FF4B
+B512FC0003B600E0020FECFF80B8D88003B712FEA55F747B7F6A>I<F107C0F11FF0F17C
+3CF1F80E0601133EF1F07F953803E0FF1807A24E5A1A7E95381F803C1A00A24EC7FCA260
+A2187E18FEA3601701A34D5AA4170760A3170FA260A2171FA260A3173FA360177FA44DC8
+FCA55E5FA31603A35FA21607A35FA2160FA44C5AA5163F5FA4167F5FA416FF5FA45D94C9
+FCA45D5EA54B5AA54B5AA45EA2151FA35EA2153FA35EA3157F5EA54BCAFCA45D1401A35D
+A31403A25DA21407A25DA3140F5DA44A5AA35D143FA392CBFC5CA2147E14FE5CA2383C01
+F8127E12FF495A5C130700FE5B387C0F80D8701FCCFCEA3C3EEA0FFCEA03F048B87B7F2E
+>I<197C953807FFC0067F13FC0507B612C0057F15FC040FB50083EBFFE093B526F0001F
+13FE030F01FCC8387FFFE092B50080030313FE020F01F0CA381FFFE0DAFFFCCCEA7FFE01
+1F0180963803FFF02601FFF0CEEA1FFFD81FFED013F0D8FF80F503FE00F0D2121E771080
+BF78>100 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fm cmti10 10 68
+/Fm 68 123 df<04FFEB03F003039038E00FFC923A0FC0F01F1E923A3F00783E0F923A7E
+01F87C3FDB7C03EBFC7F03FC14F8DA01F813F905F1137EDC01E1133C913B03F00003F000
+A314074B130760A3140F4B130F60A3010FB812C0A3903C001F80001F8000A3023F143F92
+C790C7FCA44A5C027E147EA402FE14FE4A5CA413014A13015FA313034A13035FA313074A
+495AA44948495AA44948495AA3001CD9038090C8FC007E90380FC03F013E143E00FE011F
+5B133C017C5C3AF8780F01E0D878F0EB07C0273FE003FFC9FC390F8000FC404C82BA33>
+11 D<EE3FFC4BB51280923907E007C092391F8001E0DB3F0013F0037E13034B1307A24A
+5A18E04A48EB038094C7FCA314075DA4140F5DA3010FB7FCA25F903A001F80007EA217FE
+023F5C92C7FCA216015F5C147E16035FA214FE4A13075FA30101140F5F4AECC1C0A2161F
+1783010316805CA2EF870013074A5CEE0F8EEE079EEE03FC010FEC00F04A91C7FCA35C13
+1FA2001C90CAFC127E5BEAFE3E133C137CEAF878EA78F0EA3FE0EA0F80344C82BA2F>I<
+DC7FC0EB1FFF922603FFF890B512E0923C0FC07C03F801F0923C1F001E0FC00078033E90
+267E1F80137C4BD9FE3FC712FC03FC027E13015D02014A5A057815F84A48D901F8EB00E0
+1B00A302074A5A5DA31707020F5D5DA3010FBA12C0A21B80903D001F80000FC0001FA21A
+3F023F021F150092C75BA2621A7E4A143F027E92C7FC1AFE62A25F02FE027E13014A5FA3
+05FE130301014B5C4A1870A219070401EDE0F001034B15E05CA2F2E1C0010714034D14C3
+4A933803E380F101E7963800FF00010F4A48143C4A94C7FCA34A495A131F5F001CEB0380
+007E90380FC01F013F92CAFC26FE3E1F133E013C5C5E3AF8780F01F0D878F0EB83E03A3F
+E003FF80270F8000FECBFC4E4C82BA49>14 D<130FEB1F80133F137FEBFF00485A5BEA03
+F0485A485A485A003EC7FC5A5A12E05A111064B92A>19 D<3901E003C03907F00FE0000F
+131F01F813F0001F133FA3000F131F3907B00F6038003000A2017013E0016013C0EBE001
+01C01380000113030180130000035B3807000E000E5B485B485B485B48485A00C05B1C19
+71B92B>34 D<EA01E0EA07F0120F13F8121FA3120FEA07B0EA0030A21370136013E013C0
+120113801203EA0700120E5A5A5A5A5A0D196EB919>39 D<150C151C153815F0EC01E0EC
+03C0EC0780EC0F00141E5C147C5C5C495A1303495A5C130F49C7FCA2133EA25BA25BA248
+5AA212035B12075BA2120F5BA2121FA290C8FCA25AA2123EA2127EA2127CA412FC5AAD12
+78A57EA3121C121EA2120E7EA26C7E6C7EA212001E5274BD22>I<140C140E80EC0380A2
+EC01C015E0A2140015F0A21578A4157C153CAB157CA715FCA215F8A21401A215F0A21403
+A215E0A21407A215C0140F1580A2141F1500A2143EA25CA25CA2495AA2495A5C1307495A
+91C7FC5B133E133C5B5B485A12035B48C8FC120E5A12785A12C01E527FBD22>I<EA03C0
+EA07F0120F121F13F8A313F0EA07B0EA003013701360A213E013C01201EA038013005A12
+0E5A5A5A5A5A0D197A8819>44 D<387FFFF8A2B5FCA214F0150579941E>I<120EEA3F80
+127F12FFA31300127E123C0909778819>I<EC03F8EC1FFEEC7C1F9138F80780D901E013
+C0903903C003E0EB0780010F1301D91F0013F0A2133E137E017C130313FCA2485AA20003
+14075BA2120716E049130F120FA34848EB1FC0A44848EB3F80A448C7EA7F00A3157E007E
+14FEA25D00FE13015DA248495AA25D007C13075D4A5AA24AC7FC6C133E5C6C5B380F83E0
+3807FF80C648C8FC243A77B72A>48 D<15181538157815F0140114031407EC0FE0141F14
+7FEB03FF90383FEFC0148FEB1C1F13001580A2143FA21500A25CA2147EA214FEA25CA213
+01A25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA291C7FC497EB61280A3
+1D3877B72A>I<EC03F8EC0FFE91383C0F809138F007C0903901E003E0D903C013F09038
+078001020013F8130E131E90391C6000FCEB3870EC30011370A213F013E0EC7003000101
+6013F813C014E0ECC00701C114F0903881800F018314E09039C7001FC001FEEB3F80D800
+78140090C7127E5D4A5A4A5AEC07C0EC1F80023EC7FC14FCEB01F0EB07C0495A011EC8FC
+137C4914C0484813015B485A4848130348C71380000E1407001E140F48EC1F00D83FF85B
+397FFFC07E39783FFFFCEA700FD8F0075BD8E0015B6D13C0021FC7FC263A79B72A>I<EC
+03FCEC1FFF91387E07C09138F003E0903903C001F0D9078013F849C7FC131E011C14FC13
+3CEB38C0EB78E0EB7060150101F014F813E0A2ECE003D971C013F090387F8007D91E0013
+E090C7EA0FC0ED1F80ED3F00157E5D49B45A4913E092C7FC9038000FC0EC03F014016E7E
+81A381A5007E130100FE5CA31403485C00E05C14074A5A5D4A5A007049C7FC0078137E6C
+13F8381E07F03807FF80D801FCC8FC263A78B72A>I<16E0ED01F01503A3150716E0A315
+0F16C0A2151F1680A2ED3F00A3157EA2157C15FC5D14015D14035D14075D140F5D141F92
+C7FC143EA25CECF81C153E903801F07EEB03E014C090380780FE130F49485A133EEB7C01
+137801F05BEA01E03803C003EA0FFE391FFFC3F04813FB267C01FF13403AF0003FFFE000
+601307C71400EC0FE05DA3141F5DA3143F92C7FCA4143E141C24487DB72A>I<157F9138
+03FFC0020F13E0EC3F8191387E00F002F81370903903F003F0903807E007EB0FC0EB1F80
+020013E04914C0017E90C7FC13FE5B485AA21203485AA2380FE07E9038E1FF809038E783
+E0391FCE01F09038DC00F813F84848137C5B157E5B485AA390C712FE5A5AA214015D5AA2
+14035DA348495A5D140F5D4A5A6C49C7FC127C147C6C485A6C485A6CB45A6C1380D801FC
+C8FC243A76B72A>54 D<D9707C130ED9F3FE131E496C133C48B5133816784815F0EC0F01
+9039FC0703E03A07F00307C001E0138F3A0FC001FF80497E48C7EA0F00001E5C48141E15
+3E48143C157C485C5A4A5AC7FC4A5AA24A5A140FA24A5AA24AC7FCA25C147E14FE5C1301
+A25C1303A2495AA3130F5CA2131F5CA2133FA25C137FA391C8FC137E133C273A74B72A>
+I<EC01FCEC0FFF023F13C091387E07E0903901F803F0903803E001D907C013F890380F80
+00A249C7FCA2133EA21501017E14F0A21503017F14E0ED07C09138800F809138C01F0090
+383FF03E6E5A90381FFCF0ECFFE06D138013036D7F497F90380F7FF890383E3FFCEB781F
+48486C7E3803E0073907C001FF48487E001F8090C7FC003E80127E127CA200FC143E5AA2
+5DA25DA24A5A6C495A007C495A007E495A6C013FC7FC381F80FE380FFFF8000313E0C66C
+C8FC253A78B72A>I<EC01FCEC0FFF023F138091387E07C0903901F803E0EB03F0903907
+E001F0EB0FC0EB1F80013F14F814005B137E13FEA2485AA2150312035BA2ED07F012075B
+150FA216E00003141FA2153FED7FC0120115FF6C6C5A90397803BF8090383C0F3FD91FFC
+1300903807F07F90C7FC157E15FE5D14015D4A5AA2003E495A007F495A5D4AC7FC00FE5B
+48137E007013F8387803F0387C0FE0383FFF806C48C8FCEA03F8253A78B72A>I<133C13
+7E13FF5AA313FE13FCEA00701300B2120EEA3F80127F12FFA31300127E123C102477A319
+>I<EE01C01603A21607160FA2161F83163FA2167F16FF16EF150116CFED038FA2ED070F
+A2150E151E151C1538A203707FA2EDE007A2EC01C014031580EC0700A2140EA25CA25C02
+7FB5FCA291B6FC9139E00007F849481303A2495A130791C7FC5B130E5BA25B1378137013
+F0EA03F8486C4A7EB56C48B512F0A3343C7BBB3E>65 D<0107B612FCEFFF8018C0903B00
+0FF0001FF04BEB07F81703021F15FC17014B14FEA2023F1400A24B1301A2147F18FC92C7
+120318F84A140718F04AEC0FE0EF1FC00101ED3F80EF7F004AEB01FEEE07F849B612E05F
+9139F80007F0EE01FC01076E7E177F4AEC3F80A2010F16C0171F5CA2131F173F5CA2133F
+EF7F805C1800017F5D4C5A91C7485A5F49140FEE1FE0494A5A00014AB45AB748C7FC16F8
+16C037397BB83A>I<DB03FE130E92393FFF801E92B5EAE03C913903FE01F0913A0FF000
+787CDA3FC0EB3CFC4AC7EA1FF802FE140FEB03FC49481407494815F049481403495A5C49
+C813E05B485A5B000317C0485AA2485A1880485A94C7FCA2485AA3127F5BA312FF90CBFC
+A41738A217784816707E17F06C5E16015F16036C6C4A5A94C7FC001F150E6D141E000F5D
+6D5C6C6C495A6C6CEB03C0D801FEEB0F8027007F807EC8FC6DB45A010F13E0010090C9FC
+373D74BA3B>I<0103B612FEEFFFC018F0903B0007F8000FF84BEB03FCEF00FE020F157F
+F03F804B141F19C0021F150F19E05D1807143F19F05DA2147FA292C8FCA25C180F5CA213
+0119E04A151FA2130319C04A153FA201071780187F4A1600A2010F16FEA24A4A5A60011F
+15034D5A4A5D4D5A013F4B5A173F4A4AC7FC17FC017FEC03F84C5A91C7EA1FC04949B45A
+007F90B548C8FCB712F016803C397CB83F>I<0107B8FCA3903A000FF000034BEB007F18
+3E141F181E5DA2143FA25D181C147FA29238000380A24A130718004A91C7FC5E13015E4A
+133E167E49B512FEA25EECF8000107147C163C4A1338A2010F147818E04A13701701011F
+16C016004A14031880013F150718004A5CA2017F151E173E91C8123C177C4915FC4C5A49
+14070001ED7FF0B8FCA25F38397BB838>I<0107B712FEA3903A000FF000074B1300187C
+021F153CA25DA2143FA25D1838147FA292C8FCEE03804A130718004A91C7FCA201015CA2
+4A131E163E010314FE91B5FC5EA2903807F800167C4A1378A2130FA24A1370A2011F14F0
+A24A90C8FCA2133FA25CA2137FA291CAFCA25BA25B487EB6FCA337397BB836>I<0103B5
+D8F80FB512E0A390260007F8C7381FE0004B5DA2020F153F615DA2021F157F96C7FC5DA2
+023F5D605DA2027F14016092C7FCA24A1403605CA249B7FC60A202FCC712070103150F60
+5CA20107151F605CA2010F153F605CA2011F157F95C8FC5CA2013F5D5F5CA2017F14015F
+91C7FC491403007FD9FE01B512F8B55BA243397CB83E>72 D<0103B512F8A390390007F8
+005DA2140FA25DA2141FA25DA2143FA25DA2147FA292C7FCA25CA25CA21301A25CA21303
+A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CA2137FA291C8FC497EB6FCA25C25
+397CB820>I<0207B512F0A391390007FC006F5AA215075EA3150F5EA3151F5EA3153F5E
+A3157F93C7FCA35D5DA314015DA314035DA31407A25DA2140FA2003F5C5A141F485CA24A
+5A12FC00E049C8FC14FE00705B495A6C485A381E0FC06CB4C9FCEA01F82C3B78B82C>I<
+0107B512FCA25E9026000FF8C7FC5D5D141FA25DA2143FA25DA2147FA292C8FCA25CA25C
+A21301A25CA21303A25CA21307A25CA2130F170C4A141CA2011F153C17384A1478A2013F
+157017F04A14E01601017F140317C091C71207160F49EC1F80163F4914FF000102071300
+B8FCA25E2E397BB834>76 D<902607FFF8923807FFF0614F13E0D9000FEFF0004F5AA202
+1F167FF1EFC0141DDA1CFCEC01CF023C16DF9538039F800238ED071FA20278ED0E3F97C7
+FC0270151CA202F04B5AF0707E14E0037E14E0010117FE4D485A02C0EC0380A20103ED07
+01610280140EA20107ED1C0305385B14006F137049160705E05B010EEC01C0A2011E9138
+03800F61011CEC0700A2013C020E131F4C5C1338ED1FB80178163F04F091C8FC01705CA2
+01F04A5B187E00015DD807F816FEB500C09039007FFFFC151E150E4C397AB84A>I<9026
+03FFF891B512E0A281D90007923807F8006F6E5A61020F5E81DA0E7F5DA2021E6D130703
+3F92C7FC141C82DA3C1F5C70130EEC380FA202786D131E0307141C147082DAF003143C70
+133814E0150101016E1378030014705C8201036E13F0604A1480163F010715C1041F5B91
+C7FC17E149EC0FE360010E15F31607011E15FF95C8FC011C80A2013C805F133816001378
+5F01F8157CEA03FC267FFFE0143CB51538A243397CB83E>I<ED03FE92383FFFC09238FC
+07F0913903E001F891390F80007C023FC77E027E8002F815804948EC0FC0EB07E04948EC
+07E0131F4A15F049C81203137E01FE16F8485AA2485AA2485AA2120F5B001F16075B123F
+A34848ED0FF0A448C9EA1FE0A3EF3FC0A21880177F18005F5F16015F6C4B5A4C5AA24C5A
+6C4B5A6D4A5A001F93C7FC6D147E000F5D6C6CEB03F06C6C495A6C6CEB0F806C6C013FC8
+FC90383F01FC90381FFFE0010190C9FC353D74BA40>I<0107B612F817FF1880903B000F
+F0003FE04BEB0FF0EF03F8141FEF01FC5DA2023F15FEA25DA2147FEF03FC92C7FCA24A15
+F817074A15F0EF0FE01301EF1FC04AEC3F80EFFE0001034A5AEE0FF091B612C04CC7FCD9
+07F8C9FCA25CA2130FA25CA2131FA25CA2133FA25CA2137FA291CAFCA25BA25B1201B512
+FCA337397BB838>I<0103B612F017FEEFFF80903B0007F8003FC04BEB0FF01707020FEC
+03F8EF01FC5DA2021F15FEA25DA2143FEF03FC5DA2027FEC07F818F092C7120F18E04AEC
+1FC0EF3F004A14FEEE01F80101EC0FE091B6128004FCC7FC9138FC003F0103EC0F80834A
+6D7E8301071403A25C83010F14075F5CA2011F140FA25CA2133F161F4AECE007A2017F16
+0F180E91C7FC49020F131C007F01FE153CB5913807F078040313F0CAEAFFE0EF3F80383B
+7CB83D>82 D<92383FC00E913901FFF01C020713FC91391FC07E3C91393F001F7C027CEB
+0FF84A130749481303495A4948EB01F0A2495AA2011F15E091C7FCA34915C0A36E90C7FC
+A2806D7E14FCECFF806D13F015FE6D6D7E6D14E0010080023F7F14079138007FFC150F15
+031501A21500A2167C120EA3001E15FC5EA3003E4A5AA24B5AA2007F4A5A4B5A6D49C7FC
+6D133ED8F9F013FC39F8FC03F839F07FFFE0D8E01F138026C003FCC8FC2F3D7ABA2F>I<
+0007B812E0A25AD9F800EB001F01C049EB07C0485AD900011403121E001C5C003C178014
+03123800785C00701607140700F01700485CA2140FC792C7FC5DA2141FA25DA2143FA25D
+A2147FA292C9FCA25CA25CA21301A25CA21303A25CA21307A25CA2130FA25CEB3FF0007F
+B512F8B6FCA2333971B83B>I<003FB539800FFFFEA326007F80C7EA7F8091C8EA3F0017
+3E49153CA2491538A20001167817705BA2000316F05F5BA2000715015F5BA2000F15035F
+5BA2001F150794C7FC5BA2003F5D160E5BA2007F151E161C90C8FCA2163C4815385A1678
+1670A216F04B5A5E1503007E4A5A4BC8FC150E6C143E6C6C5B15F0390FC003E03907F01F
+C00001B5C9FC38007FFCEB1FE0373B70B83E>I<B5D8F80FB590381FFFF06102F018E0D8
+07FEC7D87FE0903803FE00D803F8DA3F806D5AF100F0A24F5A621903621907047F92C7FC
+190E16FF4B5DA2DB03BF5C7F0001DA073F5CA2030E5D83DB1C1F495A180303385D4EC8FC
+157003F0140E15E0DA01C05CA2DA03805CA2DA07005CA2020E5D17C14A5DEFC3805C0278
+02C7C9FC14704A14CE13FE6C6C4814DCA24A14F8A291C75B160F495D5F5B5F5B4992CAFC
+A249140E4C3B6FB853>87 D<EC0FFFA35C1500141EA2143EA2143CA2147CA21478A214F8
+A25CA21301A25CA21303A25CA21307A25CA2130FA291C7FCA25BA2131EA2133EA2133CA2
+137CA21378A213F8A25BA21201A25BA21203A25BA21207A25BA2120FA290C8FCA25AA212
+1EA2123EA2123CA2127CA21278A2EAFFF8A25BA220537CBD19>91
+D<EC0FFFA4EC001F151EA3153E153CA3157C1578A315F815F0A3140115E0A3140315C0A3
+14071580A3140F1500A35C141EA3143E143CA3147C1478A314F85CA313015CA313035CA3
+13075CA3130F91C7FCA35B131EA3133E133CA3137C1378A2EAFFF8A25BA2205382BD19>
+93 D<14F8EB07FE90381F871C90383E03FE137CEBF801120148486C5A485A120FEBC001
+001F5CA2EA3F801403007F5C1300A21407485C5AA2140F5D48ECC1C0A2141F1583168014
+3F1587007C017F1300ECFF076C485B9038038F8E391F0F079E3907FE03FC3901F000F022
+2677A42A>97 D<133FEA1FFFA3C67E137EA313FE5BA312015BA312035BA31207EBE0F8EB
+E7FE9038EF0F80390FFC07C013F89038F003E013E0D81FC013F0A21380A2123F1300A214
+075A127EA2140F12FE4814E0A2141F15C05AEC3F80A215005C147E5C387801F8007C5B38
+3C03E0383E07C0381E1F80D80FFEC7FCEA01F01C3B77B926>I<147F903803FFC090380F
+C1E090381F0070017E13784913383901F801F83803F003120713E0120FD81FC013F091C7
+FC485AA2127F90C8FCA35A5AA45AA3153015381578007C14F0007EEB01E0003EEB03C0EC
+0F806CEB3E00380F81F83803FFE0C690C7FC1D2677A426>I<ED01F815FFA3150316F0A2
+1507A216E0A2150FA216C0A2151FA21680A2153FA202F81300EB07FE90381F877F90383E
+03FF017C5BEBF80112013803F00048485B120FEBC001121F5DEA3F801403127F01005BA2
+14075A485CA2140FA248ECC1C0A2141F15C3ED8380143F1587007C017F1300ECFF076C48
+5B9038038F8E391F0F079E3907FE03FC3901F000F0253B77B92A>I<147F903803FFC090
+380FC1E090383F00F0017E13785B485A485A485A120F4913F8001F14F0383F8001EC07E0
+EC1F80397F81FF00EBFFF891C7FC90C8FC5A5AA55AA21530007C14381578007E14F0003E
+EB01E0EC03C06CEB0F806CEB3E00380781F83803FFE0C690C7FC1D2677A426>I<ED07C0
+ED1FF0ED3E38ED7C3CEDF8FC15F9140115F1020313F8EDF0F0160014075DA4140F5DA414
+1F5D010FB512C05B16809039003F800092C7FCA45C147EA414FE5CA413015CA413035CA4
+13075CA4130F5CA3131F5CA391C8FC5B121CEA7E3EA2EAFE3C137C1378EAF8F01278EA3F
+C0EA0F80264C82BA19>I<EC07C0EC3FF09138FC38E0903901F01FF0EB03E0903807C00F
+EB0F80011F1307D93F0013E05B017E130F13FE4914C01201151F1203491480A2153F1207
+491400A25DA249137EA215FEA25D00031301140314076C6C485A0000131FEB787BEB3FF3
+90380FC3F0EB00031407A25DA2140F5D121C007E131F5D00FE49C7FC147E5C387801F838
+7C07E0381FFF80D803FEC8FC24367CA426>I<EB03F0EA01FFA3EA00075CA3130F5CA313
+1F5CA3133F91C8FCA35B90387E07F0EC1FFCEC783E9038FFE01F02C01380EC800F140048
+5A16C05B49EB1F8012035BA2153F000715005BA25D000F147E5B15FE5D121FD98001131C
+15F8163C003F01031338010013F0A216704814E0007E15F016E0EDE1C000FE903801E380
+48903800FF000038143C263B7BB92A>I<EB01C0EB07E014F0130F14E01307EB038090C7
+FCAB13F0EA03FCEA071EEA0E1F121CA212385B1270A25BEAF07E12E013FEC65AA212015B
+1203A25B12075BA2000F13E013C013C1001F13C01381A2EB83801303EB0700A2130E6C5A
+EA07F8EA01E0143879B619>I<150E153F157FA3157E151C1500ABEC1F80EC7FC0ECF1F0
+EB01C090380380F813071401130F130E131EEB1C03133C013813F0A2EB0007A215E0A214
+0FA215C0A2141FA21580A2143FA21500A25CA2147EA214FEA25CA21301A25CA213035C12
+1C387E07E0A238FE0FC05C49C7FCEAF83EEA787CEA3FF0EA0FC0204883B619>I<EB03F0
+EA01FFA3EA00075CA3130F5CA3131F5CA3133F91C8FCA35B017EEB0F80ED3FE015F09039
+FE01C1F09038FC0387EC0707140E0001011C13E0EBF83891383003800270C7FC00035BEB
+F1C0EBF38001FFC8FCEA07FC7FEBFFC0EBE7F8380FE1FCEBC07E147F80001F809039801F
+81C0A21583003F013F138001001303A21507481500007E133EEC1E0E151E00FE6D5A48EB
+07F80038EB01E0243B7BB926>I<EB0FC0EA07FFA3EA001F1480A2133FA21400A25BA213
+7EA213FEA25BA21201A25BA21203A25BA21207A25BA2120FA25BA2121FA25BA2123FA290
+C7FCA25AA2EA7E0EA212FE131EEAFC1CA2133C133812F81378EA7870EA7CE0121FEA0F80
+123B79B915>I<D801E001FEEB07F03C07F803FF801FFC3C0E3C0F07C0783E3C1E3E3C03
+E1E01F261C1F78D9F3C013803C383FF001F7800F02E01400007801C013FE007018C00280
+5B4A4848EB1F80EAF07FD8E07E5CA200000207143F01FE1700495CA2030F5C0001177E49
+5C18FE031F5C120349DA8001131C18F8033F153C00070403133849020013F0A24B157000
+0F17E049017E15F019E003FEECE1C0001FEE01E34949903800FF000007C70038143C3E26
+79A444>I<D801E013FE3A07F803FF803A0E3C0F07C03A1E3E3C03E0261C1F787F39383F
+F00114E0007813C000708114804A485AEAF07FEAE07EA20000140701FE5C5BA2150F0001
+5D5B151F5E12034990383F8380160316070007027F130049137EA2160E000F147C49141E
+161C5E001FEC3C7849EB1FE00007C7EA0780292679A42F>I<147F903803FFC090380FC1
+F090381F00F8017E137C5B4848137E4848133E0007143F5B120F485AA2485A157F127F90
+C7FCA215FF5A4814FEA2140115FC5AEC03F8A2EC07F015E0140F007C14C0007EEB1F8000
+3EEB3F00147E6C13F8380F83F03803FFC0C648C7FC202677A42A>I<9039078007C09039
+1FE03FF090393CF0787C903938F8E03E9038787FC00170497EECFF00D9F0FE148013E05C
+EA01E113C15CA2D80003143FA25CA20107147FA24A1400A2010F5C5E5C4B5A131F5EEC80
+035E013F495A6E485A5E6E48C7FC017F133EEC70FC90387E3FF0EC0F8001FEC9FCA25BA2
+1201A25BA21203A25B1207B512C0A3293580A42A>I<ECF803903807FE0790381F871F90
+383E03BF017C13FEEBF80112013803F000484813FC120F5B001F130115F8EA3F80A2007F
+1303010013F0A34813074814E0A3140F4814C0A3141F1580143FA2007C137FECFF006C5A
+EB03BF381F0F7F3807FE7EEA01F0C7FC14FE5CA313015CA313035C130748B512C0A32035
+77A426>I<3903C003F0390FF01FFC391E783C0F381C7C703A3C3EE03F8038383FC0EB7F
+800078150000701300151CD8F07E90C7FCEAE0FE5BA2120012015BA312035BA312075BA3
+120F5BA3121F5BA3123F90C9FC120E212679A423>I<14FE903807FF8090380F83C09038
+3E00E04913F00178137001F813F00001130313F0A215E00003EB01C06DC7FC7FEBFFC06C
+13F814FE6C7F6D13807F010F13C01300143F141F140F123E127E00FE1480A348EB1F0012
+E06C133E00705B6C5B381E03E06CB45AD801FEC7FC1C267AA422>I<EB0380EB07C0130F
+A4131F1480A3133F1400A35B137E007FB5FCA2B6FC3800FC00A312015BA312035BA31207
+5BA3120F5BA3121FEB801CA2143C003F1338EB0078147014F014E0EB01C0EA3E03381F07
+80380F0F00EA07FCEA01F0183579B31C>I<13F8D803FEEB01C0D8078FEB03E0390E0F80
+07121E121C0038140F131F007815C01270013F131F00F0130000E015805BD8007E133FA2
+01FE14005B5D120149137EA215FE120349EBFC0EA20201131E161C15F813E0163CD9F003
+133814070001ECF07091381EF8F03A00F83C78E090393FF03FC090390FC00F00272679A4
+2D>I<01F0130ED803FC133FD8071EEB7F80EA0E1F121C123C0038143F49131F0070140F
+A25BD8F07E140000E08013FEC6485B150E12015B151E0003141C5BA2153C000714385B5D
+A35DA24A5A140300035C6D48C7FC0001130E3800F83CEB7FF8EB0FC0212679A426>I<01
+F01507D803FC903903801F80D8071E903907C03FC0D80E1F130F121C123C0038021F131F
+49EC800F00701607A249133FD8F07E168000E0ED000313FEC64849130718000001147E5B
+03FE5B0003160E495BA2171E00070101141C01E05B173C1738A217781770020314F05F00
+03010713016D486C485A000190391E7C07802800FC3C3E0FC7FC90393FF81FFE90390FE0
+03F0322679A437>I<903907E007C090391FF81FF89039787C383C9038F03E703A01E01E
+E0FE3803C01F018013C0D8070014FC481480000E1570023F1300001E91C7FC121CA2C75A
+A2147EA214FEA25CA21301A24A1370A2010314F016E0001C5B007E1401010714C000FEEC
+0380010F1307010EEB0F0039781CF81E9038387C3C393FF03FF03907C00FC027267CA427
+>I<13F0D803FCEB01C0D8071EEB03E0D80E1F1307121C123C0038140F4914C01270A249
+131FD8F07E148012E013FEC648133F160012015B5D0003147E5BA215FE00075C5BA21401
+5DA314035D14070003130FEBF01F3901F87FE038007FF7EB1FC7EB000F5DA2141F003F5C
+48133F92C7FC147E147C007E13FC387001F8EB03E06C485A383C1F80D80FFEC8FCEA03F0
+233679A428>I<903903C0038090380FF007D91FF81300496C5A017F130E9038FFFE1E90
+38F83FFC3901F007F849C65A495B1401C7485A4A5A4AC7FC141E5C5C5C495A495A495A49
+C8FC131E5B49131C5B4848133C48481338491378000714F8390FF801F0391FFF07E0383E
+1FFFD83C0F5B00785CD8700790C7FC38F003FC38E000F021267BA422>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fn cmcsc10 10 25
+/Fn 25 122 df<121C127FEAFF80A5EA7F00121C090977881B>46
+D<DB7FC01330912607FFF81370023F13FE913AFFC01F80F0903A03FE0003E1D907F8EB00
+F3D91FE0147B4948143F4948141F49C8120F4848150748481503A24848150148481500A2
+485A1870123F5B1830127FA349160012FFAB127F7F1830A2123FA27F001F177018606C7E
+18E06C6C16C06C6C150118806C6C15036C6CED07006D6C5C6D6C141E6D6C5CD907F85CD9
+03FEEB01E0903A00FFC00FC0023FB5C7FC020713FC9138007FE0343D7ABA41>67
+D<B712F816FF17C00001903980003FF06C90C7EA07FCEE01FEEE007F717E717E717E717E
+841703717EA284170084A21980187FA319C0AB1980A4F0FF00A3601701601703604D5A4D
+5A171F4D5A4D5ADC01FEC7FCEE07FC486DEB3FF0B85A94C8FC16F83A397CB845>I<B912
+C0A3C601C0C7FC6D48141FEF07E017031701A21700A21860A3187018301618A31800A316
+38A21678ED03F891B5FCA3EC8003ED00781638A21618A21806A3180E93C7120CA4181CA3
+1838A2187818F817011703170F496CEC7FF0B9FCA337397DB83E>I<B612E0A3000101C0
+C8FC6C90C9FCB3AD1706A5170E170CA3171CA3173C177CA217FC1603EE0FF8486D137FB8
+FCA32F397CB839>76 D<B712F816FF17E0C69039C0003FF86D48EB07FCEE01FE707EEF7F
+80EF3FC0A2EF1FE0A218F0A718E0A2EF3FC0A2EF7F80EFFF004C5AEE07F8EE3FF091B612
+C04CC7FC0280C9FCB3A5497EB612C0A334397DB83E>80 D<B7FC16F016FE000190398001
+FF806C90C7EA3FE0EE0FF0707E707E707EA2838284A695C7FC5E5F5F1603EE07F04C5AEE
+3F80DB01FEC8FC91B512F816E091380003FCED00FEEE7F80707E707E707EA2160783A583
+A61930A28316031970486D6D6C1360B66D14E094387F81C094383FC380CA380FFF00EF01
+FC3C3B7CB842>82 D<003FB812FCA3D9C001EB800390C790C7FC007C173E0078171E0070
+170EA300601706A400E01707481703A4C81500B3B0020313C0010FB612F0A338397CB841
+>84 D<1407A24A7EA34A7EA3EC37E0A2EC77F01463A2ECC1F8A201017F1480A290380300
+7EA301067FA2010E80010C131FA2496D7EA2013FB57EA29038300007496D7EA3496D7EA2
+00018149130012036D801207D81FE0903801FF80D8FFF8010F13F8A22D2C7DAB33>97
+D<B712E0A23907F8000F6C481303ED00F01670A21630A41618A215C01600A31401A21407
+90B5FCA2EBF0071401A21400A21606A21500A2160CA4161CA2163C167C16F8486C1307B7
+FCA2272B7CAA2E>101 D<B712C0A23907F8001F6C481303ED01E01500A21660A41630A2
+15C01600A31401A2140790B5FCA2EBF0071401A21400A492C7FCAB487EB512E0A2242B7C
+AA2C>I<B539C07FFFE0A23B07F80003FC006C486D5AB190B6FCA29038F00001B2486C49
+7EB539C07FFFE0A22B2B7CAA33>104 D<B512C0A23807F8006C5AB3B3487EB512C0A212
+2B7CAA19>I<B500C0EBFFF8A2D807F8C7EA7FC06C481500167C167816E04B5A4B5A4BC7
+FC150E5D5D15F0EC01C04A5A4AC8FC5C4A7E4A7E4A7EEBF1E79038F387F09038F703F890
+38FE01FC13FC496C7E49137F6F7EA26F7E6F7E1507826F7E6F7EA26F7E82EE7F80486CEC
+FFC0B5D8C00313FCA22E2B7CAA35>107 D<B512E0A2D807F8C8FC6C5AB3A61660A416C0
+A31501A21503A21507ED1F80486C13FFB7FCA2232B7CAA2B>I<D8FFF0ED3FFC6D157F00
+07178000031700017C15DFA26DEC019FA36DEC031FA26D6C1306A36D6C130CA26D6C1318
+A26D6C1330A36D6C1360A2027C13C0A391383E0180A291381F0300A3EC0F86A2EC07CCA3
+EC03F8A2486C6C5AA2D81FE0ED3F803CFFFC00E007FFFCA2362B7CAA3E>I<D8FFF09038
+07FFE07F0007020013006C6C143C7F017F14187F806D7E130F806D7E6D7EA26D7E6D7E14
+7E147FEC3F80141F15C0EC0FE0EC07F0140315F8EC01FC140015FE157FED3F98151F16D8
+ED0FF81507A215031501A2486C13001678D81FE01438EAFFFC16182B2B7CAA33>I<EC7F
+C0903803FFF890380FC07E90393F001F80017CEB07C04848EB03F048486D7E4913004848
+147C000F157E484880A248C8EA1F80A24816C0A2007E150FA200FE16E0AA007FED1FC0A3
+6C16806D143F001F1600A26C6C147E6C6C5CA26C6C495A6C6C495AD8007CEB07C0013FEB
+1F8090260FC07EC7FC903803FFF89038007FC02B2D7BAB35>I<B612E015FC3907F800FE
+6C48EB1F80ED0FC0ED07E016F01503A216F8A516F0A2150716E0ED0FC0ED1F80EDFE0090
+B55A15E001F0C8FCB1487EB512C0A2252B7CAA2E>I<B67E15F03907F800FE6C48133FED
+0FC06F7EA26F7E82A65E4B5AA24B5A033FC7FC15FE90B512F05D9038F001F8EC007E816F
+7EA26F7EA582A4171816F015071738486C903803F830B5D8C00113709238007FE0C9EA1F
+802D2C7CAA32>114 D<017F13603901FFE0E0380780F9380E001F481307481303127800
+70130100F01300A315607EA26C14007E127F13C0EA3FFEEBFFE06C13F8000713FE6C7FC6
+1480010F13C01300EC0FE01407EC03F01401A212C01400A37E15E06C1301A26CEB03C06C
+EB0780B4EB0F0038F3E01E38E0FFF838C01FE01C2D7BAB26>I<007FB712C0A23A7E003F
+C00F007890381F8003007015011600126000E016E0A2481660A5C71500B3A8EC7FE0011F
+B57EA22B2B7DAA31>I<B56CEB3FFEA2D80FFCC7EA0FF06C48EC07E00003ED03C0178000
+0116006D5C00001506A2017E5CA2017F141C6D141880011F5CA26D6C5BA28001075CA26D
+6C485AA2ECF803010191C7FCA2903800FC06A2ECFE0EEC7E0C147F6E5AA2EC1FB0A215F0
+6E5AA26E5AA36E5AA22F2C7EAA33>118 D<3B7FFF800FFFC0A2000790390003FE006C48
+EB01F800015D000015C0017F13036D5C6E48C7FC90381FC0066D6C5A151C6D6C5A903803
+F83001015BECFCE06D6C5AEC7F80A2143F6E7E140F4A7E4A7E1433EC63F8ECE1FCECC0FE
+903801807E0103137F49486C7E0106131F4980011C6D7E496D7E0130130301708001F06D
+7E000181000781D81FF8491380B46C4913F8A22D2B7DAA33>120
+D<B56CEB1FFEA2D80FFCC7EA0FF00003ED07C01780000116006C6C1406017F140E160C6D
+6C5B6D6C133816306D6C5B6D6C13E05E6D6C485A903801FC0393C7FC903800FE06EC7F0E
+150CEC3F9CEC1FF85D140F6E5AAF4A7E49B57EA22F2B7EAA33>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fo cmbx10 10.95 41
+/Fo 41 122 df<EDFFF8020F13FF027F8049B612E001079038C01FF090390FFE0007D91F
+F8497ED93FE0131F4948497E13FF5C5A91C7FCA2705A705AEE03C093C8FCA6EE03FCB8FC
+A50001903880001F160FB3AB007FD9FE03B512F0A534407EBF3A>12
+D<130FEB1FC0EB3FE0137FEBFFF05A5AA24813E05A481380481300EA7FFC13F0EAFFC06C
+C7FC123C123814126BBF34>19 D<EA0FC0EA1FE0EA3FF0EA7FF8EAFFFCA313FEA3127F12
+3F121FEA0FDEEA001EA2133E133CA2137C1378A213F8EA01F0A2EA03E0EA07C0EA0F8012
+1FEA3F00121E120C0F20798D1D>44 D<B612E0A91B097F9823>I<EA0FC0EA1FE0EA3FF0
+EA7FF8EAFFFCA6EA7FF8EA3FF0EA1FE0EA0FC00E0E798D1D>I<140F143F5C495A130F48
+B5FCB6FCA313F7EAFE071200B3B3A8007FB612F0A5243C78BB34>49
+D<903803FF80013F13F890B512FE00036E7E4881260FF80F7F261FC0037F4848C67F486C
+6D7E6D6D7E487E6D6D7EA26F1380A46C5A6C5A6C5A0007C7FCC8FC4B1300A25E153F5E4B
+5AA24B5A5E4A5B4A5B4A48C7FC5D4A5AEC1FE04A5A4A5A9139FF000F80EB01FC495A4948
+EB1F00495AEB1F8049C7FC017E5C5B48B7FC485D5A5A5A5A5AB7FC5EA4293C7BBB34>I<
+903801FFE0010F13FE013F6D7E90B612E04801817F3A03FC007FF8D807F06D7E82D80FFC
+131F6D80121F7FA56C5A5E6C48133FD801F05CC8FC4B5A5E4B5A4A5B020F5B902607FFFE
+C7FC15F815FEEDFFC0D9000113F06E6C7E6F7E6F7E6F7E1780A26F13C0A217E0EA0FC048
+7E487E487E487EA317C0A25D491580127F49491300D83FC0495A6C6C495A3A0FFE01FFF8
+6CB65A6C5DC61580013F49C7FC010313E02B3D7CBB34>I<ED01F815031507A2150F151F
+153FA2157F15FF5C5CA25C5CEC1FBFEC3F3F143E147C14FCEB01F814F0EB03E01307EB0F
+C0EB1F801400133E137E5B485A5B485A1207485A5B48C7FC5A127E5AB812F8A5C8387FF8
+00AA49B612F8A52D3C7DBB34>I<00071538D80FE0EB01F801FE133F90B6FC5E5E5E5E93
+C7FC5D15F85D15C04AC8FC0180C9FCA9ECFFC0018713FC019F13FF90B67E020113E09039
+F8007FF0496D7E01C06D7E5B6CC77FC8120F82A31780A21207EA1FC0487E487E12FF7FA2
+1700A25B4B5A6C5A01805C6CC7123F6D495AD81FE0495A260FFC075B6CB65A6C92C7FCC6
+14FC013F13F0010790C8FC293D7BBB34>I<16FCA24B7EA24B7EA34B7FA24B7FA34B7FA2
+4B7FA34B7F157C03FC7FEDF87FA2020180EDF03F0203804B7E02078115C082020F814B7E
+021F811500824A81023E7F027E81027C7FA202FC814A147F49B77EA34982A2D907E0C700
+1F7F4A80010F835C83011F8391C87E4983133E83017E83017C81B500FC91B612FCA5463F
+7CBE4F>65 D<B812F8EFFF8018F018FC8426003FFCC7EA3FFF050F13807113C07113E083
+19F0A27113F8A719F05FA24D13E019C04D13804D1300EF3FFE933801FFF891B712E01880
+18F818FE02FCC7380FFF80050313C07113E07113F019F8F07FFCA2F03FFEA219FFA38460
+A419FE187FA2F0FFFC4D13F85F4D13F0053F13E0BA12C0190018FC18F095C7FC403E7DBD
+4A>I<922607FFC0130E92B500FC131E020702FF133E023FEDC07E91B7EAE1FE01039138
+803FFB499039F80003FF4901C01300013F90C8127F4948151FD9FFF8150F48491507485B
+4A1503481701485B18004890CAFC197E5A5B193E127FA349170012FFAC127F7F193EA212
+3FA27F6C187E197C6C7F19FC6C6D16F86C6D150119F06C6D15036C6DED07E0D97FFEED0F
+C06D6CED3F80010F01C0ECFF006D01F8EB03FE6D9039FF801FFC010091B55A023F15E002
+071580020002FCC7FC030713C03F407ABE4C>I<B812F8EFFF8018F018FC18FF26003FFC
+C76C13C005077F05017F716C7E727E727E727E721380A27213C0A27213E0A21AF084A21A
+F8A41AFCA5197FA319FFA51AF8A41AF0A2601AE0A24E13C0A24E13804E1300604E5A4E5A
+4D485A050713E0057F5BBA5A4EC7FC18F818C005F8C8FC463E7DBD50>I<B6037FB512E0
+A2818181D8003F6D9139001F800081A281816E7E6E7F6E7F80826E7F6E7F6E7F6E7F157F
+826F7F6F7F6F7F6F7F81836F7F6F7F707E701380A27013C07013E07013F07013F87013FC
+A27013FEEF7FFF71139F7113DF8319FF8383838384A28484848484A284B600C080197F19
+3F191FA24B3E7DBD52>78 D<B812F017FF18C018F018FC26003FFCC77FEF1FFF71138071
+13C07113E0A27113F0A319F8A819F0A34D13E019C05F4D1380053F1300EFFFFE91B712F8
+60188005FCC7FC4ACAFCB3A4B77EA53D3E7DBD47>80 D<003FB912FCA5903BFE003FFE00
+3FD87FF0EE0FFE01C0160349160190C71500197E127EA2007C183EA400FC183F48181FA5
+C81600B3AF010FB712F8A5403D7CBC49>84 D<B600FC020FB512C0A5C66C48C9381F8000
+013F95C7FC80616D173E6F157E6D177C6F15FC6D5F8118016D6D5D18036D5F6F14076D5F
+6F140F027F5E81181F023F93C8FC6F5C6E153E70137E6E157C8218FC6E6D5B17016E5DEE
+F0036E5DEEF8076E5D16FC170F037F5CEEFE1F033F91C9FC705A6F133E17BE17FE6F5BA2
+6F5BA26F5BA26F5BA36F5BA2705AA270CAFCA24A3F7EBD4F>86 D<903807FFC0013F13F8
+48B6FC48812607FE037F260FF8007F6DEB3FF0486C806F7EA36F7EA26C5A6C5AEA01E0C8
+FC153F91B5FC130F137F3901FFFE0F4813E0000F1380381FFE00485A5B485A12FF5BA415
+1F7F007F143F6D90387BFF806C6C01FB13FE391FFF07F36CEBFFE100031480C6EC003FD9
+1FF890C7FC2F2B7DA933>97 D<13FFB5FCA512077EAFEDFFE0020713FC021FEBFF80027F
+80DAFF8113F09139FC003FF802F06D7E4A6D7E4A13074A80701380A218C082A318E0AA18
+C0A25E1880A218005E6E5C6E495A6E495A02FCEB7FF0903AFCFF01FFE0496CB55AD9F01F
+91C7FCD9E00713FCC7000113C033407DBE3A>I<EC7FF00107B5FC011F14C0017F14E090
+39FFF01FF0489038800FF848EB001F4848EB3FFC120F485AA2485AA2007FEC1FF849EB0F
+F0ED03C000FF91C7FCAB127F7FA3003F153E7F001F157E6C6C147C6C6C14FC91388001F8
+6C9038C003F0C69038F81FE06DB512C0011F14800107EBFE009038007FF0272B7DA92E>
+I<EE07F8ED07FFA5ED003F161FAFEC7FF0903807FFFE011FEBFF9F017F14DF9039FFF01F
+FF48EBC00348EB00014848EB007F485A001F153F5B123FA2127F5BA212FFAA127FA37F12
+3FA26C6C147F120F6D14FF6C6C01037F6C6D48EBFFE06CEBF03F6C6CB512BF6D143F0107
+13FC010001E0EBE00033407DBE3A>I<ECFFF0010713FE011F6D7E017F809039FFE07FE0
+489038801FF048496C7E48486D7E48486D7E121F491301003F81A2485A6F1380A212FFA2
+90B7FCA401F0C9FCA5127FA27F123FEE0F806C7E161F6C6C15006C6C5C6C6D137E6C9038
+E001FC6C9038F80FF8013FB55A6D14C0010391C7FC9038007FF8292B7DA930>I<EC07FE
+91387FFF8049B512C0010714E090390FFE3FF0EB1FF090393FE07FF8EB7FC013FF1480A2
+489038003FF0ED1FE0ED0FC092C7FCAAB612E0A500010180C7FCB3AC007FEBFF80A52540
+7DBF20>I<903A03FF8007F0013F9038F83FF8499038FCFFFC48B712FE48018313F93A07
+FC007FC34848EB3FE1001FEDF1FC4990381FF0F81700003F81A7001F5DA26D133F000F5D
+6C6C495A3A03FF83FF8091B5C7FC4814FC01BF5BD80F03138090CAFCA2487EA27F13F06C
+B6FC16F016FC6C15FF17806C16C06C16E01207001F16F0393FE000034848EB003F49EC1F
+F800FF150F90C81207A56C6CEC0FF06D141F003F16E001F0147FD81FFC903801FFC02707
+FF800F13006C90B55AC615F8013F14E0010101FCC7FC2F3D7DA834>I<13FFB5FCA51207
+7EAFED1FF8EDFFFE02036D7E4A80DA0FE07F91381F007F023C805C4A6D7E5CA25CA35CB3
+A4B5D8FE0FB512E0A5333F7CBE3A>I<EA01F8487E487E487E481380A66C13006C5A6C5A
+6C5AC8FCA913FFB5FCA512077EB3ABB512F8A515407CBF1D>I<13FFB5FCA512077EB3B3
+AFB512FCA5163F7CBE1D>108 D<01FFD91FF8ECFFC0B590B5010713F80203DAC01F13FE
+4A6E487FDA0FE09026F07F077F91261F003FEBF8010007013EDAF9F0806C0178ECFBC04A
+6DB4486C7FA24A92C7FC4A5CA34A5CB3A4B5D8FE07B5D8F03FEBFF80A551297CA858>I<
+01FFEB1FF8B5EBFFFE02036D7E4A80DA0FE07F91381F007F0007013C806C5B4A6D7E5CA2
+5CA35CB3A4B5D8FE0FB512E0A533297CA83A>I<EC7FF0903803FFFE011FEBFFC0017F14
+F09039FFE03FF8489038800FFC3A03FE0003FE48486D7E000F168048486D13C0A2003F16
+E049147F007F16F0A400FF16F8AA007F16F0A46C6CECFFE0A2001F16C06C6C491380A26C
+6C4913003A03FF800FFE6C9038E03FFC6C6CB512F0011F14C0010791C7FC9038007FF02D
+2B7DA934>I<01FFEBFFE0B5000713FC021FEBFF80027F80DAFF8113F09139FC007FF800
+0701F06D7E6C496D7E4A130F4A6D7E1880A27013C0A38218E0AA4C13C0A318805E18005E
+6E5C6E495A6E495A02FCEBFFF0DAFF035B92B55A029F91C7FC028713FC028113C00280C9
+FCACB512FEA5333B7DA83A>I<DA7FE01378902607FFFC13F8011FEBFF01017F14819039
+FFF81FC3489038E007E74890388003F74890380001FF48487F001F157F5B003F153F5B12
+7F161FA2485AAA127F7FA36C6C143F167F121F6C6C14FF6D5B6C6D5A6CEBC00F6CEBF03F
+6C6CB512BF6DEBFE3F010713F8010013C091C7FCAC030FB512E0A5333B7DA837>I<3901
+FE01FE00FF903807FF804A13E04A13F0EC3F1F91387C3FF8000713F8000313F0EBFFE0A2
+9138C01FF0ED0FE091388007C092C7FCA391C8FCB3A2B6FCA525297DA82B>I<90383FFC
+1E48B512BE000714FE5A381FF00F383F800148C7FC007E147EA200FE143EA27E7F6D90C7
+FC13F8EBFFE06C13FF15C06C14F06C806C806C806C80C61580131F1300020713C0140000
+78147F00F8143F151F7EA27E16806C143F6D140001E013FF9038F803FE90B55A15F0D8F8
+7F13C026E00FFEC7FC222B7DA929>I<EB07C0A5130FA4131FA3133F137FA213FF5A1207
+001FEBFFFEB6FCA40001EBC000B3151FA96CEBE03EA2017F137EECF8FC90383FFFF86D13
+F0010713E001001380203B7EB929>I<D9FF80EB0FF8B5EB0FFFA50007EC007F6C153FB3
+A5167FA316FF6C5C4B7F6C903AC007DFFFE09138F01F9F6DB5121F6D13FE010F13F80101
+01E0EBE000332A7CA83A>I<B500FC90383FFFC0A5000101C0903803E0006E1307A26C5E
+6E130F017F5D6E131F013F92C7FC6E5B011F143E6E137E010F147C6E13FCA26D5C15816D
+5C15C36D5C15E76D5C15FF6E5BA36E90C8FCA26E5AA26E5AA26E5AA26E5AA232287EA737
+>I<B53CFC3FFFFC03FFFEA50003D980009039C0000F806E161F6C037F15006E496C5B6C
+183E836E48157E017F177C6E486D13FC013F02EF5C83DAFC071401011F02C75CDAFE0FEB
+FE03010F02835C17FFDAFF1F14076D02015C03BF148F6DD9BE005C18CF03FE14DF6D4901
+7F90C7FC18FF6D496D5AA36E486D5AA26E486D5AA36E486D5AA26E486D5A47287EA74C>
+I<B5D8FC03B51280A5C69026E0007FC7FC6E13FE6D6C5B6D6C485A6D6C485A010F13076D
+6C485AED9FC06DEBFF806D91C8FC6D5B6E5AA2143F6E7E140F814A7F4A7F4A7F02FE7F90
+3801FC7F49486C7E02F07F49486C7E49486C7E011F7F49486C7FD97F008001FE6D7FB5D8
+C007EBFFC0A532287EA737>I<B500FC90383FFFC0A5000101C0903803E0006E1307A26C
+5E6E130F017F5D6E131F013F92C7FC6E5B011F143E6E137E010F147C6E13FCA26D5C1581
+6D5C15C36D5C15E76D5C15FF6E5BA36E90C8FCA26E5AA26E5AA26E5AA26E5AA35D14075D
+000E130FD83F805B387FC01FD8FFE090C9FC5C143E147E5CEBC1F8387FC3F0387E0FE06C
+B45A6C5B6C48CAFCEA03F8323B7EA737>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fp cmr7 7 22
+/Fp 22 127 df<903803FF80011F13F090387E00FCD801F8133FD807E0EB0FC04848EB07
+E04848EB03F048C7EA01F8A2007EEC00FCA248157EA7007E15FCA36CEC01F8A26C6CEB03
+F0000F15E0A26C6CEB07C0000315806C6CEB0F00A26C6C131ED8C070EB1C060178133CD8
+6038EB380C01181330011C13700070151CD87FFCEB7FFC003F15F8A327297DA82F>10
+D<1306130C13181330136013E0EA01C0EA0380A2EA07005A120E121EA2121C123CA35AA5
+12F85AAB7E1278A57EA3121C121EA2120E120F7EEA0380A2EA01C0EA00E0136013301318
+130C13060F3B7AAB1A>40 D<12C012607E7E7E120E7EEA0380A2EA01C013E0120013F0A2
+13701378A3133CA5133E131EAB133E133CA51378A3137013F0A213E0120113C0EA0380A2
+EA0700120E120C5A5A5A5A0F3B7DAB1A>I<140EB3A2B812E0A3C7000EC8FCB3A22B2B7D
+A333>43 D<EB3F803801FFF03803E0F83807803C48487E001E7F003E1480A2003C130700
+7C14C0A400FC14E0AE007C14C0A36CEB0F80A36CEB1F006C131E6C6C5A3803E0F86CB45A
+38003F801B277EA521>48 D<13381378EA01F8121F12FE12E01200B3AB487EB512F8A215
+267BA521>I<13FF000313E0380E03F0381800F848137C48137E00787F12FC6CEB1F80A4
+127CC7FC15005C143E147E147C5C495A495A5C495A010EC7FC5B5B903870018013E0EA01
+80390300030012065A001FB5FC5A485BB5FCA219267DA521>I<13FF000313E0380F01F8
+381C007C0030137E003C133E007E133FA4123CC7123E147E147C5C495AEB07E03801FF80
+91C7FC380001E06D7E147C80143F801580A21238127C12FEA21500485B0078133E00705B
+6C5B381F01F03807FFC0C690C7FC19277DA521>I<0018130C001F137CEBFFF85C5C1480
+D819FCC7FC0018C8FCA7137F3819FFE0381F81F0381E0078001C7F0018133EC7FC80A215
+80A21230127C12FCA3150012F00060133E127000305B001C5B380F03E03803FFC0C648C7
+FC19277DA521>53 D<1238127C12FEA3127C12381200AB1238127C12FC12FEA2127E123E
+1206A3120CA31218A212301270122007247B9813>59 D<B812E0A3CBFCABB812E0A32B11
+7D9633>61 D<EAFFC0A3EAE000B3B3B1EAFFC0A30A3B7AAB13>91
+D<EAFFC0A31201B3B3B112FFA30A3B7FAB13>93 D<5AEA0380EA07C0EA0FE0EA1EF0EA3C
+78EA701CEAE00EEAC0060F0978A721>I<EB3FC0EBFFF83803E03C3807C00E380F801F38
+1F003F123EA2007E131E007C1300A212FCA7127C127E1403123E6C1306EA0F803807C00C
+3803F0383800FFE0EB3F80181C7E9A1E>99 D<120EEA3F80A5EA0E00C7FCA7EA078012FF
+A2121F120FB3121FEAFFF8A20D287EA713>105 D<EA0F8012FFA2121F120FB3AFEA1FC0
+EAFFF8A20D287EA713>108 D<260F81FC137F3BFF8FFF03FFC0903A9C0F8703E03B1FB0
+07CC01F0D80FE013D8903AC003F000F8A301805BAF486C486C487E3CFFF83FFE0FFF80A2
+311A7E9937>I<380F81FC38FF8FFF90389C0F80391FB007C0EA0FE09038C003E0A31380
+AF391FC007F039FFF83FFEA21F1A7E9925>I<380F07C038FF1FF0EB38F8EA1F71EA0F61
+13C1EBC0F014005BAF487EEAFFFCA2151A7E991A>114 D<390F8003E000FF133FA2001F
+1307000F1303B01407A20007130F9038C01BF03903E073FE3801FFE339007F83E01F1B7E
+9925>117 D<380F8010381FF038383FFFF04813E038E07FC038400F8015067BA621>126
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fq cmmi7 7 27
+/Fq 27 123 df<1238127C12FE12FFA2127F123B1203A31206A3120C1218123812701220
+08127A8614>59 D<12E012F812FEEA3F80EA0FE0EA03F8EA00FEEB3F80EB0FE0EB03F8EB
+00FEEC3F80EC0FE0EC03F8EC00FEED3F80ED0FE0ED03F8ED00FE163E16FEED03F8ED0FE0
+ED3F80EDFE00EC03F8EC0FE0EC3F8002FEC7FCEB03F8EB0FE0EB3F8001FEC8FCEA03F8EA
+0FE0EA3F8000FEC9FC12F812E027277AA134>62 D<EB03FCEB0FFF90383C07C090387001
+E09038E00070491378486C1338486C133C151EA25B6C5AC8121FA3EB1FF8EB7FFEEBF007
+3901E0019ED8038013FE000FC7FCA2001E147E003E147C123C127C15F85A15F0A2140148
+14E0EC03C0A2EC078000781400140E00385B6C1378380F01F03807FFC0D801FEC7FC202A
+7CA823>64 D<4AB41308020FEBE01891397F80F038903A01F8001870D903E0EB0CF0D90F
+80130749C71203013E15E05B491401485A484815C0485A120F5B001F168090C8FC4892C7
+FCA2127EA4127C12FCA21606007C5DA35E007E5D123E5E6C5D6C6C495A00074AC7FCD803
+E0130E6C6C13383900FE01F090383FFFC0D907FCC8FC2D2A7DA830>67
+D<903B3FFFF01FFFF8A2D901FCC7EAFE004A5CA2010314015F5CA2010714035F5CA2010F
+14075F5CA2011F140F91B65AA2913880000F013F141F5F91C7FCA249143F94C7FC137EA2
+01FE5C167E5BA2000115FE5E5BA200031401B539C07FFFE0A235287DA736>72
+D<90263FFFF0EB7FF8A2D901FCC7EA1FC04AEC1E005F010315704C5A4AEB03804CC7FC01
+07141C5E4A13E04B5A010FEB0780030EC8FC4A5A157C011F13FE14C3EC877F149E90393F
+B83F8014F09138C01FC0148049486C7EA2017E6D7EA201FE6D7EA2496D7EA200016E7EA2
+49147FA2000382B539C007FFF8A235287DA738>75 D<90383FFFF8A2D901FCC7FC5CA213
+03A25CA21307A25CA2130FA25CA2131FA25CA2133FA291C8FCA249141C1618137E163801
+FE1430167049146016E000011401ED03C0491307ED0F800003147FB7FC160026287DA72E
+>I<D93FFC903801FFF88001019138001F006E141E170C902603BF80131C1718EC1FC0A2
+496C6C1338173090380607F0A290260E03F81370176090380C01FCA290261C00FE13E05F
+0118137FA20138EB3F81031F5B013014C1150F017014E3030790C7FC016014F3150301E0
+14FF6F5A5B15001201167C5B486C143C1207D8FFFC1418A235287DA735>78
+D<000FB712E05A9039800FE007D81E009038C001C05A0038011F1300123000705C006015
+01023F148012E0481400A2C74890C7FCA2147EA214FEA25CA21301A25CA21303A25CA213
+07A25CA2130FA25CA2131F001FB57EA22B287DA727>84 D<B5ECFFF0A2D80FF0EC1F806C
+48EC0E005E16186D5CA200035D5EA24B5A6D49C7FC120115065DA25D6D5B12005D5DA24A
+5A6D48C8FC137E14065CA25CEB7F30133F5C5CA25C91C9FC7F131E131CA22C297BA727>
+86 D<15F8141FA2EC01F0A21403A215E0A21407A215C0A2140FEB1F8F90387FCF80EBF0
+EF3803C03FEA0780390F001F00A2001E5B123E003C133E127C147E5A147CA214FC5AECF8
+30A3903801F060A2EA7803010E13C0393C1CF980381FF07F3907C01E001D297CA723>
+100 D<EB0FC0EB7FF0EBF0383803C01CEA0780EA0F005A121E003E1338481370EB07E038
+7FFF8038FFFC0000F8C7FCA45AA214040078130C141800381330003C13E0381E07C0380F
+FF00EA03F8161B7C991F>I<EC03E0EC0FF0EC1E38EC3C3C157CEC7CFC1478ECF8F81570
+1500A2495AA590B512E0A2903803E000A4495AA5495AA649C7FCA5133EA4133C137C123C
+EA7C78127EEAFC7013F0EA78E0EA71C0EA3F80001EC8FC1E357CA820>I<133EEA07FEA2
+EA007CA213FCA25BA21201A25BA2120314FCEBE3FF9038EF0780D807FC13C0EBF00313E0
+A2EA0FC014071380A2121FEC0F801300A248EB1F00A2003E1406143E127EEC7C0C127C15
+1800FCEB3C30157048EB1FE00070EB0F801F297CA727>104 D<130E131F5BA2133E131C
+90C7FCA7EA03E0487EEA0C78EA187C1230A212605B12C0A2EA01F0A3485AA2485AA2EBC1
+80EA0F81A2381F0300A213066C5A131CEA07F06C5A11287DA617>I<1407EC0F80141FA2
+1500140E91C7FCA7EB03E0EB07F8EB0C3C1318EB303E136013C0A248485AA2C7FCA25CA4
+495AA4495AA4495AA4495AA21238D87C1FC7FC12FC133E485AEA70F8EA7FE0EA1F801933
+80A61B>I<133EEA07FEA2EA007CA213FCA25BA21201A25BA21203EC07809038E01FC0EC
+38600007EB61E014C3EBC187EBC307D80FC613C09038CC038001B8C7FC13E0487E13FEEB
+3F80EB0FC0486C7E1303003E1460A2127EECC0C0127CECC18012FC903801E30038F800FE
+0070137C1B297CA723>I<137CEA0FFCA2EA00F8A21201A213F0A21203A213E0A21207A2
+13C0A2120FA21380A2121FA21300A25AA2123EA2127EA2EA7C18A3EAF830A21320EA7860
+13C0EA3F80EA0F000E297EA715>I<3B07801FC007E03B0FE07FF01FF83B18F0E0F8783C
+3B30F1807CE03E903AFB007D801ED860FEEB3F005B49133E00C14A133E5B1201A2484849
+5BA35F4848485A1830EE01F0A23C0F8003E003E060A218C0933801E180271F0007C013E3
+933800FF00000E6D48137C341B7D993B>I<3907801FC0390FE07FF03918F0E0F83930F1
+807CEBFB00D860FE133C5B5B00C1147C5B1201A248485BA34A5AEA07C01660EC03E0A23A
+0F8007C0C0A2EDC180913803C300D81F0013C7EC01FE000EEB00F8231B7D9929>I<3807
+803E390FE0FF803818F3C13930F703C0EBFE073860FC0F13F8158039C1F0070091C7FC12
+01A2485AA4485AA4485AA448C8FCA2120E1A1B7D991F>114 D<EB0FE0EB7FF8EBF03C38
+01C00E0003131E3807803EA2143C000F1318EBE0006CB4FC14C06C13E06C13F06C13F813
+071301EA3C00007E1378A24813F05A387001E0EB03C0383C0F80381FFE00EA07F8171B7C
+991F>I<3903E001C03907F003E0380C7807EA187C0030130314011260EBF80000C014C0
+A2EA01F0A2EC0180EA03E0A2EC0300EA07C0A21406A25CA200035B6D5A3801F0E06CB45A
+013FC7FC1B1B7D9921>118 D<D803E0EC0380486CEB7007D80C789038F80FC0EA187C00
+30903801F0071603126001F8140100C0D903E01380A2EA01F0A2913907C00300EA03E0A3
+3A07C00F8006A25EA2160816180003011F5B01E0EBC0703A01F073E0E03A00FFE1FF8090
+261F807FC7FC2A1B7D9930>I<90387C03C03901FF0FF03907079C30390E03B078000CEB
+F0F8001813E1123015F0396007C0E015001200A2495AA449C7FC15301238007C1460EAFC
+3E15C0EAF87E39F06F03803970C70700383F83FE381F01F81D1B7D9926>I<EA03E0486C
+1370D80C7813F8EA187C0030EB01F0A2126013F800C0EB03E0A2EA01F0A2EC07C0EA03E0
+A33907C00F80A4EC1F00A25C00035B3801E0FE3800FFBEEB3F3E13005C121E003F5B5C38
+7E01E0383C03C038300780D81C1FC7FCEA0FFCEA07F01D267D9922>I<013E13C0137F90
+38FF818048EBC3004813FF380701FE3806000C00045BC75A5C5CEB03800106C7FC5B5B5B
+5B9038C00180EA038039060003005C380FF81E381FFFFE38383FFC38601FF86D5A38C007
+C01A1B7D9920>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fr msbm10 10 3
+/Fr 3 83 df<020FB6128091B712C01303010F1680D91FF8C9FCEB7F8001FECAFCEA01F8
+485A485A485A5B48CBFCA2123EA25AA2127812F8A25AA87EA21278127CA27EA27EA26C7E
+7F6C7E6C7E6C7EEA00FEEB7F80EB1FF86DB71280010316C01300020F158091CAFCA51630
+16F815014B5A4B5A4B5A4B5A4BC8FC157E001FB812804817C0A26C1780C7D81F80C8FC4A
+C9FC147E5C495A495A495A5C6DCAFC324D79B441>40 D<007FB612C0B712FC6C15FF2703
+C01E071380000190393C01C7E00238EBE1F0923800E0F81738EEF03CEE701C171E170EA7
+171E171CEEF03CEEE03817F8923801E1F0EEC7E0923803FF80023FB5120016FC16E00238
+C8FCB3A60003133C007FB512F0B6FC7E2F397EB834>80 D<007FB612E0B712FE6C6F7E27
+03C01E0313E0000190393C00F3F00238EB70F8EE783CEE381E83EE3C07161C18801703A6
+17071800EE3C0FEE380E173EEE78FCEEF7F892380FFFE0023FB5128004FCC7FC16B89138
+38F03CED701CED781EED380EED3C0FED1C07031E7FED0E03030F7FED0701EE81E0ED0380
+707E030113701778EEE0380300133C707EEE700EEE780F9338380780EE3C03041C13C093
+381E01E00003013C90380E00F0007FB539F00FFFFEB67F6C8137397DB836>82
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fs cmsy10 10 39
+/Fs 39 115 df<007FB81280B912C0A26C17803204799641>0 D<121C127FEAFF80A5EA
+7F00121C0909799917>I<0060150600F8150F6C151F007E153F6C157E6C6C14FC6C6CEB
+01F86C6CEB03F06C6CEB07E06C6CEB0FC06C6CEB1F80017EEB3F006D137E6D6C5A90380F
+C1F8903807E3F0903803F7E06DB45A6D5B6EC7FCA24A7E497F903803F7E0903807E3F090
+380FC1F890381F80FC90383F007E017E7F49EB1F804848EB0FC04848EB07E04848EB03F0
+4848EB01F84848EB00FC48C8127E007E153F48151F48150F00601506282874A841>I<EC
+03FF023F13F09138FC30FCD903C0130FD90F00EB03C0013CEC00F0017015384981484881
+48488148C7EC038000061601000E17C048EE00E0001817600038177000301730A2007017
+3800601718A200E0171C48170CA4B912FCA200C0C70030C7120CA46C171C00601718A200
+70173800301730A20038177000181760001C17E06CEE01C000061780000716036C6CED07
+006C6C150E6C6C5D01705D013C15F0010FEC03C0D903C0010FC7FCD900FC13FC91383FFF
+F0020390C8FC36367BAF41>8 D<EB1FF0EBFFFE487F000714C0390FF01FE0391F8003F0
+393F0001F8003E130048147CA20078143C00F8143EA248141EA56C143EA20078143C007C
+147CA26C14F8003F1301391F8003F0390FF01FE06CB512C0000114006C5BEB1FF01F1F7B
+A42A>14 D<007FB812F8B912FCA26C17F8CCFCAE007FB812F8B912FCA26C17F8CCFCAE00
+7FB812F8B912FCA26C17F836287BA841>17 D<020FB6128091B712C01303010F1680D91F
+F8C9FCEB7F8001FECAFCEA01F8485A485A485A5B48CBFCA2123EA25AA2127812F8A25AA8
+7EA21278127CA27EA27EA26C7E7F6C7E6C7E6C7EEA00FEEB7F80EB1FF86DB71280010316
+C01300020F158091CAFCAE001FB812804817C0A26C1780324479B441>I<EF0180EF07C0
+171FEF7F80933801FF00EE07FCEE1FF0EE7FC04B48C7FCED07FCED1FF0ED7FC04A48C8FC
+EC07FCEC1FF0EC7FC04948C9FCEB07FCEB1FF0EB7FC04848CAFCEA07FCEA3FF0EA7FC048
+CBFC5AEA7F80EA3FE0EA0FF8EA03FEC66C7EEB3FE0EB0FF8EB03FE903800FF80EC3FE0EC
+0FF8EC03FE913800FF80ED3FE0ED0FF8ED03FE923800FF80EE3FE0EE0FF8EE03FE933800
+FF80EF3FC0170FEF038094C7FCAE007FB81280B912C0A26C1780324479B441>20
+D<020FB6128091B712C01303010F1680D91FF8C9FCEB7F8001FECAFCEA01F8485A485A48
+5A5B48CBFCA2123EA25AA2127812F8A25AA87EA21278127CA27EA27EA26C7E7F6C7E6C7E
+6C7EEA00FEEB7F80EB1FF86DB71280010316C01300020F1580323279AD41>26
+D<05041402051E140F057E143FDC01FE14FF4C48EB01FEDC0FF0EB07F8DC3FC0EB1FE04C
+C7EA3F80DB01FEECFF00DB07F8EB03FCDB0FE0EB07F0DB3FC0EB1FE003FFC7EA7F80DA01
+FC02FEC7FCDA07F8EB03FCDA1FE0EB0FF0DA3F80EB1FC002FFC7EA7F80D903FCD901FEC8
+FCD90FF0EB07F84948495AD97F80EB3FC0D801FEC7B4C9FCD803F8EB01FCD80FF0EB07F8
+D83FC0EB1FE048C7EA3F8000FE4ACAFCA2007F6E7ED83FC0EB1FE0D80FF0EB07F8D803F8
+EB01FCD801FE6DB4FC26007F80EB3FC0D91FE0EB0FF06D6C6D7ED903FCEB01FED900FF90
+38007F80DA3F80EB1FC0DA1FE0EB0FF0DA07F8EB03FCDA01FCEB00FE6EB4EC7F80DB3FC0
+EB1FE0DB0FE0EB07F0DB07F8EB03FCDB01FEEB00FFDB007FEC3F80DC3FC0EB1FE0DC0FF0
+EB07F8DC03FCEB01FE706CEB00FFDC007E143F051E140F48377BB053>28
+D<181EA4181F84A285180785727EA2727E727E85197E85F11F80F10FC0F107F0007FBA12
+FCBCFCA26C19FCCCEA07F0F10FC0F11F80F13F00197E61614E5A4E5AA24E5A61180F96C7
+FCA260181EA4482C7BAA53>33 D<173CA2173E171E171F8384717E170384717E717E187C
+007FB812FEBAFC856C84CBEA03F0727EF000FEF13F80F11FE0F107F8F101FFA2F107F8F1
+1FE0F13F80F1FE00F001F84E5A007FB912C0BA5A96C7FC6C5FCB127C604D5A4D5A601707
+4D5A95C8FC5F171E173E173CA248307BAC53>41 D<D90FF0ED07F0D93FFEED3FFE90B56C
+91B5FC00036E903903F807C02707F07FF0903907C001E0270F801FF890390F8000F09026
+0007FC013EC71270001E6D6C491438486D6C0178141C00386D6D5A48DA7FC1150E92383F
+E3E0006091261FF3C01406EEF78000E0DA0FFF1507486E90C812036F5AA26F7E6F7F707E
+A24C7E6C4A6D14070060DBEFF81406ED03CF0070912607C7FC140E92380F83FE6CDB01FF
+141CDB1E006D133C6C023E6D6C13786C4A6D6C13F0000FD901F090381FF8016C6C484890
+390FFE0FE02703E01FC00103B512C0C6B5C76C1400D97FFC9138007FFCD90FE0ED0FF048
+267BA453>49 D<91381FFFFE91B6FC1303010F14FED91FF0C7FCEB7F8001FEC8FCEA01F8
+485A485A485A5B48C9FCA2123EA25AA2127812F8A25AA2B712FE16FFA216FE00F0C9FCA2
+7EA21278127CA27EA27EA26C7E7F6C7E6C7E6C7EEA00FEEB7F80EB1FF06DB512FE010314
+FF1300021F13FE283279AD37>I<387FFFF8B6FC15C06C14F0C7EA0FF8EC01FEEC007FED
+1F80ED0FC0ED07E0ED03F01501ED00F8A2167CA2163EA2161E161FA2160FA2007FB7FCB8
+FCA27EC9120FA2161FA2161E163EA2167CA216F8A2ED01F01503ED07E0ED0FC0ED1F80ED
+7F00EC01FEEC0FF8007FB55AB612C092C7FC6C13F8283279AD37>I<EE0180EE03C01607
+A2EE0F80A2EE1F00A2163EA25EA25EA24B5AA24B5AA24B5A150F5E4BC7FCA2153EA25DA2
+5DA24A5AA24A5AA24A5AA24A5AA24AC8FCA2143EA25CA25CA2495AA2495AA2495AA2495A
+A249C9FCA2133EA25B13FC5B485AA2485AA2485AA2485AA248CAFCA2123EA25AA25AA25A
+12602A4E75BB00>54 D<126012F0AD12FCA412F0AD126006207BA400>I<0060161800F0
+163C6C167CA200781678007C16F8A2003C16F0003E1501A26CED03E0A26C16C06D1407A2
+000716806D140FA26C6CEC1F00A26CB612FEA36C5D01F8C7127CA2017C5CA2013C5C013E
+1301A2011E5C011F1303A26D6C485AA201075CECC00FA2010391C7FC6E5AA2903801F03E
+A20100133CECF87CA2EC7878EC7CF8A2EC3FF0A26E5AA36E5AA36E5A6EC8FC2E3C80B92F
+>I<156015F0A21401EB07F190383FFFE0EB7C1FEBF00748486C5AD803C07F4848487ED8
+0F007FA248497E001E14BC153C003E143E141FA248EB1E1F143EA2143CA2147C00FC1580
+147814F8A214F0A21301A214E01303A214C0A21307A21480A2130FA214005B007C150013
+1EA2D87E3E5BA2D83E3C133E137CA21378001F5C13F8000F14784913F800075C0003495A
+EBE0033901F007802603FC1FC7FCEBFFFEEBC7F0D807C0C8FCA25BA26CC9FC21477CBF2A
+>59 D<18F017011707A3170FA2171F60173F1737177F176F17EF17CF04017F178F160317
+0FEE0707160EA2161C161816381630167016E0A2ED01C016801503ED0700A2150E5DA25D
+157815705D02018103CFB5FCEC03BF4AB6FCA2020EC71203141E5C143802788100205B38
+6001E0EAF0036C4848140126FE1F8081B5C8FC190C49EEFF3C496F13F06C4817E06C4817
+806C48EE7E00D8078093C7FC3E407DBB42>65 D<0238EB07FC02F890383FFF80010391B5
+12C0010F010314E0011FEB0F81017B90391E003FF09026E3F078131F010349130FECF1E0
+902607F3C0130714F7DAFF8014E092C7FC18C04A140F49481580EF1F004A141E5F4A5CEE
+01E0011F4A5A4A010FC7FC163E9138C001F8ED0FFC013F90383FFF804AB57E028114F0DA
+83017F91C7EA3FFC496E7E1607017E6E7E8201FE6E1380A249157FA2173F12015BA21800
+485AA2177E4848157CA25F48484A5A01C75D019F4A5A261FBF80495A496C011EC7FC003F
+01F0137C9138FC03F0D87E3FB512C0D87C1F91C8FCD8780713F8D8E00113C0343D7EBA37
+>I<0203B512F0027F14FF49B712E0010F16F890273FC3F00713FED978039038007FFF26
+01E007020F1380D803C0030313C0D80780030013E0000F177FD81F00EE3FF048EF1FF800
+3E4A140F5A0078EF07FC00C0010F1503C7FCA24B1401A3141F5DA3023F16F8A292C8FCF0
+03F0A25C027EED07E0A219C04A150F1980F01F00495A183E6049481578604D5A49484A5A
+4D5A050EC7FC4948143C5FEE01E04948EB07C0043FC8FC91380001FC49EB3FF049B51280
+48B500FCC9FC4814E04801FCCAFC3E397FB840>68 D<ED03FE92383FFFC092B512E00203
+14F0EC0FC091381E001F0278130F4A1307494814E0010315C049481480010FEC0F00161E
+494890C7FCA3133FA380A280806D7E14FE90380FFFC06D13FE6D5B01005B15E0D901F8C8
+FCEB078049C9FC133C5B5B485A1203485A485AA248CAFC5AA2127EA2163C00FE5D4B5AA2
+6C4A5A4B5A6D5C6D49C7FC6C6C131E01F81378393FFF03F06CEBFFC06C91C8FC000313FC
+38007FC02C3D7EBA2C>I<DA0FF81507DAFFFC151E01036D153E010F177ED93F035EEB78
+013801E00048484C5A485A000F5C48C74B5A5A003E1301484D5A127812C0C7494A5AA302
+034B5AA25D4EC7FCA214074B5C187EA24A5A49B75A13075B4915FD903B001F800001F8A2
+4AC7FC170360147EA2170714FE4A5DA34948140FA25C130360495AA2051FEB07804948EE
+0F00193F4AEDE03E011F705A91C8EBFFF8013E17E0013C6F138090C9D807F8C7FC413D7F
+B846>72 D<0370EBFF80912601E00713E0912603C01F13F891260F007F7F021E9038F03F
+FE913A7803C00FFF9139F0078003494848486C1380902603C01E7F902607803EEC7FC049
+485A011E49143F013E17E0494848141FEBF8035D2601F007150F00035CEBE00F00075CD9
+C01EC8FC000F131C49C9FC121FA248CA13C0A348171F1980127EA2183F00FE1800A2183E
+187E187C18FC6017016C5F4D5A6017076C6C4B5A4DC7FC171E6D5D6C6C5D5F6D4A5A6C6C
+EC03806C6C020FC8FC01FF143E6C01C013F86C9038F807E06C90B512806C6C49C9FC011F
+13F0010313803B3D7BBA42>79 D<0203B512F8027FECFF8049B712F0010F8290273FC3F0
+0313FED978039038003FFF2601E00702071380D803C06F13C0D807801500000F177FD81F
+00EE3FE0484A141F123E5A0078010F150F12C0C7FC4B15C0A3021FED1F80A24B1500183E
+A2023F5D6092C85A4D5A4D5A4A4A5A027E020EC7FC173C17F84AEB03E0EE3F80DB1FFEC8
+FC0101EB7FF89138F8FFC0DAF9FCC9FC02F8CAFC495AA3495AA3495AA3495AA291CBFC5B
+A2137EA35B13F013C03B3D7FB83A>I<923801FFC0031F13F8037F13FE0203B6FC91260F
+E01F138091261E000313C00278010013E04A147FD903C0EC3FF04948141F49C8EA0FF813
+1E491507137C49ED03FC485AA2485A48481501A2120F485AA290C9FC5AA24817F8127EA2
+170312FE18F0A3EF07E0A26C17C0170F18806DED1F00127F6D153E6D5D6C6C130F01FC01
+3E5B3B1FFF01F801F06CD9FFE05B6C91388003C000014948485A26007FE049C7FC90C812
+1E163816F0ED03E0ED0780033EC8FCEC0FFC0003B500E0140E000F0280143E4801FCC812
+7C48D9FF8014FC000102F014F8D8000F01FEEB01F00101D9FFC013E0D9003F9038FC03C0
+020790B5120002005C031F13F8030113C0374577BA44>I<0203B512FE027FECFFF049B7
+12FC010F16FF90273FC3F00080D9780302077F2601E0071401D803C06F6C7ED80780163F
+000F171FEA1F00484A140F123E5A0078010F5E12C0C7FC4B4A5AA296C7FC021F5D183E4B
+5C187860023F4A5A4D5A92C7000FC8FC173EEE03F84AEBFFE0DA7E0313804B48C9FC4B7E
+ECFC036F7F6F7F0101147F4A80163F707E495A707EA249481307830403151049486E14F0
+F101E04A6D6CEB03C0011F933880078070EC0F0049C8EBC01E716C5A013E92383FF0F001
+7EEEFFE0017C6F1380496F48C7FC01E0ED07F0443B7FB846>I<EE3FF0923803FFFE030F
+EBFF80033F14C0DBFC0713E0913801E000DA0780EB3FF04AC7121F4A140F143E027E1407
+027C15E014FC18800101ED0F0094C7FCA280A280816D7F81EC7FF86E7E6EB4FC6E13C002
+0313F06E13FC6E6C7E92381FFF8003077F03017F6F7FEE3FF8161F160F01706E7E484814
+03EA07C048C8FC4815015A127E5FA200FE5E16036C5E4C5A6D5D6D4AC7FC6C6C141E6D5C
+D83FFC14F06CB4EB03E06C9038E03F806CD9FFFEC8FC000114F86C6C13C0D90FFCC9FC34
+3D7FBA32>I<1A801907F10F00023FB712FE49B85A010F17F0013F17C0494CC7FC2801E0
+0003F0C9FC48481307485A120F48C7485A5A5AA200FE4A5A5A12F01280C8485AA44BCAFC
+A415FEA44A5AA44A5AA44A5AA4140F5DA35D141FA25D143FA292CBFC5CA2147E14FE5CA2
+495A5C495A5C0102CCFC41427DBB2D>I<0060161800F0163CB3B26C167CA2007C16F8A2
+6CED01F0003F15036C6CEC07E06C6CEC0FC0D807F0EC3F80D803FE903801FF003A00FFC0
+0FFC6DB55A011F14E0010391C7FC9038007FF82E347CB137>91 D<EC7FF80103B5FC011F
+14E0017F14F89039FFC00FFC3A03FE0001FFD807F09038003F80D80FC0EC0FC04848EC07
+E048C8EA03F0003E150148ED00F8A248167CA248163CB3B2006016182E347CB137>I<14
+034A7E4A7EA24A7EA34A7EA2EC7CF8A2ECF87CA2ECF03C0101133EA249487EA249486C7E
+A249486C7EA2EC00034980A2013E6D7EA2496D7EA20178147801F8147CA2484880A24848
+80A24848EC0F80A2491407000F16C0A248C8EA03E0A2003EED01F0A2003C1500007C16F8
+A248167CA248163C006016182E347CB137>94 D<EC01F8140FEC3F80ECFC00495A495A49
+5AA2130F5CB3A7131F5C133F49C7FC13FEEA03F8EA7FE048C8FCEA7FE0EA03F8EA00FE13
+7F6D7E131F80130FB3A7801307A26D7E6D7E6D7EEC3F80EC0FF814011D537ABD2A>102
+D<12FCEAFFC0EA07F0EA01FCEA007E7F80131F80130FB3A7801307806D7E6D7EEB007EEC
+1FF0EC07F8EC1FF0EC7E00495A495A495A5C130F5CB3A7131F5C133F91C7FC137E485AEA
+07F0EAFFC000FCC8FC1D537ABD2A>I<126012F0B3B3B3B3A91260045377BD17>106
+D<0070131C00F0131EB3B3B3B3A80070131C175277BD2A>I<F10180F103C01907A2F10F
+80A2F11F00A2193EA261A261A24E5AA24E5AA24E5AA24E5AA296C7FC60A2183EA260A260
+A24D5AA24D5AA24D5AA24D5AA24DC8FCA20130153E13F000015EEA07F8000F5E487E0079
+4B5AEAE1FE00C04B5AC67E6D4A5AA26E495A133F6E49C9FC131F6E133E130F6E5B13076E
+1378010314F8A26E485A13016E485A13006E485A147FED8F80143F039FCAFC15DFEC1FFE
+A26E5AA26E5AA26E5AA26E5A5D42547B8345>112 D<BA12F0A26C18E0A26C18C0A2D81F
+C0C9EA01807F000FEF03007F000717067F00035F7F00015F7F00005F7F18706D6C156018
+E06D6C5D17016D6C5D17036D6C92C7FC5F6D6C1406170E6D6C140C171C6D6C141817386D
+6C143017706E6C136017E06E6C5B1601DA1FE05B1603DA0FF090C8FC5E913807F806A26E
+6C5AA26E6C5AA26E6C5AA2ED7FE0A26F5AA26F5AA26FC9FCA215063C3C7CB845>114
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Ft cmr12 12 8
+/Ft 8 118 df<ED7FF0020FB57E91393FC01FE09139FE0003F8D903F8EB00FED90FE0EC
+3F8049486E7ED97F80EC0FF049C86C7E48486F7E48486F7E00078349814848EE7F80A200
+1F18C049163F003F18E0A34848EE1FF0AA6C6CEE3FE0A4001F18C06D167F000F1880A26C
+6CEEFF00A200035F6D150100015F00005F6D1503017E5E017F15076D5E6D5E6E140F010F
+5E010793C7FC6E5C0103151E00C018186D6C5CA2D86000033813306E147802701470A200
+70013002601370003018600038013802E013E0263FFFF891B5FCA36C18C0A33D467CC546
+>10 D<140C141C1438147014E0EB01C01303EB0780EB0F00A2131E5BA25B13F85B12015B
+1203A2485AA3485AA348C7FCA35AA2123EA2127EA4127CA312FCB3A2127CA3127EA4123E
+A2123FA27EA36C7EA36C7EA36C7EA212017F12007F13787FA27F7FA2EB0780EB03C01301
+EB00E014701438141C140C166476CA26>40 D<12C07E12707E7E7E120F6C7E6C7EA26C7E
+6C7EA21378137C133C133E131E131FA2EB0F80A3EB07C0A3EB03E0A314F0A21301A214F8
+A41300A314FCB3A214F8A31301A414F0A21303A214E0A3EB07C0A3EB0F80A3EB1F00A213
+1E133E133C137C13785BA2485A485AA2485A48C7FC120E5A5A5A5A5A16647BCA26>I<12
+1EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3A5121E127FEAFF80A213C0A4127F121E12
+00A512011380A3120313005A1206120E120C121C5A5A12600A3E78AA1B>59
+D<EC7F80903803FFF090380FC07C90383F000F01FCEB03804848EB01C00003140F4848EB
+1FE049133F120F485AA2485AED1FC0007FEC070092C7FCA290C9FC5AAB7E7FA2123F1630
+7F001F15706C6C146016E06C6C14C06C6C13010001EC03806C6CEB0700013F131E90381F
+C078903807FFF001001380242E7DAC2B>99 D<EA01FC12FFA3120712031201B3B3B3A548
+7EB512F8A315457DC41C>108 D<3903F803F000FFEB1FFCEC3C3EEC707F0007EBE0FF38
+03F9C000015B13FBEC007E153C01FF13005BA45BB3A748B4FCB512FEA3202C7DAB26>
+114 D<D801FC147F00FFEC3FFFA300071401000380000181B3A85EA35DA212006D5B017E
+9038077F80017F010E13C06D011C13FE90380FC078903803FFF09026007F8013002F2D7D
+AB36>117 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fu cmmi12 12 1
+/Fu 1 73 df<91B6D8E003B61280A3020001E0C70003EB8000DB7F806E48C7FC03FF1503
+A293C85BA219075C4B5EA2190F14034B5EA2191F14074B5EA2193F140F4B5EA2197F141F
+4B5EA219FF143F92B8C8FCA3DA7FC0C712014B5DA2180314FF92C85BA218075B4A5EA218
+0F13034A5EA2181F13074A5EA2183F130F4A5EA2187F131F4A5EA2013F16FFA24A93C9FC
+D9FFE002037FB6D8E003B67EA351447CC351>72 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fv cmbx12 12 38
+/Fv 38 122 df<ED0FFF4AB512C0020F14F0027F80903A01FFF803FC499038C000FE010F
+EB00034948497E49485B5C495A4C138001FF6E13005CA3705AEE01F893C8FCA74BB51280
+B9FCA5C69038E00003B3B0007FD9FFC1B6FCA538467EC53E>12 D<DB0FFFEC1FFE4AB5D8
+E003B57E020FDAF01F14E0027F02FCB67E902701FFF803B538F007F8499026C0007F9038
+8001FC010F903B0001FFFE00074948010749497E49484B131F4A495B49485D507E01FF72
+5A4A5DA282706F5A70ED03F097C8FCA70703B5FCBDFCA5C69026E000019038C00007B3B0
+007FD9FFC0B60083B512FEA557467EC55D>14 D<EB07C0EB0FE0EB1FF0EB3FF8137F13FF
+A25A4813F05A4813C01480381FFE00EA3FF8EA7FE0EAFF8048C7FC127C1230151369C538
+>19 D<EA07C0EA1FF0487E487E487E7FA31480A37E7EEA1FF7EA07C7EA0007130FA21400
+A25B131E133EA25B13FC5B485A485A1207485A485A90C7FC120C112278C41F>39
+D<B612F8A91D097F9A25>45 D<EA07C0EA1FF0EA3FF8EA7FFCEAFFFEA7EA7FFCEA3FF8EA
+1FF0EA07C00F0F788E1F>I<EC03C01407141F147FEB03FF133FB6FCA413C3EA0003B3B3
+ADB712FCA5264177C038>49 D<ECFFE0010F13FE013F6D7E90B612E0000315F82607FC03
+13FE3A0FE0007FFFD81F806D138048C7000F13C0488001C015E001F07F00FF6E13F07F17
+F881A46C5A6C5A6C5AC9FC17F05DA217E05D17C04B13804B1300A2ED1FFC4B5A5E4B5A4B
+5A4A90C7FC4A5A4A5AEC0FF04A5AEC3F804AC7127814FE495A494814F8D907E014F0495A
+495A49C8FC017C140149140348B7FC4816E05A5A5A5A5AB8FC17C0A42D417BC038>I<EC
+FFF0010713FF011F14C0017F14F049C66C7ED803F8EB3FFED807E06D7E81D80FF86D1380
+13FE001F16C07FA66C5A6C4815806C485BC814005D5E4B5A4B5A4B5A4A5B020F13809026
+07FFFEC7FC15F815FF16C090C713F0ED3FFCED0FFEEEFF80816F13C017E0A26F13F0A217
+F8A3EA0FC0EA3FF0487EA2487EA217F0A25D17E06C5A494913C05BD83F80491380D81FF0
+491300D80FFEEBFFFE6CB612F800015D6C6C14C0011F49C7FC010113E02D427BC038>I<
+163FA25E5E5D5DA25D5D5D5DA25D92B5FCEC01F7EC03E7140715C7EC0F87EC1F07143E14
+7E147C14F8EB01F0EB03E0130714C0EB0F80EB1F00133E5BA25B485A485A485A120F5B48
+C7FC123E5A12FCB91280A5C8000F90C7FCAC027FB61280A531417DC038>I<0007150301
+E0143F01FFEB07FF91B6FC5E5E5E5E5E16804BC7FC5D15E092C8FC01C0C9FCAAEC3FF001
+C1B5FC01C714C001DF14F09039FFE03FFC9138000FFE01FC6D7E01F06D13804915C0497F
+6C4815E0C8FC6F13F0A317F8A4EA0F80EA3FE0487E12FF7FA317F05B5D6C4815E05B007E
+C74813C0123E003F4A1380D81FC0491300D80FF0495AD807FEEBFFFC6CB612F0C65D013F
+1480010F01FCC7FC010113C02D427BC038>I<DCFFF01470031F01FF14F04AB6EAE00102
+07EDF803023FEDFE0791B539E001FF0F4949C7EA3F9F010701F0EC0FFF4901C0804990C8
+7E4948814948814948167F4849163F4849161F5A4A160F485B19074890CAFC19035A5BA2
+007F1801A34994C7FC12FFAE127F7F1AF0A2123FA27F6C18011AE06C7F19036C6D17C06E
+16077E6C6DEE0F806C6DEE1F006D6C5E6D6C167E6D6C6C5D6D6D4A5A6D01F0EC07F00101
+01FEEC1FE06D903AFFF001FF80023F90B6C7FC020715FC020115F0DA001F1480030001F8
+C8FC44467AC451>67 D<BA12F8A485D8001F90C71201EF003F180F180318011800A2197E
+193EA3191EA21778A285A405F890C7FCA316011603161F92B5FCA5ED001F160316011600
+A2F101E01778A2F103C0A494C7FC1907A21A80A2190FA2191FA2193FF17F006160180718
+1F4DB5FCBBFC61A443447DC34A>69 D<B500FE067FB512806E95B6FCA26F5EA2D8003F50
+C7FC013D6DEE03DFA2013C6DEE079FA26E6CEE0F1FA26E6C161EA26E6C163CA36E6C1678
+A26E6C16F0A26E6DEC01E0A26E6DEC03C0A36E6DEC0780A26F6CEC0F00A26F6C141EA26F
+6C5CA36F6C5CA26F6C5CA26F6D485AA26F6D485AA26F6D485AA3706C48C7FCA293383FF8
+1EA2706C5AA2706C5AA3706C5AA2705BA2705BA2705BA2B6057FB6128071C7FCA2173E17
+1C61447CC36A>77 D<B64BB512FE8181A281D8003F6D91C7EA780081013D7F81133C6E7E
+6E7F6E7F6E7F6E7F82806E7F6E7F6F7E6F7F83816F7F6F7F6F7F6F7F6F7F8382707F707F
+707F707F8482707F707F717E7113807113C019E0837113F07113F87113FC7113FE19FF84
+7213F884848484A28484197F193F191FA2190F1907B61603190119001A78A24F447CC358
+>I<003FBA12E0A59026FE000FEB8003D87FE09338003FF049171F90C71607A2007E1803
+007C1801A300781800A400F819F8481978A5C81700B3B3A20107B8FCA545437CC24E>84
+D<903801FFE0011F13FE017F6D7E48B612E03A03FE007FF84848EB1FFC6D6D7E486C6D7E
+A26F7FA36F7F6C5A6C5AEA00F090C7FCA40203B5FC91B6FC1307013F13F19038FFFC0100
+0313E0000F1380381FFE00485A5B127F5B12FF5BA35DA26D5B6C6C5B4B13F0D83FFE013E
+EBFFC03A1FFF80FC7F0007EBFFF86CECE01FC66CEB8007D90FFCC9FC322F7DAD36>97
+D<EB7FC0B5FCA512037EB1ED0FF892B57E02C314E002CF14F89139DFC03FFC9139FF000F
+FE02FCEB03FF4A6D13804A15C04A6D13E05CEF7FF0A218F8173FA318FCAC18F8A2177F18
+F0A3EFFFE06E15C06E5B6E491380027C491300496C495A903AFC1FC07FFC496CB512F0D9
+F00314C049C691C7FCC8EA1FF036467DC43E>I<EC3FFC49B512C0010F14F0013F14FC90
+397FF003FE9039FFC001FF0003495A48494813805B120F485AA2485A6F1300007F6E5AED
+00784991C7FCA212FFAC6C7EA3123F6DEC03C0A26C6C1407000F16806D140F6C6DEB1F00
+6C6D133E6C01F05B3A007FFC03F86DB55A010F14C0010391C7FC9038003FF82A2F7CAD32
+>I<EE03FEED07FFA5ED001F160FB1EC3FE0903803FFFC010FEBFF8F013F14CF9039FFF8
+07FF48EBC00148903880007F4890C7123F4848141F49140F121F485AA3127F5BA212FFAC
+127FA37F123FA26C6C141FA26C6C143F0007157F6C6C91B5FC6CD9C00314FC6C9038F01F
+EF6DB5128F011FEBFE0F010713F89026007FC0EBF80036467CC43E>I<EC3FF80103B57E
+010F14E0013F8090397FF83FF89039FFC007FC48496C7E48496C7E48486D1380485A001F
+ED7FC05B003FED3FE0A2127F5B17F0161F12FFA290B7FCA401F0C9FCA5127FA27FA2123F
+17F06C7E16016C6C15E06C6C14036C6DEB07C06C6DEB0F806C01F0EB3F0090397FFE01FE
+011FB55A010714F0010114C09026001FFEC7FC2C2F7DAD33>I<EDFF80020F13E0027F13
+F049B512F849EB8FFC90390FFE0FFE90381FFC1F14F8133FEB7FF0A2ED0FFCEBFFE0ED03
+F0ED00C01600ABB612F8A5C601E0C7FCB3B0007FEBFFE0A527467DC522>I<DAFFE0137E
+010F9039FE03FF80013FEBFF8F90B812C048D9C07F133F489038001FF84848EB0FFC4848
+903907FE1F80001F9238FF0F00496D90C7FCA2003F82A8001F93C7FCA26D5B000F5D6C6C
+495A6C6C495A6C9038C07FF04890B55A1680D8078F49C8FC018013E0000F90CAFCA47F7F
+7F90B612C016FC6CEDFF8017E06C826C16FC7E000382000F82D81FF0C77ED83FC0140748
+48020113808248C9FC177FA46D15FF007F17006D5C6C6C4A5A6C6C4A5AD80FFEEC3FF83B
+07FFC001FFF0000190B612C06C6C92C7FC010F14F8D9007F90C8FC32427DAC38>I<EB7F
+C0B5FCA512037EB1ED07FE92383FFF8092B512E002C114F89139C7F03FFC9138CF801F91
+39DF000FFE14DE14FC4A6D7E5CA25CA35CB3A7B60083B512FEA537457CC43E>I<137C48
+B4FC4813804813C0A24813E0A56C13C0A26C13806C1300EA007C90C7FCAAEB7FC0EA7FFF
+A512037EB3AFB6FCA518467CC520>I<EB7FC0B5FCA512037EB3B3B3A3B61280A519457C
+C420>108 D<90277F8007FEEC0FFCB590263FFFC090387FFF8092B5D8F001B512E00281
+6E4880913D87F01FFC0FE03FF8913D8FC00FFE1F801FFC0003D99F009026FF3E007F6C01
+9E6D013C130F02BC5D02F86D496D7EA24A5D4A5DA34A5DB3A7B60081B60003B512FEA557
+2D7CAC5E>I<90397F8007FEB590383FFF8092B512E0028114F8913987F03FFC91388F80
+1F000390399F000FFE6C139E14BC02F86D7E5CA25CA35CB3A7B60083B512FEA5372D7CAC
+3E>I<EC1FFC49B512C0010714F0011F14FC90397FF80FFF9026FFC0017F48496C7F4848
+C7EA3FE000078248486E7E49140F001F82A2003F82491407007F82A400FF1780AA007F17
+00A46C6C4A5AA2001F5E6D141F000F5E6C6C4A5AA26C6C6CEBFFE06C6D485B27007FF80F
+90C7FC6DB55A010F14F8010114C09026001FFCC8FC312F7DAD38>I<90397FC00FF8B590
+B57E02C314E002CF14F89139DFC03FFC9139FF001FFE000301FCEB07FF6C496D13804A15
+C04A6D13E05C7013F0A2EF7FF8A4EF3FFCACEF7FF8A318F017FFA24C13E06E15C06E5B6E
+4913806E4913006E495A9139DFC07FFC02CFB512F002C314C002C091C7FCED1FF092C9FC
+ADB67EA536407DAC3E>I<DA3FE0131E902603FFFC133E010F01FF137E013F1480903AFF
+F80FE0FE489038E003F148EBC0014890388000FB4890C7127F49143F001F151F485A160F
+5B127FA3485AAC6C7EA46C7EA26C6C141F163F6C6C147F6C15FF6C6D5A6C9038E003EF6C
+9038F01FCF6DB5128F011FEBFE0F010313F89038007FC091C7FCAD0307B512FCA536407C
+AC3B>I<90387F807FB53881FFE0028313F0028F13F8ED8FFC91389F1FFE000313BE6C13
+BC14F8A214F0ED0FFC9138E007F8ED01E092C7FCA35CB3A5B612E0A5272D7DAC2E>I<90
+391FFC038090B51287000314FF120F381FF003383FC00049133F48C7121F127E00FE140F
+A215077EA27F01E090C7FC13FE387FFFF014FF6C14C015F06C14FC6C800003806C15806C
+7E010F14C0EB003F020313E0140000F0143FA26C141F150FA27EA26C15C06C141FA26DEB
+3F8001E0EB7F009038F803FE90B55A00FC5CD8F03F13E026E007FEC7FC232F7CAD2C>I<
+EB01E0A51303A41307A2130FA2131FA2133F137F13FF1203000F90B51280B7FCA4C601E0
+C7FCB3A3ED01E0A9150302F013C0137F150790393FF80F8090391FFC1F006DB5FC6D13FC
+01015B9038003FE023407EBE2C>I<D97FC049B4FCB50103B5FCA50003EC000F6C81B3A8
+5EA25EA25E7E6E491380017FD901F713FE9138F807E76DB512C7010F1407010313FE9026
+007FF0EBFC00372E7CAC3E>I<B5D8FE1FB539801FFFF0A500019027C0003FE0C7EA7C00
+7114786E17F86C6F6C5C6E1601017F6E6C5CA26E011F1403013F6F5C6E013F1407011F6F
+5CA26E0179140F010F048090C7FC6E01F95C6D02F0EBC01E15806D902681E07F5B18E003
+C3157C6D9139C03FF07815E76DDA801F5B18F803FF14F96E9039000FFDE018FF6E486D5B
+A36E486D5BA26E486D90C8FCA24B7F02075DA26E48147C4B143C4C2C7EAB51>119
+D<B500FE90383FFFF0A5C601F0903803E0006D6C495A013F4A5A6D6C49C7FC6E5B6D6C13
+7E6DEB807C6D6D5A6DEBC1F0EDE3E06DEBF7C06EB45A806E90C8FC5D6E7E6E7F6E7FA24A
+7F4A7F8291381F3FFCEC3E1F027C7F4A6C7E49486C7F01036D7F49487E02C08049486C7F
+49C76C7E013E6E7E017E141FB500E090B512FCA5362C7EAB3B>I<B6903803FFFCA50001
+01E09038003E006C163C80017F5D8017F8013F5D6E1301011F5D6E1303010F5D6E13076D
+5DED800F6D92C7FC15C05E6DEBE01E163E6D143CEDF07C027F1378EDF8F8023F5B15FD02
+1F5B15FF6E5BA36E5BA26E90C8FCA26E5AA26E5AA21578A215F85D14015D001F1303D83F
+805B387FC007D8FFE05B140F92C9FC5C143E495A387FC1F8EB07F06CB45A6C5B000790CA
+FCEA01FC36407EAB3B>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fw cmbx12 14.4 11
+/Fw 11 116 df<157815FC14031407141F14FF130F0007B5FCB6FCA2147F13F0EAF800C7
+FCB3B3B3A6007FB712FEA52F4E76CD43>49 D<EC3FFE0103B512E0010F14FC013F14FF90
+B712C048D9C07F7F2703FE000F13F8D807F801037FD80FE06D7F48486D7F48488001F016
+80486C6E13C07F486C6E13E07FA27013F0A56C5AA26C5AEA0FF0EA03C0C914E05EA218C0
+5E1880A24C13005F4C5A4B5B5F4B5B5F4B5B4B90C7FC4B5A5E4B5AED7FE04B5A4A5B4A48
+C8FC4A5A5D4A48EB01F04A5AEC3F804AC7FC02FEEC03E0495A495A495A495AD91F801407
+49C8FC013E150F017FB7FC90B812C05A5A5A5A5A5A5AB9FC1880A4344E79CD43>I<9138
+0FFFC091B512FC0107ECFF80011F15E090263FF8077F9026FF800113FC4848C76C7ED803
+F86E7E491680D807FC8048B416C080486D15E0A4805CA36C17C06C5B6C90C75AD801FC16
+80C9FC4C13005FA24C5A4B5B4B5B4B13C04B5BDBFFFEC7FC91B512F816E016FCEEFF80DA
+000713E0030113F89238007FFE707E7013807013C018E07013F0A218F8A27013FCA218FE
+A2EA03E0EA0FF8487E487E487EB57EA318FCA25E18F891C7FC6C17F0495C6C4816E001F0
+4A13C06C484A1380D80FF84A13006CB44A5A6CD9F0075BC690B612F06D5D011F15800103
+02FCC7FCD9001F1380374F7ACD43>I<171F4D7E4D7EA24D7EA34C7FA24C7FA34C7FA34C
+7FA24C7FA34C8083047F80167E8304FE804C7E03018116F8830303814C7E03078116E083
+030F814C7E031F81168083033F8293C77E4B82157E8403FE824B800201835D840203834B
+800207835D844AB87EA24A83A3DA3F80C88092C97E4A84A2027E8202FE844A82010185A2
+4A820103854A82010785A24A82010F855C011F717FEBFFFCB600F8020FB712E0A55B547B
+D366>65 D<B912F0F0FF8019F819FF1AC0D8000701F0C714F0060F7F060113FE727F737F
+737F85737F87A2737FA387A863A2616363A24F5B4F5B4F90C8FC4F5A06035B060F13F095
+B512C092B8C9FC19F819E019F89226F0000313FE9439007FFF80727F727F727F727F727F
+8684A28684A787A71D1C75133EA38575137E73157C7513FC731401B86C6D9038F803F807
+039038FE07F07390B512E0736C14C0080F1400CEEA7FFC5F537CD164>82
+D<913801FFF8021FEBFF8091B612F0010315FC010F9038C00FFE903A1FFE0001FFD97FFC
+491380D9FFF05B4817C048495B5C5A485BA2486F138091C7FC486F1300705A4892C8FC5B
+A312FFAD127F7FA27EA2EF03E06C7F17076C6D15C07E6E140F6CEE1F806C6DEC3F006C6D
+147ED97FFE5C6D6CEB03F8010F9038E01FF0010390B55A01001580023F49C7FC020113E0
+33387CB63C>99 D<913803FFC0023F13FC49B6FC010715C04901817F903A3FFC007FF849
+486D7E49486D7E4849130F48496D7E48178048497F18C0488191C7FC4817E0A248815B18
+F0A212FFA490B8FCA318E049CAFCA6127FA27F7EA218E06CEE01F06E14037E6C6DEC07E0
+A26C6DEC0FC06C6D141F6C6DEC3F806D6CECFF00D91FFEEB03FE903A0FFFC03FF8010390
+B55A010015C0021F49C7FC020113F034387CB63D>101 D<ED3FFC0203B5FC020F14C002
+3F14E09139FFF81FF0499038C03FF849EB807F49903800FFFC495A495AA2495AA2EE7FF8
+495AEE3FF0EE0FC093C7FCAEB712E0A526007FF8C8FCB3B3A7007FB512FEA52E547CD329
+>I<D93FF0EB1FFCB591B512C0030314F0030F8092391FE07FFC92393F001FFE0003027C
+80C602F07FDAF1E081ECF3C0DAF7807F8502FFC7FC5CA25CA45CB3ACB6D8F807B612C0A5
+42367BB54B>110 D<90397FE003FEB590380FFF80033F13E04B13F09238FE1FF89139E1
+F83FFC0003D9E3E013FEC6ECC07FECE78014EF150014EE02FEEB3FFC5CEE1FF8EE0FF04A
+90C7FCA55CB3AAB612FCA52F367CB537>114 D<903903FFF00F013FEBFE1F90B7FC1203
+48EB003FD80FF81307D81FE0130148487F4980127F90C87EA24881A27FA27F01F091C7FC
+13FCEBFFC06C13FF15F86C14FF16C06C15F06C816C816C81C681013F1580010F15C01300
+020714E0EC003F030713F015010078EC007F00F8153F161F7E160FA27E17E07E6D141F17
+C07F6DEC3F8001F8EC7F0001FEEB01FE9039FFC00FFC6DB55AD8FC1F14E0D8F807148048
+C601F8C7FC2C387CB635>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fx cmmi10 10 50
+/Fx 50 123 df<EC3FC0ECFFF8903807E07C90380F801FD93F00EB800C017E130F499038
+07C01C4848ECE018485A484801031338000FEDF0305B001F16704848156017E0007F16C0
+90C713F1178016F34816004815F716FE5EA2485D5EA4007E1407150F003E91381DF81800
+3F14796C02E11338270F8007C013303B07E03F007CF02601FFF8EB3FC026003FC0EB0F80
+2E267DA435>11 D<EB07F0D91FFC1430D97FFE147090B5146000036E13E0486E13C0D9F0
+1F1301270F8007E01380261F00011303001CD900F0130048EC7007160648EC300E0060EC
+380CED181C00E01518C8121CED0C3816301670166016E05EA2150D5EA2150F93C7FCA215
+0EA3150CA3151CA215181538A45DA45DA44A5AA35D2C377FA42B>13
+D<1403EC3FF891387FFF80D901E313C014800103133F9138001F80ED070092C7FC80A280
+A2808013018080130080147F81143F8149B47E130790380F8FF0EB3E0F496C7E13F83801
+F003D803E07F1207380FC0011380121FEA3F0014005A127EA212FE5D481301A35DA24813
+035D6C13075D127C4A5A6C91C7FC5C6C133E6C6C5A3807C0F03801FFE0D8003FC8FC223D
+7DBB25>I<133F14C0EB07F06D7E801301A26D7EA3147FA36E7EA36E7EA36E7EA36E7EA3
+6E7EA36E7EA26E7EA214014A7E5C4A7E91381E3F80143C14784A6C7E1301EB03E049486C
+7EEB0F80EB1F00496D7E137E5B48486D7E485A485A000F6E7E485A485A48C87E12FE167F
+4816800070151F293B7CB930>21 D<EB0380D907E01307010FEC0F80161F5CA2011F143F
+A24A1400A2013F5CA291C7127EA24914FEA2017E5CA201FE1301A2495CA200011403A249
+ECF018A2000314071738EEE030150F00071670031F1360153F6D017713E0486C9038E3E1
+C0903AFF03C1F380903ACFFF00FF00D9C3FC133ED81FC0C9FCA25BA2123FA290CAFCA25A
+A2127EA212FEA25AA212702D377EA432>I<013FB612E090B712F05A120717E0270F8070
+06C7FC391E00600E48140C003813E04813C048141CEAC0011200148001035BA213071400
+A25B1578011E137CA3133E133C137C157E13FC5B1201157F1203497FA3D801C0131C2C25
+7EA32F>25 D<027FB512C00103B612E0130F5B017F15C09026FF81FEC7FC3901FC007E48
+487F485A497F484880485AA248C7FCA2127EA2153F00FE92C7FC5AA25D157E5A5DA24A5A
+A24A5A007C495A5D003C495A003E013FC8FC6C137C380F81F83803FFE0C66CC9FC2B257D
+A32F>27 D<0140151E01E0153F00015E484816805B120790C9123F000E161F170F5A1707
+481700A2003014C014010070010314061260A2170E00E04948130C5A171C92C7FC5FA26C
+495C4A14F04A7E6C017F495A4A6C485A3AF801F7E00F3BFE0FF3F83F80267FFFE3B5FC02
+C191C7FC6C01815B02005BD80FFCEB7FF0D803F0EB0FC031267FA434>33
+D<EC3FE0903801FFFC010713FF011F148090397F801FC09038F80007D801E01303484890
+C7FC48C9FCA21206A5000713F038039FFF3801FF0F14FF38039FFE48C9FC120E5A5A1230
+12701260A212E0A215080060141C00701418007814386C14F0391F8007E06CB55A6C91C7
+FC000113FC38003FE022287FA527>I<EE1F8001C0EC7FE00001913801FFF848484913FC
+90C75A4891380FC07E000691381F003E000E023E131E000C023C130F001C4A1307001814
+7000385C00305C4A5AA2007049C7120612601406170E170C00E049141CA2173800605B00
+70167017E00078013813016CED03C0003E0130EB0F806C0170EB1F0001C0147ED80FF049
+5A3A07FFF01FF8000190B512E06C1580013F49C7FC010F13F8010113C0D903E0C8FCA25C
+1307A4495AA3131FA349C9FCA3131E30377DA436>39 D<121C127FEAFF80A5EA7F00121C
+0909798817>58 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A
+1206120E5A5A5A12600A19798817>I<EF0380EF0FC0173FEFFF80933803FE00EE0FF8EE
+3FE0EEFF80DB03FEC7FCED0FF8ED3FE0EDFF80DA03FEC8FCEC0FF8EC3FE0ECFF80D903FE
+C9FCEB0FF8EB3FE0EBFF80D803FECAFCEA0FF8EA3FE0EA7F8000FECBFCA2EA7F80EA3FE0
+EA0FF8EA03FEC66C7EEB3FE0EB0FF8EB03FE903800FF80EC3FE0EC0FF8EC03FE913800FF
+80ED3FE0ED0FF8ED03FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FC0170FEF03
+80323279AD41>I<126012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FC
+EB01FF9038007FC0EC1FF0EC07FCEC01FF9138007FC0ED1FF0ED07FCED01FF9238007FC0
+EE1FF0EE07FCEE01FF9338007F80EF1FC0A2EF7F80933801FF00EE07FCEE1FF0EE7FC04B
+48C7FCED07FCED1FF0ED7FC04A48C8FCEC07FCEC1FF0EC7FC04948C9FCEB07FCEB1FF0EB
+7FC04848CAFCEA07FCEA3FF0EA7FC048CBFC12FC1270323279AD41>62
+D<EC03FC91381FFF80027F7F903901F807F0903903C001F890390780007C91C7127E010E
+804980011F1580D93FC0130F17C01607A24A14E0A2011EC7FC90C8FCA5EC0FF0ECFFFC90
+3803F00E903907C0078F90381F8001D93E0013CF491300484814FF0003ED7FC05B485A12
+0F48481580A2485AA2007F160090C8FC167E16FE5A485D15015E1503485D15075E4B5AA2
+007E4A5A4BC7FC003E147E003F5C6C6C485A390FC007F03907F01FC06CB5C8FCC613FCEB
+1FE02B3E7DBB2C>64 D<1760177017F01601A21603A21607160FA24C7EA2163316731663
+16C3A2ED0183A2ED0303150683150C160115181530A21560A215C014011580DA03007FA2
+02061300140E140C5C021FB5FC5CA20260C7FC5C83495A8349C8FC1306A25BA25B13385B
+01F01680487E000716FFB56C013F13FF5EA2383C7DBB3E>I<0103B77E4916F018FC903B
+0007F80003FE4BEB00FFF07F80020FED3FC0181F4B15E0A2141FA25DA2143F19C04B143F
+1980027F157F190092C812FE4D5A4A4A5AEF0FF04AEC1FC005FFC7FC49B612FC5F02FCC7
+B4FCEF3FC00103ED0FE0717E5C717E1307844A1401A2130F17035CA2131F4D5A5C4D5A13
+3F4D5A4A4A5A4D5A017F4BC7FC4C5A91C7EA07FC49EC3FF0B812C094C8FC16F83B397DB8
+3F>I<9339FF8001C0030F13E0037F9038F80380913A01FF807E07913A07F8000F0FDA1F
+E0EB079FDA3F80903803BF0002FFC76CB4FCD901FC80495A4948157E495A495A4948153E
+017F163C49C9FC5B1201484816385B1207485A1830121F4993C7FCA2485AA3127F5BA312
+FF90CCFCA41703A25F1706A26C160E170C171C5F6C7E5F001F5E6D4A5A6C6C4A5A16076C
+6C020EC8FC6C6C143C6C6C5C6CB4495A90393FE00FC0010FB5C9FC010313FC9038007FC0
+3A3D7CBA3B>I<0103B7FC4916E018F8903B0007F80007FE4BEB00FFF03F80020FED1FC0
+180F4B15E0F007F0021F1503A24B15F81801143F19FC5DA2147FA292C8FCA25C18035CA2
+130119F84A1507A2130319F04A150FA2010717E0181F4A16C0A2010FEE3F80A24AED7F00
+187E011F16FE4D5A4A5D4D5A013F4B5A4D5A4A4A5A057FC7FC017F15FEEE03FC91C7EA0F
+F049EC7FC0B8C8FC16FC16C03E397DB845>I<0103B812F05BA290260007F8C7123F4B14
+07F003E0020F150118005DA2141FA25D19C0143FA24B1330A2027F1470190092C7126017
+E05C16014A495A160F49B6FCA25F9138FC000F01031407A24A6DC8FCA201075C18034A13
+0660010F160693C7FC4A150E180C011F161C18184A1538A2013F5E18F04A4A5AA2017F15
+074D5A91C8123F49913803FF80B9FCA295C7FC3C397DB83D>I<0103B812E05BA2902600
+07F8C7123F4B140FF003C0140F18015DA2141FA25D1980143FA25D1760027F14E095C7FC
+92C75AA24A1301A24A495A16070101141F91B6FC94C8FCA2903903FC001F824A130EA213
+07A24A130CA2010F141CA24A90C9FCA2131FA25CA2133FA25CA2137FA291CBFC497EB612
+C0A33B397DB835>I<0103B5D8F803B512F8495DA290260007F8C73807F8004B5DA2020F
+150F615DA2021F151F615DA2023F153F615DA2027F157F96C7FC92C8FCA24A5D605CA249
+B7FC60A202FCC7120101031503605CA201071507605CA2010F150F605CA2011F151F605C
+A2013F153F605CA2017F157F95C8FC91C8FC496C4A7EB690B6FCA345397DB845>72
+D<0103B500F8903807FFFC5BA290260007F8C813804BEDFC0019F0020F4B5AF003804B4A
+C7FC180E021F1538604B5CEF0380023F4AC8FC170E4B133C1770027F5C4C5ADB0007C9FC
+160E4A5B167E4A13FE4B7E01015B92380E7F80ECFC1CED383F010301E07FECFDC04A486C
+7EECFF00D907FC6D7E5C4A130783130F707E5C1601011F81A24A6D7EA2013F6F7EA24A14
+3F84137F717E91C8123F496C81B60107B512C0A26146397DB847>75
+D<0103B6FC5B5E90260007FCC8FC5D5D140FA25DA2141FA25DA2143FA25DA2147FA292C9
+FCA25CA25CA21301A25CA21303A25CA2130718404A15C0A2010F150118804A1403A2011F
+16005F4A1406170E013F151E171C4A143C177C017F5D160391C7120F49EC7FF0B8FCA25F
+32397DB839>I<902603FFF891381FFFF8496D5CA2D90007030113006FEC007C02061678
+DA0EFF157081020C6D1460A2DA1C3F15E0705CEC181F82023815016F6C5C143015070270
+6D1303030392C7FC02607FA2DAE0015C701306ECC0008201016E130EEF800C5C163F0103
+EDC01C041F131891C713E0160F49EDF03818300106140717F8010E02031370EFFC60130C
+EE01FE011C16E004005B011815FF177F1338600130153FA20170151F95C8FC01F081EA07
+FCB512E01706A245397DB843>78 D<0103B612F849EDFF8018E0903B0007F8001FF84BEB
+03FCEF00FE020F157FA24BEC3F80A2021F16C0A25DA2143FF07F805DA2027FEDFF006092
+C7485A4D5A4A4A5A4D5A4AEC1F80057FC7FC0101EC07F891B612E094C8FC9139FC000FC0
+0103EC03F0707E4A6D7E831307177E5C177F010F5D5F5CA2011F1401A25CA2133F16034A
+4A1360A2017F17E019C091C71401496C01011480B61503933900FE0700EF7E0ECAEA1FFC
+EF07F03B3B7DB83F>82 D<267FFFFC91383FFFC0B55DA2000390C83807FC006C48ED03E0
+6060000094C7FC5F17065FA25F6D5DA26D5D17E05F4C5AA24CC8FC6E1306A2013F5C161C
+16185EA25E6E5BA2011F495A150393C9FC1506A25D6E5AA2010F5B157015605DA2ECE180
+02E3CAFC14F3EB07F614FE5C5CA25C5CA26D5AA25C91CBFC3A3B7CB830>86
+D<147E903803FF8090390FC1C38090391F00EFC0017E137F49133F485A4848EB1F801207
+5B000F143F48481400A2485A5D007F147E90C7FCA215FE485C5AA214015D48150CA21403
+EDF01C16181407007C1538007E010F1330003E131F027B13706C01E113E03A0F83C0F9C0
+3A03FF007F80D800FCEB1F0026267DA42C>97 D<133FEA1FFFA3C67E137EA313FE5BA312
+015BA312035BA31207EBE0FCEBE3FF9038E707C0390FFE03E09038F801F001F013F8EBE0
+00485A15FC5BA2123F90C7FCA214015A127EA2140312FE4814F8A2140715F05AEC0FE0A2
+15C0EC1F80143F00781400007C137E5C383C01F86C485A380F07C06CB4C7FCEA01FC1E3B
+7CB924>I<EC3FC0903801FFF0903807E03C90380F800E90383F0007017E131F49137F48
+4813FF485A485A120F4913FE001F143848481300A2127F90C8FCA35A5AA45AA315031507
+007E1406150E003E143C003F14706C14E0390F8007C03907C03F003801FFF838003FC020
+267DA424>I<163FED1FFFA3ED007F167EA216FEA216FCA21501A216F8A21503A216F0A2
+1507A2027E13E0903803FF8790380FC1CF90381F00EF017EEB7FC049133F485A4848131F
+000715805B000F143F485A1600485A5D127F90C7127EA215FE5A485CA21401A248ECF80C
+A21403161CEDF0181407007C1538007E010F1330003E131F027B13706C01E113E03A0F83
+C0F9C03A03FF007F80D800FCEB1F00283B7DB92B>I<EC3FC0903801FFF0903807E07890
+381F801C90387E001E49130E485A485A1207485A49131E001F141C153C484813F8EC03E0
+007FEB3FC09038FFFE0014E090C8FC5A5AA7007E140315071506003E140E153C6C14706C
+6C13E0EC07C03903E03F003801FFF838003FC020267DA427>I<16F8ED03FEED0F879238
+1F0F80ED3E3F167F157CA215FC1700161C4A48C7FCA414035DA414075DA20107B512F0A3
+9026000FE0C7FC5DA4141F5DA4143F92C8FCA45C147EA514FE5CA413015CA4495AA45C13
+07A25C121E123F387F8F80A200FF90C9FC131E12FEEA7C3CEA7878EA1FF0EA07C0294C7C
+BA29>I<EB03F0EA01FFA3EA00075CA3130F5CA3131F5CA3133F91C9FCA35B90387E03F8
+EC0FFF91383C0F809039FEF007C0D9FDC07FEBFF80EC0003485A5BA249130712035BA215
+0F00075D5BA2151F000F5D5B153F93C7FC121F4990387F0180157EEDFE03003F02FC1300
+90C7FC5EEDF80648150E007E150C161C5E00FEEC787048EC3FE00038EC0F80293B7CB930
+>104 D<14E0EB03F8A21307A314F0EB01C090C7FCAB13F8EA03FEEA070F000E1380121C
+121812381230EA701F1260133F00E0130012C05BEA007EA213FE5B1201A25B12035BA200
+07131813E01438000F133013C01470EB806014E014C01381EB838038078700EA03FEEA00
+F815397EB71D>I<150FED3F80A2157FA31600151C92C7FCABEC0F80EC3FE0ECF0F09038
+01C0F849487E14005B130E130C131CEB1801133801305BA2EB0003A25DA21407A25DA214
+0FA25DA2141FA25DA2143FA292C7FCA25CA2147EA214FEA25CA21301001E5B123F387F83
+F0A238FF87E0495A00FE5BD87C1FC8FCEA707EEA3FF8EA0FC0214981B722>I<EB03F0EA
+01FFA3EA00075CA3130F5CA3131F5CA3133F91C8FCA35B017EEB07C0ED1FF0ED783801FE
+EBE0F89039FC01C1FCEC0383EC07070001130ED9F81C13F891383803F091387001E00003
+49C7FCEBF1C0EBF38001F7C8FCEA07FEA2EBFFE0EBE7F8380FE0FEEBC07F6E7E141F001F
+80D9800F1330A21670003F011F136001001380A216E04815C0007E1481020F1380158300
+FE903807870048EB03FE0038EB00F8263B7CB92B>I<EB0FC0EA03FF5AA2EA001F1480A2
+133FA21400A25BA2137EA213FEA25BA21201A25BA21203A25BA21207A25BA2120FA25BA2
+121FA25BA2123FA290C7FCA25AA2EA7E03A2EAFE07130612FCA2130E130C131C1318EA7C
+38EA3C70EA1FE0EA0780123B7DB919>I<D803E0017F14FE3D07F801FFE003FFC03D0E3C
+0781F00F03E03D1C3E1E00F83C01F026383F38D9FC707F00304914E04A90387DC0000070
+49EB7F8000604991C7FCA200E090C700FE1301485A017E5CA200000201140301FE5F495C
+A203031407000160495C180F03075D1203494A011F13601980030F023F13E00007F000C0
+495C1901031F023E1380000F1803494A150061033F150E001FEF1E1C4991C7EA0FF80007
+C7000EEC03E043267EA449>I<D803E0137F3A07F801FFE03A0E3C0781F03A1C3E1E00F8
+26383F387F00305B4A137C00705B00605BA200E090C712FC485A137EA20000140101FE5C
+5BA2150300015D5B15075E120349010F133016C0031F13700007ED80605B17E0EE00C000
+0F15014915801603EE0700001FEC0F0E49EB07FC0007C7EA01F02C267EA432>I<90390F
+8003F090391FE00FFC903939F03C1F903A70F8700F80903AE0FDE007C09038C0FF800300
+13E00001491303018015F05CEA038113015CA2D800031407A25CA20107140FA24A14E0A2
+010F141F17C05CEE3F80131FEE7F004A137E16FE013F5C6E485A4B5A6E485A90397F700F
+80DA383FC7FC90387E1FFCEC07E001FEC9FCA25BA21201A25BA21203A25B1207B512C0A3
+2C3583A42A>112 D<3903E001F83907F807FE390E3C1E07391C3E381F3A183F703F8000
+38EBE07F0030EBC0FF00705B00601500EC007E153CD8E07F90C7FCEAC07EA2120013FE5B
+A312015BA312035BA312075BA3120F5BA3121F5B0007C9FC21267EA425>114
+D<14FF010313C090380F80F090383E00380178131C153C4913FC0001130113E0A33903F0
+00F06D13007F3801FFE014FC14FF6C14806D13C0011F13E013039038003FF01407140300
+1E1301127FA24814E0A348EB03C012F800E0EB07800070EB0F006C133E001E13F83807FF
+E0000190C7FC1E267CA427>I<EB01C0497E1307A4130F5CA3131F5CA3133F91C7FC007F
+B51280A2B6FCD8007EC7FCA313FE5BA312015BA312035BA312075BA3120FEBC006A2140E
+001F130CEB801C141814385C146014E0380F81C038078780D803FEC7FCEA00F819357EB3
+1E>I<13F8D803FE1438D8070F147C000E6D13FC121C1218003814011230D8701F5C1260
+1503EAE03F00C001005B5BD8007E1307A201FE5C5B150F1201495CA2151F120349EC80C0
+A2153F1681EE0180A2ED7F0303FF130012014A5B3A00F8079F0E90397C0E0F1C90393FFC
+07F8903907F001F02A267EA430>I<01F8EB03C0D803FEEB07E0D8070F130F000E018013
+F0121C12180038140700301403D8701F130112601500D8E03F14E000C090C7FC5BEA007E
+16C013FE5B1501000115805B150316001203495B1506150E150C151C151815385D00015C
+6D485A6C6C485AD97E0FC7FCEB1FFEEB07F024267EA428>I<01F816F0D803FE9138E001
+F8D8070F903801F003000ED9800314FC121C12180038020713010030EDE000D8701F167C
+1260030F143CD8E03F163800C001005B5BD8007E131F183001FE5C5B033F147000011760
+4991C7FCA218E000034A14C049137E17011880170318005F03FE1306170E000101015C01
+F801BF5B3B00FC039F8070903A7E0F0FC0E0903A1FFC03FFC0902703F0007FC7FC36267E
+A43B>I<903907E001F090391FF807FC9039783E0E0F9039E01F1C1FD801C09038383F80
+3A03800FF07F0100EBE0FF5A000E4A1300000C157E021F133C001C4AC7FC1218A2C7123F
+A292C8FCA25CA2147EA214FEA24A130CA20101141C001E1518003F5BD87F81143801835C
+00FF1560010714E03AFE0E7C01C0D87C1C495A2778383E0FC7FC391FF00FFC3907C003F0
+29267EA42F>I<13F8D803FE1470D8070F14F8000EEB8001121C121800381403003015F0
+EA701F1260013F130700E0010013E012C05BD8007E130F16C013FE5B151F000115805BA2
+153F000315005BA25D157EA315FE5D1401000113033800F80790387C1FF8EB3FF9EB0FE1
+EB00035DA2000E1307D83F805B007F495AA24A5A92C7FCEB003E007C5B00705B6C485A38
+1E07C06CB4C8FCEA01FC25367EA429>I<D901E01360D90FF813E0496C13C090383FFE01
+90397FFF038090B5EA07009038F81FFF3901E003FE9038C0001C495B5DC85A4A5A4A5A4A
+C7FC140E5C5C14F0495AEB038049C8FC130E5B4913035B495B484813064848130E48C75A
+D80FFC137C391FFF81F8381E0FFFD838075B486C5B00605CD8E00190C7FC38C0007C2326
+7DA427>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fy cmbx10 10 20
+/Fy 20 122 df<EA0F80EA3FE0EA7FF0A2EAFFF8A5EA7FF0A2EA3FE0EA0F80C7FCABEA0F
+80EA3FE0EA7FF0A2EAFFF8A5EA7FF0A2EA3FE0EA0F800D2579A41B>58
+D<ED03E04B7EA24B7EA34B7EA24B7EA34B7EA292B57EA34A8015F302038015E1A2020780
+15C0020F80ED807FA2021F80ED003F4A80023E131FA2027E80027C7F02FC814A7FA20101
+824A7F49B77EA3498202C0C7FC010F824A147FA2011F8291C8123F4982013E151FA2017E
+82017C8101FE83B500F80107B61280A4413A7DB948>65 D<EB3FFE0003B512E0000F14F8
+391FF00FFE003FEB03FF6D6C7F6E7FA26F7EA26C5A6C5AEA0380C8FCA2EC3FFF010FB5FC
+137F3901FFF87F00071380380FFE00EA3FF85B485A12FF5BA415FF6D5A127F263FF00713
+F83B1FFC1FBFFFC0390FFFFE1F0003EBF80F39003FE0032A257DA42E>97
+D<13FFB5FCA412077EAF4AB47E020F13F0023F13FC9138FE03FFDAF00013804AEB7FC002
+80EB3FE091C713F0EE1FF8A217FC160FA217FEAA17FCA3EE1FF8A217F06E133F6EEB7FE0
+6E14C0903AFDF001FF80903AF8FC07FE009039F03FFFF8D9E00F13E0D9C00390C7FC2F3A
+7EB935>I<903801FFC0010F13FC017F13FFD9FF8013802603FE0013C048485AEA0FF812
+1F13F0123F6E13804848EB7F00151C92C7FC12FFA9127FA27F123FED01E06C7E15036C6C
+EB07C06C6C14806C6C131FC69038C07E006DB45A010F13F00101138023257DA42A>I<EE
+7F80ED7FFFA4150381AF903801FF81010F13F1013F13FD9038FFC07F0003EB001FD807FC
+1307000F8048487F5B123FA2485AA312FFAA127FA27F123FA26C6C5B000F5C6C6C5B6C6C
+4913C02701FF80FD13FE39007FFFF9011F13E1010313012F3A7DB935>I<903803FF8001
+1F13F0017F13FC3901FF83FE3A03FE007F804848133F484814C0001FEC1FE05B003FEC0F
+F0A2485A16F8150712FFA290B6FCA301E0C8FCA4127FA36C7E1678121F6C6C14F86D14F0
+00071403D801FFEB0FE06C9038C07FC06DB51200010F13FC010113E025257DA42C>I<EC
+1FF0903801FFFC010713FF90391FF87F8090383FE0FFD9FFC113C0A2481381A24813016E
+1380A2ED3E0092C7FCA8B6FCA4000390C8FCB3ABB512FEA4223A7DB91D>I<161FD907FE
+EBFFC090387FFFE348B6EAEFE02607FE07138F260FF801131F48486C138F003F15CF4990
+387FC7C0EEC000007F81A6003F5DA26D13FF001F5D6C6C4890C7FC3907FE07FE48B512F8
+6D13E0261E07FEC8FC90CAFCA2123E123F7F6C7E90B512F8EDFF8016E06C15F86C816C81
+5A001F81393FC0000F48C8138048157F5A163FA36C157F6C16006D5C6C6C495AD81FF0EB
+07FCD807FEEB3FF00001B612C06C6C91C7FC010713F02B377DA530>I<13FFB5FCA41207
+7EAFED7FC0913803FFF8020F13FE91381F03FFDA3C01138014784A7E4A14C05CA25CA291
+C7FCB3A3B5D8FC3F13FFA4303A7DB935>I<EA01F0EA07FC487EA2487EA56C5AA26C5AEA
+01F0C8FCA913FF127FA412077EB3A9B512F8A4153B7DBA1B>I<01FED97FE0EB0FFC00FF
+902601FFFC90383FFF80020701FF90B512E0DA1F81903983F03FF0DA3C00903887801F00
+0749DACF007F00034914DE6D48D97FFC6D7E4A5CA24A5CA291C75BB3A3B5D8FC1FB50083
+B512F0A44C257DA451>109 D<01FEEB7FC000FF903803FFF8020F13FE91381F03FFDA3C
+011380000713780003497E6D4814C05CA25CA291C7FCB3A3B5D8FC3F13FFA430257DA435
+>I<903801FFC0010F13F8017F13FFD9FF807F3A03FE003FE048486D7E48486D7E48486D
+7EA2003F81491303007F81A300FF1680A9007F1600A3003F5D6D1307001F5DA26C6C495A
+6C6C495A6C6C495A6C6C6CB45A6C6CB5C7FC011F13FC010113C029257DA430>I<9039FF
+01FF80B5000F13F0023F13FC9138FE07FFDAF00113800007496C13C06C0180EB7FE091C7
+13F0EE3FF8A2EE1FFCA3EE0FFEAA17FC161FA217F8163F17F06E137F6E14E06EEBFFC0DA
+F00313809139FC07FE0091383FFFF8020F13E0020390C7FC91C9FCACB512FCA42F357EA4
+35>I<9038FE03F000FFEB0FFEEC3FFF91387C7F809138F8FFC000075B6C6C5A5CA29138
+807F80ED3F00150C92C7FC91C8FCB3A2B512FEA422257EA427>114
+D<90383FF0383903FFFEF8000F13FF381FC00F383F0003007E1301007C130012FC15787E
+7E6D130013FCEBFFE06C13FCECFF806C14C06C14F06C14F81203C614FC131F9038007FFE
+140700F0130114007E157E7E157C6C14FC6C14F8EB80019038F007F090B512C000F81400
+38E01FF81F257DA426>I<130FA55BA45BA25B5BA25A1207001FEBFFE0B6FCA3000390C7
+FCB21578A815F86CEB80F014816CEBC3E090383FFFC06D1380903803FE001D357EB425>
+I<01FFEC3FC0B5EB3FFFA4000714016C80B3A35DA25DA26C5C6E4813E06CD9C03E13FF90
+387FFFFC011F13F00103138030257DA435>I<B539F001FFF8A4000390C7EA3F00161E6E
+133E6C153C6E137C6C15786E13F8017F5CECF001013F5C14F8011F495AA2ECFC07010F5C
+ECFE0F010791C7FC6E5A6D131E15BE6D13BC15FC6D5BA36E5AA26E5AA26E5AA26E5AA292
+C8FCA25C141E003F133E387F803C38FFC07C147814F8EBC1F0EBC3E06C485A387D1F80D8
+3FFFC9FCEA1FFCEA07F02D357EA432>121 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fz cmr10 10 88
+/Fz 88 128 df<1506150FA24B7EA24B7EA24B7EA2EDDFF0A29138018FF8A291380307FC
+A291380603FEA291380E01FF140CDA1C007F141802386D7E143002706D7E146002E06D7E
+5C01016E7E5C01036E7E91C7FC496E7E1306010E6E7E130C011C6E7F131801386F7E1330
+01706F7E136001E06F7E5B170F484882170748C97F17030006831701488383481880001F
+B9FC4818C0A24818E0A2BA12F0A23C3C7CBB45>1 D<B912FEA3000190C7000113006C5E
+B3B3AD486D497EB648B512FEA337397DB83E>5 D<B812FEA3D87FE0C7121F16016C6CEC
+007F6C6C151FA26C6C816C6C81A26C6C816C7F7E6E15806D6C14016D7EA26D7E6D6C91C7
+FCA26D7E6D7EA26D7F6D7FA26E7E143FA26E5A6E5A6EC9FC140E5C5C14300270EC01805C
+495A495A49C81203010E16005B5B495D5B48485D48485D90C95A485E000E4B5A48ED1FFE
+003FB7FC5AB8FCA231397BB83C>I<011FB512FEA39026001FFEC8FCEC07F8A8EC3FFE01
+03B512E0D91FF713FC90397F07F87F01FCEC1F80D803F8EC0FE0D807F06E7ED80FE06E7E
+001F82D83FC06E7EA2007F8201808000FF1780A7007F170001C05C003F5EA2D81FE04A5A
+000F5ED807F04A5AD803F84A5AD800FCEC1F80017F027FC7FC90391FF7FFFC0103B512E0
+9026003FFEC8FCEC07F8A8EC1FFE011FB512FEA331397BB83C>8
+D<EC0FFE91387FFFC0903903FC07F890390FE000FED93F80EB3F8049C76C7E01FE6E7E48
+486E7E00038248486E7E48486E7EA248486E7E003F1780A34848ED7FC0AA003F17806D15
+FFA2001F1700A36C6C4A5AA200075E6D140300035E00015EA26C6C4A5AA2017C5DA26D4A
+5A011E92C7FC00C017606D141E006017C06D141CA326700380EB38010038EE0380D83FFF
+EC3FFFA46C1700A2333B7CBA3C>10 D<DA0FF813FC91397FFF07FF903B01F807DF83C090
+3A07E001FF0F903B1F8007FE1FE090393F000FFC137E16F85B9338F007804848010790C7
+FC1503ACB812F8A32801F80003F0C7FCB3AB486C497E267FFFE0B512F0A3333B7FBA30>
+I<EC0FF8EC7FFE903901F80780903907E001C090391F8000E090383F0007017E497EA25B
+A2485A6F5AED018092C8FCA9ED03F0B7FCA33901F8000F1503B3AA486C497E267FFFE0B5
+12C0A32A3B7FBA2E>I<DA0FF0EB1FF0DA7FFEEBFFFC903B01F80F83F00F903C07E001CF
+C00380903C1F8000FF0001C090273F0007FE130F017E4948497EA2495CA248485C03076E
+5A03030203C7FC95C8FCA9F007E0BAFCA33C01F80003F0001F1807B3AA486C496C497E26
+7FFFE0B500C1B51280A3413B7FBA45>14 D<133C137EA213FE1201EA03FC13F0EA07E0EA
+0FC0EA1F80EA1E005A5A5A12C00F0F6FB92A>19 D<001C131C007F137F39FF80FF80A26D
+13C0A3007F137F001C131C00001300A40001130101801380A20003130301001300485B00
+061306000E130E485B485B485B006013601A197DB92A>34 D<141FEC7FC0903801F0E090
+3803C0600107137090380F803090381F00381518A25BA2133E133F15381530A215705D5D
+140190381F838092CAFC1487148E02DC49B51280EB0FF85C4A9039003FF8000107ED0FC0
+6E5D71C7FC6E140E010F150CD91DFC141C01391518D970FE143801E015302601C07F1470
+D803805D00076D6C5BD80F00EBC00148011F5C4890380FE003003E6E48C8FC007E903807
+F8060203130E00FE6E5A6E6C5A1400ED7F706C4B13036F5A6F7E6C6C6D6C5B7013066C6C
+496C130E6DD979FE5B281FF001F07F133C3C07F80FE03FC0F86CB539800FFFF0C69026FE
+000313C0D91FF0D9007FC7FC393E7DBB41>38 D<121C127FEAFF80A213C0A3127F121C12
+00A412011380A2120313005A1206120E5A5A5A12600A1979B917>I<146014E0EB01C0EB
+0380EB0700130E131E5B5BA25B485AA2485AA212075B120F90C7FCA25A121EA2123EA35A
+A65AB2127CA67EA3121EA2121F7EA27F12077F1203A26C7EA26C7E1378A27F7F130E7FEB
+0380EB01C0EB00E01460135278BD20>I<12C07E12707E7E7E120F6C7E6C7EA26C7E6C7E
+A21378A2137C133C133E131EA2131F7FA21480A3EB07C0A6EB03E0B2EB07C0A6EB0F80A3
+1400A25B131EA2133E133C137C1378A25BA2485A485AA2485A48C7FC120E5A5A5A5A5A13
+527CBD20>I<15301578B3A6007FB812F8B912FCA26C17F8C80078C8FCB3A6153036367B
+AF41>43 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A120612
+0E5A5A5A12600A19798817>I<B512FCA516057F941C>I<121C127FEAFF80A5EA7F00121C
+0909798817>I<150C151E153EA2153C157CA2157815F8A215F01401A215E01403A215C0
+1407A21580140FA215005CA2141E143EA2143C147CA2147814F8A25C1301A25C1303A249
+5AA25C130FA291C7FC5BA2131E133EA2133C137CA2137813F8A25B1201A25B1203A25B12
+07A25B120FA290C8FC5AA2121E123EA2123C127CA2127812F8A25A12601F537BBD2A>I<
+EB03F8EB1FFF90387E0FC09038F803E03901E000F0484813780007147C48487FA248C77E
+A2481580A3007EEC0FC0A600FE15E0B3007E15C0A4007F141F6C1580A36C15006D5B000F
+143EA26C6C5B6C6C5B6C6C485A6C6C485A90387E0FC0D91FFFC7FCEB03F8233A7DB72A>
+I<EB01C013031307131F13FFB5FCA2131F1200B3B3A8497E007FB512F0A31C3879B72A>
+I<EB0FF0EB7FFE48B57E3903E03FE0390F000FF0000E6D7E486D7E486D7E123000706D7E
+126012FCB4EC7F807FA56CC7FC121CC8FCEDFF00A34A5A5D14035D4A5A5D140F4A5A4A5A
+92C7FC147C5C495A495A495A495A91C8FC011EEB01805B5B49130348481400485A485A00
+0EC75A000FB6FC5A5A485CB6FCA321387CB72A>I<EB07F8EB3FFF4913C03901F80FF039
+03C007F848486C7E380E0001000F80381FE0006D7FA56C5A6C5AC85A1401A25D4A5AA24A
+5A5DEC0F80027EC7FCEB1FFCECFF809038000FE06E7EEC01FC816E7EED7F80A216C0A215
+3F16E0A2121EEA7F80487EA416C049137F007F1580007EC7FC0070ECFF006C495A121E39
+0F8003F83907F00FF00001B512C06C6C90C7FCEB0FF8233A7DB72A>I<1538A2157815F8
+A2140114031407A2140F141F141B14331473146314C313011483EB030313071306130C13
+1C131813301370136013C01201EA038013005A120E120C5A123812305A12E0B712F8A3C7
+3803F800AB4A7E0103B512F8A325397EB82A>I<0006140CD80780133C9038F003F890B5
+FC5D5D158092C7FC14FC38067FE090C9FCABEB07F8EB3FFE9038780F803907E007E09038
+8003F0496C7E12066E7EC87EA28181A21680A4123E127F487EA490C71300485C12E00060
+5C12700030495A00385C6C1303001E495A6C6C485A3907E03F800001B5C7FC38007FFCEB
+1FE0213A7CB72A>I<EC3FC0903801FFF0010713FC90380FE03E90383F800790387E001F
+49EB3F804848137F485AA2485A000FEC3F0049131E001F91C7FCA2485AA3127F90C9FCEB
+01FC903807FF8039FF1E07E090383801F0496C7E01607F01E0137E497FA249148016C015
+1FA290C713E0A57EA56C7E16C0A2121FED3F807F000F15006C6C5B15FE6C6C5B6C6C485A
+3900FE07F090383FFFC06D90C7FCEB03FC233A7DB72A>I<12301238123E003FB612E0A3
+16C05A168016000070C712060060140E5D151800E01438485C5D5DC712014A5A92C7FC5C
+140E140C141C5CA25CA214F0495AA21303A25C1307A2130FA3495AA3133FA5137FA96DC8
+FC131E233B7BB82A>I<EB03F8EB1FFF017F13C09038FC07F03901E001F848486C7E4848
+137C90C77E48141E000E141F001E80A3121FA27F5D01E0131E6C6C133E01FC133C6D5B6C
+6C6C5AECC1E06CEBF3C06C01FFC7FC6C5BEB3FFF6D13C081017F13F801F07F3903E07FFE
+3907801FFF48486C1380481303003E6D13C0003CEB007F007C143F0078EC0FE000F81407
+5A1503A21501A36C15C012781503007C15806CEC07006C5C6C6C131ED807E0137C3903F8
+03F0C6B55A013F1380D907FCC7FC233A7DB72A>I<EB03F8EB1FFF017F13C09038FC07E0
+3903F803F048486C7E48486C7E49137E121F48487FA2007F158090C7FCA248EC1FC0A616
+E0A56C143FA27F123F001F147FA26C6C13FF3907E001DF0003149F3801F0033900FC0F1F
+D93FFC13C0EB07F090C7FC153F1680A316005D000F147E487E486C5BA24A5A4A5A49485A
+6C48485A001C495A260F807FC7FC3807FFFC000113F038003FC0233A7DB72A>I<121C12
+7FEAFF80A5EA7F00121CC7FCB2121C127FEAFF80A5EA7F00121C092479A317>I<121C12
+7FEAFF80A5EA7F00121CC7FCB2121C127F5A1380A4127F121D1201A412031300A25A1206
+A2120E5A121812385A1260093479A317>I<007FB812F8B912FCA26C17F8CCFCAE007FB8
+12F8B912FCA26C17F836167B9F41>61 D<1538A3157CA315FEA34A7EA34A6C7EA202077F
+EC063FA2020E7FEC0C1FA2021C7FEC180FA202387FEC3007A202707FEC6003A202C07F15
+01A2D901807F81A249C77F167FA20106810107B6FCA24981010CC7121FA2496E7EA3496E
+7EA3496E7EA213E0707E1201486C81D80FFC02071380B56C90B512FEA3373C7DBB3E>65
+D<B712E016FC16FF0001903980007FC06C90C7EA1FE0707E707E707EA2707EA283A75F16
+035F4C5A4C5A4C5A4C5AEEFF8091B500FCC7FCA291C7EA7F80EE1FE0EE07F0707E707E83
+707EA21880177F18C0A7188017FFA24C13005F16034C5AEE1FF8486DEB7FF0B812C094C7
+FC16F832397DB83B>I<913A01FF800180020FEBE003027F13F8903A01FF807E07903A03
+FC000F0FD90FF0EB039F4948EB01DFD93F80EB00FF49C8127F01FE153F12014848151F48
+48150FA248481507A2485A1703123F5B007F1601A35B00FF93C7FCAD127F6DED0180A312
+3F7F001F160318006C7E5F6C7E17066C6C150E6C6C5D00001618017F15386D6C5CD91FE0
+5C6D6CEB03C0D903FCEB0F80902701FF803FC7FC9039007FFFFC020F13F002011380313D
+7BBA3C>I<B712C016F816FE000190398001FF806C90C7EA3FE0EE0FF0EE03F8707E707E
+177FA2EF3F8018C0171F18E0170F18F0A3EF07F8A418FCAC18F8A4EF0FF0A218E0A2171F
+18C0EF3F80A2EF7F0017FE4C5A4C5AEE0FF0EE3FE0486DEBFF80B8C7FC16F816C036397D
+B83F>I<B812FCA30001903880000F6C90C71201EE007E173E171E170EA31706A3170783
+16C0A394C7FCA31501A21503150F91B5FCA3EC000F15031501A21500A21860A318E093C7
+12C0A41701A3EF0380A21707A2170F173F177F486D903807FF00B9FCA333397DB839>I<
+B812F8A30001903880001F6C90C71201EE00FC177C173C171CA2170CA4170E1706A2ED01
+80A21700A41503A21507151F91B5FCA3EC001F15071503A21501A692C8FCAD4813C0B612
+C0A32F397DB836>I<DBFF8013C0020FEBF001023F13FC9139FF803F03903A03FC000787
+D90FF0EB03CF4948EB00EF4948147F4948143F49C8121F485A4848150F48481507A24848
+1503A2485A1701123F5B007F1600A448481600AB93B6FCA26C7E9338007FE0EF3FC0A212
+3F7F121FA26C7EA26C7EA26C7E6C7E6C6C157F6D7E6D6C14FF6D6C14EFD90FF8EB03C7D9
+03FEEB0783903A00FFC03F0191393FFFFC00020F01F0130002001380383D7CBA41>I<B6
+48B512FEA30001902680000313006C90C76C5AB3A491B6FCA391C71201B3A6486D497EB6
+48B512FEA337397DB83E>I<B612C0A3C6EBC0006D5AB3B3AD497EB612C0A31A397EB81E>
+I<013FB512E0A39039001FFC00EC07F8B3B3A3123FEA7F80EAFFC0A44A5A1380D87F005B
+0070131F6C5C6C495A6C49C7FC380781FC3801FFF038007F80233B7DB82B>I<B649B5FC
+A3000101809038007FF06C90C8EA3F80053EC7FC173C17385F5F4C5A4C5A4CC8FC160E5E
+5E5E5E4B5AED0780030EC9FC5D153E157E15FF5C4A7F4A6C7E140E4A6C7E4A6C7E14704A
+6C7E4A6C7E14804A6C7E6F7EA26F7F707EA2707E707EA2707EA2707E707EA2707E707F84
+84486D497FB6011FEBFF80A339397DB841>I<B612E0A3000101C0C8FC6C90C9FCB3AD17
+18A517381730A31770A317F0A216011603160FEE1FE0486D13FFB8FCA32D397DB834>I<
+B5933807FFF86E5DA20001F0FC002600DFC0ED1BF8A2D9CFE01533A3D9C7F01563A3D9C3
+F815C3A2D9C1FCEC0183A3D9C0FEEC0303A2027F1406A36E6C130CA36E6C1318A26E6C13
+30A36E6C1360A26E6C13C0A3913901FC0180A3913900FE0300A2ED7F06A3ED3F8CA2ED1F
+D8A3ED0FF0A3486C6D5A487ED80FFC6D48497EB500C00203B512F8A2ED018045397DB84C
+>I<B5913807FFFE8080C69238007FE06EEC1F80D9DFF0EC0F001706EBCFF8EBC7FCA2EB
+C3FEEBC1FFA201C07F6E7EA26E7E6E7E81140F6E7E8114036E7E168080ED7FC016E0153F
+ED1FF0ED0FF8A2ED07FCED03FEA2ED01FF6F1386A2EE7FC6EE3FE6A2EE1FF6EE0FFEA216
+071603A216011600A2177E486C153E487ED80FFC151EB500C0140EA2170637397DB83E>
+I<EC03FF021F13E09138FE01FC903901F8007ED907E0EB1F8049486D7ED93F80EB07F049
+C76C7E01FE6E7E48486E7E49157E0003167F4848ED3F80A24848ED1FC0A2001F17E04915
+0F003F17F0A3007F17F8491507A300FF17FCAC007F17F86D150FA3003F17F0A26C6CED1F
+E0A36C6CED3FC0000717806D157F000317006C6C15FEA26C6C4A5A017F4A5A6D6C495A6D
+6C495AD907E0EB1F80D903F8017FC7FC903900FE01FC91381FFFE0020390C8FC363D7BBA
+41>I<B712C016F816FE000190398001FF806C90C7EA3FC0EE0FE0EE07F0EE03F817FC17
+FE1601A217FFA717FEA2EE03FCA2EE07F817F0EE0FE0EE3FC0923801FF0091B512FC16F0
+91C9FCB3A5487FB6FCA330397DB839>I<B612FEEDFFE016F8000190388007FE6C90C76C
+7EEE3FC0707E707E707EA2707EA283A65FA24C5AA24C5A4C5AEE3F8004FFC8FCED07FC91
+B512E05E9138000FF0ED03F8ED00FE82707E707EA2161F83A583A6F00180A217F8160F18
+03486D01071400B66D6C5A04011306933800FE0ECAEA3FFCEF07F0393B7DB83D>82
+D<D90FF813C090383FFE0190B512813903F807E33907E000F74848137F4848133F48C712
+1F003E140F007E1407A2007C140312FC1501A36C1400A37E6D14006C7E7F13F86CB47E6C
+13F8ECFF806C14E06C14F86C14FEC680013F1480010714C0EB007F020713E0EC007FED3F
+F0151F150FED07F8A200C01403A21501A37EA216F07E15036C15E06C14076C15C06C140F
+6DEB1F80D8FBF0EB3F00D8F0FE13FE39E03FFFF8010F13E0D8C00190C7FC253D7CBA2E>
+I<003FB812E0A3D9C003EB001F273E0001FE130348EE01F00078160000701770A3006017
+30A400E01738481718A4C71600B3B0913807FF80011FB612E0A335397DB83C>I<B69038
+07FFFEA3000101809038007FE06C90C8EA1F80EF0F001706B3B2170E6D150C80171C133F
+17186D6C14385F6D6C14F06D6C5C6D6C495A6D6CEB07806D6C49C7FC91387F807E91381F
+FFF8020713E09138007F80373B7DB83E>I<B500FC91387FFF80A30003018091380FFC00
+6C90C8EA07E0715A6C705A6E1403017F93C7FCA280013F1506A26E140E011F150C80010F
+5DA28001075DA26E147001031560A26D6C5CA2806D4A5AA2ED8003027F91C8FCA291383F
+C006A215E0021F5BA2EDF01C020F1318A26E6C5AA215FC02035BA2EDFEE002015BA26E6C
+5AA36FC9FCA3153EA2151CA3393B7EB83E>I<B5D8FC07B5D8F001B5FCA3000790278000
+1FFEC7EA1FF86C48C7D80FF8EC07E000010307ED03C01B807F6C6F6C1500A26E5F017F6E
+6C1406A280013F4A6C5CA280011F4A6D5BEE067FA26D6C010E6D5BEE0C3FA26D6C011C6D
+5BEE181FA26D6C6F5BEE300FA26D6C6F485AEE6007A26D6C4CC7FC9338C003FCA203805D
+913B7F818001FE06A203C1150EDA3FC3C7EAFF0CA203E3151CDA1FE6EC7F98A215F6DA0F
+FCEC3FF0A302075E4B141FA202035E4B140FA202015E4B1407A2020093C8FC4B80503B7E
+B855>I<B500FE91383FFFE0A3000301E0913807FE00C649EC03F0017F6F5A606D6C5D6D
+6C140395C7FC6D6C1406A26D6C5C6D6C141C17186D6C143817306D6D5B6E6C13E05F9138
+3FE0015F91381FF003DA0FF890C8FC1606913807FC0E160C913803FE1C913801FF185E6E
+13B016E0157F6F5AB3A24B7E023FB512C0A33B397FB83E>89 D<EAFFF8A4EAF000B3B3B3
+B3A3EAFFF8A40D5378BD17>91 D<EAFFF8A4EA0078B3B3B3B3A3EAFFF8A40D537FBD17>
+93 D<13101338137C13FE487E3803C780380783C0380F01E0381E00F04813780070131C
+48130E00401304170D77B92A>I<EA01801203EA0700120E5A12181238123012701260A2
+12E05AA412CEEAFF8013C0A3127FA2EA3F80EA0E000A197AB917>96
+D<EB1FE0EBFFFC3803E03F3907000F80390F8007E0486C6C7E13E06E7EA26E7E6C5A6C5A
+C8FCA4147FEB07FFEB3FE0EBFE00EA03F8EA0FF0EA1FC0123F485A90C7FC160C12FEA314
+01A26C13036CEB077C903980063E18383FC01E3A0FE0781FF03A03FFF00FE03A007F8007
+C026277DA52A>I<EA03F012FFA3120F1203B0EC1FE0EC7FF89038F1E03E9039F3801F80
+9039F7000FC001FEEB07E049EB03F049EB01F85BED00FCA216FEA2167E167FAA167E16FE
+A216FC15016D14F8ED03F07F01EEEB07E001C6EB0FC09039C7801F00903881E07E903800
+FFF8C7EA1FC0283B7EB92E>I<EB03FC90381FFF8090387E03E03901F80070484813F839
+07E001FC380FC003A2EA1F80123F90380001F848EB00F01500A2127E12FEAA127E127FA2
+6C14067F001F140E6D130C000F141C6C6C13386C6C13706C6C13E039007C07C090381FFF
+00EB07F81F277DA525>I<ED0FC0EC03FFA3EC003F150FB0EB03F8EB1FFF90387E078F90
+38F801EF3903F0007F4848133F4848131FA24848130F123F90C7FC5AA2127E12FEAA127E
+127FA27EA26C6C131FA26C6C133F6C6C137F6C6CEBEFF03A01F801CFFF39007C078F9038
+1FFE0FD907F813C0283B7DB92E>I<EB07F8EB1FFF90387C0FC03901F803E03903F001F0
+D807E013F8380FC0004848137CA248C7127E153E5A153F127E12FEA3B7FCA248C8FCA512
+7EA2127FA26C14037F001F14076C6C13060007140E6D131CD801F013386C6C137090387E
+03E090381FFF80903803FC0020277EA525>I<147E903803FF8090380FC1E0EB1F879038
+3F0FF0137EA213FCA23901F803C091C7FCADB512FCA3D801F8C7FCB3AB487E387FFFF8A3
+1C3B7FBA19>I<ED03F090390FF00FF890393FFC3C3C9039F81F707C3901F00FE03903E0
+07C03A07C003E010000FECF000A248486C7EA86C6C485AA200075C6C6C485A6D485A6D48
+C7FC38073FFC38060FF0000EC9FCA4120FA213C06CB512C015F86C14FE6CECFF804815C0
+3A0F80007FE048C7EA0FF0003E140348140116F8481400A56C1401007C15F06CEC03E000
+3F1407D80F80EB0F80D807E0EB3F003901FC01FC39007FFFF0010790C7FC26387EA52A>
+I<EA03F012FFA3120F1203B0EC0FF0EC3FFCECF03F9039F1C01F809039F3800FC0EBF700
+13FE496D7EA25BA35BB3A3486C497EB500C1B51280A3293A7EB92E>I<EA0380EA0FE048
+7EA56C5AEA0380C8FCAAEA03F012FFA312071203B3AA487EB512C0A312387EB717>I<EB
+01C0EB07F0EB0FF8A5EB07F0EB01C090C7FCAAEB01F813FFA313071301B3B3A2123C127E
+00FF13F01303A214E038FE07C0127C383C0F00EA0FFEEA03F8154984B719>I<EA03F012
+FFA3120F1203B1913801FFFCA39138007FC01600157C15705D4A5A4A5A4AC7FC141E1438
+147814FC13F1EBF3FEEBF73F01FE7FEBF81F496C7E8114076E7E6E7E811400157E157F81
+1680ED1FC0486CEB3FF0B500C0B5FCA3283A7EB92C>I<EA03F012FFA3120F1203B3B3AD
+487EB512C0A3123A7EB917>I<2703F00FF0EB1FE000FFD93FFCEB7FF8913AF03F01E07E
+903BF1C01F83803F3D0FF3800FC7001F802603F70013CE01FE14DC49D907F8EB0FC0A249
+5CA3495CB3A3486C496CEB1FE0B500C1B50083B5FCA340257EA445>I<3903F00FF000FF
+EB3FFCECF03F9039F1C01F803A0FF3800FC03803F70013FE496D7EA25BA35BB3A3486C49
+7EB500C1B51280A329257EA42E>I<EB03FE90380FFF8090383E03E09038F800F8484813
+7C48487F48487F4848EB0F80001F15C090C712074815E0A2007EEC03F0A400FE15F8A900
+7E15F0A2007F14076C15E0A26C6CEB0FC0000F15806D131F6C6CEB3F006C6C137EC66C13
+F890387E03F090381FFFC0D903FEC7FC25277EA52A>I<3903F01FE000FFEB7FF89038F1
+E07E9039F3801F803A0FF7000FC0D803FEEB07E049EB03F04914F849130116FC150016FE
+A3167FAA16FEA3ED01FCA26DEB03F816F06D13076DEB0FE001F614C09039F7803F009038
+F1E07E9038F0FFF8EC1FC091C8FCAB487EB512C0A328357EA42E>I<D903F813C090381F
+FE0190387E07819038FC01C33903F000E3000714774848133749133F001F141F485A150F
+48C7FCA312FEAA127FA37E6D131F121F6D133F120F6C6C137F6C6C13EF3901F801CF3900
+7E078F90381FFE0FEB07F890C7FCABED1FE00203B5FCA328357DA42C>I<3807E01F00FF
+EB7FC09038E1E3E09038E387F0380FE707EA03E613EE9038EC03E09038FC0080491300A4
+5BB3A2487EB512F0A31C257EA421>I<EBFF03000313E7380F80FF381E003F487F487F00
+707F12F0A2807EA27EB490C7FCEA7FE013FF6C13E06C13F86C7F00037FC67F01071380EB
+007F141F00C0EB0FC01407A26C1303A37E15806C13077EEC0F00B4131E38F3C07C38E1FF
+F038C03F801A277DA521>I<1318A51338A31378A313F8120112031207001FB5FCB6FCA2
+D801F8C7FCB215C0A93800FC011580EB7C03017E13006D5AEB0FFEEB01F81A347FB220>
+I<D803F0EB07E000FFEB01FFA3000FEB001F00031407B3A4150FA3151F12016D133F0000
+EC77F86D9038E7FF8090383F03C790381FFF87903A03FC07E00029267EA42E>I<B53880
+3FFEA33A0FF8000FF06C48EB07E00003EC03C06D148000011500A26C6C1306A26D130E01
+7E130CA26D5BA2EC8038011F1330A26D6C5AA214E001075BA2903803F180A3D901FBC7FC
+A214FF6D5AA2147CA31438A227257EA32C>I<B53A1FFFE03FFEA3260FF8009038000FF8
+6C48017EEB03E018C00003023EEB0180A26C6C013FEB0300A36C6CEC8006156FA2017E90
+38EFC00C15C7A2D93F016D5A15830281EBF038D91F831430150102C3EBF87090260FC600
+1360A2D907E66D5A02EC137CA2D903FCEB7F804A133FA2010192C7FC4A7FA20100141E4A
+130E0260130C37257EA33C>I<B538807FFFA33A03FE003FF00001EC1F80000092C7FC01
+7E131C6D13186D6C5AECC070010F5B6D6C5AECF180EB03FB6DB4C8FC6D5AA2147F804A7E
+8114CF903801C7E090380383F090380703F8EB0601496C7E011C137E49137F01787F496D
+7E486C80000FEC3FF0D8FFFE90B51280A329247FA32C>I<B538803FFEA33A0FF8000FF0
+6C48EB07C00003EC03806C7E16007F00001406A2017E5BA2137F6D5BA26D6C5AA2ECC070
+010F1360A26D6C5AA214F101035BA2D901FBC7FCA214FF6D5AA2147CA31438A21430A214
+701460A25CA2EA7C0100FE5B130391C8FC1306EAFC0EEA701C6C5AEA1FF0EA0FC027357E
+A32C>I<003FB512FCA2EB8003D83E0013F8003CEB07F00038EB0FE012300070EB1FC0EC
+3F800060137F150014FE495AA2C6485A495AA2495A495A495AA290387F000613FEA2485A
+485A0007140E5B4848130C4848131CA24848133C48C7127C48EB03FC90B5FCA21F247EA3
+25>I<B81280A2290280962A>I<D801E01340D807F813E0390FFE01C0391FFF8780393C3F
+FF0038700FFE38E003FC384000F01B0879B62A>126 D<001C131C007F137F39FF80FF80
+A5397F007F00001C131C190978B72A>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FA cmmi12 14.4 1
+/FA 1 73 df<020FB600E090B612FEA4DA00070180C8387FF8006F90C96C5A4C5F030717
+7F645EA2030F17FF645EA2031F5E99C7FC5EA2033F5E635EA2037F1607635EA203FF160F
+635EA24A171F6393C9FCA24A173F6393B8FCA25C6303FCC9127FA2020F17FF635DA2021F
+5E98C8FC5DA2023F5E625DA2027F1607625DA202FF160F625DA249171F6292C9FCA24917
+3F625CA20107177F625CA2010F17FFA2D93FFE03037F007FB60107B612F0B75BA24B5F5F
+527AD161>72 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FB cmr12 14.4 30
+/FB 30 122 df<923803FFF0033F13FF4AB612E0020F9038003FFCDA3FF0EB03FFDAFFC0
+010013C0010390C8EA3FF0D907FCED0FF849486F7ED93FF06FB4FC49486F7F49486F7F48
+49707EA24890CA6C7E4848717EA24848717E001F85A2491707003F85A34848711380AB6C
+6C4D1300A4001F616D170FA2000F61A26C6C4D5AA20003616D173F6C616E167F6C61017F
+606E16FF013F95C7FC6D6C4B5AA2010F5F6D6C4B5AA26D6C4B5AA201015F6D6C4B5AA200
+E0017C93388001C06EED1F000070F10380021E151E021F153E6E153CA26C6E027CEB0700
+02071578A2003C010303705B003E616CB56C91B512FEA56C61A34A547BD355>10
+D<ED03FF033F13E04AB512F8913907FE01FC91391FE0003E4A48130F02FFC76C7E494814
+3F49484A7E494814FF130F5C495AA2715A49486EC7FC170C94C8FCAFEF3FC0B9FCA43A00
+3FC00001EE007F173FB3B3A4D9FFF0ECFFF0007F9026FFE07FEBFFE0A43B547ED341>12
+D<EB01F0EB03F81307130FA2131FEB3FF0EB7FE014C0EBFF80481300EA03FC5B485A485A
+485A5B48C7FC127C12785A1260151668D23B>19 D<120FEA3FC0EA7FE0EAFFF013F8A313
+FCA2127FEA3FDCEA0F1C1200A5133C1338A31378137013F0A2EA01E0A2EA03C0EA0780A2
+EA0F00121E5A5A12300E2376D221>39 D<15E01401EC03C0EC0780EC0F00141E5C147C5C
+495A13035C495A130F5C131F91C7FC133E137EA25BA2485AA25B1203A2485AA3120F5BA2
+121FA25BA2123FA290C8FCA35AA5127EA312FEB3A3127EA3127FA57EA37FA2121FA27FA2
+120FA27F1207A36C7EA212017FA26C7EA2137EA2133E7F80130F8013076D7E8013016D7E
+147C143C8080EC0780EC03C0EC01E014001B7974D92E>I<12E07E12787E7E7E6C7E7F6C
+7E6C7E7F1200137C137E133E133F7F6D7E80A26D7EA26D7EA2130180A26D7EA380147EA2
+147FA280A21580A2141FA315C0A5140FA315E0B3A315C0A3141FA51580A3143FA21500A2
+5CA2147EA214FE5CA3495AA25C1303A2495AA2495AA25C49C7FC5B133E137E137C5B1201
+5B485A485A5B48C8FC121E5A5A5A5A1B797AD92E>I<B612FEA71F077F9C27>45
+D<120FEA3FC0EA7FE0EAFFF0A6EA7FE0EA3FC0EA0F00C7FCB3A9120FEA3FC0EA7FE0EAFF
+F0A6EA7FE0EA3FC0EA0F000C3376B221>58 D<120FEA3FC0EA7FE0EAFFF0A6EA7FE0EA3F
+C0EA0F00C7FCB3A9120FEA3FC0127FEAFFE0A213F0A4127F123FEA0F701200A513F0A213
+E0A3120113C01203A213801207EA0F00A2121E5AA25A12300C4A76B221>I<EE03804C7E
+A34C7EA34C7EA34C7EA34C7EA24C7E16E7A203017F16C3A20303801681A2DB07017F82A2
+030E80177FA24B80173FA24B6D7EA20378800370130FA203F0804B1307A20201814B7FA2
+4A488183A24AC78083A2020E82187FA24A6F7E021FB7FC4A82A30278C8EA1FFC0270150F
+A202F0824A1507A249488284A249488384A249CA7FA24984010E177FA2011E84193F133E
+017F8448486C4C7E000F01E04B487EB500FE037FEBFFFEA44F557CD458>65
+D<BB1280A426007FFCC8123F6D48030313C0011F1600193F191F190F1907A21903A2F101
+E0A31900A6050E1470A41A00A3171EA3173E177E17FE160791B6FCA49138F80007160017
+7E173E171EA3170EA31A0EA31A1C94C8FCA41A3C1A38A31A78A31AF0A21901A21903A219
+07F10FE0193F19FF013F1603496C153FBBFC1AC0A347527BD150>69
+D<BA12FCA426007FFCC712016D489138001FFE011F160318011800197E193EA2191EA285
+A385A6F10380A2171CA296C7FCA5173CA3177C17FC1601160F91B6FCA49138F8000F1601
+1600177C173CA3171CA794C9FCB3497E49B4FCB712E0A441527BD14C>I<B500FC95B512
+FCA36E5FD8007FF2F800D93DFF943803BFF0011D62A2011C6DEE073FA36E6C160EA36E6C
+161CA26E6C1638A36E6C1670A36E6C16E0A36E6CED01C0A26E6CED0380A36E6DEC0700A3
+6F6C140EA36F6C5CA26F6C5CA36F6C5CA36F6C5CA26F6C495AA36F6C495AA36F6D48C7FC
+A393387FC00EA2706C5AA3706C5AA3706C5AA3706C5AA270B45AA3705BA3013E6E90C8FC
+137F496C4E7E000701F0027E4B7EB66C4BB612FC173CA35E527AD16B>77
+D<B500FC030FB512F8A28080D8003FDC007F13006D6DED0FF8735A011D6D6F5A011C6D6F
+5AA26E7E81143F6E7E81140F6E7E82806E7F82806F7E82153F6F7EA26F7E6F7EA26F7F83
+816F7F83167F707E83161F707E838270138018C0827013E0A2EF7FF0EF3FF8A2EF1FFC18
+FE170FEF07FF1981837113C119E183F07FF119F9183FF01FFD19FF8484A28484A284A219
+7F193F133E017F171F496C160F000713F0B66C15071903A219014D527BD158>I<EC0FFE
+91387FFFE049B512F8903907F801FE90391FE0001FD93F80EB078049C7EA0FC001FE143F
+484815E00003157F485A485AA2485AEE3FC0003FED0F004991C7FCA2127FA35B12FFAB12
+7F7FA3123F6D1570121F6D15F0000F16E06D140112076C6CEC03C06D15806C6C14076C6D
+EB0F00D93FC0131E6D6C137C903907FC03F06DB55AD9007F1380DA0FF8C7FC2C367CB434
+>99 D<17FF4BB5FCA4ED0007160182B3A6EC0FF8EC7FFF49B512E0903907FC03F090391F
+E0007C49487F49C7120F01FE80484880485A000781484880A2485AA2485AA2127FA35B12
+FFAB127FA27FA2123FA27F121FA26C6C5C00075D7F6C6C5C6C6C5C6C6C021E7F6D6C017C
+13E0D91FC049EBFF8090390FF807E00103B512800100495ADA1FF091C7FC39547CD241>
+I<EC0FF891B5FC010314C090390FF80FF090391FC003FC90397F8001FE49C77E4848EC7F
+804848143F49EC1FC0485A000FED0FE05B001F16F01607485AA2007F16F8A25B160312FF
+90B7FCA30180C9FCA8127F7FA2123FA26D1538121F17786C6C1570000716F06D15E06C6C
+14016C6CEC03C06C6C15806D6C130F6D6CEB1F00D90FF0133C903907FE01F80101B512E0
+6D6C1380DA07FCC7FC2D367DB434>I<157F913803FFE0020F13F091383FC0F891387F01
+FC903901FE03FE903803FC0714F81307EB0FF0A290391FE003FCED01F892C7FC495AB3B6
+12FEA426003FC0C7FCB3B3A580EBFFF0007FEBFFF8A427547DD324>I<EF1FC0DA3FE0EB
+FFE0902701FFFC0313F001079039FF07E1F8903A1FE03FCF01903A3F800FFC03903A7F00
+07F80101FE010314F04848903901FC004000036F1300491300000781A24980000F82A800
+0793C7FC6D5CA200035D6D130100015D6C6C495A017F495A6E485A9039FFE03FC0D801C7
+B5C8FC01C113FC3903803FE091CAFCA57FA27F7F7F6CB612E016FF6C16C017F0013F15FC
+8390B8FCD803F8C7001F1380D80FE0020113C04848EC007F4848ED1FE090C9120F127EEF
+07F012FE481603A56C1607007E17E0007F160F6C6CED1FC06C6CED3F806C6CED7F006C6C
+15FED803FCEC03FCC6B4EC0FF0D93FF0EBFFC0010FB6C7FC010114F8D9001F1380354E7D
+B43B>I<1378EA01FE487E487FA66C90C7FC6C5AEA007890C8FCB0EB7F80B5FCA41203C6
+FC137FB3B3A43801FFE0B61280A419507CCF21>105 D<EB7F80B5FCA41203C6FC137FB3
+B3B3B13801FFE0B612C0A41A537CD221>108 D<01FFD907FEEC03FFB590261FFFC0010F
+13E0037F01F0013F13F8912701F80FFC9038FC07FE913D03C003FE01E001FF0003902607
+00019038038000C6010E6D6C48C76C7E6D48DA7F8E6E7E4A159CA24ADA3FF86E7E02605D
+14E04A5DA34A5DB3AD2601FFE0DAFFF0EC7FF8B6D8C07F9026FFE03FB512F0A45C347CB3
+63>I<01FFEB07FCB590383FFF8092B512E0913901F00FF8913903C007FC000349C66C7E
+C6010E13016D486D7E5C143002706E7E146014E05CA35CB3AD2601FFE0903801FFE0B600
+C0B612C0A43A347CB341>I<EC0FFC91387FFF8049B512E0903907F807F890391FE001FE
+90393F80007F017EC7EA1F80496E7E48486E7E00038248486E7EA248486E7EA248486E7E
+A2003F82A24848ED7F80A400FF17C0AB007F1780A26D15FFA2003F1700A2001F5E6D1401
+000F5E6D140300075E6C6C4A5A6C6C4A5AA2D8007FEC3F806D6C49C7FC90391FE001FE90
+3907F807F86DB55AD9007F1380DA0FFCC8FC32367CB43B>I<90397F8007FCB590387FFF
+800281B512E0913987F00FF891398F8003FC000390399E0001FFC601BC6D7FD97FF86E7E
+4A6E7E4A6E7E4A140F844A6E7EA2717EA3717EA4711380AB4D1300A44D5AA24D5AA2606E
+140F4D5A6E5D6E4A5A6E4A5A02BC4AC7FC029E495A028FEB07FC913987E01FF00281B512
+C0DA807F90C8FCED0FF892CAFCB13801FFE0B612C0A4394B7DB341>I<01FFEB1F80B5EB
+7FF0913801FFF8913803E1FC91380783FE0003EB0F07C6131EEB7F1C1438143091387003
+FC91386000F0160014E05CA45CB3AA8048487EB612F0A427347DB32E>114
+D<D907FE13C090387FFF8148B512E33907F803FF390FC0007F4848133F48C7121F003E14
+0F007E1407127C00FC1403A315017EA27E7F6C6C90C7FC13F013FF6C13F86CEBFF806C14
+E06C14F86C14FEC680013F1480010714C0D9003F13E014039138007FF0151F00E0140FED
+07F8A26C1403A215017EA36C15F0A26C14036C15E015076DEB0FC06DEB1F80D8FDF0EB3F
+0039F8FC01FE39F07FFFF8D8E01F13E0D8C00390C7FC25367CB42E>I<EB01C0A71303A4
+1307A3130FA2131FA2133F137F13FF5A5A001F90B512E0B7FCA326003FC0C7FCB3A71638
+AC6E1378011F1470A26D6C13F016E0903807F801903903FC03C0903901FE07806DB51200
+EC3FFCEC07F0254B7EC92E>I<D97F80EC7F80B591B5FCA400031503C61500017F157FB3
+AC17FFA35EA3013F5C6EEB077FA2011F020E7F6D6C011C13F06E0178EBFFC0903903FC01
+F06DB512E06D6C1380912607FC00EB80003A357CB341>I<B60103B51280A4000301F090
+39007FF800C601C0EC3FE0017FED1F8095C7FC133F6E141E131F171C6E143C010F153880
+01075DA26E14F001035D8001014A5AA26E13036D5D1580027F49C8FCA26F5A023F130E15
+E0021F5BA2EDF03C020F133815F802075BA2EDFCF002035B15FE6E6C5AA36E5BA26FC9FC
+A3153EA2151CA2153C153815781570A215F05D14015DA2003E495A127F486C48CAFCA214
+0E141E495A6C5B007C5B383F03E06CB45A00075BD801FCCBFC394B7EB23E>121
+D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop 1162 531 a FB(An)39 b FA(H)9 b FB(\(curl)o(;)20
+b(\012\)-conforming)34 b(FEM:)1200 680 y(N)m(\023)-55
+b(ed)m(\023)g(elec's)36 b(elemen)m(ts)h(of)h(\014rst)g(t)m(yp)s(e)1411
+933 y Fz(Anna)28 b(Sc)n(hneeb)r(eli,)f(April)h(30,)f(2003)28
+1223 y Fy(Abstract:)35 b Fz(The)23 b(aim)f(of)h(this)g(rep)r(ort)e(is)i
+(to)f(giv)n(e)g(an)h(in)n(tro)r(duction)f(to)g(N)n(\023)-39
+b(ed)n(\023)g(elec's)21 b Fx(H)7 b Fz(\(curl;)14 b(\012\)-conforming)21
+b(\014nite)i(elemen)n(t)28 1322 y(metho)r(d)j(of)g(\014rst)f(t)n(yp)r
+(e.)36 b(As)26 b(the)g(name)g(suggests,)f(this)h(metho)r(d)g(has)f(b)r
+(een)h(in)n(tro)r(duced)g(in)g(1980)e(b)n(y)h(J.)h(C.)g(N)n(\023)-39
+b(ed)n(\023)g(elec)24 b(in)i([8)o(].)28 1422 y(In)c(the)g(\014rst)g
+(section,)g(w)n(e)g(presen)n(t)f(the)h(mo)r(del)g(problem)g(and)g(in)n
+(tro)r(duce)f(the)h(framew)n(ork)e(for)i(its)g(v)-5 b(ariational)20
+b(form)n(ulation.)28 1522 y(In)26 b(the)h(second)f(section,)h(w)n(e)f
+(presen)n(t)g(N)n(\023)-39 b(ed)n(\023)g(elec's)24 b(elemen)n(ts)j(of)f
+(\014rst)g(t)n(yp)r(e)h(for)f Fx(H)7 b Fz(\(curl;)14
+b(\012\).)37 b(W)-7 b(e)26 b(start)g(b)n(y)h(considering)e(the)28
+1621 y(case)d(of)i(a\016ne)f(grids)g(in)h(t)n(w)n(o)f(and)g(three)h
+(space)f(dimensions.)35 b(W)-7 b(e)24 b(in)n(tro)r(duce)f(the)h(Piola)f
+(transformation)f(for)h(v)n(ector)f(\014elds)28 1721
+y(and)33 b(discuss)f(the)i(c)n(hoice)e(of)h(function)h(spaces)e(and)h
+(degrees)f(of)h(freedom.)53 b(These)33 b(results)f(are)g(then)i
+(extendend)f(to)g(bi-)28 1821 y(and)26 b(trilinear)f(grids.)36
+b(W)-7 b(e)26 b(explain)g(the)h(practical)e(construction)h(of)g(global)
+f(shap)r(e)h(functions)h(and)f(conclude)g(this)h(section)28
+1920 y(with)h(some)f(remarks)f(on)h(appro)n(ximation)f(results.)28
+2020 y(Numerical)e(results,)g(whic)n(h)h(serv)n(e)e(to)i(illustrate)f
+(the)h(con)n(v)n(ergence)d(of)j(the)g(metho)r(d,)g(are)f(presen)n(ted)g
+(in)h(the)g(third)g(section.)28 2119 y(In)35 b(App)r(endix)i(A,)f(w)n
+(e)f(demonstrate)g(ho)n(w)g(solutions)f(of)i(the)g(t)n(w)n
+(o-dimensional)e(mo)r(del)i(problem)f(can)g(b)r(e)h(constructed)28
+2219 y(from)27 b(solutions)g(of)g(the)h(scalar)e(Laplace)h(equation.)28
+2319 y(In)40 b(App)r(endix)g(B)g(w)n(e)f(motiv)-5 b(ate)40
+b(the)g(mo)r(del)g(problem)g(studied)g(in)g(the)g(rep)r(ort)f(b)n(y)h
+(considering)e(the)i(time-harmonic)28 2418 y(Maxw)n(ell's)26
+b(equations)h(in)h(the)g(lo)n(w-frequency)e(case.)28
+2653 y Fw(1)134 b Fv(The)38 b(mo)s(del)e(problem)h(and)h(the)g(space)g
+Fu(H)8 b Ft(\(curl)o(;)17 b(\012\))28 2835 y Fz(Consider)26
+b(the)i(v)n(ector-v)-5 b(alued)26 b(mo)r(del)i(problem)f(in)h(a)f
+(Lipsc)n(hitz)g(domain)h(\012)23 b Fs(2)g Fr(R)2628 2805
+y Fq(d)2673 2835 y Fz(,)k Fx(d)d Fz(=)e(2)p Fx(;)14 b
+Fz(3:)1424 2980 y(curl)f(curl)g Fx(u)p 1728 2993 48 4
+v 18 w Fz(+)18 b Fx(c)p Fz(\()p Fx(x)p Fz(\))p Fx(u)p
+2024 2993 V 24 w Fz(=)23 b Fx(f)p 2184 3009 50 4 v 91
+w Fz(in)83 b(\012)14 b Fx(;)1290 b Fz(\(1\))28 3136 y(with)28
+b(righ)n(t)f(hand)g(side)h Fx(f)p 792 3166 V 31 w Fs(2)c
+Fx(L)1000 3106 y Fp(2)1036 3136 y Fz(\(\012\))1160 3106
+y Fq(d)1200 3136 y Fz(.)28 3236 y(W)-7 b(e)28 b(assume)e(a)i
+(homogeneous)d(Diric)n(hlet)j(b)r(oundary)f(condition)g(on)h(the)g
+(tangen)n(tial)e(trace)1824 3381 y Fx(u)p 1824 3394 48
+4 v 17 w Fs(^)19 b Fx(n)p 1963 3394 50 4 v 23 w Fz(=)k(0)1689
+b(\(2\))28 3526 y(on)27 b(the)h(b)r(oundary)f Fx(@)5
+b Fz(\012)27 b(of)h(\012.)28 3625 y(The)f(co)r(e\016cien)n(t)h
+Fx(c)p Fz(\()p Fx(x)p Fz(\))g(is)g(assumed)f(to)g(b)r(e)h(b)r(ounded)g
+(and)g(uniform)f(p)r(ositiv)n(e)g(de\014nite.)28 3725
+y(This)i(t)n(yp)r(e)g(of)g(problem)f(t)n(ypically)h(arises)e(in)j
+(particular)d(settings)i(of)g(Maxw)n(ell`s)f(equations.)40
+b(The)29 b(b)r(oundary)g(condition)28 3825 y(\(2\))36
+b(then)g(applies)f(to)h(a)f(p)r(erfectly)h(conducting)g(b)r(oundary)-7
+b(.)61 b(F)-7 b(or)35 b(a)g(deriv)-5 b(ation)35 b(of)h(the)g(mo)r(del)g
+(problem)f(\(1\),)j(refer)d(to)28 3924 y(App)r(endix)28
+b(A.)28 4123 y(The)f(sub)5 b(ject)28 b(of)g(this)f(section)h(is)f(to)h
+(giv)n(e)e(an)i(appropriate)d(setting)j(for)f(a)g(v)-5
+b(ariational)26 b(form)n(ulation)h(of)g(\(1\).)28 4223
+y(A)h(more)e(detailed)i(treatmen)n(t)f(of)h(the)g(follo)n(wing)e
+(notions)h(and)h(pro)r(ofs)f(can)g(b)r(e)h(found)g(in)g([4)o(].)28
+4446 y Fv(1.1)112 b Fo(De\014nitions)28 4599 y Fn(Convention)27
+b Fz(1)45 b Fm(In)26 b(the)h(fol)t(lowing,)j(the)d(ve)l(ctor)g
+Fx(t)p 1629 4612 30 4 v 27 w Fm(wil)t(l)h(denote)f(the)g(unit)e
+(tangent)h(ve)l(ctor)h(w.)h(r.)f(t.)37 b(an)27 b(e)l(dge)g(of)g(a)g
+(triangle)28 4699 y(or)38 b(quadrilater)l(al,)44 b(oriente)l(d)39
+b(c)l(ounter)l(clo)l(ckwise)g(with)g(r)l(esp)l(e)l(ct)g(to)f(the)h(c)l
+(orr)l(esp)l(onding)h(triangle)f(or)g(quadrilater)l(al.)67
+b(\(In)28 4798 y(3d,)36 b(the)f(c)l(onsider)l(e)l(d)g(triangles)g(or)g
+(quadrilater)l(als)h(wil)t(l)g(always)g(b)l(e)e(fac)l(es)h(of)h(a)e(p)l
+(olyhe)l(dr)l(on,)k(and)d(the)f(c)l(ounter)l(clo)l(ckwise)28
+4898 y(orientation)c(has)h(to)e(b)l(e)h(understo)l(o)l(d)g(as)g(induc)l
+(e)l(d)g(by)h("outwar)l(d)e(unit)g(normal)i(of)f(the)g(fac)l(e,)h(plus)
+f(right)h(hand)f(rule")g(\).)28 5101 y Fz(Let)f(us)h(\014rst)f
+(consider)f(the)i(case)f(of)g Fx(d)d Fz(=)g(2.)42 b(F)-7
+b(or)29 b Fx(v)p 1622 5114 44 4 v 29 w Fz(=)1782 4984
+y Fl(\022)1885 5051 y Fx(v)1925 5063 y Fp(1)1962 5051
+y Fz(\()p Fx(x;)14 b(y)s Fz(\))1885 5150 y Fx(v)1925
+5162 y Fp(2)1962 5150 y Fz(\()p Fx(x;)g(y)s Fz(\))2196
+4984 y Fl(\023)2284 5101 y Fs(2)26 b Fz([)p Fs(D)r Fz(\()p
+2486 5035 60 4 v(\012)q(\)])2602 5071 y Fp(2)2669 5101
+y Fz(and)j Fx(')e Fs(2)f(D)r Fz(\()p 3092 5035 V(\012)q(\))k(w)n(e)f
+(de\014ne)g(the)h(scalar-)28 5246 y(and)d(the)h(v)n(ector-v)-5
+b(alued)26 b(curl-op)r(erators:)1059 5436 y(curl)14 b
+Fx(v)p 1212 5449 44 4 v 26 w Fz(:=)23 b Fx(@)1433 5448
+y Fq(x)1474 5436 y Fx(v)1514 5448 y Fp(2)1570 5436 y
+Fs(\000)18 b Fx(@)1697 5448 y Fq(y)1737 5436 y Fx(v)1777
+5448 y Fp(1)1898 5436 y Fz(and)96 b(curl)p 2128 5449
+139 4 v 14 w Fx(')23 b Fz(:=)2469 5319 y Fl(\022)2605
+5386 y Fx(@)2649 5398 y Fq(y)2689 5386 y Fx(')2572 5485
+y Fs(\000)p Fx(@)2681 5497 y Fq(x)2722 5485 y Fx(')2818
+5319 y Fl(\023)2907 5436 y Fx(:)1972 5719 y Fk(1)p eop
+%%Page: 2 2
+2 1 bop 28 207 a Fz(W)-7 b(e)28 b(note)f(that)h(the)g(curl)13
+b(curl-op)r(erator)25 b(in)j(t)n(w)n(o)f(dimensions)g(has)g(to)h(b)r(e)
+g(understo)r(o)r(d)f(as)g(curl)p 2909 220 139 4 v 14
+w(curl)o(.)28 462 y Fn(Remark)h Fz(1)45 b Fm(In)38 b(the)h(two)f
+(dimensional)j(c)l(ase,)g(the)e Fz(curl)f Fm(op)l(er)l(ator)i(is)f
+(simply)g(the)g(diver)l(genc)l(e)h(of)f(the)g(r)l(otate)l(d)g(\014eld)g
+Fx(v)p 3893 475 44 4 v 3 w Fm(.)28 561 y(Similarly,)31
+b(the)f Fz(curl)p 546 574 139 4 v 30 w Fm(op)l(er)l(ator)g(is)g(the)g
+(r)l(otate)l(d)g(gr)l(adient)h(\014eld)f(of)g Fx(')p
+Fm(.)39 b(Setting)1659 770 y Fj(R)24 b Fz(=)1843 653
+y Fl(\022)1978 720 y Fz(0)115 b(1)1945 819 y Fs(\000)p
+Fz(1)83 b(0)2218 653 y Fl(\023)2306 770 y Fx(;)28 979
+y Fm(we)30 b(have)1687 1079 y Fz(curl)13 b Fx(v)p 1839
+1092 44 4 v 27 w Fz(=)22 b(div)15 b(\()q Fj(R)p Fx(v)p
+2226 1092 V 4 w Fz(\))28 1216 y Fm(and)1719 1316 y Fz(curl)p
+1719 1329 139 4 v 14 w Fx(')23 b Fz(=)g Fj(R)p Fs(r)p
+Fx(')14 b(:)28 1454 y Fm(We)26 b(further)g(note)g(that)h(the)f
+(tangential)h(ve)l(ctor)f Fx(t)p 1555 1467 30 4 v 27
+w Fm(is)g(just)g(the)g(r)l(otate)l(d)h(outwar)l(d)f(unit)g(normal)h(ve)
+l(ctor)f Fx(t)p 3268 1467 V 23 w Fz(=)d Fj(R)3482 1417
+y Fq(T)3534 1454 y Fx(n)p 3534 1467 50 4 v Fm(.)37 b(This)28
+b(wil)t(l)28 1554 y(enable)35 b(us)f(to)g(derive)i(statements)d(for)j
+(the)e Fz(curl)p Fm(-op)l(er)l(ators)h(in)g(two)f(dimensions)i(fr)l(om)
+f(statements)e(for)i(the)g(diver)l(genc)l(e)28 1653 y(and)30
+b(gr)l(adient)g(op)l(er)l(ators)h(in)f(two)g(dimensions.)28
+1808 y Fz(F)-7 b(or)27 b(the)h(case)e(of)i Fx(d)23 b
+Fz(=)g(3)k(and)g(a)h(v)n(ector)e(\014eld)i Fx(v)p 1473
+1821 44 4 v 26 w Fs(2)23 b Fz([)p Fs(D)r Fz(\()p 1738
+1742 60 4 v(\012)q(\)])1854 1778 y Fp(3)1919 1808 y Fz(w)n(e)28
+b(write)1333 2071 y(curl)14 b Fx(v)p 1486 2084 44 4 v
+26 w Fz(:=)23 b Fs(r)18 b(^)h Fx(v)p 1824 2084 V 26 w
+Fz(:=)2001 1904 y Fl(0)2001 2054 y(@)2117 1971 y Fx(@)2161
+1983 y Fq(y)2201 1971 y Fx(v)2241 1983 y Fp(3)2297 1971
+y Fs(\000)f Fx(@)2424 1983 y Fq(z)2462 1971 y Fx(v)2502
+1983 y Fp(2)2116 2070 y Fx(@)2160 2082 y Fq(z)2198 2070
+y Fx(v)2238 2082 y Fp(1)2294 2070 y Fs(\000)g Fx(@)2421
+2082 y Fq(x)2463 2070 y Fx(v)2503 2082 y Fp(3)2115 2170
+y Fx(@)2159 2182 y Fq(x)2201 2170 y Fx(v)2241 2182 y
+Fp(2)2297 2170 y Fs(\000)g Fx(@)2424 2182 y Fq(y)2464
+2170 y Fx(v)2504 2182 y Fp(1)2583 1904 y Fl(1)2583 2054
+y(A)28 2349 y Fn(Definition)28 b Fz(1)45 b Fm(F)-6 b(or)30
+b Fx(d)23 b Fz(=)g(2)p Fx(;)14 b Fz(3)28 b Fm(we)i(write)1388
+2327 y Fz(~)1373 2349 y Fx(d)24 b Fz(=)e(1)30 b Fm(if)g
+Fx(d)23 b Fz(=)g(2)29 b Fm(and)2080 2327 y Fz(~)2066
+2349 y Fx(d)23 b Fz(=)f(3)30 b Fm(if)g Fx(d)24 b Fz(=)e(3)p
+Fm(,)30 b(and)g(we)g(de\014ne)1140 2526 y Fx(H)7 b Fz(\(curl)o(;)14
+b(\012\))23 b(:=)g Fs(f)p Fx(v)p 1691 2539 V 26 w Fs(2)g
+Fz([)p Fx(L)1915 2492 y Fp(2)1952 2526 y Fz(\(\012\)])2099
+2492 y Fq(d)2161 2526 y Fz(:)h(curl)13 b Fx(v)p 2360
+2539 V 26 w Fs(2)24 b Fz([)p Fx(L)2585 2492 y Fp(2)2621
+2526 y Fz(\(\012\)])2779 2476 y Fp(~)2768 2492 y Fq(d)2808
+2526 y Fs(g)28 2689 y Fx(H)7 b Fz(\(curl)o(;)14 b(\012\))28
+b(endo)n(w)n(ed)f(with)h(the)g(inner)f(pro)r(duct)1109
+2853 y(\()p Fx(v)p 1141 2866 V 3 w(;)14 b(u)p 1221 2866
+48 4 v Fz(\))1301 2868 y Fq(H)t Fp(\(curl;\012\))1616
+2853 y Fz(:=)23 b(\()p Fx(v)p 1759 2866 44 4 v 3 w(;)14
+b(u)p 1839 2866 48 4 v Fz(\))1919 2868 y Fq(L)1965 2851
+y Fi(2)1997 2868 y Fp(\(\012\))2119 2853 y Fz(+)k(\(curl)13
+b Fx(v)p 2386 2866 44 4 v 4 w(;)h Fz(curl)f Fx(u)p 2619
+2866 48 4 v -1 w Fz(\))2698 2868 y Fq(L)2744 2851 y Fi(2)2777
+2868 y Fp(\(\012\))28 3016 y Fz(is)27 b(a)g(Hilb)r(ert)h(space.)28
+3342 y Fv(1.2)112 b Fo(T)-9 b(race)35 b(theorem,)f(in)m(tegration)h(b)m
+(y)g(parts)28 3495 y Fz(The)e(space)g Fx(H)7 b Fz(\(curl)o(;)14
+b(\012\))34 b(will)f(b)r(e)h(the)g(appropriate)d(Sob)r(olev)i(space)g
+(for)g(a)g(w)n(eak)f(form)n(ulation)g(of)i(the)f(mo)r(del)h(problem.)28
+3594 y(In)g(this)g(section)g(w)n(e)f(pro)n(vide)g(a)h(notion)f(of)h
+(trace)g(of)f(a)h Fx(H)7 b Fz(\(curl;)14 b(\012\)-function)34
+b(on)n(to)f(the)i(b)r(oundary)e Fx(@)5 b Fz(\012)34 b(and)f(w)n(e)h
+(de\014ne)28 3694 y(in)n(tergation)26 b(b)n(y)h(parts)g(on)g(the)h
+(space)f Fx(H)7 b Fz(\(curl;)14 b(\012\).)28 3870 y Fn(Theorem)28
+b Fz(1)f(\(Appro)n(ximation)g(Prop)r(ert)n(y\))44 b Fm(F)-6
+b(or)30 b Fx(d)23 b Fz(=)g(2)p Fx(;)14 b Fz(3)p Fm(,)29
+b Fz([)p Fs(D)r Fz(\()p 2110 3803 60 4 v(\012\)])2225
+3840 y Fq(d)2294 3870 y Fm(is)h(dense)g(in)g Fx(H)7 b
+Fz(\(curl;)14 b(\012\))p Fm(.)28 4046 y Fz(See)27 b([4)o(])h(p.13,)e
+(p.20)h(for)f(the)i(pro)r(of)f(in)g(the)h(2d-case)d(and)i(p.20)g(for)f
+(a)h(reference)f(to)h(the)h(pro)r(of)f(in)g(3d)g(prop)r(osed)f(in)i
+(Duv)-5 b(aut)28 4146 y(&)27 b(Lions,)g(1971.)28 4345
+y(Equipp)r(ed)g(with)h(this)g(appro)n(ximation)e(prop)r(ert)n(y)h(of)g
+(smo)r(oth)g(functions)h(to)g(elemen)n(ts)f(of)h Fx(H)7
+b Fz(\(curl)o(;)14 b(\012\),)28 b(w)n(e)g(can)f(state)28
+4521 y Fn(Theorem)h Fz(2)f(\(Green's)g(F)-7 b(orm)n(ula\))45
+b Fm(F)-6 b(or)29 b(the)g(2d)h(c)l(ase,)g(let)f Fx(u)p
+1932 4534 48 4 v 29 w Fm(b)l(e)g(in)g Fz([)p Fx(H)7 b
+Fz(\(curl)o(;)14 b(\012\)])2632 4491 y Fp(2)2699 4521
+y Fm(and)29 b Fx(')h Fm(b)l(e)f(a)g(test)f(function)h(in)g
+Fx(H)3774 4491 y Fp(1)3811 4521 y Fz(\(\012\))p Fm(.)28
+4621 y(We)g(have)1102 4629 y Fl(Z)1148 4818 y Fp(\012)1214
+4742 y Fz(curl)13 b Fx(u)p 1366 4755 V 27 w(')h(dx)24
+b Fz(=)1711 4629 y Fl(Z)1757 4818 y Fp(\012)1822 4742
+y Fx(u)p 1822 4755 V 18 w Fs(\001)19 b Fz(curl)p 1930
+4755 139 4 v 13 w Fx(')14 b(dx)19 b Fz(+)2342 4629 y
+Fl(Z)2389 4818 y Fq(@)t Fp(\012)2479 4742 y Fz(\()p Fx(u)p
+2511 4755 48 4 v 18 w Fs(\001)g Fx(t)p 2619 4755 30 4
+v Fz(\))14 b Fx(')g(ds)19 b(;)28 4932 y Fm(F)-6 b(or)30
+b(the)f(3d)i(c)l(ase,)g(let)e Fx(u)p 755 4945 48 4 v
+30 w Fm(b)l(e)g(in)h Fz([)p Fx(H)7 b Fz(\(curl;)14 b(\012\)])1458
+4902 y Fp(3)1525 4932 y Fm(and)30 b Fx(v)p 1686 4945
+44 4 v 33 w Fm(b)l(e)g(a)g(test)f(function)h(in)g Fz([)p
+Fx(H)2618 4902 y Fp(1)2655 4932 y Fz(\(\012\)])2802 4902
+y Fp(3)2840 4932 y Fm(.)38 b(We)30 b(then)g(have)1053
+5025 y Fl(Z)1100 5213 y Fp(\012)1165 5138 y Fx(v)p 1165
+5151 V 22 w Fs(\001)18 b Fz(curl)c Fx(u)p 1421 5151 48
+4 v 13 w(dx)24 b Fz(=)1683 5025 y Fl(Z)1729 5213 y Fp(\012)1795
+5138 y Fx(u)p 1795 5151 V 18 w Fs(\001)18 b Fz(curl)c
+Fx(v)p 2055 5151 44 4 v 17 w(dx)19 b Fz(+)2304 5025 y
+Fl(Z)2350 5213 y Fq(@)t Fp(\012)2441 5138 y Fz(\()p Fx(v)p
+2473 5151 V 22 w Fs(^)f Fx(n)p 2608 5151 50 4 v Fz(\))h
+Fs(\001)f Fx(u)p 2750 5151 48 4 v 14 w(ds)g(;)28 5370
+y Fm(The)30 b(b)l(oundary)h(inte)l(gr)l(als)f(ar)l(e)g(understo)l(o)l
+(d)g(as)g(duality)g(p)l(airings)i(in)d Fz([)p Fx(H)2338
+5340 y Fh(\000)2400 5317 y Fi(1)p 2400 5326 29 3 v 2400
+5360 a(2)2442 5370 y Fz(\()p Fx(@)5 b Fz(\012\)])2649
+5324 y Fp(~)2638 5340 y Fq(d)2696 5370 y Fs(\002)18 b
+Fx(H)2865 5317 y Fi(1)p 2865 5326 V 2865 5360 a(2)2907
+5370 y Fz(\()p Fx(@)5 b Fz(\012\))30 b Fm(.)1972 5719
+y Fk(2)p eop
+%%Page: 3 3
+3 2 bop 28 207 a Fn(Pr)n(oof.)55 b Fz(F)-7 b(or)32 b(smo)r(oth)g
+(functions,)i(it)f(is)f(easy)g(to)g(see)g(that)h(the)g(ab)r(o)n(v)n(e)e
+(Green's)g(form)n(ula)h(holds.)51 b(In)33 b(the)f(2d)g(case)g(this)28
+307 y(follo)n(ws)26 b(just)i(from)g(Gauss')f(div)n(ergence)f(theorem)h
+(and)g(remark)f(1.)28 406 y(F)-7 b(or)27 b(the)h(3d)f(case)g(w)n(e)g
+(use)g(the)h(iden)n(tit)n(y)1397 563 y(div)15 b(\()p
+Fx(u)p 1557 576 48 4 v 19 w Fs(^)j Fx(v)p 1697 576 44
+4 v 4 w Fz(\))23 b(=)g Fx(v)p 1884 576 V 21 w Fs(\001)c
+Fz(curl)13 b Fx(u)p 2139 576 48 4 v 18 w Fs(\000)18 b
+Fx(u)p 2288 576 V 18 w Fs(\001)h Fz(curl)13 b Fx(v)p
+2548 576 44 4 v 28 719 a Fz(together)26 b(with)i(Gauss')f(Div)n
+(ergence)g(Theorem)g(and)g(the)h(prop)r(erties)f(of)g(the)h(mixed)g
+(pro)r(duct)g(\()p Fx(a)p 3111 732 V 18 w Fs(^)19 b Fx(b)p
+3247 732 36 4 v Fz(\))f Fs(\001)h Fx(c)p 3375 732 V 27
+w Fz(to)28 b(obtain)455 805 y Fl(Z)501 994 y Fp(\012)567
+918 y Fx(v)p 567 931 44 4 v 21 w Fs(\001)19 b Fz(curl)13
+b Fx(u)p 822 931 48 4 v 18 w Fs(\000)18 b Fx(u)p 971
+931 V 18 w Fs(\001)h Fz(curl)13 b Fx(v)p 1231 931 44
+4 v 17 w(dx)24 b Fz(=)1490 805 y Fl(Z)1536 994 y Fp(\012)1601
+918 y Fz(div)15 b(\()p Fx(u)p 1761 931 48 4 v 19 w Fs(^)j
+Fx(v)p 1901 931 44 4 v 4 w Fz(\))c Fx(dx)23 b Fz(=)2192
+805 y Fl(Z)2238 994 y Fq(@)t Fp(\012)2329 918 y Fz(\()p
+Fx(u)p 2361 931 48 4 v 18 w Fs(^)c Fx(v)p 2501 931 44
+4 v 3 w Fz(\))g Fs(\001)f Fx(n)p 2636 931 50 4 v 14 w(ds)23
+b Fz(=)2893 805 y Fl(Z)2939 994 y Fq(@)t Fp(\012)3029
+918 y Fz(\()p Fx(v)p 3061 931 44 4 v 22 w Fs(^)c Fx(n)p
+3197 931 50 4 v Fz(\))g Fs(\001)f Fx(u)p 3339 931 48
+4 v 14 w(ds)27 b(:)28 1127 y Fz(The)k(exten)n(tion)g(to)g(a)g(pairing)g
+(of)g Fx(H)7 b Fz(\(curl\))31 b(and)h Fx(H)1684 1097
+y Fp(1)1721 1127 y Fz(\(\012\))g(functions)f(follo)n(ws)g(with)h
+(Theorem)e(1)h(b)n(y)g(a)g(densit)n(y)g(argumen)n(t)28
+1226 y(and)c(is)g(a)h(result)f(of)h(the)g(pro)r(of)f(of)g(the)h(T)-7
+b(race)27 b(Theorem.)36 b(See)27 b([4])h(p.21)e(for)i(details.)3897
+1375 y Fg(\003)28 1543 y Fn(Theorem)g Fz(3)f(\(T)-7 b(race)27
+b(Theorem\))45 b Fm(F)-6 b(or)36 b Fx(d)g Fz(=)f(3)p
+Fm(,)k(let)d Fx(n)p 1729 1556 50 4 v 36 w Fm(denote)i(the)e(outwar)l(d)
+h(unit)f(normal)h(to)g(the)g(b)l(oundary)g Fx(@)5 b Fz(\012)p
+Fm(.)59 b(F)-6 b(or)28 1642 y Fx(d)23 b Fz(=)f(2)p Fm(,)30
+b(let)g Fx(t)p 395 1655 30 4 v 30 w Fm(b)l(e)f(as)h(in)g(c)l(onvention)
+g(1)28 1742 y(F)-6 b(or)30 b Fx(d)23 b Fz(=)f(2)30 b
+Fm(the)g(mapping)1685 1841 y Fx(\015)d Fz(:)108 b Fx(v)p
+1886 1854 44 4 v 27 w Fs(7!)23 b Fx(\015)5 b Fz(\()p
+Fx(v)p 2139 1854 V 3 w Fz(\))19 b Fs(\001)f Fx(t)p 2274
+1854 30 4 v 28 1975 a Fm(and)30 b(for)g Fx(d)24 b Fz(=)e(3)30
+b Fm(the)f(mapping)1659 2075 y Fx(\015)e Fz(:)108 b Fx(v)p
+1860 2088 44 4 v 27 w Fs(7!)23 b Fx(\015)5 b Fz(\()p
+Fx(v)p 2113 2088 V 3 w Fz(\))19 b Fs(^)f Fx(n)p 2280
+2088 50 4 v 28 2223 a Fm(is)30 b(c)l(ontiuous)f(and)h(line)l(ar)h(fr)l
+(om)f Fx(H)7 b Fz(\(curl;)14 b(\012\))29 b Fm(to)h Fz([)p
+Fx(H)1684 2193 y Fh(\000)1746 2170 y Fi(1)p 1746 2179
+29 3 v 1746 2213 a(2)1788 2223 y Fz(\()p Fx(@)5 b Fz(\012\)])1995
+2177 y Fp(~)1984 2193 y Fq(d)2023 2223 y Fm(.)28 2391
+y Fz(Note,)31 b(that)g(the)g(trace)e(of)i(a)f Fx(H)7
+b Fz(\(curl;)14 b(\012\)-function)31 b(is)f(only)g(de\014ned)h(in)g
+(tangen)n(tial)f(direction.)45 b(Its)31 b(trace)e(is)i(in)f(the)h(dual)
+28 2504 y(space)c(of)h(traces)f(of)h([)p Fx(H)780 2474
+y Fp(1)817 2504 y Fz(\(\012\)])975 2459 y Fp(~)964 2474
+y Fq(d)1032 2504 y Fz(functions.)39 b(Recall)28 b(that)g(traces)f(of)h
+(suc)n(h)g(functions)h(are)e(de\014ned)h(in)h(ev)n(ery)e(direction)g
+(and)28 2618 y(are)f(functions)i(in)g([)p Fx(H)730 2565
+y Fi(1)p 730 2574 V 730 2608 a(2)772 2618 y Fz(\()p Fx(@)5
+b Fz(\012\)])979 2572 y Fp(~)968 2588 y Fq(d)1007 2618
+y Fz(.)28 2817 y Fn(Pr)n(oof.)39 b Fz(The)27 b(pro)r(of)f(of)g(the)h
+(trace)e(theorem)h(follo)n(ws)f(from)h(Green's)g(form)n(ula)f(stated)i
+(in)f(theorem)g(2)g(applied)g(to)h(smo)r(oth)28 2917
+y(functions)g(and)h(then)g(b)n(y)f(densit)n(y)h(argumen)n(ts.)35
+b(See)28 b([4)o(])g(p.21)f(for)g(details.)3897 3065 y
+Fg(\003)28 3213 y Fz(Due)33 b(to)f(the)h(T)-7 b(race)32
+b(Theorem)g(it)h(mak)n(es)e(sense)h(to)h(de\014ne)g(a)f(space)g(of)g
+Fx(H)7 b Fz(\(curl\)-functions)33 b(with)g(v)-5 b(anishing)32
+b(tangen)n(tial)28 3313 y(comp)r(onen)n(ts)27 b(on)g(the)h(b)r(oundary)
+-7 b(.)28 3461 y Fn(Definition)28 b Fz(2)1042 3561 y
+Fx(H)1111 3573 y Fp(0)1148 3561 y Fz(\(curl;)14 b(\012\))23
+b(:=)g Fs(f)o Fx(v)p 1623 3574 44 4 v 27 w Fs(2)g Fx(H)7
+b Fz(\(curl;)14 b(\012\))23 b(:)108 b Fx(v)p 2298 3574
+V 22 w Fs(^)18 b Fx(n)p 2433 3574 50 4 v 23 w Fz(=)23
+b(0)36 b(on)h Fx(@)5 b Fz(\012)p Fs(g)28 3729 y Fn(Remark)28
+b Fz(2)45 b Fm(F)-6 b(or)30 b Fx(d)23 b Fz(=)f(2)p Fx(;)14
+b Fz(3)p Fm(,)30 b Fz([)p Fs(D)r Fz(\(\012\)])1191 3698
+y Fq(d)1260 3729 y Fm(is)g(dense)g(in)g Fx(H)1749 3741
+y Fp(0)1786 3729 y Fz(\(curl;)14 b(\012\))p Fm(.)28 3896
+y Fz(A)28 b(consequence)e(of)i(Green's)f(form)n(ula)f(is)i(the)g(follo)
+n(wing)e(imp)r(ortan)n(t)i(regularit)n(y)d(prop)r(ert)n(y)i(of)g
+Fx(H)7 b Fz(\(curl;)14 b(\012\)-functions:)28 4064 y
+Fn(Pr)n(oposition)27 b Fz(1)45 b Fm(L)l(et)24 b Fx(K)854
+4076 y Fh(\000)934 4064 y Fm(and)h Fx(K)1161 4076 y Fp(+)1240
+4064 y Fm(b)l(e)g(two)g(p)l(olygonal)h(\(r)l(esp.)38
+b(p)l(olyhe)l(dr)l(al\))26 b(Lipschitz)h(domains)e(in)g
+Fr(R)3322 4034 y Fq(d)3367 4064 y Fm(,)h(with)f(a)g(c)l(ommon)28
+4164 y(e)l(dge)f(\(r)l(esp.)37 b(c)l(ommon)25 b(e)l(dge)f(or)h(fac)l
+(e\))g Fx(e)d Fz(=)h Fx(@)5 b(K)1516 4176 y Fh(\000)1577
+4164 y Fs(\\)h Fx(@)f(K)1758 4176 y Fp(+)1836 4164 y
+Fs(6)p Fz(=)23 b Fs(;)g Fm(and)i(denote)f(by)h Fz(\012)e(=)f
+Fx(@)5 b(K)2797 4176 y Fh(\000)2859 4164 y Fs([)h Fx(@)f(K)3040
+4176 y Fp(+)3118 4164 y Fm(their)25 b(union.)37 b(A)23
+b(function)28 4264 y Fx(v)32 b Fm(is)d(in)g Fx(H)7 b
+Fz(\(curl)o(;)14 b(\012\))29 b Fm(if)h(and)f(only)g(if)h(the)f(r)l
+(estricion)g Fx(v)1741 4276 y Fh(\000)1826 4264 y Fm(of)h
+Fx(v)i Fm(to)d Fx(K)2165 4276 y Fh(\000)2249 4264 y Fm(is)g(in)g
+Fx(H)7 b Fz(\(curl;)14 b Fx(K)2793 4276 y Fh(\000)2848
+4264 y Fz(\))p Fm(,)30 b(the)f(r)l(estricion)g Fx(v)3484
+4276 y Fp(+)3568 4264 y Fm(of)h Fx(v)i Fm(to)d Fx(K)3907
+4276 y Fp(+)28 4363 y Fm(is)h(in)g Fx(H)7 b Fz(\(curl)o(;)14
+b Fx(K)573 4375 y Fp(+)628 4363 y Fz(\))30 b(and)f Fm(the)36
+b Fz(tangen)n(tial)29 b Fm(jump)h(over)h Fx(e)e Fm(vanishes:)40
+b Fx(v)2256 4375 y Fh(\000)2331 4363 y Fs(^)18 b Fx(n)2454
+4375 y Fh(\000)2529 4363 y Fz(+)g Fx(v)2652 4375 y Fp(+)2726
+4363 y Fs(^)g Fx(n)2849 4375 y Fp(+)2927 4363 y Fz(=)23
+b(0)29 b Fm(on)h Fx(e)p Fm(.)28 4531 y Fn(Pr)n(oof.)39
+b Fz(The)27 b(prop)r(osition)e(follo)n(ws)g(from)h(c)n(ho)r(osing)f(an)
+h(appropriate)e(test)j(function)g(and)f(in)n(tegrating)f(b)n(y)h(parts)
+f(\(global)28 4631 y(and)e(lo)r(cal\).)36 b(In)24 b(order)e(to)i
+Fm(lo)l(c)l(alise)32 b Fz(the)24 b(result)g(of)g(the)g(T)-7
+b(race)23 b(Theorem,)h(w)n(e)f(m)n(ust)h(c)n(ho)r(ose)f(a)g
+(testfunction)i(from)f(the)g(space)28 4758 y Fx(H)113
+4687 y Fi(1)p 113 4696 29 3 v 113 4729 a(2)97 4780 y
+Fp(00)167 4758 y Fz(\()p Fx(e)p Fz(\).)48 b(These)31
+b(functions)h(v)-5 b(anish)31 b(at)g(the)h(endp)r(oin)n(ts)f(of)g
+Fx(e)g Fz(and)h(can)e(therefore)h(b)r(e)g(extended)h(b)n(y)f(zero)f(to)
+h(a)g Fx(H)3718 4705 y Fi(1)p 3718 4714 V 3718 4747 a(2)3760
+4758 y Fz(\()p Fx(@)5 b Fz(\012\)-)28 4857 y(function.)44
+b(F)-7 b(rom)30 b(the)g(comparison)e(of)i(lo)r(cal)g(\(on)g
+Fx(K)1716 4869 y Fh(\000)1801 4857 y Fz(and)g Fx(K)2036
+4869 y Fp(+)2121 4857 y Fz(separately\))f(and)h(global)e(\(on)i(\012\))
+h(in)n(tegration)d(b)n(y)i(parts)28 4984 y(it)36 b(follo)n(w)n(as)e
+(then)i(that)g(the)g(tangen)n(tial)f(jump)h(v)-5 b(anishes)35
+b(in)h(the)g(dual)g(space)f(of)h Fx(H)2796 4913 y Fi(1)p
+2796 4922 V 2796 4955 a(2)2780 5006 y Fp(00)2850 4984
+y Fz(\()p Fx(e)p Fz(\).)61 b(By)36 b(densitiy)g(prop)r(erties)e(of)28
+5112 y Fx(H)113 5041 y Fi(1)p 113 5050 V 113 5083 a(2)97
+5134 y Fp(00)167 5112 y Fz(\()p Fx(e)p Fz(\))28 b(it)h(follo)n(ws)d
+(that)j(the)f(tangen)n(tial)f(traces)g(v)-5 b(anish)28
+b(in)g(the)g("correct)e(space")h(as)g(w)n(ell.)38 b(The)28
+b("correct)e(space")h(w)n(ould)28 5222 y(b)r(e)32 b Fx(H)221
+5192 y Fh(\000)282 5169 y Fi(1)p 282 5178 V 282 5212
+a(2)325 5222 y Fz(\()p Fx(e)p Fz(\))g(if)g(w)n(e)f(ha)n(v)n(e)g(no)h
+(further)f(regularit)n(y)f(of)i Fx(v)p 1747 5235 44 4
+v 1790 5242 a Fh(\000)1878 5222 y Fz(and)g Fx(v)p 2044
+5235 V 2087 5242 a Fp(+)2142 5222 y Fz(,)h(and)e(it)i(w)n(ould)e(b)r(e)
+h Fx(L)2871 5192 y Fp(2)2908 5222 y Fz(\()p Fx(e)p Fz(\))g(if)g
+Fx(v)p 3123 5235 V 35 w Fz(is)g(elemen)n(t)n(wise)f(in)h
+Fx(H)3924 5192 y Fp(1)28 5321 y Fz(\(e.)27 b(g.)65 b(for)27
+b(piecewise)g(p)r(olynomial)g Fx(v)p 1193 5334 V 3 w
+Fz(\).)3897 5469 y Fg(\003)1972 5719 y Fk(3)p eop
+%%Page: 4 4
+4 3 bop 28 214 a Fv(1.3)112 b Fo(V)-9 b(ariational)35
+b(form)m(ulation)f(of)h(the)g(mo)s(del)f(problem)28 367
+y Fz(In)28 b(the)h(previous)e(sections)h(w)n(e)g(in)n(tro)r(duced)g
+(the)h(space)f Fx(H)7 b Fz(\(curl;)14 b(\012\),)29 b(an)f(in)n
+(tegration-b)n(y-parts)d(form)n(ula)j(and)g(the)h(notion)28
+467 y(of)f(trace)f(for)h(an)g Fx(H)7 b Fz(\(curl;)14
+b(\012\)-function.)40 b(In)28 b(this)h(framew)n(ork,)e(the)h(v)-5
+b(ariational)27 b(form)n(ulation)h(of)g(the)h(mo)r(del)f(problem)g
+(\(1\))28 566 y(reads:)255 716 y(Find)g Fx(u)p 452 729
+48 4 v 23 w Fs(2)23 b Fx(H)670 728 y Fp(0)707 716 y Fz(\(curl;)14
+b(\012\))28 b(suc)n(h)f(that)h(for)f(all)h(test)f(functions)h
+Fx(v)p 2164 729 44 4 v 27 w Fs(2)23 b Fx(H)2378 728 y
+Fp(0)2415 716 y Fz(\(curl;)14 b(\012\))28 b(holds)1220
+828 y Fl(Z)1266 1016 y Fp(\012)1331 941 y Fz(curl)14
+b Fx(u)p 1484 954 48 4 v 27 w Fz(curl)f Fx(v)p 1711 954
+44 4 v 17 w(dx)20 b Fz(+)1961 828 y Fl(Z)2007 1016 y
+Fp(\012)2072 941 y Fx(c)p Fz(\()p Fx(x)p Fz(\))14 b Fx(u)p
+2233 954 48 4 v 33 w Fs(\001)k Fx(v)p 2355 954 44 4 v
+17 w(dx)24 b Fz(=)2614 828 y Fl(Z)2660 1016 y Fp(\012)2725
+941 y Fx(f)p 2725 970 50 4 v 41 w Fs(\001)19 b Fx(v)p
+2849 954 44 4 v 17 w(dx)859 b Fz(\(3\))28 1190 y(With)28
+b(our)f(assumptions)g(on)g(the)h(data,)f(the)h(forms)1168
+1411 y Fx(a)p Fz(\()p Fx(u)p 1244 1424 48 4 v(;)14 b(v)p
+1329 1424 44 4 v 3 w Fz(\))23 b(:=)1538 1298 y Fl(Z)1584
+1486 y Fp(\012)1649 1411 y Fz(curl)14 b Fx(u)p 1802 1424
+48 4 v 27 w Fz(curl)f Fx(v)p 2029 1424 44 4 v 17 w(dx)20
+b Fz(+)2279 1298 y Fl(Z)2325 1486 y Fp(\012)2390 1411
+y Fx(c)p Fz(\()p Fx(x)p Fz(\))14 b Fx(u)p 2551 1424 48
+4 v 33 w Fs(\001)k Fx(v)p 2673 1424 44 4 v 17 w(dx)1270
+1633 y(l)r Fz(\()p Fx(v)p 1329 1646 V 3 w Fz(\))23 b(:=)1538
+1520 y Fl(Z)1584 1708 y Fp(\012)1649 1633 y Fx(f)p 1649
+1662 50 4 v 41 w Fs(\001)c Fx(v)p 1773 1646 44 4 v 17
+w(dx)28 1862 y Fz(are)34 b(con)n(tin)n(uous)g(and)h(the)h(bilinear)f
+(form)g Fx(a)p Fz(\()p Fs(\001)p Fx(;)14 b Fs(\001)p
+Fz(\))35 b(is)h(co)r(erciv)n(e)d(on)i Fx(H)2262 1874
+y Fp(0)2300 1862 y Fz(\(curl;)14 b(\012\))23 b Fs(\002)g
+Fx(H)2780 1874 y Fp(0)2818 1862 y Fz(\(curl;)14 b(\012\).)60
+b(By)35 b(the)g(Lax-Milgram)28 1961 y(lemma)27 b(it)h(follo)n(ws,)f
+(that)h(there)f(exists)g(a)g(unique)h(solution)f Fx(u)p
+1948 1974 48 4 v 23 w Fs(2)c Fx(H)2166 1973 y Fp(0)2204
+1961 y Fz(\(curl;)14 b(\012\))27 b(of)h(\(3\).)28 2203
+y Fw(2)134 b Fv(N)n(\023)-54 b(ed)n(\023)g(elec's)37
+b(elemen)m(ts)g(of)g(\014rst)g(t)m(yp)s(e)h(for)f Fu(H)8
+b Ft(\(curl)o(;)17 b(\012\))28 2385 y Fz(In)30 b(this)h(section)g(w)n
+(e)f(will)h(presen)n(t)f(presen)n(t)g Fx(H)7 b Fz(\(curl)o(;)14
+b(\012\)-conforming)30 b(v)n(ector-v)-5 b(alued)28 b(\014nite)k(elemen)
+n(ts,)f(the)g(N)n(\023)-39 b(ed)n(\023)g(elec)29 b(ele-)28
+2484 y(men)n(ts)e(of)h(\014rst)f(t)n(yp)r(e)h(\(cf.)g([8]\),)g(whic)n
+(h)f(can)h(b)r(e)g(used)f(to)h(discretize)f(the)h(v)-5
+b(ariational)26 b(problem)h(\(3\).)28 2683 y(In)g(order)g(to)g
+(de\014ne)h(a)f(\014nite)h(elemen)n(t)g(w)n(e)f(m)n(ust)h(sp)r(ecify)28
+2833 y Fy(the)j(geometry)44 b Fz(W)-7 b(e)26 b(c)n(ho)r(ose)e(a)g
+(reference)g(elemen)n(t)1769 2812 y(^)1747 2833 y Fx(K)30
+b Fz(and)25 b(a)g(c)n(hange)f(of)h(v)-5 b(ariables)24
+b Fx(F)2833 2845 y Fq(K)2897 2833 y Fz(\()5 b(^)-47 b
+Fx(x)q Fz(\),)26 b(the)g(elemen)n(t)f(map.)36 b(W)-7
+b(e)25 b(set)255 2933 y Fx(K)j Fz(=)23 b Fx(F)495 2945
+y Fq(K)559 2933 y Fz(\()614 2912 y(^)591 2933 y Fx(K)6
+b Fz(\).)28 3082 y Fy(a)32 b(function)g(space)46 b Fz(W)-7
+b(e)29 b(need)g(a)g Fm(\014nite)i(dimensional)39 b Fz(function)30
+b(space)2413 3061 y(^)2395 3082 y Fx(R)q Fz(,)g(t)n(ypically)e(a)h
+(space)f(of)h(p)r(olynomials,)g(on)g(the)255 3182 y(reference)e(cell,)g
+(plus)h(a)f(transformation)f(of)1698 3161 y(^)1680 3182
+y Fx(R)i Fz(to)f(a)h(function)g(space)f Fx(R)2552 3194
+y Fq(K)2643 3182 y Fz(on)h(a)f(general)f(cell)i Fx(K)6
+b Fz(.)28 3331 y Fy(dofs)45 b Fz(W)-7 b(e)31 b(ha)n(v)n(e)e(to)i
+(de\014ne)g(a)f(set)h(of)f(dofs)h Fs(A)d Fz(=)g Fs(f)p
+Fx(\013)1690 3343 y Fq(i)1717 3331 y Fz(\()p Fs(\001)p
+Fz(\))p Fs(g)1846 3301 y Fq(N)1846 3353 y(i)p Fp(=1)1958
+3331 y Fz(.)46 b(These)31 b(are)e(linear)h(functionals)h(on)3208
+3310 y(^)3190 3331 y Fx(R)g Fz(and)g Fx(N)37 b(<)28 b
+Fs(1)i Fz(is)h(the)255 3440 y(dimension)c(of)760 3419
+y(^)742 3440 y Fx(R)q Fz(.)37 b Fs(A)28 b Fz(should)f(b)r(e)h
+Fm(unisolvent)p Fz(,)g(that)f(is,)h(the)g(dofs)f Fx(\013)2407
+3452 y Fq(i)2435 3440 y Fz(\()p Fs(\001)p Fz(\))h(are)f(linearly)g
+(indep)r(enden)n(t.)28 3589 y(First,)e(w)n(e)f(observ)n(e)f(that)i(for)
+f(a)g(conforming)g(discretization)g(of)g(\(3\))h(w)n(e)f(cannot)g(tak)n
+(e)g(v)n(ector-v)-5 b(alued)23 b(\014nite)j(elemen)n(ts)e(that)28
+3689 y(are)j(build)h(b)n(y)g(taking)f(the)h(standard)f(no)r(dal)h
+(\014nite)g(elemen)n(t)g(spaces)f(of)h(globally)f(con)n(tin)n(uous)g
+(functions)h(for)f(eac)n(h)h(v)n(ector)28 3788 y(comp)r(onen)n(t.)35
+b(F)-7 b(or)23 b Fx(H)7 b Fz(\(curl)o(;)14 b(\012\)-functions,)25
+b(the)f(only)f(con)n(tin)n(uit)n(y)g(condition)g(is)h(the)g(con)n(tin)n
+(uit)n(y)f(of)g(the)h(tangen)n(tial)f(comp)r(o-)28 3888
+y(nen)n(t)29 b(o)n(v)n(er)d(cell)j(b)r(oundaries.)40
+b(This)28 b(fact)h(will)g(motiv)-5 b(ate)29 b(the)g(c)n(hoice)f(of)h
+(appropriate)e(degrees)g(of)i(freedom)f(\(abbreviated)28
+3988 y(b)n(y)f(dofs)g(in)h(the)g(follo)n(wing\).)28 4087
+y(W)-7 b(e)27 b(will)h(giv)n(e)e(an)h(outline)g(of)g(the)h
+(construction)e(of)h(the)h(\014nite)f(elemen)n(t)h(spaces)e(describ)r
+(ed)h(b)n(y)g(N)n(\023)-39 b(ed)n(\023)g(elec)25 b(in)i([8].)37
+b(In)27 b(litera-)28 4187 y(ture,)g(they)h(are)f(also)f(referred)g(to)i
+(as)f Fm(N)n(\023)-40 b(ed)n(\023)g(ele)l(c's)31 b(elements)e(of)i
+(\014rst)e(typ)l(e)p Fz(.)28 4515 y Fv(2.1)112 b Fo(Construction)35
+b(of)g(N)n(\023)-50 b(ed)n(\023)g(elec)35 b(elemen)m(ts)f(on)h
+(tetrahedral)f(grids)28 4669 y Fz(In)27 b(this)h(section,)g(w)n(e)f
+(denote)g(b)n(y)1121 4648 y(^)1099 4669 y Fx(K)33 b Fz(the)28
+b(standard)e(triangular)g(or)h(tetrahedral)f(reference)h(elemen)n(t.)28
+4898 y Fo(2.1.1)105 b(P)m(olynomial)35 b(spaces)h(on)f(the)g(reference)
+g(elemen)m(t)28 5051 y Fz(In)22 b([8],)i(N)n(\023)-39
+b(ed)n(\023)g(elec)21 b(in)n(tro)r(duces)h(the)h(function)g(spaces)1686
+5030 y(^)1668 5051 y Fx(R)h Fz(=)e Fs(R)1912 5021 y Fq(k)1953
+5051 y Fz(,)i(on)f(whic)n(h)f(his)h(\014nite)g(elemen)n(t)g(will)g(b)r
+(e)g(based.)35 b(These)22 b(spaces)28 5151 y(are)k(sub)5
+b(ject)28 b(to)f(this)h(section.)37 b(F)-7 b(or)27 b(more)g(details,)g
+(consult)g([8].)28 5250 y(W)-7 b(e)26 b(denote)f(b)n(y)g
+Fr(P)599 5262 y Fq(k)639 5250 y Fz(\()680 5229 y(^)671
+5250 y(\006\))h(the)g(space)f(of)g(p)r(olynomials)g(of)g(degree)g
+Fx(k)j Fz(on)2245 5229 y(^)2236 5250 y(\006,)e(where)2592
+5229 y(^)2583 5250 y(\006)f(is)h(an)f(edge,)h(a)f(face)g(of)h(or)e(the)
+i(reference)28 5350 y(elemen)n(t)c(itself..)36 b(The)23
+b(space)971 5328 y(~)967 5350 y Fr(P)1019 5362 y Fq(k)1081
+5350 y Fz(of)f(homogeneous)f(p)r(olynomials)h(of)h(degree)e
+Fx(k)26 b Fz(is)c(the)h(span)f(of)h(monomials)e(of)i(total)f(degree)28
+5450 y Fx(k)30 b Fz(in)e Fx(d)g Fz(v)-5 b(ariables)26
+b(on)751 5429 y(^)728 5450 y Fx(K)6 b Fz(.)1972 5719
+y Fk(4)p eop
+%%Page: 5 5
+5 4 bop 28 207 a Fn(Definition)28 b Fz(3)45 b Fm(We)30
+b(de\014ne)f(the)h(auxiliary)h(sp)l(ac)l(e)1249 461 y
+Fs(S)1305 427 y Fq(k)1370 461 y Fz(:=)22 b Fs(f)14 b
+Fx(p)p 1536 491 42 4 v 23 w Fs(2)23 b Fz(\()1716 440
+y(~)1711 461 y Fr(P)1763 473 y Fq(k)1803 461 y Fz(\))1835
+427 y Fq(d)1897 461 y Fz(:)g Fx(p)p 1943 491 V 18 w Fs(\001)f
+Fz(^)-45 b Fx(x)p 2045 474 48 4 v 23 w Fz(=)2246 357
+y Fq(d)2203 382 y Fl(X)2209 559 y Fq(i)p Fp(=1)2337 461
+y Fx(p)2379 473 y Fq(i)2425 461 y Fz(^)e Fx(x)2467 473
+y Fq(i)2518 461 y Fs(\021)23 b Fz(0)14 b Fs(g)g Fx(;)1114
+b Fz(\(4\))28 731 y Fm(with)35 b Fz(^)-47 b Fx(x)23 b
+Fs(2)379 710 y Fz(^)357 731 y Fx(K)5 b Fm(.)28 831 y(The)30
+b(dimension)h(of)g(this)f(sp)l(ac)l(e)g(is)g Fx(k)j Fm(in)d(the)g(c)l
+(ase)g Fx(d)23 b Fz(=)g(2)29 b Fm(and)h Fx(k)s Fz(\()p
+Fx(k)22 b Fz(+)c(2\))29 b Fm(for)i Fx(d)23 b Fz(=)g(3)p
+Fm(.)28 1023 y Fz(N)n(\023)-39 b(ed)n(\023)g(elec's)25
+b(\014rst)i(family)h(of)g Fx(H)7 b Fz(\(curl)o(;)14 b
+(\012\)-conforming)27 b(\014nite)h(elemen)n(ts)f(is)h(based)f(on)g(the)
+h(p)r(olynomial)f(spaces)28 1192 y Fn(Definition)h Fz(4)1538
+1315 y Fs(R)1608 1281 y Fq(k)1672 1315 y Fz(=)1760 1223
+y Fl(\020)1809 1315 y Fr(P)1861 1327 y Fq(k)q Fh(\000)p
+Fp(1)1986 1315 y Fz(\()2040 1294 y(^)2018 1315 y Fx(K)6
+b Fz(\))2127 1223 y Fl(\021)2177 1240 y Fq(d)2234 1315
+y Fs(\010)18 b(S)2373 1281 y Fq(k)2428 1315 y Fx(:)1404
+b Fz(\(5\))28 1481 y Fm(These)30 b(sp)l(ac)l(es)h(have)g(dimension)1201
+1658 y Fz(dim\()p Fs(R)1441 1623 y Fq(k)1483 1658 y Fz(\))23
+b(=)g Fx(k)s Fz(\()p Fx(k)e Fz(+)d(2\))170 b Fm(for)85
+b Fx(d)24 b Fz(=)e(2)14 b Fx(;)1201 1839 y Fz(dim\()p
+Fs(R)1441 1805 y Fq(k)1483 1839 y Fz(\))23 b(=)1636 1783
+y(\()p Fx(k)e Fz(+)d(3\)\()p Fx(k)k Fz(+)c(2\))p Fx(k)p
+1636 1820 553 4 v 1891 1896 a Fz(2)2368 1839 y Fm(for)86
+b Fx(d)23 b Fz(=)g(3)14 b Fx(:)28 2052 y Fz(In)27 b(the)h(t)n(w)n
+(o-dimensional)e(case,)h(an)g(equiv)-5 b(alen)n(t)28
+b(c)n(haracterization)d(of)i(the)h(space)f Fs(R)2733
+2022 y Fq(k)2802 2052 y Fz(is)1301 2280 y Fs(R)1371 2246
+y Fq(k)1435 2280 y Fz(=)1523 2188 y Fl(\020)1572 2280
+y Fr(P)1624 2292 y Fq(k)q Fh(\000)p Fp(1)1749 2280 y
+Fz(\()1803 2259 y(^)1781 2280 y Fx(K)6 b Fz(\))1890 2188
+y Fl(\021)1940 2205 y Fp(2)1995 2280 y Fs(\010)2083 2259
+y Fz(~)2078 2280 y Fr(P)2130 2292 y Fq(k)q Fh(\000)p
+Fp(1)2283 2163 y Fl(\022)2423 2230 y Fz(^)-48 b Fx(x)2464
+2242 y Fp(2)2385 2329 y Fs(\000)5 b Fz(^)-47 b Fx(x)2497
+2341 y Fp(1)2576 2163 y Fl(\023)2665 2280 y Fx(:)1167
+b Fz(\(6\))28 2471 y(This)27 b(can)g(b)r(e)h(seen)g(b)n(y)f(noting)g
+(that)h(for)f Fx(d)d Fz(=)e(2)1616 2672 y(~)1611 2693
+y Fr(P)1663 2705 y Fq(k)q Fh(\000)p Fp(1)1815 2576 y
+Fl(\022)1955 2643 y Fz(^)-47 b Fx(x)1997 2655 y Fp(2)1918
+2742 y Fs(\000)5 b Fz(^)-47 b Fx(x)2030 2754 y Fp(1)2109
+2576 y Fl(\023)2193 2693 y Fs(\022)22 b(S)2336 2659 y
+Fq(k)28 2934 y Fz(ob)n(viously)27 b(holds.)41 b(Moreo)n(v)n(er,)27
+b(the)i(dimension)g(of)g(the)h(space)2047 2913 y(~)2042
+2934 y Fr(P)2094 2946 y Fq(k)q Fh(\000)p Fp(1)2248 2934
+y Fz(of)f(homogeneous)e(p)r(olynomials)h(of)h(degree)f
+Fx(k)22 b Fs(\000)d Fz(1)29 b(in)28 3034 y(t)n(w)n(o)f(v)-5
+b(ariables)27 b(is)i Fx(k)i Fz(and)e(this)g(is)g(also)e(the)j
+(dimension)e Fs(S)1862 3004 y Fq(k)1904 3034 y Fz(.)40
+b(This)29 b(pro)n(v)n(es)e(the)i(stated)g(equiv)-5 b(alen)n(t)28
+b(represen)n(tation)f(of)i(the)28 3134 y(space)d Fs(S)305
+3104 y Fq(k)347 3134 y Fz(.)28 3333 y(W)-7 b(e)28 b(illustrate)g(these)
+g(de\014nitions)h(with)g(some)e(examples.)39 b(W)-7 b(e)28
+b(start)g(with)h(the)g(case)e Fx(d)d Fz(=)g(2)k(and)g(consider)f(the)i
+(spaces)e(of)28 3433 y(p)r(olynomials)f(of)i(degree)e
+Fx(k)g Fz(=)d(1)k(and)g Fx(k)f Fz(=)d(2:)28 3625 y Fn(Example)k
+Fz(1)1334 3753 y Fs(R)1404 3719 y Fp(1)1464 3753 y Fz(=)1552
+3636 y Fl(\034\022)1717 3703 y Fz(1)1717 3802 y(0)1800
+3636 y Fl(\023)1889 3765 y Fq(;)1926 3636 y Fl(\022)2029
+3703 y Fz(0)2029 3802 y(1)2112 3636 y Fl(\023)2201 3765
+y Fq(;)2238 3636 y Fl(\022)2379 3703 y Fz(^)-48 b Fx(x)2420
+3715 y Fp(2)2341 3802 y Fs(\000)5 b Fz(^)-47 b Fx(x)2453
+3814 y Fp(1)2532 3636 y Fl(\023\035)3855 3753 y Fz(\(7\))1136
+4028 y Fs(R)1206 3994 y Fp(2)1267 4028 y Fz(=)1354 3936
+y Fl(\020)1404 4028 y Fr(P)1456 4040 y Fp(1)1492 4028
+y Fz(\()1546 4007 y(^)1524 4028 y Fx(K)6 b Fz(\))1633
+3936 y Fl(\021)1683 3953 y Fp(2)1738 4028 y Fs(\010)1821
+3911 y Fl(\034)q(\022)1991 3977 y Fz(^)-47 b Fx(x)2033
+3989 y Fp(1)2090 3977 y Fz(^)g Fx(x)2132 3989 y Fp(2)2003
+4077 y Fs(\000)5 b Fz(^)-47 b Fx(x)2115 4047 y Fp(2)2115
+4098 y(1)2211 3911 y Fl(\023)2300 4040 y Fq(;)2337 3911
+y Fl(\022)2527 3977 y Fz(^)g Fx(x)2569 3947 y Fp(2)2569
+3998 y(2)2440 4077 y Fs(\000)5 b Fz(^)-47 b Fx(x)2552
+4089 y Fp(1)2608 4077 y Fz(^)g Fx(x)2650 4089 y Fp(2)2729
+3911 y Fl(\023\035)28 4265 y Fz(T)-7 b(o)27 b(illustrate)g(a)g(case)g
+(for)g Fx(d)c Fz(=)g(3,)k(w)n(e)g(consider)g(the)h(lo)n(w)n(est)e(p)r
+(olynomial)h(degree)g Fx(k)f Fz(=)c(1:)28 4434 y Fn(Example)27
+b Fz(2)45 b Fm(We)30 b(have)h(to)e(sp)l(e)l(cify)j(a)e(b)l(asis)g(for)h
+Fs(S)1670 4404 y Fp(1)1707 4434 y Fm(:)28 4533 y(L)l(et)e
+Fx(p)p 171 4563 42 4 v 29 w Fm(b)l(e)h(a)g(p)l(olynomial)i(in)e
+Fz(\()p Fr(P)1020 4545 y Fp(1)1056 4533 y Fz(\()1111
+4512 y(^)1088 4533 y Fx(K)6 b Fz(\)\))1229 4503 y Fp(3)1297
+4533 y Fm(with)30 b(c)l(omp)l(onentwise)g(r)l(epr)l(esentation)1448
+4801 y Fx(p)1490 4813 y Fq(i)1540 4801 y Fz(=)1671 4697
+y Fp(3)1628 4722 y Fl(X)1630 4899 y Fq(j)s Fp(=1)1761
+4801 y Fx(a)1805 4813 y Fq(ij)1869 4801 y Fz(^)-47 b
+Fx(x)1911 4813 y Fq(j)1960 4801 y Fx(;)184 b(i)22 b Fz(=)h(1)p
+Fx(;)14 b Fz(2)p Fx(;)g Fz(3)g Fx(:)28 5072 y Fm(The)30
+b(c)l(ondition)h(for)g Fx(p)p 693 5101 V 29 w Fm(b)l(eing)f(in)g
+Fs(S)1134 5042 y Fp(1)1202 5072 y Fm(is)1219 5339 y Fx(p)p
+1219 5369 V 18 w Fs(\001)22 b Fz(^)-45 b Fx(x)p 1321
+5352 48 4 v 24 w Fz(=)1523 5236 y Fp(3)1479 5261 y Fl(X)1485
+5437 y Fq(i)p Fp(=1)1613 5339 y Fx(a)1657 5351 y Fq(ii)1713
+5339 y Fz(^)e Fx(x)1755 5305 y Fp(2)1755 5360 y Fq(i)1811
+5339 y Fz(+)1957 5236 y Fp(3)1913 5261 y Fl(X)1894 5437
+y Fq(i;j)s Fp(=1)1920 5496 y Fq(j)s(>i)2052 5339 y Fz(\()p
+Fx(a)2128 5351 y Fq(ij)2205 5339 y Fz(+)18 b Fx(a)2332
+5351 y Fq(j)s(i)2391 5339 y Fz(\))5 b(^)-47 b Fx(x)2470
+5351 y Fq(i)2503 5339 y Fz(^)g Fx(x)2545 5351 y Fq(j)2604
+5339 y Fs(\021)22 b Fz(0)14 b Fx(:)1972 5719 y Fk(5)p
+eop
+%%Page: 6 6
+6 5 bop 28 217 a Fm(This)31 b(le)l(ads)f(to)g(the)g(c)l(ondition)h(on)e
+(the)h(c)l(o)l(e\016cients)h(of)f(a)g(p)l(olynomial)i(in)e
+Fs(S)2448 187 y Fp(1)2486 217 y Fm(:)1235 385 y Fx(a)1279
+397 y Fp(11)1372 385 y Fz(=)23 b Fx(a)1504 397 y Fp(22)1597
+385 y Fz(=)g Fx(a)1729 397 y Fp(33)1822 385 y Fz(=)g(0)1235
+509 y Fx(a)1279 521 y Fp(12)1372 509 y Fz(=)g Fs(\000)p
+Fx(a)1569 521 y Fp(21)1652 509 y Fx(;)99 b(a)1818 521
+y Fp(13)1911 509 y Fz(=)23 b Fs(\000)p Fx(a)2108 521
+y Fp(31)2192 509 y Fx(;)98 b(a)2357 521 y Fp(23)2451
+509 y Fz(=)22 b Fs(\000)p Fx(a)2647 521 y Fp(32)2731
+509 y Fx(:)28 688 y Fm(With)40 b(the)g(b)l(asis)h(of)g
+Fs(S)768 658 y Fp(1)845 688 y Fm(which)h(is)e(obtaine)l(d)h(by)g(cho)l
+(osing)g Fx(a)2035 700 y Fq(ij)2135 688 y Fz(=)h(1)p
+Fm(,)g Fx(i)f Fz(=)h(1)p Fx(;)14 b Fz(2)p Fx(;)g Fz(3)p
+Fm(,)41 b Fx(j)46 b(>)c(i)d Fm(and)i(setting)e(al)t(l)i(the)g(other)28
+788 y(c)l(o)l(e\016cients)30 b(to)g(zer)l(o,)g(we)g(get)1036
+1056 y Fs(R)1106 1022 y Fp(1)1167 1056 y Fz(=)1255 964
+y Fl(\020)1304 1056 y Fr(P)1356 1068 y Fp(0)1392 1056
+y Fz(\()1446 1035 y(^)1424 1056 y Fx(K)6 b Fz(\))1533
+964 y Fl(\021)1583 981 y Fp(3)1638 1056 y Fs(\010)1721
+914 y Fl(*)1788 889 y(0)1788 1039 y(@)1924 956 y Fz(0)1908
+1055 y(^)-48 b Fx(x)1949 1067 y Fp(3)1908 1155 y Fz(^)g
+Fx(x)1949 1167 y Fp(2)2029 889 y Fl(1)2029 1039 y(A)2129
+1068 y Fq(;)2180 889 y Fl(0)2180 1039 y(@)2300 956 y
+Fz(^)h Fx(x)2342 968 y Fp(3)2316 1055 y Fz(0)2300 1155
+y(^)g Fx(x)2342 1167 y Fp(1)2421 889 y Fl(1)2421 1039
+y(A)2521 1068 y Fq(;)2573 889 y Fl(0)2573 1039 y(@)2692
+956 y Fz(^)g Fx(x)2734 968 y Fp(2)2692 1055 y Fz(^)g
+Fx(x)2734 1067 y Fp(1)2708 1155 y Fz(0)2813 889 y Fl(1)2813
+1039 y(A)2886 914 y(+)28 1345 y Fz(W)-7 b(e)35 b(remark)f(at)h(this)g
+(p)r(oin)n(t)g(that)h(the)f(spaces)g Fs(R)1643 1315 y
+Fq(k)1719 1345 y Fz(do)g(not)g(span)g(the)g(whole)g(\()p
+Fr(P)2676 1357 y Fq(k)2716 1345 y Fz(\()2770 1324 y(^)2748
+1345 y Fx(K)6 b Fz(\)\))2889 1315 y Fq(d)2928 1345 y
+Fz(.)59 b(An)36 b Fx(H)7 b Fz(\(curl;)14 b(\012\)-conforming)28
+1445 y(FEM)27 b(based)g(on)h(full)g(p)r(olynomial)f(spaces,)g(the)h(so)
+f(called)h Fm(N)n(\023)-40 b(ed)n(\023)g(ele)l(c)30 b(elements)g(of)h
+(se)l(c)l(ond)f(typ)l(e)p Fz(,)e(w)n(as)f(in)n(tro)r(duced)g(in)h(1986)
+28 1545 y(b)n(y)f(N)n(\023)-39 b(ed)n(\023)g(elec)26
+b(in)h([10].)28 1732 y Fn(Remark)h Fz(3)45 b Fm(The)38
+b(original,)j(r)l(ather)d(te)l(chnic)l(al,)i(r)l(epr)l(esentation)e(of)
+g(the)f(sp)l(ac)l(es)h Fs(R)2746 1702 y Fq(k)2825 1732
+y Fm(is)f(given)h(in)f(De\014nition)g(2)h(in)f([8)q(].)28
+1832 y(N)n(\023)-40 b(ed)n(\023)g(ele)l(c)30 b(uses)f(this)i(r)l(epr)l
+(esentation)f(in)f(most)h(of)h(his)f(pr)l(o)l(ofs.)40
+b(We)30 b(wil)t(l)h(not)e(r)l(efer)i(to)e(it)h(her)l(e.)28
+2059 y Fo(2.1.2)105 b(Degrees)35 b(of)g(freedom)g(on)g(the)f(reference)
+h(elemen)m(t)28 2213 y Fz(In)27 b(this)h(section)f(w)n(e)h(de\014ne)g
+(the)f(set)h Fs(A)g Fz(of)g(dofs,)f(whic)n(h)h(is)f(a)g(set)h(of)f
+(linear)g(functionals)h(on)f Fs(R)3043 2182 y Fq(k)3084
+2213 y Fz(.)28 2377 y Fn(Remark)h Fz(4)45 b Fm(R)l(e)l(c)l(al)t(l)30
+b(that)f(the)h(dimension)h(of)g(the)f(sp)l(ac)l(es)g(of)h(p)l
+(olynomials)h(of)e(de)l(gr)l(e)l(e)g Fx(k)j Fm(in)d Fx(n)f
+Fm(variables)j(is)3491 2310 y Fl(\000)3529 2341 y Fq(n)p
+Fp(+)p Fq(k)q Fp(+2)3615 2406 y Fq(n)3742 2310 y Fl(\001)3780
+2377 y Fm(.)28 2582 y Fn(Definition)c Fz(5)45 b Fm(L)l(et)742
+2561 y Fz(^)719 2582 y Fx(K)31 b Fm(b)l(e)25 b(the)h(r)l(efer)l(enc)l
+(e)f(triangle)h(and)1848 2566 y Fz(^)1854 2582 y Fx(t)p
+1854 2595 30 4 v 25 w Fm(the)f(tangent)g(as)g(de\014ne)l(d)h(in)f(c)l
+(onvention)g(1.)38 b(The)26 b(set)f(of)h(de)l(gr)l(e)l(es)28
+2681 y(of)k(fr)l(e)l(e)l(dom)h Fs(A)f Fm(on)g Fs(R)717
+2651 y Fq(k)787 2681 y Fm(in)g(the)g(2d)h(c)l(ase)f(c)l(onsists)g(of)g
+(the)g(line)l(ar)h(functionals)28 2827 y Fy(edge)g(dofs)1441
+2964 y Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b Fx(u)p 1518
+2977 48 4 v Fz(\))23 b(:=)1732 2851 y Fl(Z)1781 3040
+y Fp(^)-36 b Fq(e)1814 2964 y Fz(\()1840 2949 y(^)1846
+2964 y Fx(t)p 1846 2977 30 4 v 18 w Fs(\001)22 b Fz(^)-45
+b Fx(u)p 1936 2977 48 4 v Fz(\))27 b(^)-55 b Fx(')14
+b(d)s Fz(^)-45 b Fx(s)85 b Fs(8)13 b Fz(^)-55 b Fx(')22
+b Fs(2)i Fr(P)2519 2976 y Fq(k)q Fh(\000)p Fp(1)2643
+2964 y Fz(\()s(^)-45 b Fx(e)p Fz(\))14 b Fx(;)255 3171
+y Fm(for)30 b(every)h(e)l(dge)j Fz(^)-45 b Fx(e)29 b
+Fm(of)978 3150 y Fz(^)955 3171 y Fx(K)6 b Fm(.)39 b(We)29
+b(have)i(a)f(total)g(of)h Fz(3)p Fx(k)h Fm(of)f(e)l(dge)f(dofs.)28
+3317 y Fy(inner)h(dofs)1400 3438 y Fz(^)-50 b Fx(\013)p
+Fz(\()s(^)-45 b Fx(u)p 1477 3451 V Fz(\))23 b(:=)1691
+3325 y Fl(Z)1754 3499 y Fp(^)1737 3514 y Fq(K)1818 3438
+y Fz(^)-45 b Fx(u)p 1815 3451 V 18 w Fs(\001)25 b Fz(^)-49
+b Fx(')p 1922 3467 55 4 v 15 w(d)5 b Fz(^)-47 b Fx(x)85
+b Fs(8)6 b Fz(^)-48 b Fx(')p 2213 3467 V 23 w Fs(2)23
+b Fz(\()p Fr(P)2452 3450 y Fq(k)q Fh(\000)p Fp(2)2577
+3438 y Fz(\()2631 3417 y(^)2609 3438 y Fx(K)6 b Fz(\)\))2750
+3404 y Fp(2)2801 3438 y Fx(:)255 3628 y Fm(We)30 b(have)h(a)f(total)g
+(of)g Fx(k)s Fz(\()p Fx(k)22 b Fs(\000)c Fz(1\))29 b
+Fm(of)i(inner)f(dofs.)28 3816 y Fn(Definition)e Fz(6)45
+b Fm(L)l(et)746 3795 y Fz(^)724 3816 y Fx(K)35 b Fm(b)l(e)29
+b(the)h(r)l(efer)l(enc)l(e)g(tetr)l(ahe)l(dr)l(on,)1873
+3801 y Fz(^)1879 3816 y Fx(t)p 1879 3829 30 4 v 30 w
+Fm(the)f(tangent)g(to)h(an)f(e)l(dge)h(as)g(de\014ne)l(d)g(in)g(c)l
+(onvention)f(1)h(and)35 b Fz(^)-47 b Fx(n)p 3911 3829
+50 4 v 28 3916 a Fm(the)32 b(outwar)l(d)g(unit)f(normal)i(ve)l(ctor)f
+(to)g(a)h(fac)l(e.)46 b(The)33 b(set)f(of)h(de)l(gr)l(e)l(es)f(of)h(fr)
+l(e)l(e)l(dom)g Fs(A)f Fm(on)h Fs(R)2969 3885 y Fq(k)3042
+3916 y Fm(in)f(the)g(3d)h(c)l(ase)f(c)l(onsists)g(of)28
+4015 y(the)d(line)l(ar)i(functionals)28 4161 y Fy(edge)g(dofs)1441
+4298 y Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b Fx(u)p 1518
+4311 48 4 v Fz(\))23 b(:=)1732 4185 y Fl(Z)1781 4374
+y Fp(^)-36 b Fq(e)1814 4298 y Fz(\()1840 4283 y(^)1846
+4298 y Fx(t)p 1846 4311 30 4 v 18 w Fs(\001)22 b Fz(^)-45
+b Fx(u)p 1936 4311 48 4 v Fz(\))27 b(^)-55 b Fx(')14
+b(d)s Fz(^)-45 b Fx(s)85 b Fs(8)13 b Fz(^)-55 b Fx(')22
+b Fs(2)i Fr(P)2519 4310 y Fq(k)q Fh(\000)p Fp(1)2643
+4298 y Fz(\()s(^)-45 b Fx(e)p Fz(\))14 b Fx(;)255 4505
+y Fm(for)30 b(every)h(e)l(dge)j Fz(^)-45 b Fx(e)29 b
+Fm(of)h(the)g(tetr)l(ahe)l(dr)l(on)1550 4484 y Fz(^)1528
+4505 y Fx(K)6 b Fm(.)38 b(We)30 b(have)h(a)f(total)g(of)h
+Fz(6)p Fx(k)h Fm(of)f(e)l(dge)f(dofs.)28 4651 y Fy(face)i(dofs)1329
+4772 y Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b Fx(u)p 1406
+4785 V Fz(\))24 b(:=)1620 4659 y Fl(Z)1680 4832 y Fp(^)1666
+4847 y Fq(f)1709 4772 y Fz(\()s(^)-45 b Fx(u)p 1741 4785
+V 19 w Fs(^)23 b Fz(^)-46 b Fx(n)p 1882 4785 50 4 v -1
+w Fz(\))19 b Fs(\001)25 b Fz(^)-48 b Fx(')p 2024 4801
+55 4 v 14 w(d)q Fz(^)-43 b Fx(a)85 b Fs(8)13 b Fz(^)-55
+b Fx(')22 b Fs(2)i Fz(\()p Fr(P)2550 4784 y Fq(k)q Fh(\000)p
+Fp(2)2674 4772 y Fz(\()2725 4750 y(^)2706 4772 y Fx(f)9
+b Fz(\)\))2820 4738 y Fp(2)2872 4772 y Fx(;)255 4991
+y Fm(for)30 b(every)h(fac)l(e)795 4969 y Fz(^)777 4991
+y Fx(f)38 b Fm(of)31 b(the)f(tetr)l(ahe)l(dr)l(on)1549
+4970 y Fz(^)1527 4991 y Fx(K)5 b Fm(.)39 b(We)29 b(have)i(a)g(total)e
+(of)i Fz(4)p Fx(k)s Fz(\()p Fx(k)21 b Fs(\000)d Fz(1\))29
+b Fm(of)i(fac)l(e)g(dofs.)28 5136 y Fy(inner)g(dofs)1400
+5258 y Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b Fx(u)p 1477
+5271 48 4 v Fz(\))23 b(:=)1691 5145 y Fl(Z)1754 5319
+y Fp(^)1737 5334 y Fq(K)1818 5258 y Fz(^)-45 b Fx(u)p
+1815 5271 V 18 w Fs(\001)25 b Fz(^)-49 b Fx(')p 1922
+5287 55 4 v 15 w(d)5 b Fz(^)-47 b Fx(x)85 b Fs(8)6 b
+Fz(^)-48 b Fx(')p 2213 5287 V 23 w Fs(2)23 b Fz(\()p
+Fr(P)2452 5270 y Fq(k)q Fh(\000)p Fp(3)2577 5258 y Fz(\()2631
+5237 y(^)2609 5258 y Fx(K)6 b Fz(\)\))2750 5223 y Fp(3)2801
+5258 y Fx(:)255 5469 y Fm(We)30 b(have)h(a)f(total)g(of)967
+5429 y Fq(k)q Fp(\()p Fq(k)q Fh(\000)p Fp(1\)\()p Fq(k)q
+Fh(\000)p Fp(2\))p 967 5450 384 4 v 1143 5498 a(2)1391
+5469 y Fm(of)g(inner)g(dofs.)1972 5719 y Fk(6)p eop
+%%Page: 7 7
+7 6 bop 28 207 a Fz(W)-7 b(e)27 b(note)g(that)h(in)f(the)g(case)g(of)g
+(lo)n(w)n(est)f(order)g(elemen)n(ts,)h(i.)g(e.)37 b Fx(k)26
+b Fz(=)c(1,)27 b(only)g(edge)g(dofs)g(o)r(ccur.)36 b(This)27
+b(is)g(not)g(so)f(for)h(higher)28 307 y(order)i(elemen)n(ts.)47
+b(F)-7 b(or)31 b Fx(k)g Fz(=)d(2)j(w)n(e)g(additionally)f(ha)n(v)n(e)g
+(inner)h(dofs)f(in)i(the)f(2d)g(case)f(and)h(face)g(dofs)f(in)i(the)f
+(3d)g(case.)46 b(F)-7 b(or)28 406 y Fx(k)25 b Fs(\024)e
+Fz(3)k(w)n(e)h(ha)n(v)n(e)e(all)h(t)n(yp)r(es)h(of)f(dofs)h(in)g(b)r
+(oth)g(cases.)28 506 y(W)-7 b(e)28 b(also)e(note)i(that)f(the)h(total)g
+(n)n(um)n(b)r(er)f(of)h(dofs)f(equals)g(the)h(dimension)f(of)h(the)g
+(spaces)f Fs(R)2963 476 y Fq(k)3004 506 y Fz(,)g(as)g(it)h(should)g(b)r
+(e.)28 606 y(The)d(represen)n(tation)e(of)i(the)g Fm(interfac)l(e)32
+b Fz(dofs,)26 b(that)f(is)g(edge)f(dofs)h(in)h(2d,)f(edge)f(and)h(face)
+g(dofs)g(in)g(3d,)g(is)g(motiv)-5 b(ated)25 b(b)n(y)g(the)28
+705 y(con)n(tin)n(uit)n(y)i(condition)g(on)g Fx(H)7 b
+Fz(\(curl;)14 b(\012\)-functions)28 b(stated)f(in)h(prop)r(osition)f
+(1.)28 893 y Fn(Pr)n(oposition)g Fz(2)45 b Fm(The)38
+b(set)g Fs(A)g Fm(of)g(dofs)h(b)l(e\014ne)l(d)f(ab)l(ove)g(is)g
+(unisolvent)g(on)g Fs(R)2560 863 y Fq(k)2601 893 y Fm(.)65
+b Fz(^)-45 b Fx(u)p 2688 906 48 4 v 37 w Fs(2)38 b(R)2936
+863 y Fq(k)3015 893 y Fm(is)g(uniquely)g(de\014ne)l(d)g(by)g(the)28
+993 y(moments)f Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b
+Fx(u)p 467 1006 V Fz(\))p Fm(.)28 1181 y Fn(Pr)n(oof.)40
+b Fz(See)27 b([8],)h(pro)r(of)f(of)g(theorem)g(1)h(and)f(preceeding)g
+(lemmas.)28 1369 y Fn(Example)g Fz(3)g(\(Reference)h(shap)r(e)f
+(functions)h(of)f(lo)n(w)n(est)g(order)f(for)h(N)n(\023)-39
+b(ed)n(\023)g(elec)26 b(elemen)n(ts)i(on)f(triangular)f(meshes\))45
+b Fm(L)l(et)21 b(the)g(r)l(ef-)28 1469 y(er)l(enc)l(e)30
+b(element)h(b)l(e)g(the)g(triangle)1163 1448 y Fz(^)1141
+1469 y Fx(K)g Fz(=)1332 1401 y Fl(\010)1381 1469 y Fz(\()5
+b(^)-47 b Fx(x;)20 b Fz(^)-48 b Fx(y)s Fz(\))23 b Fs(2)h
+Fr(R)1729 1438 y Fp(2)1795 1469 y Fz(:)108 b(0)23 b Fs(\024)28
+b Fz(^)-48 b Fx(x)24 b Fs(\024)e Fz(1)14 b Fx(;)41 b
+Fz(0)23 b Fs(\024)28 b Fz(^)-47 b Fx(y)25 b Fs(\024)e
+Fz(1)18 b Fs(\000)23 b Fz(^)-47 b Fx(x)2853 1401 y Fl(\011)2902
+1469 y Fm(.)42 b(L)l(ab)l(el)31 b(the)h(e)l(dges)f(c)l(outer)l(clo)l
+(ck-)28 1585 y(wise)f(startung)f(with)k Fz(^)-45 b Fx(e)755
+1597 y Fp(0)815 1585 y Fz(=)p 903 1513 406 4 v 23 w(\(0)p
+Fx(;)14 b Fz(0\))p Fx(;)g Fz(\(1)p Fx(;)g Fz(0\))o Fm(.)38
+b(The)31 b(tangential)f(ve)l(ctors)g(to)g(the)g(e)l(dges)g(ar)l(e)g
+(\(oriente)l(d)h(c)l(ounter)l(clo)l(ckwise\))1040 1793
+y Fz(^)1046 1808 y Fx(t)p 1046 1821 30 4 v 21 x Fp(0)1136
+1808 y Fz(=)1224 1691 y Fl(\022)1326 1757 y Fz(1)1326
+1857 y(0)1409 1691 y Fl(\023)1498 1808 y Fx(;)1614 1793
+y Fz(^)1620 1808 y Fx(t)p 1620 1821 V 21 x Fp(1)1710
+1808 y Fz(=)1842 1752 y(1)p 1808 1789 111 4 v 1808 1805
+a Fs(p)p 1877 1805 42 4 v 69 x Fz(2)1942 1691 y Fl(\022)2045
+1757 y Fs(\000)p Fz(1)2077 1857 y(1)2192 1691 y Fl(\023)2281
+1808 y Fx(;)2397 1793 y Fz(^)2403 1808 y Fx(t)p 2403
+1821 30 4 v 21 x Fp(2)2493 1808 y Fz(=)2581 1691 y Fl(\022)2716
+1757 y Fz(0)2684 1857 y Fs(\000)p Fz(1)2831 1691 y Fl(\023)2920
+1808 y Fx(:)28 2036 y Fm(The)f(underlying)h(function)e(sp)l(ac)l(e)i
+(for)f(lowest)h(or)l(der)f(N)n(\023)-40 b(ed)n(\023)g(ele)l(c)31
+b(elements)e(on)h(a)g(triangular)h(mesh)f(is)g Fs(R)3344
+2006 y Fp(1)3411 2036 y Fm(fr)l(om)g(\(7\).)28 2136 y(In)h(the)h(c)l
+(ase)g(of)h Fx(k)d Fz(=)c(1)31 b Fm(only)i(e)l(gde-dofs)g(o)l(c)l(cur.)
+45 b(On)1760 2115 y Fz(^)1738 2136 y Fx(K)37 b Fm(we)32
+b(have)h(dofs)h(of)e(the)g(typ)l(e)2756 2069 y Fl(R)2798
+2166 y Fp(^)-36 b Fq(e)2826 2174 y Ff(i)2857 2136 y Fz(\()2883
+2121 y(^)2889 2136 y Fx(t)p 2889 2149 V 21 w Fs(\001)23
+b Fz(^)-45 b Fx(u)p 2983 2149 48 4 v -1 w Fz(\))28 b(^)-56
+b Fx(')14 b(d)s Fz(^)-45 b Fx(s)14 b(;)g Fs(8)f Fz(^)-55
+b Fx(')27 b Fs(2)g Fr(P)3539 2148 y Fp(0)3575 2136 y
+Fz(\()s(^)-45 b Fx(e)3646 2148 y Fq(i)3673 2136 y Fz(\))p
+Fm(.)45 b(Mor)l(e)28 2244 y(pr)l(e)l(cisely,)31 b(sinc)l(e)f
+Fx(')23 b Fs(\021)g Fz(1)29 b Fm(is)h(a)h(b)l(asis)f(for)h
+Fr(P)1377 2256 y Fp(0)1413 2244 y Fz(\()s(^)-45 b Fx(e)1484
+2256 y Fq(i)1511 2244 y Fz(\))30 b Fm(we)g(have)h(the)f(thr)l(e)l(e)g
+(dofs)1418 2460 y Fz(^)-50 b Fx(\013)1463 2472 y Fq(i)1491
+2460 y Fz(\()s(^)-45 b Fx(u)p 1523 2473 V -1 w Fz(\))24
+b(=)1713 2347 y Fl(Z)1762 2536 y Fp(^)-35 b Fq(e)1791
+2544 y Ff(i)1822 2460 y Fz(\()1848 2445 y(^)1854 2460
+y Fx(t)p 1854 2473 30 4 v 18 w Fs(\001)22 b Fz(^)-45
+b Fx(u)p 1944 2473 48 4 v -1 w Fz(\))14 b Fx(d)s Fz(^)-45
+b Fx(s)85 b(i)23 b Fz(=)g(0)p Fx(;)14 b Fz(1)p Fx(;)g
+Fz(2)g Fx(:)28 2705 y Fm(In)28 b(or)l(der)h(to)g(c)l(onstruct)e(a)i
+(FE-b)l(asis)1236 2684 y Fz(^)1219 2705 y Fx(N)p 1219
+2718 76 4 v 1294 2725 a Fp(0)1332 2705 y Fx(;)1386 2684
+y Fz(^)1369 2705 y Fx(N)p 1369 2718 V 1444 2725 a Fp(1)1482
+2705 y Fx(;)1536 2684 y Fz(^)1519 2705 y Fx(N)p 1519
+2718 V 1594 2725 a Fp(2)1660 2705 y Fm(for)h Fs(R)1862
+2675 y Fp(1)1928 2705 y Fm(with)f(r)l(esp)l(e)l(ct)f(to)h(these)g
+(dofs,)h(we)f(r)l(e)l(quir)l(e)37 b Fz(^)-50 b Fx(\013)3328
+2717 y Fq(i)3355 2705 y Fz(\()3405 2684 y(^)3387 2705
+y Fx(N)p 3387 2718 V 3463 2725 a Fq(j)3498 2705 y Fz(\))24
+b(=)e Fx(\016)3678 2717 y Fq(ij)3737 2705 y Fm(.)38 b(This)28
+2824 y(le)l(ads)d(to)f(a)g(line)l(ar)h(system)f(for)g(the)h(c)l(o)l
+(e\016cients)f(of)h(the)1898 2803 y Fz(^)1881 2824 y
+Fx(N)p 1881 2837 V 1957 2844 a Fq(i)2019 2824 y Fm(in)f(a)g(gener)l(al)
+h(b)l(asis)g(of)g Fs(R)2867 2794 y Fp(1)2904 2824 y Fm(.)52
+b(In)33 b(the)h(c)l(ase)h(of)g(lowest)f(or)l(der)28 2923
+y(elements,)c(it)f(is)h(e)l(asy)h(to)f(verify)h(that)f(we)g(have)951
+3121 y Fz(^)934 3142 y Fx(N)p 934 3155 V 1009 3163 a
+Fp(0)1070 3142 y Fz(=)1157 3025 y Fl(\022)1260 3091 y
+Fz(1)18 b Fs(\000)24 b Fz(^)-48 b Fx(y)1335 3191 y Fz(^)g
+Fx(x)1488 3025 y Fl(\023)1577 3142 y Fx(;)1716 3121 y
+Fz(^)1699 3142 y Fx(N)p 1699 3155 V 1774 3163 a Fp(1)1835
+3142 y Fz(=)1922 3025 y Fl(\022)2025 3091 y Fs(\000)6
+b Fz(^)-48 b Fx(y)2061 3191 y Fz(^)g Fx(x)2175 3025 y
+Fl(\023)2263 3142 y Fx(;)2402 3121 y Fz(^)2385 3142 y
+Fx(N)p 2385 3155 V 2461 3163 a Fp(2)2521 3142 y Fz(=)2609
+3025 y Fl(\022)2753 3091 y Fs(\000)6 b Fz(^)-48 b Fx(y)2717
+3191 y Fz(^)h Fx(x)18 b Fs(\000)g Fz(1)2943 3025 y Fl(\023)3032
+3142 y Fx(:)800 b Fz(\(8\))28 3407 y Fo(2.1.3)105 b(Piola)35
+b(transformation)28 3560 y Fz(An)28 b(a\016ne)f(triangle)g(or)f
+(tetrahedron)h Fx(K)33 b Fz(is)27 b(describ)r(ed)h(b)n(y)f(the)h
+(a\016ne)g(elemen)n(t)f(map)1469 3733 y Fx(K)h Fs(3)23
+b Fx(x)h Fz(=)f Fx(F)1858 3745 y Fq(K)1922 3733 y Fz(\()5
+b(^)-47 b Fx(x)q Fz(\))23 b(=)g Fx(B)2208 3745 y Fq(K)2277
+3733 y Fz(^)-47 b Fx(x)19 b Fz(+)f Fx(b)2457 3745 y Fq(K)28
+3907 y Fz(In)39 b(standard)e Fx(H)576 3876 y Fp(1)613
+3907 y Fz(\(\012\)-conforming)h(FEM,)h(the)g(shap)r(e)g(functions)g
+Fx(N)2292 3919 y Fq(i)2358 3907 y Fz(on)f(a)h(general)e(cell)i
+Fx(K)44 b Fz(are)38 b(obtained)h(from)f(the)28 4006 y(reference)26
+b(shap)r(e)i(functions)992 3985 y(^)968 4006 y Fx(N)1035
+4018 y Fq(i)1090 4006 y Fz(on)f(the)h(reference)f(elemen)n(t)2025
+3985 y(^)2003 4006 y Fx(K)33 b Fz(b)n(y)28 b(the)g(pull-bac)n(k)1560
+4200 y Fx(N)1627 4212 y Fq(i)1654 4200 y Fz(\()p Fx(x)p
+Fz(\))c(=)1877 4108 y Fl(\020)1951 4179 y Fz(^)1927 4200
+y Fx(N)1994 4212 y Fq(i)2039 4200 y Fs(\016)18 b Fx(F)2164
+4164 y Fh(\000)p Fp(1)2152 4224 y Fq(K)2253 4108 y Fl(\021)2317
+4200 y Fz(\()p Fx(x)p Fz(\))28 4398 y(In)24 b(the)g(case)f(of)i
+Fx(H)7 b Fz(\(curl)o(;)14 b(\012\)-conforming)23 b(N)n(\023)-39
+b(ed)n(\023)g(elec)22 b(FEM)i(w)n(e)g(cannot)f(transforme)g(our)h(shap)
+r(e)f(function)i(in)f(this)h(w)n(a)n(y)-7 b(.)34 b(The)28
+4498 y(pull-bac)n(k)d(of)h(a)f Fx(H)7 b Fz(\(curl;)870
+4477 y(^)848 4498 y Fx(K)e Fz(\)-function)33 b(needs)f(not)g(to)g(b)r
+(e)g(in)g Fx(H)7 b Fz(\(curl;)14 b Fx(K)6 b Fz(\).)50
+b(In)32 b(addition,)h(the)g(pull-bac)n(k)e(is)h(not)g(an)f
+Fs(R)3892 4467 y Fq(k)3934 4498 y Fz(-)28 4597 y(isomorphism)d(and)i
+(it)g(do)r(es)f(not)h(lead)g(to)f(an)h Fx(H)7 b Fz(\(curl)o(;)14
+b(\012\)-conforming)29 b(metho)r(d)h(if)g(prescribing)f(the)h(dofs)g(b)
+n(y)f(de\014nitions)28 4697 y(5)e(or)f(6.)28 4796 y(In)32
+b(N)n(\023)-39 b(ed)n(\023)g(elec's)31 b(FEM)h(\(or,)i(more)d(general,)
+i(in)g Fx(H)7 b Fz(\(curl)o(;)14 b(\012\)-conforming)32
+b(FEM\),)h(the)g(shap)r(e)f(functions)h(are)e(transformed)28
+4896 y(b)n(y)c(the)h(follo)n(wing)e(co)n(v)-5 b(arian)n(t)26
+b(transformation)g(for)h(v)n(ector-\014elds:)255 5065
+y(The)f(elemen)n(t)h(shap)r(e)f(functions)h Fx(N)p 1319
+5078 V 1394 5086 a Fq(i)1422 5065 y Fz(\()p Fx(x)p Fz(\))g(on)g(the)f
+(elemen)n(t)h Fx(K)h Fz(=)23 b Fx(F)2362 5077 y Fq(K)2426
+5065 y Fz(\()2481 5044 y(^)2458 5065 y Fx(K)6 b Fz(\))27
+b(are)e(obtained)h(from)g(the)h(reference)f(shap)r(e)255
+5164 y(functions)i(b)n(y)1333 5284 y Fx(N)p 1333 5297
+V 1408 5305 a Fq(i)1436 5284 y Fz(\()p Fx(x)p Fz(\))c(=)f
+Fs(P)1717 5296 y Fq(K)1781 5284 y Fz(\()1830 5263 y(^)1813
+5284 y Fx(N)p 1813 5297 V 1889 5305 a Fq(i)1916 5284
+y Fz(\))h(=)2059 5192 y Fl(\020)2128 5263 y Fz(^)2109
+5284 y Fx(D)r(F)2245 5249 y Fh(\000)p Fq(T)2233 5309
+y(K)2366 5263 y Fz(^)2349 5284 y Fx(N)p 2349 5297 V 2425
+5305 a Fq(i)2452 5192 y Fl(\021)2520 5284 y Fs(\016)18
+b Fx(F)2645 5249 y Fh(\000)p Fp(1)2633 5309 y Fq(K)2734
+5284 y Fz(\()p Fx(x)p Fz(\))c Fx(;)973 b Fz(\(9\))255
+5469 y(where)514 5449 y(^)495 5469 y Fx(D)r(F)619 5481
+y Fq(K)711 5469 y Fz(is)28 b(the)f(jacobian)1296 5437
+y Fq(d)p 1277 5451 73 4 v 1277 5498 a(d)t Fp(^)-37 b
+Fq(x)1359 5469 y Fx(F)1412 5481 y Fq(K)1477 5469 y Fz(\()5
+b(^)-47 b Fx(x)q Fz(\))28 b(of)f(the)h(elemen)n(t)g(map.)1972
+5719 y Fk(7)p eop
+%%Page: 8 8
+8 7 bop 28 212 a Fz(In)34 b(literature,)i(an)e(equiv)-5
+b(alen)n(t)34 b(to)g(this)h(transformation)e(for)g Fx(H)7
+b Fz(\(div)r(;)14 b(\012\)-conforming)33 b(FEM)h(\(whic)n(h)h(in)f
+(that)h(case)e(is)i(a)28 311 y(con)n(tra)n(v)-5 b(arian)n(t)24
+b(map\))k(is)g(referred)e(to)i(as)e Fm(Piola)32 b(tr)l(ansformation)p
+Fz(,)d(cf.)37 b([3)o(])28 b(pp.)g(97.)28 411 y(Here,)f(w)n(e)g(will)h
+(refer)f(to)g(the)h(transformation)e(\(9\))i(of)g(the)f(v)n(ector)g
+(\014eld)h(also)e(as)h Fm(Piola)32 b(tr)l(ansformation)p
+Fz(.)28 511 y(W)-7 b(e)23 b(note)g(that)g(the)h(gradien)n(ts)e(of)h
+(scalar)e(no)r(dal)i Fx(H)1635 480 y Fp(1)1672 511 y
+Fz(\(\012\)-conforming)f(\014nite)i(elemen)n(ts)f(transform)f
+(according)f(to)i(the)h(Piola)28 610 y(transformation)i(\(9\).)28
+710 y(In)g(the)h(case)f(of)g(tetrahedral)g(elemen)n(ts)g(and)g(a\016ne)
+h(elemen)n(t)f(map)h Fx(F)2230 722 y Fq(K)2294 710 y
+Fz(\()5 b(^)-47 b Fx(x)q Fz(\))23 b(=)g Fx(B)2580 722
+y Fq(K)2649 710 y Fz(^)-47 b Fx(x)17 b Fz(+)e Fx(b)2824
+722 y Fq(k)2865 710 y Fz(,)27 b(the)g(jacobian)3405 689
+y(^)3385 710 y Fx(D)r(F)3509 722 y Fq(K)3600 710 y Fz(is)g(just)g(the)
+28 809 y(constan)n(t)f(matrix)h Fx(B)695 821 y Fq(K)787
+809 y Fz(and)h(w)n(e)f(ha)n(v)n(e)1341 992 y Fx(v)p 1341
+1005 44 4 v 4 w Fz(\()p Fx(x)p Fz(\))d(=)e Fs(P)1665
+1004 y Fq(K)1729 992 y Fz(\()q(^)-43 b Fx(v)p 1761 1005
+V 4 w Fz(\))23 b(=)g Fx(B)2015 957 y Fh(\000)p Fq(T)2011
+1017 y(K)2133 925 y Fl(\000)2172 992 y Fz(^)-43 b Fx(v)p
+2171 1005 V 22 w Fs(\016)17 b Fx(F)2357 957 y Fh(\000)p
+Fp(1)2345 1017 y Fq(K)2447 925 y Fl(\001)2498 992 y Fz(\()p
+Fx(x)p Fz(\))d Fx(;)1168 b Fz(\(10\))28 1221 y Fo(2.1.4)105
+b(T)-9 b(ransformation)34 b(of)h(the)g(curl)g(in)g(2d)28
+1374 y Fz(F)-7 b(or)30 b(\012)f Fs(\032)f Fr(R)416 1344
+y Fp(2)459 1374 y Fz(,)k(w)n(e)f(noted)g(in)g(remark)f(1)g(that)i(v)n
+(ector)d(\014elds)i(in)h Fx(H)7 b Fz(\(curl)o(;)14 b(\012\))31
+b(can)g(b)r(e)h(represen)n(ted)d(as)i(rotated)f Fx(H)7
+b Fz(\(div)q(;)14 b(\012\))28 1474 y(v)n(ector)26 b(\014elds.)37
+b(Moreo)n(v)n(er,)25 b(it)j(is)f(easy)g(to)g(v)n(erify)g(that)1525
+1657 y Fx(B)1592 1621 y Fh(\000)p Fq(T)1588 1681 y(K)1719
+1657 y Fz(=)c(det)14 b Fx(B)2003 1621 y Fh(\000)p Fp(1)1999
+1681 y Fq(K)2106 1657 y Fx(R)2170 1622 y Fq(T)2222 1657
+y Fx(B)2285 1669 y Fq(K)2363 1657 y Fx(R)h(;)1350 b Fz(\(11\))28
+1839 y(where)27 b Fx(R)i Fz(is)f(the)h(rotation)e(matrix)g(from)h
+(remark)f(1.)38 b(Therefore,)27 b(the)i(prop)r(erties)e(of)h(the)h
+(Piola)e(transformation)f(\(10\))i(in)28 1939 y(the)33
+b(2d)f(case)g(can)g(b)r(e)h(deriv)n(ed)f(directly)h(from)f(the)h(prop)r
+(erties)f(of)g(the)i Fx(H)7 b Fz(\(div)q(;)14 b(\012\)-Piola)31
+b(transformation)g(stated)i(in)g([3)o(])28 2039 y(pp.)28
+b(97.)28 2238 y Fn(Theorem)g Fz(4)f(\(Some)h(prop)r(erties)e(of)i(2d)f
+(Piola)g(transformation)e(for)j(a\016ne)f(elemen)n(t)h(map\))45
+b Fm(L)l(et)25 b Fx(v)p 3160 2251 V 3 w Fz(\()p Fx(x)p
+Fz(\))f(=)f Fs(P)3484 2250 y Fq(K)3548 2238 y Fz(\()q(^)-43
+b Fx(v)p 3580 2251 V 3 w Fz(\))p Fm(,)27 b Fx(')p Fz(\()p
+Fx(x)p Fz(\))e(=)28 2270 y Fl(\000)79 2337 y Fz(^)-55
+b Fx(')18 b Fs(\016)g Fx(F)263 2302 y Fh(\000)p Fp(1)251
+2362 y Fq(K)352 2270 y Fl(\001)404 2337 y Fz(\()p Fx(x)p
+Fz(\))p Fm(,)37 b Fz(^)-48 b Fx(x)24 b Fz(=)f Fx(F)795
+2302 y Fh(\000)p Fp(1)783 2362 y Fq(K)884 2337 y Fz(\()p
+Fx(x)p Fz(\))p Fm(,)31 b(with)f(a\016ne)g(element)g(map)g
+Fx(F)2004 2349 y Fq(K)2069 2337 y Fm(.)116 2487 y(\(i\))46
+b(The)31 b(gr)l(adient)f Fx(D)r(v)p 817 2500 V 33 w Fm(tr)l(ansforms)g
+(ac)l(c)l(or)l(ding)h(to)1742 2670 y Fx(D)r(v)p 1813
+2683 V 27 w Fz(=)22 b Fx(B)2034 2634 y Fh(\000)p Fq(T)2030
+2694 y(K)2172 2649 y Fz(^)2152 2670 y Fx(D)s Fz(^)-42
+b Fx(v)p 2224 2683 V 17 w(B)2348 2634 y Fh(\000)p Fp(1)2344
+2694 y Fq(K)2451 2670 y Fx(:)1340 b Fz(\(12\))91 2877
+y Fm(\(ii\))46 b(The)31 b(curl)e(tr)l(ansforms)h(ac)l(c)l(or)l(ding)h
+(to)1703 2990 y Fz(curl)13 b Fx(v)p 1855 3003 V 27 w
+Fz(=)22 b(det)14 b Fx(B)2205 2955 y Fh(\000)p Fp(1)2201
+3015 y Fq(K)2304 2968 y Fl(d)2295 2990 y Fz(curl^)-43
+b Fx(v)p 2433 3003 V 17 w(:)1301 b Fz(\(13\))255 3152
+y Fm(As)32 b(a)g(c)l(onse)l(quenc)l(e)g(we)g(se)l(e)g(that)g
+Fx(H)7 b Fz(\(curl;)14 b Fx(K)6 b Fz(\))32 b Fm(is)g(isomorphic)j(to)d
+Fx(H)7 b Fz(\(curl;)2707 3131 y(^)2685 3152 y Fx(K)e
+Fz(\))32 b Fm(under)g(the)h(Piola)g(tr)l(ansformation)255
+3251 y(\(10\).)28 3450 y Fn(Pr)n(oof.)122 3600 y Fz(\(i\))46
+b(Chain)27 b(rule)99 3749 y(\(ii\))46 b(W)-7 b(e)27 b(use)f(that)h(the)
+f(2d)h(curl)f(op)r(erator)e(is)j(just)g(the)f(trace)g(of)g(the)h
+(rotated)f(jacobian)f Fx(R)15 b(D)r(v)s Fz(.)37 b(By)26
+b(remark)f(11,)h(w)n(e)g(can)255 3849 y(replace)g Fx(B)603
+3813 y Fh(\000)p Fq(T)599 3873 y(K)735 3849 y Fz(and)i(w)n(e)f(get)g
+(that)h Fx(R)15 b(D)r(v)31 b Fz(is)c(a\016ne-equiv)-5
+b(alen)n(t)27 b(to)g(det)15 b Fx(B)2554 3813 y Fh(\000)p
+Fp(1)2550 3873 y Fq(K)2657 3849 y Fx(R)2754 3828 y Fz(^)2734
+3849 y Fx(D)5 b Fz(^)-45 b Fx(v)t Fz(,)27 b(whic)n(h)h(pro)n(v)n(es)d
+(\(ii\).)3897 4048 y Fg(\003)28 4247 y Fn(Cor)n(ollar)-6
+b(y)28 b Fz(1)45 b Fm(F)-6 b(r)l(om)30 b(\(ii\))g(in)g(the)l(or)l(em)g
+(4)g(we)g(de)l(duc)l(e)1435 4359 y Fl(Z)1481 4548 y Fq(K)1559
+4472 y Fz(curl)14 b Fx(v)p 1712 4485 V 17 w(')g(dx)24
+b Fz(=)2038 4359 y Fl(Z)2101 4533 y Fp(^)2084 4548 y
+Fq(K)2172 4451 y Fl(d)2162 4472 y Fz(curl)q(^)-43 b Fx(v)p
+2301 4485 V 30 w Fz(^)-55 b Fx(')14 b(d)5 b Fz(^)-47
+b Fx(x)14 b(;)28 4702 y Fm(and)30 b(we)g(have,)h(to)l(gether)f(with)h
+(\(ii\))f(fr)l(om)g(the)l(or)l(em)g(4)1145 4814 y Fl(Z)1191
+5002 y Fq(K)1269 4927 y Fz(curl)13 b Fx(v)p 1421 4940
+V 31 w Fz(curl)g Fx(u)p 1644 4940 48 4 v 14 w(dx)23 b
+Fz(=)g Fs(j)p Fx(B)1993 4939 y Fq(K)2057 4927 y Fs(j)2080
+4893 y Fh(\000)p Fp(1)2197 4814 y Fl(Z)2260 4988 y Fp(^)2243
+5003 y Fq(K)2330 4905 y Fl(d)2321 4927 y Fz(curl^)-42
+b Fx(v)p 2460 4940 44 4 v 2526 4905 a Fl(d)2517 4927
+y Fz(curl)r(^)d Fx(u)p 2655 4940 48 4 v 14 w(d)5 b Fz(^)-47
+b Fx(x)14 b(:)1972 5719 y Fk(8)p eop
+%%Page: 9 9
+9 8 bop 28 213 a Fo(2.1.5)105 b(T)-9 b(ransformation)34
+b(of)h(the)g(curl)g(in)g(3d)28 366 y Fz(In)22 b(three)f(dimensions,)i
+(w)n(e)f(cannot)f(iden)n(tify)i(the)f(curl-op)r(erator)d(with)k(the)f
+(rotated)f(gradien)n(t)g(or)g(with)h(the)g(div)n(ergence)f(of)h(a)28
+465 y(rotated)h(v)n(ector)g(\014eld.)36 b(W)-7 b(e)25
+b(cannot,)g(as)f(in)g(2d,)h(deriv)n(e)f(a)g(transformation)e(form)n
+(ula)i(for)g(the)h(curl)f(from)g(the)g(transformatin)28
+565 y(form)n(ula)i(of)i(the)g(div)n(ergence.)28 665 y(By)36
+b(the)i(c)n(hain)e(rule,)j(w)n(e)e(obtain)f(the)i(transformation)d(of)i
+(the)g(gradien)n(t)f(of)h(a)g(v)n(ector)e(\014eld)j Fx(v)p
+3098 678 44 4 v 3 w Fz(,)h(de\014ned)f(b)n(y)e(the)i(Piola)28
+764 y(transformation)26 b(\(10\))h(of)g(a)h(reference)e(\014eld)j(^)-43
+b Fx(v)p 1461 777 V 3 w Fz(:)1629 941 y Fx(D)r(v)p 1700
+954 V 26 w Fz(=)23 b Fx(B)1921 905 y Fh(\000)p Fq(T)1917
+965 y(K)2058 920 y Fz(^)2039 941 y Fx(D)s Fz(^)-43 b
+Fx(v)p 2110 954 V 17 w(B)2234 905 y Fh(\000)p Fp(1)2230
+965 y Fq(K)2337 941 y Fx(:)1454 b Fz(\(14\))28 1117 y(W)-7
+b(e)28 b(in)n(tro)r(duce)f(the)h(sk)n(ew)f(symmetric)g(matrix)g(Curl)13
+b Fx(v)31 b Fz(as)1570 1332 y(\(Curl)14 b Fx(v)s Fz(\))1853
+1357 y Fq(ij)1935 1332 y Fz(=)2032 1276 y Fx(@)5 b(v)2121
+1288 y Fq(j)p 2032 1313 124 4 v 2032 1389 a Fx(@)g(x)2128
+1401 y Fq(i)2185 1332 y Fs(\000)2285 1276 y Fx(@)g(v)2374
+1288 y Fq(i)p 2278 1313 132 4 v 2278 1389 a Fx(@)g(x)2374
+1401 y Fq(j)3814 1332 y Fz(\(15\))28 1568 y(W)-7 b(e)28
+b(see)f(that)h(Curl)13 b Fx(v)26 b Fz(=)d Fx(D)r(v)p
+885 1581 44 4 v 928 1538 a Fq(T)999 1568 y Fs(\000)18
+b Fx(D)r(v)p 1153 1581 V 31 w Fz(and)27 b(therefore)g(b)n(y)g(\(14\))
+1550 1758 y(Curl)13 b Fx(v)26 b Fz(=)d Fx(B)1946 1722
+y Fh(\000)p Fq(T)1942 1782 y(K)2071 1736 y Fl(d)2050
+1758 y Fz(Curl)17 b(^)-45 b Fx(v)17 b(B)2350 1722 y Fh(\000)p
+Fp(1)2346 1782 y Fq(K)3814 1758 y Fz(\(16\))28 1962 y
+Fn(Pr)n(oposition)27 b Fz(3)g(\(T)-7 b(ransformation)26
+b(of)h(the)h(curl)g(in)g(3d\))45 b Fm(L)l(et)2082 1941
+y Fz(^)2060 1962 y Fx(K)39 b Fm(b)l(e)34 b(the)g(r)l(efer)l(enc)l(e)h
+(tetr)l(ahe)l(dr)l(on)f(and)g Fx(K)i Fz(=)31 b Fx(F)3633
+1974 y Fq(K)3697 1962 y Fz(\()3752 1941 y(^)3729 1962
+y Fx(K)6 b Fz(\))34 b Fm(an)28 2061 y(a\016ne)f(image)i(of)f(it.)50
+b(The)34 b(curl)f(of)h(a)g(ve)l(ctor)g(\014eld)g Fx(v)p
+1689 2074 V 3 w Fz(\()p Fx(x)p Fz(\))g Fm(on)g Fx(K)6
+b Fm(,)34 b(de\014ne)l(d)f(by)h(the)g(Piola)h(tr)l(ansformation)f(of)g
+(a)g(r)l(efer)l(enc)l(e)28 2161 y(\014eld)d Fz(^)-43
+b Fx(v)p 206 2174 V 3 w Fz(\()5 b(^)-47 b Fx(x)q Fz(\))30
+b Fm(tr)l(ansforms)g(ac)l(c)l(or)l(ding)h(to)1276 2337
+y Fz(\(curl)14 b Fx(v)p 1461 2350 V 3 w Fz(\))1536 2362
+y Fq(i)1578 2337 y Fz(\()p Fx(x)p Fz(\))24 b(=)f(det)14
+b(M)2006 2349 y Fp(i)2029 2337 y Fz(\()p Fx(x)p Fz(\))g
+Fx(;)184 b(i)23 b Fz(=)g(1)p Fx(;)14 b Fz(2)p Fx(;)g
+Fz(3)1113 b(\(17\))28 2514 y Fm(We)34 b(obtain)h(the)f(matrix)g
+Fz(M)929 2526 y Fp(i)986 2514 y Fm(by)g(r)l(eplacing)i(i-th)e(c)l
+(olumn)g(of)h(the)f(\(c)l(onstant\))g(jac)l(obian)i Fx(D)r
+Fz(\()p Fx(F)3053 2478 y Fh(\000)p Fp(1)3041 2538 y Fq(K)3142
+2514 y Fz(\))31 b(=)g Fx(B)3368 2478 y Fh(\000)p Fp(1)3364
+2538 y Fq(K)3491 2514 y Fm(by)k(the)f(ve)l(ctor)28 2631
+y Fz(\()69 2609 y Fl(d)60 2631 y Fz(curl)14 b(^)-43 b
+Fx(v)p 212 2644 V 22 w Fs(\016)18 b Fx(F)399 2595 y Fh(\000)p
+Fp(1)387 2655 y Fq(K)488 2631 y Fz(\)\()p Fx(x)p Fz(\))p
+Fm(:)1159 2792 y Fz(\(M)1267 2804 y Fp(i)1290 2792 y
+Fz(\))1323 2817 y Fq(k)q(l)1399 2792 y Fz(\()p Fx(x)p
+Fz(\))24 b(:=)1644 2675 y Fl(\032)1748 2747 y Fz(\()1789
+2726 y Fl(d)1780 2747 y Fz(curl)17 b(^)-45 b Fx(v)22
+b Fs(\016)c Fx(F)2120 2712 y Fh(\000)p Fp(1)2108 2772
+y Fq(K)2209 2747 y Fz(\))2241 2759 y Fq(k)2282 2747 y
+Fz(\()p Fx(x)p Fz(\))84 b Fm(if)i Fx(l)24 b Fz(=)f Fx(i)1748
+2850 y Fz(\()p Fx(B)1847 2815 y Fh(\000)p Fp(1)1843 2875
+y Fq(K)1937 2850 y Fz(\))1969 2862 y Fq(k)q(l)2477 2850
+y Fm(if)86 b Fx(l)24 b Fs(6)p Fz(=)f Fx(i)28 2997 y Fm(\(Note:)38
+b(an)30 b(alternative,)h(e)l(quivalent,)g(tr)l(ansformation)f(formula)h
+(for)f(the)g(curl)g(in)g(3d)g(is)h(given)f(in)g(pr)l(op)l(osition)h
+(4\).)28 3189 y Fn(Pr)n(oof.)40 b Fz(It)28 b(holds)1525
+3367 y(curl)13 b Fx(v)p 1677 3380 V 27 w Fz(=)1831 3200
+y Fl(0)1831 3350 y(@)1945 3267 y Fz(\(Curl)h Fx(v)s Fz(\))2228
+3279 y Fp(23)1945 3366 y Fz(\(Curl)g Fx(v)s Fz(\))2228
+3378 y Fp(31)1945 3466 y Fz(\(Curl)g Fx(v)s Fz(\))2228
+3478 y Fp(12)2341 3200 y Fl(1)2341 3350 y(A)2441 3367
+y Fx(:)1350 b Fz(\(18\))28 3612 y(W)-7 b(e)34 b(demonstrate)f(the)h
+(statemen)n(t)g(of)g(the)g(prop)r(osition)f(for)h(the)g(\014rst)g(comp)
+r(onen)n(t)f(of)h(the)h(curl,)g(whic)n(h)f(is)g(\(curl)13
+b Fx(v)p 3750 3625 V 4 w Fz(\))3826 3624 y Fp(1)3897
+3612 y Fz(=)28 3712 y(Curl)g Fx(v)246 3724 y Fp(23)317
+3712 y Fz(.)45 b(Using)31 b(the)g(transformation)d(\(16\),)j(implicit)h
+(summation)e(o)n(v)n(er)f(equal)h(indices)g(and)h(the)f(abbreviation)g
+Fx(b)3788 3724 y Fq(ij)3874 3712 y Fz(:=)28 3812 y(\()p
+Fx(B)127 3776 y Fh(\000)p Fp(1)123 3836 y Fq(K)216 3812
+y Fz(\))248 3824 y Fq(ij)307 3812 y Fz(,)e(w)n(e)f(ha)n(v)n(e)1474
+3929 y(\(Curl)14 b Fx(v)s Fz(\))1757 3941 y Fp(23)1850
+3929 y Fz(=)23 b Fx(b)1974 3941 y Fq(k)q Fp(2)2062 3929
+y Fz(\()2115 3907 y Fl(d)2094 3929 y Fz(Curl)16 b(^)-45
+b Fx(v)t Fz(\))2345 3941 y Fq(k)q(l)2421 3929 y Fx(b)2457
+3941 y Fq(l)p Fp(3)28 4074 y Fz(W)-7 b(riting)27 b(this)h(out)g(and)f
+(recalling)f(that)i(Curl)14 b Fx(v)31 b Fz(is)c(sk)n(ew)g(symmetric,)g
+(yields)227 4260 y(\(Curl)14 b Fx(v)s Fz(\))510 4272
+y Fp(23)604 4260 y Fz(=)22 b(\()p Fx(b)759 4272 y Fp(12)830
+4260 y Fx(b)866 4272 y Fp(23)954 4260 y Fs(\000)c Fx(b)1073
+4272 y Fp(22)1143 4260 y Fx(b)1179 4272 y Fp(13)1249
+4260 y Fz(\)\()1334 4238 y Fl(d)1313 4260 y Fz(Curl)f(^)-45
+b Fx(v)s Fz(\))1564 4272 y Fp(12)1653 4260 y Fs(\000)18
+b Fz(\()p Fx(b)1804 4272 y Fp(12)1875 4260 y Fx(b)1911
+4272 y Fp(33)1999 4260 y Fs(\000)g Fx(b)2118 4272 y Fp(32)2188
+4260 y Fx(b)2224 4272 y Fp(13)2294 4260 y Fz(\)\()2379
+4238 y Fl(d)2358 4260 y Fz(Curl)f(^)-45 b Fx(v)s Fz(\))2609
+4272 y Fp(31)2698 4260 y Fz(+)18 b(\()p Fx(b)2849 4272
+y Fp(22)2920 4260 y Fx(b)2956 4272 y Fp(33)3044 4260
+y Fs(\000)g Fx(b)3163 4272 y Fp(32)3233 4260 y Fx(b)3269
+4272 y Fp(23)3339 4260 y Fz(\)\()3424 4238 y Fl(d)3403
+4260 y Fz(Curl)f(^)-45 b Fx(v)s Fz(\))3654 4272 y Fp(23)3739
+4260 y Fx(;)28 4436 y Fz(and)27 b(with)h(\(18\))f(this)h(is)g(equal)f
+(to)g(the)h(determinan)n(t)g(of)1394 4737 y(M)1470 4749
+y Fp(1)1530 4737 y Fz(:=)1641 4545 y Fl(0)1641 4692 y(B)1641
+4745 y(@)1755 4630 y Fz(\()1796 4608 y Fl(d)1787 4630
+y Fz(curl)14 b Fx(v)s Fz(\))2015 4642 y Fp(1)2135 4630
+y Fx(b)2171 4642 y Fp(12)2324 4630 y Fx(b)2360 4642 y
+Fp(13)1755 4744 y Fz(\()1796 4722 y Fl(d)1787 4744 y
+Fz(curl)g Fx(v)s Fz(\))2015 4756 y Fp(2)2135 4744 y Fx(b)2171
+4756 y Fp(22)2324 4744 y Fx(b)2360 4756 y Fp(23)1755
+4858 y Fz(\()1796 4836 y Fl(d)1787 4858 y Fz(curl)g Fx(v)s
+Fz(\))2015 4870 y Fp(3)2135 4858 y Fx(b)2171 4870 y Fp(32)2324
+4858 y Fx(b)2360 4870 y Fp(33)2472 4545 y Fl(1)2472 4692
+y(C)2472 4745 y(A)2572 4737 y Fx(:)28 5034 y Fz(The)27
+b(pro)r(of)g(for)g(the)h(other)f(comp)r(onen)n(ts)g(follo)n(ws)g
+(analogously)-7 b(.)3897 5202 y Fg(\003)28 5370 y Fz(In)42
+b(the)g(next)g(prop)r(osition,)j(w)n(e)d(state)f(an)h(alternativ)n(e,)j
+(equiv)-5 b(alen)n(t,)45 b(form)n(ula)c(for)h(the)g(transformation)e
+(of)i(the)h(curl)28 5469 y(\(e.)27 b(g.)h(used)f(b)n(y)h(Demk)n(o)n
+(vicz)e(in)i([12)o(]\))1972 5719 y Fk(9)p eop
+%%Page: 10 10
+10 9 bop 28 228 a Fn(Pr)n(oposition)27 b Fz(4)45 b Fm(F)-6
+b(or)25 b(a)h(ve)l(ctor)f(\014eld)h Fx(v)p 1277 241 44
+4 v 29 w Fm(on)f(the)g(tetr)l(ahe)l(dr)l(on)h Fx(K)i
+Fz(=)23 b Fx(F)2264 240 y Fq(K)2328 228 y Fz(\()2383
+207 y(^)2360 228 y Fx(K)6 b Fz(\))p Fm(,)27 b(de\014ne)l(d)e(by)h(the)f
+(Piola)j(tr)l(ansformation)d(\(10\))28 328 y(of)30 b(a)g(r)l(efer)l
+(enc)l(e)g(\014eld)h Fz(^)-42 b Fx(v)p 726 341 V 33 w
+Fm(on)939 307 y Fz(^)917 328 y Fx(K)6 b Fm(,)30 b(we)g(have)1361
+534 y Fz(curl)14 b Fx(v)p 1514 547 V 26 w Fz(=)1785 478
+y(1)p 1677 515 257 4 v 1677 591 a(det)h Fx(B)1870 603
+y Fq(K)1957 534 y Fx(B)2020 546 y Fq(K)2098 534 y Fz(\()2139
+512 y Fl(d)2130 534 y Fz(curl)g(^)-43 b Fx(v)p 2283 547
+44 4 v 22 w Fs(\016)17 b Fx(F)2469 499 y Fh(\000)p Fp(1)2457
+559 y Fq(K)2559 534 y Fz(\))d Fx(:)1186 b Fz(\(19\))28
+746 y Fn(Pr)n(oof.)38 b Fz(The)24 b(transformation)e(form)n(ula)h
+(\(19\))g(can)g(b)r(e)h(pro)n(v)n(en)e(comp)r(onen)n(t)n(wise,)i(and)f
+(w)n(e)g(will)h(only)f(carry)f(out)i(the)g(pro)r(of)28
+846 y(for)j(the)h(\014rst)f(v)n(ector)f(comp)r(onen)n(t)i(\(curl)13
+b Fx(v)p 1327 859 V 4 w Fz(\))1403 858 y Fp(1)1440 846
+y Fz(.)37 b(The)28 b(pro)r(ofs)e(for)i(the)g(other)f(comp)r(onen)n(ts)g
+(follo)n(w)f(analogously)-7 b(.)28 945 y(The)27 b(iden)n(tit)n(y)h
+(\(19\))f(reads)g(for)g(the)h(\014rst)f(v)n(ector)f(comp)r(onen)n(t)
+1208 1156 y(\(curl)14 b Fx(v)p 1393 1169 V 3 w Fz(\))1468
+1168 y Fp(1)1528 1156 y Fz(=)1733 1100 y(1)p 1626 1137
+257 4 v 1626 1213 a(det)g Fx(B)1818 1225 y Fq(K)1892
+1156 y Fz(\()p Fx(B)1987 1168 y Fq(K)2051 1156 y Fz(\))2083
+1168 y Fp(1)p Fq(j)2152 1156 y Fz(\(\()2225 1134 y Fl(d)2216
+1156 y Fz(curl)h(^)-43 b Fx(v)p 2369 1169 44 4 v 3 w
+Fz(\))2444 1168 y Fq(j)2498 1156 y Fs(\016)18 b Fx(F)2623
+1122 y Fh(\000)p Fp(1)2712 1156 y Fz(\))c Fx(:)1033 b
+Fz(\(20\))28 1368 y(Referring)26 b(to)i(\(17\),)f(w)n(e)g(sho)n(w)g
+(that)h(the)g(righ)n(t)f(hand)g(side)h(of)f(\(20\))h(equals)e(det)15
+b(M)2644 1380 y Fp(1)2681 1368 y Fz(.)37 b(F)-7 b(or)27
+b(this,)h(w)n(e)f(expand)g(det)14 b(M)3690 1380 y Fp(1)3755
+1368 y Fz(to)796 1553 y(det)g(M)1001 1565 y Fp(1)1061
+1553 y Fz(=)23 b(\()1190 1531 y Fl(d)1181 1553 y Fz(curl)14
+b(^)-42 b Fx(v)p 1334 1566 V 3 w Fz(\))1409 1565 y Fp(1)1460
+1553 y Fz(det)14 b Fs(B)1647 1519 y Fq(inv)1644 1574
+y Fp(11)1769 1553 y Fs(\000)k Fz(\()1893 1531 y Fl(d)1884
+1553 y Fz(curl)c(^)-42 b Fx(v)p 2037 1566 V 3 w Fz(\))2112
+1565 y Fp(2)2163 1553 y Fz(det)14 b Fs(B)2350 1519 y
+Fq(inv)2347 1574 y Fp(21)2472 1553 y Fz(+)k(\()2596 1531
+y Fl(d)2587 1553 y Fz(curl)c(^)-43 b Fx(v)p 2739 1566
+V 4 w Fz(\))2815 1565 y Fp(3)2866 1553 y Fz(det)14 b
+Fs(B)3053 1519 y Fq(inv)3050 1574 y Fp(31)3170 1553 y
+Fx(;)28 1725 y Fz(where)27 b Fs(B)326 1694 y Fq(inv)323
+1746 y(ij)456 1725 y Fz(is)h(the)g(2)18 b Fs(\002)g Fz(2-matrix)26
+b(arising)g(from)h Fx(B)1696 1689 y Fh(\000)p Fp(1)1692
+1749 y Fq(K)1813 1725 y Fz(when)h(cancelling)f(its)h(i-th)g(ro)n(w)e
+(and)h(its)h(j-th)g(column.)28 1833 y(W)-7 b(e)28 b(recall)e(the)i
+(form)n(ula)f(for)g(the)h(in)n(v)n(erse)e(of)i(a)f(matrix)g
+Fx(A)c Fs(2)h Fr(R)2037 1803 y Fp(3)p Fh(\002)p Fp(3)1404
+2027 y Fz(\()p Fx(A)1498 1992 y Fh(\000)p Fp(1)1587 2027
+y Fz(\))1619 2039 y Fq(ij)1701 2027 y Fz(=)1874 1970
+y(1)p 1799 2007 192 4 v 1799 2083 a(det)14 b Fx(A)2000
+2027 y Fz(\()p Fs(\000)p Fz(1\))2171 1992 y Fq(i)p Fp(+)p
+Fq(j)2294 2027 y Fz(det)g Fs(A)2489 2039 y Fq(j)s(i)2562
+2027 y Fx(;)1229 b Fz(\(21\))28 2221 y(where)27 b Fs(A)334
+2233 y Fq(ij)420 2221 y Fz(is)h(the)g(2)18 b Fs(\002)g
+Fz(2-matrix)26 b(arising)g(from)h Fx(A)h Fz(when)g(cancelling)f(its)h
+(i-th)f(ro)n(w)g(and)g(its)h(j-th)g(column.)28 2321 y(Replacing)f
+Fx(B)475 2333 y Fq(K)566 2321 y Fz(in)h(the)g(righ)n(t)f(hand)g(side)h
+(of)g(\(19\))f(b)n(y)g(the)h(expression)e(\(21\))h(for)h
+Fx(A)23 b Fz(=)g Fx(B)2852 2285 y Fh(\000)p Fp(1)2848
+2345 y Fq(K)2941 2321 y Fz(,)28 b(w)n(e)f(get)145 2479
+y(1)p 38 2516 257 4 v 38 2592 a(det)14 b Fx(B)230 2604
+y Fq(K)449 2479 y Fz(1)p 327 2516 286 4 v 327 2599 a(det)h
+Fx(B)524 2564 y Fh(\000)p Fp(1)520 2623 y Fq(K)623 2535
+y Fz(\()p Fs(\000)p Fz(1\))794 2501 y Fp(1+)p Fq(j)926
+2535 y Fz(det)f Fs(B)1113 2501 y Fq(inv)1110 2556 y(j)s
+Fp(1)1217 2535 y Fz(\()1258 2513 y Fl(d)1249 2535 y Fz(curl)g(^)-43
+b Fx(v)p 1401 2548 44 4 v 3 w Fz(\))1476 2547 y Fq(j)1535
+2535 y Fz(=)22 b(\()1663 2513 y Fl(d)1654 2535 y Fz(curl)15
+b(^)-43 b Fx(v)p 1807 2548 V 3 w Fz(\))1882 2547 y Fp(1)1934
+2535 y Fz(det)14 b Fs(B)2121 2501 y Fq(inv)2118 2556
+y Fp(11)2228 2535 y Fs(\000)t Fz(\()2338 2513 y Fl(d)2329
+2535 y Fz(curl)g(^)-43 b Fx(v)p 2481 2548 V 3 w Fz(\))2556
+2547 y Fp(2)2607 2535 y Fz(det)15 b Fs(B)2795 2501 y
+Fq(inv)2792 2556 y Fp(21)2901 2535 y Fz(+)t(\()3011 2513
+y Fl(d)3002 2535 y Fz(curl)f(^)-43 b Fx(v)p 3154 2548
+V 4 w Fz(\))3230 2547 y Fp(3)3281 2535 y Fz(det)14 b
+Fs(B)3468 2501 y Fq(inv)3465 2556 y Fp(31)3594 2535 y
+Fz(=)23 b(det)14 b(M)3887 2547 y Fp(1)3938 2535 y Fx(:)3897
+2760 y Fg(\003)28 2990 y Fv(2.2)112 b(N)n(\023)-54 b(ed)n(\023)g(elec)
+36 b(Elemen)m(ts)g(on)i(a\016ne)g(quadrilateral)f(or)g(hexahedral)h
+(grids)28 3143 y Fz(W)-7 b(e)29 b(w)n(an)n(t)f(to)h(presen)n(t)f(the)h
+(ingredien)n(ts)f(for)h(N)n(\023)-39 b(ed)n(\023)g(elec's)27
+b(\014nite)i(elemen)n(ts)g(of)g(\014rst)f(t)n(yp)r(e)h(on)g(grids)f
+(consisiting)g(of)h(parallel-)28 3243 y(ograms)f(\(in)i(2d\))h(or)e
+(the)h(resp)r(ectiv)n(e)g(ob)5 b(jects)29 b(in)i(3d,)f(so)g(called)f
+(parallelotops)g(\(cf.)45 b(section)29 b Fm(FE)k(built)f(on)g(cub)l(es)
+37 b Fz(in)30 b([8]\).)28 3343 y(Suc)n(h)d(grids)g(consist)g(of)g
+(elemen)n(ts)h Fx(C)34 b Fz(that)28 b(are)e(a\016ne)i(images)e(of)i
+(the)g(square)e(or)h(cubic)h(reference)e(elemen)n(t)3536
+3322 y(^)3517 3343 y Fx(C)j Fz(=)23 b([0)p Fx(;)14 b
+Fz(1])3860 3313 y Fq(d)3898 3343 y Fz(:)1252 3514 y Fx(C)30
+b Fz(=)22 b Fx(F)1481 3526 y Fq(C)1538 3514 y Fz(\()1589
+3493 y(^)1570 3514 y Fx(C)6 b Fz(\))83 b Fx(C)30 b Fs(3)23
+b Fx(x)h Fz(=)e Fx(B)2138 3526 y Fq(C)2199 3514 y Fz(^)-47
+b Fx(x)19 b Fz(+)f Fx(b)p 2343 3527 36 4 v 21 x Fq(C)2448
+3514 y Fx(;)i Fz(^)-48 b Fx(x)24 b Fs(2)2653 3493 y Fz(^)2634
+3514 y Fx(C)c(:)28 3741 y Fo(2.2.1)105 b(P)m(olynomial)35
+b(spaces)h(on)f(the)g(reference)g(elemen)m(t)28 3895
+y Fz(In)23 b(order)f(to)h(in)n(tro)r(duce)g(the)g(function)h(spaces)e
+(needed)i(for)e(the)i(construction)e(of)h(N)n(\023)-39
+b(ed)n(\023)g(elec's)22 b(\014nite)h(elemen)n(ts,)h(let)g(us)f
+(de\014ne)28 3994 y(some)k(spaces)f(of)i(v)n(ector-v)-5
+b(alued)26 b(p)r(olynomials)28 4158 y Fn(Definition)i
+Fz(7)45 b Fs(Q)649 4170 y Fq(l;m)781 4158 y Fm(ar)l(e)28
+b(the)h(sp)l(ac)l(es)g(of)g(p)l(olynomials)h(on)e(the)g(r)l(efer)l(enc)
+l(e)h(squar)l(e)2729 4137 y Fz(^)2710 4158 y Fx(C)35
+b Fm(with)28 b(maximal)h(de)l(gr)l(e)l(e)g Fx(l)h Fm(in)j
+Fz(^)-47 b Fx(x)3764 4170 y Fp(1)3830 4158 y Fm(and)28
+4257 y Fx(m)29 b Fm(in)35 b Fz(^)-47 b Fx(x)279 4269
+y Fp(2)317 4257 y Fm(.)28 4357 y Fs(Q)96 4369 y Fq(l;m;n)291
+4357 y Fm(ar)l(e)30 b(the)h(sp)l(ac)l(es)g(of)g(p)l(olynomials)h(on)f
+(the)f(r)l(efer)l(enc)l(e)h(cub)l(e)2185 4336 y Fz(^)2166
+4357 y Fx(C)37 b Fm(with)31 b(maximal)g(de)l(gr)l(e)l(e)g
+Fx(l)g Fm(in)36 b Fz(^)-47 b Fx(x)3233 4369 y Fp(1)3271
+4357 y Fm(,)30 b Fx(m)h Fm(in)k Fz(^)-47 b Fx(x)3579
+4369 y Fp(2)3647 4357 y Fm(and)31 b Fx(n)f Fm(in)33 4456
+y Fz(^)-47 b Fx(x)75 4468 y Fp(3)112 4456 y Fm(.)28 4620
+y Fz(The)27 b(spaces)471 4599 y(^)453 4620 y Fx(R)h Fz(for)f(the)h
+(reference)f(shap)r(e)g(functions)h(no)n(w)f(are)g(in)h(2d)1037
+4836 y Fs(P)1102 4802 y Fq(k)1165 4836 y Fz(=)1253 4719
+y Fl(\032)1318 4836 y Fz(^)-45 b Fx(u)p 1315 4849 48
+4 v 23 w Fz(=)1473 4719 y Fl(\022)1581 4786 y Fz(^)e
+Fx(u)1624 4798 y Fp(1)1581 4885 y Fz(^)g Fx(u)1624 4897
+y Fp(2)1702 4719 y Fl(\023)1787 4836 y Fz(:)111 b(^)-47
+b Fx(u)1964 4848 y Fp(1)2023 4836 y Fs(2)24 b(Q)2170
+4848 y Fq(k)q Fh(\000)p Fp(1)p Fq(;k)2366 4836 y Fx(;)19
+b Fz(^)-47 b Fx(u)2451 4848 y Fp(2)2511 4836 y Fs(2)23
+b(Q)2657 4848 y Fq(k)q(;k)q Fh(\000)p Fp(1)2839 4719
+y Fl(\033)2929 4836 y Fx(;)862 b Fz(\(22\))28 5053 y(and)27
+b(in)h(3d)686 5232 y Fs(P)751 5197 y Fq(k)814 5232 y
+Fz(=)902 5062 y Fl(8)902 5136 y(<)902 5286 y(:)979 5232
+y Fz(^)-45 b Fx(u)p 976 5245 V 22 w Fz(=)1134 5065 y
+Fl(0)1134 5214 y(@)1253 5131 y Fz(^)e Fx(u)1296 5143
+y Fp(1)1253 5231 y Fz(^)g Fx(u)1296 5243 y Fp(2)1253
+5330 y Fz(^)g Fx(u)1296 5342 y Fp(3)1374 5065 y Fl(1)1374
+5214 y(A)1470 5232 y Fz(:)111 b(^)-47 b Fx(u)1647 5244
+y Fp(1)1707 5232 y Fs(2)23 b(Q)1853 5244 y Fq(k)q Fh(\000)p
+Fp(1)p Fq(;k)q(;k)2106 5232 y Fx(;)c Fz(^)-47 b Fx(u)2191
+5244 y Fp(2)2250 5232 y Fs(2)24 b(Q)2397 5244 y Fq(k)q(;k)q
+Fh(\000)p Fp(1)p Fq(;k)2649 5232 y Fx(;)19 b Fz(^)-47
+b Fx(u)2734 5244 y Fp(3)2794 5232 y Fs(2)23 b(Q)2940
+5244 y Fq(k)q(;k)q(;k)q Fh(\000)p Fp(1)3179 5062 y Fl(9)3179
+5136 y(=)3179 5286 y(;)3280 5232 y Fx(:)511 b Fz(\(23\))28
+5469 y(W)-7 b(e)28 b(renounce)e(an)i(example,)f(since)g(it)h(is)g
+(quite)g(eviden)n(t,)f(what)h(these)f(spaces)g(lo)r(ok)g(lik)n(e)g(for)
+g(a)g(sp)r(eci\014c)h Fx(k)s Fz(.)1949 5719 y Fk(10)p
+eop
+%%Page: 11 11
+11 10 bop 28 213 a Fo(2.2.2)105 b(Degrees)35 b(of)g(freedom)g(on)g(the)
+f(reference)h(elemen)m(t)28 366 y Fz(W)-7 b(e)28 b(start)f(with)h(the)g
+(degrees)e(of)h(freedoms)g(on)h(the)g(reference)e(square)2323
+345 y(^)2305 366 y Fx(C)j Fs(\032)23 b Fr(R)2535 336
+y Fp(2)2578 366 y Fz(:)28 540 y Fn(Definition)28 b Fz(8)45
+b Fm(L)l(et)748 519 y Fz(^)729 540 y Fx(C)c Fm(denote)35
+b(the)g(r)l(efer)l(enc)l(e)h(squar)l(e)e(and)2021 525
+y Fz(^)2027 540 y Fx(t)p 2027 553 30 4 v 34 w Fm(the)h(tangent)g(as)g
+(de\014ne)l(d)g(in)g(c)l(onvention)g(1.)54 b(The)36 b(set)e(of)28
+640 y(de)l(gr)l(e)l(es)c(of)g(fr)l(e)l(e)l(dom)h Fs(A)f
+Fm(on)g Fs(P)993 610 y Fq(k)1063 640 y Fm(in)g(the)g(2d)g(c)l(ase)g(c)l
+(onsists)g(of)h(the)e(line)l(ar)i(functionals)28 789
+y Fy(edge)g(dofs)1409 927 y Fz(^)-51 b Fx(\013)q Fz(\()s(^)-45
+b Fx(u)p 1486 940 48 4 v Fz(\))23 b(:=)1700 814 y Fl(Z)1749
+1002 y Fp(^)-36 b Fq(e)1781 927 y Fz(\()1807 911 y(^)1813
+927 y Fx(t)p 1813 940 30 4 v 19 w Fs(\001)22 b Fz(^)-45
+b Fx(u)p 1904 940 48 4 v -1 w Fz(\))28 b(^)-56 b Fx(')14
+b(d)s Fz(^)-45 b Fx(s)14 b(;)99 b Fs(8)27 b Fz(^)-55
+b Fx(')23 b Fs(2)g Fr(P)2551 939 y Fq(k)q Fh(\000)p Fp(1)2676
+927 y Fz(\()s(^)-45 b Fx(e)o Fz(\))14 b Fx(;)255 1139
+y Fm(for)30 b(every)h(e)l(dge)j Fz(^)-45 b Fx(e)29 b
+Fm(of)974 1118 y Fz(^)955 1139 y Fx(C)7 b Fm(.)38 b(We)30
+b(have)h(a)f(total)g(of)h Fz(4)p Fx(k)h Fm(of)e(e)l(dge)h(dofs.)28
+1289 y Fy(inner)g(dofs)758 1417 y Fz(^)-50 b Fx(\013)p
+Fz(\()s(^)-45 b Fx(u)p 835 1430 V Fz(\))23 b(:=)1049
+1304 y Fl(Z)1110 1478 y Fp(^)1095 1493 y Fq(C)1168 1417
+y Fz(^)-45 b Fx(u)p 1165 1430 V 18 w Fs(\001)25 b Fz(^)-49
+b Fx(')p 1272 1447 55 4 v 14 w(d)5 b Fz(^)-47 b Fx(x)15
+b(;)99 b Fs(8)19 b Fz(^)-47 b Fx(')p 1628 1447 V 22 w
+Fz(=)1792 1300 y Fl(\022)1908 1367 y Fz(^)-56 b Fx(')1948
+1379 y Fp(1)1908 1466 y Fz(^)g Fx(')1948 1478 y Fp(2)2027
+1300 y Fl(\023)2116 1417 y Fx(;)112 b Fz(^)-55 b Fx(')2292
+1429 y Fp(1)2352 1417 y Fs(2)24 b(Q)2499 1429 y Fq(k)q
+Fh(\000)p Fp(2)p Fq(;k)q Fh(\000)p Fp(1)2780 1417 y Fx(;)112
+b Fz(^)-56 b Fx(')2955 1429 y Fp(2)3016 1417 y Fs(2)24
+b(Q)3163 1429 y Fq(k)q Fh(\000)p Fp(1)p Fq(;k)q Fh(\000)p
+Fp(2)3443 1417 y Fx(:)255 1616 y Fm(We)30 b(have)h(a)f(total)g(of)g
+Fz(2)p Fx(k)s Fz(\()p Fx(k)21 b Fs(\000)d Fz(1\))30 b
+Fm(of)g(inner)g(dofs.)28 1816 y Fn(Definition)e Fz(9)45
+b Fm(L)l(et)741 1795 y Fz(^)722 1816 y Fx(C)33 b Fm(denote)28
+b(the)g(r)l(efer)l(enc)l(e)g(cub)l(e,)1763 1800 y Fz(^)1769
+1816 y Fx(t)p 1769 1829 30 4 v 27 w Fm(the)g(tangent)e(to)i(an)f(e)l
+(dge)h(as)g(de\014ne)l(d)g(in)f(c)l(onvention)h(1)g(and)k
+Fz(^)-46 b Fx(n)p 3776 1829 50 4 v 27 w Fm(the)28 1915
+y(outwar)l(d)32 b(unit)g(normal)h(ve)l(ctor)f(to)g(a)h(fac)l(e.)47
+b(The)34 b(set)e(of)h(de)l(gr)l(e)l(es)f(of)h(fr)l(e)l(e)l(dom)h
+Fs(A)e Fm(on)g Fs(P)2827 1885 y Fq(k)2900 1915 y Fm(in)g(the)h(3d)g(c)l
+(ase)g(c)l(onsists)f(of)h(the)28 2015 y(line)l(ar)d(functionals)28
+2164 y Fy(edge)h(dofs)1409 2302 y Fz(^)-51 b Fx(\013)q
+Fz(\()s(^)-45 b Fx(u)p 1486 2315 48 4 v Fz(\))23 b(:=)1700
+2189 y Fl(Z)1749 2377 y Fp(^)-36 b Fq(e)1781 2302 y Fz(\()1807
+2287 y(^)1813 2302 y Fx(t)p 1813 2315 30 4 v 19 w Fs(\001)22
+b Fz(^)-45 b Fx(u)p 1904 2315 48 4 v -1 w Fz(\))28 b(^)-56
+b Fx(')14 b(d)s Fz(^)-45 b Fx(s)14 b(;)99 b Fs(8)27 b
+Fz(^)-55 b Fx(')23 b Fs(2)g Fr(P)2551 2314 y Fq(k)q Fh(\000)p
+Fp(1)2676 2302 y Fz(\()s(^)-45 b Fx(e)o Fz(\))14 b Fx(;)255
+2514 y Fm(for)30 b(every)h(e)l(dge)j Fz(^)-45 b Fx(e)29
+b Fm(of)974 2493 y Fz(^)955 2514 y Fx(C)7 b Fm(.)38 b(We)30
+b(have)h(a)f(total)g(of)h Fz(12)p Fx(k)g Fm(of)g(e)l(dge)f(dofs.)28
+2664 y Fy(face)i(dofs)556 2875 y Fz(^)-51 b Fx(\013)q
+Fz(\()s(^)-45 b Fx(u)p 633 2888 V -1 w Fz(\))24 b(:=)847
+2762 y Fl(Z)906 2936 y Fp(^)893 2951 y Fq(f)936 2875
+y Fz(\()s(^)-45 b Fx(u)p 968 2888 V 18 w Fs(^)23 b Fz(^)-46
+b Fx(n)p 1108 2888 50 4 v Fz(\))18 b Fs(\001)25 b Fz(^)-48
+b Fx(')p 1250 2905 55 4 v 14 w(d)q Fz(^)-43 b Fx(a)14
+b(;)99 b Fs(8)19 b Fz(^)-47 b Fx(')p 1602 2905 V 22 w
+Fz(=)1766 2758 y Fl(\022)1882 2825 y Fz(^)-56 b Fx(')1922
+2837 y Fp(1)1882 2924 y Fz(^)g Fx(')1922 2936 y Fp(2)2001
+2758 y Fl(\023)2090 2875 y Fx(;)112 b Fz(^)-55 b Fx(')2266
+2887 y Fp(1)2327 2875 y Fs(2)23 b(Q)2473 2887 y Fq(k)q
+Fh(\000)p Fp(2)p Fq(;k)q Fh(\000)p Fp(1)2740 2875 y Fz(\()2790
+2853 y(^)2772 2875 y Fx(f)9 b Fz(\))14 b Fx(;)112 b Fz(^)-55
+b Fx(')3044 2887 y Fp(2)3104 2875 y Fs(2)24 b(Q)3251
+2887 y Fq(k)q Fh(\000)p Fp(1)p Fq(;k)q Fh(\000)p Fp(2)3518
+2875 y Fz(\()3568 2853 y(^)3550 2875 y Fx(f)9 b Fz(\))14
+b Fx(:)255 3133 y Fm(for)30 b(every)h(fac)l(e)795 3111
+y Fz(^)777 3133 y Fx(f)38 b Fm(of)972 3112 y Fz(^)954
+3133 y Fx(C)6 b Fm(.)39 b(We)29 b(have)i(a)f(total)g(of)h
+Fz(6)18 b Fs(\001)h Fz(2)p Fx(k)s Fz(\()p Fx(k)h Fs(\000)e
+Fz(1\))30 b Fm(of)h(fac)l(e)f(dofs.)28 3283 y Fy(inner)h(dofs)263
+3544 y Fz(^)-50 b Fx(\013)p Fz(\()s(^)-45 b Fx(u)p 340
+3557 48 4 v Fz(\))23 b(:=)554 3431 y Fl(Z)615 3605 y
+Fp(^)600 3620 y Fq(C)673 3544 y Fz(^)-45 b Fx(u)p 670
+3557 V -1 w Fs(\001)6 b Fz(^)-48 b Fx(')p 740 3574 55
+4 v 15 w(d)5 b Fz(^)-47 b Fx(x)14 b(;)99 b Fs(8)19 b
+Fz(^)-47 b Fx(')p 1096 3574 V 22 w Fz(=)1260 3377 y Fl(0)1260
+3527 y(@)1387 3444 y Fz(^)-55 b Fx(')1428 3456 y Fp(1)1387
+3543 y Fz(^)g Fx(')1428 3555 y Fp(2)1387 3643 y Fz(^)g
+Fx(')1428 3655 y Fp(3)1507 3377 y Fl(1)1507 3527 y(A)1607
+3544 y Fx(;)113 b Fz(^)-56 b Fx(')1783 3556 y Fp(1)1844
+3544 y Fs(2)23 b(Q)1990 3556 y Fq(k)q Fh(\000)p Fp(1)p
+Fq(;k)q Fh(\000)p Fp(2)p Fq(;k)q Fh(\000)p Fp(2)2412
+3544 y Fx(;)124 b Fz(^)-67 b Fx(')2588 3556 y Fp(2)2649
+3544 y Fs(2)23 b(Q)2795 3556 y Fq(k)q Fh(\000)p Fp(2)p
+Fq(;k)q Fh(\000)p Fp(1)p Fq(;k)q Fh(\000)p Fp(2)3218
+3544 y Fx(;)123 b Fz(^)-67 b Fx(')3393 3556 y Fp(3)3454
+3544 y Fs(2)23 b(Q)3600 3556 y Fq(k)q Fh(\000)p Fp(2)p
+Fq(;k)q Fh(\000)p Fp(2)p Fq(;k)q Fh(\000)p Fp(1)4023
+3544 y Fx(:)255 3832 y Fm(We)30 b(have)h(a)f(total)g(of)g
+Fz(3)p Fx(k)s Fz(\()p Fx(k)21 b Fs(\000)d Fz(1\))1298
+3802 y Fp(2)1365 3832 y Fm(of)31 b(inner)e(dofs.)28 4031
+y Fn(Example)e Fz(4)45 b Fm(Pr)l(o)l(c)l(e)l(e)l(ding)d(the)f(same)g
+(way)h(as)g(in)f(example)h(3)f(for)h(a)g(triangular)f(r)l(efer)l(enc)l
+(e)h(element,)i(we)d(obtain)h(the)28 4131 y(r)l(efer)l(enc)l(e)30
+b(shap)l(e)h(functions)e(of)i(lowest)f(or)l(der)h(on)e(the)h(squar)l(e)
+g Fz([0)p Fx(;)14 b Fz(1])2209 4101 y Fp(2)2245 4131
+y Fm(.)39 b(F)-6 b(or)30 b(the)g(unit)f(tangents)g(as)h(in)g(c)l
+(onvention)g(1)825 4348 y Fz(^)831 4363 y Fx(t)p 831
+4376 30 4 v 21 x Fp(0)921 4363 y Fz(=)1009 4246 y Fl(\022)1111
+4312 y Fz(1)1111 4412 y(0)1195 4246 y Fl(\023)1283 4363
+y Fx(;)1399 4348 y Fz(^)1405 4363 y Fx(t)p 1405 4376
+V 21 x Fp(1)1495 4363 y Fz(=)1583 4246 y Fl(\022)1686
+4312 y Fz(0)1686 4412 y(1)1769 4246 y Fl(\023)1857 4363
+y Fx(;)1973 4348 y Fz(^)1979 4363 y Fx(t)p 1979 4376
+V 21 x Fp(2)2069 4363 y Fz(=)2157 4246 y Fl(\022)2260
+4312 y Fs(\000)p Fz(1)2292 4412 y(0)2407 4246 y Fl(\023)2496
+4363 y Fx(;)2612 4348 y Fz(^)2618 4363 y Fx(t)p 2618
+4376 V 21 x Fp(3)2708 4363 y Fz(=)2796 4246 y Fl(\022)2931
+4312 y Fz(0)2898 4412 y Fs(\000)p Fz(1)3046 4246 y Fl(\023)3135
+4363 y Fx(;)28 4591 y Fm(they)g(r)l(e)l(ad)638 4715 y
+Fz(^)621 4736 y Fx(N)p 621 4749 76 4 v 696 4757 a Fp(0)757
+4736 y Fz(=)844 4619 y Fl(\022)947 4685 y Fz(1)18 b Fs(\000)24
+b Fz(^)-48 b Fx(y)1019 4785 y Fz(0)1175 4619 y Fl(\023)1264
+4736 y Fx(;)1403 4715 y Fz(^)1386 4736 y Fx(N)p 1386
+4749 V 1461 4757 a Fp(1)1522 4736 y Fz(=)1609 4619 y
+Fl(\022)1715 4685 y Fz(0)1717 4785 y(^)h Fx(x)1801 4619
+y Fl(\023)1890 4736 y Fx(;)2029 4715 y Fz(^)2011 4736
+y Fx(N)p 2011 4749 V 2087 4757 a Fp(2)2148 4736 y Fz(=)2235
+4619 y Fl(\022)2338 4685 y Fs(\000)6 b Fz(^)-48 b Fx(y)2371
+4785 y Fz(0)2488 4619 y Fl(\023)2576 4736 y Fx(;)2715
+4715 y Fz(^)2698 4736 y Fx(N)p 2698 4749 V 2774 4757
+a Fp(3)2834 4736 y Fz(=)2922 4619 y Fl(\022)3099 4685
+y Fz(0)3030 4785 y(^)g Fx(x)19 b Fs(\000)f Fz(1)3256
+4619 y Fl(\023)3345 4736 y Fx(:)446 b Fz(\(24\))28 5002
+y Fo(2.2.3)105 b(T)-9 b(ransformation)34 b(of)h(the)g(v)m(ector)g
+(\014eld)28 5156 y Fz(Since)24 b(the)g(elemen)n(ts)g(of)f(the)i
+(considered)d(grids)h(are)g(still)h(a\016ne)g(images)f(of)h(the)g
+(reference)f(elemen)n(t,)i(w)n(e)e(can)h(use)f(the)i(Piola)28
+5255 y(transformation)j(\(10\))i(to)g(transform)f(v)n(ector)f(\014elds)
+j(and)e(the)i(results)e(stated)h(in)h(sections)e(2.1.3)g({)h(2.1.5)f
+(can)g(b)r(e)i(carried)28 5355 y(o)n(v)n(er)25 b(one)j(to)f(one.)1949
+5719 y Fk(11)p eop
+%%Page: 12 12
+12 11 bop 28 214 a Fv(2.3)112 b Fo(Construction)35 b(of)g(N)n(\023)-50
+b(ed)n(\023)g(elec)35 b(elemen)m(ts)f(on)h(bi-)g(or)g(trilinear)g
+(elemen)m(ts)28 367 y Fz(W)-7 b(e)28 b(no)n(w)f(w)n(an)n(t)g(to)h
+(consider)f(grids)g(that)h(are)f(comp)r(osed)h(of)g(elemen)n(ts)f(that)
+i(are)e(a)g(bi-)h(resp.)37 b(trilinear)27 b(images)g
+Fx(F)3680 379 y Fq(C)3736 367 y Fz(\()3788 346 y(^)3768
+367 y Fx(C)7 b Fz(\))28 b(of)28 467 y(the)f(reference)e(elemen)n(t)842
+446 y(^)823 467 y Fx(C)k Fz(=)23 b([0)p Fx(;)14 b Fz(1])1166
+436 y Fq(d)1204 467 y Fz(.)36 b(The)27 b(main)f(di\013erence)h(here)f
+(is,)h(that)g(the)g(jacobian)2964 446 y(^)2944 467 y
+Fx(D)r(F)3068 479 y Fq(C)3125 467 y Fz(\()5 b(^)-47 b
+Fx(x)p Fz(\))27 b(of)g(the)g(elemen)n(t)f(map)28 566
+y Fx(F)81 578 y Fq(C)164 566 y Fz(is)i(not)g(constan)n(t,)e(and)i(w)n
+(e)f(ha)n(v)n(e)g(to)g(use)g(Piola)g(transformation)f(\(9\))h(to)h
+(transform)e(v)n(ector)h(\014elds.)28 892 y Fo(2.3.1)105
+b(Bilinear)35 b(elemen)m(ts)f(in)h(2d)28 1045 y Fz(The)27
+b(p)r(olynomial)g(spaces)g Fs(P)947 1015 y Fq(k)1015
+1045 y Fz(and)g(the)h(dofs)g(remain)f(the)h(same)f(as)g(in)g(the)h
+(case)f(of)h(a\016ne)f(quadrilateral)f(elemen)n(ts.)28
+1145 y(A)i(transformed)e(v)n(ector)g(\014eld)i(on)f(a)h(general)e
+(elemen)n(t)i(is)f(no)n(w)g(de\014ned)h(b)n(y)f(the)h(Piola)f
+(transformation)f(\(9\))1501 1308 y Fx(v)p 1501 1321
+44 4 v 4 w Fz(\()p Fx(x)p Fz(\))e(=)e(\()1819 1287 y(^)1799
+1308 y Fx(D)s(F)1936 1273 y Fh(\000)p Fq(T)1924 1333
+y(C)2041 1308 y Fz(^)-43 b Fx(v)p 2040 1321 V 2083 1329
+a Fq(i)2111 1308 y Fz(\))18 b Fs(\016)g Fx(F)2286 1273
+y Fh(\000)p Fp(1)2274 1333 y Fq(C)2375 1308 y Fz(\()p
+Fx(x)p Fz(\))28 1484 y(of)32 b(a)g(v)n(ector)f(\014eld)i(on)f(the)h
+(reference)f(elemen)n(t.)51 b(Note)33 b(that)g(the)g(jacobian)2508
+1463 y(^)2488 1484 y Fx(D)r(F)2612 1496 y Fq(C)2669 1484
+y Fz(\()5 b(^)-47 b Fx(x)p Fz(\))33 b(is)g(not)f(constan)n(t)g(in)h
+(this)f(case.)51 b(In)28 1584 y(con)n(trast)27 b(to)i(the)g(case)f(of)g
+(a\016ne)h(elemen)n(ts,)g(the)g(gradien)n(t)e Fx(D)r(v)p
+1997 1597 V 33 w Fz(do)r(es)h(not)h(transform)e(according)g(to)i(form)n
+(ula)f(\(12\).)40 b(Non-)28 1683 y(v)-5 b(anishing)26
+b(second)g(deriv)-5 b(ativ)n(es)26 b(of)1187 1662 y(^)1167
+1683 y Fx(D)r(F)1291 1695 y Fq(C)1348 1683 y Fz(\()5
+b(^)-47 b Fx(x)p Fz(\))28 b(app)r(ear)d(in)i(the)g(transformation)f
+(rule)g(for)g(gradien)n(ts)g(of)g(v)n(ector)g(\014elds.)36
+b(This)28 1797 y(requires)26 b(a)h(new)h(approac)n(h)e(to)i(express)e
+(curl)14 b Fx(v)p 1482 1810 V 31 w Fz(in)28 b(terms)g(of)1986
+1775 y Fl(d)1976 1797 y Fz(curl)15 b(^)-43 b Fx(v)p 2129
+1810 V 3 w Fz(.)38 b(Nev)n(ertheless,)26 b(it)j(can)e(b)r(e)h(sho)n(wn)
+f(that)h(the)h(curl)e(of)h(a)28 1896 y(v)n(ector)e(\014eld)i
+(transforms)e(analogously)f(to)j(the)g(case)e(of)i(a\016ne)f(elemen)n
+(ts.)28 2073 y Fn(Pr)n(oposition)g Fz(5)45 b Fm(L)l(et)809
+2052 y Fz(^)790 2073 y Fx(C)39 b Fm(b)l(e)32 b(the)h(r)l(efer)l(enc)l
+(e)f(element)g Fz([0)p Fx(;)14 b Fz(1])1962 2043 y Fp(2)2031
+2073 y Fm(and)32 b Fx(C)39 b Fm(a)32 b(biline)l(ar)i(image)f(of)3030
+2052 y Fz(^)3011 2073 y Fx(C)7 b Fm(.)46 b(If)32 b(the)h(ve)l(ctor)f
+(\014eld)h Fx(v)p 3806 2086 V 3 w Fz(\()p Fx(x)p Fz(\))28
+2173 y Fm(tr)l(ansforms)c(ac)l(c)l(or)l(ding)i(to)f(the)g(Piola)i(tr)l
+(ansformation)e(\(9\),)h(then)e(the)h(tr)l(ansformation)h(of)f(the)g
+(curl)g(ob)l(eys)1126 2350 y Fz(curl)13 b Fx(v)p 1278
+2363 V 3 w Fz(\()p Fx(x)p Fz(\))24 b(=)f(\(det)1725 2329
+y(^)1706 2350 y Fx(D)r(F)12 b Fz(\))1874 2316 y Fh(\000)p
+Fp(1)1972 2328 y Fl(d)1963 2350 y Fz(curl)i(^)-43 b Fx(v)p
+2115 2363 V 4 w Fz(\()5 b(^)-47 b Fx(x)p Fz(\))14 b Fx(;)184
+b(x)24 b Fz(=)e Fx(F)12 b Fz(\()5 b(^)-47 b Fx(x)q Fz(\))14
+b Fx(;)28 2514 y Fm(as)30 b(in)f(the)h(a\016ne)h(c)l(ase.)28
+2791 y Fn(Pr)n(oof.)40 b Fz(In)28 b(this)g(pro)r(of,)f(the)h(mapp)r(ed)
+g(elemen)n(t)f Fx(C)34 b Fz(will)28 b(b)r(e)g(\014xed,)g(so)f(for)g
+(simplicit)n(y)g(w)n(e)h(write)f Fx(F)40 b Fz(for)27
+b Fx(F)3428 2803 y Fq(C)3484 2791 y Fz(.)28 2890 y(First)37
+b(note)g(that)h(\()675 2869 y(^)656 2890 y Fx(D)r(F)12
+b Fz(\()p Fx(F)889 2860 y Fh(\000)p Fp(1)978 2890 y Fz(\()p
+Fx(x)p Fz(\)\)\))1153 2860 y Fh(\000)p Fp(1)1283 2890
+y Fz(=)39 b Fx(D)r Fz(\()p Fx(F)1555 2860 y Fh(\000)p
+Fp(1)1645 2890 y Fz(\)\()p Fx(x)p Fz(\).)67 b(W)-7 b(e)38
+b(use)f(the)h(notation)f Fx(D)r Fz(\()p Fx(F)2847 2860
+y Fh(\000)p Fp(1)2936 2890 y Fz(\))2968 2902 y Fq(ij)3027
+2890 y Fz(\()p Fx(x)p Fz(\))j(=)3295 2856 y Fq(@)8 b
+Fp(^)-37 b Fq(x)3372 2864 y Ff(i)p 3292 2871 108 4 v
+3292 2919 a Fq(@)t(x)3369 2927 y Ff(j)3410 2890 y Fz(\()p
+Fx(x)p Fz(\))38 b(and)g(imlicit)28 3001 y(summation)27
+b(to)g(rewrite)g(the)h(Piola)f(transformation)f(of)h(the)h(v)n(ector)e
+(\014eld)i(comp)r(onen)n(t)n(wise)1250 3204 y Fx(v)1290
+3216 y Fq(i)1318 3204 y Fz(\()p Fx(x)p Fz(\))c(=)1550
+3148 y Fx(@)10 b Fz(^)-47 b Fx(x)1646 3160 y Fq(j)p 1550
+3185 132 4 v 1554 3261 a Fx(@)5 b(x)1650 3273 y Fq(i)1691
+3204 y Fz(\()p Fx(x)p Fz(\))16 b(^)-44 b Fx(v)p 1816
+3217 44 4 v 1861 3225 a Fq(j)1895 3204 y Fz(\()p Fx(F)1992
+3170 y Fh(\000)p Fp(1)2082 3204 y Fz(\()p Fx(x)p Fz(\)\))14
+b Fx(;)181 b(i)23 b Fz(=)f(1)p Fx(;)14 b Fz(2)g Fx(:)28
+3404 y Fz(In)27 b(the)h(case)f(of)h(a\016ne)f(elemen)n(ts,)h(i.)f(e.)h
+(for)f(constan)n(t)g(jacobian,)g(w)n(e)g(ha)n(v)n(e)1441
+3634 y Fx(@)5 b(v)1530 3646 y Fp(2)p 1437 3671 134 4
+v 1437 3747 a Fx(@)g(x)1533 3759 y Fp(1)1603 3690 y Fz(=)1706
+3634 y Fx(@)10 b Fz(^)-47 b Fx(x)1802 3646 y Fq(i)p 1701
+3671 V 1701 3747 a Fx(@)5 b(x)1797 3759 y Fp(2)1844 3690
+y Fz(\()p Fx(x)p Fz(\))2022 3634 y Fx(@)p 1980 3671 V
+1980 3747 a(@)g(x)2076 3759 y Fp(1)2124 3690 y Fz(^)-43
+b Fx(v)p 2123 3703 44 4 v 2167 3711 a Fq(i)2194 3690
+y Fz(\()p Fx(F)2291 3656 y Fh(\000)p Fp(1)2381 3690 y
+Fz(\()p Fx(x)p Fz(\)\))1441 3850 y Fx(@)5 b(v)1530 3862
+y Fp(1)p 1437 3887 134 4 v 1437 3963 a Fx(@)g(x)1533
+3975 y Fp(2)1603 3906 y Fz(=)1706 3850 y Fx(@)10 b Fz(^)-47
+b Fx(x)1802 3862 y Fq(i)p 1701 3887 V 1701 3963 a Fx(@)5
+b(x)1797 3975 y Fp(1)1844 3906 y Fz(\()p Fx(x)p Fz(\))2022
+3850 y Fx(@)p 1980 3887 V 1980 3963 a(@)g(x)2076 3975
+y Fp(2)2124 3906 y Fz(^)-43 b Fx(v)p 2123 3919 44 4 v
+2167 3927 a Fq(i)2194 3906 y Fz(\()p Fx(F)2291 3872 y
+Fh(\000)p Fp(1)2381 3906 y Fz(\()p Fx(x)p Fz(\)\))14
+b Fx(;)28 4106 y Fz(whereas)26 b(for)h(non-constan)n(t)f(jacobian)h(w)n
+(e)g(ha)n(v)n(e)983 4346 y Fx(@)5 b(v)1072 4358 y Fp(2)p
+979 4383 134 4 v 979 4459 a Fx(@)g(x)1075 4471 y Fp(1)1146
+4402 y Fz(=)1296 4346 y Fx(@)1345 4316 y Fp(2)1387 4346
+y Fz(^)-47 b Fx(x)1429 4358 y Fq(i)p 1243 4383 267 4
+v 1243 4459 a Fx(@)5 b(x)1339 4471 y Fp(1)1377 4459 y
+Fx(@)g(x)1473 4471 y Fp(2)1520 4402 y Fz(\()p Fx(x)p
+Fz(\))16 b(^)-44 b Fx(v)p 1645 4415 44 4 v 1689 4423
+a Fq(i)1717 4402 y Fz(\()p Fx(F)1814 4368 y Fh(\000)p
+Fp(1)1903 4402 y Fz(\()p Fx(x)p Fz(\)\))20 b(+)2163 4346
+y Fx(@)10 b Fz(^)-47 b Fx(x)2259 4358 y Fq(i)p 2159 4383
+134 4 v 2159 4459 a Fx(@)5 b(x)2255 4471 y Fp(2)2302
+4402 y Fz(\()p Fx(x)p Fz(\))2480 4346 y Fx(@)p 2438 4383
+V 2438 4459 a(@)g(x)2534 4471 y Fp(1)2582 4402 y Fz(^)-43
+b Fx(v)p 2581 4415 44 4 v 2624 4423 a Fq(i)2652 4402
+y Fz(\()p Fx(F)2749 4368 y Fh(\000)p Fp(1)2838 4402 y
+Fz(\()p Fx(x)p Fz(\)\))983 4572 y Fx(@)5 b(v)1072 4584
+y Fp(1)p 979 4609 134 4 v 979 4685 a Fx(@)g(x)1075 4697
+y Fp(2)1146 4628 y Fz(=)1296 4572 y Fx(@)1345 4542 y
+Fp(2)1387 4572 y Fz(^)-47 b Fx(x)1429 4584 y Fq(i)p 1243
+4609 267 4 v 1243 4685 a Fx(@)5 b(x)1339 4697 y Fp(1)1377
+4685 y Fx(@)g(x)1473 4697 y Fp(2)1520 4628 y Fz(\()p
+Fx(x)p Fz(\))16 b(^)-44 b Fx(v)p 1645 4641 44 4 v 1689
+4649 a Fq(i)1717 4628 y Fz(\()p Fx(F)1814 4594 y Fh(\000)p
+Fp(1)1903 4628 y Fz(\()p Fx(x)p Fz(\)\))20 b(+)2163 4572
+y Fx(@)10 b Fz(^)-47 b Fx(x)2259 4584 y Fq(i)p 2159 4609
+134 4 v 2159 4685 a Fx(@)5 b(x)2255 4697 y Fp(1)2302
+4628 y Fz(\()p Fx(x)p Fz(\))2480 4572 y Fx(@)p 2438 4609
+V 2438 4685 a(@)g(x)2534 4697 y Fp(2)2582 4628 y Fz(^)-43
+b Fx(v)p 2581 4641 44 4 v 2624 4649 a Fq(i)2652 4628
+y Fz(\()p Fx(F)2749 4594 y Fh(\000)p Fp(1)2838 4628 y
+Fz(\()p Fx(x)p Fz(\)\))14 b Fx(:)28 4828 y Fz(W)-7 b(e)28
+b(see)f(that)h(in)g Fm(b)l(oth)34 b Fz(cases)26 b(w)n(e)i(ha)n(v)n(e)
+690 5014 y(curl)14 b Fx(v)p 843 5027 V 26 w Fz(=)1010
+4958 y Fx(@)5 b(v)1099 4970 y Fp(2)p 1007 4995 134 4
+v 1007 5071 a Fx(@)g(x)1103 5083 y Fp(1)1168 5014 y Fs(\000)1265
+4958 y Fx(@)g(v)1354 4970 y Fp(1)p 1261 4995 V 1261 5071
+a Fx(@)g(x)1357 5083 y Fp(2)1428 5014 y Fz(=)1530 4958
+y Fx(@)10 b Fz(^)-47 b Fx(x)1626 4970 y Fq(i)p 1525 4995
+V 1525 5071 a Fx(@)5 b(x)1621 5083 y Fp(2)1669 5014 y
+Fz(\()p Fx(x)p Fz(\))1847 4958 y Fx(@)p 1804 4995 V 1804
+5071 a(@)g(x)1900 5083 y Fp(1)1949 5014 y Fz(^)-43 b
+Fx(v)p 1948 5027 44 4 v 1991 5035 a Fq(i)2019 5014 y
+Fz(\()p Fx(F)2116 4980 y Fh(\000)p Fp(1)2205 5014 y Fz(\()p
+Fx(x)p Fz(\)\))20 b Fs(\000)2466 4958 y Fx(@)10 b Fz(^)-47
+b Fx(x)2562 4970 y Fq(i)p 2461 4995 134 4 v 2461 5071
+a Fx(@)5 b(x)2557 5083 y Fp(1)2604 5014 y Fz(\()p Fx(x)p
+Fz(\))2782 4958 y Fx(@)p 2740 4995 V 2740 5071 a(@)g(x)2836
+5083 y Fp(2)2884 5014 y Fz(^)-43 b Fx(v)p 2883 5027 44
+4 v 2926 5035 a Fq(i)2954 5014 y Fz(\()p Fx(F)3051 4980
+y Fh(\000)p Fp(1)3140 5014 y Fz(\()p Fx(x)p Fz(\)\))28
+5214 y(that)33 b(is,)i(the)e(second)g(deriv)-5 b(ativ)n(es)32
+b(cancel)h(out)g(in)g(the)h(expression)e(for)h(the)g(curl)g(and)g(the)h
+(curl)f(in)g(the)h(non-a\016ne)e(case)28 5314 y(transforms)26
+b(equally)h(to)g(the)h(curl)f(in)h(the)g(a\016ne)g(case.)3897
+5469 y Fg(\003)1949 5719 y Fk(12)p eop
+%%Page: 13 13
+13 12 bop 28 213 a Fo(2.3.2)105 b(T)-9 b(rilinear)35
+b(elemen)m(ts)f(in)h(3d)28 366 y Fz(The)27 b(p)r(olynomial)g(spaces)g
+Fs(P)947 336 y Fq(k)1015 366 y Fz(and)g(the)h(dofs)g(remain)f(the)h
+(same)f(as)g(in)g(the)h(case)f(of)h(a\016ne)f(hexahedral)f(elemen)n
+(ts.)28 465 y(The)h(v)n(ector)g(\014eld)g(on)h(a)f(genereal)f(elemen)n
+(t)i(is)f(de\014ned)h(b)n(y)f(the)h(Piola)f(transformation)f(\(9\).)28
+565 y(The)h(problem)g(of)g(the)h(non-v)-5 b(anishing)26
+b(second)h(deriv)-5 b(ativ)n(es)26 b(of)h(the)h(jacobian)e
+Fx(D)r Fz(\()p Fx(F)2701 530 y Fh(\000)p Fp(1)2689 589
+y Fq(C)2791 565 y Fz(\)\()p Fx(x)p Fz(\))j(arises)c(again,)i(and)g(w)n
+(e)g(cannot)28 665 y(generalize)f(the)i(results)f(from)g(the)h(a\016ne)
+f(case)g(straigh)n(t)f(a)n(w)n(a)n(y)-7 b(.)28 764 y(But)30
+b(analogously)e(to)i(the)g(2d)g(case,)g(one)g(can)g(c)n(hec)n(k)f(that)
+i(in)f(in)g(the)h(transformation)e(rule)g(for)h(expressions)3597
+730 y Fq(@)t(v)3669 738 y Ff(i)p 3592 745 108 4 v 3592
+793 a Fq(@)t(x)3669 801 y Ff(j)3730 764 y Fs(\000)3825
+722 y Fq(@)t(v)3897 730 y Ff(j)p 3825 745 104 4 v 3825
+793 a Fq(@)t(x)3902 801 y Ff(i)3938 764 y Fz(,)28 875
+y Fx(i;)14 b(j)27 b Fz(=)c(1)p Fx(;)14 b Fz(2)p Fx(;)g
+Fz(3,)21 b(whic)n(h)f(de\014ne)i(the)f(curl-op)r(erator,)f(the)h(terms)
+g(con)n(taining)f(second)h(deriv)-5 b(ativ)n(es)19 b(v)-5
+b(anish.)35 b(W)-7 b(e)21 b(ha)n(v)n(e)f(therefore)28
+975 y(again)26 b(the)i(transformation)e(rule)h(\(16\))g(for)g(the)h(sk)
+n(ew)f(matrix)g(Curl)14 b Fx(v)26 b Fz(=)d Fx(D)r(v)2482
+945 y Fq(T)2553 975 y Fs(\000)18 b Fx(D)r(v)s Fz(:)391
+1155 y(Curl)13 b Fx(v)s Fz(\()p Fx(x)p Fz(\))25 b(=)d(\(\()916
+1134 y(^)896 1155 y Fx(D)s(F)1033 1119 y Fh(\000)p Fq(T)1021
+1179 y(C)1158 1133 y Fl(d)1137 1155 y Fz(Curl)17 b(^)-45
+b Fx(v)1389 1134 y Fz(^)1370 1155 y Fx(D)r(F)1506 1119
+y Fh(\000)p Fp(1)1494 1179 y Fq(C)1595 1155 y Fz(\))18
+b Fs(\016)g Fx(F)1770 1119 y Fh(\000)p Fp(1)1758 1179
+y Fq(C)1859 1155 y Fz(\)\()p Fx(x)p Fz(\))25 b(=)d(\()p
+Fx(D)r(F)2282 1119 y Fh(\000)p Fp(1)2270 1179 y Fq(C)2372
+1155 y Fz(\))2404 1120 y Fq(T)2456 1155 y Fz(\()p Fx(x)p
+Fz(\))14 b(\()2635 1133 y Fl(d)2613 1155 y Fz(Curl)k(^)-45
+b Fx(v)22 b Fs(\016)c Fx(F)2977 1119 y Fh(\000)p Fp(1)2965
+1179 y Fq(C)3066 1155 y Fz(\)\()p Fx(x)p Fz(\))c Fx(D)r(F)3359
+1119 y Fh(\000)p Fp(1)3347 1179 y Fq(C)3449 1155 y Fz(\()p
+Fx(x)p Fz(\))g Fx(:)28 1321 y Fz(It)35 b(follo)n(ws)e(that)i(the)g
+(follo)n(wing)f(prop)r(osition)g(can)g(b)r(e)h(pro)n(v)n(ed)e
+(analogously)g(to)h(the)h(case)f(of)h(a\016ne)f(elemen)n(ts)h
+(\(replace)28 1434 y(there)27 b Fx(B)303 1446 y Fq(C)386
+1434 y Fz(b)n(y)521 1413 y(^)502 1434 y Fx(D)r(F)626
+1446 y Fq(C)682 1434 y Fz(\()709 1408 y(^)714 1434 y(\()q
+Fx(x)p Fz(\)\)\).)28 1592 y Fn(Pr)n(oposition)g Fz(6)45
+b Fm(L)l(et)33 b(the)g(ve)l(ctor)h(\014eld)g Fx(v)p 1364
+1605 44 4 v 3 w Fz(\()p Fx(x)p Fz(\))g Fm(on)g(a)f(triline)l(ar)i
+(image)f Fx(C)i Fz(=)29 b Fx(F)2564 1604 y Fq(C)2620
+1592 y Fz(\()2671 1571 y(^)2652 1592 y Fx(C)7 b Fz(\))34
+b Fm(b)l(e)f(de\014ne)l(d)h(by)g(the)f(Piola)i(tr)l(ansfor-)28
+1692 y(mation)30 b(of)g(a)g(r)l(efer)l(enc)l(e)h(\014eld)g
+Fz(^)-43 b Fx(v)p 1008 1705 V 3 w Fz(\()5 b(^)-47 b Fx(x)q
+Fz(\))30 b Fm(on)1330 1671 y Fz(^)1312 1692 y Fx(C)6
+b Fm(.)38 b(The)31 b(tr)l(ansformation)g(formula)f(for)h(the)f(curl)g
+(then)f(r)l(e)l(ads)1279 1908 y Fz(curl)13 b Fx(v)p 1431
+1921 V 27 w Fz(=)1585 1791 y Fl(\022)1790 1852 y Fz(1)p
+1656 1889 310 4 v 1656 1977 a(det)1805 1956 y(^)1786
+1977 y Fx(D)r(F)1910 1989 y Fq(C)2009 1887 y Fz(^)1990
+1908 y Fx(D)r(F)2114 1920 y Fq(C)2193 1886 y Fl(d)2184
+1908 y Fz(curl)h(^)-43 b Fx(v)p 2336 1921 44 4 v 2379
+1791 a Fl(\023)2459 1908 y Fs(\016)18 b Fx(F)2584 1872
+y Fh(\000)p Fp(1)2572 1932 y Fq(C)2687 1908 y Fx(:)28
+2176 y Fv(2.4)112 b Fo(Construction)35 b(of)g(global)h(shap)s(e)e
+(functions)28 2329 y Fz(In)25 b(the)g(previous)f(sections)g(w)n(e)h(ha)
+n(v)n(e)e(in)n(tro)r(duced)i(function)h(spaces)e(and)g(degrees)g(of)h
+(freedom,)g(whic)n(h,)g(together)f(with)i(the)28 2428
+y(Piola)g(transformation,)h(will)h(allo)n(w)f(us)h(to)g(de\014ne)h(an)e
+Fx(H)7 b Fz(\(curl;)14 b(\012\)-conforming)27 b(\014nite)i(elemen)n(t)f
+(metho)r(d.)39 b(Indeed,)28 b(in)h([8)o(],)28 2528 y(N)n(\023)-39
+b(ed)n(\023)g(elec)24 b(sho)n(ws)h(the)i(in)n(v)-5 b(ariance)25
+b(of)h(the)h(spaces)e Fs(R)1661 2498 y Fq(k)1729 2528
+y Fz(and)h Fs(Q)1957 2498 y Fq(k)2024 2528 y Fz(under)g(Piola)f
+(transformation)g(of)h(the)h(v)n(ector)e(\014eld,)i(as)f(w)n(ell)28
+2628 y(as)e(the)h(unisolv)n(ence)f(of)h(the)g(set)g(of)g(degrees)e(of)i
+(freedom)g Fs(A)g Fz(from)g(sections)f(2.1.2)f(and)i(2.2.2)f(\(for)g
+(details,)i(see)e([8],)h(Section)28 2727 y(1.2,)30 b(Theorem)g(1)g(and)
+h(Section)g(2,)g(Theorem)f(5\).)46 b(This)30 b(leads)g(to)h(the)g(fact)
+g(that)g Fx(H)7 b Fz(\(curl;)14 b(\012\)-conforming)29
+b(global)h(shap)r(e)28 2827 y(functions)24 b(can)f(b)r(e)h(de\014ned)g
+(b)n(y)f(mapping)g(elemen)n(t)n(wise)g(the)h(reference)f(shap)r(e)h
+(functions)g(with)g(the)g(Piola)e(transformation)28 2927
+y Fs(P)86 2939 y Fq(K)149 2927 y Fz(.)42 b(Ho)n(w)n(ev)n(er,)28
+b(w)n(e)h(m)n(ust)h(pa)n(y)e(some)h(care)f(to)h(the)h(orien)n(tation)e
+(of)h(an)g(in)n(terface)g(on)g(whic)n(h)g(the)h(momen)n(ts)f
+(de\014ning)g(the)28 3026 y(degrees)22 b(of)i(freedom)f(are)g(based.)36
+b(F)-7 b(or)23 b(the)h(2d)g(case,)g(w)n(e)f(will)h(illustrate)g(in)g
+(this)g(section)g(ho)n(w)f(w)n(e)g(m)n(ust)h(tak)n(e)g(in)n(to)f
+(accoun)n(t)28 3126 y(the)28 b Fm(orientation)j(of)g(an)f(e)l(dge)35
+b Fz(in)28 b(the)h(de\014nition)f(of)g(the)g(resp)r(ectiv)n(e)f(elemen)
+n(t)h(edge)g(shap)r(e)g(function,)g(in)g(order)f(to)h(get)g(an)28
+3225 y Fx(H)7 b Fz(\(curl)o(;)14 b(\012\)-conforming)27
+b(\014nite)h(elemen)n(t)f(space)g(of)h(global)e(shap)r(e)i(functions.)
+28 3425 y(Let)22 b Fx(K)29 b Fz(=)23 b Fx(F)12 b Fz(\()478
+3404 y(^)456 3425 y Fx(K)5 b Fz(\))23 b(b)r(e)g(an)g(a\016ne)f(or)g
+(bilinear)g(image)g(of)h(a)f(reference)g(elemen)n(t,)i
+Fx(e)e Fz(one)h(of)f(its)h(edges)f(and)k(^)-45 b Fx(e)22
+b Fz(the)h(corresp)r(onding)28 3524 y(edge)k(on)g(the)h(reference)f
+(elemen)n(t.)28 3624 y(Let)20 b(further)h([0)p Fx(;)14
+b Fs(j)p Fx(e)p Fs(j)p Fz(])22 b Fs(3)i Fx(s)f Fs(7!)g
+Fx(x)p 921 3637 48 4 v Fz(\()p Fx(s)p Fz(\))h Fs(2)f
+Fx(e)d Fz(and)h([0)p Fx(;)14 b Fs(j)s Fz(^)-45 b Fx(e)o
+Fs(j)p Fz(])23 b Fs(3)k Fz(^)-45 b Fx(s)23 b Fs(7!)j
+Fz(^)-45 b Fx(x)p 1866 3637 V Fz(\()s(^)g Fx(s)p Fz(\))24
+b Fs(2)i Fz(^)-45 b Fx(e)20 b Fz(b)r(e)h(parametrizations)e(with)i
+(resp)r(ect)f(to)h(the)g(arc)e(length)28 3724 y(of)25
+b Fx(e)h Fz(and)i(^)-45 b Fx(e)26 b Fz(resp)r(ectiv)n(ely)-7
+b(.)35 b(W)-7 b(e)26 b(can)f(assume)g(that)h(these)g(parametrizations)e
+(endo)n(w)h(the)h(edges)f(with)h(a)f(coun)n(terclo)r(c)n(kwise)28
+3823 y(orien)n(tation.)35 b(Then,)28 b(the)g(unit)g(tangen)n(t)f(v)n
+(ectors)f Fx(t)p 1624 3836 30 4 v 28 w Fz(and)1838 3808
+y(^)1843 3823 y Fx(t)p 1843 3836 V 28 w Fz(are)h(giv)n(en)f(b)n(y)2382
+3783 y Fq(dx)p 2417 3794 38 3 v 2382 3804 73 4 v 2385
+3852 a(ds)2492 3823 y Fz(and)2663 3783 y Fq(d)r Fp(^)-35
+b Fq(x)p 2698 3794 38 3 v 2663 3804 73 4 v 2666 3852
+a(d)s Fp(^)f Fq(s)2745 3823 y Fz(.)28 4003 y Fn(Lemma)27
+b Fz(1)45 b Fm(L)l(et)27 b Fz(^)-42 b Fx(v)p 561 4016
+44 4 v 3 w Fz(\()5 b(^)-47 b Fx(x)p Fz(\))28 b Fm(b)l(e)e(a)i(ve)l
+(ctor)f(\014eld)g(on)g(the)g(r)l(efer)l(enc)l(e)g(element)g(and)g
+Fx(v)p 2389 4016 V 3 w Fz(\()p Fx(x)p Fz(\))h Fm(b)l(e)f(the)g(c)l(orr)
+l(esp)l(onding)h(ve)l(ctor)f(\014eld)g(on)g Fx(K)6 b
+Fm(,)28 4102 y(de\014ne)l(d)30 b(by)g(the)g(Piola)h(tr)l(ansformation)g
+(\(9\).)39 b(It)29 b(then)h(holds)1703 4316 y Fx(v)p
+1703 4329 V 21 w Fs(\001)19 b Fx(t)p 1806 4329 30 4 v
+23 w Fz(=)1957 4260 y Fs(j)s Fz(^)-45 b Fx(e)o Fs(j)p
+1957 4297 85 4 v 1957 4373 a(j)p Fx(e)p Fs(j)2051 4316
+y Fz(\()q(^)i Fx(v)p 2083 4329 44 4 v 22 w Fs(\001)2181
+4301 y Fz(^)2187 4316 y Fx(t)p 2187 4329 30 4 v Fz(\))14
+b Fx(;)1528 b Fz(\(25\))28 4531 y Fm(wher)l(e)30 b Fs(j)s
+Fz(^)-45 b Fx(e)p Fs(j)29 b Fm(and)i Fs(j)p Fx(e)p Fs(j)e
+Fm(denote)h(the)g(length)g(of)h(the)f(e)l(dges)j Fz(^)-45
+b Fx(e)30 b Fm(and)g Fx(e)p Fm(.)28 4711 y Fn(Pr)n(oof.)40
+b Fz(With)1288 4833 y(\()p Fx(v)p 1320 4846 44 4 v 3
+w Fz(\()p Fx(x)p Fz(\)\))1506 4845 y Fq(i)1558 4833 y
+Fz(=)23 b(\()p Fx(D)r Fz(\()p Fx(F)1846 4799 y Fh(\000)p
+Fp(1)1936 4833 y Fz(\))1968 4799 y Fq(T)2021 4833 y Fz(^)-43
+b Fx(v)p 2020 4846 V 3 w Fz(\))2095 4845 y Fq(i)2146
+4833 y Fz(=)2244 4777 y Fx(@)10 b Fz(^)-47 b Fx(x)2340
+4789 y Fq(j)p 2244 4814 132 4 v 2248 4890 a Fx(@)5 b(x)2344
+4902 y Fq(i)2385 4833 y Fz(\()p Fx(x)p Fz(\))q(^)-43
+b Fx(v)p 2496 4846 44 4 v 2540 4854 a Fq(j)2575 4833
+y Fz(\()5 b(^)-47 b Fx(x)q Fz(\))28 5013 y(and)32 b(^)-47
+b Fx(x)236 5025 y Fq(j)294 5013 y Fz(=)28 b(^)-47 b Fx(x)429
+5025 y Fq(j)465 5013 y Fz(\()p Fx(x)p 497 5026 48 4 v
+Fz(\()p Fx(s)p Fz(\)\))29 b(and)j(^)-47 b Fx(x)916 5025
+y Fq(j)975 5013 y Fz(=)28 b(^)-48 b Fx(x)1109 5025 y
+Fq(j)1145 5013 y Fz(\()s(^)j Fx(s)p Fz(\()p Fx(s)p Fz(\)\))28
+b(on)g(the)g(edges,)f(w)n(e)g(ha)n(v)n(e)812 5232 y Fx(v)p
+812 5245 44 4 v 21 w Fs(\001)19 b Fx(t)p 915 5245 30
+4 v 23 w Fz(=)k Fx(v)p 1056 5245 44 4 v 21 w Fs(\001)1169
+5176 y Fx(dx)p 1212 5189 48 4 v 1169 5213 91 4 v 1173
+5289 a(ds)1292 5232 y Fz(=)1380 5115 y Fl(\022)1442 5232
+y Fz(^)-43 b Fx(v)p 1441 5245 44 4 v 1484 5253 a Fq(j)1529
+5176 y Fx(@)10 b Fz(^)-47 b Fx(x)1625 5188 y Fq(j)p 1529
+5213 132 4 v 1533 5289 a Fx(@)5 b(x)1629 5301 y Fq(i)1670
+5115 y Fl(\023)1745 5232 y Fz(\()p Fx(x)p Fz(\))1866
+5176 y Fx(dx)1956 5188 y Fq(i)p 1867 5213 119 4 v 1885
+5289 a Fx(ds)2019 5232 y Fz(=)23 b(^)-43 b Fx(v)p 2106
+5245 44 4 v 2150 5253 a Fq(j)2194 5176 y Fx(d)5 b Fz(^)-47
+b Fx(x)2284 5188 y Fq(j)p 2194 5213 126 4 v 2216 5289
+a Fx(ds)2353 5232 y Fz(=)24 b(^)-43 b Fx(v)p 2441 5245
+44 4 v 2484 5253 a Fq(j)2529 5176 y Fx(d)5 b Fz(^)-47
+b Fx(x)2619 5188 y Fq(j)p 2529 5213 126 4 v 2551 5289
+a Fx(d)s Fz(^)i Fx(s)2675 5176 y(d)s Fz(^)g Fx(s)p 2675
+5213 83 4 v 2675 5289 a(ds)2790 5232 y Fz(=)22 b(\()q(^)-43
+b Fx(v)p 2909 5245 44 4 v 22 w Fs(\001)3007 5217 y Fz(^)3013
+5232 y Fx(t)p 3013 5245 30 4 v Fz(\))3085 5176 y Fx(d)s
+Fz(^)e Fx(s)p 3085 5213 83 4 v 3085 5289 a(ds)28 5469
+y Fz(and)27 b(with)388 5437 y Fq(d)s Fp(^)-36 b Fq(s)p
+388 5451 66 4 v 388 5498 a(ds)487 5469 y Fz(=)585 5429
+y Fh(j)s Fp(^)g Fq(e)p Fh(j)p 585 5450 71 4 v 585 5498
+a(j)p Fq(e)p Fh(j)693 5469 y Fz(the)28 b(lemma)g(follo)n(ws.)1949
+5719 y Fk(13)p eop
+%%Page: 14 14
+14 13 bop 3897 205 a Fg(\003)28 380 y Fz(As)27 b(a)g(consequence,)g(w)n
+(e)g(ha)n(v)n(e)28 579 y Fn(Pr)n(oposition)g Fz(7)g(\(In)n(v)-5
+b(ariance)26 b(of)i(the)g(edge)f(dofs\))46 b Fm(L)l(et)27
+b(the)h(ve)l(ctor)g(\014eld)h Fx(v)p 2406 592 44 4 v
+3 w Fz(\()p Fx(x)p Fz(\))g Fm(on)f Fx(K)34 b Fm(b)l(e)28
+b(de\014ne)l(d)g(by)g(the)g(Piola)i(tr)l(ansfor-)28 679
+y(mation)i(\(9\))g(of)h(a)g(r)l(efer)l(enc)l(e)f(ve)l(ctor)g(\014eld)i
+Fz(^)-43 b Fx(v)p 1409 692 V 3 w Fz(\()5 b(^)-47 b Fx(x)q
+Fz(\))32 b Fm(on)1739 658 y Fz(^)1717 679 y Fx(K)5 b
+Fm(.)46 b(Then,)34 b(the)e(functionals)g(\()13 b Fz(edge)30
+b(dofs)p Fm(\))i Fx(\013)3179 649 y Fp([)p Fq(K)t Fp(])3281
+679 y Fz(\()p Fx(u)p 3313 692 48 4 v Fz(\))27 b(:=)3535
+612 y Fl(R)3574 708 y Fq(e)3610 679 y Fz(\()p Fx(v)p
+3642 692 44 4 v 24 w Fs(\001)20 b Fx(t)p 3749 692 30
+4 v Fz(\))p Fx(')14 b(ds)28 778 y Fm(ar)l(e)30 b(invariant)g(in)g(the)g
+(sense)g(of)315 999 y Fx(\013)368 965 y Fp([)p Fq(K)t
+Fp(])470 999 y Fz(\()p Fx(u)p 502 1012 48 4 v -1 w Fz(\))24
+b(=)692 886 y Fl(Z)739 1074 y Fq(e)774 999 y Fz(\()p
+Fx(v)p 806 1012 44 4 v 22 w Fs(\001)19 b Fx(t)p 910 1012
+30 4 v Fz(\))p Fx(')14 b(ds)23 b Fz(=)1233 886 y Fl(Z)1282
+1074 y Fp(^)-36 b Fq(e)1315 999 y Fz(\()q(^)-43 b Fx(v)p
+1347 1012 44 4 v 22 w Fs(\001)1445 983 y Fz(^)1450 999
+y Fx(t)p 1450 1012 30 4 v Fz(\))13 b(^)-55 b Fx(')15
+b(d)s Fz(^)-45 b Fx(s)37 b Fz(=)30 b(^)-50 b Fx(\013)q
+Fz(\()s(^)-45 b Fx(u)p 1873 1012 48 4 v -1 w Fz(\))14
+b Fx(;)184 b Fs(8)26 b Fz(^)-54 b Fx(')22 b Fs(2)i Fr(P)2441
+1011 y Fq(k)q Fh(\000)p Fp(1)2565 999 y Fz(\()s(^)-45
+b Fx(e)p Fz(\))14 b Fx(;)99 b(')24 b Fz(=)36 b(^)-56
+b Fx(')19 b Fs(\016)f Fx(F)3167 965 y Fh(\000)p Fp(1)3279
+999 y Fs(2)24 b Fr(P)3410 1011 y Fq(k)q Fh(\000)p Fp(1)3534
+999 y Fz(\()p Fx(e)p Fz(\))14 b Fx(:)28 1261 y Fz(Let)28
+b(no)n(w)g Fx(K)422 1273 y Fh(\000)503 1261 y Fz(=)c
+Fx(F)645 1273 y Fh(\000)702 1261 y Fz(\()756 1240 y(^)734
+1261 y Fx(K)5 b Fz(\))29 b(and)g Fx(K)1105 1273 y Fp(+)1184
+1261 y Fz(=)c Fx(F)1327 1273 y Fp(+)1382 1261 y Fz(\()1437
+1240 y(^)1414 1261 y Fx(K)6 b Fz(\))29 b(b)r(e)g(t)n(w)n(o)f(neigh)n(b)
+r(ouring)g(triangles)f(with)i(common)f(edge)h Fx(e)p
+Fz(.)40 b(Let)28 b Fx(N)p 3627 1274 76 4 v 38 w Fz(b)r(e)h(the)28
+1361 y(global)f(edge)g(shap)r(e)h(function)h(that)f('liv)n(es')g(on)g
+Fx(e)p Fz(.)41 b(By)29 b Fx(N)p 1792 1374 V 1868 1381
+a Fh(\000)1953 1361 y Fz(and)g Fx(N)p 2116 1374 V 2192
+1381 a Fp(+)2276 1361 y Fz(w)n(e)g(denote)g(the)h(restriction)e(of)h
+Fx(N)p 3309 1374 V 38 w Fz(to)g Fx(K)3588 1373 y Fp(+)3672
+1361 y Fz(and)g Fx(K)3906 1373 y Fh(\000)28 1460 y Fz(resp)r(ectiv)n
+(ely)-7 b(.)50 b(Let)33 b Fx(e)713 1472 y Fp(+)798 1460
+y Fz(=)e Fx(F)947 1472 y Fp(+)1003 1460 y Fz(\()s(^)-45
+b Fx(e)1074 1472 y Fq(i)1101 1460 y Fz(\))33 b(and)f
+Fx(e)1371 1472 y Fh(\000)1458 1460 y Fz(=)f Fx(F)1607
+1472 y Fh(\000)1663 1460 y Fz(\()s(^)-45 b Fx(e)1734
+1472 y Fq(j)1769 1460 y Fz(\).)52 b(W)-7 b(e)32 b(write)h
+Fx(t)p 2241 1473 30 4 v 21 x Fp(+)2358 1460 y Fz(for)f(the)h(tangen)n
+(tial)e(unit)i(v)n(ector)e(to)i Fx(e)p Fz(,)g(orien)n(ted)28
+1560 y(coun)n(terclo)r(c)n(kwise)28 b(with)j(resp)r(ect)g(to)f
+Fx(K)1318 1572 y Fp(+)1404 1560 y Fz(and)g Fx(t)p 1568
+1573 V 21 x Fh(\000)1682 1560 y Fz(=)e Fs(\000)p Fx(t)p
+1840 1573 V 1869 1581 a Fp(+)1955 1560 y Fz(for)i(the)h(resp)r(ectiv)n
+(e)f(from)g Fx(K)2890 1572 y Fh(\000)2946 1560 y Fz(.)46
+b(F)-7 b(or)30 b(line)h(in)n(tegrals)e(o)n(v)n(er)g(the)28
+1660 y(edge)d Fx(e)g Fz(w)n(e)g(write)613 1593 y Fl(R)652
+1689 y Fq(e)683 1697 y Fi(+)761 1660 y Fz(if)h(w)n(e)f(c)n(hose)g(the)g
+(orien)n(tation)f(induced)i(b)n(y)f Fx(t)p 2160 1673
+V 20 x Fp(+)2272 1660 y Fz(and)2432 1593 y Fl(R)2472
+1689 y Fq(e)2503 1697 y Fe(\000)2583 1660 y Fz(for)g(the)h(orien)n
+(tation)e(of)h Fx(e)g Fz(induced)h(b)n(y)f Fx(t)p 3852
+1673 V 20 x Fh(\000)3938 1660 y Fz(.)28 1775 y(In)c(order)f(to)h
+(obtain)g(an)g Fx(H)7 b Fz(\(curl)o(;)14 b(\012\)-conforming)21
+b(metho)r(d,)j(prop)r(osition)e(1)f(tells)i(us)f(that)g(w)n(e)g(m)n
+(ust)h(ensure)e(the)i(con)n(tin)n(uit)n(y)28 1874 y(of)k(the)h(tangen)n
+(tial)f(comp)r(onen)n(ts)g(of)g(the)h(global)f(shap)r(e)g(functions,)h
+(that)g(is)1572 2057 y Fx(N)p 1572 2070 76 4 v 1648 2078
+a Fp(+)1722 2057 y Fs(\001)18 b Fx(t)p 1763 2070 30 4
+v 21 x Fp(+)1867 2057 y Fz(+)g Fx(N)p 1950 2070 76 4
+v 2025 2078 a Fh(\000)2100 2057 y Fs(\001)g Fx(t)p 2141
+2070 30 4 v 21 x Fh(\000)2251 2057 y Fz(=)k(0)14 b Fx(:)1397
+b Fz(\(26\))28 2240 y(The)30 b(follo)n(wing)f(lemma)i(will)f(justify)h
+(the)g(c)n(hoice)f(of)g(the)h(momen)n(ts)f(describing)f(the)i(edge)f
+(dofs.)45 b(A)30 b(consequence)g(of)g(the)28 2339 y(lemma)e(will)h(b)r
+(e,)g(that)g(the)g(matc)n(hing)f(of)h(the)g(lo)r(cal)f(edge)g(dofs)g
+Fx(\013)2133 2309 y Fp([)p Fq(K)2208 2317 y Fi(+)2255
+2309 y Fp(])2307 2339 y Fz(and)g Fx(\013)2522 2309 y
+Fp([)p Fq(K)2597 2317 y Fe(\000)2646 2309 y Fp(])2698
+2339 y Fz(guaran)n(tees)e(the)j(p)r(oin)n(t)n(wise)g(condition)28
+2439 y(\(26\).)28 2613 y Fn(Lemma)e Fz(2)45 b Fm(L)l(et)584
+2592 y Fz(^)562 2613 y Fx(K)33 b Fm(denote)28 b(the)g(r)l(efer)l(enc)l
+(e)g(triangle)h(and)i Fz(^)-45 b Fx(e)28 b Fm(one)g(of)g(its)g(e)l
+(dges,)i(p)l(ar)l(ametrize)l(d)f(by)i Fz(^)-45 b Fx(e)23
+b Fs(3)28 b Fz(^)-47 b Fx(x)q Fz(\()p Fx(s)p Fz(\))23
+b(:=)g Fx(a)p 3565 2626 44 4 v 14 w Fz(+)14 b Fx(s)3749
+2598 y Fz(^)3755 2613 y Fx(t)p 3755 2626 30 4 v Fm(.)38
+b(L)l(et)28 2713 y Fz(^)-42 b Fx(p)p 28 2742 42 4 v 22
+w Fs(2)24 b(S)227 2683 y Fq(k)268 2713 y Fm(,)30 b Fs(S)379
+2683 y Fq(k)450 2713 y Fm(as)g(de\014ne)l(d)h(in)e(\(4\).)39
+b(It)30 b(then)f(holds)1658 2910 y Fz(\(^)-42 b Fx(p)p
+1690 2939 V 18 w Fs(\001)1786 2895 y Fz(^)1792 2910 y
+Fx(t)p 1792 2923 30 4 v Fz(\))p Fs(j)1880 2922 y Fp(^)-36
+b Fq(e)1936 2910 y Fs(2)23 b Fr(P)2066 2922 y Fq(k)q
+Fh(\000)p Fp(1)2191 2910 y Fz(\()s(^)-45 b Fx(e)p Fz(\))14
+b Fx(:)28 3093 y Fn(Pr)n(oof.)704 3251 y Fz(^)-42 b Fx(p)p
+704 3280 42 4 v 23 w Fs(2)23 b(S)903 3216 y Fq(k)1051
+3251 y Fz(=)-14 b Fs(\))105 b Fz(for)28 b Fx(i)22 b Fz(=)h(1)p
+Fx(;)14 b Fz(2)p Fx(;)g Fz(3)21 b(:)113 b(^)-49 b Fx(p)1949
+3263 y Fq(i)1977 3251 y Fz(\()5 b(^)-47 b Fx(x)q Fz(\))23
+b(=)2240 3147 y Fp(3)2204 3172 y Fl(Y)2200 3348 y Fq(j)s
+Fp(=1)2334 3251 y Fz(^)-48 b Fx(x)2375 3206 y Fq(k)2410
+3214 y Ff(ij)2375 3274 y Fq(j)2482 3251 y Fx(;)97 b Fz(where)2899
+3147 y Fp(3)2856 3172 y Fl(X)2858 3348 y Fq(j)s Fp(=1)2990
+3251 y Fx(k)3033 3263 y Fq(ij)3114 3251 y Fz(=)23 b Fx(k)17
+b(:)28 3488 y Fz(Hence,)27 b(with)h(the)g(parametrization)e(of)31
+b(^)-45 b Fx(e)27 b Fz(b)n(y)33 b(^)-48 b Fx(x)q Fz(\()p
+Fx(s)p Fz(\))1073 3750 y(^)f Fx(p)1108 3762 y Fq(i)1135
+3750 y Fz(\()5 b(^)-47 b Fx(x)q Fz(\()p Fx(s)p Fz(\)\))24
+b(=)1502 3646 y Fp(3)1466 3671 y Fl(Y)1461 3848 y Fq(j)s
+Fp(=1)1576 3750 y Fz(\()p Fx(a)1652 3762 y Fq(j)1706
+3750 y Fz(+)18 b Fx(s)1843 3735 y Fz(^)1842 3750 y Fx(t)1872
+3762 y Fq(j)1907 3750 y Fz(\))1939 3716 y Fq(k)1974 3724
+y Ff(ij)2055 3750 y Fz(=)k Fx(s)2181 3716 y Fq(k)2291
+3646 y Fp(3)2254 3671 y Fl(Y)2250 3848 y Fq(j)s Fp(=1)2380
+3735 y Fz(^)2378 3750 y Fx(t)2408 3705 y Fq(k)2443 3713
+y Ff(ij)2408 3773 y Fq(j)2519 3750 y Fz(+)32 b(^)-56
+b Fx(')2656 3762 y Fq(k)q Fh(\000)p Fp(1)2783 3750 y
+Fz(\()p Fx(s)p Fz(\))14 b Fx(;)28 4021 y Fz(with)41 b(^)-55
+b Fx(')271 4033 y Fq(k)q Fh(\000)p Fp(1)397 4021 y Fz(\()p
+Fx(s)p Fz(\))23 b Fs(2)h Fr(P)654 4033 y Fq(k)q Fh(\000)p
+Fp(1)778 4021 y Fz(\()s(^)-45 b Fx(e)p Fz(\),)28 b(and)1246
+4220 y(\(^)-42 b Fx(p)p 1278 4250 V 18 w Fs(\001)1374
+4205 y Fz(^)1380 4220 y Fx(t)p 1380 4233 30 4 v Fz(\))p
+Fs(j)1468 4232 y Fp(^)-36 b Fq(e)1524 4220 y Fz(=)23
+b Fx(s)1651 4186 y Fq(k)1762 4117 y Fp(3)1719 4142 y
+Fl(X)1725 4318 y Fq(i)p Fp(=1)1854 4205 y Fz(^)1853 4220
+y Fx(t)1883 4232 y Fq(i)1924 4054 y Fl(0)1924 4203 y(@)2038
+4117 y Fp(3)2001 4142 y Fl(Y)1997 4318 y Fq(j)s Fp(=1)2127
+4205 y Fz(^)2126 4220 y Fx(t)2156 4175 y Fq(k)2191 4183
+y Ff(ij)2156 4244 y Fq(j)2248 4054 y Fl(1)2248 4203 y(A)2339
+4220 y Fz(+)32 b(^)-56 b Fx(')2476 4232 y Fq(k)q Fh(\000)p
+Fp(1)2602 4220 y Fz(\()p Fx(s)p Fz(\))14 b Fx(:)28 4480
+y Fz(W)-7 b(e)25 b(observ)n(e)e(that)i(the)g(co)r(e\016cien)n(t)g(of)f
+Fx(s)1293 4450 y Fq(k)1359 4480 y Fz(is)g(exactly)h(^)-42
+b Fx(p)p 1723 4510 42 4 v -1 w Fz(\()1790 4465 y(^)1796
+4480 y Fx(t)p 1796 4493 30 4 v 1 w Fz(\))13 b Fs(\001)1902
+4465 y Fz(^)1908 4480 y Fx(t)p 1908 4493 V -1 w Fz(.)36
+b(By)25 b(the)g(de\014nition)g(of)g(the)g(space)f Fs(S)3137
+4450 y Fq(k)3178 4480 y Fz(,)i(this)f(expression)e(m)n(ust)28
+4580 y(v)-5 b(anish.)3897 4754 y Fg(\003)28 4953 y Fn(Remark)28
+b Fz(5)45 b Fm(In)29 b(the)g(c)l(ase)h(of)1013 4932 y
+Fz(^)991 4953 y Fx(K)k Fm(b)l(eing)c(a)g(quadrilater)l(al,)h(we)f(have)
+2217 4932 y Fz(^)2199 4953 y Fx(R)24 b Fz(=)f Fs(P)2439
+4923 y Fq(k)2479 4953 y Fm(.)39 b(By)30 b(the)f(de\014nition)h(of)g
+Fs(P)3341 4923 y Fq(k)3411 4953 y Fm(we)f(se)l(e)g(imme)l(di-)28
+5053 y(ately)h(that)g(her)l(e)g(also)h Fz(\()q(^)-43
+b Fx(v)p 778 5066 44 4 v 22 w Fs(\001)876 5038 y Fz(^)881
+5053 y Fx(t)p 881 5066 30 4 v Fz(\))p Fs(j)969 5065 y
+Fp(^)-36 b Fq(e)1025 5053 y Fs(2)24 b Fr(P)1156 5065
+y Fq(k)q Fh(\000)p Fp(1)1280 5053 y Fz(\()s(^)-45 b Fx(e)p
+Fz(\))p Fm(.)28 5252 y Fz(The)25 b(next)h(prop)r(osition)e(tells)i(us)f
+(ho)n(w)g(exactly)g(to)g(de\014ne)h(elemen)n(t)f(shap)r(e)h(functions)f
+(on)h(a)f(mapp)r(ed)g(elemen)n(t)h Fx(K)31 b Fz(in)26
+b(order)28 5352 y(to)h(get)g Fx(H)7 b Fz(\(curl;)14 b
+(\012\)-conforming)26 b(global)h(shap)r(e)g(functions.)1949
+5719 y Fk(14)p eop
+%%Page: 15 15
+15 14 bop 28 212 a Fn(Pr)n(oposition)27 b Fz(8)45 b Fm(Condition)38
+b(\(26\))f(is)f(saties\014e)l(d,)j(if)f(we)e(de\014ne)h(the)f(element)g
+(shap)l(e)i(functions)e Fx(N)p 3235 225 76 4 v 3311 232
+a Fp(+)3402 212 y Fm(and)h Fx(N)p 3570 225 V 3646 232
+a Fh(\000)3738 212 y Fm(by)g(the)28 311 y(Piola)31 b(tr)l(ansformation)
+g(\(10\))f(and)g(take)g(into)g(ac)l(c)l(ount)g(the)f(orientation)i(of)g
+(the)f(e)l(dge)g Fx(e)p Fm(:)786 494 y Fx(N)p 786 507
+V 862 515 a Fp(+)940 494 y Fz(:=)23 b Fs(P)1109 506 y
+Fp(+)1164 494 y Fz(\()1213 473 y(^)1196 494 y Fx(N)p
+1196 507 V 1272 515 a Fq(i)1299 494 y Fz(\))h(=)1462
+473 y(^)1442 494 y Fx(D)r(F)1578 458 y Fh(\000)p Fq(T)1566
+515 y Fp(+)1700 473 y Fz(^)1683 494 y Fx(N)p 1683 507
+V 1758 515 a Fq(i)1800 494 y Fx(;)183 b(N)p 2006 507
+V 2082 515 a Fh(\000)2161 494 y Fz(:=)23 b Fs(\000)14
+b(P)2409 506 y Fh(\000)2464 494 y Fz(\()2514 473 y(^)2496
+494 y Fx(N)p 2496 507 V 2572 515 a Fq(j)2607 494 y Fz(\))24
+b(=)e Fs(\000)2834 473 y Fz(^)2815 494 y Fx(D)r(F)2951
+458 y Fh(\000)p Fq(T)2939 515 y Fh(\000)3072 473 y Fz(^)3055
+494 y Fx(N)p 3055 507 V 3131 515 a Fq(j)3179 494 y Fx(:)612
+b Fz(\(27\))28 696 y Fn(Pr)n(oof.)40 b Fz(Let)526 675
+y(^)504 696 y Fx(K)33 b Fz(b)r(e)28 b(the)f(reference)g(elemen)n(t)h
+(and)f Fx(K)33 b Fz(its)28 b(a\016ne)f(or)g(bilinear)g(image.)36
+b(Let)28 b Fx(v)p 2944 709 44 4 v 26 w Fz(:=)23 b Fs(P)3179
+708 y Fq(K)3242 696 y Fz(\()q(^)-43 b Fx(v)p 3274 709
+V 4 w Fz(\))28 b(b)r(e)g(a)f(v)n(ector)f(\014eld)28 796
+y(on)j Fx(K)6 b Fz(,)29 b(de\014ned)h(b)n(y)f(the)h(Piola)e
+(transformation)f(of)j(a)f(reference)f(v)n(ector)g(\014eld)j(^)-43
+b Fx(v)p 2557 809 V 29 w Fs(2)2725 775 y Fz(^)2707 796
+y Fx(R)q Fz(.)42 b(Let)30 b Fx(e)f Fz(b)r(e)h(one)f(of)g(the)h(edges)e
+(of)i Fx(K)28 895 y Fz(and)d Fx(t)p 189 908 30 4 v 28
+w Fz(the)h(tangen)n(t)f(according)f(to)h(con)n(v)n(en)n(tion)f(1.)28
+995 y(In)f(the)h(case)f(of)558 974 y(^)536 995 y Fx(K)31
+b Fz(b)r(eing)26 b(a)f(triangle,)g(w)n(e)h(ha)n(v)n(e)1581
+974 y(^)1563 995 y Fx(R)e Fz(=)e Fs(R)1807 965 y Fq(k)1848
+995 y Fz(.)37 b(By)25 b(the)h(de\014nition)g(of)f(the)h(space)f
+Fs(R)3067 965 y Fq(k)3108 995 y Fz(,)h(lemma)g(2)f(and)g(1)h(w)n(e)f
+(can)28 1095 y(conclude)i(that)h(\()p Fx(v)p 581 1108
+44 4 v 22 w Fs(\001)18 b Fx(t)p 684 1108 30 4 v Fz(\))p
+Fs(j)769 1107 y Fq(e)828 1095 y Fs(2)24 b Fr(P)959 1107
+y Fq(k)q Fh(\000)p Fp(1)1083 1095 y Fz(\()p Fx(e)p Fz(\).)28
+1194 y(If)133 1173 y(^)111 1194 y Fx(K)33 b Fz(is)27
+b(a)g(quadrilateral,)f(the)i(previous)f(remark)f(and)h(1)g(also)g(tell)
+h(us)f(that)h(\()p Fx(v)p 2498 1207 44 4 v 22 w Fs(\001)19
+b Fx(t)p 2602 1207 30 4 v Fz(\))p Fs(j)2687 1206 y Fq(e)2746
+1194 y Fs(2)k Fr(P)2876 1206 y Fq(k)q Fh(\000)p Fp(1)3001
+1194 y Fz(\()p Fx(e)p Fz(\).)28 1294 y(Hence)k(the)h(condition)1048
+1302 y Fl(Z)1094 1491 y Fq(e)1125 1499 y Fi(+)1190 1348
+y Fl(\000)1228 1415 y Fz(\()p Fx(N)p 1260 1428 76 4 v
+1336 1436 a Fp(+)1410 1415 y Fs(\001)18 b Fx(t)p 1451
+1428 30 4 v 21 x Fp(+)1537 1415 y Fz(\))g(+)g(\()p Fx(N)p
+1702 1428 76 4 v 1778 1436 a Fh(\000)1853 1415 y Fs(\001)g
+Fx(t)p 1894 1428 30 4 v 21 x Fh(\000)1980 1415 y Fz(\))2012
+1348 y Fl(\001)2078 1415 y Fx(')c(ds)g(;)180 b Fs(8)14
+b Fx(')23 b Fs(2)g Fr(P)2713 1427 y Fq(k)q Fh(\000)p
+Fp(1)2838 1415 y Fz(\()p Fx(e)p Fz(\))28 1626 y(on)k(the)h(edge)f
+(momen)n(ts)g(is)h(su\016cien)n(t)f(for)h(the)g(global)e(edge)h(shap)r
+(e)g(functions)h(to)g(satiesfy)f(\(26\).)37 b(Note)27
+b(that)28 1659 y Fl(R)67 1755 y Fq(e)98 1763 y Fi(+)149
+1726 y Fz(\()p Fx(N)p 181 1739 76 4 v 257 1747 a Fh(\000)323
+1726 y Fs(\001)9 b Fx(t)p 355 1739 30 4 v 21 x Fh(\000)441
+1726 y Fz(\))14 b Fx(')g(ds)24 b Fz(=)e Fs(\000)827 1659
+y Fl(R)866 1755 y Fq(e)897 1763 y Fe(\000)951 1726 y
+Fz(\()p Fx(N)p 983 1739 76 4 v 1059 1747 a Fh(\000)1124
+1726 y Fs(\001)9 b Fx(t)p 1156 1739 30 4 v 1187 1747
+a Fh(\000)1243 1726 y Fz(\))14 b Fx(')g(ds)p Fz(.)36
+b(So,)24 b(b)n(y)e(the)i(de\014nition)f(\(27\))g(of)g(the)h(elemen)n(t)
+f(shap)r(e)g(functions)g(on)g Fx(K)3712 1738 y Fp(+)3790
+1726 y Fz(resp.)28 1841 y(on)31 b Fx(K)218 1853 y Fh(\000)273
+1841 y Fz(,)i(b)n(y)e(the)h(in)n(v)-5 b(ariance)30 b(of)h(the)h(dofs)g
+(\(prop)r(osition)e(7\))i(and)f(b)n(y)g(the)h(de\014nition)g(of)f(the)h
+(reference)f(shap)r(e)g(functions)28 1941 y(\(example)c(3\))g(w)n(e)h
+(ha)n(v)n(e)227 2053 y Fl(Z)273 2242 y Fq(e)304 2250
+y Fi(+)355 2166 y Fz(\()p Fx(N)p 387 2179 76 4 v 463
+2187 a Fp(+)537 2166 y Fs(\001)18 b Fx(t)p 578 2179 30
+4 v 21 x Fp(+)663 2166 y Fz(\))p Fx(')c(ds)24 b Fz(=)957
+2053 y Fl(Z)1006 2242 y Fp(^)-36 b Fq(e)1034 2250 y Ff(i)1065
+2166 y Fz(\()1114 2145 y(^)1097 2166 y Fx(N)p 1097 2179
+76 4 v 1173 2187 a Fq(i)1219 2166 y Fs(\001)1255 2151
+y Fz(^)1260 2166 y Fx(t)p 1260 2179 30 4 v 21 x Fq(i)1318
+2166 y Fz(\))13 b(^)-55 b Fx(')15 b(d)s Fz(^)-45 b Fx(s)23
+b Fz(=)f(1)166 b(and)2133 2053 y Fl(Z)2179 2242 y Fq(e)2210
+2250 y Fe(\000)2263 2166 y Fz(\()p Fx(N)p 2295 2179 76
+4 v 2371 2187 a Fh(\000)2446 2166 y Fs(\001)18 b Fx(t)p
+2487 2179 30 4 v 21 x Fh(\000)2573 2166 y Fz(\))p Fx(')c(ds)24
+b Fz(=)f Fs(\000)2946 2053 y Fl(Z)2994 2242 y Fp(^)-36
+b Fq(e)3022 2250 y Ff(j)3058 2166 y Fz(\()3107 2145 y(^)3090
+2166 y Fx(N)p 3090 2179 76 4 v 3166 2187 a Fq(j)3219
+2166 y Fs(\001)3255 2151 y Fz(^)3261 2166 y Fx(t)p 3261
+2179 30 4 v 21 x Fq(j)3326 2166 y Fz(\))13 b(^)-55 b
+Fx(')14 b(d)s Fz(^)-45 b Fx(s)24 b Fz(=)e Fs(\000)p Fz(1)14
+b Fx(:)3897 2405 y Fg(\003)28 2580 y Fz(T)-7 b(o)22 b(close)f(this)i
+(section,)g(let)g(us)f(mak)n(e)g(a)g(note)g(on)g(the)h(in)n
+(terpretation)f(of)g(the)h(dofs)f(on)g(an)g(elemen)n(t)h
+Fx(K)28 b Fz(in)23 b(the)f(case)g(of)g(lo)n(w)n(est)28
+2679 y(order)28 b(p)r(olynomial)h(degree.)41 b(In)30
+b(this)g(case,)f(all)g(dofs)h(are)e(edge)h(dofs,)h(the)g(degrees)f(of)g
+(freedom)g(are)37 b(^)-50 b Fx(\013)3315 2691 y Fq(j)3350
+2679 y Fz(\()q(^)-43 b Fx(v)p 3382 2692 44 4 v 3 w Fz(\))27
+b(=)3575 2612 y Fl(R)3617 2709 y Fp(^)-36 b Fq(e)3645
+2717 y Ff(j)3695 2679 y Fz(^)-42 b Fx(v)p 3695 2692 V
+23 w Fs(\001)3795 2664 y Fz(^)3800 2679 y Fx(t)p 3800
+2692 30 4 v 21 x Fq(j)3879 2679 y Fx(d)s Fz(^)d Fx(s)28
+2812 y Fz(and)25 b(the)h(tangen)n(tial)e(traces)h(of)g(shap)r(e)h
+(functions)f(are)g(constan)n(t)g(on)g(eac)n(h)f(edge.)36
+b(Since)26 b(w)n(e)f(require)33 b(^)-51 b Fx(\013)3286
+2824 y Fq(j)3321 2812 y Fz(\()3371 2791 y(^)3353 2812
+y Fx(N)p 3353 2825 76 4 v 3429 2833 a Fq(i)3457 2812
+y Fz(\))23 b(=)g Fx(\016)3637 2824 y Fq(ij)3721 2812
+y Fz(for)i(the)28 2912 y(reference)h(shap)r(e)i(functions,)g(w)n(e)f
+(ha)n(v)n(e)1258 3094 y Fx(v)1298 3106 y Fq(j)1356 3094
+y Fz(=)k(^)-50 b Fx(\013)1497 3106 y Fq(j)1532 3094 y
+Fz(\()q(^)-43 b Fx(v)p 1564 3107 44 4 v 4 w Fz(\))23
+b(=)g(\()1800 3073 y(^)1783 3094 y Fx(N)p 1783 3107 76
+4 v 1859 3115 a Fq(j)1912 3094 y Fs(\001)1948 3079 y
+Fz(^)1954 3094 y Fx(t)p 1954 3107 30 4 v -1 w Fz(\))14
+b Fs(j)s Fz(^)-45 b Fx(e)2091 3106 y Fq(j)2126 3094 y
+Fs(j)23 b Fz(=)g(\()p Fx(N)p 2292 3107 76 4 v 2368 3115
+a Fq(j)2422 3094 y Fs(\001)18 b Fx(t)p 2463 3107 30 4
+v 21 x Fq(j)2528 3094 y Fz(\))c Fs(j)p Fx(e)2636 3106
+y Fq(j)2671 3094 y Fs(j)g Fx(;)28 3277 y Fz(where)29
+b(for)h(the)g(last)g(equalit)n(y)g(w)n(e)g(ha)n(v)n(e)e(used)j(lemma)f
+(1.)44 b(W)-7 b(e)30 b(see)g(that)h(the)f(dof)g Fx(\013)2720
+3289 y Fq(j)2755 3277 y Fz(\()p Fx(v)p 2787 3290 44 4
+v 4 w Fz(\))h('sitting')f(on)g(the)g(edge)g Fx(e)3695
+3289 y Fq(j)3760 3277 y Fz(is)g(the)28 3377 y(v)-5 b(alue)27
+b(of)h(the)g Fm(sc)l(ale)l(d)37 b Fz(tangen)n(tial)26
+b(comp)r(onen)n(t)i Fs(j)p Fx(e)1600 3389 y Fq(j)1635
+3377 y Fs(j)1672 3309 y Fl(\000)1709 3377 y Fx(v)p 1709
+3390 V 22 w Fs(\001)19 b Fx(t)p 1813 3390 30 4 v 20 x
+Fq(j)1878 3309 y Fl(\001)1930 3377 y Fs(j)1953 3389 y
+Fq(e)1988 3377 y Fz(.)28 3651 y Fn(Remark)28 b Fz(6)45
+b Fm(F)-6 b(or)36 b(the)h(invarianc)l(e)h(of)f(the)g(e)l(dge)g(dofs)h
+(it)e(is)h(essential)g(that)g(the)f(moments)g Fx(\013)3071
+3621 y Fp([)p Fq(K)t Fp(])3210 3651 y Fm(on)g Fx(K)42
+b Fm(ar)l(e)37 b(de\014ne)l(d)g(by)28 3759 y(using)c(the)40
+b Fz(unit)34 b Fm(tangent)f(ve)l(ctor)h Fx(t)p 1129 3772
+V 30 w Fz(=)1293 3719 y Fh(j)s Fp(^)-36 b Fq(e)p Fh(j)p
+1293 3740 71 4 v 1293 3788 a(j)p Fq(e)p Fh(j)1388 3759
+y Fz(\()1440 3738 y(^)1420 3759 y Fx(D)r(F)12 b Fz(\))1596
+3744 y(^)1602 3759 y Fx(t)p 1602 3772 30 4 v 34 w Fm(on)33
+b Fx(K)6 b Fm(.)50 b(If)34 b(not,)g(e.)h(g.)f(if)g(we)g(just)f(use)l(d)
+h(the)f(tangent)3403 3744 y Fz(~)3409 3759 y Fx(t)p 3409
+3772 V 30 w Fz(=)d(\()3615 3738 y(^)3596 3759 y Fx(D)r(F)12
+b Fz(\))3772 3744 y(^)3778 3759 y Fx(t)p 3778 3772 V
+Fm(,)35 b(we)28 3868 y(would)d(lose)h(the)f(invarianc)l(e)h(of)g(the)f
+(dofs.)47 b(In)32 b(that)g(c)l(ase)g(the)g(dofs)h(would)g(sc)l(ale)g
+(by)f(a)g(factor)h(dep)l(ending)h(on)e(the)g(size)g(of)28
+3968 y(the)d(e)l(dge)i(or)f(fac)l(e)h(\([8)q(],)f(r)l(emark)g(on)g(p.)h
+(326\).)28 4296 y Fv(2.5)112 b Fo(Appro)m(ximation)35
+b(and)f(con)m(v)m(ergence)j(results)28 4450 y Fz(Without)d(going)e(in)n
+(to)h(details,)i(w)n(e)e(will)g(cite)h(here)f(some)f(results)h(on)g
+(appro)n(ximation)f(prop)r(erties)g(and)h(con)n(v)n(ergence)e(of)28
+4549 y(N)n(\023)-39 b(ed)n(\023)g(elec)25 b(FEM)j(of)f(\014rst)h(t)n
+(yp)r(e.)28 4649 y(W)-7 b(e)21 b(are)g(in)h(the)g(setting)f(of)h(a)f
+Fm(c)l(onforming)30 b Fz(FEM)21 b(and)h(ha)n(v)n(e)e(quasi-optimal)g
+(appro)n(ximation)g(prop)r(erties)h(of)g(the)h(FE-spaces)28
+4749 y Fx(V)76 4761 y Fq(h)142 4749 y Fs(\032)h Fx(H)7
+b Fz(\(curl)o(;)14 b(\012\))1150 4848 y Fs(k)p Fx(u)p
+1192 4861 48 4 v 17 w Fs(\000)k Fz(\005)1402 4814 y Fq(k)1402
+4869 y(h)1446 4848 y Fx(u)p 1446 4861 V -1 w Fs(k)1535
+4863 y Fq(H)t Fp(\(curl)o(;\012\))1850 4848 y Fz(=)k
+Fx(C)70 b Fz(inf)2030 4902 y Fq(w)r Fh(2)p Fq(V)2164
+4911 y Ff(h)2216 4848 y Fs(k)p Fx(u)p 2258 4861 V 18
+w Fs(\000)18 b Fx(w)p 2407 4861 62 4 v 2 w Fs(k)2510
+4863 y Fq(H)t Fp(\(curl;\012\))2816 4848 y Fx(;)28 5047
+y Fz(where)33 b(\005)336 5017 y Fq(k)336 5071 y(h)379
+5047 y Fx(u)p 379 5060 48 4 v 34 w Fs(2)h(R)620 5017
+y Fq(k)695 5047 y Fz(or)f(\005)865 5017 y Fq(k)865 5071
+y(h)909 5047 y Fx(u)p 909 5060 V 33 w Fs(2)h(P)1144 5017
+y Fq(k)1219 5047 y Fz(resp)r(ectiv)n(ely)-7 b(,)35 b(denotes)f(the)g
+(in)n(terp)r(olate)f(of)h Fx(u)p 2679 5060 V 34 w Fz(with)h(regard)d
+(to)i(the)g(N)n(\023)-39 b(ed)n(\023)g(elec)32 b(dofs:)28
+5147 y Fx(\013)p Fz(\()p Fx(u)p 113 5160 V Fz(\))26 b(=)f
+Fx(\013)p Fz(\(\005)456 5117 y Fq(k)456 5171 y(h)500
+5147 y Fx(u)p 500 5160 V Fz(\))30 b(for)e(all)h(dofs)h
+Fx(\013)p Fz(.)42 b(The)30 b(in)n(terp)r(olation)e(op)r(erator)g(\005)
+2216 5117 y Fq(k)2216 5171 y(h)2288 5147 y Fz(is)h(de\014ned)h(for)f
+(su\016cien)n(tly)g(smo)r(oth)g(v)n(ector)f(\014elds,)28
+5247 y(namely)f(for)g(all)g Fx(v)p 558 5260 44 4 v 27
+w Fs(2)c Fx(H)779 5217 y Fq(r)815 5247 y Fz(\(curl\))28
+b(for)f(an)n(y)g Fx(r)f(>)1491 5214 y Fp(1)p 1491 5228
+34 4 v 1491 5275 a(2)1561 5247 y Fz(\(see)i([1)o(],)g(Lemma)g(5.1.,)e
+([7])i(and)f(references)g(therein\).)28 5346 y(F)-7 b(or)27
+b(N)n(\023)-39 b(ed)n(\023)g(elec's)25 b(FEM)j(of)f(\014rst)g(t)n(yp)r
+(e)h(w)n(e)f(state)h(\(without)g(pro)r(of)6 b(\))28 b(the)g(follo)n
+(wing)e(optimal)i(estimate)f(in)h(the)g(curl-norm:)1949
+5719 y Fk(15)p eop
+%%Page: 16 16
+16 15 bop 28 220 a Fn(Theorem)28 b Fz(5)45 b Fm(If)31
+b Fs(T)649 232 y Fq(h)692 220 y Fm(,)g Fx(h)25 b(>)f
+Fz(0)p Fm(,)31 b(is)g(a)g(r)l(e)l(gular)g(family)h(of)g(triangulations)
+f(on)g Fz(\012)f Fm(and)h Fx(r)d(>)2866 187 y Fp(1)p
+2866 201 34 4 v 2866 248 a(2)2909 220 y Fm(,)j(then)g(ther)l(e)g
+(exists)f(a)h(c)l(onstant)28 319 y Fx(C)e(>)23 b Fz(0)p
+Fm(,)29 b(dep)l(ending)i(on)f Fx(r)j Fm(but)c(not)g(on)h
+Fx(h)f Fm(or)i Fx(v)p 1465 332 44 4 v 3 w Fm(,)f(such)g(that)1163
+495 y Fs(k)p Fx(v)p 1205 508 V 22 w Fs(\000)18 b Fz(\005)1412
+461 y Fq(k)1412 515 y(h)1455 495 y Fx(v)p 1455 508 V
+3 w Fs(k)1540 510 y Fq(H)t Fp(\(curl)o(;\012\))1855 495
+y Fs(\024)k Fx(C)e(h)2069 461 y Fp(min)o Fh(f)p Fq(r)n(;k)q
+Fh(g)2337 495 y Fs(k)p Fx(v)p 2379 508 V 3 w Fs(k)2464
+510 y Fq(H)2522 493 y Ff(r)2555 510 y Fp(\(curl)o(;\012\))2802
+495 y Fx(;)989 b Fz(\(28\))28 671 y Fm(for)30 b(al)t(l)h
+Fx(v)p 279 684 V 26 w Fs(2)24 b Fx(H)500 641 y Fq(r)536
+671 y Fz(\(curl;)14 b(\012\))p Fm(.)28 838 y Fz(The)27
+b(result)f(in)i(\(28\))f(w)n(as)f(obtained)g(b)n(y)h(Alonso)g(and)g(V)
+-7 b(alli)27 b(in)g([1],)g(extending)g(earlier)f(in)n(terp)r(olation)g
+(results)g(b)n(y)h(N)n(\023)-39 b(ed)n(\023)g(elec)28
+938 y(in)27 b([8])h(and)f(Monk)g(in)h([6].)28 1037 y(Optimal)34
+b(con)n(v)n(ergence)f(in)i(the)h Fx(H)7 b Fz(\(curl)o(;)14
+b(\012\)-norm)35 b(for)f(the)h(error)e(of)i(the)h(FE-appro)n(ximation)c
+(of)j(the)h(mo)r(del)f(problem)28 1137 y(\(3\))f(b)n(y)f(N)n(\023)-39
+b(ed)n(\023)g(elec's)32 b(elemen)n(ts)h(of)h(\014rst)g(t)n(yp)r(e)g
+(follo)n(ws)e(from)i(\(28\))f(b)n(y)h(C)n(\023)-39 b(ea's)32
+b(lemma.)55 b(This)34 b(result)g(has)f(b)r(een)h(v)n(eri\014ed)f(in)28
+1237 y(n)n(umerical)h(exp)r(erimen)n(ts)g(with)h(a)g
+Fd(MATLAB)d Fz(co)r(de,)37 b(whic)n(h)e(uses)f(lo)n(w)n(est)g(order)f
+(N)n(\023)-39 b(ed)n(\023)g(elec)33 b(elemen)n(ts)i(on)f(a\016ne)h
+(triangular)28 1336 y(meshes)23 b(for)h(2d)g(problems,)g(as)f(w)n(ell)h
+(as)f(with)i(a)f Fd(deal.II)d Fz(co)r(de,)k(whic)n(h)f(uses)f(lo)n(w)n
+(est)g(order)g(N)n(\023)-39 b(ed)n(\023)g(elec)22 b(elemen)n(ts)i(on)g
+(bilinear)28 1436 y(resp.)36 b(trilinear)27 b(meshes)g(for)g(2d)g
+(resp.)36 b(3d)28 b(problems.)28 1535 y(As)36 b(for)g(the)h
+Fx(L)504 1505 y Fp(2)540 1535 y Fz(\(\012\)-appro)n(ximation)e(prop)r
+(erties)h(of)g(FE)g(spaces)f(based)h(on)g Fs(R)2602 1505
+y Fq(k)2680 1535 y Fz(or)f Fs(P)2855 1505 y Fq(k)2896
+1535 y Fz(,)k(w)n(e)d(could)g(hop)r(e)g(for)g(a)g(b)r(etter)28
+1635 y(order)25 b(than)j Fs(O)r Fz(\()p Fx(h)586 1605
+y Fq(k)627 1635 y Fz(\))g(at)f(\014rst)g(sigh)n(t:)36
+b(still,)27 b(w)n(e)g(ha)n(v)n(e)f([)p Fr(P)1764 1605
+y Fq(k)q Fh(\000)p Fp(1)1889 1635 y Fz(\()p Fx(K)6 b
+Fz(\)])2053 1605 y Fq(d)2115 1635 y Fs(\022)22 b(R)2272
+1605 y Fq(k)2313 1635 y Fz(\()p Fx(K)6 b Fz(\).)37 b(Ho)n(w)n(ev)n(er,)
+26 b(N)n(\023)-39 b(ed)n(\023)g(elec)25 b(sho)n(ws)h(in)h([8])g(that)h
+(only)28 1735 y(sub)r(optimalit)n(y)f(can)g(b)r(e)h(exp)r(ected:)1421
+1834 y Fs(k)p Fx(v)p 1463 1847 V 21 w Fs(\000)18 b Fz(\005)1669
+1800 y Fq(k)1669 1855 y(h)1712 1834 y Fx(v)p 1712 1847
+V 4 w Fs(k)1798 1849 y Fq(L)1844 1833 y Fi(2)1875 1849
+y Fp(\(\012\))2002 1834 y Fs(\024)k Fx(C)6 b(h)2202 1800
+y Fq(k)2243 1834 y Fs(j)p Fx(v)p 2266 1847 V 3 w Fs(j)2332
+1851 y Fq(H)2390 1835 y Ff(k)2428 1851 y Fp(\(\012\))2545
+1834 y Fx(:)1246 b Fz(\(29\))28 1990 y(N)n(\023)-39 b(ed)n(\023)g(elec)
+24 b(uses)i(a)g(standard)f(scaling)h(and)g(Bram)n(ble-Hilb)r(ert)f
+(argumen)n(t)h(to)g(deriv)n(e)g(\(29\).)36 b(Since)26
+b([)p Fr(P)3183 1960 y Fq(k)q Fh(\000)p Fp(1)3308 1990
+y Fz(\()p Fx(K)6 b Fz(\)])3472 1960 y Fq(d)3534 1990
+y Fs(\022)22 b(R)3691 1960 y Fq(k)3733 1990 y Fz(\()p
+Fx(K)6 b Fz(\))23 b Fr(\()28 2090 y Fz([)p Fr(P)103 2060
+y Fq(k)142 2090 y Fz(\()p Fx(K)6 b Fz(\)])306 2060 y
+Fq(d)345 2090 y Fz(,)24 b(the)g(Bram)n(ble-Hilb)r(ert)e(argumen)n(t)g
+(only)h(guaran)n(tees)e(an)i(elemen)n(t)n(wise)g(appro)n(ximation)e(of)
+j(order)e Fx(k)k Fz(of)d Fx(H)3752 2060 y Fq(k)3793 2090
+y Fz(\()p Fx(K)6 b Fz(\)-)28 2189 y(functions)27 b(from)h(the)g(space)f
+Fs(R)1017 2159 y Fq(k)1058 2189 y Fz(\()p Fx(K)6 b Fz(\).)28
+2289 y(Ho)n(w)n(ev)n(er,)22 b(in)j(a)e(recen)n(t)h(pap)r(er)f(Hiptmair)
+i(uses)e(a)h(dualit)n(y)g(tec)n(hnique)g(to)g(state)f(optimal)h(con)n
+(v)n(ergence)e(of)i(the)g Fx(L)3596 2259 y Fp(2)3633
+2289 y Fz(\(\012\)-error)28 2389 y Fs(k)p Fx(u)p 70 2402
+48 4 v 6 w Fs(\000)8 b Fx(u)p 197 2402 V 244 2409 a Fq(h)287
+2389 y Fs(k)329 2404 y Fq(L)375 2387 y Fi(2)407 2404
+y Fp(\(\012\))533 2389 y Fz(for)21 b(the)i(3d)f(case)f(and)i(N)n(\023)
+-39 b(ed)n(\023)g(elec's)20 b(elemen)n(ts)i(of)g(\014rst)g(t)n(yp)r(e)h
+(of)f(order)f Fx(k)k Fz(on)d(tetrahedral)f(meshes)h(\(see)g(Section)28
+2488 y(5.3,)k(Theorem)h(5.8)g(in)h([5)o(]\):)28 2656
+y Fn(Theorem)g Fz(6)45 b Fm(Ther)l(e)30 b(is)h(an)e Fx(s)23
+b(>)1122 2623 y Fp(1)p 1122 2637 34 4 v 1122 2684 a(2)1195
+2656 y Fm(such)30 b(that)1287 2831 y Fs(k)p Fx(u)p 1329
+2844 48 4 v 18 w Fs(\000)18 b Fx(u)p 1478 2844 V 1525
+2852 a Fq(h)1568 2831 y Fs(k)1610 2846 y Fq(L)1656 2830
+y Fi(2)1688 2846 y Fp(\(\012\))1814 2831 y Fs(\024)23
+b Fx(C)6 b(h)2015 2797 y Fq(s)2050 2831 y Fs(k)p Fx(u)p
+2092 2844 V 18 w Fs(\000)18 b Fx(u)p 2241 2844 V 2288
+2852 a Fq(h)2331 2831 y Fs(k)2373 2846 y Fq(H)t Fp(\(curl;\012\))2679
+2831 y Fx(:)1112 b Fz(\(30\))28 3007 y Fm(Under)29 b(the)h(assumption)g
+(that)g(the)g(b)l(oundary)g Fx(@)5 b Fz(\012)30 b Fm(is)g(smo)l(oth)g
+(or)g(c)l(onvex,)g Fx(s)23 b Fz(=)g(1)29 b Fm(c)l(an)h(b)l(e)g(chosen.)
+28 3174 y Fz(Sev)n(eral)23 b(k)n(ey)i(argumen)n(ts)f(of)h(the)h(pro)r
+(of)f(in)g([5])h(mak)n(e)e(explicitely)h(use)h(of)f(features)g(that)g
+(are)g(limited)h(to)f(3d)g(problems)f(and)28 3274 y(the)d(family)h(of)f
+(\014nite)h(elemen)n(ts)g(based)f(on)g(tetrahedrons.)33
+b(They)22 b(cannot)f(b)r(e)g(mo)r(di\014ed)h(trivially)f(to)g(apply)h
+(to)f(2d)g(problems)28 3374 y(or)30 b(3d)i(problems)e(on)i(hexahedral)e
+(meshes.)48 b(Ev)n(en)31 b(w)n(orse,)g(it)h(is)g(suggested)e(b)n(y)h
+(the)h(results)f(of)h(n)n(umerical)f(exp)r(erimen)n(ts)28
+3473 y(that)c(one)h(cannot)f(hop)r(e)g(to)h(obtain)f(a)g(result)h
+(similar)f(to)g(\(30\).)28 3573 y(A)g(p)r(ossibilit)n(y)f(to)h(o)n(v)n
+(ercome)d(this)j(de\014ciency)g(of)g(con)n(v)n(ergence)d(is)j(to)f(use)
+h(N)n(\023)-39 b(ed)n(\023)g(elec)25 b(elemen)n(ts)i(of)f(second)g(t)n
+(yp)r(e,)i(where)e(the)28 3673 y(full)i([)p Fr(P)248
+3685 y Fq(k)288 3673 y Fz(])311 3642 y Fq(d)377 3673
+y Fz(are)f(used)g(as)g(p)r(olynomial)g(spaces)g(\(see)g([10)o(]\).)28
+3913 y Fw(3)134 b Fv(Numerical)35 b(results)28 4095 y
+Fz(The)27 b(n)n(umerical)f(results)h(in)g(this)g(section)g(pro)n(vide)f
+(some)h(samples)f(of)h(the)h(qualit)n(y)e(of)h(the)h
+Fx(H)7 b Fz(\(curl;)14 b(\012\)-conforming)25 b(FEM)28
+4194 y(with)j(N)n(\023)-39 b(ed)n(\023)g(elec)25 b(elemen)n(ts)j(of)f
+(\014rst)h(t)n(yp)r(e)g(and)f(lo)n(w)n(est)g(order)f(\(p)r(olynomial)h
+(degree)g Fx(k)e Fz(=)e(1\).)28 4294 y(W)-7 b(e)40 b(considered)f(the)i
+(mo)r(del)f(problem)f(\(1\))i(in)f(\012)k(=)f([)p Fs(\000)p
+Fz(1)p Fx(;)14 b Fz(1])2052 4264 y Fq(d)2090 4294 y Fz(,)43
+b Fx(d)h Fz(=)g(2)p Fx(;)14 b Fz(3,)42 b(with)f(homogeneous)d(Diric)n
+(hlet)i(b)r(oundary)28 4393 y(condition)27 b(\(2\).)28
+4493 y(The)33 b(\014rst)g(few)h(results)e(for)h(the)h(t)n(w)n
+(o-dimensional)e(problem)g(ha)n(v)n(e)h(b)r(een)g(obtained)g(b)n(y)g(a)
+g Fd(MATLAB)e Fz(co)r(de.)54 b(F)-7 b(or)33 b(the)h(\014rst)28
+4593 y(example)27 b(w)n(e)g(used)h(the)g(data)1374 4738
+y Fx(c)23 b Fs(\021)f Fz(1)14 b Fx(;)180 b(f)p 1779 4767
+50 4 v 8 w Fz(\()p Fx(x;)14 b(y)s Fz(\))24 b(=)2131 4620
+y Fl(\022)2236 4687 y Fz(3)18 b Fs(\000)g Fx(y)2423 4657
+y Fp(2)2234 4787 y Fz(3)g Fs(\000)g Fx(x)2424 4756 y
+Fp(2)2503 4620 y Fl(\023)2592 4738 y Fx(:)1199 b Fz(\(31\))28
+4928 y(F)-7 b(or)27 b(the)h(second)f(example)g(w)n(e)g(ha)n(v)n(e)f
+(follo)n(w)n(ed)h(the)h(outlines)f(from)h(App)r(endix)g(A)g(and)f(tak)n
+(en)g(the)h(data)g(from)f(example)g(5)1050 5149 y Fx(c)c
+Fs(\021)g Fz(1)14 b Fx(;)179 b(f)p 1455 5178 V 8 w Fz(\()p
+Fx(x;)14 b(y)s Fz(\))24 b(=)f(\(2)p Fx(\031)1932 5115
+y Fp(2)1988 5149 y Fz(+)18 b(1\))2159 5032 y Fl(\022)2300
+5098 y Fz(cos)13 b Fx(\031)s(x)h Fz(sin)g Fx(\031)s(y)2261
+5198 y Fs(\000)g Fz(sin)f Fx(\031)s(x)h Fz(cos)g Fx(\031)s(y)2827
+5032 y Fl(\023)2916 5149 y Fx(:)875 b Fz(\(32\))28 5370
+y(The)25 b(\014nite)i(elemen)n(t)f(solution)f(has)g(b)r(een)i(computed)
+f(using)f(N)n(\023)-39 b(ed)n(\023)g(elec)24 b(elemen)n(ts)i(of)f
+(\014rst)h(t)n(yp)r(e)g(and)f(of)h(p)r(olynomial)f(degree)28
+5469 y Fx(k)j Fz(=)d(1)k(on)f(a)h(family)g(of)g(a\016ne)g(triangular)e
+(grids.)40 b(The)29 b(initial)h(coarse)d(grid)h(consisted)h(of)g(2)2983
+5439 y Fp(5)3049 5469 y Fz(triangles.)40 b(The)29 b(\014nest)g(grid)
+1949 5719 y Fk(16)p eop
+%%Page: 17 17
+17 16 bop 28 217 a Fz(with)28 b(2)259 187 y Fp(13)356
+217 y Fz(triangles)f(results)g(after)g(\014v)n(e)g(global)g
+(re\014nemen)n(ts.)28 317 y(In)36 b(T)-7 b(able)35 b(1)h(w)n(e)f(see)h
+(that)g(for)f(b)r(oth)h(examples)f(w)n(e)h(ha)n(v)n(e)f(optimal)g(con)n
+(v)n(ergence)f(in)i(the)g Fx(H)7 b Fz(\(curl;)14 b(\012\)-semiorm,)37
+b(as)e(w)n(e)28 416 y(w)n(ould)e(exp)r(ect)h(from)g(the)g(theoretical)f
+(results)h(of)g(the)g(previous)f(section.)55 b(As)34
+b(for)g(the)g Fx(L)2969 386 y Fp(2)3006 416 y Fz(\(\012\)-norm,)h(it)f
+(app)r(ears)f(that)28 516 y(in)d(b)r(oth)h(examples)f(the)h(con)n(v)n
+(ergence)d(of)j(the)f(n)n(umerical)g(solution)g(is)h(not)f(optimal)g
+(for)g(our)g(c)n(hoice)g(of)g(\014nite)h(elemen)n(ts.)28
+616 y(In)e(the)h(case)f(of)g(N)n(\023)-39 b(ed)n(\023)g(elec)28
+b(elemen)n(ts)h(of)g(\014rst)h(t)n(yp)r(e)f(and)g(of)h(p)r(olynomial)f
+(degree)f Fx(k)h Fz(=)d(1,)j(w)n(e)g(got)g(only)g Fs(O)r
+Fz(\()p Fx(h)p Fz(\)-con)n(v)n(ergence)28 715 y(of)19
+b(the)i Fx(L)307 685 y Fp(2)344 715 y Fz(-error.)32 b(Ho)n(w)n(ev)n
+(er,)19 b(this)h(order)f(of)h(con)n(v)n(ergence)e(is)h(consisten)n(t)h
+(with)g(the)h(result)e(\(29\))h(obtained)g(b)n(y)f(N)n(\023)-39
+b(ed)n(\023)g(elec)18 b(in)j([8)o(].)p 725 918 2540 4
+v 723 1031 4 113 v 1224 1031 V 1276 997 a Fk(grid)p 1481
+1031 V 98 w(#)30 b(cells)p 1854 1031 V 1854 1031 V 147
+w Fc(H)7 b Fk(\(curl)o(\)-error)p 2578 1031 V 2578 1031
+V 279 w Fc(L)2822 964 y Fb(2)2861 997 y Fk(-error)p 3262
+1031 V 725 1034 2540 4 v 723 1147 4 113 v 1224 1147 V
+1332 1113 a(1)p 1481 1147 V 338 w(32)p 1854 1147 V 120
+w(6.66e-01)p 2317 1147 V 181 w({)p 2578 1147 V 159 w(4.66e-01)p
+3001 1147 V 161 w({)p 3262 1147 V 723 1260 V 1224 1260
+V 1332 1226 a(2)p 1481 1260 V 292 w(128)p 1854 1260 V
+121 w(3.33e-01)p 2317 1260 V 123 w(1.00)p 2578 1260 V
+102 w(2.35e-01)p 3001 1260 V 103 w(0.98)p 3262 1260 V
+723 1373 V 775 1339 a(example)30 b(1)p 1224 1373 V 156
+w(3)p 1481 1373 V 292 w(512)p 1854 1373 V 121 w(1.66e-01)p
+2317 1373 V 123 w(1.00)p 2578 1373 V 102 w(1.17e-01)p
+3001 1373 V 103 w(0.99)p 3262 1373 V 723 1486 V 1224
+1486 V 1332 1452 a(4)p 1481 1486 V 247 w(2048)p 1854
+1486 V 121 w(8.33e-02)p 2317 1486 V 123 w(1.00)p 2578
+1486 V 102 w(5.89e-02)p 3001 1486 V 103 w(0.99)p 3262
+1486 V 723 1599 V 1224 1599 V 1332 1565 a(5)p 1481 1599
+V 247 w(8192)p 1854 1599 V 121 w(4.17e-02)p 2317 1599
+V 123 w(1.00)p 2578 1599 V 102 w(2.95e-02)p 3001 1599
+V 103 w(0.99)p 3262 1599 V 725 1602 2540 4 v 723 1715
+4 113 v 1224 1715 V 1332 1681 a(1)p 1481 1715 V 338 w(32)p
+1854 1715 V 100 w(3.05e+00)p 2317 1715 V 160 w({)p 2578
+1715 V 159 w(6.48e-01)p 3001 1715 V 161 w({)p 3262 1715
+V 723 1828 V 1224 1828 V 1332 1794 a(2)p 1481 1828 V
+292 w(128)p 1854 1828 V 101 w(1.61e+00)p 2317 1828 V
+102 w(0.91)p 2578 1828 V 102 w(3.22e-01)p 3001 1828 V
+103 w(1.00)p 3262 1828 V 723 1941 V 775 1907 a(example)g(2)p
+1224 1941 V 156 w(3)p 1481 1941 V 292 w(512)p 1854 1941
+V 121 w(0.81e-01)p 2317 1941 V 123 w(0.97)p 2578 1941
+V 102 w(1.60e-01)p 3001 1941 V 103 w(1.00)p 3262 1941
+V 723 2053 V 1224 2053 V 1332 2020 a(4)p 1481 2053 V
+247 w(2048)p 1854 2053 V 121 w(0.41e-01)p 2317 2053 V
+123 w(0.99)p 2578 2053 V 102 w(8.02e-02)p 3001 2053 V
+103 w(1.00)p 3262 2053 V 723 2166 V 1224 2166 V 1332
+2133 a(5)p 1481 2166 V 247 w(8192)p 1854 2166 V 121 w(2.05e-01)p
+2317 2166 V 123 w(0.99)p 2578 2166 V 102 w(4.01e-02)p
+3001 2166 V 103 w(1.00)p 3262 2166 V 725 2170 2540 4
+v 28 2436 a(T)-8 b(able)40 b(1:)63 b(Errors)40 b(and)h(con)m(v)m
+(ergence)i(rates)f(in)e(the)h Fc(L)1993 2403 y Fb(2)2032
+2436 y Fk(\(\012\)-norm)h(and)e Fc(H)7 b Fk(\(curl)o(;)15
+b(\012\)-seminorm)41 b(for)f(the)i(t)m(w)m(o)28 2549
+y Fa(MATLAB)28 b Fk(examples.)872 4420 y @beginspecial
+52 @llx 194 @lly 549 @urx 605 @ury 2693 @rwi 1984 @rhi
+@setspecial
+%%BeginDocument: example1_errors.eps
+%!PS-Adobe-2.0 EPSF-1.2
+%%Creator: MATLAB, The Mathworks, Inc.
+%%Title: examlpe1_error.eps
+%%CreationDate: 08/26/2002  11:49:36
+%%DocumentNeededFonts: Helvetica
+%%DocumentProcessColors: Cyan Magenta Yellow Black
+%%Pages: 1
+%%BoundingBox:    52   194   549   605
+%%EndComments
+
+%%BeginProlog
+% MathWorks dictionary
+/MathWorks 160 dict begin
+% definition operators
+/bdef {bind def} bind def
+/ldef {load def} bind def
+/xdef {exch def} bdef
+/xstore {exch store} bdef
+% operator abbreviations
+/c  /clip ldef
+/cc /concat ldef
+/cp /closepath ldef
+/gr /grestore ldef
+/gs /gsave ldef
+/mt /moveto ldef
+/np /newpath ldef
+/cm /currentmatrix ldef
+/sm /setmatrix ldef
+/rm /rmoveto ldef
+/rl /rlineto ldef
+/s /show ldef
+/sc {setcmykcolor} bdef
+/sr /setrgbcolor ldef
+/sg /setgray ldef
+/w /setlinewidth ldef
+/j /setlinejoin ldef
+/cap /setlinecap ldef
+/rc {rectclip} bdef
+/rf {rectfill} bdef
+% page state control
+/pgsv () def
+/bpage {/pgsv save def} bdef
+/epage {pgsv restore} bdef
+/bplot /gsave ldef
+/eplot {stroke grestore} bdef
+% orientation switch
+/portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def
+% coordinate system mappings
+/dpi2point 0 def
+% font control
+/FontSize 0 def
+/FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0]
+  makefont setfont} bdef
+/reencode {exch dup where {pop load} {pop StandardEncoding} ifelse
+  exch dup 3 1 roll findfont dup length dict begin
+  { 1 index /FID ne {def}{pop pop} ifelse } forall
+  /Encoding exch def currentdict end definefont pop} bdef
+/isroman {findfont /CharStrings get /Agrave known} bdef
+/FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse
+  exch FMS} bdef
+/csm {1 dpi2point div -1 dpi2point div scale neg translate
+ dup landscapeMode eq {pop -90 rotate}
+  {rotateMode eq {90 rotate} if} ifelse} bdef
+% line types: solid, dotted, dashed, dotdash
+/SO { [] 0 setdash } bdef
+/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
+/DA { [6 dpi2point mul] 0 setdash } bdef
+/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4
+  dpi2point mul] 0 setdash } bdef
+% macros for lines and objects
+/L {lineto stroke} bdef
+/MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef
+/AP {{rlineto} repeat} bdef
+/PDlw -1 def
+/W {/PDlw currentlinewidth def setlinewidth} def
+/PP {closepath eofill} bdef
+/DP {closepath stroke} bdef
+/MR {4 -2 roll moveto dup  0 exch rlineto exch 0 rlineto
+  neg 0 exch rlineto closepath} bdef
+/FR {MR stroke} bdef
+/PR {MR fill} bdef
+/L1i {{currentfile picstr readhexstring pop} image} bdef
+/tMatrix matrix def
+/MakeOval {newpath tMatrix currentmatrix pop translate scale
+0 0 1 0 360 arc tMatrix setmatrix} bdef
+/FO {MakeOval stroke} bdef
+/PO {MakeOval fill} bdef
+/PD {currentlinecap 1 cap 3 1 roll 2 copy mt lineto stroke
+   cap PDlw -1 eq not {PDlw w /PDlw -1 def} if} def
+/FA {newpath tMatrix currentmatrix pop translate scale
+  0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef
+/PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale
+  0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef
+/FAn {newpath tMatrix currentmatrix pop translate scale
+  0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef
+/PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale
+  0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef
+/vradius 0 def /hradius 0 def /lry 0 def
+/lrx 0 def /uly 0 def /ulx 0 def /rad 0 def
+/MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef
+  /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly
+  vradius add translate hradius vradius scale 0 0 1 180 270 arc 
+  tMatrix setmatrix lrx hradius sub uly vradius add translate
+  hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix
+  lrx hradius sub lry vradius sub translate hradius vradius scale
+  0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub
+  translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix
+  closepath} bdef
+/FRR {MRR stroke } bdef
+/PRR {MRR fill } bdef
+/MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def
+  newpath tMatrix currentmatrix pop ulx rad add uly rad add translate
+  rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad
+  sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix
+  closepath} bdef
+/FlrRR {MlrRR stroke } bdef
+/PlrRR {MlrRR fill } bdef
+/MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def
+  newpath tMatrix currentmatrix pop ulx rad add uly rad add translate
+  rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad
+  sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix
+  closepath} bdef
+/FtbRR {MtbRR stroke } bdef
+/PtbRR {MtbRR fill } bdef
+/stri 6 array def /dtri 6 array def
+/smat 6 array def /dmat 6 array def
+/tmat1 6 array def /tmat2 6 array def /dif 3 array def
+/asub {/ind2 exch def /ind1 exch def dup dup
+  ind1 get exch ind2 get sub exch } bdef
+/tri_to_matrix {
+  2 0 asub 3 1 asub 4 0 asub 5 1 asub
+  dup 0 get exch 1 get 7 -1 roll astore } bdef
+/compute_transform {
+  dmat dtri tri_to_matrix tmat1 invertmatrix 
+  smat stri tri_to_matrix tmat2 concatmatrix } bdef
+/ds {stri astore pop} bdef
+/dt {dtri astore pop} bdef
+/db {2 copy /cols xdef /rows xdef mul dup string
+  currentfile exch readhexstring pop
+  /bmap xdef pop pop} bdef
+/it {gs np dtri aload pop moveto lineto lineto cp c
+  cols rows 8 compute_transform 
+  {bmap} image gr}bdef
+/il {newpath moveto lineto stroke}bdef
+currentdict end def
+%%EndProlog
+
+%%BeginSetup
+MathWorks begin
+
+0 cap
+
+end
+%%EndSetup
+
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox:    52   194   549   605
+MathWorks begin
+bpage
+%%EndPageSetup
+
+%%BeginObject: obj1
+bplot
+
+/dpi2point 12 def
+portraitMode 0204 7344 csm
+
+  424    80  5969  4933 MR c np
+92 dict begin %Colortable dictionary
+/c0 { 0 0 0 sr} bdef
+/c1 { 1 1 1 sr} bdef
+/c2 { 1 0 0 sr} bdef
+/c3 { 0 1 0 sr} bdef
+/c4 { 0 0 1 sr} bdef
+/c5 { 1 1 0 sr} bdef
+/c6 { 1 0 1 sr} bdef
+/c7 { 0 1 1 sr} bdef
+c0
+1 j
+1 sg
+   0    0 6913 5185 PR
+6 w
+0 4225 5356 0 0 -4225 899 4614 4 MP
+PP
+-5356 0 0 4225 5356 0 0 -4225 899 4614 5 MP stroke
+4 w
+DO
+0 sg
+ 899 4614 mt  899  389 L
+ 899  389 mt  899  389 L
+2684 4614 mt 2684  389 L
+2684  389 mt 2684  389 L
+4469 4614 mt 4469  389 L
+4469  389 mt 4469  389 L
+6255 4614 mt 6255  389 L
+6255  389 mt 6255  389 L
+ 899 4614 mt 6255 4614 L
+6255 4614 mt 6255 4614 L
+ 899 2501 mt 6255 2501 L
+6255 2501 mt 6255 2501 L
+ 899  389 mt 6255  389 L
+6255  389 mt 6255  389 L
+SO
+6 w
+ 899 4614 mt 6255 4614 L
+ 899  389 mt 6255  389 L
+ 899 4614 mt  899  389 L
+6255 4614 mt 6255  389 L
+ 899 4614 mt 6255 4614 L
+ 899 4614 mt  899  389 L
+ 899 4614 mt  899 4587 L
+ 899  389 mt  899  415 L
+DO
+ 899 4614 mt  899  389 L
+ 899  389 mt  899  389 L
+SO
+ 899 4614 mt  899 4560 L
+ 899  389 mt  899  442 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 811 4796 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+ 944 4722 mt 
+(1) s
+1436 4614 mt 1436 4587 L
+1436  389 mt 1436  415 L
+DO
+1436 4614 mt 1436  389 L
+1436  389 mt 1436  389 L
+SO
+1750 4614 mt 1750 4587 L
+1750  389 mt 1750  415 L
+DO
+1750 4614 mt 1750  389 L
+1750  389 mt 1750  389 L
+SO
+1973 4614 mt 1973 4587 L
+1973  389 mt 1973  415 L
+DO
+1973 4614 mt 1973  389 L
+1973  389 mt 1973  389 L
+SO
+2146 4614 mt 2146 4587 L
+2146  389 mt 2146  415 L
+DO
+2146 4614 mt 2146  389 L
+2146  389 mt 2146  389 L
+SO
+2288 4614 mt 2288 4587 L
+2288  389 mt 2288  415 L
+DO
+2288 4614 mt 2288  389 L
+2288  389 mt 2288  389 L
+SO
+2407 4614 mt 2407 4587 L
+2407  389 mt 2407  415 L
+DO
+2407 4614 mt 2407  389 L
+2407  389 mt 2407  389 L
+SO
+2511 4614 mt 2511 4587 L
+2511  389 mt 2511  415 L
+DO
+2511 4614 mt 2511  389 L
+2511  389 mt 2511  389 L
+SO
+2602 4614 mt 2602 4587 L
+2602  389 mt 2602  415 L
+DO
+2602 4614 mt 2602  389 L
+2602  389 mt 2602  389 L
+SO
+2684 4614 mt 2684 4587 L
+2684  389 mt 2684  415 L
+DO
+2684 4614 mt 2684  389 L
+2684  389 mt 2684  389 L
+SO
+2684 4614 mt 2684 4560 L
+2684  389 mt 2684  442 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+2596 4796 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+2729 4722 mt 
+(2) s
+3221 4614 mt 3221 4587 L
+3221  389 mt 3221  415 L
+DO
+3221 4614 mt 3221  389 L
+3221  389 mt 3221  389 L
+SO
+3536 4614 mt 3536 4587 L
+3536  389 mt 3536  415 L
+DO
+3536 4614 mt 3536  389 L
+3536  389 mt 3536  389 L
+SO
+3759 4614 mt 3759 4587 L
+3759  389 mt 3759  415 L
+DO
+3759 4614 mt 3759  389 L
+3759  389 mt 3759  389 L
+SO
+3932 4614 mt 3932 4587 L
+3932  389 mt 3932  415 L
+DO
+3932 4614 mt 3932  389 L
+3932  389 mt 3932  389 L
+SO
+4073 4614 mt 4073 4587 L
+4073  389 mt 4073  415 L
+DO
+4073 4614 mt 4073  389 L
+4073  389 mt 4073  389 L
+SO
+4193 4614 mt 4193 4587 L
+4193  389 mt 4193  415 L
+DO
+4193 4614 mt 4193  389 L
+4193  389 mt 4193  389 L
+SO
+4296 4614 mt 4296 4587 L
+4296  389 mt 4296  415 L
+DO
+4296 4614 mt 4296  389 L
+4296  389 mt 4296  389 L
+SO
+4387 4614 mt 4387 4587 L
+4387  389 mt 4387  415 L
+DO
+4387 4614 mt 4387  389 L
+4387  389 mt 4387  389 L
+SO
+4469 4614 mt 4469 4587 L
+4469  389 mt 4469  415 L
+DO
+4469 4614 mt 4469  389 L
+4469  389 mt 4469  389 L
+SO
+4469 4614 mt 4469 4560 L
+4469  389 mt 4469  442 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+4381 4796 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+4514 4722 mt 
+(3) s
+5007 4614 mt 5007 4587 L
+5007  389 mt 5007  415 L
+DO
+5007 4614 mt 5007  389 L
+5007  389 mt 5007  389 L
+SO
+5321 4614 mt 5321 4587 L
+5321  389 mt 5321  415 L
+DO
+5321 4614 mt 5321  389 L
+5321  389 mt 5321  389 L
+SO
+5544 4614 mt 5544 4587 L
+5544  389 mt 5544  415 L
+DO
+5544 4614 mt 5544  389 L
+5544  389 mt 5544  389 L
+SO
+5717 4614 mt 5717 4587 L
+5717  389 mt 5717  415 L
+DO
+5717 4614 mt 5717  389 L
+5717  389 mt 5717  389 L
+SO
+5858 4614 mt 5858 4587 L
+5858  389 mt 5858  415 L
+DO
+5858 4614 mt 5858  389 L
+5858  389 mt 5858  389 L
+SO
+5978 4614 mt 5978 4587 L
+5978  389 mt 5978  415 L
+DO
+5978 4614 mt 5978  389 L
+5978  389 mt 5978  389 L
+SO
+6081 4614 mt 6081 4587 L
+6081  389 mt 6081  415 L
+DO
+6081 4614 mt 6081  389 L
+6081  389 mt 6081  389 L
+SO
+6173 4614 mt 6173 4587 L
+6173  389 mt 6173  415 L
+DO
+6173 4614 mt 6173  389 L
+6173  389 mt 6173  389 L
+SO
+6255 4614 mt 6255 4587 L
+6255  389 mt 6255  415 L
+DO
+6255 4614 mt 6255  389 L
+6255  389 mt 6255  389 L
+SO
+6255 4614 mt 6255 4560 L
+6255  389 mt 6255  442 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+6167 4796 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+6300 4722 mt 
+(4) s
+ 899 4614 mt  925 4614 L
+6255 4614 mt 6228 4614 L
+DO
+ 899 4614 mt 6255 4614 L
+6255 4614 mt 6255 4614 L
+SO
+ 899 4614 mt  952 4614 L
+6255 4614 mt 6201 4614 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 640 4658 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+ 773 4584 mt 
+(-2) s
+ 899 3978 mt  925 3978 L
+6255 3978 mt 6228 3978 L
+DO
+ 899 3978 mt 6255 3978 L
+6255 3978 mt 6255 3978 L
+SO
+ 899 3606 mt  925 3606 L
+6255 3606 mt 6228 3606 L
+DO
+ 899 3606 mt 6255 3606 L
+6255 3606 mt 6255 3606 L
+SO
+ 899 3342 mt  925 3342 L
+6255 3342 mt 6228 3342 L
+DO
+ 899 3342 mt 6255 3342 L
+6255 3342 mt 6255 3342 L
+SO
+ 899 3137 mt  925 3137 L
+6255 3137 mt 6228 3137 L
+DO
+ 899 3137 mt 6255 3137 L
+6255 3137 mt 6255 3137 L
+SO
+ 899 2970 mt  925 2970 L
+6255 2970 mt 6228 2970 L
+DO
+ 899 2970 mt 6255 2970 L
+6255 2970 mt 6255 2970 L
+SO
+ 899 2828 mt  925 2828 L
+6255 2828 mt 6228 2828 L
+DO
+ 899 2828 mt 6255 2828 L
+6255 2828 mt 6255 2828 L
+SO
+ 899 2706 mt  925 2706 L
+6255 2706 mt 6228 2706 L
+DO
+ 899 2706 mt 6255 2706 L
+6255 2706 mt 6255 2706 L
+SO
+ 899 2598 mt  925 2598 L
+6255 2598 mt 6228 2598 L
+DO
+ 899 2598 mt 6255 2598 L
+6255 2598 mt 6255 2598 L
+SO
+ 899 2501 mt  925 2501 L
+6255 2501 mt 6228 2501 L
+DO
+ 899 2501 mt 6255 2501 L
+6255 2501 mt 6255 2501 L
+SO
+ 899 2501 mt  952 2501 L
+6255 2501 mt 6201 2501 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 640 2545 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+ 773 2471 mt 
+(-1) s
+ 899 1865 mt  925 1865 L
+6255 1865 mt 6228 1865 L
+DO
+ 899 1865 mt 6255 1865 L
+6255 1865 mt 6255 1865 L
+SO
+ 899 1493 mt  925 1493 L
+6255 1493 mt 6228 1493 L
+DO
+ 899 1493 mt 6255 1493 L
+6255 1493 mt 6255 1493 L
+SO
+ 899 1229 mt  925 1229 L
+6255 1229 mt 6228 1229 L
+DO
+ 899 1229 mt 6255 1229 L
+6255 1229 mt 6255 1229 L
+SO
+ 899 1024 mt  925 1024 L
+6255 1024 mt 6228 1024 L
+DO
+ 899 1024 mt 6255 1024 L
+6255 1024 mt 6255 1024 L
+SO
+ 899  857 mt  925  857 L
+6255  857 mt 6228  857 L
+DO
+ 899  857 mt 6255  857 L
+6255  857 mt 6255  857 L
+SO
+ 899  716 mt  925  716 L
+6255  716 mt 6228  716 L
+DO
+ 899  716 mt 6255  716 L
+6255  716 mt 6255  716 L
+SO
+ 899  593 mt  925  593 L
+6255  593 mt 6228  593 L
+DO
+ 899  593 mt 6255  593 L
+6255  593 mt 6255  593 L
+SO
+ 899  485 mt  925  485 L
+6255  485 mt 6228  485 L
+DO
+ 899  485 mt 6255  485 L
+6255  485 mt 6255  485 L
+SO
+ 899  389 mt  925  389 L
+6255  389 mt 6228  389 L
+DO
+ 899  389 mt 6255  389 L
+6255  389 mt 6255  389 L
+SO
+ 899  389 mt  952  389 L
+6255  389 mt 6201  389 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 640  433 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+ 773  359 mt 
+(0) s
+ 899 4614 mt 6255 4614 L
+ 899  389 mt 6255  389 L
+ 899 4614 mt  899  389 L
+6255 4614 mt 6255  389 L
+gs 899 389 5357 4226 MR c np
+1075 636 1075 635 1075 634 1075 629 1800 1088 5 MP stroke
+gs 1727 1015 4447 2681 MR c np
+  36   36 1800 1088 FO
+  36   36 2875 1717 FO
+  36   36 3950 2351 FO
+  36   36 5025 2986 FO
+  36   36 6100 3622 FO
+gr
+
+1075 636 1075 636 1075 636 1075 636 1800 760 5 MP stroke
+gs 1727 687 4447 2691 MR c np
+1764  760 mt 1836  760 L
+1800  724 mt 1800  796 L
+2839 1396 mt 2911 1396 L
+2875 1360 mt 2875 1432 L
+3914 2032 mt 3986 2032 L
+3950 1996 mt 3950 2068 L
+4989 2668 mt 5061 2668 L
+5025 2632 mt 5025 2704 L
+6064 3304 mt 6136 3304 L
+6100 3268 mt 6100 3340 L
+1775  735 mt 1825  785 L
+1825  735 mt 1775  785 L
+2850 1371 mt 2900 1421 L
+2900 1371 mt 2850 1421 L
+3925 2007 mt 3975 2057 L
+3975 2007 mt 3925 2057 L
+5000 2643 mt 5050 2693 L
+5050 2643 mt 5000 2693 L
+6075 3279 mt 6125 3329 L
+6125 3279 mt 6075 3329 L
+gr
+
+1075 636 1075 636 1075 636 1075 636 1800 1978 5 MP stroke
+gr
+
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 168 FMSR
+
+1883  284 mt 
+(L2- and H\(curl\)-error vs. number of elements) s
+2523 4974 mt 
+(number of elements in mesh) s
+ 585 3278 mt  -90 rotate
+(error in H\(curl\)-norm) s
+90 rotate
+1 sg
+0 437 1076 0 0 -437 5119 886 4 MP
+PP
+-1076 0 0 437 1076 0 0 -437 5119 886 5 MP stroke
+4 w
+DO
+SO
+6 w
+0 sg
+5119  886 mt 6195  886 L
+5119  449 mt 6195  449 L
+5119  886 mt 5119  449 L
+6195  886 mt 6195  449 L
+5119  886 mt 6195  886 L
+5119  886 mt 5119  449 L
+5119  886 mt 6195  886 L
+5119  449 mt 6195  449 L
+5119  886 mt 5119  449 L
+6195  886 mt 6195  449 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+5452  571 mt 
+(L2-error) s
+5452  709 mt 
+(H\(curl\)-error) s
+5452  847 mt 
+(Order 1) s
+gs 5119 449 1077 438 MR c np
+200 0 5185 531 2 MP stroke
+gs 5212 458 147 147 MR c np
+  36   36 5285  531 FO
+gr
+
+200 0 5185 669 2 MP stroke
+gs 5212 596 147 147 MR c np
+5249  669 mt 5321  669 L
+5285  633 mt 5285  705 L
+5260  644 mt 5310  694 L
+5310  644 mt 5260  694 L
+gr
+
+200 0 5185 808 2 MP stroke
+gr
+
+
+end
+
+eplot
+%%EndObject
+
+epage
+end
+
+showpage
+
+%%Trailer
+%%EOF
+
+%%EndDocument
+ @endspecial 28 4616 a(Figure)f(1:)39 b(Con)m(v)m(ergence)30
+b(of)d(the)h(FE-appro)m(ximation)f(to)i(the)e(smo)s(oth)h(solution)e
+(of)i(the)f Fa(MATLAB)f Fk(example)i(\(31\))28 4729 y(in)h(the)h
+Fc(L)352 4696 y Fb(2)392 4729 y Fk(\(\012\)-norm)g(and)g(the)g
+Fc(H)7 b Fk(\(curl)o(;)15 b(\(\012\)\)-seminorm)28 5150
+y Fn(Remark)28 b Fz(7)45 b Fm(The)22 b(mesh)g(gener)l(ation)f(and)h(r)l
+(e\014nement)e(was)i(done)g(by)g Fd(PDE-toolbox)16 b
+Fm(c)l(ommands.)37 b(Sinc)l(e)21 b(the)g Fd(PDE-toolbox)28
+5250 y Fm(do)l(es)32 b(not)f(supp)l(ort)h(thr)l(e)l(e)g(dimensional)h
+(grids,)h(we)e(r)l(estricte)l(d)g(ourselves)g(to)g(2d)g(pr)l(oblems,)i
+(and)e(we)g(have)h(so)f(far)h(no)e(nu-)28 5349 y(meric)l(al)f(r)l
+(esults)f(for)i(the)f(c)l(ase)g(of)h(tetr)l(ahe)l(dr)l(al)f(grids)h(in)
+f(3d.)1949 5719 y Fk(17)p eop
+%%Page: 18 18
+18 17 bop 872 1803 a @beginspecial 52 @llx 194 @lly 549
+@urx 605 @ury 2693 @rwi 1984 @rhi @setspecial
+%%BeginDocument: example2_errors.eps
+%!PS-Adobe-2.0 EPSF-1.2
+%%Creator: MATLAB, The Mathworks, Inc.
+%%Title: pix.eps
+%%CreationDate: 08/26/2002  11:52:50
+%%DocumentNeededFonts: Helvetica
+%%DocumentProcessColors: Cyan Magenta Yellow Black
+%%Pages: 1
+%%BoundingBox:    52   194   549   605
+%%EndComments
+
+%%BeginProlog
+% MathWorks dictionary
+/MathWorks 160 dict begin
+% definition operators
+/bdef {bind def} bind def
+/ldef {load def} bind def
+/xdef {exch def} bdef
+/xstore {exch store} bdef
+% operator abbreviations
+/c  /clip ldef
+/cc /concat ldef
+/cp /closepath ldef
+/gr /grestore ldef
+/gs /gsave ldef
+/mt /moveto ldef
+/np /newpath ldef
+/cm /currentmatrix ldef
+/sm /setmatrix ldef
+/rm /rmoveto ldef
+/rl /rlineto ldef
+/s /show ldef
+/sc {setcmykcolor} bdef
+/sr /setrgbcolor ldef
+/sg /setgray ldef
+/w /setlinewidth ldef
+/j /setlinejoin ldef
+/cap /setlinecap ldef
+/rc {rectclip} bdef
+/rf {rectfill} bdef
+% page state control
+/pgsv () def
+/bpage {/pgsv save def} bdef
+/epage {pgsv restore} bdef
+/bplot /gsave ldef
+/eplot {stroke grestore} bdef
+% orientation switch
+/portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def
+% coordinate system mappings
+/dpi2point 0 def
+% font control
+/FontSize 0 def
+/FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0]
+  makefont setfont} bdef
+/reencode {exch dup where {pop load} {pop StandardEncoding} ifelse
+  exch dup 3 1 roll findfont dup length dict begin
+  { 1 index /FID ne {def}{pop pop} ifelse } forall
+  /Encoding exch def currentdict end definefont pop} bdef
+/isroman {findfont /CharStrings get /Agrave known} bdef
+/FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse
+  exch FMS} bdef
+/csm {1 dpi2point div -1 dpi2point div scale neg translate
+ dup landscapeMode eq {pop -90 rotate}
+  {rotateMode eq {90 rotate} if} ifelse} bdef
+% line types: solid, dotted, dashed, dotdash
+/SO { [] 0 setdash } bdef
+/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
+/DA { [6 dpi2point mul] 0 setdash } bdef
+/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4
+  dpi2point mul] 0 setdash } bdef
+% macros for lines and objects
+/L {lineto stroke} bdef
+/MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef
+/AP {{rlineto} repeat} bdef
+/PDlw -1 def
+/W {/PDlw currentlinewidth def setlinewidth} def
+/PP {closepath eofill} bdef
+/DP {closepath stroke} bdef
+/MR {4 -2 roll moveto dup  0 exch rlineto exch 0 rlineto
+  neg 0 exch rlineto closepath} bdef
+/FR {MR stroke} bdef
+/PR {MR fill} bdef
+/L1i {{currentfile picstr readhexstring pop} image} bdef
+/tMatrix matrix def
+/MakeOval {newpath tMatrix currentmatrix pop translate scale
+0 0 1 0 360 arc tMatrix setmatrix} bdef
+/FO {MakeOval stroke} bdef
+/PO {MakeOval fill} bdef
+/PD {currentlinecap 1 cap 3 1 roll 2 copy mt lineto stroke
+   cap PDlw -1 eq not {PDlw w /PDlw -1 def} if} def
+/FA {newpath tMatrix currentmatrix pop translate scale
+  0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef
+/PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale
+  0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef
+/FAn {newpath tMatrix currentmatrix pop translate scale
+  0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef
+/PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale
+  0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef
+/vradius 0 def /hradius 0 def /lry 0 def
+/lrx 0 def /uly 0 def /ulx 0 def /rad 0 def
+/MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef
+  /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly
+  vradius add translate hradius vradius scale 0 0 1 180 270 arc 
+  tMatrix setmatrix lrx hradius sub uly vradius add translate
+  hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix
+  lrx hradius sub lry vradius sub translate hradius vradius scale
+  0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub
+  translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix
+  closepath} bdef
+/FRR {MRR stroke } bdef
+/PRR {MRR fill } bdef
+/MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def
+  newpath tMatrix currentmatrix pop ulx rad add uly rad add translate
+  rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad
+  sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix
+  closepath} bdef
+/FlrRR {MlrRR stroke } bdef
+/PlrRR {MlrRR fill } bdef
+/MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def
+  newpath tMatrix currentmatrix pop ulx rad add uly rad add translate
+  rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad
+  sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix
+  closepath} bdef
+/FtbRR {MtbRR stroke } bdef
+/PtbRR {MtbRR fill } bdef
+/stri 6 array def /dtri 6 array def
+/smat 6 array def /dmat 6 array def
+/tmat1 6 array def /tmat2 6 array def /dif 3 array def
+/asub {/ind2 exch def /ind1 exch def dup dup
+  ind1 get exch ind2 get sub exch } bdef
+/tri_to_matrix {
+  2 0 asub 3 1 asub 4 0 asub 5 1 asub
+  dup 0 get exch 1 get 7 -1 roll astore } bdef
+/compute_transform {
+  dmat dtri tri_to_matrix tmat1 invertmatrix 
+  smat stri tri_to_matrix tmat2 concatmatrix } bdef
+/ds {stri astore pop} bdef
+/dt {dtri astore pop} bdef
+/db {2 copy /cols xdef /rows xdef mul dup string
+  currentfile exch readhexstring pop
+  /bmap xdef pop pop} bdef
+/it {gs np dtri aload pop moveto lineto lineto cp c
+  cols rows 8 compute_transform 
+  {bmap} image gr}bdef
+/il {newpath moveto lineto stroke}bdef
+currentdict end def
+%%EndProlog
+
+%%BeginSetup
+MathWorks begin
+
+0 cap
+
+end
+%%EndSetup
+
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox:    52   194   549   605
+MathWorks begin
+bpage
+%%EndPageSetup
+
+%%BeginObject: obj1
+bplot
+
+/dpi2point 12 def
+portraitMode 0204 7344 csm
+
+  424    80  5969  4933 MR c np
+92 dict begin %Colortable dictionary
+/c0 { 0 0 0 sr} bdef
+/c1 { 1 1 1 sr} bdef
+/c2 { 1 0 0 sr} bdef
+/c3 { 0 1 0 sr} bdef
+/c4 { 0 0 1 sr} bdef
+/c5 { 1 1 0 sr} bdef
+/c6 { 1 0 1 sr} bdef
+/c7 { 0 1 1 sr} bdef
+c0
+1 j
+1 sg
+   0    0 6913 5185 PR
+6 w
+0 4225 5356 0 0 -4225 899 4614 4 MP
+PP
+-5356 0 0 4225 5356 0 0 -4225 899 4614 5 MP stroke
+4 w
+DO
+0 sg
+ 899 4614 mt  899  389 L
+ 899  389 mt  899  389 L
+2684 4614 mt 2684  389 L
+2684  389 mt 2684  389 L
+4469 4614 mt 4469  389 L
+4469  389 mt 4469  389 L
+6255 4614 mt 6255  389 L
+6255  389 mt 6255  389 L
+ 899 4614 mt 6255 4614 L
+6255 4614 mt 6255 4614 L
+ 899 3205 mt 6255 3205 L
+6255 3205 mt 6255 3205 L
+ 899 1797 mt 6255 1797 L
+6255 1797 mt 6255 1797 L
+ 899  389 mt 6255  389 L
+6255  389 mt 6255  389 L
+SO
+6 w
+ 899 4614 mt 6255 4614 L
+ 899  389 mt 6255  389 L
+ 899 4614 mt  899  389 L
+6255 4614 mt 6255  389 L
+ 899 4614 mt 6255 4614 L
+ 899 4614 mt  899  389 L
+ 899 4614 mt  899 4587 L
+ 899  389 mt  899  415 L
+DO
+ 899 4614 mt  899  389 L
+ 899  389 mt  899  389 L
+SO
+ 899 4614 mt  899 4560 L
+ 899  389 mt  899  442 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 811 4796 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+ 944 4722 mt 
+(1) s
+1436 4614 mt 1436 4587 L
+1436  389 mt 1436  415 L
+DO
+1436 4614 mt 1436  389 L
+1436  389 mt 1436  389 L
+SO
+1750 4614 mt 1750 4587 L
+1750  389 mt 1750  415 L
+DO
+1750 4614 mt 1750  389 L
+1750  389 mt 1750  389 L
+SO
+1973 4614 mt 1973 4587 L
+1973  389 mt 1973  415 L
+DO
+1973 4614 mt 1973  389 L
+1973  389 mt 1973  389 L
+SO
+2146 4614 mt 2146 4587 L
+2146  389 mt 2146  415 L
+DO
+2146 4614 mt 2146  389 L
+2146  389 mt 2146  389 L
+SO
+2288 4614 mt 2288 4587 L
+2288  389 mt 2288  415 L
+DO
+2288 4614 mt 2288  389 L
+2288  389 mt 2288  389 L
+SO
+2407 4614 mt 2407 4587 L
+2407  389 mt 2407  415 L
+DO
+2407 4614 mt 2407  389 L
+2407  389 mt 2407  389 L
+SO
+2511 4614 mt 2511 4587 L
+2511  389 mt 2511  415 L
+DO
+2511 4614 mt 2511  389 L
+2511  389 mt 2511  389 L
+SO
+2602 4614 mt 2602 4587 L
+2602  389 mt 2602  415 L
+DO
+2602 4614 mt 2602  389 L
+2602  389 mt 2602  389 L
+SO
+2684 4614 mt 2684 4587 L
+2684  389 mt 2684  415 L
+DO
+2684 4614 mt 2684  389 L
+2684  389 mt 2684  389 L
+SO
+2684 4614 mt 2684 4560 L
+2684  389 mt 2684  442 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+2596 4796 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+2729 4722 mt 
+(2) s
+3221 4614 mt 3221 4587 L
+3221  389 mt 3221  415 L
+DO
+3221 4614 mt 3221  389 L
+3221  389 mt 3221  389 L
+SO
+3536 4614 mt 3536 4587 L
+3536  389 mt 3536  415 L
+DO
+3536 4614 mt 3536  389 L
+3536  389 mt 3536  389 L
+SO
+3759 4614 mt 3759 4587 L
+3759  389 mt 3759  415 L
+DO
+3759 4614 mt 3759  389 L
+3759  389 mt 3759  389 L
+SO
+3932 4614 mt 3932 4587 L
+3932  389 mt 3932  415 L
+DO
+3932 4614 mt 3932  389 L
+3932  389 mt 3932  389 L
+SO
+4073 4614 mt 4073 4587 L
+4073  389 mt 4073  415 L
+DO
+4073 4614 mt 4073  389 L
+4073  389 mt 4073  389 L
+SO
+4193 4614 mt 4193 4587 L
+4193  389 mt 4193  415 L
+DO
+4193 4614 mt 4193  389 L
+4193  389 mt 4193  389 L
+SO
+4296 4614 mt 4296 4587 L
+4296  389 mt 4296  415 L
+DO
+4296 4614 mt 4296  389 L
+4296  389 mt 4296  389 L
+SO
+4387 4614 mt 4387 4587 L
+4387  389 mt 4387  415 L
+DO
+4387 4614 mt 4387  389 L
+4387  389 mt 4387  389 L
+SO
+4469 4614 mt 4469 4587 L
+4469  389 mt 4469  415 L
+DO
+4469 4614 mt 4469  389 L
+4469  389 mt 4469  389 L
+SO
+4469 4614 mt 4469 4560 L
+4469  389 mt 4469  442 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+4381 4796 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+4514 4722 mt 
+(3) s
+5007 4614 mt 5007 4587 L
+5007  389 mt 5007  415 L
+DO
+5007 4614 mt 5007  389 L
+5007  389 mt 5007  389 L
+SO
+5321 4614 mt 5321 4587 L
+5321  389 mt 5321  415 L
+DO
+5321 4614 mt 5321  389 L
+5321  389 mt 5321  389 L
+SO
+5544 4614 mt 5544 4587 L
+5544  389 mt 5544  415 L
+DO
+5544 4614 mt 5544  389 L
+5544  389 mt 5544  389 L
+SO
+5717 4614 mt 5717 4587 L
+5717  389 mt 5717  415 L
+DO
+5717 4614 mt 5717  389 L
+5717  389 mt 5717  389 L
+SO
+5858 4614 mt 5858 4587 L
+5858  389 mt 5858  415 L
+DO
+5858 4614 mt 5858  389 L
+5858  389 mt 5858  389 L
+SO
+5978 4614 mt 5978 4587 L
+5978  389 mt 5978  415 L
+DO
+5978 4614 mt 5978  389 L
+5978  389 mt 5978  389 L
+SO
+6081 4614 mt 6081 4587 L
+6081  389 mt 6081  415 L
+DO
+6081 4614 mt 6081  389 L
+6081  389 mt 6081  389 L
+SO
+6173 4614 mt 6173 4587 L
+6173  389 mt 6173  415 L
+DO
+6173 4614 mt 6173  389 L
+6173  389 mt 6173  389 L
+SO
+6255 4614 mt 6255 4587 L
+6255  389 mt 6255  415 L
+DO
+6255 4614 mt 6255  389 L
+6255  389 mt 6255  389 L
+SO
+6255 4614 mt 6255 4560 L
+6255  389 mt 6255  442 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+6167 4796 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+6300 4722 mt 
+(4) s
+ 899 4614 mt  925 4614 L
+6255 4614 mt 6228 4614 L
+DO
+ 899 4614 mt 6255 4614 L
+6255 4614 mt 6255 4614 L
+SO
+ 899 4614 mt  952 4614 L
+6255 4614 mt 6201 4614 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 640 4658 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+ 773 4584 mt 
+(-2) s
+ 899 4190 mt  925 4190 L
+6255 4190 mt 6228 4190 L
+DO
+ 899 4190 mt 6255 4190 L
+6255 4190 mt 6255 4190 L
+SO
+ 899 3942 mt  925 3942 L
+6255 3942 mt 6228 3942 L
+DO
+ 899 3942 mt 6255 3942 L
+6255 3942 mt 6255 3942 L
+SO
+ 899 3766 mt  925 3766 L
+6255 3766 mt 6228 3766 L
+DO
+ 899 3766 mt 6255 3766 L
+6255 3766 mt 6255 3766 L
+SO
+ 899 3629 mt  925 3629 L
+6255 3629 mt 6228 3629 L
+DO
+ 899 3629 mt 6255 3629 L
+6255 3629 mt 6255 3629 L
+SO
+ 899 3518 mt  925 3518 L
+6255 3518 mt 6228 3518 L
+DO
+ 899 3518 mt 6255 3518 L
+6255 3518 mt 6255 3518 L
+SO
+ 899 3423 mt  925 3423 L
+6255 3423 mt 6228 3423 L
+DO
+ 899 3423 mt 6255 3423 L
+6255 3423 mt 6255 3423 L
+SO
+ 899 3342 mt  925 3342 L
+6255 3342 mt 6228 3342 L
+DO
+ 899 3342 mt 6255 3342 L
+6255 3342 mt 6255 3342 L
+SO
+ 899 3270 mt  925 3270 L
+6255 3270 mt 6228 3270 L
+DO
+ 899 3270 mt 6255 3270 L
+6255 3270 mt 6255 3270 L
+SO
+ 899 3205 mt  925 3205 L
+6255 3205 mt 6228 3205 L
+DO
+ 899 3205 mt 6255 3205 L
+6255 3205 mt 6255 3205 L
+SO
+ 899 3205 mt  952 3205 L
+6255 3205 mt 6201 3205 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 640 3249 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+ 773 3175 mt 
+(-1) s
+ 899 2781 mt  925 2781 L
+6255 2781 mt 6228 2781 L
+DO
+ 899 2781 mt 6255 2781 L
+6255 2781 mt 6255 2781 L
+SO
+ 899 2533 mt  925 2533 L
+6255 2533 mt 6228 2533 L
+DO
+ 899 2533 mt 6255 2533 L
+6255 2533 mt 6255 2533 L
+SO
+ 899 2357 mt  925 2357 L
+6255 2357 mt 6228 2357 L
+DO
+ 899 2357 mt 6255 2357 L
+6255 2357 mt 6255 2357 L
+SO
+ 899 2221 mt  925 2221 L
+6255 2221 mt 6228 2221 L
+DO
+ 899 2221 mt 6255 2221 L
+6255 2221 mt 6255 2221 L
+SO
+ 899 2109 mt  925 2109 L
+6255 2109 mt 6228 2109 L
+DO
+ 899 2109 mt 6255 2109 L
+6255 2109 mt 6255 2109 L
+SO
+ 899 2015 mt  925 2015 L
+6255 2015 mt 6228 2015 L
+DO
+ 899 2015 mt 6255 2015 L
+6255 2015 mt 6255 2015 L
+SO
+ 899 1933 mt  925 1933 L
+6255 1933 mt 6228 1933 L
+DO
+ 899 1933 mt 6255 1933 L
+6255 1933 mt 6255 1933 L
+SO
+ 899 1861 mt  925 1861 L
+6255 1861 mt 6228 1861 L
+DO
+ 899 1861 mt 6255 1861 L
+6255 1861 mt 6255 1861 L
+SO
+ 899 1797 mt  925 1797 L
+6255 1797 mt 6228 1797 L
+DO
+ 899 1797 mt 6255 1797 L
+6255 1797 mt 6255 1797 L
+SO
+ 899 1797 mt  952 1797 L
+6255 1797 mt 6201 1797 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 640 1841 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+ 773 1767 mt 
+(0) s
+ 899 1373 mt  925 1373 L
+6255 1373 mt 6228 1373 L
+DO
+ 899 1373 mt 6255 1373 L
+6255 1373 mt 6255 1373 L
+SO
+ 899 1125 mt  925 1125 L
+6255 1125 mt 6228 1125 L
+DO
+ 899 1125 mt 6255 1125 L
+6255 1125 mt 6255 1125 L
+SO
+ 899  949 mt  925  949 L
+6255  949 mt 6228  949 L
+DO
+ 899  949 mt 6255  949 L
+6255  949 mt 6255  949 L
+SO
+ 899  812 mt  925  812 L
+6255  812 mt 6228  812 L
+DO
+ 899  812 mt 6255  812 L
+6255  812 mt 6255  812 L
+SO
+ 899  701 mt  925  701 L
+6255  701 mt 6228  701 L
+DO
+ 899  701 mt 6255  701 L
+6255  701 mt 6255  701 L
+SO
+ 899  607 mt  925  607 L
+6255  607 mt 6228  607 L
+DO
+ 899  607 mt 6255  607 L
+6255  607 mt 6255  607 L
+SO
+ 899  525 mt  925  525 L
+6255  525 mt 6228  525 L
+DO
+ 899  525 mt 6255  525 L
+6255  525 mt 6255  525 L
+SO
+ 899  453 mt  925  453 L
+6255  453 mt 6228  453 L
+DO
+ 899  453 mt 6255  453 L
+6255  453 mt 6255  453 L
+SO
+ 899  389 mt  925  389 L
+6255  389 mt 6228  389 L
+DO
+ 899  389 mt 6255  389 L
+6255  389 mt 6255  389 L
+SO
+ 899  389 mt  952  389 L
+6255  389 mt 6201  389 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 640  433 mt 
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 80 FMSR
+
+ 773  359 mt 
+(1) s
+ 899 4614 mt 6255 4614 L
+ 899  389 mt 6255  389 L
+ 899 4614 mt  899  389 L
+6255 4614 mt 6255  389 L
+gs 899 389 5357 4226 MR c np
+1075 424 1075 424 1075 427 1075 427 1800 2062 5 MP stroke
+gs 1727 1989 4447 1849 MR c np
+  36   36 1800 2062 FO
+  36   36 2875 2489 FO
+  36   36 3950 2916 FO
+  36   36 5025 3340 FO
+  36   36 6100 3764 FO
+gr
+
+1075 423 1075 422 1075 415 1075 390 1800 1114 5 MP stroke
+gs 1727 1041 4447 1797 MR c np
+1764 1114 mt 1836 1114 L
+1800 1078 mt 1800 1150 L
+2839 1504 mt 2911 1504 L
+2875 1468 mt 2875 1540 L
+3914 1919 mt 3986 1919 L
+3950 1883 mt 3950 1955 L
+4989 2341 mt 5061 2341 L
+5025 2305 mt 5025 2377 L
+6064 2764 mt 6136 2764 L
+6100 2728 mt 6100 2800 L
+1775 1089 mt 1825 1139 L
+1825 1089 mt 1775 1139 L
+2850 1479 mt 2900 1529 L
+2900 1479 mt 2850 1529 L
+3925 1894 mt 3975 1944 L
+3975 1894 mt 3925 1944 L
+5000 2316 mt 5050 2366 L
+5050 2316 mt 5000 2366 L
+6075 2739 mt 6125 2789 L
+6125 2739 mt 6075 2789 L
+gr
+
+1075 424 1075 424 1075 424 1075 424 1800 2857 5 MP stroke
+gr
+
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 168 FMSR
+
+1883  284 mt 
+(L2- and H\(curl\)-error vs. number of elements) s
+2523 4974 mt 
+(number of elements in mesh) s
+ 585 3278 mt  -90 rotate
+(error in H\(curl\)-norm) s
+90 rotate
+1 sg
+0 437 1076 0 0 -437 5119 886 4 MP
+PP
+-1076 0 0 437 1076 0 0 -437 5119 886 5 MP stroke
+4 w
+DO
+SO
+6 w
+0 sg
+5119  886 mt 6195  886 L
+5119  449 mt 6195  449 L
+5119  886 mt 5119  449 L
+6195  886 mt 6195  449 L
+5119  886 mt 6195  886 L
+5119  886 mt 5119  449 L
+5119  886 mt 6195  886 L
+5119  449 mt 6195  449 L
+5119  886 mt 5119  449 L
+6195  886 mt 6195  449 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+5452  571 mt 
+(L2-error) s
+5452  709 mt 
+(H\(curl\)-error) s
+5452  847 mt 
+(Order 1) s
+gs 5119 449 1077 438 MR c np
+200 0 5185 531 2 MP stroke
+gs 5212 458 147 147 MR c np
+  36   36 5285  531 FO
+gr
+
+200 0 5185 669 2 MP stroke
+gs 5212 596 147 147 MR c np
+5249  669 mt 5321  669 L
+5285  633 mt 5285  705 L
+5260  644 mt 5310  694 L
+5310  644 mt 5260  694 L
+gr
+
+200 0 5185 808 2 MP stroke
+gr
+
+
+end
+
+eplot
+%%EndObject
+
+epage
+end
+
+showpage
+
+%%Trailer
+%%EOF
+
+%%EndDocument
+ @endspecial 28 1999 a Fk(Figure)27 b(2:)39 b(Con)m(v)m(ergence)30
+b(of)d(the)h(FE-appro)m(ximation)f(to)i(the)e(smo)s(oth)h(solution)e
+(of)i(the)f Fa(MATLAB)f Fk(example)i(\(32\))28 2112 y(in)h(the)h
+Fc(L)352 2079 y Fb(2)392 2112 y Fk(\(\012\)-norm)g(and)g(the)g
+Fc(H)7 b Fk(\(curl)o(;)15 b(\(\012\)\)-seminorm)28 2458
+y Fz(As)27 b(for)f(meshes)h(with)g(quadrilateral)e(cells,)i(n)n
+(umerical)f(results)g(w)n(ere)g(obtained)h(with)g(a)g
+Fd(deal.II)d Fz(co)r(de,)j(using)f(the)i(\014nite)28
+2558 y(elemen)n(t)i(class)f Fd(fe/fe)p 754 2571 44 4
+v 42 w(nedelec.cc)p Fz(.)40 b(This)30 b(class)f(pro)n(vides)g(N)n(\023)
+-39 b(ed)n(\023)g(elec's)28 b Fx(H)7 b Fz(\(curl;)14
+b(\012\)-conforming)29 b(elemen)n(t)h(of)g(\014rst)g(t)n(yp)r(e)28
+2657 y(and)22 b(lo)n(w)n(est)f(order)h(in)g(t)n(w)n(o)g(and)h(three)f
+(space)g(dimensions,)h(on)f(bilinear)g(quadrilateral,)g(resp.)34
+b(trilinear)22 b(hexahedral)f(grids.)28 2757 y(F)-7 b(or)29
+b(details)h(ab)r(out)g Fd(deal.II)p Fz(,)e(see)i([2)o(].)45
+b(In)30 b(the)h(follo)n(wing)e(results)h(w)n(ere)f(obtained)h(for)g
+(the)g(mo)r(del)h(problem)e(\(1\))i(in)f(t)n(w)n(o)28
+2856 y(dimensions)25 b(using)g(the)h(data)f(\(32\).)35
+b(W)-7 b(e)26 b(computed)g(the)g(solution)f(on)g(\014v)n(e)g(successiv)
+n(e)f(non-a\016ne)h(bilinear)g(grids)f(\()i(\014gure)28
+2956 y(3\),)h(eac)n(h)g(of)g(whic)n(h)h(w)n(as)f(obtained)g(b)n(y)g
+(global)g(re\014nemen)n(t)g(of)h(the)g(previous)e(one.)1345
+4376 y @beginspecial 0 @llx 0 @lly 301 @urx 301 @ury
+1559 @rwi 1559 @rhi @setspecial
+%%BeginDocument: grid.eps
+%!PS-Adobe-2.0 EPSF-1.2
+%%Title: deal.II Output
+%%Creator: the deal.II library
+%%Creation Date: 2003/4/28 - 11: 4:40
+%%BoundingBox: 0 0 301 301
+/m {moveto} bind def
+/x {lineto stroke} bind def
+/b {0 0 0 setrgbcolor} def
+/r {1 0 0 setrgbcolor} def
+%%EndProlog
+
+0.5 setlinewidth
+b 0 0 m 75 0 x
+b 75 0 m 150 0 x
+b 150 0 m 166.915 82.0968 x
+b 166.915 82.0968 m 179.319 164.952 x
+b 0 150 m 90.0209 159.679 x
+b 90.0209 159.679 m 179.319 164.952 x
+b 0 0 m 0 75 x
+b 0 75 m 0 150 x
+b 75 0 m 83.5481 81.6946 x
+b 83.5481 81.6946 m 90.0209 159.679 x
+b 0 75 m 83.5481 81.6946 x
+b 83.5481 81.6946 m 166.915 82.0968 x
+b 150 0 m 225 0 x
+b 225 0 m 300 0 x
+b 300 0 m 300 75 x
+b 300 75 m 300 150 x
+b 179.319 164.952 m 240.445 158.833 x
+b 240.445 158.833 m 300 150 x
+b 225 0 m 233.767 80.9701 x
+b 233.767 80.9701 m 240.445 158.833 x
+b 166.915 82.0968 m 233.767 80.9701 x
+b 233.767 80.9701 m 300 75 x
+b 300 150 m 300 225 x
+b 300 225 m 300 300 x
+b 150 300 m 225 300 x
+b 225 300 m 300 300 x
+b 179.319 164.952 m 166.039 233.741 x
+b 166.039 233.741 m 150 300 x
+b 240.445 158.833 m 234.054 230.742 x
+b 234.054 230.742 m 225 300 x
+b 166.039 233.741 m 234.054 230.742 x
+b 234.054 230.742 m 300 225 x
+b 0 300 m 75 300 x
+b 75 300 m 150 300 x
+b 0 150 m 0 225 x
+b 0 225 m 0 300 x
+b 90.0209 159.679 m 82.6087 231.699 x
+b 82.6087 231.699 m 75 300 x
+b 0 225 m 82.6087 231.699 x
+b 82.6087 231.699 m 166.039 233.741 x
+showpage
+
+%%EndDocument
+ @endspecial 276 4572 a Fk(Figure)k(3:)41 b(Non-a\016ne)31
+b(bilinear)d(grid)h(used)g(in)g(the)i Fa(deal.II)d Fk(co)s(de,)j(after)
+g(one)g(re\014nemen)m(t)f(step.)28 4867 y Fz(Again,)25
+b(in)g(T)-7 b(able)25 b(2)g(w)n(e)f(can)h(observ)n(e)e(optimal)i(con)n
+(v)n(ergence)e(of)i(order)e Fs(O)r Fz(\()p Fx(h)p Fz(\))j(in)g(the)f
+Fx(H)7 b Fz(\(curl;)14 b(\012\)-norm.)35 b(The)25 b(same)g(order)28
+4967 y(of)i(con)n(v)n(ergence)e(is)j(obtained)f(for)g(the)h(error)e(in)
+i(the)g Fx(L)1777 4937 y Fp(2)1813 4967 y Fz(\(\012\)-norm.)28
+5166 y(With)d Fd(deal.II)p Fz(,)d(w)n(e)j(are)f(also)f(able)i(to)f
+(treat)h(3d)f(problems)g(on)h(hexahedral)e(grids.)35
+b(F)-7 b(or)25 b(our)f(t)n(yp)r(e)h(of)f(problem,)h(N)n(\023)-39
+b(ed)n(\023)g(elec's)28 5266 y Fx(H)7 b Fz(\(curl)o(;)14
+b(\012\)-conforming)k(elemen)n(ts)g(of)h(\014rst)f(t)n(yp)r(e)h(and)f
+(lo)n(w)n(est)g(order,)h(based)f(on)h(a)f(cubic)h(reference)e(elemen)n
+(t,)k(are)d(a)n(v)-5 b(ailable.)1949 5719 y Fk(18)p eop
+%%Page: 19 19
+19 18 bop 910 153 2170 4 v 908 266 4 113 v 960 232 a
+Fk(grid)p 1165 266 V 98 w(#)30 b(cells)p 1537 266 V 1537
+266 V 170 w Fc(H)7 b Fk(\(curl)o(\)-error)p 2307 266
+V 2307 266 V 344 w Fc(L)2594 199 y Fb(2)2633 232 y Fk(-error)p
+3077 266 V 910 269 2170 4 v 908 382 4 113 v 1015 348
+a(1)p 1165 382 V 384 w(4)p 1537 382 V 100 w(6.112e+00)p
+2046 382 V 168 w(-)p 2307 382 V 166 w(1.442e+00)p 2816
+382 V 168 w(-)p 3077 382 V 910 385 2170 4 v 908 498 4
+113 v 1015 464 a(2)p 1165 498 V 338 w(16)p 1537 498 V
+101 w(3.688e+00)p 2046 498 V 103 w(0.73)p 2307 498 V
+121 w(6.765e-01)p 2816 498 V 124 w(1.09)p 3077 498 V
+910 501 2170 4 v 908 614 4 113 v 1015 580 a(3)p 1165
+614 V 338 w(64)p 1537 614 V 101 w(1.991e+00)p 2046 614
+V 103 w(0.89)p 2307 614 V 121 w(3.280e-01)p 2816 614
+V 124 w(1.04)p 3077 614 V 910 618 2170 4 v 908 731 4
+113 v 1015 697 a(4)p 1165 731 V 293 w(256)p 1537 731
+V 101 w(1.015e+00)p 2046 731 V 103 w(0.97)p 2307 731
+V 121 w(1.617e-01)p 2816 731 V 124 w(1.02)p 3077 731
+V 910 734 2170 4 v 908 847 4 113 v 1015 813 a(5)p 1165
+847 V 247 w(1024)p 1537 847 V 122 w(5.098e-01)p 2046
+847 V 124 w(0.99)p 2307 847 V 121 w(8.049e-02)p 2816
+847 V 124 w(1.01)p 3077 847 V 910 850 2170 4 v 28 1117
+a(T)-8 b(able)26 b(2:)39 b(Errors)26 b(and)g(con)m(v)m(ergence)j(rates)
+f(in)d(the)i Fc(H)7 b Fk(\(curl)o(;)15 b(\012\)-)28 b(and)e
+Fc(L)2511 1084 y Fb(2)2550 1117 y Fk(\(\012\)-norm)h(for)g(the)g
+(2d-example)f(solv)m(ed)28 1230 y(with)j Fa(deal.II)p
+Fk(.)28 1458 y Fz(W)-7 b(e)28 b(computed)f(an)h(appro)n(ximation)d(to)j
+(the)g(mo)r(del)g(problem)f(\(1\))g(in)h(3d)g(using)f(the)h(data)675
+1740 y Fx(c)23 b Fs(\021)f Fz(1)14 b Fx(;)180 b(f)p 1080
+1770 50 4 v 8 w Fz(\()p Fx(x;)14 b(y)s(;)g(z)t Fz(\))23
+b(=)1512 1574 y Fl(0)1512 1723 y(@)1794 1640 y Fx(xy)s
+Fz(\(1)18 b Fs(\000)g Fx(y)2104 1610 y Fp(2)2141 1640
+y Fz(\)\(1)g Fs(\000)g Fx(z)2391 1610 y Fp(2)2428 1640
+y Fz(\))h(+)f(2)p Fx(xy)s Fz(\(1)g Fs(\000)g Fx(z)2913
+1610 y Fp(2)2949 1640 y Fz(\))1626 1740 y Fx(y)1670 1709
+y Fp(2)1707 1740 y Fz(\(1)g Fs(\000)g Fx(x)1929 1709
+y Fp(2)1967 1740 y Fz(\)\(1)g Fs(\000)g Fx(z)2217 1709
+y Fp(2)2254 1740 y Fz(\))g(+)h(\(1)f Fs(\000)g Fx(y)2607
+1709 y Fp(2)2644 1740 y Fz(\)\(2)g Fs(\000)g Fx(x)2898
+1709 y Fp(2)2954 1740 y Fs(\000)g Fx(z)3080 1709 y Fp(2)3117
+1740 y Fz(\))1794 1839 y Fx(y)s(z)t Fz(\(1)f Fs(\000)h
+Fx(x)2102 1809 y Fp(2)2139 1839 y Fz(\)\(1)h Fs(\000)f
+Fx(y)2391 1809 y Fp(2)2428 1839 y Fz(\))h(+)f(2)p Fx(y)s(z)t
+Fz(\(1)e Fs(\000)i Fx(x)2911 1809 y Fp(2)2949 1839 y
+Fz(\))3191 1574 y Fl(1)3191 1723 y(A)3291 1740 y Fx(:)500
+b Fz(\(33\))28 2018 y(In)25 b(a)g(\014rst)f(exp)r(erimen)n(t,)i(the)f
+(\014nite)h(elemen)n(t)f(solution)g(w)n(as)f(computed)h(on)g(\014v)n(e)
+g(successiv)n(e)f(globally)f(re\014ned)i(a\016ne)g(grids.)28
+2118 y(In)c(a)g(second)g(computation,)i(w)n(e)e(appro)n(ximated)f(the)i
+(solution)f(of)g(the)h(same)f(problem)g(on)g(\014v)n(e)g(successiv)n(e)
+f(globally)h(re\014ned)28 2217 y(non-a\016ne)26 b(trilinear)h(grids.)28
+2317 y(W)-7 b(e)28 b(see)g(in)h(T)-7 b(able)28 b(3)g(that)g(in)h(b)r
+(oth)g(cases)e(w)n(e)h(observ)n(e)e(again)h(con)n(v)n(ergence)f(of)j
+(order)d Fs(O)r Fz(\()p Fx(h)p Fz(\))k(in)e(the)h Fx(H)7
+b Fz(\(curl;)14 b(\012\)-)28 b(and)g(the)28 2417 y Fx(L)85
+2386 y Fp(2)121 2417 y Fz(\(\012\)-norm.)p 594 2619 2800
+4 v 592 2732 4 113 v 1304 2732 V 1356 2698 a Fk(grid)p
+1561 2732 V 98 w(#)i(cells)p 1934 2732 V 1934 2732 V
+150 w Fc(H)7 b Fk(\(curl)o(\)-error)p 2663 2732 V 2663
+2732 V 303 w Fc(L)2929 2665 y Fb(2)2969 2698 y Fk(-error)p
+3393 2732 V 594 2735 2800 4 v 592 2848 4 113 v 1304 2848
+V 1411 2814 a(1)p 1561 2848 V 384 w(8)p 1934 2848 V 100
+w(7.696e-01)p 2402 2848 V 169 w(-)p 2663 2848 V 166 w(6.609e-01)p
+3131 2848 V 169 w(-)p 3393 2848 V 592 2961 V 1304 2961
+V 1411 2927 a(2)p 1561 2961 V 339 w(64)p 1934 2961 V
+100 w(4.088e-01)p 2402 2961 V 103 w(0.91)p 2663 2961
+V 102 w(2.943e-01)p 3131 2961 V 103 w(1.17)p 3393 2961
+V 592 3074 V 733 3040 a(a\016ne)30 b(grids)p 1304 3074
+V 242 w(3)p 1561 3074 V 293 w(512)p 1934 3074 V 101 w(2.075e-01)p
+2402 3074 V 103 w(0.98)p 2663 3074 V 102 w(1.408e-01)p
+3131 3074 V 103 w(1.06)p 3393 3074 V 592 3187 V 1304
+3187 V 1411 3153 a(4)p 1561 3187 V 248 w(4096)p 1934
+3187 V 101 w(1.041e-01)p 2402 3187 V 103 w(0.99)p 2663
+3187 V 102 w(6.955e-02)p 3131 3187 V 103 w(1.02)p 3393
+3187 V 592 3300 V 1304 3300 V 1411 3266 a(5)p 1561 3300
+V 202 w(32768)p 1934 3300 V 102 w(5.210e-02)p 2402 3300
+V 103 w(1.00)p 2663 3300 V 102 w(3.467e-02)p 3131 3300
+V 103 w(1.00)p 3393 3300 V 594 3303 2800 4 v 592 3416
+4 113 v 1304 3416 V 1411 3382 a(1)p 1561 3416 V 384 w(8)p
+1934 3416 V 100 w(7.716e-01)p 2402 3416 V 169 w(-)p 2663
+3416 V 166 w(6.611e-01)p 3131 3416 V 169 w(-)p 3393 3416
+V 592 3529 V 1304 3529 V 1411 3495 a(2)p 1561 3529 V
+339 w(64)p 1934 3529 V 100 w(4.108e-01)p 2402 3529 V
+103 w(0.91)p 2663 3529 V 102 w(2.955e-01)p 3131 3529
+V 103 w(1.16)p 3393 3529 V 592 3642 V 644 3608 a(non-a\016ne)g(grids)p
+1304 3642 V 154 w(3)p 1561 3642 V 293 w(512)p 1934 3642
+V 101 w(2.085e-01)p 2402 3642 V 103 w(0.98)p 2663 3642
+V 102 w(1.413e-01)p 3131 3642 V 103 w(1.06)p 3393 3642
+V 592 3755 V 1304 3755 V 1411 3721 a(4)p 1561 3755 V
+248 w(4096)p 1934 3755 V 101 w(1.046e-01)p 2402 3755
+V 103 w(0.99)p 2663 3755 V 102 w(6.982e-02)p 3131 3755
+V 103 w(1.02)p 3393 3755 V 592 3868 V 1304 3868 V 1411
+3834 a(5)p 1561 3868 V 202 w(32768)p 1934 3868 V 102
+w(5.237e-02)p 2402 3868 V 103 w(1.00)p 2663 3868 V 102
+w(3.480e-02)p 3131 3868 V 103 w(1.00)p 3393 3868 V 594
+3871 2800 4 v 28 4138 a(T)-8 b(able)26 b(3:)39 b(Errors)26
+b(and)g(con)m(v)m(ergence)j(rates)f(in)d(the)i Fc(H)7
+b Fk(\(curl)o(;)15 b(\012\)-)28 b(and)e Fc(L)2511 4105
+y Fb(2)2550 4138 y Fk(\(\012\)-norm)h(for)g(the)g(3d-example)f(solv)m
+(ed)28 4251 y(with)g Fa(deal.II)p Fk(.)h(The)g(\014rst)h(data)g(set)h
+(is)e(for)h(the)g(computation)g(on)g(a)h(family)d(of)i(a\016ne)h
+(grids,)e(the)h(second)g(set)h(of)28 4364 y(data)i(is)e(for)h
+(non-a\016ne)g(trilinear)e(grids.)28 4581 y Fz(The)18
+b(conclusion)g(that)g(can)g(b)r(e)h(dra)n(wn)e(from)h(these)h(n)n
+(umerical)e(exp)r(erimen)n(ts)h(is,)i(that)f(the)g(restriction)e(to)h
+(three-dimensional)28 4680 y(tetrahedral)26 b(grids)h(of)g(Hiptmair's)h
+(result)f(on)g(the)h Fx(L)1715 4650 y Fp(2)1752 4680
+y Fz(-con)n(v)n(ergence)d(of)i(the)h(error)e(\(6\))i(cannot)f(b)r(e)h
+(relaxed.)28 4879 y(Finally)-7 b(,)27 b(here)g(are)g(some)g(prett)n(y)g
+(pictures:)37 b(the)28 b(v)n(ector)e(\014eld)i(plots)f(from)h(the)g
+Fd(MATLAB)d Fz(computations.)1949 5719 y Fk(19)p eop
+%%Page: 20 20
+20 19 bop 872 2130 a @beginspecial 55 @llx 201 @lly 549
+@urx 611 @ury 2692 @rwi 1984 @rhi @setspecial
+%%BeginDocument: field1.eps
+%!PS-Adobe-2.0 EPSF-1.2
+%%Creator: MATLAB, The Mathworks, Inc.
+%%Title: field1.eps
+%%CreationDate: 08/26/2002  11:46:33
+%%DocumentNeededFonts: Helvetica
+%%DocumentProcessColors: Cyan Magenta Yellow Black
+%%Pages: 1
+%%BoundingBox:    55   201   549   611
+%%EndComments
+
+%%BeginProlog
+% MathWorks dictionary
+/MathWorks 160 dict begin
+% definition operators
+/bdef {bind def} bind def
+/ldef {load def} bind def
+/xdef {exch def} bdef
+/xstore {exch store} bdef
+% operator abbreviations
+/c  /clip ldef
+/cc /concat ldef
+/cp /closepath ldef
+/gr /grestore ldef
+/gs /gsave ldef
+/mt /moveto ldef
+/np /newpath ldef
+/cm /currentmatrix ldef
+/sm /setmatrix ldef
+/rm /rmoveto ldef
+/rl /rlineto ldef
+/s /show ldef
+/sc {setcmykcolor} bdef
+/sr /setrgbcolor ldef
+/sg /setgray ldef
+/w /setlinewidth ldef
+/j /setlinejoin ldef
+/cap /setlinecap ldef
+/rc {rectclip} bdef
+/rf {rectfill} bdef
+% page state control
+/pgsv () def
+/bpage {/pgsv save def} bdef
+/epage {pgsv restore} bdef
+/bplot /gsave ldef
+/eplot {stroke grestore} bdef
+% orientation switch
+/portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def
+% coordinate system mappings
+/dpi2point 0 def
+% font control
+/FontSize 0 def
+/FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0]
+  makefont setfont} bdef
+/reencode {exch dup where {pop load} {pop StandardEncoding} ifelse
+  exch dup 3 1 roll findfont dup length dict begin
+  { 1 index /FID ne {def}{pop pop} ifelse } forall
+  /Encoding exch def currentdict end definefont pop} bdef
+/isroman {findfont /CharStrings get /Agrave known} bdef
+/FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse
+  exch FMS} bdef
+/csm {1 dpi2point div -1 dpi2point div scale neg translate
+ dup landscapeMode eq {pop -90 rotate}
+  {rotateMode eq {90 rotate} if} ifelse} bdef
+% line types: solid, dotted, dashed, dotdash
+/SO { [] 0 setdash } bdef
+/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
+/DA { [6 dpi2point mul] 0 setdash } bdef
+/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4
+  dpi2point mul] 0 setdash } bdef
+% macros for lines and objects
+/L {lineto stroke} bdef
+/MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef
+/AP {{rlineto} repeat} bdef
+/PDlw -1 def
+/W {/PDlw currentlinewidth def setlinewidth} def
+/PP {closepath eofill} bdef
+/DP {closepath stroke} bdef
+/MR {4 -2 roll moveto dup  0 exch rlineto exch 0 rlineto
+  neg 0 exch rlineto closepath} bdef
+/FR {MR stroke} bdef
+/PR {MR fill} bdef
+/L1i {{currentfile picstr readhexstring pop} image} bdef
+/tMatrix matrix def
+/MakeOval {newpath tMatrix currentmatrix pop translate scale
+0 0 1 0 360 arc tMatrix setmatrix} bdef
+/FO {MakeOval stroke} bdef
+/PO {MakeOval fill} bdef
+/PD {currentlinecap 1 cap 3 1 roll 2 copy mt lineto stroke
+   cap PDlw -1 eq not {PDlw w /PDlw -1 def} if} def
+/FA {newpath tMatrix currentmatrix pop translate scale
+  0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef
+/PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale
+  0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef
+/FAn {newpath tMatrix currentmatrix pop translate scale
+  0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef
+/PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale
+  0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef
+/vradius 0 def /hradius 0 def /lry 0 def
+/lrx 0 def /uly 0 def /ulx 0 def /rad 0 def
+/MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef
+  /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly
+  vradius add translate hradius vradius scale 0 0 1 180 270 arc 
+  tMatrix setmatrix lrx hradius sub uly vradius add translate
+  hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix
+  lrx hradius sub lry vradius sub translate hradius vradius scale
+  0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub
+  translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix
+  closepath} bdef
+/FRR {MRR stroke } bdef
+/PRR {MRR fill } bdef
+/MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def
+  newpath tMatrix currentmatrix pop ulx rad add uly rad add translate
+  rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad
+  sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix
+  closepath} bdef
+/FlrRR {MlrRR stroke } bdef
+/PlrRR {MlrRR fill } bdef
+/MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def
+  newpath tMatrix currentmatrix pop ulx rad add uly rad add translate
+  rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad
+  sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix
+  closepath} bdef
+/FtbRR {MtbRR stroke } bdef
+/PtbRR {MtbRR fill } bdef
+/stri 6 array def /dtri 6 array def
+/smat 6 array def /dmat 6 array def
+/tmat1 6 array def /tmat2 6 array def /dif 3 array def
+/asub {/ind2 exch def /ind1 exch def dup dup
+  ind1 get exch ind2 get sub exch } bdef
+/tri_to_matrix {
+  2 0 asub 3 1 asub 4 0 asub 5 1 asub
+  dup 0 get exch 1 get 7 -1 roll astore } bdef
+/compute_transform {
+  dmat dtri tri_to_matrix tmat1 invertmatrix 
+  smat stri tri_to_matrix tmat2 concatmatrix } bdef
+/ds {stri astore pop} bdef
+/dt {dtri astore pop} bdef
+/db {2 copy /cols xdef /rows xdef mul dup string
+  currentfile exch readhexstring pop
+  /bmap xdef pop pop} bdef
+/it {gs np dtri aload pop moveto lineto lineto cp c
+  cols rows 8 compute_transform 
+  {bmap} image gr}bdef
+/il {newpath moveto lineto stroke}bdef
+currentdict end def
+%%EndProlog
+
+%%BeginSetup
+MathWorks begin
+
+0 cap
+
+end
+%%EndSetup
+
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox:    55   201   549   611
+MathWorks begin
+bpage
+%%EndPageSetup
+
+%%BeginObject: obj1
+bplot
+
+/dpi2point 12 def
+portraitMode 0204 7344 csm
+
+  457     4  5930  4927 MR c np
+92 dict begin %Colortable dictionary
+/c0 { 0 0 0 sr} bdef
+/c1 { 1 1 1 sr} bdef
+/c2 { 1 0 0 sr} bdef
+/c3 { 0 1 0 sr} bdef
+/c4 { 0 0 1 sr} bdef
+/c5 { 1 1 0 sr} bdef
+/c6 { 1 0 1 sr} bdef
+/c7 { 0 1 1 sr} bdef
+c0
+1 j
+1 sg
+   0    0 6913 5185 PR
+6 w
+0 4225 5356 0 0 -4225 899 4614 4 MP
+PP
+-5356 0 0 4225 5356 0 0 -4225 899 4614 5 MP stroke
+4 w
+DO
+SO
+6 w
+0 sg
+ 899 4614 mt 6255 4614 L
+ 899  389 mt 6255  389 L
+ 899 4614 mt  899  389 L
+6255 4614 mt 6255  389 L
+ 899 4614 mt 6255 4614 L
+ 899 4614 mt  899  389 L
+ 899 4614 mt  899 4560 L
+ 899  389 mt  899  442 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 796 4759 mt 
+(-1) s
+1970 4614 mt 1970 4560 L
+1970  389 mt 1970  442 L
+1817 4759 mt 
+(-0.5) s
+3041 4614 mt 3041 4560 L
+3041  389 mt 3041  442 L
+3008 4759 mt 
+(0) s
+4112 4614 mt 4112 4560 L
+4112  389 mt 4112  442 L
+4029 4759 mt 
+(0.5) s
+5183 4614 mt 5183 4560 L
+5183  389 mt 5183  442 L
+5150 4759 mt 
+(1) s
+6255 4614 mt 6255 4560 L
+6255  389 mt 6255  442 L
+6172 4759 mt 
+(1.5) s
+ 899 4614 mt  952 4614 L
+6255 4614 mt 6201 4614 L
+ 628 4658 mt 
+(-1.5) s
+ 899 3909 mt  952 3909 L
+6255 3909 mt 6201 3909 L
+ 728 3953 mt 
+(-1) s
+ 899 3205 mt  952 3205 L
+6255 3205 mt 6201 3205 L
+ 628 3249 mt 
+(-0.5) s
+ 899 2501 mt  952 2501 L
+6255 2501 mt 6201 2501 L
+ 798 2545 mt 
+(0) s
+ 899 1797 mt  952 1797 L
+6255 1797 mt 6201 1797 L
+ 698 1841 mt 
+(0.5) s
+ 899 1093 mt  952 1093 L
+6255 1093 mt 6201 1093 L
+ 798 1137 mt 
+(1) s
+ 899  389 mt  952  389 L
+6255  389 mt 6201  389 L
+ 698  433 mt 
+(1.5) s
+ 899 4614 mt 6255 4614 L
+ 899  389 mt 6255  389 L
+ 899 4614 mt  899  389 L
+6255 4614 mt 6255  389 L
+gs 899 389 5357 4226 MR c np
+15 0 899 3909 2 MP stroke
+74 0 899 3708 2 MP stroke
+137 0 899 3507 2 MP stroke
+176 0 899 3306 2 MP stroke
+217 0 899 3105 2 MP stroke
+237 0 899 2903 2 MP stroke
+257 0 899 2702 2 MP stroke
+257 0 899 2501 2 MP stroke
+247 0 899 2300 2 MP stroke
+235 0 899 2099 2 MP stroke
+206 0 899 1897 2 MP stroke
+172 0 899 1696 2 MP stroke
+123 0 899 1495 2 MP stroke
+67 0 899 1294 2 MP stroke
+899 1093 PD
+0 -49 1205 3909 2 MP stroke
+74 -40 1205 3708 2 MP stroke
+124 -48 1205 3507 2 MP stroke
+176 -41 1205 3306 2 MP stroke
+206 -48 1205 3105 2 MP stroke
+237 -41 1205 2903 2 MP stroke
+248 -47 1205 2702 2 MP stroke
+257 -42 1205 2501 2 MP stroke
+254 -47 1205 2300 2 MP stroke
+235 -43 1205 2099 2 MP stroke
+210 -45 1205 1897 2 MP stroke
+172 -44 1205 1696 2 MP stroke
+126 -45 1205 1495 2 MP stroke
+68 -45 1205 1294 2 MP stroke
+0 -45 1205 1093 2 MP stroke
+0 -90 1511 3909 2 MP stroke
+73 -81 1511 3708 2 MP stroke
+124 -89 1511 3507 2 MP stroke
+176 -82 1511 3306 2 MP stroke
+216 -82 1511 3105 2 MP stroke
+237 -82 1511 2903 2 MP stroke
+255 -82 1511 2702 2 MP stroke
+257 -82 1511 2501 2 MP stroke
+249 -83 1511 2300 2 MP stroke
+235 -83 1511 2099 2 MP stroke
+208 -82 1511 1897 2 MP stroke
+172 -82 1511 1696 2 MP stroke
+126 -83 1511 1495 2 MP stroke
+68 -83 1511 1294 2 MP stroke
+0 -82 1511 1093 2 MP stroke
+0 -116 1817 3909 2 MP stroke
+61 -116 1817 3708 2 MP stroke
+124 -116 1817 3507 2 MP stroke
+166 -116 1817 3306 2 MP stroke
+207 -116 1817 3105 2 MP stroke
+237 -110 1817 2903 2 MP stroke
+249 -115 1817 2702 2 MP stroke
+257 -112 1817 2501 2 MP stroke
+253 -115 1817 2300 2 MP stroke
+235 -113 1817 2099 2 MP stroke
+210 -114 1817 1897 2 MP stroke
+173 -114 1817 1696 2 MP stroke
+125 -114 1817 1495 2 MP stroke
+67 -114 1817 1294 2 MP stroke
+0 -114 1817 1093 2 MP stroke
+0 -143 2123 3909 2 MP stroke
+72 -136 2123 3708 2 MP stroke
+124 -142 2123 3507 2 MP stroke
+175 -137 2123 3306 2 MP stroke
+214 -137 2123 3105 2 MP stroke
+237 -137 2123 2903 2 MP stroke
+254 -137 2123 2702 2 MP stroke
+257 -137 2123 2501 2 MP stroke
+250 -138 2123 2300 2 MP stroke
+236 -138 2123 2099 2 MP stroke
+210 -138 2123 1897 2 MP stroke
+173 -138 2123 1696 2 MP stroke
+125 -137 2123 1495 2 MP stroke
+69 -139 2123 1294 2 MP stroke
+0 -136 2123 1093 2 MP stroke
+0 -156 2429 3909 2 MP stroke
+63 -156 2429 3708 2 MP stroke
+125 -156 2429 3507 2 MP stroke
+168 -156 2429 3306 2 MP stroke
+208 -156 2429 3105 2 MP stroke
+237 -152 2429 2903 2 MP stroke
+250 -155 2429 2702 2 MP stroke
+257 -154 2429 2501 2 MP stroke
+252 -156 2429 2300 2 MP stroke
+236 -156 2429 2099 2 MP stroke
+209 -155 2429 1897 2 MP stroke
+171 -155 2429 1696 2 MP stroke
+125 -155 2429 1495 2 MP stroke
+65 -155 2429 1294 2 MP stroke
+0 -155 2429 1093 2 MP stroke
+0 -169 2735 3909 2 MP stroke
+71 -163 2735 3708 2 MP stroke
+125 -168 2735 3507 2 MP stroke
+175 -164 2735 3306 2 MP stroke
+208 -168 2735 3105 2 MP stroke
+236 -164 2735 2903 2 MP stroke
+251 -166 2735 2702 2 MP stroke
+257 -165 2735 2501 2 MP stroke
+252 -166 2735 2300 2 MP stroke
+236 -166 2735 2099 2 MP stroke
+209 -164 2735 1897 2 MP stroke
+174 -166 2735 1696 2 MP stroke
+125 -164 2735 1495 2 MP stroke
+70 -167 2735 1294 2 MP stroke
+0 -163 2735 1093 2 MP stroke
+0 -169 3041 3909 2 MP stroke
+64 -169 3041 3708 2 MP stroke
+125 -169 3041 3507 2 MP stroke
+170 -169 3041 3306 2 MP stroke
+209 -169 3041 3105 2 MP stroke
+234 -169 3041 2903 2 MP stroke
+251 -169 3041 2702 2 MP stroke
+257 -169 3041 2501 2 MP stroke
+251 -169 3041 2300 2 MP stroke
+234 -169 3041 2099 2 MP stroke
+209 -169 3041 1897 2 MP stroke
+170 -169 3041 1696 2 MP stroke
+125 -169 3041 1495 2 MP stroke
+64 -169 3041 1294 2 MP stroke
+0 -169 3041 1093 2 MP stroke
+0 -163 3347 3909 2 MP stroke
+71 -167 3347 3708 2 MP stroke
+125 -164 3347 3507 2 MP stroke
+174 -167 3347 3306 2 MP stroke
+209 -165 3347 3105 2 MP stroke
+236 -166 3347 2903 2 MP stroke
+252 -165 3347 2702 2 MP stroke
+257 -165 3347 2501 2 MP stroke
+251 -167 3347 2300 2 MP stroke
+237 -165 3347 2099 2 MP stroke
+209 -167 3347 1897 2 MP stroke
+175 -164 3347 1696 2 MP stroke
+125 -168 3347 1495 2 MP stroke
+72 -163 3347 1294 2 MP stroke
+0 -169 3347 1093 2 MP stroke
+0 -154 3653 3909 2 MP stroke
+66 -155 3653 3708 2 MP stroke
+125 -155 3653 3507 2 MP stroke
+172 -155 3653 3306 2 MP stroke
+210 -156 3653 3105 2 MP stroke
+236 -155 3653 2903 2 MP stroke
+252 -155 3653 2702 2 MP stroke
+257 -154 3653 2501 2 MP stroke
+250 -156 3653 2300 2 MP stroke
+237 -153 3653 2099 2 MP stroke
+208 -155 3653 1897 2 MP stroke
+168 -156 3653 1696 2 MP stroke
+125 -156 3653 1495 2 MP stroke
+63 -156 3653 1294 2 MP stroke
+0 -157 3653 1093 2 MP stroke
+0 -136 3959 3909 2 MP stroke
+70 -138 3959 3708 2 MP stroke
+126 -137 3959 3507 2 MP stroke
+174 -138 3959 3306 2 MP stroke
+210 -138 3959 3105 2 MP stroke
+236 -137 3959 2903 2 MP stroke
+251 -137 3959 2702 2 MP stroke
+257 -137 3959 2501 2 MP stroke
+255 -137 3959 2300 2 MP stroke
+237 -137 3959 2099 2 MP stroke
+215 -136 3959 1897 2 MP stroke
+176 -136 3959 1696 2 MP stroke
+125 -142 3959 1495 2 MP stroke
+73 -136 3959 1294 2 MP stroke
+0 -144 3959 1093 2 MP stroke
+0 -113 4265 3909 2 MP stroke
+67 -113 4265 3708 2 MP stroke
+126 -114 4265 3507 2 MP stroke
+173 -114 4265 3306 2 MP stroke
+210 -114 4265 3105 2 MP stroke
+236 -112 4265 2903 2 MP stroke
+253 -114 4265 2702 2 MP stroke
+257 -112 4265 2501 2 MP stroke
+250 -115 4265 2300 2 MP stroke
+237 -111 4265 2099 2 MP stroke
+208 -115 4265 1897 2 MP stroke
+167 -115 4265 1696 2 MP stroke
+125 -116 4265 1495 2 MP stroke
+62 -116 4265 1294 2 MP stroke
+0 -117 4265 1093 2 MP stroke
+0 -81 4571 3909 2 MP stroke
+69 -83 4571 3708 2 MP stroke
+126 -83 4571 3507 2 MP stroke
+173 -83 4571 3306 2 MP stroke
+208 -83 4571 3105 2 MP stroke
+236 -82 4571 2903 2 MP stroke
+249 -82 4571 2702 2 MP stroke
+257 -82 4571 2501 2 MP stroke
+256 -82 4571 2300 2 MP stroke
+237 -82 4571 2099 2 MP stroke
+217 -82 4571 1897 2 MP stroke
+176 -82 4571 1696 2 MP stroke
+124 -89 4571 1495 2 MP stroke
+74 -82 4571 1294 2 MP stroke
+0 -91 4571 1093 2 MP stroke
+0 -44 4877 3909 2 MP stroke
+68 -45 4877 3708 2 MP stroke
+126 -45 4877 3507 2 MP stroke
+173 -44 4877 3306 2 MP stroke
+211 -46 4877 3105 2 MP stroke
+236 -43 4877 2903 2 MP stroke
+255 -46 4877 2702 2 MP stroke
+257 -42 4877 2501 2 MP stroke
+249 -47 4877 2300 2 MP stroke
+238 -42 4877 2099 2 MP stroke
+207 -47 4877 1897 2 MP stroke
+177 -40 4877 1696 2 MP stroke
+124 -48 4877 1495 2 MP stroke
+74 -40 4877 1294 2 MP stroke
+0 -49 4877 1093 2 MP stroke
+5183 3909 PD
+68 0 5183 3708 2 MP stroke
+124 0 5183 3507 2 MP stroke
+172 0 5183 3306 2 MP stroke
+207 0 5183 3105 2 MP stroke
+236 0 5183 2903 2 MP stroke
+248 0 5183 2702 2 MP stroke
+257 0 5183 2501 2 MP stroke
+257 0 5183 2300 2 MP stroke
+238 0 5183 2099 2 MP stroke
+218 0 5183 1897 2 MP stroke
+177 0 5183 1696 2 MP stroke
+138 0 5183 1495 2 MP stroke
+75 0 5183 1294 2 MP stroke
+5183 1093 PD
+-5 1 5 1 909 3908 3 MP stroke
+-25 5 25 5 948 3703 3 MP stroke
+-45 10 45 10 991 3497 3 MP stroke
+-58 12 58 13 1017 3293 3 MP stroke
+-71 15 71 16 1045 3089 3 MP stroke
+-78 17 78 17 1058 2886 3 MP stroke
+-85 19 85 18 1071 2684 3 MP stroke
+-85 18 85 18 1071 2483 3 MP stroke
+-81 18 81 18 1065 2282 3 MP stroke
+-78 16 78 17 1056 2082 3 MP stroke
+-68 15 68 14 1037 1883 3 MP stroke
+-57 13 57 12 1014 1684 3 MP stroke
+-40 9 40 9 982 1486 3 MP stroke
+-22 5 22 5 944 1289 3 MP stroke
+899 1093 PD
+8 17 9 -17 1196 3877 3 MP stroke
+-18 19 31 -8 1248 3676 3 MP stroke
+-33 24 49 -7 1280 3466 3 MP stroke
+-52 26 65 -1 1316 3266 3 MP stroke
+-60 30 76 -1 1335 3058 3 MP stroke
+-71 31 85 3 1357 2859 3 MP stroke
+-74 33 90 2 1363 2653 3 MP stroke
+-78 32 92 5 1370 2454 3 MP stroke
+-76 34 92 3 1367 2250 3 MP stroke
+-71 31 85 3 1355 2053 3 MP stroke
+-62 30 77 0 1338 1852 3 MP stroke
+-50 27 64 -2 1313 1654 3 MP stroke
+-34 24 49 -6 1282 1456 3 MP stroke
+-15 20 30 -10 1243 1259 3 MP stroke
+7 15 8 -15 1197 1063 3 MP stroke
+15 30 15 -30 1496 3849 3 MP stroke
+-11 32 38 -21 1546 3648 3 MP stroke
+-26 38 56 -20 1579 3438 3 MP stroke
+-45 40 72 -14 1615 3238 3 MP stroke
+-58 42 85 -11 1642 3034 3 MP stroke
+-65 44 92 -10 1656 2831 3 MP stroke
+-70 45 98 -9 1668 2629 3 MP stroke
+-71 45 99 -8 1669 2427 3 MP stroke
+-69 45 96 -10 1664 2227 3 MP stroke
+-64 44 91 -10 1655 2026 3 MP stroke
+-55 42 83 -12 1636 1827 3 MP stroke
+-43 39 70 -14 1613 1628 3 MP stroke
+-28 37 56 -19 1581 1431 3 MP stroke
+-9 32 36 -22 1543 1233 3 MP stroke
+13 27 14 -27 1497 1038 3 MP stroke
+19 38 20 -38 1797 3831 3 MP stroke
+-1 43 39 -34 1839 3626 3 MP stroke
+-22 47 60 -29 1881 3420 3 MP stroke
+-36 50 74 -26 1909 3216 3 MP stroke
+-49 53 87 -23 1937 3012 3 MP stroke
+-60 53 97 -19 1957 2812 3 MP stroke
+-63 56 101 -20 1965 2607 3 MP stroke
+-67 56 104 -19 1970 2408 3 MP stroke
+-65 56 103 -20 1967 2205 3 MP stroke
+-59 54 96 -20 1956 2006 3 MP stroke
+-51 53 88 -23 1939 1806 3 MP stroke
+-38 50 76 -26 1914 1608 3 MP stroke
+-22 47 60 -29 1882 1410 3 MP stroke
+-4 43 41 -33 1843 1213 3 MP stroke
+18 38 19 -38 1798 1017 3 MP stroke
+23 47 24 -47 2099 3813 3 MP stroke
+-1 50 46 -40 2149 3612 3 MP stroke
+-17 56 64 -38 2183 3403 3 MP stroke
+-35 58 80 -33 2218 3202 3 MP stroke
+-48 60 93 -30 2244 2998 3 MP stroke
+-56 63 101 -29 2259 2795 3 MP stroke
+-61 64 106 -27 2271 2592 3 MP stroke
+-62 63 108 -27 2272 2391 3 MP stroke
+-60 64 105 -28 2268 2190 3 MP stroke
+-55 62 101 -28 2258 1989 3 MP stroke
+-47 61 93 -31 2240 1790 3 MP stroke
+-34 58 80 -33 2216 1591 3 MP stroke
+-18 54 64 -36 2184 1394 3 MP stroke
+0 51 46 -41 2146 1196 3 MP stroke
+22 45 23 -45 2100 1002 3 MP stroke
+26 52 26 -52 2403 3805 3 MP stroke
+5 56 47 -47 2445 3599 3 MP stroke
+-16 60 67 -43 2487 3394 3 MP stroke
+-30 63 81 -39 2516 3189 3 MP stroke
+-43 66 95 -36 2542 2985 3 MP stroke
+-53 67 104 -33 2562 2784 3 MP stroke
+-57 69 108 -33 2571 2580 3 MP stroke
+-59 69 110 -32 2576 2379 3 MP stroke
+-57 70 109 -34 2572 2178 3 MP stroke
+-52 69 104 -35 2561 1978 3 MP stroke
+-43 66 94 -36 2544 1778 3 MP stroke
+-31 64 82 -39 2518 1580 3 MP stroke
+-15 60 67 -42 2487 1382 3 MP stroke
+4 56 47 -46 2447 1185 3 MP stroke
+25 51 26 -51 2403 989 3 MP stroke
+28 56 28 -56 2707 3796 3 MP stroke
+4 59 50 -49 2756 3594 3 MP stroke
+-14 64 69 -46 2791 3385 3 MP stroke
+-31 66 85 -41 2825 3183 3 MP stroke
+-41 70 96 -41 2847 2978 3 MP stroke
+-50 71 105 -37 2866 2776 3 MP stroke
+-55 73 111 -37 2875 2573 3 MP stroke
+-57 73 112 -36 2880 2372 3 MP stroke
+-56 73 111 -37 2876 2171 3 MP stroke
+-50 71 105 -38 2866 1971 3 MP stroke
+-42 69 96 -39 2848 1772 3 MP stroke
+-30 67 85 -42 2824 1572 3 MP stroke
+-14 63 68 -45 2792 1376 3 MP stroke
+5 60 51 -50 2754 1177 3 MP stroke
+27 53 27 -53 2708 983 3 MP stroke
+28 56 28 -56 3013 3796 3 MP stroke
+7 60 49 -51 3056 3590 3 MP stroke
+-13 65 69 -47 3097 3385 3 MP stroke
+-28 68 84 -43 3127 3180 3 MP stroke
+-41 70 97 -40 3153 2976 3 MP stroke
+-49 73 105 -39 3170 2773 3 MP stroke
+-55 74 111 -38 3181 2571 3 MP stroke
+-57 74 113 -37 3185 2369 3 MP stroke
+-55 74 111 -38 3181 2169 3 MP stroke
+-49 72 105 -39 3170 1969 3 MP stroke
+-41 71 97 -41 3153 1769 3 MP stroke
+-28 68 84 -44 3127 1571 3 MP stroke
+-13 65 69 -47 3097 1373 3 MP stroke
+7 60 49 -51 3056 1176 3 MP stroke
+28 55 28 -55 3013 979 3 MP stroke
+27 54 27 -54 3320 3800 3 MP stroke
+4 60 51 -50 3367 3591 3 MP stroke
+-14 63 68 -45 3404 3388 3 MP stroke
+-30 68 85 -43 3436 3182 3 MP stroke
+-42 69 96 -39 3460 2979 3 MP stroke
+-50 72 105 -38 3478 2775 3 MP stroke
+-56 72 111 -36 3488 2573 3 MP stroke
+-57 73 112 -36 3492 2372 3 MP stroke
+-55 73 111 -37 3487 2170 3 MP stroke
+-51 71 106 -37 3478 1971 3 MP stroke
+-42 70 97 -40 3459 1770 3 MP stroke
+-31 67 85 -42 3437 1574 3 MP stroke
+-13 64 69 -46 3403 1373 3 MP stroke
+3 59 51 -48 3368 1179 3 MP stroke
+28 55 28 -55 3319 979 3 MP stroke
+26 51 26 -51 3627 3806 3 MP stroke
+4 56 48 -47 3671 3600 3 MP stroke
+-15 60 67 -42 3711 3394 3 MP stroke
+-31 63 83 -39 3742 3190 3 MP stroke
+-44 67 95 -37 3768 2986 3 MP stroke
+-52 68 103 -34 3786 2782 3 MP stroke
+-57 69 109 -33 3796 2580 3 MP stroke
+-59 69 110 -32 3800 2379 3 MP stroke
+-56 70 108 -34 3795 2178 3 MP stroke
+-53 67 104 -33 3786 1979 3 MP stroke
+-43 66 94 -36 3767 1778 3 MP stroke
+-29 64 81 -40 3740 1580 3 MP stroke
+-16 60 67 -43 3711 1382 3 MP stroke
+5 56 47 -47 3669 1185 3 MP stroke
+26 52 26 -52 3627 988 3 MP stroke
+23 45 22 -45 3937 3818 3 MP stroke
+0 50 46 -40 3983 3610 3 MP stroke
+-19 54 64 -36 4021 3406 3 MP stroke
+-35 58 81 -33 4052 3201 3 MP stroke
+-46 60 92 -30 4077 2997 3 MP stroke
+-55 62 101 -28 4094 2794 3 MP stroke
+-60 63 106 -27 4104 2592 3 MP stroke
+-62 63 107 -27 4109 2391 3 MP stroke
+-62 63 107 -27 4107 2190 3 MP stroke
+-55 62 101 -28 4095 1990 3 MP stroke
+-48 60 94 -29 4080 1790 3 MP stroke
+-36 57 81 -32 4054 1592 3 MP stroke
+-18 56 65 -38 4019 1391 3 MP stroke
+-2 50 47 -40 3985 1198 3 MP stroke
+24 48 24 -48 3935 997 3 MP stroke
+19 37 19 -37 4246 3833 3 MP stroke
+-3 42 41 -32 4291 3627 3 MP stroke
+-23 47 60 -29 4331 3422 3 MP stroke
+-38 50 76 -25 4362 3217 3 MP stroke
+-50 52 88 -22 4387 3013 3 MP stroke
+-59 54 97 -20 4404 2811 3 MP stroke
+-64 56 102 -19 4416 2607 3 MP stroke
+-66 56 103 -19 4419 2408 3 MP stroke
+-64 56 102 -20 4413 2205 3 MP stroke
+-60 54 96 -20 4406 2008 3 MP stroke
+-50 53 88 -23 4385 1805 3 MP stroke
+-36 50 74 -26 4358 1607 3 MP stroke
+-22 47 61 -30 4329 1409 3 MP stroke
+-1 43 40 -34 4287 1212 3 MP stroke
+19 39 19 -39 4246 1015 3 MP stroke
+14 27 13 -27 4558 3855 3 MP stroke
+-9 33 37 -23 4603 3648 3 MP stroke
+-28 37 55 -18 4642 3442 3 MP stroke
+-43 40 71 -15 4673 3238 3 MP stroke
+-55 42 82 -12 4697 3034 3 MP stroke
+-64 44 92 -10 4715 2831 3 MP stroke
+-68 45 95 -9 4725 2629 3 MP stroke
+-71 45 98 -8 4730 2427 3 MP stroke
+-71 45 98 -8 4729 2226 3 MP stroke
+-64 44 91 -10 4717 2027 3 MP stroke
+-58 43 85 -12 4703 1827 3 MP stroke
+-44 40 71 -15 4676 1629 3 MP stroke
+-26 38 55 -20 4640 1426 3 MP stroke
+-11 32 38 -22 4607 1234 3 MP stroke
+15 30 15 -30 4556 1032 3 MP stroke
+8 15 7 -15 4870 3880 3 MP stroke
+-15 20 30 -10 4915 3673 3 MP stroke
+-34 24 49 -6 4954 3468 3 MP stroke
+-50 27 64 -2 4986 3264 3 MP stroke
+-62 30 77 0 5011 3059 3 MP stroke
+-71 31 85 2 5028 2858 3 MP stroke
+-77 33 92 3 5040 2653 3 MP stroke
+-77 32 91 5 5043 2454 3 MP stroke
+-75 33 90 3 5036 2250 3 MP stroke
+-72 31 86 3 5029 2054 3 MP stroke
+-60 30 76 -1 5008 1851 3 MP stroke
+-52 26 65 0 4989 1656 3 MP stroke
+-33 25 49 -7 4952 1454 3 MP stroke
+-18 19 31 -8 4920 1262 3 MP stroke
+8 16 8 -16 4869 1060 3 MP stroke
+5183 3909 PD
+-22 5 22 5 5229 3703 3 MP stroke
+-41 9 41 9 5266 3498 3 MP stroke
+-56 12 56 13 5299 3293 3 MP stroke
+-68 14 68 15 5322 3090 3 MP stroke
+-78 17 78 16 5341 2887 3 MP stroke
+-82 18 82 18 5349 2684 3 MP stroke
+-84 18 84 18 5356 2483 3 MP stroke
+-84 18 84 19 5356 2281 3 MP stroke
+-79 17 79 17 5342 2082 3 MP stroke
+-72 16 72 15 5329 1882 3 MP stroke
+-58 13 58 12 5302 1684 3 MP stroke
+-46 10 46 10 5275 1485 3 MP stroke
+-25 5 25 5 5233 1289 3 MP stroke
+5183 1093 PD
+gr
+
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 168 FMSR
+
+2300  208 mt 
+(Vector-field plot of FE-solution E) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 132 FMSR
+
+4779  292 mt 
+(h) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+3546 4902 mt 
+(x) s
+ 573 2532 mt  -90 rotate
+(y) s
+90 rotate
+
+end
+
+eplot
+%%EndObject
+
+epage
+end
+
+showpage
+
+%%Trailer
+%%EOF
+
+%%EndDocument
+ @endspecial 758 2326 a Fk(Figure)30 b(4:)41 b(V)-8 b(ector-\014eld)32
+b(plot)d(of)i(the)f(FE-solution)g(of)g(example)h(\(31\).)872
+4824 y @beginspecial 55 @llx 201 @lly 549 @urx 611 @ury
+2692 @rwi 1984 @rhi @setspecial
+%%BeginDocument: field2.eps
+%!PS-Adobe-2.0 EPSF-1.2
+%%Creator: MATLAB, The Mathworks, Inc.
+%%Title: pix.eps
+%%CreationDate: 08/26/2002  11:55:05
+%%DocumentNeededFonts: Helvetica
+%%DocumentProcessColors: Cyan Magenta Yellow Black
+%%Pages: 1
+%%BoundingBox:    55   201   549   611
+%%EndComments
+
+%%BeginProlog
+% MathWorks dictionary
+/MathWorks 160 dict begin
+% definition operators
+/bdef {bind def} bind def
+/ldef {load def} bind def
+/xdef {exch def} bdef
+/xstore {exch store} bdef
+% operator abbreviations
+/c  /clip ldef
+/cc /concat ldef
+/cp /closepath ldef
+/gr /grestore ldef
+/gs /gsave ldef
+/mt /moveto ldef
+/np /newpath ldef
+/cm /currentmatrix ldef
+/sm /setmatrix ldef
+/rm /rmoveto ldef
+/rl /rlineto ldef
+/s /show ldef
+/sc {setcmykcolor} bdef
+/sr /setrgbcolor ldef
+/sg /setgray ldef
+/w /setlinewidth ldef
+/j /setlinejoin ldef
+/cap /setlinecap ldef
+/rc {rectclip} bdef
+/rf {rectfill} bdef
+% page state control
+/pgsv () def
+/bpage {/pgsv save def} bdef
+/epage {pgsv restore} bdef
+/bplot /gsave ldef
+/eplot {stroke grestore} bdef
+% orientation switch
+/portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def
+% coordinate system mappings
+/dpi2point 0 def
+% font control
+/FontSize 0 def
+/FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0]
+  makefont setfont} bdef
+/reencode {exch dup where {pop load} {pop StandardEncoding} ifelse
+  exch dup 3 1 roll findfont dup length dict begin
+  { 1 index /FID ne {def}{pop pop} ifelse } forall
+  /Encoding exch def currentdict end definefont pop} bdef
+/isroman {findfont /CharStrings get /Agrave known} bdef
+/FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse
+  exch FMS} bdef
+/csm {1 dpi2point div -1 dpi2point div scale neg translate
+ dup landscapeMode eq {pop -90 rotate}
+  {rotateMode eq {90 rotate} if} ifelse} bdef
+% line types: solid, dotted, dashed, dotdash
+/SO { [] 0 setdash } bdef
+/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
+/DA { [6 dpi2point mul] 0 setdash } bdef
+/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4
+  dpi2point mul] 0 setdash } bdef
+% macros for lines and objects
+/L {lineto stroke} bdef
+/MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef
+/AP {{rlineto} repeat} bdef
+/PDlw -1 def
+/W {/PDlw currentlinewidth def setlinewidth} def
+/PP {closepath eofill} bdef
+/DP {closepath stroke} bdef
+/MR {4 -2 roll moveto dup  0 exch rlineto exch 0 rlineto
+  neg 0 exch rlineto closepath} bdef
+/FR {MR stroke} bdef
+/PR {MR fill} bdef
+/L1i {{currentfile picstr readhexstring pop} image} bdef
+/tMatrix matrix def
+/MakeOval {newpath tMatrix currentmatrix pop translate scale
+0 0 1 0 360 arc tMatrix setmatrix} bdef
+/FO {MakeOval stroke} bdef
+/PO {MakeOval fill} bdef
+/PD {currentlinecap 1 cap 3 1 roll 2 copy mt lineto stroke
+   cap PDlw -1 eq not {PDlw w /PDlw -1 def} if} def
+/FA {newpath tMatrix currentmatrix pop translate scale
+  0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef
+/PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale
+  0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef
+/FAn {newpath tMatrix currentmatrix pop translate scale
+  0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef
+/PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale
+  0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef
+/vradius 0 def /hradius 0 def /lry 0 def
+/lrx 0 def /uly 0 def /ulx 0 def /rad 0 def
+/MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef
+  /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly
+  vradius add translate hradius vradius scale 0 0 1 180 270 arc 
+  tMatrix setmatrix lrx hradius sub uly vradius add translate
+  hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix
+  lrx hradius sub lry vradius sub translate hradius vradius scale
+  0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub
+  translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix
+  closepath} bdef
+/FRR {MRR stroke } bdef
+/PRR {MRR fill } bdef
+/MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def
+  newpath tMatrix currentmatrix pop ulx rad add uly rad add translate
+  rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad
+  sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix
+  closepath} bdef
+/FlrRR {MlrRR stroke } bdef
+/PlrRR {MlrRR fill } bdef
+/MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def
+  newpath tMatrix currentmatrix pop ulx rad add uly rad add translate
+  rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad
+  sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix
+  closepath} bdef
+/FtbRR {MtbRR stroke } bdef
+/PtbRR {MtbRR fill } bdef
+/stri 6 array def /dtri 6 array def
+/smat 6 array def /dmat 6 array def
+/tmat1 6 array def /tmat2 6 array def /dif 3 array def
+/asub {/ind2 exch def /ind1 exch def dup dup
+  ind1 get exch ind2 get sub exch } bdef
+/tri_to_matrix {
+  2 0 asub 3 1 asub 4 0 asub 5 1 asub
+  dup 0 get exch 1 get 7 -1 roll astore } bdef
+/compute_transform {
+  dmat dtri tri_to_matrix tmat1 invertmatrix 
+  smat stri tri_to_matrix tmat2 concatmatrix } bdef
+/ds {stri astore pop} bdef
+/dt {dtri astore pop} bdef
+/db {2 copy /cols xdef /rows xdef mul dup string
+  currentfile exch readhexstring pop
+  /bmap xdef pop pop} bdef
+/it {gs np dtri aload pop moveto lineto lineto cp c
+  cols rows 8 compute_transform 
+  {bmap} image gr}bdef
+/il {newpath moveto lineto stroke}bdef
+currentdict end def
+%%EndProlog
+
+%%BeginSetup
+MathWorks begin
+
+0 cap
+
+end
+%%EndSetup
+
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox:    55   201   549   611
+MathWorks begin
+bpage
+%%EndPageSetup
+
+%%BeginObject: obj1
+bplot
+
+/dpi2point 12 def
+portraitMode 0204 7344 csm
+
+  457     4  5930  4927 MR c np
+92 dict begin %Colortable dictionary
+/c0 { 0 0 0 sr} bdef
+/c1 { 1 1 1 sr} bdef
+/c2 { 1 0 0 sr} bdef
+/c3 { 0 1 0 sr} bdef
+/c4 { 0 0 1 sr} bdef
+/c5 { 1 1 0 sr} bdef
+/c6 { 1 0 1 sr} bdef
+/c7 { 0 1 1 sr} bdef
+c0
+1 j
+1 sg
+   0    0 6913 5185 PR
+6 w
+0 4225 5356 0 0 -4225 899 4614 4 MP
+PP
+-5356 0 0 4225 5356 0 0 -4225 899 4614 5 MP stroke
+4 w
+DO
+SO
+6 w
+0 sg
+ 899 4614 mt 6255 4614 L
+ 899  389 mt 6255  389 L
+ 899 4614 mt  899  389 L
+6255 4614 mt 6255  389 L
+ 899 4614 mt 6255 4614 L
+ 899 4614 mt  899  389 L
+ 899 4614 mt  899 4560 L
+ 899  389 mt  899  442 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+ 746 4759 mt 
+(-1.5) s
+1791 4614 mt 1791 4560 L
+1791  389 mt 1791  442 L
+1688 4759 mt 
+(-1) s
+2684 4614 mt 2684 4560 L
+2684  389 mt 2684  442 L
+2531 4759 mt 
+(-0.5) s
+3577 4614 mt 3577 4560 L
+3577  389 mt 3577  442 L
+3544 4759 mt 
+(0) s
+4469 4614 mt 4469 4560 L
+4469  389 mt 4469  442 L
+4386 4759 mt 
+(0.5) s
+5362 4614 mt 5362 4560 L
+5362  389 mt 5362  442 L
+5329 4759 mt 
+(1) s
+6255 4614 mt 6255 4560 L
+6255  389 mt 6255  442 L
+6172 4759 mt 
+(1.5) s
+ 899 4614 mt  952 4614 L
+6255 4614 mt 6201 4614 L
+ 628 4658 mt 
+(-1.5) s
+ 899 3909 mt  952 3909 L
+6255 3909 mt 6201 3909 L
+ 728 3953 mt 
+(-1) s
+ 899 3205 mt  952 3205 L
+6255 3205 mt 6201 3205 L
+ 628 3249 mt 
+(-0.5) s
+ 899 2501 mt  952 2501 L
+6255 2501 mt 6201 2501 L
+ 798 2545 mt 
+(0) s
+ 899 1797 mt  952 1797 L
+6255 1797 mt 6201 1797 L
+ 698 1841 mt 
+(0.5) s
+ 899 1093 mt  952 1093 L
+6255 1093 mt 6201 1093 L
+ 798 1137 mt 
+(1) s
+ 899  389 mt  952  389 L
+6255  389 mt 6201  389 L
+ 698  433 mt 
+(1.5) s
+ 899 4614 mt 6255 4614 L
+ 899  389 mt 6255  389 L
+ 899 4614 mt  899  389 L
+6255 4614 mt 6255  389 L
+gs 899 389 5357 4226 MR c np
+1791 3909 PD
+135 0 1791 3708 2 MP stroke
+243 0 1791 3507 2 MP stroke
+303 0 1791 3306 2 MP stroke
+303 0 1791 3105 2 MP stroke
+243 0 1791 2903 2 MP stroke
+135 0 1791 2702 2 MP stroke
+1791 2501 PD
+-135 0 1791 2300 2 MP stroke
+-243 0 1791 2099 2 MP stroke
+-303 0 1791 1897 2 MP stroke
+-303 0 1791 1696 2 MP stroke
+-243 0 1791 1495 2 MP stroke
+-135 0 1791 1294 2 MP stroke
+1791 1093 PD
+0 107 2046 3909 2 MP stroke
+122 96 2046 3708 2 MP stroke
+220 63 2046 3507 2 MP stroke
+274 25 2046 3306 2 MP stroke
+274 -26 2046 3105 2 MP stroke
+220 -63 2046 2903 2 MP stroke
+122 -96 2046 2702 2 MP stroke
+0 -106 2046 2501 2 MP stroke
+-122 -96 2046 2300 2 MP stroke
+-220 -64 2046 2099 2 MP stroke
+-274 -26 2046 1897 2 MP stroke
+-274 26 2046 1696 2 MP stroke
+-220 63 2046 1495 2 MP stroke
+-122 96 2046 1294 2 MP stroke
+0 106 2046 1093 2 MP stroke
+0 192 2301 3909 2 MP stroke
+80 174 2301 3708 2 MP stroke
+145 114 2301 3507 2 MP stroke
+181 46 2301 3306 2 MP stroke
+181 -47 2301 3105 2 MP stroke
+145 -114 2301 2903 2 MP stroke
+81 -173 2301 2702 2 MP stroke
+0 -192 2301 2501 2 MP stroke
+-80 -174 2301 2300 2 MP stroke
+-145 -115 2301 2099 2 MP stroke
+-181 -46 2301 1897 2 MP stroke
+-180 47 2301 1696 2 MP stroke
+-145 114 2301 1495 2 MP stroke
+-80 173 2301 1294 2 MP stroke
+0 191 2301 1093 2 MP stroke
+0 239 2556 3909 2 MP stroke
+33 216 2556 3708 2 MP stroke
+59 142 2556 3507 2 MP stroke
+74 58 2556 3306 2 MP stroke
+74 -59 2556 3105 2 MP stroke
+59 -142 2556 2903 2 MP stroke
+33 -216 2556 2702 2 MP stroke
+0 -239 2556 2501 2 MP stroke
+-33 -216 2556 2300 2 MP stroke
+-59 -143 2556 2099 2 MP stroke
+-73 -58 2556 1897 2 MP stroke
+-73 58 2556 1696 2 MP stroke
+-59 142 2556 1495 2 MP stroke
+-32 216 2556 1294 2 MP stroke
+0 239 2556 1093 2 MP stroke
+0 239 2811 3909 2 MP stroke
+-33 216 2811 3708 2 MP stroke
+-59 143 2811 3507 2 MP stroke
+-73 58 2811 3306 2 MP stroke
+-73 -59 2811 3105 2 MP stroke
+-59 -142 2811 2903 2 MP stroke
+-32 -216 2811 2702 2 MP stroke
+0 -239 2811 2501 2 MP stroke
+33 -216 2811 2300 2 MP stroke
+59 -143 2811 2099 2 MP stroke
+74 -58 2811 1897 2 MP stroke
+74 58 2811 1696 2 MP stroke
+59 143 2811 1495 2 MP stroke
+33 216 2811 1294 2 MP stroke
+0 239 2811 1093 2 MP stroke
+0 192 3066 3909 2 MP stroke
+-80 174 3066 3708 2 MP stroke
+-144 114 3066 3507 2 MP stroke
+-180 46 3066 3306 2 MP stroke
+-180 -47 3066 3105 2 MP stroke
+-144 -114 3066 2903 2 MP stroke
+-80 -173 3066 2702 2 MP stroke
+0 -192 3066 2501 2 MP stroke
+81 -174 3066 2300 2 MP stroke
+145 -115 3066 2099 2 MP stroke
+181 -46 3066 1897 2 MP stroke
+181 47 3066 1696 2 MP stroke
+145 114 3066 1495 2 MP stroke
+81 173 3066 1294 2 MP stroke
+0 191 3066 1093 2 MP stroke
+0 107 3321 3909 2 MP stroke
+-122 96 3321 3708 2 MP stroke
+-219 64 3321 3507 2 MP stroke
+-274 26 3321 3306 2 MP stroke
+-274 -26 3321 3105 2 MP stroke
+-219 -63 3321 2903 2 MP stroke
+-121 -96 3321 2702 2 MP stroke
+0 -106 3321 2501 2 MP stroke
+122 -96 3321 2300 2 MP stroke
+220 -64 3321 2099 2 MP stroke
+274 -25 3321 1897 2 MP stroke
+274 26 3321 1696 2 MP stroke
+220 64 3321 1495 2 MP stroke
+122 96 3321 1294 2 MP stroke
+0 106 3321 1093 2 MP stroke
+3577 3909 PD
+-135 0 3577 3708 2 MP stroke
+-243 0 3577 3507 2 MP stroke
+-303 0 3577 3306 2 MP stroke
+-303 0 3577 3105 2 MP stroke
+-244 0 3577 2903 2 MP stroke
+-135 0 3577 2702 2 MP stroke
+3577 2501 PD
+134 0 3577 2300 2 MP stroke
+243 0 3577 2099 2 MP stroke
+302 0 3577 1897 2 MP stroke
+302 0 3577 1696 2 MP stroke
+242 0 3577 1495 2 MP stroke
+134 0 3577 1294 2 MP stroke
+3577 1093 PD
+0 -106 3832 3909 2 MP stroke
+-122 -96 3832 3708 2 MP stroke
+-220 -64 3832 3507 2 MP stroke
+-274 -26 3832 3306 2 MP stroke
+-274 25 3832 3105 2 MP stroke
+-220 64 3832 2903 2 MP stroke
+-122 96 3832 2702 2 MP stroke
+0 106 3832 2501 2 MP stroke
+121 96 3832 2300 2 MP stroke
+219 63 3832 2099 2 MP stroke
+274 26 3832 1897 2 MP stroke
+274 -26 3832 1696 2 MP stroke
+219 -64 3832 1495 2 MP stroke
+122 -96 3832 1294 2 MP stroke
+0 -107 3832 1093 2 MP stroke
+0 -191 4087 3909 2 MP stroke
+-81 -173 4087 3708 2 MP stroke
+-145 -114 4087 3507 2 MP stroke
+-181 -47 4087 3306 2 MP stroke
+-181 46 4087 3105 2 MP stroke
+-145 115 4087 2903 2 MP stroke
+-81 174 4087 2702 2 MP stroke
+0 192 4087 2501 2 MP stroke
+80 173 4087 2300 2 MP stroke
+144 114 4087 2099 2 MP stroke
+180 47 4087 1897 2 MP stroke
+180 -46 4087 1696 2 MP stroke
+144 -114 4087 1495 2 MP stroke
+80 -174 4087 1294 2 MP stroke
+0 -192 4087 1093 2 MP stroke
+0 -239 4342 3909 2 MP stroke
+-33 -216 4342 3708 2 MP stroke
+-59 -143 4342 3507 2 MP stroke
+-74 -58 4342 3306 2 MP stroke
+-74 58 4342 3105 2 MP stroke
+-59 143 4342 2903 2 MP stroke
+-33 216 4342 2702 2 MP stroke
+0 239 4342 2501 2 MP stroke
+32 216 4342 2300 2 MP stroke
+59 142 4342 2099 2 MP stroke
+73 59 4342 1897 2 MP stroke
+73 -58 4342 1696 2 MP stroke
+59 -143 4342 1495 2 MP stroke
+33 -216 4342 1294 2 MP stroke
+0 -239 4342 1093 2 MP stroke
+0 -239 4597 3909 2 MP stroke
+32 -216 4597 3708 2 MP stroke
+59 -142 4597 3507 2 MP stroke
+73 -58 4597 3306 2 MP stroke
+73 58 4597 3105 2 MP stroke
+59 143 4597 2903 2 MP stroke
+33 216 4597 2702 2 MP stroke
+0 239 4597 2501 2 MP stroke
+-33 216 4597 2300 2 MP stroke
+-59 142 4597 2099 2 MP stroke
+-74 59 4597 1897 2 MP stroke
+-74 -58 4597 1696 2 MP stroke
+-59 -142 4597 1495 2 MP stroke
+-33 -216 4597 1294 2 MP stroke
+0 -239 4597 1093 2 MP stroke
+0 -191 4852 3909 2 MP stroke
+80 -173 4852 3708 2 MP stroke
+145 -114 4852 3507 2 MP stroke
+180 -47 4852 3306 2 MP stroke
+181 46 4852 3105 2 MP stroke
+145 115 4852 2903 2 MP stroke
+80 174 4852 2702 2 MP stroke
+0 192 4852 2501 2 MP stroke
+-81 173 4852 2300 2 MP stroke
+-145 114 4852 2099 2 MP stroke
+-181 47 4852 1897 2 MP stroke
+-181 -46 4852 1696 2 MP stroke
+-145 -114 4852 1495 2 MP stroke
+-80 -174 4852 1294 2 MP stroke
+0 -192 4852 1093 2 MP stroke
+0 -106 5107 3909 2 MP stroke
+122 -96 5107 3708 2 MP stroke
+220 -63 5107 3507 2 MP stroke
+274 -26 5107 3306 2 MP stroke
+274 26 5107 3105 2 MP stroke
+220 64 5107 2903 2 MP stroke
+122 96 5107 2702 2 MP stroke
+0 106 5107 2501 2 MP stroke
+-122 96 5107 2300 2 MP stroke
+-220 63 5107 2099 2 MP stroke
+-274 26 5107 1897 2 MP stroke
+-274 -25 5107 1696 2 MP stroke
+-220 -63 5107 1495 2 MP stroke
+-122 -96 5107 1294 2 MP stroke
+0 -107 5107 1093 2 MP stroke
+5362 3909 PD
+135 0 5362 3708 2 MP stroke
+243 0 5362 3507 2 MP stroke
+303 0 5362 3306 2 MP stroke
+303 0 5362 3105 2 MP stroke
+243 0 5362 2903 2 MP stroke
+135 0 5362 2702 2 MP stroke
+5362 2501 PD
+-135 0 5362 2300 2 MP stroke
+-243 0 5362 2099 2 MP stroke
+-303 0 5362 1897 2 MP stroke
+-303 0 5362 1696 2 MP stroke
+-243 0 5362 1495 2 MP stroke
+-135 0 5362 1294 2 MP stroke
+5362 1093 PD
+1791 3909 PD
+-45 12 45 11 1881 3697 3 MP stroke
+-80 21 80 21 1954 3486 3 MP stroke
+-100 26 100 26 1994 3280 3 MP stroke
+-100 26 100 26 1994 3079 3 MP stroke
+-80 21 80 20 1954 2883 3 MP stroke
+-45 12 45 11 1881 2691 3 MP stroke
+1791 2501 PD
+45 -12 -45 -11 1701 2311 3 MP stroke
+80 -21 -80 -20 1628 2119 3 MP stroke
+100 -26 -100 -26 1588 1923 3 MP stroke
+100 -26 -100 -26 1588 1722 3 MP stroke
+80 -21 -80 -21 1628 1516 3 MP stroke
+45 -12 -45 -11 1701 1305 3 MP stroke
+1791 1093 PD
+-14 -35 -15 35 2061 3981 3 MP stroke
+-53 -21 27 42 2141 3762 3 MP stroke
+-81 -2 64 40 2202 3530 3 MP stroke
+-94 15 87 32 2233 3299 3 MP stroke
+-87 32 94 15 2226 3064 3 MP stroke
+-64 40 81 -2 2185 2842 3 MP stroke
+-27 42 53 -21 2115 2627 3 MP stroke
+15 35 14 -35 2032 2430 3 MP stroke
+54 21 -27 -42 1951 2246 3 MP stroke
+82 2 -64 -40 1890 2075 3 MP stroke
+94 -15 -87 -33 1859 1904 3 MP stroke
+87 -32 -94 -15 1866 1737 3 MP stroke
+64 -39 -82 2 1908 1556 3 MP stroke
+27 -42 -54 21 1978 1369 3 MP stroke
+-14 -35 -15 35 2061 1164 3 MP stroke
+-26 -63 -27 63 2328 4038 3 MP stroke
+-50 -51 2 65 2379 3817 3 MP stroke
+-63 -25 32 50 2414 3571 3 MP stroke
+-66 0 53 31 2429 3321 3 MP stroke
+-53 31 66 0 2416 3058 3 MP stroke
+-32 50 63 -25 2383 2814 3 MP stroke
+-3 64 51 -50 2331 2579 3 MP stroke
+27 64 26 -64 2275 2373 3 MP stroke
+50 51 -2 -65 2223 2191 3 MP stroke
+64 26 -32 -50 2188 2034 3 MP stroke
+67 0 -54 -31 2174 1882 3 MP stroke
+53 -31 -66 0 2187 1743 3 MP stroke
+32 -50 -64 25 2220 1584 3 MP stroke
+3 -64 -50 50 2271 1417 3 MP stroke
+-26 -63 -27 63 2328 1221 3 MP stroke
+-33 -79 -33 79 2589 4069 3 MP stroke
+-41 -68 -19 74 2608 3850 3 MP stroke
+-39 -42 -1 52 2616 3597 3 MP stroke
+-32 -13 16 26 2614 3338 3 MP stroke
+-16 26 32 -13 2598 3059 3 MP stroke
+1 52 39 -42 2576 2803 3 MP stroke
+19 74 40 -69 2549 2555 3 MP stroke
+33 79 33 -79 2523 2341 3 MP stroke
+41 68 19 -74 2504 2158 3 MP stroke
+39 42 0 -52 2497 2008 3 MP stroke
+32 13 -16 -26 2499 1865 3 MP stroke
+16 -25 -32 13 2515 1741 3 MP stroke
+0 -52 -39 41 2536 1596 3 MP stroke
+-19 -74 -40 69 2564 1441 3 MP stroke
+-33 -79 -33 79 2589 1253 3 MP stroke
+-33 -79 -33 79 2844 4069 3 MP stroke
+-19 -74 -41 68 2819 3856 3 MP stroke
+0 -53 -39 42 2791 3608 3 MP stroke
+16 -26 -32 13 2770 3351 3 MP stroke
+32 13 -16 -26 2754 3072 3 MP stroke
+39 42 0 -52 2752 2813 3 MP stroke
+40 69 19 -74 2760 2560 3 MP stroke
+33 79 33 -79 2778 2341 3 MP stroke
+19 74 41 -68 2803 2152 3 MP stroke
+1 52 39 -42 2831 1998 3 MP stroke
+-16 26 32 -13 2853 1852 3 MP stroke
+-32 -12 16 25 2869 1729 3 MP stroke
+-39 -42 -1 52 2871 1586 3 MP stroke
+-40 -68 -19 74 2863 1436 3 MP stroke
+-33 -79 -33 79 2844 1253 3 MP stroke
+-26 -63 -27 63 3093 4038 3 MP stroke
+2 -65 -50 51 3036 3831 3 MP stroke
+32 -50 -63 25 2985 3596 3 MP stroke
+53 -31 -66 -1 2952 3353 3 MP stroke
+66 0 -53 -31 2939 3089 3 MP stroke
+63 25 -32 -50 2954 2839 3 MP stroke
+51 50 -3 -64 2989 2593 3 MP stroke
+27 64 26 -64 3040 2373 3 MP stroke
+-3 65 51 -51 3096 2177 3 MP stroke
+-32 51 63 -26 3148 2010 3 MP stroke
+-53 31 66 0 3181 1851 3 MP stroke
+-66 0 53 31 3194 1712 3 MP stroke
+-63 -25 32 50 3179 1559 3 MP stroke
+-51 -50 3 64 3144 1403 3 MP stroke
+-26 -63 -27 63 3093 1221 3 MP stroke
+-14 -35 -15 35 3336 3981 3 MP stroke
+27 -42 -54 21 3253 3783 3 MP stroke
+63 -40 -81 3 3183 3568 3 MP stroke
+87 -32 -94 -15 3141 3347 3 MP stroke
+94 -15 -87 -32 3134 3111 3 MP stroke
+81 2 -63 -40 3165 2880 3 MP stroke
+53 21 -27 -42 3227 2648 3 MP stroke
+15 35 14 -35 3307 2430 3 MP stroke
+-27 42 53 -21 3390 2225 3 MP stroke
+-64 40 81 -2 3460 2037 3 MP stroke
+-86 32 93 15 3502 1857 3 MP stroke
+-94 15 86 32 3509 1690 3 MP stroke
+-81 -2 64 40 3477 1519 3 MP stroke
+-53 -21 26 42 3417 1348 3 MP stroke
+-14 -35 -15 35 3336 1164 3 MP stroke
+1 0 3576 3909 2 MP stroke
+44 -11 -44 -12 3486 3720 3 MP stroke
+80 -21 -80 -21 3414 3528 3 MP stroke
+100 -26 -100 -26 3374 3332 3 MP stroke
+100 -26 -100 -26 3374 3131 3 MP stroke
+81 -21 -81 -21 3414 2924 3 MP stroke
+44 -11 -44 -12 3486 2714 3 MP stroke
+3577 2501 PD
+-44 11 44 12 3667 2288 3 MP stroke
+-81 21 81 21 3739 2078 3 MP stroke
+-100 26 100 26 3779 1871 3 MP stroke
+-100 26 100 26 3779 1670 3 MP stroke
+-80 21 80 21 3739 1474 3 MP stroke
+-44 11 44 12 3667 1282 3 MP stroke
+-1 0 3577 1093 2 MP stroke
+14 35 15 -35 3817 3838 3 MP stroke
+53 21 -26 -42 3736 3654 3 MP stroke
+81 2 -64 -40 3676 3483 3 MP stroke
+94 -15 -86 -32 3644 3312 3 MP stroke
+86 -32 -93 -15 3651 3145 3 MP stroke
+64 -40 -81 2 3693 2965 3 MP stroke
+27 -42 -53 21 3763 2777 3 MP stroke
+-15 -35 -14 35 3846 2572 3 MP stroke
+-53 -21 27 42 3926 2354 3 MP stroke
+-81 -2 63 40 3988 2122 3 MP stroke
+-94 15 87 32 4019 1891 3 MP stroke
+-87 32 94 15 4012 1655 3 MP stroke
+-63 40 81 -3 3970 1434 3 MP stroke
+-27 42 54 -21 3900 1219 3 MP stroke
+14 35 15 -35 3817 1021 3 MP stroke
+26 63 27 -63 4060 3781 3 MP stroke
+51 50 -3 -64 4009 3599 3 MP stroke
+63 25 -32 -50 3974 3443 3 MP stroke
+66 0 -53 -31 3959 3290 3 MP stroke
+53 -31 -66 0 3972 3151 3 MP stroke
+32 -51 -63 26 4005 2992 3 MP stroke
+3 -65 -51 51 4057 2825 3 MP stroke
+-27 -64 -26 64 4113 2629 3 MP stroke
+-51 -50 3 64 4164 2409 3 MP stroke
+-63 -25 32 50 4199 2163 3 MP stroke
+-66 0 53 31 4214 1913 3 MP stroke
+-53 31 66 1 4201 1649 3 MP stroke
+-32 50 63 -25 4168 1406 3 MP stroke
+-2 65 50 -51 4117 1171 3 MP stroke
+26 63 27 -63 4060 964 3 MP stroke
+33 79 33 -79 4309 3749 3 MP stroke
+40 68 19 -74 4290 3566 3 MP stroke
+39 42 1 -52 4282 3416 3 MP stroke
+32 12 -16 -25 4284 3273 3 MP stroke
+16 -26 -32 13 4300 3150 3 MP stroke
+-1 -52 -39 42 4322 3004 3 MP stroke
+-19 -74 -41 68 4350 2850 3 MP stroke
+-33 -79 -33 79 4375 2661 3 MP stroke
+-40 -69 -19 74 4393 2442 3 MP stroke
+-39 -42 0 52 4401 2189 3 MP stroke
+-32 -13 16 26 4399 1930 3 MP stroke
+-16 26 32 -13 4383 1651 3 MP stroke
+0 53 39 -42 4362 1394 3 MP stroke
+19 74 41 -68 4334 1146 3 MP stroke
+33 79 33 -79 4309 933 3 MP stroke
+33 79 33 -79 4564 3749 3 MP stroke
+19 74 40 -69 4589 3561 3 MP stroke
+0 52 39 -41 4617 3406 3 MP stroke
+-16 25 32 -13 4638 3261 3 MP stroke
+-32 -13 16 26 4654 3137 3 MP stroke
+-39 -42 0 52 4656 2994 3 MP stroke
+-41 -68 -19 74 4649 2844 3 MP stroke
+-33 -79 -33 79 4630 2661 3 MP stroke
+-19 -74 -40 69 4604 2447 3 MP stroke
+-1 -52 -39 42 4577 2199 3 MP stroke
+16 -26 -32 13 4555 1943 3 MP stroke
+32 13 -16 -26 4539 1664 3 MP stroke
+39 42 1 -52 4537 1405 3 MP stroke
+41 68 19 -74 4545 1152 3 MP stroke
+33 79 33 -79 4564 933 3 MP stroke
+26 63 27 -63 4825 3781 3 MP stroke
+-3 64 50 -50 4882 3585 3 MP stroke
+-32 50 64 -25 4933 3418 3 MP stroke
+-53 31 66 0 4966 3259 3 MP stroke
+-67 0 54 31 4979 3120 3 MP stroke
+-64 -26 32 50 4965 2968 3 MP stroke
+-50 -51 2 65 4930 2811 3 MP stroke
+-27 -64 -26 64 4878 2629 3 MP stroke
+3 -64 -51 50 4822 2423 3 MP stroke
+32 -50 -63 25 4770 2188 3 MP stroke
+53 -31 -66 0 4737 1944 3 MP stroke
+66 0 -53 -31 4724 1681 3 MP stroke
+63 25 -32 -50 4739 1431 3 MP stroke
+50 51 -2 -65 4774 1185 3 MP stroke
+26 63 27 -63 4825 964 3 MP stroke
+14 35 15 -35 5092 3838 3 MP stroke
+-27 42 54 -21 5175 3633 3 MP stroke
+-64 39 82 -2 5245 3446 3 MP stroke
+-87 32 94 15 5287 3265 3 MP stroke
+-94 15 87 33 5294 3098 3 MP stroke
+-82 -2 64 40 5263 2927 3 MP stroke
+-54 -21 27 42 5202 2756 3 MP stroke
+-15 -35 -14 35 5121 2572 3 MP stroke
+27 -42 -53 21 5038 2375 3 MP stroke
+64 -40 -81 2 4968 2160 3 MP stroke
+87 -32 -94 -15 4927 1938 3 MP stroke
+94 -15 -87 -32 4920 1703 3 MP stroke
+81 2 -64 -40 4951 1472 3 MP stroke
+53 21 -27 -42 5012 1240 3 MP stroke
+14 35 15 -35 5092 1021 3 MP stroke
+5362 3909 PD
+-45 12 45 11 5452 3697 3 MP stroke
+-80 21 80 21 5525 3486 3 MP stroke
+-100 26 100 26 5565 3280 3 MP stroke
+-100 26 100 26 5565 3079 3 MP stroke
+-80 21 80 20 5525 2883 3 MP stroke
+-45 12 45 11 5452 2691 3 MP stroke
+5362 2501 PD
+45 -12 -45 -11 5272 2311 3 MP stroke
+80 -21 -80 -20 5199 2119 3 MP stroke
+100 -26 -100 -26 5159 1923 3 MP stroke
+100 -26 -100 -26 5159 1722 3 MP stroke
+80 -21 -80 -21 5199 1516 3 MP stroke
+45 -12 -45 -11 5272 1305 3 MP stroke
+5362 1093 PD
+gr
+
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 168 FMSR
+
+2300  208 mt 
+(Vector-field plot of FE-solution E) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 132 FMSR
+
+4779  292 mt 
+(h) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 120 FMSR
+
+3546 4902 mt 
+(x) s
+ 573 2532 mt  -90 rotate
+(y) s
+90 rotate
+
+end
+
+eplot
+%%EndObject
+
+epage
+end
+
+showpage
+
+%%Trailer
+%%EOF
+
+%%EndDocument
+ @endspecial 758 5020 a(Figure)f(5:)41 b(V)-8 b(ector-\014eld)32
+b(plot)d(of)i(the)f(FE-solution)g(of)g(example)h(\(32\).)1949
+5719 y(20)p eop
+%%Page: 21 21
+21 20 bop 28 232 a Fw(References)69 414 y Fz([1])45 b(A.)d(Alonso)f
+(and)h(A.)g(V)-7 b(alli.)79 b(An)42 b(optimal)f(domain)g(decomp)r
+(osition)h(preconditioner)e(for)h(lo)n(w-frequency)f(time-)202
+514 y(harmonic)27 b(Maxw)n(ell)g(equations.)36 b Fm(Math.)31
+b(Comp.)p Fz(,)e(68\(226\):607{631,)22 b(1999.)69 663
+y([2])45 b(W.)29 b(Bangerth,)f(R.)h(Hartmann,)f(and)h(G.)g(Kansc)n
+(hat.)38 b Fd(deal.II)28 b Fm(Di\013er)l(ential)j(Equations)g(A)n
+(nalysis)g(Libr)l(ary,)i(T)-6 b(e)l(ch-)202 763 y(nic)l(al)31
+b(R)l(efer)l(enc)l(e)p Fz(.)36 b(IWR,)29 b(Univ)n(ersit\177)-42
+b(at)27 b(Heidelb)r(erg.)36 b Fd(http://www.deali)o(i.o)o(rg)o
+Fz(.)69 912 y([3])45 b(F.)33 b(Brezzi)e(and)h(M.)h(F)-7
+b(ortin.)51 b Fm(Mixe)l(d)34 b(and)h(Hybrid)g(Finite)g(Element)f(Metho)
+l(ds)p Fz(,)h(v)n(olume)c(15)h(of)g Fm(Springer)j(Series)f(in)202
+1012 y(Computational)d(Mathematics)p Fz(.)39 b(Springer-V)-7
+b(erlag,)25 b(New)j(Y)-7 b(ork,)27 b(1991.)69 1162 y([4])45
+b(V.)34 b(Girault)f(and)g(P)-7 b(.-A.)33 b(Ra)n(viart.)52
+b Fm(Finite)36 b(Element)f(Appr)l(oximation)h(of)g(the)f(Navier-Stokes)
+h(Equations)p Fz(,)f(v)n(olume)202 1261 y(749)26 b(of)i
+Fm(L)l(e)l(ctur)l(e)h(Notes)g(in)h(Mathematics)p Fz(.)39
+b(Springer-V)-7 b(erlag,)25 b(Berlin,)i(Heidelb)r(erg,)g(1979,)f(1981.)
+69 1411 y([5])45 b(R.)40 b(Hiptmair.)72 b(Finite)41 b(elemen)n(ts)e(in)
+h(computational)e(electromagnetism.)71 b(In)40 b Fm(A)l(cta)g(Numeric)l
+(a)p Fz(,)j(pages)c(1{103.)202 1510 y(Cam)n(bridge)26
+b(Univ)n(ersit)n(y)h(press,)g(2002.)69 1660 y([6])45
+b(P)-7 b(.)19 b(Monk.)k(Analysis)c(of)h(a)f(\014nite)h(elemen)n(t)f
+(metho)r(d)h(for)f(Maxw)n(ell's)g(equations.)j Fm(SIAM)g(J.)g(Numer.)g
+(A)n(nal)p Fz(,)g(29:714{729,)202 1759 y(1992.)69 1909
+y([7])45 b(P)-7 b(.)38 b(Monk.)67 b(A)38 b(simple)g(pro)r(of)g(for)f
+(an)h(edge)f(elemen)n(t)h(discretization)f(of)h(Maxw)n(ell's)f
+(equations.)67 b(Submitted)39 b(for)202 2008 y(publication.)28
+b(Do)n(wnload)e(v)n(ersion)g(a)n(v)-5 b(ailable)27 b(on)g(Monk's)g(w)n
+(ebpage:)36 b(www.math.udel.edu./)28 b(monk,)f(2001.)69
+2158 y([8])45 b(J.)28 b(C.)f(N)n(\023)-39 b(ed)n(\023)g(elec.)35
+b(Mixed)28 b(\014nite)g(elemen)n(ts)f(in)h Fr(R)1701
+2128 y Fp(3)1745 2158 y Fz(.)36 b Fm(Numer.)30 b(Math.)p
+Fz(,)f(35:315{341,)23 b(1980.)69 2307 y([9])45 b(J.)27
+b(C.)g(N)n(\023)-39 b(ed)n(\023)g(elec.)33 b(Elemen)n(ts)27
+b(\014nis)g(mixtes)f(incompressibles)g(p)r(our)h(l')n(\023)-39
+b(equation)25 b(de)i(Stok)n(es)f(dans)g Fr(R)3322 2277
+y Fp(3)3365 2307 y Fz(.)36 b Fm(Numer.)29 b(Math.)p Fz(,)202
+2407 y(39:97{112,)24 b(1982.)28 2556 y([10])44 b(J.)28
+b(C.)f(N)n(\023)-39 b(ed)n(\023)g(elec.)35 b(A)28 b(new)g(family)f(of)h
+(mixed)g(\014nite)g(elemen)n(ts)f(in)h Fr(R)2303 2526
+y Fp(3)2346 2556 y Fz(.)37 b Fm(Numer.)30 b(Math.)p Fz(,)f(50:57{81,)24
+b(1986.)28 2706 y([11])44 b(W.)24 b(Rac)n(ho)n(wicz)e(and)i(L.)f(Demk)n
+(o)n(wicz.)30 b(A)24 b(t)n(w)n(o-dimensional)e(hp-adaptiv)n(e)g
+(\014nite)i(elemen)n(t)g(pac)n(k)-5 b(age)22 b(for)h(electromag-)202
+2805 y(netics)30 b(\(2Dhp90)p 758 2805 25 4 v 30 w(EM\).)44
+b(Ticam)29 b(Rep)r(ort)h(98{16,)f(TICAM,)h(1998.)42 b(Do)n(wnload)29
+b(v)n(ersion)g(a)n(v)-5 b(ailable)28 b(on)i(Demk)n(o)n(wicz')202
+2905 y(w)n(ebpage:)36 b(www.ticam.utexas.edu/)27 b(Leszek.)28
+3054 y([12])44 b(W.)39 b(Rac)n(ho)n(wicz)e(and)h(L.)h(Demk)n(o)n(wicz.)
+68 b(A)39 b(three-dimensional)f(hp-adaptiv)n(e)f(\014nite)i(elemen)n(t)
+g(pac)n(k)-5 b(age)37 b(for)h(elec-)202 3154 y(tromagnetics)31
+b(\(3Dhp90)p 1019 3154 V 29 w(EM\).)50 b(Ticam)31 b(Rep)r(ort)h
+(00-04.2000,)d(TICAM,)j(2000.)48 b(Do)n(wnload)31 b(v)n(ersion)f(a)n(v)
+-5 b(ailable)31 b(on)202 3254 y(Demk)n(o)n(wicz')c(w)n(ebpage:)36
+b(www.ticam.utexas.edu/)26 b(Leszek.)1949 5719 y Fk(21)p
+eop
+%%Page: 22 22
+22 21 bop 28 231 a Fw(A)134 b Fv(Construction)36 b(of)i(solutions)e(in)
+h(2d)28 413 y Fz(W)-7 b(e)28 b(presen)n(t)g(ho)n(w)g(div)n
+(ergence-free)e(solutions)i(of)g(the)h(mo)r(del)f(problem)g(\(1\))h(on)
+f(a)g(domain)g(\012)c Fs(\032)g Fr(R)3203 383 y Fp(2)3275
+413 y Fz(with)k(p)r(erfectly)h(con-)28 513 y(ducting)e(b)r(oundary)g
+(can)g(b)r(e)h(constructed)g(from)f(solutions)g(of)g(the)h(scalar)e
+(Laplace)h(equation.)28 812 y Fn(Pr)n(oposition)g Fz(9)45
+b Fm(L)l(et)28 b Fz(\012)g Fm(b)l(e)h(a)g(su\016ciently)g(smo)l(oth)g
+(domain)h(in)e Fr(R)2196 782 y Fp(2)2239 812 y Fm(,)i
+Fx(')p Fz(\()p Fx(x;)14 b(y)s Fz(\))29 b Fm(a)g(su\016c)l(ently)f(smo)l
+(oth)h(sc)l(alar)h(function)e(on)28 911 y Fz(\012)h Fm(and)h(the)g(c)l
+(o)l(e\016cient)h Fx(c)23 b(>)f Fz(0)30 b Fm(glob)l(al)t(ly)h(c)l
+(onstant.)28 1011 y(L)l(et)e Fx(w)j Fm(b)l(e)e(a)g(solution)g(of)h(the)
+f(sc)l(alar)g(e)l(quation)1513 1188 y Fs(\000)p Fz(\001)p
+Fx(w)21 b Fz(+)d Fx(c)c(w)25 b Fz(=)e Fx(')85 b Fz(in)g(\012)1680
+1313 y Fx(n)p 1680 1326 50 4 v 19 w Fs(\001)18 b(r)p
+Fx(w)26 b Fz(=)d(0)84 b(on)h Fx(@)5 b Fz(\012)14 b Fx(:)3814
+1252 y Fz(\(34\))28 1505 y Fm(Then,)30 b Fx(E)p 269 1518
+67 4 v 29 w Fz(:=)22 b Fs(r)538 1474 y Fh(?)594 1505
+y Fx(w)33 b Fm(is)d(a)g(solution)g(of)h(the)f(mo)l(del)g(e)l(quation)
+1452 1682 y Fz(curl)p 1452 1695 139 4 v 14 w(curl)13
+b Fx(E)p 1757 1695 67 4 v 24 w Fz(+)18 b Fx(c)c(E)p 1975
+1695 V 28 w Fz(=)22 b Fx(f)p 2151 1712 50 4 v 94 w Fz(in)85
+b(\012)14 b Fx(;)1773 1818 y(E)p 1773 1831 67 4 v 24
+w Fs(^)19 b Fx(n)p 1932 1831 50 4 v 23 w Fz(=)j(0)85
+b(on)f Fx(@)5 b Fz(\012)14 b Fx(;)28 2010 y Fm(with)30
+b(right)g(hand)h(side)g Fx(f)p 780 2039 V 31 w Fz(:=)23
+b Fs(r)1032 1979 y Fh(?)1088 2010 y Fx(')p Fm(.)28 2171
+y(We)29 b(use)h(the)g(notation)g Fs(r)863 2141 y Fh(?)919
+2171 y Fx(')23 b Fz(:=)g Fj(R)q Fs(r)p Fx(')g Fz(=)1414
+2054 y Fl(\022)1550 2120 y Fx(@)1594 2132 y Fq(y)1634
+2120 y Fx(')1517 2220 y Fs(\000)p Fx(@)1626 2232 y Fq(x)1667
+2220 y Fx(')1763 2054 y Fl(\023)1824 2171 y Fm(.)28 2428
+y Fn(Pr)n(oof.)58 b Fz(W)-7 b(e)34 b(\014rst)g(sho)n(w)e(the)i(corresp)
+r(ondence)e(of)h(the)h(b)r(oundary)f(conditions.)54 b(With)34
+b(the)g(de\014nition)g Fx(E)p 3466 2441 67 4 v 38 w Fz(:=)e
+Fs(r)3754 2398 y Fh(?)3811 2428 y Fx(w)k Fz(it)28 2528
+y(holds)1285 2628 y Fx(E)p 1285 2641 V 24 w Fs(^)18 b
+Fx(n)p 1443 2641 50 4 v 23 w Fz(=)23 b Fx(E)p 1604 2641
+67 4 v 24 w Fs(\001)18 b Fx(t)p 1730 2641 30 4 v 23 w
+Fz(=)23 b Fs(r)p Fx(w)2002 2591 y Fq(T)2054 2628 y Fj(R)2127
+2591 y Fq(T)2179 2628 y Fj(R)15 b Fx(n)p 2266 2641 50
+4 v 22 w Fz(=)23 b Fs(r)p Fx(w)e Fs(\001)e Fx(n)p 2617
+2641 V 14 w(:)28 2777 y Fz(It)35 b(remains)f(to)g(sho)n(w)g(that)h
+Fx(E)p 950 2790 67 4 v 40 w Fz(solv)n(es)e(the)i(mo)r(del)g(problem)f
+(for)h(an)f(appropriate)f(righ)n(t)h(hand)h(side.)58
+b(First,)36 b(note)f(that)28 2877 y Fx(E)p 28 2890 V
+38 w Fz(is)d(div)n(ergence-free:)45 b Fs(r)22 b(\001)g(r)1028
+2846 y Fh(?)1085 2877 y Fx(w)34 b Fz(=)d(0)i(for)f(all)g
+Fx(w)r Fz(.)54 b(Hence,)34 b(the)f(iden)n(tit)n(y)g(curl)p
+2475 2890 139 4 v 13 w(curl)14 b Fx(E)p 2780 2890 67
+4 v 37 w Fz(=)31 b Fs(r)p Fz(\()p Fs(r)23 b(\001)f Fx(E)p
+3212 2890 V 5 w Fz(\))g Fs(\000)f Fz(\001)p Fx(E)p 3487
+2890 V 38 w Fz(reduces)32 b(to)28 2976 y(curl)p 28 2989
+139 4 v 13 w(curl)13 b Fx(E)p 332 2989 67 4 v 30 w Fz(=)24
+b Fs(\000)p Fz(\001)p Fx(E)p 646 2989 V 5 w Fz(.)39 b(The)28
+b(observ)-5 b(ation)27 b(that)i(for)f(smo)r(oth)g(data)g
+Fs(r)2249 2946 y Fh(?)2305 2976 y Fx(w)j Fz(solv)n(es)c(the)i(Laplace)e
+(equation)h(\(34\))g(with)h(righ)n(t)28 3076 y(hand)e(side)h
+Fs(r)471 3046 y Fh(?)527 3076 y Fx(')g Fz(concludes)f(the)h(pro)r(of.)
+3897 3250 y Fg(\003)28 3449 y Fn(Example)f Fz(5)g(\(Solutions)h(from)f
+(eigenfunctions)g(of)h(the)g(Laplacian\))44 b Fm(Cho)l(ose)h
+Fx(w)h Fm(to)d(b)l(e)g(a)h(solution)f(of)i(the)e(eigenvalue)28
+3549 y(pr)l(oblem)1642 3726 y Fs(\000)p Fz(\001)p Fx(w)25
+b Fz(=)e Fx(\025)14 b(w)88 b Fz(in)d(\012)1597 3851 y
+Fx(n)p 1597 3864 50 4 v 18 w Fs(\001)18 b(r)p Fx(w)26
+b Fz(=)d(0)84 b(on)h Fx(@)5 b Fz(\012)14 b Fx(;)28 4034
+y Fm(and)30 b(set)f Fx(')24 b Fz(=)e(\()p Fx(\025)d Fz(+)f
+Fx(c)p Fz(\))c Fx(w)r Fm(.)28 4134 y(As)28 b(an)h(example,)h(take)f
+Fz(\012)23 b(=)f([)p Fs(\000)p Fz(1)p Fx(;)14 b Fz(1])1190
+4104 y Fp(2)1255 4134 y Fm(and)29 b Fx(\025)23 b Fz(=)g(2)p
+Fx(\031)1666 4104 y Fp(2)1703 4134 y Fm(.)38 b(Then,)30
+b Fx(w)c Fz(=)d(cos)13 b Fx(\031)s(x)h Fz(cos)f Fx(\031)s(y)32
+b Fm(is)d(an)g(eigenfunction)g(and)g(we)g(c)l(ompute)724
+4366 y Fx(f)p 724 4396 V 31 w Fz(=)23 b(\(2)p Fx(\031)1008
+4332 y Fp(2)1064 4366 y Fz(+)18 b Fx(c)p Fz(\))p Fx(\031)1279
+4249 y Fl(\022)1421 4316 y Fz(cos)13 b Fx(\031)s(x)h
+Fz(sin)g Fx(\031)s(y)1382 4415 y Fs(\000)g Fz(sin)f Fx(\031)s(x)h
+Fz(cos)g Fx(\031)s(y)1948 4249 y Fl(\023)2037 4366 y
+Fx(;)183 b(E)p 2243 4379 67 4 v 29 w Fz(=)22 b Fx(\031)2484
+4249 y Fl(\022)2626 4316 y Fz(cos)13 b Fx(\031)s(x)h
+Fz(sin)h Fx(\031)s(y)2587 4415 y Fs(\000)f Fz(sin)f Fx(\031)s(x)h
+Fz(cos)g Fx(\031)s(y)3153 4249 y Fl(\023)3242 4366 y
+Fx(:)28 4621 y Fn(Example)27 b Fz(6)g(\(Solutions)h(from)f(an)n(y)g
+(scalar)f(function)i(satiesfying)f(the)h(b)r(oundary)e(condition\))46
+b Fm(T)-6 b(ake)22 b(again)g Fz(\012)h(=)g([)p Fs(\000)p
+Fz(1)p Fx(;)14 b Fz(1])3942 4591 y Fp(2)3978 4621 y Fm(.)28
+4720 y(We)34 b(have)h(to)f(\014nd)g(a)g(sc)l(alar)h(function)g
+Fx(w)h Fm(which)g(saties\014es)e(the)h(homo)l(gene)l(ous)g(Neumann)e(b)
+l(oundary)i(c)l(ondition.)52 b(T)-6 b(ake)28 4820 y(for)30
+b(example)h Fx(w)r Fz(\()p Fx(x;)14 b(y)s Fz(\))25 b(=)e(\(1)18
+b Fs(\000)g Fx(x)1067 4790 y Fp(2)1105 4820 y Fz(\))1137
+4790 y Fp(2)1174 4820 y Fz(\(1)h Fs(\000)f Fx(y)1394
+4790 y Fp(2)1431 4820 y Fz(\))1463 4790 y Fp(2)1500 4820
+y Fm(,)31 b(for)g(which)g(we)f(have)h Fx(n)p 2236 4833
+50 4 v 19 w Fs(\001)18 b(r)p Fx(w)27 b Fz(=)c(0)29 b
+Fm(on)h Fx(@)5 b Fz([)p Fs(\000)p Fz(1)p Fx(;)14 b Fz(1])3060
+4790 y Fp(2)3095 4820 y Fm(.)40 b(The)31 b(right)f(hand)h(side)g(is)28
+4920 y(then)e Fx(')24 b Fz(=)e Fs(\000)p Fz(\001)p Fx(w)f
+Fz(+)d Fx(cw)r Fm(.)1949 5719 y Fk(22)p eop
+%%Page: 23 23
+23 22 bop 28 231 a Fw(A)134 b Fv(Time-harmonic)35 b(Maxw)m(ell's)i
+(equations)h(with)e(lo)m(w-frequency)i(appro)m(ximation)28
+413 y Fz(W)-7 b(e)32 b(sho)n(w,)h(ho)n(w)f(the)h(mo)r(del)g(problem)f
+(can)g(b)r(e)h(deriv)n(ed)f(from)g(the)h(time-harmonic)e(Maxw)n(ell's)h
+(equations)g(in)g(the)h(lo)n(w-)28 513 y(frequency)27
+b(case.)36 b(W)-7 b(e)28 b(follo)n(w)f(the)h(outline)f(of)h([1)o(]:)28
+613 y(W)-7 b(e)28 b(consider)e(the)i(follo)n(wing)f(primal)g(form)n
+(ulation)f(of)i(Maxw)n(ell's)f(equations:)1644 834 y
+Fx(")1693 778 y(@)5 b Fs(E)p 1693 815 100 4 v 1704 891
+a Fx(@)g(t)1825 834 y Fz(=)23 b(curl)13 b Fs(H)20 b(\000)e
+Fx(\033)s Fs(E)j Fx(;)1613 1038 y(\026)1673 982 y(@)5
+b Fs(H)p 1673 1019 120 4 v 1693 1095 a Fx(@)g(t)1825
+1038 y Fz(=)23 b Fs(\000)14 b Fz(curl)f Fs(E)21 b Fx(;)3814
+929 y Fz(\(35\))28 1248 y(where)31 b Fs(E)39 b Fz(and)31
+b Fs(H)i Fz(are)d(the)i(electric)g(and)f(magnetic)g(\014eld.)50
+b Fx(")p Fz(\()p Fx(x)p Fz(\))p Fx(;)14 b(\026)p Fz(\()p
+Fx(x)p Fz(\))33 b(are)e(the)h(dielectric)f(and)h(magnetic)f(p)r
+(ermeabilit)n(y)28 1348 y(co)r(e\016cien)n(ts,)36 b(and)e
+Fx(\033)s Fz(\()p Fx(x)p Fz(\))i(denotes)f(the)g(electric)f
+(conductivit)n(y)-7 b(.)58 b Fx(")p Fz(\()p Fx(x)p Fz(\))p
+Fx(;)14 b(\026)p Fz(\()p Fx(x)p Fz(\))37 b(and)d Fx(\033)s
+Fz(\()p Fx(x)p Fz(\))i(are)e(assumed)g(to)h(b)r(e)g(symmetric)28
+1448 y(matrices)29 b(in)h Fx(L)519 1417 y Fh(1)589 1448
+y Fz(\(\012\))713 1417 y Fq(d)p Fh(\002)p Fq(d)839 1448
+y Fz(,)h(and)f Fx(")p Fz(\()p Fx(x)p Fz(\))h(and)f Fx(\026)p
+Fz(\()p Fx(x)p Fz(\))h(are)e(p)r(ositiv)n(e)h(de\014nite.)45
+b Fx(\033)s Fz(\()p Fx(x)p Fz(\))32 b(is)e(p)r(ositiv)n(e)f(de\014nite)
+i(in)g(a)e(conductor)g(and)28 1547 y(v)-5 b(anishes)27
+b(in)h(an)f(insulator.)28 1776 y Fo(Time-harmonic,)33
+b(lo)m(w-frequency)i(case)28 1930 y Fz(W)-7 b(e)28 b(assume)e(that)i
+Fs(E)7 b Fz(\()p Fx(x;)14 b(t)p Fz(\))29 b(and)f Fs(H)q
+Fz(\()p Fx(x;)14 b(t)p Fz(\))28 b(are)f Fm(time-harmonic)p
+Fz(,)i(i.)f(e.)f(they)h(can)f(b)r(e)h(represen)n(ted)f(as)1467
+2111 y Fs(E)7 b Fz(\()p Fx(x;)14 b(t)p Fz(\))24 b(=)f(Re)14
+b(\()p Fx(E)5 b Fz(\()p Fx(x)p Fz(\))14 b(exp)q(\()p
+Fx(i!)s(t)p Fz(\)\))28 b Fx(;)1447 2236 y Fs(H)q Fz(\()p
+Fx(x;)14 b(t)p Fz(\))24 b(=)f(Re)14 b(\()p Fx(H)7 b Fz(\()p
+Fx(x)p Fz(\))14 b(exp)q(\()p Fx(i!)s(t)p Fz(\)\))27 b
+Fx(:)28 2419 y Fz(Here,)g Fx(E)5 b Fz(\()p Fx(x)p Fz(\))p
+Fx(;)14 b(H)7 b Fz(\()p Fx(x)p Fz(\))29 b(are)e(complex-v)-5
+b(alued)27 b(v)n(ector)f(\014elds)i(and)f Fx(!)f Fs(6)p
+Fz(=)c(0)28 b(is)f(a)g(giv)n(en)g(angular)f(frequency)-7
+b(.)28 2594 y Fn(Remark)28 b Fz(8)45 b Fm(F)-6 b(or)30
+b(example,)h(a)f(monofr)l(e)l(quent)f(laser)i(c)l(an)f(b)l(e)f(describ)
+l(e)l(d)j(by)e(the)g(time-harmonic)h(Maxwel)t(l's)g(e)l(quations.)28
+2768 y Fz(In)c(the)g(time-harmonic)f(case)g(the)h(space)f(and)h(time)g
+(v)-5 b(ariables)26 b(decouple)g(and)h(w)n(e)g(can)f(eliminate)h(the)g
+(time)h(dep)r(endency)-7 b(.)28 2868 y(F)g(or)28 b(this,)i(w)n(e)f(ask)
+f Fx(E)5 b Fz(\()p Fx(x)p Fz(\))14 b(exp)q(\()p Fx(i!)s(t)p
+Fz(\))29 b(and)g Fx(H)7 b Fz(\()p Fx(x)p Fz(\))14 b(exp\()p
+Fx(i!)s(t)p Fz(\))30 b(to)f(satiesfy)f(\(35\).)42 b(By)28
+b(then)i(inserting)f(the)g(second)g(equation)f(of)28
+2967 y(\(35\))f(in)n(to)g(the)h(\014rst)g(one,)f(w)n(e)g(can)g
+(eliminate)h(the)g(magnetic)f(\014eld)h Fx(H)7 b Fz(\()p
+Fx(x)p Fz(\).)38 b(This)27 b(yields)1331 3150 y(curl\()p
+Fx(\026)1552 3116 y Fh(\000)p Fp(1)1655 3150 y Fz(curl)14
+b Fx(E)5 b Fz(\))18 b Fs(\000)g Fx(!)2062 3116 y Fp(2)2099
+3150 y Fx("E)24 b Fz(+)18 b Fx(i!)s(\033)s(E)27 b Fz(=)c(0)28
+3333 y(In)30 b(the)g Fm(low-fr)l(e)l(quency)j(c)l(ase)k
+Fz(where)29 b Fs(j)p Fx(!)s Fs(j)h Fz(is)g(small,)g(it)h(is)f(kno)n(wn)
+f(that)h(for)g(general)f(materials)f(the)j(material)e(parameters)28
+3432 y(are)d(suc)n(h)h(that)1527 3532 y Fx(!)1582 3498
+y Fp(2)1619 3532 y Fx(")c Fs(\034)g Fx(\026)1837 3498
+y Fh(\000)p Fp(1)1940 3532 y Fx(;)97 b(!)2115 3498 y
+Fp(2)2152 3532 y Fx(")23 b Fs(\034)g Fx(!)s(\033)17 b(:)28
+3681 y Fz(Hence,)28 b(neglecting)f(the)i(expression)d
+Fx(!)1289 3651 y Fp(2)1326 3681 y Fx("E)5 b Fz(\()p Fx(x)p
+Fz(\))29 b(is)f(reasonable)e(and)h(it)i(brings)e(us)h(to)f(the)i(lo)n
+(w-frequency)d(appro)n(ximation)28 3781 y(of)h(the)h(time-harmonic)f
+(Maxw)n(ell's)f(equations:)1480 3964 y(curl\()p Fx(\026)1701
+3929 y Fh(\000)p Fp(1)1804 3964 y Fz(curl)14 b Fx(E)5
+b Fz(\))18 b(+)h Fx(i!)s(\033)s(E)27 b Fz(=)c(0)28 4146
+y(W)-7 b(e)30 b(consider)f(this)i(equation)e(in)i(a)f(conductor)f(\012)
+h(\()p Fx(\033)s Fz(\()p Fx(x)p Fz(\))i(p)r(os.)e(def.\))46
+b(and)30 b(a)g(imp)r(ose)g(Diric)n(hlet)g(b)r(oundary)g(condition)g(on)
+28 4246 y(the)e(tangen)n(tial)e(trace)h(of)h(the)g(\014eld:)1605
+4346 y Fx(E)c Fs(^)19 b Fx(n)k Fz(=)f(\010)83 b(on)g
+Fx(@)5 b Fz(\012)14 b Fx(:)1430 b Fz(\(36\))28 4495 y(Pro)r(ceeding)26
+b(as)h(in)h([1)o(],)g(w)n(e)g(assume)f(that)h(a)f(v)n(ector)f(funciton)
+2046 4474 y(~)2027 4495 y Fx(E)33 b Fz(is)27 b(kno)n(wn,)g(satiesfying)
+g(\(36\),)h(and)f(w)n(e)h(end)g(up)g(with)g(the)28 4595
+y(follo)n(wing)e(b)r(oundary)h(v)-5 b(alue)27 b(problem)h(for)f
+Fx(u)p 1417 4608 48 4 v 22 w Fz(=)c Fx(E)g Fs(\000)1762
+4574 y Fz(~)1742 4595 y Fx(E)1299 4774 y Fz(curl\()p
+Fx(\026)1520 4740 y Fh(\000)p Fp(1)1623 4774 y Fz(curl)14
+b Fx(u)p Fz(\))k(+)g Fx(i!)s(\033)s(u)k Fz(=)h Fx(F)95
+b Fz(in)83 b(\012)14 b Fx(;)1948 4899 y(u)k Fs(^)h Fx(n)k
+Fz(=)g(0)82 b(on)h Fx(@)5 b Fz(\012)14 b Fx(:)3814 4837
+y Fz(\(37\))28 5082 y(Although)23 b(problem)g(\(37\))h(is)f(complex-v)
+-5 b(alued,)24 b(\014nding)f(a)g(\014nite)i(elemen)n(t)e(metho)r(d)h
+(to)g(appro)n(ximate)e(\(37\))h(basically)f(b)r(oils)28
+5182 y(do)n(wn)27 b(to)g(\014nding)h(a)f(\014nite)h(elemen)n(t)g(metho)
+r(d)g(for)f(the)h(real)f(v)-5 b(alued)27 b(mo)r(del)h(problem)f(\(1\).)
+1949 5719 y Fk(23)p eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
diff --git a/deal.II/doc/reports/nedelec/node1.html b/deal.II/doc/reports/nedelec/node1.html
new file mode 100644 (file)
index 0000000..169abda
--- /dev/null
@@ -0,0 +1,1018 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
+
+<!--Converted with LaTeX2HTML 2K.1beta (1.47)
+original version by:  Nikos Drakos, CBLU, University of Leeds
+* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
+* with significant contributions from:
+  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
+<HTML>
+<HEAD>
+<TITLE>1 The model problem and the space </TITLE>
+<META NAME="description" CONTENT="1 The model problem and the space ">
+<META NAME="keywords" CONTENT="main">
+<META NAME="resource-type" CONTENT="document">
+<META NAME="distribution" CONTENT="global">
+
+<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
+<META NAME="Generator" CONTENT="LaTeX2HTML v2K.1beta">
+<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
+
+<LINK REL="STYLESHEET" HREF="main.css">
+
+</HEAD>
+
+<BODY >
+<!--Table of Child-Links-->
+<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
+
+<UL>
+<LI><A NAME="tex2html46"
+  HREF="#SECTION00011000000000000000">1.1 Definitions</A>
+<LI><A NAME="tex2html47"
+  HREF="#SECTION00012000000000000000">1.2 Trace theorem, integration by parts</A>
+<LI><A NAME="tex2html48"
+  HREF="#SECTION00013000000000000000">1.3 Variational formulation of the model problem</A>
+</UL>
+<!--End of Table of Child-Links-->
+<HR>
+
+<H1><A NAME="SECTION00010000000000000000">
+1 <FONT SIZE="+1">The model problem and the space <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"></FONT></A>
+</H1>
+<P>
+<FONT SIZE="-1">Consider the vector-valued model problem in a Lipschitz domain <!-- MATH
+ $\Omega \in \mathbb{R}^d$
+ -->
+<IMG
+ WIDTH="61" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img4.gif"
+ ALT="$ \Omega \in \mathbb{R}^d$">, <IMG
+ WIDTH="64" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img5.gif"
+ ALT="$ d=2,3$">:
+</FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:model_problem"></A><!-- MATH
+ \begin{equation}
+\mathop{\rm curl}\mathop{\rm curl}\underline u + c(x) \underline u  = \underline f \quad \mathrm{in} \quad \Omega \,,
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="246" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img6.gif"
+ ALT="$\displaystyle \mathop{\rm curl}\mathop{\rm curl}\underline u + c(x) \underline u = \underline f \quad \mathrm{in} \quad \Omega \,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(1)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+with right hand side <!-- MATH
+ $\underline f \in L^2(\Omega )^d$
+ -->
+<IMG
+ WIDTH="92" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img7.gif"
+ ALT="$ \underline f \in L^2(\Omega )^d$">. 
+<BR>
+We assume a homogeneous Dirichlet boundary condition on the tangential trace
+</FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_PCB"></A><!-- MATH
+ \begin{equation}
+\underline u \wedge \underline n  = 0
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="78" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img8.gif"
+ ALT="$\displaystyle \underline u \wedge \underline n = 0$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(2)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+on the boundary <!-- MATH
+ $\partial \Omega$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img9.gif"
+ ALT="$ \partial \Omega $"> of <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img10.gif"
+ ALT="$ \Omega $">.
+<BR>
+The coefficient <IMG
+ WIDTH="37" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img11.gif"
+ ALT="$ c(x)$"> is assumed to be bounded and uniform positive definite.
+<BR>
+This type of problem typically arises in particular settings of
+Maxwell`s equations. The boundary condition (<A HREF="node1.html#eq:_PCB">2</A>) then applies to a perfectly conducting boundary. 
+For a derivation of the model problem (<A HREF="node1.html#eq:model_problem">1</A>), refer to Appendix <A HREF="node6.html#appendix:_Maxwell_s_Eq.">A</A>.
+<BR></FONT>
+<P>
+<FONT SIZE="-1">The subject of this section is to give an appropriate setting for a variational formulation of (<A HREF="node1.html#eq:model_problem">1</A>).
+<BR>
+A more detailed treatment of the following notions and proofs can be found in [<A
+ HREF="node4.html#Girault-Raviart">4</A>].
+</FONT>
+<P>
+
+<H2><A NAME="SECTION00011000000000000000">
+1.1 Definitions</A>
+</H2>
+<P>
+<P>
+<DIV><A NAME="def:_tangent"><B>C<SMALL>ONVENTION</SMALL>  1</B></A> &nbsp; 
+In the following, the vector <!-- MATH
+ $\underline t$
+ -->
+<IMG
+ WIDTH="13" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img12.gif"
+ ALT="$ \underline t$"> will denote the unit tangent vector w.&nbsp;r.&nbsp;t. an edge of a triangle or quadrilateral, 
+       oriented counterclockwise with respect to the corresponding triangle or quadrilateral. 
+       (In 3d, the considered triangles or quadrilaterals will always be faces of a polyhedron, and the counterclockwise orientation has to be
+       understood as induced by "outward unit normal of the face, plus right hand rule" ).</DIV><P></P>
+
+<P>
+<FONT SIZE="-1">Let us first consider the case of <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img13.gif"
+ ALT="$ d=2$">. For <!-- MATH
+ $\underline v = \left(\begin{array}{c} v_1(x,y) \\v_2(x,y)\end{array} \right) \in [\mathcal{D}(\overline{\Omega })]^2$
+ -->
+<IMG
+ WIDTH="215" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img14.gif"
+ ALT="$ \underline v = \left(\begin{array}{c} v_1(x,y) \\  v_2(x,y)\end{array} \right) \in [\mathcal{D}(\overline{\Omega })]^2$">
+and <!-- MATH
+ $\varphi \in \mathcal{D}(\overline{\Omega })$
+ -->
+<IMG
+ WIDTH="79" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img15.gif"
+ ALT="$ \varphi \in \mathcal{D}(\overline{\Omega })$"> we define the scalar- and the
+vector-valued curl-operators:
+</FONT><!-- MATH
+ \begin{displaymath}
+\mathop{\rm curl}\underline v := \partial _x v_2 - \partial _y v_1   \quad \mathrm{and} \quad \mathop{\underline{\rm curl}}\varphi := \left(\begin{array}{c} \partial _y\varphi \\-\partial _x\varphi \end{array}
+       \right) \,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="396" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img16.gif"
+ ALT="$\displaystyle \mathop{\rm curl}\underline v := \partial _x v_2 - \partial _y v_...
+...in{array}{c} \partial _y\varphi \\  -\partial _x\varphi \end{array}\right) \,.
+$">
+</DIV><P></P><FONT SIZE="-1">
+We note that the <!-- MATH
+ $\mathop{\rm curl}\mathop{\rm curl}$
+ -->
+<IMG
+ WIDTH="68" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img17.gif"
+ ALT="$ \mathop{\rm curl}\mathop{\rm curl}$">-operator in two dimensions has to be understood as <!-- MATH
+ $\mathop{\underline{\rm curl}}\mathop{\rm curl}$
+ -->
+<IMG
+ WIDTH="68" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img18.gif"
+ ALT="$ \mathop{\underline{\rm curl}}\mathop{\rm curl}$">.
+<BR></FONT><P>
+<DIV><A NAME="re:_rotation"><B>R<SMALL>EMARK</SMALL>  1</B></A> &nbsp; 
+In the two dimensional case, the <!-- MATH
+ $\mathop{\rm curl}$
+ -->
+<IMG
+ WIDTH="36" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img19.gif"
+ ALT="$ \mathop{\rm curl}$"> operator is simply the divergence of the rotated field <!-- MATH
+ $\underline v$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img20.gif"
+ ALT="$ \underline v$">. Similarly, the <!-- MATH
+ $\mathop{\underline{\rm curl}}$
+ -->
+<IMG
+ WIDTH="36" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img21.gif"
+ ALT="$ \mathop{\underline{\rm curl}}$"> operator is
+the rotated gradient field of <IMG
+ WIDTH="18" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img22.gif"
+ ALT="$ \varphi $">. Setting
+<!-- MATH
+ \begin{displaymath}
+\boldsymbol{R} = \left(\begin{array}{cc}
+                               0 & 1 \\
+                               -1 & 0
+                               \end{array}\right) \,,
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="144" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img23.gif"
+ ALT="$\displaystyle \boldsymbol{R} = \left(\begin{array}{cc}
+0 &amp; 1 \\
+-1 &amp; 0
+\end{array}\right) \,,
+$">
+</DIV><P></P>
+we have
+<!-- MATH
+ \begin{displaymath}
+\mathop{\rm curl}\underline v = \mathrm{div} \left(\boldsymbol{R} \underline v\right)
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="135" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img24.gif"
+ ALT="$\displaystyle \mathop{\rm curl}\underline v = \mathrm{div} \left(\boldsymbol{R} \underline v\right)
+$">
+</DIV><P></P>
+and
+<!-- MATH
+ \begin{displaymath}
+\mathop{\underline{\rm curl}}\varphi = \boldsymbol{R} \nabla\varphi \,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="122" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img25.gif"
+ ALT="$\displaystyle \mathop{\underline{\rm curl}}\varphi = \boldsymbol{R} \nabla\varphi \,.
+$">
+</DIV><P></P>
+We further note that the tangential vector <!-- MATH
+ $\underline t$
+ -->
+<IMG
+ WIDTH="13" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img12.gif"
+ ALT="$ \underline t$"> is just the rotated outward unit normal vector
+<!-- MATH
+ $\underline t = \boldsymbol{R}^T\underline n$
+ -->
+<IMG
+ WIDTH="72" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img26.gif"
+ ALT="$ \underline t = \boldsymbol{R}^T\underline n$">. This will enable us to derive statements for the <!-- MATH
+ $\mathop{\rm curl}$
+ -->
+<IMG
+ WIDTH="36" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img19.gif"
+ ALT="$ \mathop{\rm curl}$">-operators in two dimensions from statements for the 
+divergence and gradient operators in two dimensions.</DIV><P></P>
+
+<P>
+<FONT SIZE="-1">For the case of <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img27.gif"
+ ALT="$ d=3$"> and a vector field <!-- MATH
+ $\underline v \in [\mathcal{D}(\overline{\Omega })]^3$
+ -->
+<IMG
+ WIDTH="94" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img28.gif"
+ ALT="$ \underline v \in [\mathcal{D}(\overline{\Omega })]^3$"> we write
+</FONT><!-- MATH
+ \begin{displaymath}
+\mathop{\rm curl}\underline v := \nabla \wedge \underline v := \left(\begin{array}{c}
+                                                                                       \partial _y v_3 - \partial _z v_2 \\
+                                                                                       \partial _z v_1 - \partial _x v_3 \\
+                                                                                       \partial _x v_2 - \partial _y v_1                                                
+                                                                               \end{array} \right)
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="281" HEIGHT="84" ALIGN="MIDDLE" BORDER="0"
+ SRC="img29.gif"
+ ALT="$\displaystyle \mathop{\rm curl}\underline v := \nabla \wedge \underline v := \l...
+... - \partial _x v_3 \\
+\partial _x v_2 - \partial _y v_1
+\end{array} \right)
+$">
+</DIV><P></P><P>
+<DIV><B>D<SMALL>EFINITION</SMALL>  1</B> &nbsp; 
+For <IMG
+ WIDTH="64" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img5.gif"
+ ALT="$ d=2,3$"> we write <!-- MATH
+ $\tilde{d}=1$
+ -->
+<IMG
+ WIDTH="47" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img30.gif"
+ ALT="$ \tilde{d}=1$"> if <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img13.gif"
+ ALT="$ d=2$"> and <!-- MATH
+ $\tilde{d}=3$
+ -->
+<IMG
+ WIDTH="47" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img31.gif"
+ ALT="$ \tilde{d}=3$"> if <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img27.gif"
+ ALT="$ d=3$">, and we define
+<!-- MATH
+ \begin{displaymath}
+H(\mathop{\rm curl}; \Omega ) := \{ \underline v \in [L^2(\Omega )]^d:  \mathop{\rm curl}\underline v \in [L^2(\Omega )]^{\tilde{d}} \}
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="364" HEIGHT="49" ALIGN="MIDDLE" BORDER="0"
+ SRC="img32.gif"
+ ALT="$\displaystyle H(\mathop{\rm curl}; \Omega ) := \{ \underline v \in [L^2(\Omega )]^d: \mathop{\rm curl}\underline v \in [L^2(\Omega )]^{\tilde{d}} \}
+$">
+</DIV><P></P></DIV><P></P>
+<FONT SIZE="-1">
+<!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"> endowed with the inner product
+</FONT><!-- MATH
+ \begin{displaymath}
+(\underline v, \underline u)_{H(\mathop{\rm curl};\Omega )} := (\underline v, \underline u)_{L^2(\Omega )} + (\mathop{\rm curl}\underline v, \mathop{\rm curl}\underline u)_{L^2(\Omega )}
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="374" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img33.gif"
+ ALT="$\displaystyle (\underline v, \underline u)_{H(\mathop{\rm curl};\Omega )} := (\...
+... (\mathop{\rm curl}\underline v, \mathop{\rm curl}\underline u)_{L^2(\Omega )}
+$">
+</DIV><P></P><FONT SIZE="-1">
+is a Hilbert space.
+<BR></FONT>
+<P>
+
+<H2><A NAME="SECTION00012000000000000000">
+1.2 Trace theorem, integration by parts</A>
+</H2><FONT SIZE="-1">
+The space <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"> will be the appropriate Sobolev space for a weak formulation of the model problem. 
+In this section we provide a notion of trace of a <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-function onto the boundary <!-- MATH
+ $\partial \Omega$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img9.gif"
+ ALT="$ \partial \Omega $"> and we define intergation by parts on the
+space <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">.
+</FONT>
+<P>
+<P>
+<DIV><A NAME="th:density"><B>T<SMALL>HEOREM</SMALL>  1</B></A> (Approximation Property)  &nbsp; 
+For <IMG
+ WIDTH="64" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img5.gif"
+ ALT="$ d=2,3$">, <!-- MATH
+ $[\mathcal{D}(\overline{\Omega })]^d$
+ -->
+<IMG
+ WIDTH="64" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img34.gif"
+ ALT="$ [\mathcal{D}(\overline{\Omega })]^d$"> is dense in <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">.</DIV><P></P>
+<FONT SIZE="-1">
+See [<A
+ HREF="node4.html#Girault-Raviart">4</A>] p.13, p.20 for the proof in the 2d-case and p.20 for a reference to the proof in 3d proposed in Duvaut &amp; Lions, 1971.
+<BR></FONT>
+<P>
+<FONT SIZE="-1">Equipped with this approximation property of smooth functions to elements of <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">, we can state
+</FONT>
+<P>
+<P>
+<DIV><A NAME="eq:_PI"><B>T<SMALL>HEOREM</SMALL>  2</B></A> (Green's Formula)  &nbsp; 
+For the 2d case, let <!-- MATH
+ $\underline u$
+ -->
+<IMG
+ WIDTH="16" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img35.gif"
+ ALT="$ \underline u$"> be in <!-- MATH
+ $[H(\mathop{\rm curl};\Omega )]^2$
+ -->
+<IMG
+ WIDTH="103" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img36.gif"
+ ALT="$ [H(\mathop{\rm curl};\Omega )]^2$"> and <IMG
+ WIDTH="18" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img22.gif"
+ ALT="$ \varphi $"> be a test function in <!-- MATH
+ $H^1(\Omega )$
+ -->
+<IMG
+ WIDTH="56" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img37.gif"
+ ALT="$ H^1(\Omega )$">. We have 
+<!-- MATH
+ \begin{displaymath}
+\int_{\Omega } \mathop{\rm curl}\underline u \,\,\varphi \,dx  = \int_{\Omega } \underline u \cdot \mathop{\underline{\rm curl}}\varphi \,dx  + \int_{\partial \Omega } (\underline u\cdot \underline t) \, \varphi \,ds \:,
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="380" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img38.gif"
+ ALT="$\displaystyle \int_{\Omega } \mathop{\rm curl}\underline u \,\,\varphi \,dx = \...
+...+ \int_{\partial \Omega } (\underline u\cdot \underline t) \, \varphi \,ds \:,
+$">
+</DIV><P></P>
+
+<P>
+For the 3d case, let <!-- MATH
+ $\underline u$
+ -->
+<IMG
+ WIDTH="16" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img35.gif"
+ ALT="$ \underline u$"> be in <!-- MATH
+ $[H(\mathop{\rm curl};\Omega )]^3$
+ -->
+<IMG
+ WIDTH="103" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img39.gif"
+ ALT="$ [H(\mathop{\rm curl};\Omega )]^3$"> and <!-- MATH
+ $\underline v$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img20.gif"
+ ALT="$ \underline v$"> be a test function in <!-- MATH
+ $[H^1(\Omega )]^3$
+ -->
+<IMG
+ WIDTH="73" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img40.gif"
+ ALT="$ [H^1(\Omega )]^3$">. We then have 
+<!-- MATH
+ \begin{displaymath}
+\int_{\Omega } \underline v \cdot \mathop{\rm curl}\underline u \,dx  = \int_{\Omega } \underline u \cdot \mathop{\rm curl}\underline v \,dx  + \int_{\partial \Omega } (\underline v\wedge \underline n) \cdot \underline u\,ds \:,
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="400" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img41.gif"
+ ALT="$\displaystyle \int_{\Omega } \underline v \cdot \mathop{\rm curl}\underline u \...
+...\partial \Omega } (\underline v\wedge \underline n) \cdot \underline u\,ds \:,
+$">
+</DIV><P></P>
+The boundary integrals are understood as duality pairings in <!-- MATH
+ $[H^{-\frac{1}{2}}(\partial \Omega )]^{\tilde{d}} \times H^{\frac{1}{2}}(\partial \Omega )$
+ -->
+<IMG
+ WIDTH="181" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
+ SRC="img42.gif"
+ ALT="$ [H^{-\frac{1}{2}}(\partial \Omega )]^{\tilde{d}} \times H^{\frac{1}{2}}(\partial \Omega )$"> .
+<BR></DIV><P></P>
+<FONT SIZE="-1">P<SMALL>ROOF. </SMALL>For smooth functions, it is easy to see that the above Green's formula holds. In the 2d case this follows just
+from Gauss' divergence theorem and remark <A HREF="node1.html#re:_rotation">1</A>.
+<BR>
+For the 3d case we use the identity
+</FONT><!-- MATH
+ \begin{displaymath}
+\mathrm{div}\, (\underline u \wedge \underline v) = \underline v \cdot \mathop{\rm curl}\underline u - \underline u \cdot \mathop{\rm curl}\underline v
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="257" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img43.gif"
+ ALT="$\displaystyle \mathrm{div}\, (\underline u \wedge \underline v) = \underline v ...
+...thop{\rm curl}\underline u - \underline u \cdot \mathop{\rm curl}\underline v
+$">
+</DIV><P></P><FONT SIZE="-1">
+together with Gauss' Divergence Theorem and the properties of the mixed product <!-- MATH
+ $(\underline a\wedge\underline b)\cdot \underline c$
+ -->
+<IMG
+ WIDTH="76" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img44.gif"
+ ALT="$ (\underline a\wedge\underline b)\cdot \underline c$"> to obtain
+</FONT><!-- MATH
+ \begin{displaymath}
+\int_{\Omega } \underline v\cdot \mathop{\rm curl}\underline u - \underline u\cdot \mathop{\rm curl}\underline v  \, dx = \int_{\Omega } \mathrm{div}\, (\underline u \wedge \underline v) \, dx
+       = \int_{\partial \Omega } (\underline u \wedge \underline v)\cdot \underline n \,ds = \int_{\partial \Omega } (\underline v \wedge \underline n)\cdot \underline u \,ds \,\,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="649" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
+ SRC="img45.gif"
+ ALT="$\displaystyle \int_{\Omega } \underline v\cdot \mathop{\rm curl}\underline u - ...
+...rtial \Omega } (\underline v \wedge \underline n)\cdot \underline u \,ds \,\,.
+$">
+</DIV><P></P><FONT SIZE="-1">
+ The extention to a pairing of
+ <!-- MATH
+ $H(\mathop{\rm curl})$
+ -->
+<IMG
+ WIDTH="65" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img46.gif"
+ ALT="$ H(\mathop{\rm curl})$"> and <!-- MATH
+ $H^1(\Omega )$
+ -->
+<IMG
+ WIDTH="56" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img37.gif"
+ ALT="$ H^1(\Omega )$"> functions follows with Theorem <A HREF="node1.html#th:density">1</A> by a density argument and is a result of the proof of the
+ Trace Theorem. See [<A
+ HREF="node4.html#Girault-Raviart">4</A>] p.21 for details.
+</FONT>
+<P>
+<P>
+<DIV><B>T<SMALL>HEOREM</SMALL>  3</B> (Trace Theorem)  &nbsp; 
+For <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img27.gif"
+ ALT="$ d=3$">, let <!-- MATH
+ $\underline n$
+ -->
+<IMG
+ WIDTH="17" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img47.gif"
+ ALT="$ \underline n$"> denote the outward unit normal to the boundary <!-- MATH
+ $\partial \Omega$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img9.gif"
+ ALT="$ \partial \Omega $">. For <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img13.gif"
+ ALT="$ d=2$">, let <!-- MATH
+ $\underline t$
+ -->
+<IMG
+ WIDTH="13" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img12.gif"
+ ALT="$ \underline t$"> be as in convention <A HREF="node1.html#def:_tangent">1</A> 
+<BR>
+For <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img13.gif"
+ ALT="$ d=2$"> the mapping
+<!-- MATH
+ \begin{displaymath}
+\gamma: \quad \underline v \mapsto \gamma(\underline v) \cdot \underline t
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="136" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img48.gif"
+ ALT="$\displaystyle \gamma: \quad \underline v \mapsto \gamma(\underline v) \cdot \underline t
+$">
+</DIV><P></P>
+and for <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img27.gif"
+ ALT="$ d=3$"> the mapping
+<!-- MATH
+ \begin{displaymath}
+\gamma: \quad \underline v \mapsto \gamma(\underline v) \wedge \underline n
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="147" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img49.gif"
+ ALT="$\displaystyle \gamma: \quad \underline v \mapsto \gamma(\underline v) \wedge \underline n
+$">
+</DIV><P></P>
+is contiuous and linear from <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"> to <!-- MATH
+ $[H^{-\frac{1}{2}}(\partial \Omega )]^{\tilde{d}}$
+ -->
+<IMG
+ WIDTH="97" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
+ SRC="img50.gif"
+ ALT="$ [H^{-\frac{1}{2}}(\partial \Omega )]^{\tilde{d}}$">.</DIV><P></P>
+
+<P>
+<FONT SIZE="-1">Note, that the trace of a <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-function is only defined in tangential direction. Its trace is in the dual space
+ of traces of <!-- MATH
+ $[H^1(\Omega )]^{\tilde{d}}$
+ -->
+<IMG
+ WIDTH="74" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
+ SRC="img51.gif"
+ ALT="$ [H^1(\Omega )]^{\tilde{d}}$"> functions. Recall that traces of such functions
+are defined in every direction and are functions in <!-- MATH
+ $[H^{\frac{1}{2}}(\partial \Omega )]^{\tilde{d}}$
+ -->
+<IMG
+ WIDTH="87" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
+ SRC="img52.gif"
+ ALT="$ [H^{\frac{1}{2}}(\partial \Omega )]^{\tilde{d}}$">.
+<BR></FONT>
+<P>
+<FONT SIZE="-1">P<SMALL>ROOF. </SMALL>
+The proof of the trace theorem follows from Green's formula stated in theorem <A HREF="node1.html#eq:_PI">2</A> applied to smooth functions
+and then by density arguments. See [<A
+ HREF="node4.html#Girault-Raviart">4</A>] p.21 for details.
+
+</FONT>
+<P>
+<FONT SIZE="-1">Due to the Trace Theorem it makes sense to define a space of <!-- MATH
+ $H(\mathop{\rm curl})$
+ -->
+<IMG
+ WIDTH="65" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img46.gif"
+ ALT="$ H(\mathop{\rm curl})$">-functions with vanishing tangential components on the boundary.
+ </FONT><P>
+<DIV><B>D<SMALL>EFINITION</SMALL>  2</B> &nbsp; 
+<!-- MATH
+ \begin{displaymath}
+H_0(\mathop{\rm curl};\Omega ) := \left\{ \underline v \in H(\mathop{\rm curl};\Omega ): \quad \underline v\wedge \underline n = 0 \:\:\mathrm{on}\:\: \partial \Omega \right\}
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="406" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img53.gif"
+ ALT="$\displaystyle H_0(\mathop{\rm curl};\Omega ) := \left\{ \underline v \in H(\mat...
+...nderline v\wedge \underline n = 0 \:\:\mathrm{on}\:\: \partial \Omega \right\}
+$">
+</DIV><P></P></DIV><P></P>
+
+<P>
+<P>
+<DIV><B>R<SMALL>EMARK</SMALL>  2</B> &nbsp; 
+For <IMG
+ WIDTH="64" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img5.gif"
+ ALT="$ d=2,3$">, <!-- MATH
+ $[\mathcal{D}(\Omega )]^d$
+ -->
+<IMG
+ WIDTH="64" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img54.gif"
+ ALT="$ [\mathcal{D}(\Omega )]^d$"> is dense in <!-- MATH
+ $H_0(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="92" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img55.gif"
+ ALT="$ H_0(\mathop{\rm curl};\Omega )$">.
+ </DIV><P></P>
+
+<P>
+<FONT SIZE="-1">A consequence of Green's formula is the following important regularity property of <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-functions:
+</FONT>
+<P>
+<P>
+<DIV><A NAME="prop:_no_jumps"><B>P<SMALL>ROPOSITION</SMALL>  1</B></A> &nbsp; 
+Let <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img56.gif"
+ ALT="$ K_-$"> and <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img57.gif"
+ ALT="$ K_+$"> be two polygonal (resp. polyhedral) Lipschitz domains in <!-- MATH
+ $\mathbb{R}^d$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img58.gif"
+ ALT="$ \mathbb{R}^d$">, with a common edge (resp. common edge or face)
+  <!-- MATH
+ $e = \partial K_-\cap\partial K_+ \neq \emptyset$
+ -->
+<IMG
+ WIDTH="162" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img59.gif"
+ ALT="$ e = \partial K_-\cap\partial K_+ \neq \emptyset$"> and
+ denote by <!-- MATH
+ $\Omega = \partial K_-\cup\partial K_+$
+ -->
+<IMG
+ WIDTH="134" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img60.gif"
+ ALT="$ \Omega = \partial K_-\cup\partial K_+$"> their union. A function <IMG
+ WIDTH="15" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img61.gif"
+ ALT="$ v$"> is in <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"> if and only if the restricion <IMG
+ WIDTH="26" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img62.gif"
+ ALT="$ v_-$"> of <IMG
+ WIDTH="15" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img61.gif"
+ ALT="$ v$"> to <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img56.gif"
+ ALT="$ K_-$"> 
+ is in <!-- MATH
+ $H(\mathop{\rm curl}; K_-)$
+ -->
+<IMG
+ WIDTH="99" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img63.gif"
+ ALT="$ H(\mathop{\rm curl}; K_-)$">, the restricion <IMG
+ WIDTH="26" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img64.gif"
+ ALT="$ v_+$"> of <IMG
+ WIDTH="15" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img61.gif"
+ ALT="$ v$"> to <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img57.gif"
+ ALT="$ K_+$"> is in <!-- MATH
+ $H(\mathop{\rm curl}; K_+)$
+ -->
+<IMG
+ WIDTH="99" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img65.gif"
+ ALT="$ H(\mathop{\rm curl}; K_+)$"> <I>and</I> the <I>tangential</I> jump over <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$"> vanishes: <!-- MATH
+ $v_-\wedge n_- + v_+\wedge n_+ = 0$
+ -->
+<IMG
+ WIDTH="181" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img67.gif"
+ ALT="$ v_-\wedge n_- + v_+\wedge n_+ = 0$"> on <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$">.
+ </DIV><P></P>
+<FONT SIZE="-1">
+ </FONT><FONT SIZE="-1">P<SMALL>ROOF. </SMALL>
+ The proposition follows from choosing an appropriate test function and integrating by parts (global and local).
+ In order to <I>localise</I> the result of the Trace Theorem, we must choose a testfunction from the space <!-- MATH
+ $H^{\frac{1}{2}}_{00}(e)$
+ -->
+<IMG
+ WIDTH="57" HEIGHT="55" ALIGN="MIDDLE" BORDER="0"
+ SRC="img68.gif"
+ ALT="$ H^{\frac{1}{2}}_{00}(e)$">. These
+ functions vanish at the endpoints of <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$"> and can therefore be extended by zero to a  <!-- MATH
+ $H^{\frac{1}{2}}(\partial \Omega )$
+ -->
+<IMG
+ WIDTH="69" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
+ SRC="img69.gif"
+ ALT="$ H^{\frac{1}{2}}(\partial \Omega )$">-function. From the comparison
+ of local (on <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img56.gif"
+ ALT="$ K_-$"> and <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img57.gif"
+ ALT="$ K_+$"> separately) and global (on <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img10.gif"
+ ALT="$ \Omega $">) integration by parts it followas then that the tangential jump vanishes in the
+ dual space of <!-- MATH
+ $H^{\frac{1}{2}}_{00}(e)$
+ -->
+<IMG
+ WIDTH="57" HEIGHT="55" ALIGN="MIDDLE" BORDER="0"
+ SRC="img68.gif"
+ ALT="$ H^{\frac{1}{2}}_{00}(e)$">. By densitiy properties of <!-- MATH
+ $H^{\frac{1}{2}}_{00}(e)$
+ -->
+<IMG
+ WIDTH="57" HEIGHT="55" ALIGN="MIDDLE" BORDER="0"
+ SRC="img68.gif"
+ ALT="$ H^{\frac{1}{2}}_{00}(e)$"> it follows that the tangential traces vanish in
+ the "correct space" as well. The "correct space" would be <!-- MATH
+ $H^{-\frac{1}{2}}(e)$
+ -->
+<IMG
+ WIDTH="65" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
+ SRC="img70.gif"
+ ALT="$ H^{-\frac{1}{2}}(e)$"> if we have no further regularity of <!-- MATH
+ $\underline v_-$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img71.gif"
+ ALT="$ \underline v_-$"> and <!-- MATH
+ $\underline v_+$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img72.gif"
+ ALT="$ \underline v_+$">, and it
+ would be <IMG
+ WIDTH="47" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img73.gif"
+ ALT="$ L^2(e)$"> if <!-- MATH
+ $\underline v$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img20.gif"
+ ALT="$ \underline v$"> is elementwise in <IMG
+ WIDTH="30" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img74.gif"
+ ALT="$ H^1$"> (e.&nbsp;g.&nbsp; for piecewise polynomial <!-- MATH
+ $\underline v$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img20.gif"
+ ALT="$ \underline v$">).
+</FONT>
+<P>
+
+<H2><A NAME="SECTION00013000000000000000">
+1.3 Variational formulation of the model problem</A>
+</H2><FONT SIZE="-1">
+In the previous sections we introduced the space <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">, an integration-by-parts formula and the notion of trace for an
+<!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-function. In this framework, the variational formulation of the model problem (<A HREF="node1.html#eq:model_problem">1</A>) reads:
+</FONT><DL COMPACT>
+<DT></DT>
+<DD>Find <!-- MATH
+ $\underline u \in H_0(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="123" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img75.gif"
+ ALT="$ \underline u \in H_0(\mathop{\rm curl};\Omega )$"> such that for all test functions <!-- MATH
+ $\underline v \in H_0(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="122" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img76.gif"
+ ALT="$ \underline v \in H_0(\mathop{\rm curl};\Omega )$"> holds
+<P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_varform"></A><!-- MATH
+ \begin{equation}
+\int_{\Omega } \mathop{\rm curl}\underline u\, \mathop{\rm curl}\underline v\,dx + \int_{\Omega } c(x)\, \underline u\, \cdot \underline v\,dx =  \int_{\Omega } \underline f\, \cdot \underline v\,dx
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="378" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img77.gif"
+ ALT="$\displaystyle \int_{\Omega } \mathop{\rm curl}\underline u\, \mathop{\rm curl}\...
+..., \cdot \underline v\,dx = \int_{\Omega } \underline f\, \cdot \underline v\,dx$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(3)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+</DD>
+</DL><FONT SIZE="-1">
+With our assumptions on the data, the forms
+</FONT><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\begin{split}
+       a(\underline u,\underline v) &:= \int_{\Omega } \mathop{\rm curl}\underline u\, \mathop{\rm curl}\underline v\,dx + \int_{\Omega } c(x)\, \underline u\, \cdot \underline v\,dx \\
+       l(\underline v) & := \int_{\Omega } \underline f\, \cdot \underline v\,dx
+\end{split}
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="454" HEIGHT="92" BORDER="0"
+ SRC="img78.gif"
+ ALT="\begin{displaymath}\begin{split}a(\underline u,\underline v) &amp;:= \int_{\Omega } ...
+...int_{\Omega } \underline f\, \cdot \underline v\,dx \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+are continuous and the bilinear form <!-- MATH
+ $a(\cdot,\cdot)$
+ -->
+<IMG
+ WIDTH="47" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img79.gif"
+ ALT="$ a(\cdot,\cdot)$"> is coercive on 
+<!-- MATH
+ $H_0(\mathop{\rm curl};\Omega )\times H_0(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="198" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img80.gif"
+ ALT="$ H_0(\mathop{\rm curl};\Omega )\times H_0(\mathop{\rm curl};\Omega )$">. By the Lax-Milgram lemma it follows, that there exists a unique solution 
+<!-- MATH
+ $\underline u \in H_0(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="123" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img75.gif"
+ ALT="$ \underline u \in H_0(\mathop{\rm curl};\Omega )$"> of (<A HREF="node1.html#eq:_varform">3</A>).
+</FONT>
+<BR><HR>
+<ADDRESS>
+
+2003-04-30
+</ADDRESS>
+</BODY>
+</HTML>
diff --git a/deal.II/doc/reports/nedelec/node2.html b/deal.II/doc/reports/nedelec/node2.html
new file mode 100644 (file)
index 0000000..247c296
--- /dev/null
@@ -0,0 +1,4050 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
+
+<!--Converted with LaTeX2HTML 2K.1beta (1.47)
+original version by:  Nikos Drakos, CBLU, University of Leeds
+* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
+* with significant contributions from:
+  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
+<HTML>
+<HEAD>
+<TITLE>2 N&#233;d&#233;lec's elements of first type for </TITLE>
+<META NAME="description" CONTENT="2 N&#233;d&#233;lec's elements of first type for ">
+<META NAME="keywords" CONTENT="main">
+<META NAME="resource-type" CONTENT="document">
+<META NAME="distribution" CONTENT="global">
+
+<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
+<META NAME="Generator" CONTENT="LaTeX2HTML v2K.1beta">
+<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
+
+<LINK REL="STYLESHEET" HREF="main.css">
+
+</HEAD>
+
+<BODY >
+<!--Table of Child-Links-->
+<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
+
+<UL>
+<LI><A NAME="tex2html59"
+  HREF="#SECTION00021000000000000000">2.1 Construction of N&#233;d&#233;lec elements on tetrahedral grids</A>
+<UL>
+<LI><A NAME="tex2html60"
+  HREF="#SECTION00021100000000000000">2.1.1 Polynomial spaces on the reference element</A>
+<LI><A NAME="tex2html61"
+  HREF="#SECTION00021200000000000000">2.1.2 Degrees of freedom on the reference element</A>
+<LI><A NAME="tex2html62"
+  HREF="#SECTION00021300000000000000">2.1.3 Piola transformation</A>
+<LI><A NAME="tex2html63"
+  HREF="#SECTION00021400000000000000">2.1.4 Transformation of the curl in 2d</A>
+<LI><A NAME="tex2html64"
+  HREF="#SECTION00021500000000000000">2.1.5 Transformation of the curl in 3d</A>
+</UL>
+<BR>
+<LI><A NAME="tex2html65"
+  HREF="#SECTION00022000000000000000">2.2 N&#233;d&#233;lec Elements on affine quadrilateral or hexahedral grids</A>
+<UL>
+<LI><A NAME="tex2html66"
+  HREF="#SECTION00022100000000000000">2.2.1 Polynomial spaces on the reference element</A>
+<LI><A NAME="tex2html67"
+  HREF="#SECTION00022200000000000000">2.2.2 Degrees of freedom on the reference element</A>
+<LI><A NAME="tex2html68"
+  HREF="#SECTION00022300000000000000">2.2.3 Transformation of the vector field</A>
+</UL>
+<BR>
+<LI><A NAME="tex2html69"
+  HREF="#SECTION00023000000000000000">2.3 Construction of N&#233;d&#233;lec elements on bi- or trilinear elements</A>
+<UL>
+<LI><A NAME="tex2html70"
+  HREF="#SECTION00023100000000000000">2.3.1 Bilinear elements in 2d</A>
+<LI><A NAME="tex2html71"
+  HREF="#SECTION00023200000000000000">2.3.2 Trilinear elements in 3d</A>
+</UL>
+<BR>
+<LI><A NAME="tex2html72"
+  HREF="#SECTION00024000000000000000">2.4 Construction of global shape functions</A>
+<LI><A NAME="tex2html73"
+  HREF="#SECTION00025000000000000000">2.5 Approximation and convergence results</A>
+</UL>
+<!--End of Table of Child-Links-->
+<HR>
+
+<H1><A NAME="SECTION00020000000000000000">
+2 <FONT SIZE="+1">N&#233;d&#233;lec's elements of first type for <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"></FONT></A>
+</H1><FONT SIZE="-1">
+       In this section we will present present <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming vector-valued finite elements, 
+       the N&#233;d&#233;lec elements of first type (cf.&nbsp;[<A
+ HREF="node4.html#Ned1">8</A>]), which can be used to discretize the variational problem (<A HREF="node1.html#eq:_varform">3</A>). 
+<BR></FONT>
+<P>
+<FONT SIZE="-1">In order to define a finite element we must specify
+       </FONT><DL>
+<DT><STRONG>the geometry</STRONG></DT>
+<DD>We choose a reference element <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> and a change of variables <!-- MATH
+ $F_K(\hat{x})$
+ -->
+<IMG
+ WIDTH="54" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img82.gif"
+ ALT="$ F_K(\hat{x})$">, the element map.
+                We set <!-- MATH
+ $K = F_K(\hat{K})$
+ -->
+<IMG
+ WIDTH="100" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img83.gif"
+ ALT="$ K = F_K(\hat{K})$">.
+               
+</DD>
+<DT><STRONG>a function space</STRONG></DT>
+<DD>We need a <I>finite dimensional</I> function space <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img84.gif"
+ ALT="$ \hat{R}$">, typically a space of polynomials, on the reference
+               cell, plus a transformation of <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img84.gif"
+ ALT="$ \hat{R}$"> to a function space <IMG
+ WIDTH="33" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img85.gif"
+ ALT="$ R_K$"> on a general cell <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$">.
+               
+</DD>
+<DT><STRONG>dofs</STRONG></DT>
+<DD>We have to define a set of dofs <!-- MATH
+ $\mathcal{A} = \{\alpha_i(\cdot)\}_{i=1}^N$
+ -->
+<IMG
+ WIDTH="119" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img87.gif"
+ ALT="$ \mathcal{A} = \{\alpha_i(\cdot)\}_{i=1}^N$">. These are linear functionals on 
+               <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img84.gif"
+ ALT="$ \hat{R}$"> and <!-- MATH
+ $N < \infty$
+ -->
+<IMG
+ WIDTH="63" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img88.gif"
+ ALT="$ N &lt; \infty$"> is the dimension of <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img84.gif"
+ ALT="$ \hat{R}$">. <!-- MATH
+ $\mathcal{A}$
+ -->
+<IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img89.gif"
+ ALT="$ \mathcal{A}$"> should be <I>unisolvent</I>, that is, the dofs <!-- MATH
+ $\alpha_i(\cdot)$
+ -->
+<IMG
+ WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img90.gif"
+ ALT="$ \alpha_i(\cdot)$">
+               are linearly independent.
+       
+</DD>
+</DL>
+<P>
+<FONT SIZE="-1">First, we observe that for a conforming discretization of (<A HREF="node1.html#eq:_varform">3</A>) we cannot take vector-valued finite elements
+       that are build by taking the standard nodal finite element spaces of globally continuous functions for each vector component. 
+       For <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-functions, the only continuity condition is the continuity of the tangential component over cell boundaries. 
+       This fact will motivate the choice of appropriate degrees of freedom (abbreviated by dofs in the following).
+<BR>
+We will give an outline of the construction of the finite element spaces described by N&#233;d&#233;lec in [<A
+ HREF="node4.html#Ned1">8</A>]. In literature, they are also referred to as
+       <I>N&#233;d&#233;lec's elements of first type</I>.
+<BR></FONT>
+<P>
+
+<H2><A NAME="SECTION00021000000000000000">
+2.1 Construction of N&#233;d&#233;lec elements on tetrahedral grids</A>
+</H2>
+<P>
+<FONT SIZE="-1">In this section, we denote by <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> the standard triangular or tetrahedral reference element.
+</FONT>
+<P>
+
+<H3><A NAME="SECTION00021100000000000000">
+2.1.1 Polynomial spaces on the reference element</A>
+</H3><FONT SIZE="-1">
+                       In [<A
+ HREF="node4.html#Ned1">8</A>], N&#233;d&#233;lec introduces the function spaces <!-- MATH
+ $\hat{R} = \mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="66" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img91.gif"
+ ALT="$ \hat{R} = \mathcal{R}^k$">, on which his finite element will be based. These spaces are subject to this
+                       section.
+                       For more details, consult [<A
+ HREF="node4.html#Ned1">8</A>].
+<BR>
+We denote by <!-- MATH
+ $\mathbb{P}_k(\hat{\Sigma})$
+ -->
+<IMG
+ WIDTH="51" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img92.gif"
+ ALT="$ \mathbb{P}_k(\hat{\Sigma})$"> the space of polynomials of degree <IMG
+ WIDTH="16" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img93.gif"
+ ALT="$ k$"> on <!-- MATH
+ $\hat{\Sigma}$
+ -->
+<IMG
+ WIDTH="19" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img94.gif"
+ ALT="$ \hat{\Sigma}$">, where <!-- MATH
+ $\hat{\Sigma}$
+ -->
+<IMG
+ WIDTH="19" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img94.gif"
+ ALT="$ \hat{\Sigma}$"> is an edge, a
+                       face of or the reference element itself.. The space <!-- MATH
+ $\tilde{\mathbb{P}}_k$
+ -->
+<IMG
+ WIDTH="25" HEIGHT="43" ALIGN="MIDDLE" BORDER="0"
+ SRC="img95.gif"
+ ALT="$ \tilde{\mathbb{P}}_k$"> of homogeneous 
+                       polynomials of degree <IMG
+ WIDTH="16" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img93.gif"
+ ALT="$ k$"> is the span of monomials of total degree <IMG
+ WIDTH="16" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img93.gif"
+ ALT="$ k$"> in <IMG
+ WIDTH="15" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img96.gif"
+ ALT="$ d$"> variables on <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$">. 
+</FONT>
+<P>
+<P>
+<DIV><B>D<SMALL>EFINITION</SMALL>  3</B> &nbsp; 
+We define the auxiliary space
+                               <P></P>
+<DIV ALIGN="CENTER"><A NAME="def:_space_Sk"></A><!-- MATH
+ \begin{equation}
+\mathcal{S}^k := \{\, \underline p \in (\tilde{\mathbb{P}}_k)^d : \underline p \cdot \hat{\underline x} = \sum_{i=1}^{d} p_i\,\hat{x}_i \equiv 0 \,\}\,,
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="317" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
+ SRC="img97.gif"
+ ALT="$\displaystyle \mathcal{S}^k := \{\, \underline p \in (\tilde{\mathbb{P}}_k)^d :...
+...ine p \cdot \hat{\underline x} = \sum_{i=1}^{d} p_i\,\hat{x}_i \equiv 0 \,\}\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(4)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+with <!-- MATH
+ $\hat{x} \in \hat{K}$
+ -->
+<IMG
+ WIDTH="54" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img98.gif"
+ ALT="$ \hat{x} \in \hat{K}$">.
+<BR>
+The dimension of this space is <IMG
+ WIDTH="16" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img93.gif"
+ ALT="$ k$"> in the case <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img13.gif"
+ ALT="$ d=2$"> and <IMG
+ WIDTH="69" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img99.gif"
+ ALT="$ k(k+2)$"> for <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img27.gif"
+ ALT="$ d=3$">.
+                       </DIV><P></P>
+
+<P>
+<FONT SIZE="-1">N&#233;d&#233;lec's first family of <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming finite elements is based on the polynomial spaces
+                       </FONT><P>
+<DIV><B>D<SMALL>EFINITION</SMALL>  4</B> &nbsp; 
+<P></P>
+<DIV ALIGN="CENTER"><A NAME="def:_space_Rk"></A><!-- MATH
+ \begin{equation}
+\mathcal{R}^k = \left(\mathbb{P}_{k-1}(\hat{K}) \right)^d \oplus \mathcal{S}^k\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="196" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img100.gif"
+ ALT="$\displaystyle \mathcal{R}^k = \left(\mathbb{P}_{k-1}(\hat{K}) \right)^d \oplus \mathcal{S}^k\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(5)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+These spaces have dimension 
+                               <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\begin{split}
+                                       \mathrm{dim} (\mathcal{R}^k) &= k(k+2) \qquad \textrm{for} \quad d=2\,, \\
+                                       \mathrm{dim} (\mathcal{R}^k) &= \frac{(k+3)(k+2)k}{2} \qquad \textrm{for} \quad d=3\,.
+                               \end{split}
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="446" HEIGHT="72" BORDER="0"
+ SRC="img101.gif"
+ ALT="\begin{displaymath}\begin{split}\mathrm{dim} (\mathcal{R}^k) &amp;= k(k+2) \qquad \t...
+...ac{(k+3)(k+2)k}{2} \qquad \textrm{for} \quad d=3\,. \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P></DIV><P></P>
+
+<P>
+<FONT SIZE="-1">In the two-dimensional case, an equivalent characterization of the space <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$"> is
+</FONT>
+<P>
+<P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_spaces_2d"></A><!-- MATH
+ \begin{equation}
+\mathcal{R}^k = \left(\mathbb{P}_{k-1}(\hat{K}) \right)^2 \oplus \tilde{\mathbb{P}}_{k-1}\, \left(\begin{array}{cc} \hat{x}_2 \\-\hat{x}_1
+                               \end{array}\right)\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="293" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img103.gif"
+ ALT="$\displaystyle \mathcal{R}^k = \left(\mathbb{P}_{k-1}(\hat{K}) \right)^2 \oplus ...
+..._{k-1}\, \left(\begin{array}{cc} \hat{x}_2 \\  -\hat{x}_1 \end{array}\right)\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(6)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+                       This can be seen by noting that for <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img13.gif"
+ ALT="$ d=2$"> 
+                       </FONT><!-- MATH
+ \begin{displaymath}
+\tilde{\mathbb{P}}_{k-1}\, \left(\begin{array}{cc} \hat{x}_2 \\-\hat{x}_1 \end{array}\right) \subseteq \mathcal{S}^k
+                               %%\left\{\v p\quad \big|\quad \v p = \tilde{p} \left(\begin{array}{cc} x_2 \\-x_1 \end{array}\right)\,,\, \tilde{p}
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="164" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img104.gif"
+ ALT="$\displaystyle \tilde{\mathbb{P}}_{k-1}\, \left(\begin{array}{cc} \hat{x}_2 \\  ...
+...ilde{p} \left(\begin{array}{cc} x_2 \\ -x_1 \end{array}\right)\,,\, \tilde{p}
+$">
+</DIV><P></P><FONT SIZE="-1"> 
+                       obviously holds.
+                       Moreover, the dimension of the space <!-- MATH
+ $\tilde{\mathbb{P}}_{k-1}$
+ -->
+<IMG
+ WIDTH="43" HEIGHT="43" ALIGN="MIDDLE" BORDER="0"
+ SRC="img105.gif"
+ ALT="$ \tilde{\mathbb{P}}_{k-1}$"> of homogeneous polynomials of degree <IMG
+ WIDTH="46" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img106.gif"
+ ALT="$ k-1$"> in two variables is <IMG
+ WIDTH="16" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img93.gif"
+ ALT="$ k$"> and this is
+                       also the dimension <!-- MATH
+ $\mathcal{S}^k$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img107.gif"
+ ALT="$ \mathcal{S}^k$">. This proves the stated equivalent representation of the space <!-- MATH
+ $\mathcal{S}^k$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img107.gif"
+ ALT="$ \mathcal{S}^k$">.
+<BR>                   
+<BR>
+We illustrate these definitions with some examples. We start with the case <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img13.gif"
+ ALT="$ d=2$"> and consider the spaces of polynomials of degree
+                       <IMG
+ WIDTH="48" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img108.gif"
+ ALT="$ k=1$"> and <IMG
+ WIDTH="48" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img109.gif"
+ ALT="$ k=2$">:
+</FONT>
+<P>
+<P>
+<DIV><B>E<SMALL>XAMPLE</SMALL>  1</B> &nbsp; 
+
+<P>
+<P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_R1"></A><!-- MATH
+ \begin{equation}
+\mathcal{R}^1 = \left\langle
+                                                               \left(\begin{array}{cc} 1 \\0 \end{array}\right)\,_,
+                                                               \left(\begin{array}{cc} 0 \\1 \end{array}\right)\,_,
+                                                               \left(\begin{array}{cc} \hat{x}_2 \\-\hat{x}_1 \end{array}\right) \right\rangle
+                                       
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="278" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img110.gif"
+ ALT="$\displaystyle \mathcal{R}^1 = \left\langle \left(\begin{array}{cc} 1 \\  0 \end...
+...eft(\begin{array}{cc} \hat{x}_2 \\  -\hat{x}_1 \end{array}\right) \right\rangle$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(7)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+
+<P>
+<!-- MATH
+ \begin{displaymath}
+\mathcal{R}^2 = \left(\mathbb{P}_{1}(\hat{K}) \right)^2 \oplus
+                                                       \left\langle 
+                                                               \left(\begin{array}{cc} \hat{x}_1\,\hat{x}_2 \\-{\hat{x}_1}^2 \end{array}\right)\,_,
+                                                               \left(\begin{array}{cc} {\hat{x}_2}^2 \\-\hat{x}_1\,\hat{x}_2 \end{array}\right)
+                                                       \right\rangle                                   
+                                       
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="361" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img111.gif"
+ ALT="$\displaystyle \mathcal{R}^2 = \left(\mathbb{P}_{1}(\hat{K}) \right)^2 \oplus
+\...
+...{cc} {\hat{x}_2}^2 \\  -\hat{x}_1\,\hat{x}_2 \end{array}\right)
+\right\rangle
+$">
+</DIV><P></P>
+
+<P>
+</DIV><P></P>
+
+<P>
+<FONT SIZE="-1">To illustrate a case for <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img27.gif"
+ ALT="$ d=3$">, we consider the lowest polynomial degree <IMG
+ WIDTH="48" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img108.gif"
+ ALT="$ k=1$">:
+                       </FONT><P>
+<DIV><B>E<SMALL>XAMPLE</SMALL>  2</B> &nbsp; 
+We have to specify a basis for <!-- MATH
+ $\mathcal{S}^1$
+ -->
+<IMG
+ WIDTH="26" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img112.gif"
+ ALT="$ \mathcal{S}^1$">:
+<BR>
+Let <!-- MATH
+ $\underline p$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img113.gif"
+ ALT="$ \underline p$"> be a polynomial in <!-- MATH
+ $(\mathbb{P}_{1}(\hat{K}))^3$
+ -->
+<IMG
+ WIDTH="75" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img114.gif"
+ ALT="$ (\mathbb{P}_{1}(\hat{K}))^3$"> with componentwise representation
+                               <!-- MATH
+ \begin{displaymath}
+p_i = \sum_{j=1}^3 a_{ij} \hat{x}_j\,, \qquad i=1,2,3\,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="234" HEIGHT="74" ALIGN="MIDDLE" BORDER="0"
+ SRC="img115.gif"
+ ALT="$\displaystyle p_i = \sum_{j=1}^3 a_{ij} \hat{x}_j\,, \qquad i=1,2,3\,.
+$">
+</DIV><P></P>
+The condition for <!-- MATH
+ $\underline p$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img113.gif"
+ ALT="$ \underline p$"> being in <!-- MATH
+ $\mathcal{S}^1$
+ -->
+<IMG
+ WIDTH="26" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img112.gif"
+ ALT="$ \mathcal{S}^1$"> is 
+                               <!-- MATH
+ \begin{displaymath}
+\underline p \cdot \hat{\underline x} =
+                                               \sum_{i=1}^3 a_{ii}\hat{x}_i^2 + \sum_{\substack{i,j=1 \\j>i}}^3 (a_{ij}+a_{ji})\hat{x}_i \hat{x}_j \equiv 0\,.
+                               
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="327" HEIGHT="86" ALIGN="MIDDLE" BORDER="0"
+ SRC="img116.gif"
+ ALT="$\displaystyle \underline p \cdot \hat{\underline x} =
+\sum_{i=1}^3 a_{ii}\hat{...
+...um_{\substack{i,j=1 \\  j&gt;i}}^3 (a_{ij}+a_{ji})\hat{x}_i \hat{x}_j \equiv 0\,.
+$">
+</DIV><P></P>
+This leads to the condition on the coefficients of a polynomial in <!-- MATH
+ $\mathcal{S}^1$
+ -->
+<IMG
+ WIDTH="26" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img112.gif"
+ ALT="$ \mathcal{S}^1$">:
+                               <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\begin{split}
+                                       &a_{11}=a_{22}=a_{33} = 0 \\
+                                       &a_{12}= - a_{21}\,,\quad a_{13}= - a_{31}\,,\quad a_{23}= - a_{32}\,.
+                               \end{split}
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="439" HEIGHT="55" BORDER="0"
+ SRC="img117.gif"
+ ALT="\begin{displaymath}\begin{split}&amp;a_{11}=a_{22}=a_{33} = 0 \\  &amp;a_{12}= - a_{21}\,,\quad a_{13}= - a_{31}\,,\quad a_{23}= - a_{32}\,. \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+
+<P>
+With the basis of <!-- MATH
+ $\mathcal{S}^1$
+ -->
+<IMG
+ WIDTH="26" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img112.gif"
+ ALT="$ \mathcal{S}^1$"> which is obtained by choosing <!-- MATH
+ $a_{ij} = 1$
+ -->
+<IMG
+ WIDTH="59" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img118.gif"
+ ALT="$ a_{ij} = 1$">, <IMG
+ WIDTH="77" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
+ SRC="img119.gif"
+ ALT="$ i=1,2,3$">, <IMG
+ WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
+ SRC="img120.gif"
+ ALT="$ j&gt;i$"> and setting all the other 
+                               coefficients to zero, we get
+                               <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\mathcal{R}^1 = \left(\mathbb{P}_{0}(\hat{K}) \right)^3 \oplus
+                                                                                                        \left\langle 
+                                                                                                               \left(\begin{array}{ccc} 0 \\\hat{x}_3 \\\hat{x}_2 \end{array}\right)\,_,\,
+                                                                                                               \left(\begin{array}{ccc} \hat{x}_3 \\0 \\\hat{x}_1 \end{array}\right)\,_,\,
+                                                                                                               \left(\begin{array}{ccc} \hat{x}_2 \\\hat{x}_1 \\0 \end{array}\right)
+                                                                                                               \right\rangle
+                               
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="402" HEIGHT="84" ALIGN="MIDDLE" BORDER="0"
+ SRC="img121.gif"
+ ALT="$\displaystyle \mathcal{R}^1 = \left(\mathbb{P}_{0}(\hat{K}) \right)^3 \oplus \l...
+...egin{array}{ccc} \hat{x}_2 \\  \hat{x}_1 \\  0 \end{array}\right) \right\rangle$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+
+<P>
+</DIV><P></P>
+
+<P>
+<FONT SIZE="-1">We remark at this point that the spaces <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$"> do not span the whole <!-- MATH
+ $(\mathbb{P}_{k}(\hat{K}) )^d$
+ -->
+<IMG
+ WIDTH="76" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img122.gif"
+ ALT="$ (\mathbb{P}_{k}(\hat{K}) )^d$">. 
+                       An <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming FEM based on full polynomial spaces, the so called 
+                       <I>N&#233;d&#233;lec elements of second type</I>, was introduced in 1986 by N&#233;d&#233;lec in [<A
+ HREF="node4.html#Ned2">10</A>].
+</FONT>
+<P>
+<P>
+<DIV><B>R<SMALL>EMARK</SMALL>  3</B> &nbsp; 
+The original, rather technical, representation of the spaces <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$"> is given in Definition 2 in [<A
+ HREF="node4.html#Ned1">8</A>]. 
+                               N&#233;d&#233;lec uses this representation in most of his proofs. We will not refer to it here.
+                       </DIV><P></P>
+
+<P>
+
+<H3><A NAME="SECTION00021200000000000000"></A>
+               <A NAME="subsubsect:_dofs_on_tria"></A>
+<BR>
+2.1.2 Degrees of freedom on the reference element
+</H3><FONT SIZE="-1">
+                       In this section we define the set <!-- MATH
+ $\mathcal{A}$
+ -->
+<IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img89.gif"
+ ALT="$ \mathcal{A}$"> of dofs, which is a set of linear functionals on <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$">.
+                       </FONT><P>
+<DIV><B>R<SMALL>EMARK</SMALL>  4</B> &nbsp; 
+Recall that the dimension of the spaces of polynomials of degree <IMG
+ WIDTH="16" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img93.gif"
+ ALT="$ k$"> in <IMG
+ WIDTH="17" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img123.gif"
+ ALT="$ n$"> variables is <!-- MATH
+ $n+k+2 \choose n$
+ -->
+<IMG
+ WIDTH="66" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img124.gif"
+ ALT="$ n+k+2 \choose n$">. 
+                       </DIV><P></P>
+
+<P>
+<P>
+<DIV><A NAME="def:_dofs_2d"><B>D<SMALL>EFINITION</SMALL>  5</B></A> &nbsp; 
+Let <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> be the reference triangle and <!-- MATH
+ $\hat{\underline t}$
+ -->
+<IMG
+ WIDTH="13" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img125.gif"
+ ALT="$ \hat{\underline t}$"> the tangent as defined in convention <A HREF="node1.html#def:_tangent">1</A>. 
+                               The set of degrees of freedom <!-- MATH
+ $\mathcal{A}$
+ -->
+<IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img89.gif"
+ ALT="$ \mathcal{A}$"> on <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$"> in the 2d case consists of the linear functionals
+                               <DL>
+<DT><STRONG>edge dofs</STRONG></DT>
+<DD><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s} \quad \forall \hat{\varphi }
+                                               \in \mathbb{P}_{k-1}(\hat{e})\,,
+                                       
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="288" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img126.gif"
+ ALT="$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underli...
+...arphi }\,d\hat{s} \quad \forall \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+for every edge <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img127.gif"
+ ALT="$ \hat{e}$"> of <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$">. We have a total of <IMG
+ WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img128.gif"
+ ALT="$ 3k$"> of edge dofs.
+
+<P>
+</DD>
+<DT><STRONG>inner dofs</STRONG></DT>
+<DD><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}(\hat{\underline u}) := \int_{\hat{K}} \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x} \quad \forall \hat{\underline \varphi }
+                                               \in (\mathbb{P}_{k-2}(\hat{K}))^2\,.
+                                       
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="305" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img129.gif"
+ ALT="$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{K}} \hat{\underlin...
+...x} \quad \forall \hat{\underline \varphi } \in (\mathbb{P}_{k-2}(\hat{K}))^2\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+We have a total of <IMG
+ WIDTH="69" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img130.gif"
+ ALT="$ k(k-1)$"> of inner dofs.
+
+<P>
+</DD>
+</DL></DIV><P></P>
+
+<P>
+<P>
+<DIV><A NAME="def:_dofs_3d"><B>D<SMALL>EFINITION</SMALL>  6</B></A> &nbsp; 
+Let <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> be the reference tetrahedron, <!-- MATH
+ $\hat{\underline t}$
+ -->
+<IMG
+ WIDTH="13" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img125.gif"
+ ALT="$ \hat{\underline t}$"> the tangent to an edge as defined in convention <A HREF="node1.html#def:_tangent">1</A> 
+                               and <!-- MATH
+ $\hat{\underline n}$
+ -->
+<IMG
+ WIDTH="17" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img131.gif"
+ ALT="$ \hat{\underline n}$"> the outward unit normal vector to a face. 
+                               The set of degrees of freedom <!-- MATH
+ $\mathcal{A}$
+ -->
+<IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img89.gif"
+ ALT="$ \mathcal{A}$"> on <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$"> in the 3d case consists of the linear functionals
+                               <DL>
+<DT><STRONG>edge dofs</STRONG></DT>
+<DD><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s} \quad \forall
+                                               \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,
+                                       
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="288" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img126.gif"
+ ALT="$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underli...
+...arphi }\,d\hat{s} \quad \forall \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+for every edge <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img127.gif"
+ ALT="$ \hat{e}$"> of the tetrahedron <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$">. We have a total of <IMG
+ WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img132.gif"
+ ALT="$ 6k$"> of edge dofs.
+
+<P>
+</DD>
+<DT><STRONG>face dofs</STRONG></DT>
+<DD><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}(\hat{\underline u}) := \int_{\hat{f}} (\hat{\underline u}\wedge \hat{\underline n})\cdot \hat{\underline \varphi }\,d\hat{a} \quad
+                                               \forall \hat{\varphi } \in (\mathbb{P}_{k-2}(\hat{f}) )^2\,,
+                                       
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="335" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img133.gif"
+ ALT="$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{f}} (\hat{\underli...
+... }\,d\hat{a} \quad \forall \hat{\varphi } \in (\mathbb{P}_{k-2}(\hat{f}) )^2\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+for every face <IMG
+ WIDTH="17" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img134.gif"
+ ALT="$ \hat{f}$"> of the tetrahedron <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$">. We have a total of <IMG
+ WIDTH="78" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img135.gif"
+ ALT="$ 4k(k-1)$"> of face dofs.
+
+<P>
+</DD>
+<DT><STRONG>inner dofs</STRONG></DT>
+<DD><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}(\hat{\underline u}) := \int_{\hat{K}} \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x} \quad
+                                               \forall \hat{\underline \varphi } \in (\mathbb{P}_{k-3}(\hat{K}))^3\,.
+                                       
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="305" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img136.gif"
+ ALT="$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{K}} \hat{\underlin...
+...x} \quad \forall \hat{\underline \varphi } \in (\mathbb{P}_{k-3}(\hat{K}))^3\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+We have a total of <!-- MATH
+ $\frac{k(k-1)(k-2)}{2}$
+ -->
+<IMG
+ WIDTH="88" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
+ SRC="img137.gif"
+ ALT="$ \frac{k(k-1)(k-2)}{2}$"> of inner dofs.
+                               
+</DD>
+</DL></DIV><P></P>
+
+<P>
+<FONT SIZE="-1">We note that in the case of lowest order elements, i.&nbsp;e. <IMG
+ WIDTH="48" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img108.gif"
+ ALT="$ k=1$">, only edge dofs occur. This is not so for higher order elements. For
+                       <IMG
+ WIDTH="48" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img109.gif"
+ ALT="$ k=2$"> we additionally have inner dofs in the 2d case and face dofs in the 3d case. For <IMG
+ WIDTH="48" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img138.gif"
+ ALT="$ k\leq3$"> we have all types of dofs in both
+                       cases.
+<BR>
+We also note that the total number of dofs equals the dimension of the spaces <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$">, as it should be.
+<BR>
+The representation of the <I>interface</I> dofs, that is edge dofs in 2d, edge and face dofs in 3d, is motivated by the continuity
+                       condition on <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-functions stated in proposition <A HREF="node1.html#prop:_no_jumps">1</A>.
+</FONT>
+<P>
+<P>
+<DIV><B>P<SMALL>ROPOSITION</SMALL>  2</B> &nbsp; 
+The set <!-- MATH
+ $\mathcal{A}$
+ -->
+<IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img89.gif"
+ ALT="$ \mathcal{A}$"> of dofs befined above is unisolvent on <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$">. 
+                               <!-- MATH
+ $\hat{\underline u}\in \mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="61" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img139.gif"
+ ALT="$ \hat{\underline u}\in \mathcal{R}^k$"> is uniquely defined by the moments <!-- MATH
+ $\hat{\alpha}(\hat{\underline u})$
+ -->
+<IMG
+ WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img140.gif"
+ ALT="$ \hat{\alpha}(\hat{\underline u})$">.
+                       </DIV><P></P>
+<FONT SIZE="-1">
+                       </FONT><FONT SIZE="-1">P<SMALL>ROOF. </SMALL>See [<A
+ HREF="node4.html#Ned1">8</A>], proof of theorem 1 and preceeding lemmas.
+</FONT>
+<P>
+<P>
+<DIV><A NAME="ex:_shape_functions"><B>E<SMALL>XAMPLE</SMALL>  3</B></A> (Reference shape functions of lowest order for N&#233;d&#233;lec elements on triangular meshes)  &nbsp; 
+Let the reference element be the triangle 
+                               <!-- MATH
+ $\hat{K} = \left\{ (\hat{x},\hat{y})\in\mathbb{R}^2:\quad 0\leq \hat{x}\leq 1\,,\,\, 0\leq \hat{y}\leq 1-\hat{x} \right\}$
+ -->
+<IMG
+ WIDTH="374" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img141.gif"
+ ALT="$ \hat{K} = \left\{ (\hat{x},\hat{y})\in\mathbb{R}^2:\quad 0\leq \hat{x}\leq 1\,,\,\, 0\leq \hat{y}\leq 1-\hat{x} \right\}$">.
+                               Label the edges couterclockwise startung with <!-- MATH
+ $\hat{e}_0 = \overline{(0,0),(1,0)}$
+ -->
+<IMG
+ WIDTH="131" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img142.gif"
+ ALT="$ \hat{e}_0 = \overline{(0,0),(1,0)}$">. 
+                               The tangential vectors to the edges are (oriented counterclockwise)
+                               <!-- MATH
+ \begin{displaymath}
+\hat{\underline t}_0 = \left(\begin{array}{cc} 1 \\0 \end{array}\right)\,,\quad
+                                       \hat{\underline t}_1 = \frac{1}{\sqrt{2}}\left(\begin{array}{cc} -1 \\1 \end{array}\right)\,,\quad
+                                       \hat{\underline t}_2 = \left(\begin{array}{cc} 0 \\-1 \end{array}\right)\,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="398" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img143.gif"
+ ALT="$\displaystyle \hat{\underline t}_0 = \left(\begin{array}{cc} 1 \\  0 \end{array...
+...
+\hat{\underline t}_2 = \left(\begin{array}{cc} 0 \\  -1 \end{array}\right)\,.
+$">
+</DIV><P></P>
+The underlying function space for lowest order N&#233;d&#233;lec elements on a triangular mesh is <!-- MATH
+ $\mathcal{R}^1$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img144.gif"
+ ALT="$ \mathcal{R}^1$"> from (<A HREF="#eq:_____R1"><IMG  ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.gif"></A>).
+<BR>
+In the case of <IMG
+ WIDTH="48" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img108.gif"
+ ALT="$ k=1$"> only egde-dofs occur. On <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> we have dofs of the type
+                               <!-- MATH
+ $\int_{\hat{e}_i} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s}\,, \forall \hat{\varphi } \in \mathbb{P}_{0}(\hat{e}_i)$
+ -->
+<IMG
+ WIDTH="202" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img145.gif"
+ ALT="$ \int_{\hat{e}_i} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s}\,, \forall \hat{\varphi } \in \mathbb{P}_{0}(\hat{e}_i)$">. 
+                               More precisely, since <!-- MATH
+ $\varphi \equiv 1$
+ -->
+<IMG
+ WIDTH="50" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img146.gif"
+ ALT="$ \varphi \equiv 1$"> is a basis for <!-- MATH
+ $\mathbb{P}_{0}(\hat{e}_i)$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img147.gif"
+ ALT="$ \mathbb{P}_{0}(\hat{e}_i)$"> we have the three dofs
+                               <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}_i(\hat{\underline u}) = \int_{\hat{e}_i} (\hat{\underline t}\cdot \hat{\underline u})\,d\hat{s} \quad i=0,1,2\,.
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="250" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img148.gif"
+ ALT="$\displaystyle \hat{\alpha}_i(\hat{\underline u}) = \int_{\hat{e}_i} (\hat{\underline t}\cdot \hat{\underline u})\,d\hat{s} \quad i=0,1,2\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+In order to construct a FE-basis <!-- MATH
+ $\hat{\underline N}_0,\hat{\underline N}_1,\hat{\underline N}_2$
+ -->
+<IMG
+ WIDTH="92" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img149.gif"
+ ALT="$ \hat{\underline N}_0,\hat{\underline N}_1,\hat{\underline N}_2$"> for <!-- MATH
+ $\mathcal{R}^1$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img144.gif"
+ ALT="$ \mathcal{R}^1$"> with respect to these dofs, we require
+                               <!-- MATH
+ $\hat{\alpha}_i(\hat{\underline N}_j) = \delta_{ij}$
+ -->
+<IMG
+ WIDTH="102" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img150.gif"
+ ALT="$ \hat{\alpha}_i(\hat{\underline N}_j) = \delta_{ij}$">. This leads to a linear system for
+                               the coefficients of the <!-- MATH
+ $\hat{\underline N}_i$
+ -->
+<IMG
+ WIDTH="28" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img151.gif"
+ ALT="$ \hat{\underline N}_i$"> in a general basis of <!-- MATH
+ $\mathcal{R}^1$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img144.gif"
+ ALT="$ \mathcal{R}^1$">. In the case of lowest order elements, it is easy to
+                               verify that we have
+                               <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation}
+\hat{\underline N}_0 = \left(\begin{array}{cc} 1-\hat{y} \\\hat{x} \end{array}\right)\,,\quad
+                                       \hat{\underline N}_1 = \left(\begin{array}{cc} -\hat{y} \\\hat{x} \end{array}\right)\,,\quad
+                                       \hat{\underline N}_2 = \left(\begin{array}{cc} -\hat{y} \\\hat{x}-1 \end{array}\right)\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="446" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img152.gif"
+ ALT="$\displaystyle \hat{\underline N}_0 = \left(\begin{array}{cc} 1-\hat{y} \\  \hat...
+...ine N}_2 = \left(\begin{array}{cc} -\hat{y} \\  \hat{x}-1 \end{array}\right)\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(8)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P></DIV><P></P>
+
+<P>
+
+<H3><A NAME="SECTION00021300000000000000"></A> <A NAME="sec:_Piola_for_triangles"></A>
+<BR>
+2.1.3 Piola transformation
+</H3><FONT SIZE="-1">
+                               An affine triangle or tetrahedron <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$"> is described by the affine element map
+                               </FONT><!-- MATH
+ \begin{displaymath}
+K \ni x = F_K(\hat{x}) = B_K \hat{x} + b_K
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="226" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img153.gif"
+ ALT="$\displaystyle K \ni x = F_K(\hat{x}) = B_K \hat{x} + b_K
+$">
+</DIV><P></P>
+<P>
+<FONT SIZE="-1">In standard <!-- MATH
+ $H^1(\Omega )$
+ -->
+<IMG
+ WIDTH="56" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img37.gif"
+ ALT="$ H^1(\Omega )$">-conforming FEM, the shape functions <IMG
+ WIDTH="26" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img154.gif"
+ ALT="$ N_i$"> on a general cell <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$"> are obtained from the reference shape functions 
+                               <IMG
+ WIDTH="26" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img155.gif"
+ ALT="$ \hat{N}_i$"> on the reference element <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> by the pull-back
+                               </FONT><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+N_i(x) = \left( \hat{N}_i \circ F_K^{-1} \right)(x)
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="187" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
+ SRC="img156.gif"
+ ALT="$\displaystyle N_i(x) = \left( \hat{N}_i \circ F_K^{-1} \right)(x)$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+                               In the case of <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming N&#233;d&#233;lec FEM we cannot transforme our shape function in this way. The pull-back of a 
+                               <!-- MATH
+ $H(\mathop{\rm curl};\hat{K})$
+ -->
+<IMG
+ WIDTH="89" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img157.gif"
+ ALT="$ H(\mathop{\rm curl};\hat{K})$">-function needs not to be in <!-- MATH
+ $H(\mathop{\rm curl}; K)$
+ -->
+<IMG
+ WIDTH="89" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img158.gif"
+ ALT="$ H(\mathop{\rm curl}; K)$">. In addition, the pull-back is not an <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$">-isomorphism and it
+                               does not lead to an <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming method if prescribing the dofs by definitions <A HREF="node2.html#def:_dofs_2d">5</A> or <A HREF="#def:_dofs_____3d"><IMG  ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.gif"></A>.
+<BR>
+In N&#233;d&#233;lec's FEM (or, more general, in <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming FEM), the shape functions are transformed by the following covariant 
+                               transformation for vector-fields:
+</FONT>
+<P>
+<DL COMPACT>
+<DT></DT>
+<DD>The element shape functions <!-- MATH
+ $\underline N_i(x)$
+ -->
+<IMG
+ WIDTH="51" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img159.gif"
+ ALT="$ \underline N_i(x)$"> on the element <!-- MATH
+ $K = F_K(\hat{K})$
+ -->
+<IMG
+ WIDTH="100" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img83.gif"
+ ALT="$ K = F_K(\hat{K})$"> are obtained 
+                                       from the reference shape functions by
+                                       <P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_Piola"></A><!-- MATH
+ \begin{equation}
+\underline N_i(x) = \mathcal{P}_K (\hat{\underline N}_i) =  \left(\hat{D}F_K^{-T} \hat{\underline N}_i\right) \circ F_K^{-1} (x)\,,
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="329" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
+ SRC="img160.gif"
+ ALT="$\displaystyle \underline N_i(x) = \mathcal{P}_K (\hat{\underline N}_i) = \left(\hat{D}F_K^{-T} \hat{\underline N}_i\right) \circ F_K^{-1} (x)\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(9)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+where <!-- MATH
+ $\hat{D}F_K$
+ -->
+<IMG
+ WIDTH="46" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img161.gif"
+ ALT="$ \hat{D}F_K$"> is the jacobian <!-- MATH
+ $\frac{d}{d\hat{x}}F_K(\hat{x})$
+ -->
+<IMG
+ WIDTH="73" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img162.gif"
+ ALT="$ \frac{d}{d\hat{x}}F_K(\hat{x})$"> of the element map.
+                               
+</DD>
+</DL>
+<P>
+<FONT SIZE="-1">In literature, an equivalent to this transformation for <!-- MATH
+ $H(\mathop{\rm div}; \Omega )$
+ -->
+<IMG
+ WIDTH="80" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img163.gif"
+ ALT="$ H(\mathop{\rm div}; \Omega )$">-conforming FEM (which in that case is a contravariant map) 
+                               is referred to as <I>Piola transformation</I>, cf. [<A
+ HREF="node4.html#Brezzi-Fortin">3</A>] pp.&nbsp;97. 
+<BR>
+Here, we will refer to the transformation (<A HREF="node2.html#eq:_Piola">9</A>) of the vector field also as <I>Piola transformation</I>.
+<BR>
+We note that the gradients of scalar nodal <!-- MATH
+ $H^1(\Omega )$
+ -->
+<IMG
+ WIDTH="56" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img37.gif"
+ ALT="$ H^1(\Omega )$">-conforming finite elements transform according to the Piola
+                               transformation (<A HREF="node2.html#eq:_Piola">9</A>).
+</FONT>
+<P>
+<FONT SIZE="-1">In the case of tetrahedral elements and affine element map <!-- MATH
+ $F_K(\hat{x}) = B_K \hat{x} + b_k$
+ -->
+<IMG
+ WIDTH="151" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img164.gif"
+ ALT="$ F_K(\hat{x}) = B_K \hat{x} + b_k$">, the jacobian <!-- MATH
+ $\hat{D}F_K$
+ -->
+<IMG
+ WIDTH="46" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img161.gif"
+ ALT="$ \hat{D}F_K$"> 
+                               is just the constant matrix <IMG
+ WIDTH="33" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img165.gif"
+ ALT="$ B_K$"> and we have 
+                               </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_Piola_tri"></A><!-- MATH
+ \begin{equation}
+\underline v(x) = \mathcal{P}_K (\hat{\underline v}) =  B_K^{-T} \left(\hat{\underline v} \circ F_K^{-1} \right)(x)\,,
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="279" HEIGHT="43" ALIGN="MIDDLE" BORDER="0"
+ SRC="img166.gif"
+ ALT="$\displaystyle \underline v(x) = \mathcal{P}_K (\hat{\underline v}) = B_K^{-T} \left(\hat{\underline v} \circ F_K^{-1} \right)(x)\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(10)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+<P>
+
+<H3><A NAME="SECTION00021400000000000000"></A>
+                               <A NAME="subsubsect:_2d-curl_on_tria"></A>
+<BR>
+2.1.4 Transformation of the curl in 2d
+</H3><FONT SIZE="-1">
+                               For <!-- MATH
+ $\Omega \subset\mathbb{R}^2$
+ -->
+<IMG
+ WIDTH="62" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img167.gif"
+ ALT="$ \Omega \subset\mathbb{R}^2$">, we noted in remark <A HREF="node1.html#re:_rotation">1</A> that vector fields in <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$"> can be represented as
+                           rotated <!-- MATH
+ $H(\mathop{\rm div}; \Omega )$
+ -->
+<IMG
+ WIDTH="80" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img163.gif"
+ ALT="$ H(\mathop{\rm div}; \Omega )$"> vector fields. 
+                               Moreover, it is easy to verify that
+                               </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_rot._jacobian"></A><!-- MATH
+ \begin{equation}
+B_K^{-T} = \det B_K^{-1}\,R^T B_K\,R \,,
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="201" HEIGHT="43" ALIGN="MIDDLE" BORDER="0"
+ SRC="img168.gif"
+ ALT="$\displaystyle B_K^{-T} = \det B_K^{-1}\,R^T B_K\,R \,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(11)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+                               where <IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img169.gif"
+ ALT="$ R$"> is the rotation matrix from remark <A HREF="node1.html#re:_rotation">1</A>.
+                               Therefore, the properties of the Piola transformation (<A HREF="node2.html#eq:_Piola_tri">10</A>) in the 2d case can be derived directly
+                               from the properties 
+                               of the <!-- MATH
+ $H(\mathop{\rm div}; \Omega )$
+ -->
+<IMG
+ WIDTH="80" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img163.gif"
+ ALT="$ H(\mathop{\rm div}; \Omega )$">-Piola transformation stated in [<A
+ HREF="node4.html#Brezzi-Fortin">3</A>] pp.&nbsp;97.
+</FONT>
+<P>
+<P>
+<DIV><A NAME="th:_piola_2d"><B>T<SMALL>HEOREM</SMALL>  4</B></A> (Some properties of 2d Piola transformation for affine element map)  &nbsp; 
+Let <!-- MATH
+ $\underline v(x) = \mathcal{P}_K(\hat{\underline v})$
+ -->
+<IMG
+ WIDTH="110" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img170.gif"
+ ALT="$ \underline v(x) = \mathcal{P}_K(\hat{\underline v})$">, <!-- MATH
+ $\varphi (x) = \left( \hat{\varphi }\circ F_K^{-1} \right)(x)$
+ -->
+<IMG
+ WIDTH="166" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img171.gif"
+ ALT="$ \varphi (x) = \left( \hat{\varphi }\circ F_K^{-1} \right)(x)$">, <!-- MATH
+ $\hat{x} =
+F_K^{-1}(x)$
+ -->
+<IMG
+ WIDTH="95" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img172.gif"
+ ALT="$ \hat{x} =
+F_K^{-1}(x)$">, with  affine element map <IMG
+ WIDTH="31" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img173.gif"
+ ALT="$ F_K$">.
+                                       <DL COMPACT>
+<DT>(i)</DT>
+<DD>The gradient <!-- MATH
+ $D\underline v$
+ -->
+<IMG
+ WIDTH="30" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img174.gif"
+ ALT="$ D\underline v$"> transforms according to
+                                               <P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_gradient_trafo_2d"></A><!-- MATH
+ \begin{equation}
+D\underline v = B_K^{-T}\, \hat{D}\hat{\underline v}\, B_K^{-1}\, .
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="159" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img175.gif"
+ ALT="$\displaystyle D\underline v = B_K^{-T}\, \hat{D}\hat{\underline v}\, B_K^{-1}\, .$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(12)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+                                               
+</DD>
+<DT>(ii)</DT>
+<DD>The curl transforms according to
+                                                       <P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:curl_trafo_2d"></A><!-- MATH
+ \begin{equation}
+\mathop{\rm curl}\underline v = \det B_K^{-1} \widehat{\mathop{\rm curl}} \hat{\underline v}\, .
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="176" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
+ SRC="img176.gif"
+ ALT="$\displaystyle \mathop{\rm curl}\underline v = \det B_K^{-1} \widehat{\mathop{\rm curl}} \hat{\underline v}\, .$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(13)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+As a consequence we see that <!-- MATH
+ $H(\mathop{\rm curl};K)$
+ -->
+<IMG
+ WIDTH="89" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img158.gif"
+ ALT="$ H(\mathop{\rm curl}; K)$"> is isomorphic to <!-- MATH
+ $H(\mathop{\rm curl};\hat{K})$
+ -->
+<IMG
+ WIDTH="89" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img157.gif"
+ ALT="$ H(\mathop{\rm curl};\hat{K})$"> under the Piola transformation
+                                                       (<A HREF="node2.html#eq:_Piola_tri">10</A>).
+                                       
+</DD>
+</DL></DIV><P></P>
+
+<P>
+<FONT SIZE="-1">P<SMALL>ROOF. </SMALL>
+                                       </FONT><DL COMPACT>
+<DT>(i)</DT>
+<DD>Chain rule
+                                       
+</DD>
+<DT>(ii)</DT>
+<DD>We use that the 2d <!-- MATH
+ $\mathop{\rm curl}$
+ -->
+<IMG
+ WIDTH="36" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img19.gif"
+ ALT="$ \mathop{\rm curl}$"> operator is just the trace of the rotated jacobian <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img177.gif"
+ ALT="$ R\,Dv$">. By remark <A HREF="node2.html#eq:_rot._jacobian">11</A>,
+                                               we can replace <IMG
+ WIDTH="42" HEIGHT="43" ALIGN="MIDDLE" BORDER="0"
+ SRC="img178.gif"
+ ALT="$ B_K^{-T}$"> and we get that <IMG
+ WIDTH="47" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img177.gif"
+ ALT="$ R\,Dv$"> is affine-equivalent to  <!-- MATH
+ $\det B_K^{-1}\,R\,\hat{D}\hat{v}$
+ -->
+<IMG
+ WIDTH="109" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img179.gif"
+ ALT="$ \det B_K^{-1}\,R\,\hat{D}\hat{v}$">,
+                                               which proves (ii).
+                                       
+</DD>
+</DL><FONT SIZE="-1">
+                               
+</FONT>
+<P>
+<P>
+<DIV><B>C<SMALL>OROLLARY</SMALL>  1</B> &nbsp; 
+From (ii) in theorem <A HREF="node2.html#th:_piola_2d">4</A> we deduce
+                                       <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\int_{K} \mathop{\rm curl}\underline v\, \varphi \, dx = \int_{\hat{K}} \widehat{\mathop{\rm curl}}\hat{\underline v}\, \hat{\varphi } \,d\hat{x}\,,
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="240" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img180.gif"
+ ALT="$\displaystyle \int_{K} \mathop{\rm curl}\underline v\, \varphi \, dx = \int_{\h...
+...}} \widehat{\mathop{\rm curl}}\hat{\underline v}\, \hat{\varphi } \,d\hat{x}\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+and we have, together with (ii) from theorem <A HREF="node2.html#th:_piola_2d">4</A>
+                                       <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\int_{K} \mathop{\rm curl}\underline v\, \mathop{\rm curl}\underline u \, dx = | B_K |^{-1}\,\int_{\hat{K}} \widehat{\mathop{\rm curl}}\hat{\underline v}\,
+                                               \widehat{\mathop{\rm curl}}\hat{\underline u}  \,d\hat{x}\,.
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="362" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img181.gif"
+ ALT="$\displaystyle \int_{K} \mathop{\rm curl}\underline v\, \mathop{\rm curl}\underl...
+...hat{\underline v}\, \widehat{\mathop{\rm curl}}\hat{\underline u} \,d\hat{x}\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P></DIV><P></P>
+
+<P>
+<FONT SIZE="-1"></FONT>
+<P>
+
+<H3><A NAME="SECTION00021500000000000000"></A>
+<A NAME="subsubsect:_3d-curl_on_tria"></A>
+<BR>
+2.1.5 Transformation of the curl in 3d
+</H3><FONT SIZE="-1">
+       In three dimensions, we cannot identify the curl-operator with the rotated
+       gradient or with the divergence of a rotated vector field. We cannot, as in 2d, derive a transformation formula for the curl from the
+       transformatin formula of the divergence.
+<BR>
+By the chain rule, we obtain the transformation of the gradient of a vector field <!-- MATH
+ $\underline v$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img20.gif"
+ ALT="$ \underline v$">, defined by the Piola transformation (<A HREF="#eq:__Piola_tri"><IMG  ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.gif"></A>) of a reference field <!-- MATH
+ $\hat{\underline v}$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img182.gif"
+ ALT="$ \hat{\underline v}$">:
+       </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_trafo_grad_3d"></A><!-- MATH
+ \begin{equation}
+D\underline v = B_K^{-T}\, \hat{D}\hat{\underline v}\, B_K^{-1}\, .
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="159" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img175.gif"
+ ALT="$\displaystyle D\underline v = B_K^{-T}\, \hat{D}\hat{\underline v}\, B_K^{-1}\, .$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(14)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+<P>
+<FONT SIZE="-1">We introduce the skew symmetric matrix <!-- MATH
+ $\mathop{\rm Curl}v$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img183.gif"
+ ALT="$ \mathop{\rm Curl}v$"> as 
+        </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_Curl"></A><!-- MATH
+ \begin{equation}
+\left({\mathop{\rm Curl}v}\right)_{ij} = \frac{\partial v_j}{\partial x_i} - \frac{\partial v_i}{\partial x_j}
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="183" HEIGHT="59" ALIGN="MIDDLE" BORDER="0"
+ SRC="img184.gif"
+ ALT="$\displaystyle \left({\mathop{\rm Curl}v}\right)_{ij} = \frac{\partial v_j}{\partial x_i} - \frac{\partial v_i}{\partial x_j}$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(15)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+<P>
+<FONT SIZE="-1">We see that <!-- MATH
+ $\mathop{\rm Curl}v = D\underline v^T - D\underline v$
+ -->
+<IMG
+ WIDTH="155" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img185.gif"
+ ALT="$ \mathop{\rm Curl}v = D\underline v^T - D\underline v$"> and therefore by (<A HREF="node2.html#eq:_trafo_grad_3d">14</A>)
+        </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_Curl_trafo"></A><!-- MATH
+ \begin{equation}
+\mathop{\rm Curl}v = B_K^{-T} \widehat{\mathop{\rm Curl}}\,\hat{v} \,B_K^{-1}
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="192" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
+ SRC="img186.gif"
+ ALT="$\displaystyle \mathop{\rm Curl}v = B_K^{-T} \widehat{\mathop{\rm Curl}}\,\hat{v} \,B_K^{-1}$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(16)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+<P>
+<P>
+<DIV><B>P<SMALL>ROPOSITION</SMALL>  3</B> (Transformation of the curl in 3d)  &nbsp; 
+Let <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> be the reference tetrahedron and <!-- MATH
+ $K=F_K(\hat{K})$
+ -->
+<IMG
+ WIDTH="100" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img83.gif"
+ ALT="$ K = F_K(\hat{K})$"> an affine image of it.
+               The curl of a vector field <!-- MATH
+ $\underline v(x)$
+ -->
+<IMG
+ WIDTH="39" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img187.gif"
+ ALT="$ \underline v(x)$"> on <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$">, defined by the Piola transformation of a reference field <!-- MATH
+ $\hat{\underline v}(\hat{x})$
+ -->
+<IMG
+ WIDTH="39" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img188.gif"
+ ALT="$ \hat{\underline v}(\hat{x})$">
+               transforms according to
+               <P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_curl_trafo_3d"></A><!-- MATH
+ \begin{equation}
+\left(\mathop{\rm curl}\underline v\right)_i(x) = \det \mathrm{M_i}(x) \,, \qquad i= 1,2,3\,
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="307" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img189.gif"
+ ALT="$\displaystyle \left(\mathop{\rm curl}\underline v\right)_i(x) = \det \mathrm{M_i}(x) \,, \qquad i= 1,2,3\,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(17)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+We obtain the matrix <!-- MATH
+ $\mathrm{M_i}$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img190.gif"
+ ALT="$ \mathrm{M_i}$"> by replacing i-th column of the (constant) jacobian <!-- MATH
+ $D(F_K^{-1}) = B_K^{-1}$
+ -->
+<IMG
+ WIDTH="122" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img191.gif"
+ ALT="$ D(F_K^{-1}) = B_K^{-1}$"> 
+               by the vector <!-- MATH
+ $(\widehat{\mathop{\rm curl}}\,\hat{\underline v}\circ F_K^{-1})(x)$
+ -->
+<IMG
+ WIDTH="133" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
+ SRC="img192.gif"
+ ALT="$ (\widehat{\mathop{\rm curl}}\,\hat{\underline v}\circ F_K^{-1})(x)$">:
+               <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\left(\mathrm{M_i}\right)_{kl}(x) := \left\{ \begin{array}{ll}
+                                                                                                                               (\widehat{\mathop{\rm curl}}\,\hat{v} \circ F_K^{-1})_k (x) & \textrm{if} \quad l=i \\
+                                                                                                                               (B_K^{-1})_{kl} & \textrm{if} \quad l\neq i
+                                                                                               \end{array} \right.
+               
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="351" HEIGHT="66" ALIGN="MIDDLE" BORDER="0"
+ SRC="img193.gif"
+ ALT="$\displaystyle \left(\mathrm{M_i}\right)_{kl}(x) := \left\{ \begin{array}{ll} (\...
+...} \quad l=i \\  (B_K^{-1})_{kl} &amp; \textrm{if} \quad l\neq i \end{array} \right.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+               (Note: an alternative, equivalent, transformation formula for the curl in 3d is given in proposition <A HREF="node2.html#prop:_Demko_curl">4</A>).
+        </DIV><P></P>
+
+<P>
+<FONT SIZE="-1">P<SMALL>ROOF. </SMALL>
+               It holds
+               </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_curl2Curl"></A><!-- MATH
+ \begin{equation}
+\mathop{\rm curl}\underline v = \left( \begin{array}{ccc} ({\mathop{\rm Curl}v})_{23} \\({\mathop{\rm Curl}v})_{31}  \\({\mathop{\rm Curl}v})_{12} \end{array}\right)\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="202" HEIGHT="84" ALIGN="MIDDLE" BORDER="0"
+ SRC="img194.gif"
+ ALT="$\displaystyle \mathop{\rm curl}\underline v = \left( \begin{array}{ccc} ({\math...
+...\mathop{\rm Curl}v})_{31} \\  ({\mathop{\rm Curl}v})_{12} \end{array}\right)\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(18)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+               We demonstrate the statement of the proposition for the first component of the curl, which is <!-- MATH
+ $(\mathop{\rm curl}\underline v)_1 = {\mathop{\rm Curl}v}_{23}$
+ -->
+<IMG
+ WIDTH="152" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img195.gif"
+ ALT="$ (\mathop{\rm curl}\underline v)_1 = {\mathop{\rm Curl}v}_{23}$">. 
+               Using the transformation (<A HREF="node2.html#eq:_Curl_trafo">16</A>), implicit summation over equal indices and the 
+               abbreviation <!-- MATH
+ $b_{ij} := (B_K^{-1})_{ij}$
+ -->
+<IMG
+ WIDTH="111" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img196.gif"
+ ALT="$ b_{ij} := (B_K^{-1})_{ij}$">, we have
+               </FONT><!-- MATH
+ \begin{displaymath}
+({\mathop{\rm Curl}v})_{23} = b_{k2}\, (\widehat{\mathop{\rm Curl}}\, \hat{v})_{kl}\,b_{l3}
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="223" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
+ SRC="img197.gif"
+ ALT="$\displaystyle ({\mathop{\rm Curl}v})_{23} = b_{k2}\, (\widehat{\mathop{\rm Curl}}\, \hat{v})_{kl}\,b_{l3}
+$">
+</DIV><P></P><FONT SIZE="-1">
+               Writing this out and recalling that <!-- MATH
+ $\mathop{\rm Curl}v$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img183.gif"
+ ALT="$ \mathop{\rm Curl}v$"> is skew symmetric, yields
+               </FONT><!-- MATH
+ \begin{displaymath}
+({\mathop{\rm Curl}v})_{23} = (b_{12}b_{23} - b_{22}b_{13})(\widehat{\mathop{\rm Curl}} \,\hat{v})_{12}
+                                                       -(b_{12}b_{33} - b_{32}b_{13})(\widehat{\mathop{\rm Curl}}\, \hat{v})_{31}
+                                                       +(b_{22}b_{33} - b_{32}b_{23})(\widehat{\mathop{\rm Curl}}\, \hat{v})_{23}\,,
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="739" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img198.gif"
+ ALT="$\displaystyle ({\mathop{\rm Curl}v})_{23} = (b_{12}b_{23} - b_{22}b_{13})(\wide...
+...
++(b_{22}b_{33} - b_{32}b_{23})(\widehat{\mathop{\rm Curl}}\, \hat{v})_{23}\,,
+$">
+</DIV><P></P><FONT SIZE="-1">
+               and with (<A HREF="node2.html#eq:_curl2Curl">18</A>) this is equal to the determinant of 
+               </FONT><!-- MATH
+ \begin{displaymath}
+\mathrm{M_1} := \left(\begin{array}{ccc} (\widehat{\mathop{\rm curl}}\, v)_1 & b_{12} & b_{13} \\
+                                                                        (\widehat{\mathop{\rm curl}}\, v)_2 & b_{22} & b_{23} \\
+                                                                        (\widehat{\mathop{\rm curl}}\, v)_3 & b_{32} & b_{33}
+                                                       \end{array}\right) \,.
+               
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="253" HEIGHT="93" ALIGN="MIDDLE" BORDER="0"
+ SRC="img199.gif"
+ ALT="$\displaystyle \mathrm{M_1} := \left(\begin{array}{ccc} (\widehat{\mathop{\rm cu...
+...
+(\widehat{\mathop{\rm curl}}\, v)_3 &amp; b_{32} &amp; b_{33}
+\end{array}\right) \,.
+$">
+</DIV><P></P><FONT SIZE="-1">
+               The proof for the other components follows analogously.
+       
+</FONT>
+<P>
+<FONT SIZE="-1">In the next proposition, we state an alternative, equivalent, formula for the transformation of the curl 
+       (e.&nbsp;g.&nbsp;used by Demkovicz in [<A
+ HREF="node4.html#Demko3d">12</A>]) 
+       </FONT><P>
+<DIV><A NAME="prop:_Demko_curl"><B>P<SMALL>ROPOSITION</SMALL>  4</B></A> &nbsp; 
+For a vector field <!-- MATH
+ $\underline v$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img20.gif"
+ ALT="$ \underline v$"> on the tetrahedron <!-- MATH
+ $K=F_K(\hat{K})$
+ -->
+<IMG
+ WIDTH="100" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img83.gif"
+ ALT="$ K = F_K(\hat{K})$">, defined by the Piola transformation (<A HREF="node2.html#eq:_Piola_tri">10</A>) of a reference 
+               field <!-- MATH
+ $\hat{\underline v}$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img182.gif"
+ ALT="$ \hat{\underline v}$"> on <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$">, we have
+               <P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_3d_curl_trafo_Demko"></A><!-- MATH
+ \begin{equation}
+\mathop{\rm curl}\underline v = \frac{1}{\det B_K}\,B_K\,(\widehat{\mathop{\rm curl}}\,\hat{\underline v} \circ F_K^{-1})\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="271" HEIGHT="57" ALIGN="MIDDLE" BORDER="0"
+ SRC="img200.gif"
+ ALT="$\displaystyle \mathop{\rm curl}\underline v = \frac{1}{\det B_K}\,B_K\,(\widehat{\mathop{\rm curl}}\,\hat{\underline v} \circ F_K^{-1})\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(19)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P></DIV><P></P>
+
+<P>
+<FONT SIZE="-1">P<SMALL>ROOF. </SMALL>
+               The transformation formula (<A HREF="node2.html#eq:_3d_curl_trafo_Demko">19</A>) can be proven componentwise, and 
+           we will only carry out the proof for the first vector component <!-- MATH
+ $(\mathop{\rm curl}\underline v)_1$
+ -->
+<IMG
+ WIDTH="69" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img201.gif"
+ ALT="$ (\mathop{\rm curl}\underline v)_1$">. The proofs for the other components
+               follow analogously.
+<BR>
+The identity (<A HREF="node2.html#eq:_3d_curl_trafo_Demko">19</A>) reads for the first vector component
+               </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_1.comp_of_curl_trafo"></A><!-- MATH
+ \begin{equation}
+(\mathop{\rm curl}\underline v)_1 = \frac{1}{\det B_K} (B_K)_{1j} ((\widehat{\mathop{\rm curl}}\,\hat{\underline v})_j \circ F^{-1})\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="334" HEIGHT="57" ALIGN="MIDDLE" BORDER="0"
+ SRC="img202.gif"
+ ALT="$\displaystyle (\mathop{\rm curl}\underline v)_1 = \frac{1}{\det B_K} (B_K)_{1j} ((\widehat{\mathop{\rm curl}}\,\hat{\underline v})_j \circ F^{-1})\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(20)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1"> 
+               Referring to (<A HREF="node2.html#eq:_curl_trafo_3d">17</A>), we show that the right hand side of (<A HREF="node2.html#eq:_1.comp_of_curl_trafo">20</A>) equals 
+               <!-- MATH
+ $\det \mathrm{M_1}$
+ -->
+<IMG
+ WIDTH="57" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img203.gif"
+ ALT="$ \det \mathrm{M_1}$">.
+               For this, we expand <!-- MATH
+ $\det  \mathrm{M_1}$
+ -->
+<IMG
+ WIDTH="57" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img203.gif"
+ ALT="$ \det \mathrm{M_1}$"> to
+               </FONT><!-- MATH
+ \begin{displaymath}
+\det  \mathrm{M_1} = (\widehat{\mathop{\rm curl}}\, \hat{\underline v})_1 \det\mathcal{B}^{inv}_{11}
+                                                               -(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_2 \det\mathcal{B}^{inv}_{21}
+                                                               +(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_3 \det\mathcal{B}^{inv}_{31} \,,
+               
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="505" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
+ SRC="img204.gif"
+ ALT="$\displaystyle \det \mathrm{M_1} = (\widehat{\mathop{\rm curl}}\, \hat{\underlin...
+...ehat{\mathop{\rm curl}}\, \hat{\underline v})_3 \det\mathcal{B}^{inv}_{31} \,,
+$">
+</DIV><P></P><FONT SIZE="-1">
+               where <!-- MATH
+ $\mathcal{B}^{inv}_{ij}$
+ -->
+<IMG
+ WIDTH="39" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img205.gif"
+ ALT="$ \mathcal{B}^{inv}_{ij}$"> is the <!-- MATH
+ $2 \times 2$
+ -->
+<IMG
+ WIDTH="45" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img206.gif"
+ ALT="$ 2 \times 2$">-matrix arising from <IMG
+ WIDTH="39" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img207.gif"
+ ALT="$ B_K^{-1}$"> when cancelling its i-th row and its j-th column.
+<BR>
+We recall the formula for the inverse of a matrix <!-- MATH
+ $A \in \mathbb{R}^{3\times 3}$
+ -->
+<IMG
+ WIDTH="78" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img208.gif"
+ ALT="$ A \in \mathbb{R}^{3\times 3}$">
+               </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_Ainv"></A><!-- MATH
+ \begin{equation}
+(A^{-1})_{ij} = \frac{1}{\det A} (-1)^{i+j} \det \mathcal{A}_{ji} \,,
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="251" HEIGHT="57" ALIGN="MIDDLE" BORDER="0"
+ SRC="img209.gif"
+ ALT="$\displaystyle (A^{-1})_{ij} = \frac{1}{\det A} (-1)^{i+j} \det \mathcal{A}_{ji} \,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(21)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1"> 
+               where <!-- MATH
+ $\mathcal{A}_{ij}$
+ -->
+<IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img210.gif"
+ ALT="$ \mathcal{A}_{ij}$"> is the <!-- MATH
+ $2 \times 2$
+ -->
+<IMG
+ WIDTH="45" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img206.gif"
+ ALT="$ 2 \times 2$">-matrix arising from <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img211.gif"
+ ALT="$ A$"> when cancelling its i-th row and its j-th column.
+<BR>
+Replacing <IMG
+ WIDTH="33" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img165.gif"
+ ALT="$ B_K$"> in the right hand side of (<A HREF="node2.html#eq:_3d_curl_trafo_Demko">19</A>) by the expression (<A HREF="node2.html#eq:_Ainv">21</A>)
+               for <!-- MATH
+ $A = B_K^{-1}$
+ -->
+<IMG
+ WIDTH="75" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img212.gif"
+ ALT="$ A = B_K^{-1}$">, we get
+               </FONT><!-- MATH
+ \begin{displaymath}
+\frac{1}{\det B_K}\,\frac{1}{\det B_K^{-1}} (-1)^{1+j} \det \mathcal{B}^{inv}_{j1} (\widehat{\mathop{\rm curl}}\, \hat{\underline v})_j
+                       = (\widehat{\mathop{\rm curl}}\, \hat{\underline v})_1 \det \mathcal{B}^{inv}_{11}
+                       -(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_2 \det \mathcal{B}^{inv}_{21}
+                       +(\widehat{\mathop{\rm curl}}\, \hat{\underline v})_3 \det \mathcal{B}^{inv}_{31} = \det  \mathrm{M_1}\,.
+               
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="834" HEIGHT="54" ALIGN="MIDDLE" BORDER="0"
+ SRC="img213.gif"
+ ALT="$\displaystyle \frac{1}{\det B_K}\,\frac{1}{\det B_K^{-1}} (-1)^{1+j} \det \math...
+...l}}\, \hat{\underline v})_3 \det \mathcal{B}^{inv}_{31} = \det \mathrm{M_1}\,.
+$">
+</DIV><P></P><FONT SIZE="-1">
+       
+</FONT>
+<P>
+<FONT SIZE="-1"></FONT>
+<H2><A NAME="SECTION00022000000000000000"></A> <A NAME="sec:_parallelo"></A>
+<BR>
+2.2 N&#233;d&#233;lec Elements on affine quadrilateral or hexahedral grids
+</H2><FONT SIZE="-1">
+       We want to present the ingredients for N&#233;d&#233;lec's finite elements of first type on
+       grids consisiting of parallelograms (in 2d) or the respective objects in 3d, so called parallelotops (cf. section 
+       <I>FE built on cubes</I> in [<A
+ HREF="node4.html#Ned1">8</A>]). Such grids consist
+        of elements <IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img214.gif"
+ ALT="$ C$"> that are affine images of the square or cubic reference element <!-- MATH
+ $\hat{C} = [0,1]^d$
+ -->
+<IMG
+ WIDTH="86" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img215.gif"
+ ALT="$ \hat{C} = [0,1]^d$">:
+       </FONT><!-- MATH
+ \begin{displaymath}
+C = F_C(\hat{C}) \quad C \ni x = B_C \hat{x} + \underline b_C \,, \hat{x} \in \hat{C}\,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="317" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img216.gif"
+ ALT="$\displaystyle C = F_C(\hat{C}) \quad C \ni x = B_C \hat{x} + \underline b_C \,, \hat{x} \in \hat{C}\,.
+$">
+</DIV><P></P>
+<P>
+
+<H3><A NAME="SECTION00022100000000000000">
+2.2.1 Polynomial spaces on the reference element</A>
+</H3>
+<P>
+<FONT SIZE="-1">In order to introduce the function spaces needed for the construction of N&#233;d&#233;lec's finite elements, 
+       let us define some spaces of vector-valued polynomials
+       </FONT><P>
+<DIV><B>D<SMALL>EFINITION</SMALL>  7</B> &nbsp; 
+<!-- MATH
+ $\mathcal{Q}_{l,m}$
+ -->
+<IMG
+ WIDTH="41" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img217.gif"
+ ALT="$ \mathcal{Q}_{l,m}$"> are the spaces of polynomials on the reference square <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img218.gif"
+ ALT="$ \hat{C}$"> with maximal degree <IMG
+ WIDTH="12" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img219.gif"
+ ALT="$ l$"> in <IMG
+ WIDTH="24" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img220.gif"
+ ALT="$ \hat{x}_1$"> and 
+               <IMG
+ WIDTH="22" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img221.gif"
+ ALT="$ m$"> in <IMG
+ WIDTH="24" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img222.gif"
+ ALT="$ \hat{x}_2$">.
+<BR>           <!-- MATH
+ $\mathcal{Q}_{l,m,n}$
+ -->
+<IMG
+ WIDTH="53" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img223.gif"
+ ALT="$ \mathcal{Q}_{l,m,n}$"> are the spaces of polynomials on the reference cube <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img218.gif"
+ ALT="$ \hat{C}$"> with maximal degree <IMG
+ WIDTH="12" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img219.gif"
+ ALT="$ l$"> 
+               in <IMG
+ WIDTH="24" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img220.gif"
+ ALT="$ \hat{x}_1$">, <IMG
+ WIDTH="22" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img221.gif"
+ ALT="$ m$"> in <IMG
+ WIDTH="24" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img222.gif"
+ ALT="$ \hat{x}_2$"> and <IMG
+ WIDTH="17" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img123.gif"
+ ALT="$ n$"> in <IMG
+ WIDTH="24" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img224.gif"
+ ALT="$ \hat{x}_3$">.
+       </DIV><P></P>
+
+<P>
+<FONT SIZE="-1">The spaces <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img84.gif"
+ ALT="$ \hat{R}$"> for the reference shape functions now are in 2d
+       </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_2d_spaces_for_quads"></A><!-- MATH
+ \begin{equation}
+\mathcal{P}^k = \left\{ \hat{\underline u} =
+                       \left(\begin{array}{cc} \hat{u}_1 \\\hat{u}_2 \end{array}\right): \quad 
+                                                \hat{u}_1 \in \mathcal{Q}_{k-1,k}\,,
+                                                               \hat{u}_2 \in \mathcal{Q}_{k,k-1} \right\}\,,
+       
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="402" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img225.gif"
+ ALT="$\displaystyle \mathcal{P}^k = \left\{ \hat{\underline u} = \left(\begin{array}{...
+...t{u}_1 \in \mathcal{Q}_{k-1,k}\,, \hat{u}_2 \in \mathcal{Q}_{k,k-1} \right\}\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(22)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1"> 
+</FONT>
+<P>
+<FONT SIZE="-1">and in 3d
+       </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_3d_spaces_for_quads"></A><!-- MATH
+ \begin{equation}
+\mathcal{P}^k = \left\{ \hat{\underline u} = \left(\begin{array}{ccc}
+                                       \hat{u}_1 \\\hat{u}_2 \\\hat{u}_3 \end{array}\right):\quad 
+                                                               \hat{u}_1 \in \mathcal{Q}_{k-1,k,k}\,,
+                                                               \hat{u}_2 \in \mathcal{Q}_{k,k-1,k}\,, 
+                                                               \hat{u}_3 \in \mathcal{Q}_{k,k,k-1}\right\}\,.
+       
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="546" HEIGHT="84" ALIGN="MIDDLE" BORDER="0"
+ SRC="img226.gif"
+ ALT="$\displaystyle \mathcal{P}^k = \left\{ \hat{\underline u} = \left(\begin{array}{...
+...}_2 \in \mathcal{Q}_{k,k-1,k}\,, \hat{u}_3 \in \mathcal{Q}_{k,k,k-1}\right\}\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(23)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">  
+</FONT>
+<P>
+<FONT SIZE="-1">We renounce an example, since it is quite evident, what these spaces look like for a specific <IMG
+ WIDTH="16" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img93.gif"
+ ALT="$ k$">.
+</FONT>
+<P>
+
+<H3><A NAME="SECTION00022200000000000000"></A>
+<A NAME="subsubsect:_dofs_on_quads"></A>
+<BR>
+2.2.2 Degrees of freedom on the reference element
+</H3><FONT SIZE="-1">
+       We start with the degrees of freedoms on the reference square <!-- MATH
+ $\hat{C}\subset \mathbb{R}^2$
+ -->
+<IMG
+ WIDTH="64" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img227.gif"
+ ALT="$ \hat{C}\subset \mathbb{R}^2$">:
+       </FONT><P>
+<DIV><A NAME="def:_quad-dofs_2d"><B>D<SMALL>EFINITION</SMALL>  8</B></A> &nbsp; 
+Let <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img218.gif"
+ ALT="$ \hat{C}$"> denote the reference square and <!-- MATH
+ $\hat{\underline t}$
+ -->
+<IMG
+ WIDTH="13" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img125.gif"
+ ALT="$ \hat{\underline t}$"> the tangent as defined in convention <A HREF="node1.html#def:_tangent">1</A>. 
+       The set of degrees of freedom <!-- MATH
+ $\mathcal{A}$
+ -->
+<IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img89.gif"
+ ALT="$ \mathcal{A}$"> on <!-- MATH
+ $\mathcal{P}^k$
+ -->
+<IMG
+ WIDTH="28" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img228.gif"
+ ALT="$ \mathcal{P}^k$"> in the 2d case consists of the linear functionals
+       <DL>
+<DT><STRONG>edge dofs</STRONG></DT>
+<DD><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s}\,, \quad
+                       \forall\, \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,
+               
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="302" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img229.gif"
+ ALT="$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underli...
+... }\,d\hat{s}\,, \quad \forall\, \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+for every edge <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img127.gif"
+ ALT="$ \hat{e}$"> of <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img218.gif"
+ ALT="$ \hat{C}$">. We have a total of <IMG
+ WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img230.gif"
+ ALT="$ 4k$"> of edge dofs.
+
+<P>
+</DD>
+<DT><STRONG>inner dofs</STRONG></DT>
+<DD><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}(\hat{\underline u}) := \int_{\hat{C}}  \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x}\,, \quad
+                       \forall\, \hat{\underline \varphi } = \left(\begin{array}{cc} \hat{\varphi }_1 \\\hat{\varphi }_2 \end{array}\right) \,,
+                       \quad\hat{\varphi }_1\in\mathcal{Q}_{k-2,k-1}\,,\quad\hat{\varphi }_2\in\mathcal{Q}_{k-1,k-2}\,.
+               
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="566" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
+ SRC="img231.gif"
+ ALT="$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{C}} \hat{\underlin...
+... }_1\in\mathcal{Q}_{k-2,k-1}\,,\quad\hat{\varphi }_2\in\mathcal{Q}_{k-1,k-2}\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+We have a total of <IMG
+ WIDTH="78" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img232.gif"
+ ALT="$ 2k(k-1)$"> of inner dofs.
+
+<P>
+</DD>
+</DL></DIV><P></P>
+
+<P>
+<P>
+<DIV><A NAME="def:_quad-dofs_3d"><B>D<SMALL>EFINITION</SMALL>  9</B></A> &nbsp; 
+Let <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img218.gif"
+ ALT="$ \hat{C}$"> denote the reference cube, <!-- MATH
+ $\hat{\underline t}$
+ -->
+<IMG
+ WIDTH="13" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img125.gif"
+ ALT="$ \hat{\underline t}$"> the tangent to an edge as defined in convention <A HREF="node1.html#def:_tangent">1</A> 
+       and <!-- MATH
+ $\hat{\underline n}$
+ -->
+<IMG
+ WIDTH="17" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img131.gif"
+ ALT="$ \hat{\underline n}$"> the outward unit normal vector to a face.  
+       The set of degrees of freedom <!-- MATH
+ $\mathcal{A}$
+ -->
+<IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img89.gif"
+ ALT="$ \mathcal{A}$"> on <!-- MATH
+ $\mathcal{P}^k$
+ -->
+<IMG
+ WIDTH="28" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img228.gif"
+ ALT="$ \mathcal{P}^k$"> in the 3d case consists of the linear functionals
+       <DL>
+<DT><STRONG>edge dofs</STRONG></DT>
+<DD><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underline t}\cdot \hat{\underline u})\, \hat{\varphi }\,d\hat{s}\,, \quad
+                       \forall\, \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,
+                       
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="302" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img229.gif"
+ ALT="$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{e}} (\hat{\underli...
+... }\,d\hat{s}\,, \quad \forall\, \hat{\varphi } \in \mathbb{P}_{k-1}(\hat{e})\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+for every edge <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img127.gif"
+ ALT="$ \hat{e}$"> of <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img218.gif"
+ ALT="$ \hat{C}$">. We have a total of <IMG
+ WIDTH="33" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img233.gif"
+ ALT="$ 12k$"> of edge dofs.
+
+<P>
+</DD>
+<DT><STRONG>face dofs</STRONG></DT>
+<DD><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}(\hat{\underline u}) := \int_{\hat{f}} (\hat{\underline u}\wedge \hat{\underline n})\cdot \hat{\underline \varphi }\,d\hat{a} \,,\quad
+                       \forall \,\hat{\underline \varphi } = \left(\begin{array}{cc} \hat{\varphi }_1 \\\hat{\varphi }_2 \end{array}\right) \,,
+                       \quad\hat{\varphi }_1\in\mathcal{Q}_{k-2,k-1}(\hat{f})\,,\quad\hat{\varphi }_2\in\mathcal{Q}_{k-1,k-2}(\hat{f})\,.
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="651" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
+ SRC="img234.gif"
+ ALT="$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{f}} (\hat{\underli...
+..._{k-2,k-1}(\hat{f})\,,\quad\hat{\varphi }_2\in\mathcal{Q}_{k-1,k-2}(\hat{f})\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+for every face <IMG
+ WIDTH="17" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img134.gif"
+ ALT="$ \hat{f}$"> of <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img218.gif"
+ ALT="$ \hat{C}$">. We have a total of <!-- MATH
+ $6\cdot 2k(k-1)$
+ -->
+<IMG
+ WIDTH="99" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img235.gif"
+ ALT="$ 6\cdot 2k(k-1)$"> of face dofs.
+
+<P>
+</DD>
+<DT><STRONG>inner dofs</STRONG></DT>
+<DD><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\hat{\alpha}(\hat{\underline u}) := \int_{\hat{C}}  \hat{\underline u}\cdot \hat{\underline \varphi }\,d\hat{x} \,,\quad
+                       \forall\, \hat{\underline \varphi } = \left(\begin{array}{ccc} \hat{\varphi }_1 \\\hat{\varphi }_2 \\
+                       \hat{\varphi }_3\end{array}\right) \,,\quad\hat{\varphi }_1\in\mathcal{Q}_{k-1,k-2,k-2}\,,\quad\hat{\varphi _2}\in\mathcal{Q}_{k-2,k-1,k-2}\,,
+                       \quad\hat{\varphi _3}\in\mathcal{Q}_{k-2,k-2,k-1}\,.
+               
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="793" HEIGHT="82" ALIGN="MIDDLE" BORDER="0"
+ SRC="img236.gif"
+ ALT="$\displaystyle \hat{\alpha}(\hat{\underline u}) := \int_{\hat{C}} \hat{\underlin...
+...athcal{Q}_{k-2,k-1,k-2}\,, \quad\hat{\varphi _3}\in\mathcal{Q}_{k-2,k-2,k-1}\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+We have a total of <IMG
+ WIDTH="86" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img237.gif"
+ ALT="$ 3k(k-1)^2$"> of inner dofs.
+       
+</DD>
+</DL></DIV><P></P>
+
+<P>
+<P>
+<DIV><B>E<SMALL>XAMPLE</SMALL>  4</B> &nbsp; 
+Proceeding the same way as in example <A HREF="node2.html#ex:_shape_functions">3</A> for a triangular reference element, we obtain
+the reference shape functions of lowest
+order on the square <IMG
+ WIDTH="49" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img238.gif"
+ ALT="$ [0,1]^2$">. For the unit tangents as in convention <A HREF="node1.html#def:_tangent">1</A>
+<!-- MATH
+ \begin{displaymath}
+\hat{\underline t}_0 = \left(\begin{array}{cc} 1 \\0 \end{array}\right)\,,\quad
+               \hat{\underline t}_1 = \left(\begin{array}{cc} 0 \\1 \end{array}\right)\,,\quad
+               \hat{\underline t}_2 = \left(\begin{array}{cc} -1 \\0 \end{array}\right)\,, \quad
+               \hat{\underline t}_3 = \left(\begin{array}{cc} 0 \\-1 \end{array}\right)\,,
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="487" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img239.gif"
+ ALT="$\displaystyle \hat{\underline t}_0 = \left(\begin{array}{cc} 1 \\  0 \end{array...
+...
+\hat{\underline t}_3 = \left(\begin{array}{cc} 0 \\  -1 \end{array}\right)\,,
+$">
+</DIV><P></P>
+they read
+       <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation}
+\hat{\underline N}_0 = \left(\begin{array}{cc} 1-\hat{y} \\0 \end{array}\right)\,,\quad
+               \hat{\underline N}_1 = \left(\begin{array}{cc} 0 \\\hat{x} \end{array}\right)\,,\quad
+               \hat{\underline N}_2 = \left(\begin{array}{cc} -\hat{y} \\0 \end{array}\right)\,,\quad
+               \hat{\underline N}_3 = \left(\begin{array}{cc} 0 \\\hat{x}-1 \end{array}\right)\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="573" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
+ SRC="img240.gif"
+ ALT="$\displaystyle \hat{\underline N}_0 = \left(\begin{array}{cc} 1-\hat{y} \\  0 \e...
+...\underline N}_3 = \left(\begin{array}{cc} 0 \\  \hat{x}-1 \end{array}\right)\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(24)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P></DIV><P></P>
+
+<P>
+
+<H3><A NAME="SECTION00022300000000000000">
+2.2.3 Transformation of the vector field</A>
+</H3><FONT SIZE="-1">
+Since the elements of the considered grids are still affine images of the reference element, we can use the Piola transformation 
+(<A HREF="node2.html#eq:_Piola_tri">10</A>) to transform vector fields and the results stated in sections 
+<A HREF="node2.html#sec:_Piola_for_triangles">2.1.3</A> - <A HREF="node2.html#subsubsect:_3d-curl_on_tria">2.1.5</A> can be carried over one to one.
+</FONT>
+<H2><A NAME="SECTION00023000000000000000">
+2.3 Construction of N&#233;d&#233;lec elements on bi- or trilinear elements</A>
+</H2><FONT SIZE="-1">
+       We now want to consider grids that are composed of elements that are a bi- resp. trilinear images <!-- MATH
+ $F_C(\hat{C})$
+ -->
+<IMG
+ WIDTH="56" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img241.gif"
+ ALT="$ F_C(\hat{C})$"> of the reference 
+       element <!-- MATH
+ $\hat{C} = [0,1]^d$
+ -->
+<IMG
+ WIDTH="86" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img215.gif"
+ ALT="$ \hat{C} = [0,1]^d$">.
+       The main difference here is, that the jacobian <!-- MATH
+ $\hat{D}F_C(\hat{x})$
+ -->
+<IMG
+ WIDTH="67" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img242.gif"
+ ALT="$ \hat{D}F_C(\hat{x})$"> of the element map <IMG
+ WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img243.gif"
+ ALT="$ F_C$"> is not
+       constant, and we have to use Piola transformation (<A HREF="node2.html#eq:_Piola">9</A>) to
+       transform vector fields. 
+<BR></FONT>
+<P>
+
+<H3><A NAME="SECTION00023100000000000000">
+2.3.1 Bilinear elements in 2d</A>
+</H3><FONT SIZE="-1">
+               The polynomial spaces <!-- MATH
+ $\mathcal{P}^k$
+ -->
+<IMG
+ WIDTH="28" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img228.gif"
+ ALT="$ \mathcal{P}^k$"> and the dofs remain the same as in the case of affine quadrilateral elements.
+<BR>
+A transformed vector field on a general element is now defined by the Piola transformation (<A HREF="node2.html#eq:_Piola">9</A>) 
+               </FONT><!-- MATH
+ \begin{displaymath}
+\underline v(x) = (\hat{D}F_C^{-T} \hat{\underline v}_i) \circ F_C^{-1} (x)
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="212" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img244.gif"
+ ALT="$\displaystyle \underline v(x) = (\hat{D}F_C^{-T} \hat{\underline v}_i) \circ F_C^{-1} (x)$">
+</DIV><P></P><FONT SIZE="-1"> of a vector field on the reference element. Note that
+               the jacobian <!-- MATH
+ $\hat{D}F_C(\hat{x})$
+ -->
+<IMG
+ WIDTH="67" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img242.gif"
+ ALT="$ \hat{D}F_C(\hat{x})$"> is not constant in this case. In contrast to the case of affine elements, the gradient <!-- MATH
+ $D\underline v$
+ -->
+<IMG
+ WIDTH="30" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img174.gif"
+ ALT="$ D\underline v$"> does not transform according to 
+               formula (<A HREF="node2.html#eq:_gradient_trafo_2d">12</A>). Non-vanishing second derivatives of <!-- MATH
+ $\hat{D}F_C(\hat{x})$
+ -->
+<IMG
+ WIDTH="67" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img242.gif"
+ ALT="$ \hat{D}F_C(\hat{x})$"> appear in the transformation rule
+               for gradients of vector fields.
+               This requires a new approach to express <!-- MATH
+ $\mathop{\rm curl}\underline v$
+ -->
+<IMG
+ WIDTH="47" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img245.gif"
+ ALT="$ \mathop{\rm curl}\underline v$"> in terms of
+               <!-- MATH
+ $\widehat{\mathop{\rm curl}}\,\hat{\underline v}$
+ -->
+<IMG
+ WIDTH="47" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
+ SRC="img246.gif"
+ ALT="$ \widehat{\mathop{\rm curl}}\,\hat{\underline v}$">. 
+               Nevertheless, it can be shown that the curl of a vector field transforms analogously to the case of affine elements.
+</FONT>
+<P>
+<P>
+<DIV><B>P<SMALL>ROPOSITION</SMALL>  5</B> &nbsp; 
+Let <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img218.gif"
+ ALT="$ \hat{C}$"> be the reference element <IMG
+ WIDTH="49" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img238.gif"
+ ALT="$ [0,1]^2$"> and <IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img214.gif"
+ ALT="$ C$"> a bilinear image of <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img218.gif"
+ ALT="$ \hat{C}$">. If the vector field <!-- MATH
+ $\underline v(x)$
+ -->
+<IMG
+ WIDTH="39" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img187.gif"
+ ALT="$ \underline v(x)$">
+                       transforms according to the Piola transformation (<A HREF="node2.html#eq:_Piola">9</A>), then the transformation of the curl obeys
+                       <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\mathop{\rm curl}\underline v(x) = (\det \hat{D}F)^{-1} \widehat{\mathop{\rm curl}}\, \hat{\underline v}(\hat{x})\,, \qquad  x = F(\hat{x})\,,
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="370" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
+ SRC="img247.gif"
+ ALT="$\displaystyle \mathop{\rm curl}\underline v(x) = (\det \hat{D}F)^{-1} \widehat{\mathop{\rm curl}}\, \hat{\underline v}(\hat{x})\,, \qquad x = F(\hat{x})\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+as in the affine case. 
+<BR>           </DIV><P></P>
+
+<P>
+<FONT SIZE="-1">P<SMALL>ROOF. </SMALL>
+                       In this proof, the mapped element <IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img214.gif"
+ ALT="$ C$"> will be fixed, so for simplicity we write <IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img248.gif"
+ ALT="$ F$"> for <IMG
+ WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img243.gif"
+ ALT="$ F_C$">.
+<BR>
+First note that <!-- MATH
+ $(\hat{D}F(F^{-1}(x)))^{-1} = D(F^{-1})(x)$
+ -->
+<IMG
+ WIDTH="242" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img249.gif"
+ ALT="$ (\hat{D}F(F^{-1}(x)))^{-1} = D(F^{-1})(x)$">. We use the notation <!-- MATH
+ $D(F^{-1})_{ij}(x)=
+\frac{\partial \hat{x}_i}{\partial x_j}(x)$
+ -->
+<IMG
+ WIDTH="174" HEIGHT="43" ALIGN="MIDDLE" BORDER="0"
+ SRC="img250.gif"
+ ALT="$ D(F^{-1})_{ij}(x)=
+\frac{\partial \hat{x}_i}{\partial x_j}(x)$"> and imlicit summation to rewrite the Piola transformation of the vector field componentwise
+                       </FONT><!-- MATH
+ \begin{displaymath}
+v_i(x) = \frac{\partial \hat{x}_j}{\partial x_i}(x) \,\hat{\underline v}_j (F^{-1}(x)) \,, \qquad i=1,2\,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="317" HEIGHT="59" ALIGN="MIDDLE" BORDER="0"
+ SRC="img251.gif"
+ ALT="$\displaystyle v_i(x) = \frac{\partial \hat{x}_j}{\partial x_i}(x) \,\hat{\underline v}_j (F^{-1}(x)) \,, \qquad i=1,2\,.
+$">
+</DIV><P></P><FONT SIZE="-1">
+                       In the case of affine elements, i.&nbsp;e.&nbsp;for constant jacobian, we have
+</FONT>
+<P>
+<P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\begin{split}
+                        \frac{\partial v_2}{\partial x_1} &= \frac{\partial \hat{x}_i}{\partial x_2}(x) \,\frac{\partial }{\partial x_1}\hat{\underline v}_i(F^{-1}(x)) \\
+                        \frac{\partial v_1}{\partial x_2} &= \frac{\partial \hat{x}_i}{\partial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,,
+                       \end{split}
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="398" HEIGHT="90" BORDER="0"
+ SRC="img252.gif"
+ ALT="\begin{displaymath}\begin{split}\frac{\partial v_2}{\partial x_1} &amp;= \frac{\part...
+... }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,, \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+<P>
+<FONT SIZE="-1">whereas for non-constant jacobian we have
+</FONT>
+<P>
+<P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\begin{split}
+                        \frac{\partial v_2}{\partial x_1} &= \frac{\partial ^2 \hat{x}_i}{\partial x_1\partial x_2}(x)\, \hat{\underline v}_i(F^{-1}(x)) +
+                                                                         \frac{\partial \hat{x}_i}{\partial x_2}(x) \,\frac{\partial }{\partial x_1}\hat{\underline v}_i(F^{-1}(x)) \\
+                        \frac{\partial v_1}{\partial x_2} &= \frac{\partial ^2 \hat{x}_i}{\partial x_1\partial x_2}(x) \,\hat{\underline v}_i(F^{-1}(x)) +
+                                                                         \frac{\partial \hat{x}_i}{\partial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,.
+                       \end{split}
+                       
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="493" HEIGHT="95" BORDER="0"
+ SRC="img253.gif"
+ ALT="\begin{displaymath}\begin{split}\frac{\partial v_2}{\partial x_1} &amp;= \frac{\part...
+... }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,. \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+<P>
+<FONT SIZE="-1">We see that in <I>both</I> cases we have 
+                       </FONT><!-- MATH
+ \begin{displaymath}
+\mathop{\rm curl}\underline v = \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2} =
+                                                       \frac{\partial \hat{x}_i}{\partial x_2}(x) \,\frac{\partial }{\partial x_1}\hat{\underline v}_i(F^{-1}(x)) 
+                                                       - \frac{\partial \hat{x}_i}{\partial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,
+                       
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="548" HEIGHT="59" ALIGN="MIDDLE" BORDER="0"
+ SRC="img254.gif"
+ ALT="$\displaystyle \mathop{\rm curl}\underline v = \frac{\partial v_2}{\partial x_1}...
+...ial x_1}(x) \,\frac{\partial }{\partial x_2}\hat{\underline v}_i(F^{-1}(x)) \,
+$">
+</DIV><P></P><FONT SIZE="-1">
+                       that is, the second derivatives cancel out in the expression for the curl and the curl in the non-affine case transforms equally
+                       to the curl in the affine case.
+               
+</FONT>
+<P>
+
+<H3><A NAME="SECTION00023200000000000000">
+2.3.2 Trilinear elements in 3d</A>
+</H3><FONT SIZE="-1">
+               The polynomial spaces <!-- MATH
+ $\mathcal{P}^k$
+ -->
+<IMG
+ WIDTH="28" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img228.gif"
+ ALT="$ \mathcal{P}^k$"> and the dofs remain the same as in the case of affine hexahedral elements.
+<BR>
+The
+               vector field on a genereal element is defined by the Piola transformation (<A HREF="node2.html#eq:_Piola">9</A>).
+<BR>
+The problem of the non-vanishing second derivatives of the jacobian <!-- MATH
+ $D(F_C^{-1})(x)$
+ -->
+<IMG
+ WIDTH="90" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img255.gif"
+ ALT="$ D(F_C^{-1})(x)$"> arises again, and we cannot generalize the results
+               from the affine case straight away.
+<BR>
+But analogously to the 2d case, one can check that in in the transformation rule for expressions 
+               <!-- MATH
+ $\frac{\partial v_i}{\partial x_j} - \frac{\partial v_j}{\partial x_i}$
+ -->
+<IMG
+ WIDTH="78" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
+ SRC="img256.gif"
+ ALT="$ \frac{\partial v_i}{\partial x_j} - \frac{\partial v_j}{\partial x_i}$">, <!-- MATH
+ $i,j = 1,2,3$
+ -->
+<IMG
+ WIDTH="93" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
+ SRC="img257.gif"
+ ALT="$ i,j = 1,2,3$">,
+               which define the curl-operator, the terms containing second derivatives vanish. We have therefore again the transformation rule 
+               (<A HREF="node2.html#eq:_Curl_trafo">16</A>) for the skew matrix <!-- MATH
+ $\mathop{\rm Curl}v = Dv^T - Dv$
+ -->
+<IMG
+ WIDTH="155" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img258.gif"
+ ALT="$ \mathop{\rm Curl}v = Dv^T - Dv$">:
+               </FONT><!-- MATH
+ \begin{displaymath}
+\mathop{\rm Curl}v (x) = ((\hat{D}F_C^{-T} \widehat{\mathop{\rm Curl}}\,\hat{v} \,\hat{D}F_C^{-1}) \circ F_C^{-1})(x)
+                                               = (DF_C^{-1})^T(x)\, (\widehat{\mathop{\rm Curl}}\,\hat{v}\circ F_C^{-1})(x)\,DF_C^{-1}(x) \,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="673" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img259.gif"
+ ALT="$\displaystyle \mathop{\rm Curl}v (x) = ((\hat{D}F_C^{-T} \widehat{\mathop{\rm C...
+...x)\, (\widehat{\mathop{\rm Curl}}\,\hat{v}\circ F_C^{-1})(x)\,DF_C^{-1}(x) \,.
+$">
+</DIV><P></P>
+<P>
+<FONT SIZE="-1">It follows that the following proposition can be proved analogously to the case of affine elements (replace there <IMG
+ WIDTH="31" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img260.gif"
+ ALT="$ B_C$"> by 
+               <!-- MATH
+ $\hat{D}F_C(\hat(x))$
+ -->
+<IMG
+ WIDTH="81" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
+ SRC="img261.gif"
+ ALT="$ \hat{D}F_C(\hat(x))$">).       
+               </FONT><P>
+<DIV><B>P<SMALL>ROPOSITION</SMALL>  6</B> &nbsp; 
+Let the vector field <!-- MATH
+ $\underline v(x)$
+ -->
+<IMG
+ WIDTH="39" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img187.gif"
+ ALT="$ \underline v(x)$"> on a trilinear image <!-- MATH
+ $C = F_C(\hat{C})$
+ -->
+<IMG
+ WIDTH="93" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img262.gif"
+ ALT="$ C = F_C(\hat{C})$"> be defined by the Piola transformation of a 
+                       reference field <!-- MATH
+ $\hat{\underline v}(\hat{x})$
+ -->
+<IMG
+ WIDTH="39" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img188.gif"
+ ALT="$ \hat{\underline v}(\hat{x})$"> on <IMG
+ WIDTH="20" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img218.gif"
+ ALT="$ \hat{C}$">. The transformation formula for the curl then reads
+                       <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\mathop{\rm curl}\underline v =
+                               \left(\frac{1}{\det \hat{D}F_C}\,\hat{D}F_C\, \widehat{\mathop{\rm curl}}\,\hat{\underline v} \right) \circ F_C^{-1}\,.
+                       
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="305" HEIGHT="61" ALIGN="MIDDLE" BORDER="0"
+ SRC="img263.gif"
+ ALT="$\displaystyle \mathop{\rm curl}\underline v = \left(\frac{1}{\det \hat{D}F_C}\,...
+...F_C\, \widehat{\mathop{\rm curl}}\,\hat{\underline v} \right) \circ F_C^{-1}\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P></DIV><P></P>
+
+<P>
+<FONT SIZE="-1"></FONT>
+<H2><A NAME="SECTION00024000000000000000">
+2.4 Construction of global shape functions</A>
+</H2><FONT SIZE="-1">
+       In the previous sections we have introduced function spaces and degrees of freedom, which, together with the Piola transformation,
+        will allow us to define an <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming finite element method.
+       Indeed, in [<A
+ HREF="node4.html#Ned1">8</A>], N&#233;d&#233;lec shows the invariance of the spaces
+       <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$"> and <!-- MATH
+ $\mathcal{Q}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img264.gif"
+ ALT="$ \mathcal{Q}^k$"> under Piola transformation of the vector field, as well as the unisolvence of the set of 
+       degrees of freedom <!-- MATH
+ $\mathcal{A}$
+ -->
+<IMG
+ WIDTH="20" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img89.gif"
+ ALT="$ \mathcal{A}$"> from sections <A HREF="node2.html#subsubsect:_dofs_on_tria">2.1.2</A> and <A HREF="node2.html#subsubsect:_dofs_on_quads">2.2.2</A>  
+       (for details, see [<A
+ HREF="node4.html#Ned1">8</A>], Section 1.2, Theorem 1 and Section 2, Theorem 5).
+       This leads to the fact that <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming global shape functions can be defined by mapping elementwise the reference
+       shape functions with the Piola transformation <!-- MATH
+ $\mathcal{P}_K$
+ -->
+<IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img265.gif"
+ ALT="$ \mathcal{P}_K$">.
+       However, we must pay some care to the orientation of an interface on which the moments defining the degrees of freedom are based.
+       For the 2d case, we will illustrate in this section how we must take into account the <I>orientation of an edge</I> 
+       in the definition of the respective element edge shape function, in order to get an <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming finite element space 
+       of global shape functions.
+       
+<BR></FONT>
+<P>
+<FONT SIZE="-1">Let <!-- MATH
+ $K=F(\hat{K})$
+ -->
+<IMG
+ WIDTH="89" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img266.gif"
+ ALT="$ K=F(\hat{K})$"> be an affine or bilinear image of a reference element, <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$"> one of its edges and <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img127.gif"
+ ALT="$ \hat{e}$"> the
+       corresponding edge on the reference element.
+<BR>
+Let further <!-- MATH
+ $[0,|e|] \ni s \mapsto \underline x(s) \in e$
+ -->
+<IMG
+ WIDTH="168" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img267.gif"
+ ALT="$ [0,\vert e\vert] \ni s \mapsto \underline x(s) \in e$"> and <!-- MATH
+ $[0,|\hat{e}|] \ni \hat{s} \mapsto \hat{\underline x}(\hat{s}) \in \hat{e}$
+ -->
+<IMG
+ WIDTH="168" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img268.gif"
+ ALT="$ [0,\vert\hat{e}\vert] \ni \hat{s} \mapsto \hat{\underline x}(\hat{s}) \in \hat{e}$"> be parametrizations
+       with respect to the arc length of <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$"> and <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img127.gif"
+ ALT="$ \hat{e}$"> respectively. We can assume that these parametrizations endow the edges with a
+       counterclockwise orientation. Then, the unit tangent vectors <!-- MATH
+ $\underline t$
+ -->
+<IMG
+ WIDTH="13" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img12.gif"
+ ALT="$ \underline t$"> and <!-- MATH
+ $\hat{\underline t}$
+ -->
+<IMG
+ WIDTH="13" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img125.gif"
+ ALT="$ \hat{\underline t}$"> are given by
+       <!-- MATH
+ $\frac{d \underline x}{ds}$
+ -->
+<IMG
+ WIDTH="25" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
+ SRC="img269.gif"
+ ALT="$ \frac{d \underline x}{ds}$"> and <!-- MATH
+ $\frac{d \hat{\underline x}}{d\hat{s}}$
+ -->
+<IMG
+ WIDTH="25" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
+ SRC="img270.gif"
+ ALT="$ \frac{d \hat{\underline x}}{d\hat{s}}$">.
+</FONT>
+<P>
+<P>
+<DIV><A NAME="lemma:__v_dot_t_-Trafo"><B>L<SMALL>EMMA</SMALL>  1</B></A> &nbsp; 
+Let <!-- MATH
+ $\hat{\underline v}(\hat{x})$
+ -->
+<IMG
+ WIDTH="39" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img188.gif"
+ ALT="$ \hat{\underline v}(\hat{x})$"> be a vector field on the reference element and <!-- MATH
+ $\underline v(x)$
+ -->
+<IMG
+ WIDTH="39" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img187.gif"
+ ALT="$ \underline v(x)$"> be the corresponding vector field on <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$">, defined by the
+               Piola transformation (<A HREF="node2.html#eq:_Piola">9</A>). It then holds
+               <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation}
+\underline v\cdot \underline t = \frac{|\hat{e}|}{|e|} (\hat{\underline v}\cdot \hat{\underline t})\,,
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="129" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
+ SRC="img271.gif"
+ ALT="$\displaystyle \underline v\cdot \underline t = \frac{\vert\hat{e}\vert}{\vert e\vert} (\hat{\underline v}\cdot \hat{\underline t})\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(25)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+where <IMG
+ WIDTH="24" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img272.gif"
+ ALT="$ \vert\hat{e}\vert$"> and <IMG
+ WIDTH="24" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img273.gif"
+ ALT="$ \vert e\vert$"> denote the length of the edges <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img127.gif"
+ ALT="$ \hat{e}$"> and <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$">.
+       </DIV><P></P>
+
+<P>
+<FONT SIZE="-1">P<SMALL>ROOF. </SMALL>
+               With 
+               </FONT><!-- MATH
+ \begin{displaymath}
+(\underline v(x))_i = (D(F^{-1})^T \hat{\underline v})_i = \frac{\partial \hat{x}_j}{\partial x_i}(x) \hat{\underline v}_j(\hat{x})\,
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="300" HEIGHT="59" ALIGN="MIDDLE" BORDER="0"
+ SRC="img274.gif"
+ ALT="$\displaystyle (\underline v(x))_i = (D(F^{-1})^T \hat{\underline v})_i = \frac{\partial \hat{x}_j}{\partial x_i}(x) \hat{\underline v}_j(\hat{x})\,
+$">
+</DIV><P></P><FONT SIZE="-1">
+               and <!-- MATH
+ $\hat{x}_j = \hat{x}_j(\underline x(s))$
+ -->
+<IMG
+ WIDTH="109" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img275.gif"
+ ALT="$ \hat{x}_j = \hat{x}_j(\underline x(s))$"> and <!-- MATH
+ $\hat{x}_j = \hat{x}_j(\hat{s}(s))$
+ -->
+<IMG
+ WIDTH="107" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img276.gif"
+ ALT="$ \hat{x}_j = \hat{x}_j(\hat{s}(s))$"> on the edges, we have
+               </FONT><!-- MATH
+ \begin{displaymath}
+\underline v\cdot \underline t= \underline v \cdot \frac{d \underline x}{ds} = \left( \hat{\underline v}_j\frac{\partial \hat{x}_j}{\partial x_i}\right) (x)\frac{dx_i}{ds}
+                       = \hat{\underline v}_j \frac{d \hat{x}_j}{ds} = \hat{\underline v}_j \frac{d \hat{x}_j}{d\hat{s}} \frac{d\hat{s}}{ds}
+                       = (\hat{\underline v}\cdot \hat{\underline t}) \frac{d\hat{s}}{ds} 
+               
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="498" HEIGHT="61" ALIGN="MIDDLE" BORDER="0"
+ SRC="img277.gif"
+ ALT="$\displaystyle \underline v\cdot \underline t= \underline v \cdot \frac{d \under...
+...t{s}}{ds}
+= (\hat{\underline v}\cdot \hat{\underline t}) \frac{d\hat{s}}{ds}
+$">
+</DIV><P></P><FONT SIZE="-1">
+               and with <!-- MATH
+ $\frac{d\hat{s}}{ds}=\frac{|\hat{e}|}{|e|}$
+ -->
+<IMG
+ WIDTH="64" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
+ SRC="img278.gif"
+ ALT="$ \frac{d\hat{s}}{ds}=\frac{\vert\hat{e}\vert}{\vert e\vert}$"> the lemma follows.
+       
+</FONT>
+<P>
+<FONT SIZE="-1">As a consequence, we have
+</FONT>
+<P>
+<P>
+<DIV><A NAME="prop:_Dof_invariance"><B>P<SMALL>ROPOSITION</SMALL>  7</B></A> (Invariance of the edge dofs)  &nbsp; 
+Let the vector field <!-- MATH
+ $\underline v(x)$
+ -->
+<IMG
+ WIDTH="39" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img187.gif"
+ ALT="$ \underline v(x)$"> on <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$"> be defined by the Piola transformation (<A HREF="node2.html#eq:_Piola">9</A>) of a reference vector field 
+               <!-- MATH
+ $\hat{\underline v}(\hat{x})$
+ -->
+<IMG
+ WIDTH="39" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img188.gif"
+ ALT="$ \hat{\underline v}(\hat{x})$"> on <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$">. Then, the functionals (<I>edge dofs</I>) 
+               <!-- MATH
+ $\alpha^{[K]}(\underline u) := \int_e (\underline v\cdot \underline t)\varphi \,ds$
+ -->
+<IMG
+ WIDTH="178" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img279.gif"
+ ALT="$ \alpha^{[K]}(\underline u) := \int_e (\underline v\cdot \underline t)\varphi \,ds$"> are invariant in the sense of
+               <!-- MATH
+ \begin{displaymath}
+\alpha^{[K]}(\underline u) = \int_e (\underline v\cdot \underline t)\varphi \,ds =
+                       \int_{\hat{e}} (\hat{\underline v} \cdot \hat{\underline t}) \hat{\varphi } \, d\hat{s}\, = \hat{\alpha}(\hat{\underline u})\,,
+                       \qquad \forall\, \hat{\varphi } \in
+                       \mathbb{P}_{k-1}(\hat{e})\,, \quad \varphi = \hat{\varphi } \circ F^{-1} \in \mathbb{P}_{k-1}(e)\,.
+               
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="704" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
+ SRC="img280.gif"
+ ALT="$\displaystyle \alpha^{[K]}(\underline u) = \int_e (\underline v\cdot \underline...
+...{e})\,, \quad \varphi = \hat{\varphi } \circ F^{-1} \in \mathbb{P}_{k-1}(e)\,.
+$">
+</DIV><P></P></DIV><P></P>
+
+<P>
+<FONT SIZE="-1">Let now <!-- MATH
+ $K_- = F_-(\hat{K})$
+ -->
+<IMG
+ WIDTH="108" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img281.gif"
+ ALT="$ K_- = F_-(\hat{K})$"> and <!-- MATH
+ $K_+ = F_+(\hat{K})$
+ -->
+<IMG
+ WIDTH="108" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img282.gif"
+ ALT="$ K_+ = F_+(\hat{K})$"> be two neighbouring triangles with common edge <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$">. Let <!-- MATH
+ $\underline N$
+ -->
+<IMG
+ WIDTH="22" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img283.gif"
+ ALT="$ \underline N$"> be the global edge shape
+       function that 'lives' on <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$">. By <!-- MATH
+ $\underline N_-$
+ -->
+<IMG
+ WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img284.gif"
+ ALT="$ \underline N_-$"> and <!-- MATH
+ $\underline N_+$
+ -->
+<IMG
+ WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img285.gif"
+ ALT="$ \underline N_+$"> we denote the restriction of <!-- MATH
+ $\underline N$
+ -->
+<IMG
+ WIDTH="22" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img283.gif"
+ ALT="$ \underline N$"> to <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img57.gif"
+ ALT="$ K_+$"> and <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img56.gif"
+ ALT="$ K_-$"> respectively.
+       Let <!-- MATH
+ $e_+ =F_+(\hat{e}_i)$
+ -->
+<IMG
+ WIDTH="99" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img286.gif"
+ ALT="$ e_+ =F_+(\hat{e}_i)$"> and <!-- MATH
+ $e_- =F_-(\hat{e}_j)$
+ -->
+<IMG
+ WIDTH="100" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img287.gif"
+ ALT="$ e_- =F_-(\hat{e}_j)$">.
+       We write <!-- MATH
+ $\underline t_+$
+ -->
+<IMG
+ WIDTH="24" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img288.gif"
+ ALT="$ \underline t_+ $"> for the tangential unit vector to <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$">, oriented 
+       counterclockwise with respect to <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img57.gif"
+ ALT="$ K_+$"> and <!-- MATH
+ $\underline t_- = -\underline t_+$
+ -->
+<IMG
+ WIDTH="78" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img289.gif"
+ ALT="$ \underline t_- = -\underline t_+$"> 
+       for the respective from <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img56.gif"
+ ALT="$ K_-$">. For line integrals over the edge <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$"> we write <!-- MATH
+ $\int_{e_+}$
+ -->
+<IMG
+ WIDTH="32" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
+ SRC="img290.gif"
+ ALT="$ \int_{e_+}$"> if we chose the orientation induced by 
+       <!-- MATH
+ $\underline t_+$
+ -->
+<IMG
+ WIDTH="24" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img288.gif"
+ ALT="$ \underline t_+ $"> and <!-- MATH
+ $\int_{e_-}$
+ -->
+<IMG
+ WIDTH="32" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
+ SRC="img291.gif"
+ ALT="$ \int_{e_-}$"> for the orientation of <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$"> induced by <!-- MATH
+ $\underline t_-$
+ -->
+<IMG
+ WIDTH="24" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img292.gif"
+ ALT="$ \underline t_-$">. 
+<BR>
+In order to obtain an <!-- MATH
+ $H(\mathop{\rm curl}; \Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming method, proposition <A HREF="node1.html#prop:_no_jumps">1</A> tells us that we must ensure the continuity of the
+       tangential components of the global shape functions, that is
+       </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_conformity_of_shape_func"></A><!-- MATH
+ \begin{equation}
+\underline N_+\cdot\underline t_+ + \underline N_-\cdot\underline t_- = 0\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="182" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img293.gif"
+ ALT="$\displaystyle \underline N_+\cdot\underline t_+ + \underline N_-\cdot\underline t_- = 0\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(26)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+       The following lemma will justify the choice of the moments describing the edge dofs. A consequence of the lemma will be, 
+       that the matching of the local edge dofs <!-- MATH
+ $\alpha^{[K_+]}$
+ -->
+<IMG
+ WIDTH="47" HEIGHT="23" ALIGN="BOTTOM" BORDER="0"
+ SRC="img294.gif"
+ ALT="$ \alpha^{[K_+]}$"> and <!-- MATH
+ $\alpha^{[K_-]}$
+ -->
+<IMG
+ WIDTH="47" HEIGHT="23" ALIGN="BOTTOM" BORDER="0"
+ SRC="img295.gif"
+ ALT="$ \alpha^{[K_-]}$"> guarantees  
+       the pointwise condition (<A HREF="node2.html#eq:_conformity_of_shape_func">26</A>).
+       </FONT><P>
+<DIV><A NAME="lemma:_trace"><B>L<SMALL>EMMA</SMALL>  2</B></A> &nbsp; 
+Let <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> denote the reference triangle and <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img127.gif"
+ ALT="$ \hat{e}$"> one of its edges, parametrized by <!-- MATH
+ $\hat{e} \ni \hat{x}(s) := \underline a +
+s\, \hat{\underline t}$
+ -->
+<IMG
+ WIDTH="143" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img296.gif"
+ ALT="$ \hat{e} \ni \hat{x}(s) := \underline a +
+s\, \hat{\underline t}$">. 
+               Let <!-- MATH
+ $\hat{\underline p} \in \mathcal{S}^k$
+ -->
+<IMG
+ WIDTH="57" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img297.gif"
+ ALT="$ \hat{\underline p} \in \mathcal{S}^k$">, <!-- MATH
+ $\mathcal{S}^k$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img107.gif"
+ ALT="$ \mathcal{S}^k$"> as defined in (<A HREF="node2.html#def:_space_Sk">4</A>). It then holds
+               <!-- MATH
+ \begin{displaymath}
+(\hat{\underline p}\cdot \hat{\underline t})|_{\hat{e}} \in \mathbb{P}_{k-1}(\hat{e})\,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="146" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img298.gif"
+ ALT="$\displaystyle (\hat{\underline p}\cdot \hat{\underline t})\vert _{\hat{e}} \in \mathbb{P}_{k-1}(\hat{e})\,.
+$">
+</DIV><P></P></DIV><P></P>
+
+<P>
+<FONT SIZE="-1">P<SMALL>ROOF. </SMALL>
+                       </FONT><!-- MATH
+ \begin{displaymath}
+\hat{\underline p} \in \mathcal{S}^k \quad \Longrightarrow \quad \textrm{for } i=1,2,3:
+                               \quad \hat{p}_i(\hat{x}) = \prod_{j=1}^3 \hat{x}_j^{k_{ij}}\,, \quad
+                               \textrm{where } \sum_{j=1}^3 k_{ij} = k\,.
+                       
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="545" HEIGHT="74" ALIGN="MIDDLE" BORDER="0"
+ SRC="img299.gif"
+ ALT="$\displaystyle \hat{\underline p} \in \mathcal{S}^k \quad \Longrightarrow \quad ...
+...{j=1}^3 \hat{x}_j^{k_{ij}}\,, \quad
+\textrm{where } \sum_{j=1}^3 k_{ij} = k\,.
+$">
+</DIV><P></P><FONT SIZE="-1">
+                       Hence, with the parametrization of <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img127.gif"
+ ALT="$ \hat{e}$"> by <!-- MATH
+ $\hat{x}(s)$
+ -->
+<IMG
+ WIDTH="38" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img300.gif"
+ ALT="$ \hat{x}(s)$">
+                       </FONT><!-- MATH
+ \begin{displaymath}
+\hat{p}_i(\hat{x}(s)) = \prod_{j=1}^3 (a_j + s\,\hat{t}_j)^{k_{ij}} = s^k\,\prod_{j=1}^3 \hat{t}_j^{k_{ij}} +
+                                               \hat{\varphi }_{k-1}(s)\,,
+                       
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="390" HEIGHT="74" ALIGN="MIDDLE" BORDER="0"
+ SRC="img301.gif"
+ ALT="$\displaystyle \hat{p}_i(\hat{x}(s)) = \prod_{j=1}^3 (a_j + s\,\hat{t}_j)^{k_{ij}} = s^k\,\prod_{j=1}^3 \hat{t}_j^{k_{ij}} +
+\hat{\varphi }_{k-1}(s)\,,
+$">
+</DIV><P></P><FONT SIZE="-1">
+                       with <!-- MATH
+ $\hat{\varphi }_{k-1}(s) \in \mathbb{P}_{k-1}(\hat{e})$
+ -->
+<IMG
+ WIDTH="144" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img302.gif"
+ ALT="$ \hat{\varphi }_{k-1}(s) \in \mathbb{P}_{k-1}(\hat{e})$">, 
+                       and 
+                       </FONT><!-- MATH
+ \begin{displaymath}
+(\hat{\underline p}\cdot \hat{\underline t})|_{\hat{e}} = s^k\,\sum_{i=1}^3\hat{t}_i\left(\prod_{j=1}^3 \hat{t}_j^{k_{ij}}\right) +
+                               \hat{\varphi }_{k-1}(s)\,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="317" HEIGHT="82" ALIGN="MIDDLE" BORDER="0"
+ SRC="img303.gif"
+ ALT="$\displaystyle (\hat{\underline p}\cdot \hat{\underline t})\vert _{\hat{e}} = s^...
+...t}_i\left(\prod_{j=1}^3 \hat{t}_j^{k_{ij}}\right) +
+\hat{\varphi }_{k-1}(s)\,.
+$">
+</DIV><P></P><FONT SIZE="-1">
+                       We observe that the coefficient of <IMG
+ WIDTH="23" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img304.gif"
+ ALT="$ s^k$"> is exactly <!-- MATH
+ $\hat{\underline p}(\hat{\underline t}) \cdot \hat{\underline t}$
+ -->
+<IMG
+ WIDTH="54" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img305.gif"
+ ALT="$ \hat{\underline p}(\hat{\underline t}) \cdot \hat{\underline t}$">. By the definition of the space 
+                       <!-- MATH
+ $\mathcal{S}^k$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img107.gif"
+ ALT="$ \mathcal{S}^k$">, this expression must vanish.
+       
+</FONT>
+<P>
+<P>
+<DIV><B>R<SMALL>EMARK</SMALL>  5</B> &nbsp; 
+In the case of <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> being a quadrilateral, we have <!-- MATH
+ $\hat{R} = \mathcal{P}^k$
+ -->
+<IMG
+ WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img306.gif"
+ ALT="$ \hat{R} = \mathcal{P}^k$">. By the definition of <!-- MATH
+ $\mathcal{P}^k$
+ -->
+<IMG
+ WIDTH="28" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img228.gif"
+ ALT="$ \mathcal{P}^k$"> we see
+               immediately that here also <!-- MATH
+ $(\hat{\underline v}\cdot \hat{\underline t})|_{\hat{e}} \in \mathbb{P}_{k-1}(\hat{e})$
+ -->
+<IMG
+ WIDTH="139" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img307.gif"
+ ALT="$ (\hat{\underline v}\cdot \hat{\underline t})\vert _{\hat{e}} \in \mathbb{P}_{k-1}(\hat{e})$">.
+       </DIV><P></P>
+
+<P>
+<FONT SIZE="-1">The next proposition tells us how exactly to define element shape functions on a mapped element <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$"> in order to get 
+       <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming global shape functions.
+       </FONT><P>
+<DIV><B>P<SMALL>ROPOSITION</SMALL>  8</B> &nbsp; 
+Condition (<A HREF="node2.html#eq:_conformity_of_shape_func">26</A>) is satiesfied, if we define the element shape functions <!-- MATH
+ $\underline N_+$
+ -->
+<IMG
+ WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img285.gif"
+ ALT="$ \underline N_+$"> and <!-- MATH
+ $\underline N_-$
+ -->
+<IMG
+ WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img284.gif"
+ ALT="$ \underline N_-$"> 
+               by the Piola transformation (<A HREF="node2.html#eq:_Piola_tri">10</A>) and take into account the orientation of the edge <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$">: 
+               <P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_trafo_shape_functions"></A><!-- MATH
+ \begin{equation}
+\underline N_+ := \mathcal{P}_+(\hat{\underline N}_i) = \hat{D}F_+^{-T} \hat{\underline N}_i \,,
+                       \qquad \underline N_- := -\,\mathcal{P}_-(\hat{\underline N}_j) = -\hat{D}F_-^{-T}\hat{\underline N}_j\,.
+               
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="508" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img308.gif"
+ ALT="$\displaystyle \underline N_+ := \mathcal{P}_+(\hat{\underline N}_i) = \hat{D}F_...
+...\,\mathcal{P}_-(\hat{\underline N}_j) = -\hat{D}F_-^{-T}\hat{\underline N}_j\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(27)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P></DIV><P></P>
+
+<P>
+<FONT SIZE="-1">P<SMALL>ROOF. </SMALL>
+               Let <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> be the reference element and <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$"> its affine or bilinear image.
+               Let <!-- MATH
+ $\underline v := \mathcal{P}_K(\hat{\underline v})$
+ -->
+<IMG
+ WIDTH="92" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img309.gif"
+ ALT="$ \underline v := \mathcal{P}_K(\hat{\underline v})$"> be a vector field on <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$">, defined by the Piola transformation of a reference vector field
+               <!-- MATH
+ $\hat{\underline v} \in \hat{R}$
+ -->
+<IMG
+ WIDTH="50" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img310.gif"
+ ALT="$ \hat{\underline v} \in \hat{R}$">. Let <IMG
+ WIDTH="14" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img66.gif"
+ ALT="$ e$"> be one of the edges of <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$"> and <!-- MATH
+ $\underline t$
+ -->
+<IMG
+ WIDTH="13" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img12.gif"
+ ALT="$ \underline t$">
+               the tangent according to convention <A HREF="node1.html#def:_tangent">1</A>.
+<BR>
+In the case of <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> being a triangle, we have <!-- MATH
+ $\hat{R} = \mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="66" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img91.gif"
+ ALT="$ \hat{R} = \mathcal{R}^k$">. 
+               By the definition of the space <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$">, lemma <A HREF="node2.html#lemma:_trace">2</A> and <A HREF="node2.html#lemma:__v_dot_t_-Trafo">1</A> we can
+               conclude that <!-- MATH
+ $(\underline v\cdot \underline t)|_{e} \in \mathbb{P}_{k-1}(e)$
+ -->
+<IMG
+ WIDTH="139" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img311.gif"
+ ALT="$ (\underline v\cdot \underline t)\vert _{e} \in \mathbb{P}_{k-1}(e)$">.
+<BR>
+If <IMG
+ WIDTH="23" HEIGHT="24" ALIGN="BOTTOM" BORDER="0"
+ SRC="img81.gif"
+ ALT="$ \hat{K}$"> is a quadrilateral, the previous remark and 
+               <A HREF="node2.html#lemma:__v_dot_t_-Trafo">1</A> also tell us that <!-- MATH
+ $(\underline v\cdot \underline t)|_{e} \in \mathbb{P}_{k-1}(e)$
+ -->
+<IMG
+ WIDTH="139" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img311.gif"
+ ALT="$ (\underline v\cdot \underline t)\vert _{e} \in \mathbb{P}_{k-1}(e)$">.
+<BR>
+Hence the condition
+               </FONT><!-- MATH
+ \begin{displaymath}
+\int_{e_+} \left((\underline N_+\cdot \underline t_+) + (\underline N_-\cdot \underline t_-)\right)\,\varphi \,ds\,, \qquad \forall\,\varphi \in\mathbb{P}_{k-1}(e)
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="401" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
+ SRC="img312.gif"
+ ALT="$\displaystyle \int_{e_+} \left((\underline N_+\cdot \underline t_+) + (\underli...
+...ne t_-)\right)\,\varphi \,ds\,, \qquad \forall\,\varphi \in\mathbb{P}_{k-1}(e)
+$">
+</DIV><P></P><FONT SIZE="-1">
+               on the edge moments
+               is sufficient for the global edge shape functions to satiesfy (<A HREF="node2.html#eq:_conformity_of_shape_func">26</A>).
+               Note that 
+<BR><!-- MATH
+ $\int_{e_+}(\underline N_-\cdot \underline t_-)\,\varphi \,ds = -\int_{e_-}(\underline N_-\cdot \underline t_-)\,\varphi \,ds$
+ -->
+<IMG
+ WIDTH="307" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
+ SRC="img313.gif"
+ ALT="$ \int_{e_+}(\underline N_-\cdot \underline t_-)\,\varphi \,ds = -\int_{e_-}(\underline N_-\cdot \underline t_-)\,\varphi \,ds$">.
+               So, by the definition (<A HREF="node2.html#eq:_trafo_shape_functions">27</A>) of the element shape functions on <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img57.gif"
+ ALT="$ K_+$"> resp. on <IMG
+ WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img56.gif"
+ ALT="$ K_-$">,
+               by the invariance of the dofs (proposition <A HREF="node2.html#prop:_Dof_invariance">7</A>) and by the definition of the 
+               reference shape functions (example <A HREF="node2.html#ex:_shape_functions">3</A>) we have
+               </FONT><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\int_{e_+} (\underline N_+ \cdot \underline t_+)\varphi \,ds = \int_{\hat{e}_i}  (\hat{\underline N}_i\cdot \hat{\underline t}_i)\hat{\varphi }\,d\hat{s} = 1
+                       \qquad \textrm{and} \qquad
+                       \int_{e_-} (\underline N_- \cdot \underline t_-)\varphi \,ds = -\int_{\hat{e}_j}  (\hat{\underline N}_j\cdot \hat{\underline t}_j)\hat{\varphi }\,d\hat{s} = -1\,.
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="740" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
+ SRC="img314.gif"
+ ALT="$\displaystyle \int_{e_+} (\underline N_+ \cdot \underline t_+)\varphi \,ds = \i...
+...\hat{\underline N}_j\cdot \hat{\underline t}_j)\hat{\varphi }\,d\hat{s} = -1\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+       
+</FONT>
+<P>
+<FONT SIZE="-1">To close this section, let us make a note on the interpretation of the dofs on an element <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$"> in the case of lowest order polynomial
+       degree. In this case, all dofs are edge dofs, the degrees of freedom are <!-- MATH
+ $\hat{\alpha}_j(\hat{\underline
+v}) = \int_{\hat{e}_j} \hat{\underline v} \cdot \hat{\underline t}_j\,d\hat{s}$
+ -->
+<IMG
+ WIDTH="150" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img315.gif"
+ ALT="$ \hat{\alpha}_j(\hat{\underline
+v}) = \int_{\hat{e}_j} \hat{\underline v} \cdot \hat{\underline t}_j\,d\hat{s}$"> and the tangential traces of shape functions are constant on each edge.
+       Since we require  <!-- MATH
+ $\hat{\alpha}_j(\hat{\underline N}_i) = \delta_{ij}$
+ -->
+<IMG
+ WIDTH="102" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img316.gif"
+ ALT="$ \hat{\alpha}_j(\hat{\underline N}_i) = \delta_{ij}$"> for the reference shape functions, we have 
+       </FONT><!-- MATH
+ \begin{displaymath}
+v_j = \hat{\alpha}_j(\hat{\underline v}) = (\hat{\underline N}_j \cdot \hat{\underline t})\,|\hat{e}_j| = ({\underline N}_j \cdot {\underline t}_j)\, |e_j|\,,
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="313" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img317.gif"
+ ALT="$\displaystyle v_j = \hat{\alpha}_j(\hat{\underline v}) = (\hat{\underline N}_j ...
+...\hat{e}_j\vert = ({\underline N}_j \cdot {\underline t}_j)\, \vert e_j\vert\,,
+$">
+</DIV><P></P><FONT SIZE="-1">
+       where for the last equality we have used lemma <A HREF="node2.html#lemma:__v_dot_t_-Trafo">1</A>. We see that
+       the dof <!-- MATH
+ $\alpha_j(\underline v)$
+ -->
+<IMG
+ WIDTH="47" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img318.gif"
+ ALT="$ \alpha_j(\underline v)$"> 'sitting' on the edge <IMG
+ WIDTH="22" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img319.gif"
+ ALT="$ e_j$"> is the value of the <I>scaled</I> tangential component 
+       <!-- MATH
+ $|e_j|\left(\underline v\cdot \underline t_j\right)|_e$
+ -->
+<IMG
+ WIDTH="100" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img320.gif"
+ ALT="$ \vert e_j\vert\left(\underline v\cdot \underline t_j\right)\vert _e$">. 
+<BR>   </FONT><P>
+<DIV><B>R<SMALL>EMARK</SMALL>  6</B> &nbsp; 
+For the invariance of the edge dofs it is essential that the moments <!-- MATH
+ $\alpha^{[K]}$
+ -->
+<IMG
+ WIDTH="38" HEIGHT="23" ALIGN="BOTTOM" BORDER="0"
+ SRC="img321.gif"
+ ALT="$ \alpha^{[K]}$"> on <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$"> are defined by using the 
+               <I>unit</I> tangent
+               vector <!-- MATH
+ $\underline t = \frac{|\hat{e}|}{|e|}\,(\hat{D}F)\,\hat{\underline t}$
+ -->
+<IMG
+ WIDTH="108" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
+ SRC="img322.gif"
+ ALT="$ \underline t = \frac{\vert\hat{e}\vert}{\vert e\vert}\,(\hat{D}F)\,\hat{\underline t}$"> on <IMG
+ WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img86.gif"
+ ALT="$ K$">. If not, e.&nbsp;g.&nbsp;if we
+               just used the tangent <!-- MATH
+ $\tilde{\underline t} = (\hat{D}F)\,\hat{\underline t}$
+ -->
+<IMG
+ WIDTH="87" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img323.gif"
+ ALT="$ \tilde{\underline t} = (\hat{D}F)\,\hat{\underline t}$">, we would lose the invariance of the dofs. In that case the dofs would
+               scale by a factor depending on the size of the edge or face ([<A
+ HREF="node4.html#Ned1">8</A>], remark on p.&nbsp;326).
+<BR>           </DIV><P></P>
+
+<P>
+<FONT SIZE="-1"></FONT>
+<H2><A NAME="SECTION00025000000000000000">
+2.5 Approximation and convergence results</A>
+</H2><FONT SIZE="-1">
+       Without going into details, we will cite here some results on approximation properties and convergence of N&#233;d&#233;lec FEM of first type.
+       
+<BR>
+We are in the setting of a
+       <I>conforming</I> FEM and have quasi-optimal approximation properties of the FE-spaces <!-- MATH
+ $V_h \subset H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="127" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img324.gif"
+ ALT="$ V_h \subset H(\mathop{\rm curl};\Omega )$">
+       </FONT><!-- MATH
+ \begin{displaymath}
+\| \underline u - \Pi_h^k \underline u\|_{H(\mathop{\rm curl}; \Omega )} = C\,\inf_{w\in V_h}\| \underline u -  \underline w\|_{H(\mathop{\rm curl}; \Omega )}\,,
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="355" HEIGHT="43" ALIGN="MIDDLE" BORDER="0"
+ SRC="img325.gif"
+ ALT="$\displaystyle \Vert \underline u - \Pi_h^k \underline u\Vert _{H(\mathop{\rm cu...
+...V_h}\Vert \underline u - \underline w\Vert _{H(\mathop{\rm curl}; \Omega )}\,,
+$">
+</DIV><P></P><FONT SIZE="-1">
+       where <!-- MATH
+ $\Pi_h^k \underline u \in \mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="82" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img326.gif"
+ ALT="$ \Pi_h^k \underline u \in \mathcal{R}^k$"> or <!-- MATH
+ $\Pi_h^k \underline u \in \mathcal{P}^k$
+ -->
+<IMG
+ WIDTH="81" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img327.gif"
+ ALT="$ \Pi_h^k \underline u \in \mathcal{P}^k$"> respectively,
+        denotes the interpolate of <!-- MATH
+ $\underline u$
+ -->
+<IMG
+ WIDTH="16" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img35.gif"
+ ALT="$ \underline u$"> with regard to the N&#233;d&#233;lec dofs: <!-- MATH
+ $\alpha(\underline u) = \alpha(\Pi_h^k \underline u)$
+ -->
+<IMG
+ WIDTH="121" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img328.gif"
+ ALT="$ \alpha(\underline u) = \alpha(\Pi_h^k \underline u)$"> for all dofs <IMG
+ WIDTH="18" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img329.gif"
+ ALT="$ \alpha$">. 
+        The interpolation operator <IMG
+ WIDTH="28" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img330.gif"
+ ALT="$ \Pi_h^k$"> is defined for sufficiently smooth vector fields, namely for all <!-- MATH
+ $\underline v\in H^r(\mathop{\rm curl})$
+ -->
+<IMG
+ WIDTH="103" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img331.gif"
+ ALT="$ \underline v\in H^r(\mathop{\rm curl})$"> 
+        for any <!-- MATH
+ $r>\frac{1}{2}$
+ -->
+<IMG
+ WIDTH="49" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img332.gif"
+ ALT="$ r&gt;\frac{1}{2}$"> (see [<A
+ HREF="node4.html#Alonso-Valli">1</A>], Lemma 5.1., [<A
+ HREF="node4.html#Monk">7</A>] and references therein).
+<BR>
+For N&#233;d&#233;lec's FEM of first type we state (without proof) the following optimal estimate in the curl-norm: 
+       </FONT><P>
+<DIV><B>T<SMALL>HEOREM</SMALL>  5</B> &nbsp; 
+If <!-- MATH
+ $\mathcal{T}_h$
+ -->
+<IMG
+ WIDTH="24" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img333.gif"
+ ALT="$ \mathcal{T}_h$">, <IMG
+ WIDTH="48" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img334.gif"
+ ALT="$ h&gt;0$">, is a regular family of triangulations on <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img10.gif"
+ ALT="$ \Omega $"> and <!-- MATH
+ $r>\frac{1}{2}$
+ -->
+<IMG
+ WIDTH="49" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img332.gif"
+ ALT="$ r&gt;\frac{1}{2}$">, then there exists a constant <IMG
+ WIDTH="52" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img335.gif"
+ ALT="$ C&gt;0$">, 
+               depending on <IMG
+ WIDTH="15" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img336.gif"
+ ALT="$ r$"> but not on <IMG
+ WIDTH="17" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img337.gif"
+ ALT="$ h$"> or <!-- MATH
+ $\underline v$
+ -->
+<IMG
+ WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img20.gif"
+ ALT="$ \underline v$">, such that
+               <P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_curl-convergence"></A><!-- MATH
+ \begin{equation}
+\| \underline v - \Pi_h^k \underline v\|_{H(\mathop{\rm curl}; \Omega )} \leq C\,h^{\min\{r,k\}} \|\underline v\|_{H^r(\mathop{\rm curl};\Omega )}\,,
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="348" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
+ SRC="img338.gif"
+ ALT="$\displaystyle \Vert \underline v - \Pi_h^k \underline v\Vert _{H(\mathop{\rm cu...
+... C\,h^{\min\{r,k\}} \Vert\underline v\Vert _{H^r(\mathop{\rm curl};\Omega )}\,,$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(28)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+for all <!-- MATH
+ $\underline v\in H^r(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="123" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img339.gif"
+ ALT="$ \underline v\in H^r(\mathop{\rm curl};\Omega )$">.
+       </DIV><P></P>
+<FONT SIZE="-1">
+       The result in (<A HREF="node2.html#eq:_curl-convergence">28</A>) was obtained by Alonso and Valli in [<A
+ HREF="node4.html#Alonso-Valli">1</A>], extending earlier interpolation  
+       results by N&#233;d&#233;lec in [<A
+ HREF="node4.html#Ned1">8</A>] and Monk in [<A
+ HREF="node4.html#Monk_92">6</A>]. 
+<BR>
+Optimal convergence in the <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-norm for the error of the FE-approximation of the model
+       problem (<A HREF="node1.html#eq:_varform">3</A>) by N&#233;d&#233;lec's elements of first type follows from (<A HREF="node2.html#eq:_curl-convergence">28</A>) by C&#233;a's lemma.
+       This result has been verified in numerical experiments with a <TT>MATLAB</TT> code, which uses lowest
+       order N&#233;d&#233;lec elements on affine triangular meshes for 2d problems, as well as with a  <TT>deal.II</TT> code, which uses lowest order
+       N&#233;d&#233;lec elements on bilinear resp. trilinear meshes for 2d resp. 3d problems.
+<BR>
+As for the <!-- MATH
+ $L^2(\Omega )$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img2.gif"
+ ALT="$ L^2(\Omega )$">-approximation properties of FE spaces based on <!-- MATH
+ $\mathcal{R}^k$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img102.gif"
+ ALT="$ \mathcal{R}^k$"> or <!-- MATH
+ $\mathcal{P}^k$
+ -->
+<IMG
+ WIDTH="28" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img228.gif"
+ ALT="$ \mathcal{P}^k$">, we could hope for a better order
+       than <!-- MATH
+ $\mathcal{O}(h^k)$
+ -->
+<IMG
+ WIDTH="53" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img340.gif"
+ ALT="$ \mathcal{O}(h^k)$"> at first sight: still, we have  <!-- MATH
+ $[\mathbb{P}^{k-1}(K)]^d \subseteq \mathcal{R}^k(K)$
+ -->
+<IMG
+ WIDTH="165" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img341.gif"
+ ALT="$ [\mathbb{P}^{k-1}(K)]^d \subseteq \mathcal{R}^k(K)$">. However, N&#233;d&#233;lec shows in [<A
+ HREF="node4.html#Ned1">8</A>]
+       that only suboptimality can be expected:
+       </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_L2-approx"></A><!-- MATH
+ \begin{equation}
+\| \underline v - \Pi_h^k \underline v\|_{L^2(\Omega )} \leq C h^k |\underline v|_{H^k(\Omega )}\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="244" HEIGHT="43" ALIGN="MIDDLE" BORDER="0"
+ SRC="img342.gif"
+ ALT="$\displaystyle \Vert \underline v - \Pi_h^k \underline v\Vert _{L^2(\Omega )} \leq C h^k \vert\underline v\vert _{H^k(\Omega )}\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(29)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+       N&#233;d&#233;lec uses a standard scaling and Bramble-Hilbert argument to derive (<A HREF="node2.html#eq:_L2-approx">29</A>). Since 
+       <!-- MATH
+ $[\mathbb{P}^{k-1}(K)]^d \subseteq \mathcal{R}^k(K) \subsetneq [\mathbb{P}^k(K)]^d$
+ -->
+<IMG
+ WIDTH="254" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img343.gif"
+ ALT="$ [\mathbb{P}^{k-1}(K)]^d \subseteq \mathcal{R}^k(K) \subsetneq [\mathbb{P}^k(K)]^d$">, the Bramble-Hilbert argument only guarantees an elementwise
+       approximation of order <IMG
+ WIDTH="16" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img93.gif"
+ ALT="$ k$"> of <IMG
+ WIDTH="60" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img344.gif"
+ ALT="$ H^k(K)$">-functions from the space <!-- MATH
+ $\mathcal{R}^k(K)$
+ -->
+<IMG
+ WIDTH="59" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img345.gif"
+ ALT="$ \mathcal{R}^k(K)$">.
+<BR>
+However, in a recent paper Hiptmair uses a duality technique to state optimal convergence of the
+       <!-- MATH
+ $L^2(\Omega )$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img2.gif"
+ ALT="$ L^2(\Omega )$">-error <!-- MATH
+ $\| \underline u - \underline u_h\|_{L^2(\Omega )}$
+ -->
+<IMG
+ WIDTH="111" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img346.gif"
+ ALT="$ \Vert \underline u - \underline u_h\Vert _{L^2(\Omega )}$">
+       for the 3d case and N&#233;d&#233;lec's elements of first type of order <IMG
+ WIDTH="16" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img93.gif"
+ ALT="$ k$"> on tetrahedral meshes 
+       (see Section 5.3, Theorem 5.8 in [<A
+ HREF="node4.html#Hipt">5</A>]): 
+       </FONT><P>
+<DIV><A NAME="th:_Hiptmair"><B>T<SMALL>HEOREM</SMALL>  6</B></A> &nbsp; 
+There is an <!-- MATH
+ $s>\frac{1}{2}$
+ -->
+<IMG
+ WIDTH="48" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img347.gif"
+ ALT="$ s&gt;\frac{1}{2}$"> such that
+               <P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_L2-convergence"></A><!-- MATH
+ \begin{equation}
+\| \underline u -  \underline u_h\|_{L^2(\Omega )} \leq C h^s \| \underline u - \underline u_h\|_{H(\mathop{\rm curl}; \Omega )}\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="299" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img348.gif"
+ ALT="$\displaystyle \Vert \underline u - \underline u_h\Vert _{L^2(\Omega )} \leq C h^s \Vert \underline u - \underline u_h\Vert _{H(\mathop{\rm curl}; \Omega )}\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(30)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+Under the assumption that the boundary <!-- MATH
+ $\partial \Omega$
+ -->
+<IMG
+ WIDTH="29" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img9.gif"
+ ALT="$ \partial \Omega $"> is smooth or convex, <IMG
+ WIDTH="46" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img349.gif"
+ ALT="$ s=1$"> can be chosen.
+       </DIV><P></P>
+<FONT SIZE="-1">
+       Several key arguments of the proof in [<A
+ HREF="node4.html#Hipt">5</A>] make explicitely use of features that are limited to 3d problems and the 
+       family of finite elements based on tetrahedrons.
+       They cannot be modified trivially to apply to 2d problems or 3d problems on hexahedral meshes. Even worse, it is suggested by the results of
+       numerical experiments that one cannot hope to obtain a result similar to (<A HREF="node2.html#eq:_L2-convergence">30</A>).
+<BR>
+A possibility to overcome this deficiency of convergence is to use N&#233;d&#233;lec elements of second type, where the full <!-- MATH
+ $[\mathbb{P}_k]^d$
+ -->
+<IMG
+ WIDTH="43" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img350.gif"
+ ALT="$ [\mathbb{P}_k]^d$">
+       are used as polynomial spaces (see [<A
+ HREF="node4.html#Ned2">10</A>]).
+</FONT>
+<P>
+<FONT SIZE="-1"></FONT>
+<BR><HR>
+<ADDRESS>
+
+2003-04-30
+</ADDRESS>
+</BODY>
+</HTML>
diff --git a/deal.II/doc/reports/nedelec/node3.html b/deal.II/doc/reports/nedelec/node3.html
new file mode 100644 (file)
index 0000000..221339e
--- /dev/null
@@ -0,0 +1,720 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
+
+<!--Converted with LaTeX2HTML 2K.1beta (1.47)
+original version by:  Nikos Drakos, CBLU, University of Leeds
+* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
+* with significant contributions from:
+  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
+<HTML>
+<HEAD>
+<TITLE>3 Numerical results</TITLE>
+<META NAME="description" CONTENT="3 Numerical results">
+<META NAME="keywords" CONTENT="main">
+<META NAME="resource-type" CONTENT="document">
+<META NAME="distribution" CONTENT="global">
+
+<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
+<META NAME="Generator" CONTENT="LaTeX2HTML v2K.1beta">
+<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
+
+<LINK REL="STYLESHEET" HREF="main.css">
+
+</HEAD>
+
+<BODY >
+
+<H1><A NAME="SECTION00030000000000000000">
+3 <FONT SIZE="+1">Numerical results</FONT></A>
+</H1><FONT SIZE="-1">
+       The numerical results in this section provide some samples of the quality of the <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming FEM 
+       with N&#233;d&#233;lec elements of first type and lowest order (polynomial degree <IMG
+ WIDTH="48" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img108.gif"
+ ALT="$ k=1$">).
+<BR>
+We considered the model problem (<A HREF="node1.html#eq:model_problem">1</A>) in <!-- MATH
+ $\Omega = [-1,1]^d$
+ -->
+<IMG
+ WIDTH="98" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img351.gif"
+ ALT="$ \Omega = [-1,1]^d$">, <IMG
+ WIDTH="64" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img5.gif"
+ ALT="$ d=2,3$">, 
+       with homogeneous Dirichlet boundary condition (<A HREF="node1.html#eq:_PCB">2</A>).
+<BR>
+The first few results for the two-dimensional problem have been obtained by a <TT>MATLAB</TT> code. 
+       For the first example we used the data 
+       </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_numerical_ex.1"></A><!-- MATH
+ \begin{equation}
+c\equiv 1 \,, \qquad \underline f(x,y) = \left(\begin{array}{cc} 3 - y^2 \\3 - x^2 \end{array}\right)\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="265" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img352.gif"
+ ALT="$\displaystyle c\equiv 1 \,, \qquad \underline f(x,y) = \left(\begin{array}{cc} 3 - y^2 \\  3 - x^2 \end{array}\right)\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(31)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+       For the second example we have followed the outlines from Appendix A and taken the data from example <A HREF="node5.html#ex:_solutions_from_Laplace">5</A>
+       </FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_numerical_ex.2"></A><!-- MATH
+ \begin{equation}
+c\equiv 1 \,, \qquad
+               \underline f(x,y) = (2\pi^2 + 1)\left(\begin{array}{cc} \cos\pi x\sin\pi y \\-\sin\pi x\cos\pi y \end{array}\right)\,.
+       
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="401" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img353.gif"
+ ALT="$\displaystyle c\equiv 1 \,, \qquad \underline f(x,y) = (2\pi^2 + 1)\left(\begin{array}{cc} \cos\pi x\sin\pi y \\  -\sin\pi x\cos\pi y \end{array}\right)\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(32)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+       The finite element solution has been computed using N&#233;d&#233;lec elements of first type and of polynomial degree <IMG
+ WIDTH="48" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img108.gif"
+ ALT="$ k=1$"> on a family of
+       affine triangular grids.
+       The initial coarse grid consisted of <IMG
+ WIDTH="23" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img354.gif"
+ ALT="$ 2^5$"> triangles. The finest grid with <IMG
+ WIDTH="29" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img355.gif"
+ ALT="$ 2^{13}$"> triangles results after five global refinements.
+<BR>
+In Table <A HREF="#table:_matlab">1</A> we see that for both examples we have 
+       optimal convergence in the <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-semiorm, as we would expect from the theoretical results of the
+       previous section. As for the <!-- MATH
+ $L^2(\Omega )$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img2.gif"
+ ALT="$ L^2(\Omega )$">-norm, it appears that in both examples the convergence
+       of the numerical solution is not optimal for our choice of finite elements. In the case of N&#233;d&#233;lec elements of first 
+       type and of polynomial degree <IMG
+ WIDTH="48" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img108.gif"
+ ALT="$ k=1$">, we got only <!-- MATH
+ $\mathcal{O}(h)$
+ -->
+<IMG
+ WIDTH="44" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img356.gif"
+ ALT="$ \mathcal{O}(h)$">-convergence of the <IMG
+ WIDTH="26" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img357.gif"
+ ALT="$ L^2$">-error. However, this order of
+       convergence is consistent with the result (<A HREF="node2.html#eq:_L2-approx">29</A>) obtained by N&#233;d&#233;lec in [<A
+ HREF="node4.html#Ned1">8</A>].
+<BR></FONT>
+<P>
+<BR><P></P>
+<DIV ALIGN="CENTER"><A NAME="4142"></A>
+<TABLE>
+<CAPTION><STRONG>Table 1:</STRONG>
+Errors and convergence rates in the <!-- MATH
+ $L^2(\Omega )$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img2.gif"
+ ALT="$ L^2(\Omega )$">-norm and <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img359.gif"
+ ALT="$ H(\mathop{\rm curl};\Omega )$">-seminorm for the two <TT>MATLAB</TT> examples.</CAPTION>
+<TR><TD>
+<DIV ALIGN="CENTER">
+<TABLE CELLPADDING=3 BORDER="1" ALIGN="CENTER">
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">grid</TD>
+<TD ALIGN="RIGHT"><IMG
+ WIDTH="21" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img358.gif"
+ ALT="$ \char93 $"> cells</TD>
+<TD ALIGN="CENTER" COLSPAN=2><!-- MATH
+ $H(\mathop{\rm curl})$
+ -->
+<IMG
+ WIDTH="65" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img46.gif"
+ ALT="$ H(\mathop{\rm curl})$">-error</TD>
+<TD ALIGN="CENTER" COLSPAN=2><IMG
+ WIDTH="26" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img357.gif"
+ ALT="$ L^2$">-error</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">1</TD>
+<TD ALIGN="RIGHT">32</TD>
+<TD ALIGN="CENTER">6.66e-01</TD>
+<TD ALIGN="CENTER">-</TD>
+<TD ALIGN="CENTER">4.66e-01</TD>
+<TD ALIGN="CENTER">-</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">2</TD>
+<TD ALIGN="RIGHT">128</TD>
+<TD ALIGN="CENTER">3.33e-01</TD>
+<TD ALIGN="CENTER">1.00</TD>
+<TD ALIGN="CENTER">2.35e-01</TD>
+<TD ALIGN="CENTER">0.98</TD>
+</TR>
+<TR><TD ALIGN="CENTER">example 1</TD>
+<TD ALIGN="CENTER">3</TD>
+<TD ALIGN="RIGHT">512</TD>
+<TD ALIGN="CENTER">1.66e-01</TD>
+<TD ALIGN="CENTER">1.00</TD>
+<TD ALIGN="CENTER">1.17e-01</TD>
+<TD ALIGN="CENTER">0.99</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">4</TD>
+<TD ALIGN="RIGHT">2048</TD>
+<TD ALIGN="CENTER">8.33e-02</TD>
+<TD ALIGN="CENTER">1.00</TD>
+<TD ALIGN="CENTER">5.89e-02</TD>
+<TD ALIGN="CENTER">0.99</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">5</TD>
+<TD ALIGN="RIGHT">8192</TD>
+<TD ALIGN="CENTER">4.17e-02</TD>
+<TD ALIGN="CENTER">1.00</TD>
+<TD ALIGN="CENTER">2.95e-02</TD>
+<TD ALIGN="CENTER">0.99</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">1</TD>
+<TD ALIGN="RIGHT">32</TD>
+<TD ALIGN="CENTER">3.05e+00</TD>
+<TD ALIGN="CENTER">-</TD>
+<TD ALIGN="CENTER">6.48e-01</TD>
+<TD ALIGN="CENTER">-</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">2</TD>
+<TD ALIGN="RIGHT">128</TD>
+<TD ALIGN="CENTER">1.61e+00</TD>
+<TD ALIGN="CENTER">0.91</TD>
+<TD ALIGN="CENTER">3.22e-01</TD>
+<TD ALIGN="CENTER">1.00</TD>
+</TR>
+<TR><TD ALIGN="CENTER">example 2</TD>
+<TD ALIGN="CENTER">3</TD>
+<TD ALIGN="RIGHT">512</TD>
+<TD ALIGN="CENTER">0.81e-01</TD>
+<TD ALIGN="CENTER">0.97</TD>
+<TD ALIGN="CENTER">1.60e-01</TD>
+<TD ALIGN="CENTER">1.00</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">4</TD>
+<TD ALIGN="RIGHT">2048</TD>
+<TD ALIGN="CENTER">0.41e-01</TD>
+<TD ALIGN="CENTER">0.99</TD>
+<TD ALIGN="CENTER">8.02e-02</TD>
+<TD ALIGN="CENTER">1.00</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">5</TD>
+<TD ALIGN="RIGHT">8192</TD>
+<TD ALIGN="CENTER">2.05e-01</TD>
+<TD ALIGN="CENTER">0.99</TD>
+<TD ALIGN="CENTER">4.01e-02</TD>
+<TD ALIGN="CENTER">1.00</TD>
+</TR>
+</TABLE>
+</DIV>
+</TD></TR>
+</TABLE>
+</DIV><P></P>
+<BR>
+<P>
+
+<P></P>
+<DIV ALIGN="CENTER"><A NAME="fig:conv1"></A><A NAME="4143"></A>
+<TABLE>
+<CAPTION ALIGN="BOTTOM"><STRONG>Figure 1:</STRONG>
+Convergence of the FE-approximation to the smooth solution of the <TT>MATLAB</TT> example (<A HREF="node3.html#eq:_numerical_ex.1">31</A>) 
+       in the <!-- MATH
+ $L^2(\Omega )$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img2.gif"
+ ALT="$ L^2(\Omega )$">-norm and the <!-- MATH
+ $H(\mathop{\rm curl};(\Omega ))$
+ -->
+<IMG
+ WIDTH="99" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img361.gif"
+ ALT="$ H(\mathop{\rm curl};(\Omega ))$">-seminorm</CAPTION>
+<TR><TD>
+<DIV ALIGN="CENTER">
+<!-- MATH
+ $\includegraphics[width=9.5cm, height=7cm]{example1_errors.eps}$
+ -->
+<IMG
+ WIDTH="431" HEIGHT="318" ALIGN="BOTTOM" BORDER="0"
+ SRC="img360.gif"
+ ALT="% latex2html id marker 4265
+\includegraphics[width=9.5cm, height=7cm]{example1_errors.eps}">
+    
+</DIV></TD></TR>
+</TABLE>
+</DIV><P></P>
+
+<P>
+
+<P></P>
+<DIV ALIGN="CENTER"><A NAME="fig:conv2"></A><A NAME="4144"></A>
+<TABLE>
+<CAPTION ALIGN="BOTTOM"><STRONG>Figure 2:</STRONG>
+Convergence of the FE-approximation to the smooth solution of the <TT>MATLAB</TT> example (<A HREF="node3.html#eq:_numerical_ex.2">32</A>) 
+       in the <!-- MATH
+ $L^2(\Omega )$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img2.gif"
+ ALT="$ L^2(\Omega )$">-norm and the <!-- MATH
+ $H(\mathop{\rm curl};(\Omega ))$
+ -->
+<IMG
+ WIDTH="99" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img361.gif"
+ ALT="$ H(\mathop{\rm curl};(\Omega ))$">-seminorm</CAPTION>
+<TR><TD>
+<DIV ALIGN="CENTER">
+<!-- MATH
+ $\includegraphics[width=9.5cm, height=7cm]{example2_errors.eps}$
+ -->
+<IMG
+ WIDTH="431" HEIGHT="318" ALIGN="BOTTOM" BORDER="0"
+ SRC="img362.gif"
+ ALT="% latex2html id marker 4271
+\includegraphics[width=9.5cm, height=7cm]{example2_errors.eps}">
+    
+</DIV></TD></TR>
+</TABLE>
+</DIV><P></P>
+
+<P>
+<P>
+<DIV><B>R<SMALL>EMARK</SMALL>  7</B> &nbsp; 
+The mesh generation and refinement was done by <TT>PDE-toolbox</TT> commands. Since the <TT>PDE-toolbox</TT> does not support three
+               dimensional grids, we restricted ourselves to 2d problems, and we have so far no numerical results for the case of
+               tetrahedral grids in 3d.
+       </DIV><P></P>
+
+<P>
+<FONT SIZE="-1">As for meshes with quadrilateral cells, numerical results were obtained with a <TT>deal.II</TT> code,  
+       using the finite element class <TT>fe/fenedelec.cc</TT>. This class provides 
+       N&#233;d&#233;lec's <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming element of first type and lowest order in two and three space dimensions, on 
+       bilinear quadrilateral, resp. trilinear hexahedral grids. For details about <TT>deal.II</TT>, see [<A
+ HREF="node4.html#Deal">2</A>].
+       In the following results were obtained for the model problem (<A HREF="node1.html#eq:model_problem">1</A>) in two dimensions using the 
+       data (<A HREF="node3.html#eq:_numerical_ex.2">32</A>).  
+       We computed the solution on five successive
+       non-affine bilinear grids ( figure <A HREF="node3.html#fig:grid">3</A>), each of which was obtained by global refinement of the previous one.
+</FONT>
+<P>
+
+<P></P>
+<DIV ALIGN="CENTER"><A NAME="fig:grid"></A><A NAME="4146"></A>
+<TABLE>
+<CAPTION ALIGN="BOTTOM"><STRONG>Figure 3:</STRONG>
+Non-affine bilinear grid used in the <TT>deal.II</TT> code, after one refinement step.</CAPTION>
+<TR><TD>
+<DIV ALIGN="CENTER">
+<!-- MATH
+ $\includegraphics[width=5.5cm, height=5.5cm]{grid.eps}$
+ -->
+<IMG
+ WIDTH="249" HEIGHT="249" ALIGN="BOTTOM" BORDER="0"
+ SRC="img363.gif"
+ ALT="\includegraphics[width=5.5cm, height=5.5cm]{grid.eps}">
+    
+</DIV></TD></TR>
+</TABLE>
+</DIV><P></P>
+
+<P>
+<FONT SIZE="-1">Again, in Table <A HREF="#table:_2d-deal">2</A> we can observe optimal convergence of order <!-- MATH
+ $\mathcal{O}(h)$
+ -->
+<IMG
+ WIDTH="44" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img356.gif"
+ ALT="$ \mathcal{O}(h)$"> in the <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-norm. 
+The same order of convergence is obtained for the error in the <!-- MATH
+ $L^2(\Omega )$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img2.gif"
+ ALT="$ L^2(\Omega )$">-norm.
+<BR></FONT>
+<P>
+<BR><P></P>
+<DIV ALIGN="CENTER"><A NAME="4147"></A>
+<TABLE>
+<CAPTION><STRONG>Table 2:</STRONG>
+Errors and convergence rates in the <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img359.gif"
+ ALT="$ H(\mathop{\rm curl};\Omega )$">- and <!-- MATH
+ $L^2(\Omega )$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img2.gif"
+ ALT="$ L^2(\Omega )$">-norm for the 2d-example solved with <TT>deal.II</TT>.
+</CAPTION>
+<TR><TD>
+<DIV ALIGN="CENTER">
+<TABLE CELLPADDING=3 BORDER="1" ALIGN="CENTER">
+<TR><TD ALIGN="CENTER">grid</TD>
+<TD ALIGN="RIGHT"><IMG
+ WIDTH="21" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img358.gif"
+ ALT="$ \char93 $"> cells</TD>
+<TD ALIGN="CENTER" COLSPAN=2><!-- MATH
+ $H(\mathop{\rm curl})$
+ -->
+<IMG
+ WIDTH="65" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img46.gif"
+ ALT="$ H(\mathop{\rm curl})$">-error</TD>
+<TD ALIGN="CENTER" COLSPAN=2><IMG
+ WIDTH="26" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img357.gif"
+ ALT="$ L^2$">-error</TD>
+</TR>
+<TR><TD ALIGN="CENTER">1</TD>
+<TD ALIGN="RIGHT">4</TD>
+<TD ALIGN="CENTER">6.112e+00</TD>
+<TD ALIGN="CENTER">-</TD>
+<TD ALIGN="CENTER">1.442e+00</TD>
+<TD ALIGN="CENTER">-</TD>
+</TR>
+<TR><TD ALIGN="CENTER">2</TD>
+<TD ALIGN="RIGHT">16</TD>
+<TD ALIGN="CENTER">3.688e+00</TD>
+<TD ALIGN="CENTER">0.73</TD>
+<TD ALIGN="CENTER">6.765e-01</TD>
+<TD ALIGN="CENTER">1.09</TD>
+</TR>
+<TR><TD ALIGN="CENTER">3</TD>
+<TD ALIGN="RIGHT">64</TD>
+<TD ALIGN="CENTER">1.991e+00</TD>
+<TD ALIGN="CENTER">0.89</TD>
+<TD ALIGN="CENTER">3.280e-01</TD>
+<TD ALIGN="CENTER">1.04</TD>
+</TR>
+<TR><TD ALIGN="CENTER">4</TD>
+<TD ALIGN="RIGHT">256</TD>
+<TD ALIGN="CENTER">1.015e+00</TD>
+<TD ALIGN="CENTER">0.97</TD>
+<TD ALIGN="CENTER">1.617e-01</TD>
+<TD ALIGN="CENTER">1.02</TD>
+</TR>
+<TR><TD ALIGN="CENTER">5</TD>
+<TD ALIGN="RIGHT">1024</TD>
+<TD ALIGN="CENTER">5.098e-01</TD>
+<TD ALIGN="CENTER">0.99</TD>
+<TD ALIGN="CENTER">8.049e-02</TD>
+<TD ALIGN="CENTER">1.01</TD>
+</TR>
+</TABLE>
+</DIV>
+</TD></TR>
+</TABLE>
+</DIV><P></P>
+<BR>
+<P>
+<FONT SIZE="-1">With <TT>deal.II</TT>, we are also able to treat 3d problems on hexahedral grids. For our type of problem, 
+N&#233;d&#233;lec's <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">-conforming elements of first type and lowest order, based on a cubic reference element, are available. 
+<BR>
+We computed an approximation to the model problem (<A HREF="node1.html#eq:model_problem">1</A>) in 3d using the data
+       </FONT><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation}
+c\equiv 1 \,, \qquad \underline f(x,y,z) = \left(\begin{array}{ccc}   xy(1 - y^2)(1-z^2) + 2xy(1-z^2) \\
+                                                                                                                                         y^2(1 - x^2)(1-z^2) + (1-y^2)(2-x^2-z^2) \\
+                                                                                                                                         yz(1 - x^2)(1-y^2) + 2yz(1-x^2)
+                                                                                        \end{array}\right)\,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="557" HEIGHT="84" ALIGN="MIDDLE" BORDER="0"
+ SRC="img364.gif"
+ ALT="$\displaystyle c\equiv 1 \,, \qquad \underline f(x,y,z) = \left(\begin{array}{cc...
+... + (1-y^2)(2-x^2-z^2) \\  yz(1 - x^2)(1-y^2) + 2yz(1-x^2) \end{array}\right)\,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(33)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+In a first experiment, the finite element solution was computed on five successive globally refined affine grids. In a second 
+computation, we approximated the solution of the same problem on five successive globally refined non-affine trilinear grids.
+<BR>
+We see in Table <A HREF="#table:_3d-deal">3</A> that in both cases we observe again convergence of order <!-- MATH
+ $\mathcal{O}(h)$
+ -->
+<IMG
+ WIDTH="44" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img356.gif"
+ ALT="$ \mathcal{O}(h)$"> in the  
+<!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img1.gif"
+ ALT="$ H(\mathop {\rm curl};\Omega )$">- and the <!-- MATH
+ $L^2(\Omega )$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img2.gif"
+ ALT="$ L^2(\Omega )$">-norm.
+<BR></FONT>
+<P>
+<BR><P></P>
+<DIV ALIGN="CENTER"><A NAME="4148"></A>
+<TABLE>
+<CAPTION><STRONG>Table 3:</STRONG>
+Errors and convergence rates in the <!-- MATH
+ $H(\mathop{\rm curl};\Omega )$
+ -->
+<IMG
+ WIDTH="85" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img359.gif"
+ ALT="$ H(\mathop{\rm curl};\Omega )$">- and <!-- MATH
+ $L^2(\Omega )$
+ -->
+<IMG
+ WIDTH="52" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img2.gif"
+ ALT="$ L^2(\Omega )$">-norm for the 3d-example solved with <TT>deal.II</TT>. The first data
+set is for the computation on a family of affine grids, the second set of data is for non-affine trilinear grids.</CAPTION>
+<TR><TD>
+<DIV ALIGN="CENTER">
+<TABLE CELLPADDING=3 BORDER="1" ALIGN="CENTER">
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">grid</TD>
+<TD ALIGN="RIGHT"><IMG
+ WIDTH="21" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img358.gif"
+ ALT="$ \char93 $"> cells</TD>
+<TD ALIGN="CENTER" COLSPAN=2><!-- MATH
+ $H(\mathop{\rm curl})$
+ -->
+<IMG
+ WIDTH="65" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img46.gif"
+ ALT="$ H(\mathop{\rm curl})$">-error</TD>
+<TD ALIGN="CENTER" COLSPAN=2><IMG
+ WIDTH="26" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img357.gif"
+ ALT="$ L^2$">-error</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">1</TD>
+<TD ALIGN="RIGHT">8</TD>
+<TD ALIGN="CENTER">7.696e-01</TD>
+<TD ALIGN="CENTER">-</TD>
+<TD ALIGN="CENTER">6.609e-01</TD>
+<TD ALIGN="CENTER">-</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">2</TD>
+<TD ALIGN="RIGHT">64</TD>
+<TD ALIGN="CENTER">4.088e-01</TD>
+<TD ALIGN="CENTER">0.91</TD>
+<TD ALIGN="CENTER">2.943e-01</TD>
+<TD ALIGN="CENTER">1.17</TD>
+</TR>
+<TR><TD ALIGN="CENTER">affine grids</TD>
+<TD ALIGN="CENTER">3</TD>
+<TD ALIGN="RIGHT">512</TD>
+<TD ALIGN="CENTER">2.075e-01</TD>
+<TD ALIGN="CENTER">0.98</TD>
+<TD ALIGN="CENTER">1.408e-01</TD>
+<TD ALIGN="CENTER">1.06</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">4</TD>
+<TD ALIGN="RIGHT">4096</TD>
+<TD ALIGN="CENTER">1.041e-01</TD>
+<TD ALIGN="CENTER">0.99</TD>
+<TD ALIGN="CENTER">6.955e-02</TD>
+<TD ALIGN="CENTER">1.02</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">5</TD>
+<TD ALIGN="RIGHT">32768</TD>
+<TD ALIGN="CENTER">5.210e-02</TD>
+<TD ALIGN="CENTER">1.00</TD>
+<TD ALIGN="CENTER">3.467e-02</TD>
+<TD ALIGN="CENTER">1.00</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">1</TD>
+<TD ALIGN="RIGHT">8</TD>
+<TD ALIGN="CENTER">7.716e-01</TD>
+<TD ALIGN="CENTER">-</TD>
+<TD ALIGN="CENTER">6.611e-01</TD>
+<TD ALIGN="CENTER">-</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">2</TD>
+<TD ALIGN="RIGHT">64</TD>
+<TD ALIGN="CENTER">4.108e-01</TD>
+<TD ALIGN="CENTER">0.91</TD>
+<TD ALIGN="CENTER">2.955e-01</TD>
+<TD ALIGN="CENTER">1.16</TD>
+</TR>
+<TR><TD ALIGN="CENTER">non-affine grids</TD>
+<TD ALIGN="CENTER">3</TD>
+<TD ALIGN="RIGHT">512</TD>
+<TD ALIGN="CENTER">2.085e-01</TD>
+<TD ALIGN="CENTER">0.98</TD>
+<TD ALIGN="CENTER">1.413e-01</TD>
+<TD ALIGN="CENTER">1.06</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">4</TD>
+<TD ALIGN="RIGHT">4096</TD>
+<TD ALIGN="CENTER">1.046e-01</TD>
+<TD ALIGN="CENTER">0.99</TD>
+<TD ALIGN="CENTER">6.982e-02</TD>
+<TD ALIGN="CENTER">1.02</TD>
+</TR>
+<TR><TD ALIGN="CENTER">&nbsp;</TD>
+<TD ALIGN="CENTER">5</TD>
+<TD ALIGN="RIGHT">32768</TD>
+<TD ALIGN="CENTER">5.237e-02</TD>
+<TD ALIGN="CENTER">1.00</TD>
+<TD ALIGN="CENTER">3.480e-02</TD>
+<TD ALIGN="CENTER">1.00</TD>
+</TR>
+</TABLE>
+</DIV>
+</TD></TR>
+</TABLE>
+</DIV><P></P>
+<BR><FONT SIZE="-1">
+The conclusion that can be drawn from these numerical experiments is, that the restriction to three-dimensional tetrahedral grids 
+of Hiptmair's result on the <IMG
+ WIDTH="26" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img357.gif"
+ ALT="$ L^2$">-convergence of the error (<A HREF="node2.html#th:_Hiptmair">6</A>) cannot be relaxed. 
+<BR></FONT>
+<P>
+<FONT SIZE="-1">Finally, here are some pretty pictures: the vector field plots from the <TT>MATLAB</TT> computations. 
+</FONT>
+<P>
+
+<P></P>
+<DIV ALIGN="CENTER"><A NAME="fig:field1"></A><A NAME="4149"></A>
+<TABLE>
+<CAPTION ALIGN="BOTTOM"><STRONG>Figure 4:</STRONG>
+Vector-field plot of the FE-solution of example (<A HREF="node3.html#eq:_numerical_ex.1">31</A>).</CAPTION>
+<TR><TD>
+<DIV ALIGN="CENTER">
+<!-- MATH
+ $\includegraphics[width=9.5cm, height=7cm]{field1.eps}$
+ -->
+<IMG
+ WIDTH="432" HEIGHT="318" ALIGN="BOTTOM" BORDER="0"
+ SRC="img365.gif"
+ ALT="\includegraphics[width=9.5cm, height=7cm]{field1.eps}">
+    
+</DIV></TD></TR>
+</TABLE>
+</DIV><P></P>
+
+<P>
+
+<P></P>
+<DIV ALIGN="CENTER"><A NAME="fig:field2"></A><A NAME="4150"></A>
+<TABLE>
+<CAPTION ALIGN="BOTTOM"><STRONG>Figure 5:</STRONG>
+Vector-field plot of the FE-solution of example (<A HREF="node3.html#eq:_numerical_ex.2">32</A>).</CAPTION>
+<TR><TD>
+<DIV ALIGN="CENTER">
+<!-- MATH
+ $\includegraphics[width=9.5cm, height=7cm]{field2.eps}$
+ -->
+<IMG
+ WIDTH="432" HEIGHT="318" ALIGN="BOTTOM" BORDER="0"
+ SRC="img366.gif"
+ ALT="\includegraphics[width=9.5cm, height=7cm]{field2.eps}">
+    
+</DIV></TD></TR>
+</TABLE>
+</DIV><P></P>
+<FONT SIZE="-1">
+</FONT>
+<P>
+
+<P>
+<BR><HR>
+<ADDRESS>
+
+2003-04-30
+</ADDRESS>
+</BODY>
+</HTML>
diff --git a/deal.II/doc/reports/nedelec/node4.html b/deal.II/doc/reports/nedelec/node4.html
new file mode 100644 (file)
index 0000000..5c75f92
--- /dev/null
@@ -0,0 +1,139 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
+
+<!--Converted with LaTeX2HTML 2K.1beta (1.47)
+original version by:  Nikos Drakos, CBLU, University of Leeds
+* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
+* with significant contributions from:
+  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
+<HTML>
+<HEAD>
+<TITLE>Bibliography</TITLE>
+<META NAME="description" CONTENT="Bibliography">
+<META NAME="keywords" CONTENT="main">
+<META NAME="resource-type" CONTENT="document">
+<META NAME="distribution" CONTENT="global">
+
+<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
+<META NAME="Generator" CONTENT="LaTeX2HTML v2K.1beta">
+<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
+
+<LINK REL="STYLESHEET" HREF="main.css">
+
+</HEAD>
+
+<BODY >
+
+<H2><A NAME="SECTION00040000000000000000">
+Bibliography</A>
+</H2><DL COMPACT><DD><P></P><DT><A NAME="Alonso-Valli">1</A>
+<DD>
+A.&nbsp;Alonso and A.&nbsp;Valli.
+<BR>An optimal domain decomposition preconditioner for low-frequency
+  time-harmonic Maxwell equations.
+<BR><EM>Math.&nbsp;Comp.</EM>, 68(226):607-631, 1999.
+
+<P></P><DT><A NAME="Deal">2</A>
+<DD>
+W.&nbsp;Bangerth, R.&nbsp;Hartmann, and G.&nbsp;Kanschat.
+<BR><EM><TT>deal.II</TT> Differential Equations Analysis Library,
+  Technical Reference</EM>.
+<BR>IWR, Universit&#228;t Heidelberg.
+<BR><TT>http://www.dealii.org</TT>.
+
+<P></P><DT><A NAME="Brezzi-Fortin">3</A>
+<DD>
+F.&nbsp;Brezzi and M.&nbsp;Fortin.
+<BR><EM>Mixed and Hybrid Finite Element Methods</EM>, volume&nbsp;15 of <EM>  Springer Series in Computational Mathematics</EM>.
+<BR>Springer-Verlag, New York, 1991.
+
+<P></P><DT><A NAME="Girault-Raviart">4</A>
+<DD>
+V.&nbsp;Girault and P.-A. Raviart.
+<BR><EM>Finite Element Approximation of the Navier-Stokes Equations</EM>,
+  volume 749 of <EM>Lecture Notes in Mathematics</EM>.
+<BR>Springer-Verlag, Berlin, Heidelberg, 1979, 1981.
+
+<P></P><DT><A NAME="Hipt">5</A>
+<DD>
+R.&nbsp;Hiptmair.
+<BR>Finite elements in computational electromagnetism.
+<BR>In <EM>Acta Numerica</EM>, pages 1-103. Cambridge University press,
+  2002.
+
+<P></P><DT><A NAME="Monk_92">6</A>
+<DD>
+P.&nbsp;Monk.
+<BR>Analysis of a finite element method for Maxwell's equations.
+<BR><EM>SIAM J.&nbsp;Numer.&nbsp;Anal</EM>, 29:714-729, 1992.
+
+<P></P><DT><A NAME="Monk">7</A>
+<DD>
+P.&nbsp;Monk.
+<BR>A simple proof for an edge element discretization of Maxwell's
+  equations.
+<BR>Submitted for publication. Download version available on Monk's
+  webpage: www.math.udel.edu./&nbsp;monk, 2001.
+
+<P></P><DT><A NAME="Ned1">8</A>
+<DD>
+J.&nbsp;C. N&#233;d&#233;lec.
+<BR>Mixed finite elements in <!-- MATH
+ $\mathbb{R}^3$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img367.gif"
+ ALT="$ \mathbb{R}^3$">.
+<BR><EM>Numer.&nbsp;Math.</EM>, 35:315-341, 1980.
+
+<P></P><DT><A NAME="Ned3">9</A>
+<DD>
+J.&nbsp;C. N&#233;d&#233;lec.
+<BR>Elements finis mixtes incompressibles pour l'&#233;quation de Stokes
+  dans <!-- MATH
+ $\mathbb{R}^3$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img367.gif"
+ ALT="$ \mathbb{R}^3$">.
+<BR><EM>Numer.&nbsp;Math.</EM>, 39:97-112, 1982.
+
+<P></P><DT><A NAME="Ned2">10</A>
+<DD>
+J.&nbsp;C. N&#233;d&#233;lec.
+<BR>A new family of mixed finite elements in <!-- MATH
+ $\mathbb{R}^3$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img367.gif"
+ ALT="$ \mathbb{R}^3$">.
+<BR><EM>Numer.&nbsp;Math.</EM>, 50:57-81, 1986.
+
+<P></P><DT><A NAME="Demko">11</A>
+<DD>
+W.&nbsp;Rachowicz and L.&nbsp;Demkowicz.
+<BR>A two-dimensional hp-adaptive finite element package for
+  electromagnetics (2Dhp90_EM).
+<BR>Ticam Report 98-16, TICAM, 1998.
+<BR>Download version available on Demkowicz' webpage:
+  www.ticam.utexas.edu/&nbsp;Leszek.
+
+<P></P><DT><A NAME="Demko3d">12</A>
+<DD>
+W.&nbsp;Rachowicz and L.&nbsp;Demkowicz.
+<BR>A three-dimensional hp-adaptive finite element package for
+  electromagnetics (3Dhp90_EM).
+<BR>Ticam Report 00-04.2000, TICAM, 2000.
+<BR>Download version available on Demkowicz' webpage:
+  www.ticam.utexas.edu/&nbsp;Leszek.
+</DL>
+
+</FONT><BR><HR>
+<ADDRESS>
+
+2003-04-30
+</ADDRESS>
+</BODY>
+</HTML>
diff --git a/deal.II/doc/reports/nedelec/node5.html b/deal.II/doc/reports/nedelec/node5.html
new file mode 100644 (file)
index 0000000..7568b72
--- /dev/null
@@ -0,0 +1,332 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
+
+<!--Converted with LaTeX2HTML 2K.1beta (1.47)
+original version by:  Nikos Drakos, CBLU, University of Leeds
+* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
+* with significant contributions from:
+  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
+<HTML>
+<HEAD>
+<TITLE>A. Construction of solutions in 2d</TITLE>
+<META NAME="description" CONTENT="A. Construction of solutions in 2d">
+<META NAME="keywords" CONTENT="main">
+<META NAME="resource-type" CONTENT="document">
+<META NAME="distribution" CONTENT="global">
+
+<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
+<META NAME="Generator" CONTENT="LaTeX2HTML v2K.1beta">
+<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
+
+<LINK REL="STYLESHEET" HREF="main.css">
+
+</HEAD>
+
+<BODY >
+
+<H1><A NAME="SECTION00050000000000000000">
+A. <FONT SIZE="+1">Construction of solutions in 2d</FONT></A>
+</H1>
+<P>
+<FONT SIZE="-1">We present how divergence-free solutions of the model problem (<A HREF="node1.html#eq:model_problem">1</A>) on a domain <!-- MATH
+ $\Omega \subset\mathbb{R}^2$
+ -->
+<IMG
+ WIDTH="62" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img167.gif"
+ ALT="$ \Omega \subset\mathbb{R}^2$"> with perfectly
+       conducting boundary
+       can be constructed from solutions of the scalar Laplace equation.
+<BR></FONT>
+<P>
+<P>
+<DIV><B>P<SMALL>ROPOSITION</SMALL>  9</B> &nbsp; 
+Let <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img10.gif"
+ ALT="$ \Omega $"> be a sufficiently smooth domain in <!-- MATH
+ $\mathbb{R}^2$
+ -->
+<IMG
+ WIDTH="27" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img368.gif"
+ ALT="$ \mathbb{R}^2$">, <!-- MATH
+ $\varphi (x,y)$
+ -->
+<IMG
+ WIDTH="58" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img369.gif"
+ ALT="$ \varphi (x,y)$"> a sufficently smooth scalar function on <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img10.gif"
+ ALT="$ \Omega $"> and the coefficient <IMG
+ WIDTH="46" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img370.gif"
+ ALT="$ c&gt;0$">
+               globally constant.
+<BR>
+Let <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img371.gif"
+ ALT="$ w$"> be a solution of the scalar equation
+               <P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_Laplace"></A><!-- MATH
+ \begin{equation}
+\begin{split}
+                       -\Delta w + c\, w &= \varphi \quad \mathrm{in} \quad \Omega \\
+                       \underline n \cdot \nabla w &= 0 \quad \mathrm{on} \quad \partial \Omega \,.
+               \end{split}
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="382" HEIGHT="55" BORDER="0"
+ SRC="img372.gif"
+ ALT="\begin{displaymath}\begin{split}-\Delta w + c\, w &amp;= \varphi \quad \mathrm{in} \...
+... w &amp;= 0 \quad \mathrm{on} \quad \partial \Omega \,. \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(34)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+Then, <!-- MATH
+ $\underline E := \nabla^{\perp} w$
+ -->
+<IMG
+ WIDTH="87" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img373.gif"
+ ALT="$ \underline E := \nabla^{\perp} w$"> is a solution of the model equation
+               <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\begin{split}
+                       \underline \mathop{\rm curl}\mathop{\rm curl}\underline E + c\, \underline E  = \underline f \quad \mathrm{in} \quad \Omega \,, \\
+                       \underline E \wedge \underline n = 0 \quad \mathrm{on} \quad \partial \Omega \,,
+               \end{split}
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="397" HEIGHT="60" BORDER="0"
+ SRC="img374.gif"
+ ALT="\begin{displaymath}\begin{split}\underline \mathop{\rm curl}\mathop{\rm curl}\un...
+...e n = 0 \quad \mathrm{on} \quad \partial \Omega \,, \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+with right hand side <!-- MATH
+ $\underline f := \nabla^{\perp} \varphi$
+ -->
+<IMG
+ WIDTH="82" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img375.gif"
+ ALT="$ \underline f := \nabla^{\perp} \varphi $">. 
+<BR>
+We use the notation <!-- MATH
+ $\nabla^{\perp} \varphi := \boldsymbol{R}\nabla\varphi = \left(\begin{array}{cc} \partial _y\varphi \\-\partial _x\varphi
+\end{array}\right)$
+ -->
+<IMG
+ WIDTH="220" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img376.gif"
+ ALT="$ \nabla^{\perp} \varphi := \boldsymbol{R}\nabla\varphi = \left(\begin{array}{cc} \partial _y\varphi \\  -\partial _x\varphi
+\end{array}\right)$">.
+       </DIV><P></P>
+
+<P>
+<FONT SIZE="-1">P<SMALL>ROOF. </SMALL>
+               We first show the correspondence of the boundary conditions. With the definition <!-- MATH
+ $\underline E := \nabla^{\perp} w$
+ -->
+<IMG
+ WIDTH="87" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img373.gif"
+ ALT="$ \underline E := \nabla^{\perp} w$"> it holds
+               </FONT><!-- MATH
+ \begin{displaymath}
+\underline E \wedge \underline n = \underline E \cdot \underline t = {\nabla w}^T \boldsymbol{R}^T\boldsymbol{R}\, \underline n = \nabla w \cdot \underline n \,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="303" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
+ SRC="img377.gif"
+ ALT="$\displaystyle \underline E \wedge \underline n = \underline E \cdot \underline ...
+...boldsymbol{R}^T\boldsymbol{R}\, \underline n = \nabla w \cdot \underline n \,.
+$">
+</DIV><P></P><FONT SIZE="-1">
+               It remains to show that <!-- MATH
+ $\underline E$
+ -->
+<IMG
+ WIDTH="20" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img378.gif"
+ ALT="$ \underline E$"> solves the model problem for an appropriate right hand side. 
+               First, note that <!-- MATH
+ $\underline E$
+ -->
+<IMG
+ WIDTH="20" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img378.gif"
+ ALT="$ \underline E$"> is divergence-free:
+               <!-- MATH
+ $\nabla\cdot\nabla^{\perp}w = 0$
+ -->
+<IMG
+ WIDTH="104" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img379.gif"
+ ALT="$ \nabla\cdot\nabla^{\perp}w = 0$"> for all <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img371.gif"
+ ALT="$ w$">. Hence, the identity <!-- MATH
+ $\underline \mathop{\rm curl}\mathop{\rm curl}\underline E = \nabla(\nabla\cdot\underline E) - \Delta\underline E$
+ -->
+<IMG
+ WIDTH="229" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img380.gif"
+ ALT="$ \underline \mathop{\rm curl}\mathop{\rm curl}\underline E = \nabla(\nabla\cdot\underline E) - \Delta\underline E$">
+               reduces to <!-- MATH
+ $\underline \mathop{\rm curl}\mathop{\rm curl}\underline E = - \Delta\underline E$
+ -->
+<IMG
+ WIDTH="152" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img381.gif"
+ ALT="$ \underline \mathop{\rm curl}\mathop{\rm curl}\underline E = - \Delta\underline E$">. The observation that for smooth data <!-- MATH
+ $\nabla^{\perp}w$
+ -->
+<IMG
+ WIDTH="45" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img382.gif"
+ ALT="$ \nabla^{\perp}w$"> solves the Laplace equation
+               (<A HREF="node5.html#eq:_Laplace">34</A>) with right hand side <!-- MATH
+ $\nabla^{\perp} \varphi$
+ -->
+<IMG
+ WIDTH="44" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img383.gif"
+ ALT="$ \nabla^{\perp} \varphi $"> concludes the proof.
+       
+</FONT>
+<P>
+<P>
+<DIV><A NAME="ex:_solutions_from_Laplace"><B>E<SMALL>XAMPLE</SMALL>  5</B></A> (Solutions from eigenfunctions of the Laplacian)  &nbsp; 
+Choose <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img371.gif"
+ ALT="$ w$"> to be a solution of the eigenvalue problem
+               <P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\begin{split}
+                       -\Delta w  &= \lambda \, w \quad \mathrm{in} \quad \Omega \\
+                       \underline n \cdot \nabla w &= 0 \quad \mathrm{on} \quad \partial \Omega \,,
+               \end{split}
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="364" HEIGHT="55" BORDER="0"
+ SRC="img384.gif"
+ ALT="\begin{displaymath}\begin{split}-\Delta w &amp;= \lambda \, w \quad \mathrm{in} \qua...
+... w &amp;= 0 \quad \mathrm{on} \quad \partial \Omega \,, \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P>
+and set <!-- MATH
+ $\varphi = (\lambda + c)\,w$
+ -->
+<IMG
+ WIDTH="110" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img385.gif"
+ ALT="$ \varphi = (\lambda + c)\,w$">.
+<BR>
+As an example, take <!-- MATH
+ $\Omega = [-1,1]^2$
+ -->
+<IMG
+ WIDTH="98" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img386.gif"
+ ALT="$ \Omega = [-1,1]^2$"> and <!-- MATH
+ $\lambda = 2\pi^2$
+ -->
+<IMG
+ WIDTH="67" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"
+ SRC="img387.gif"
+ ALT="$ \lambda = 2\pi^2$">. Then, <!-- MATH
+ $w = \cos\pi x\cos\pi y$
+ -->
+<IMG
+ WIDTH="138" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
+ SRC="img388.gif"
+ ALT="$ w = \cos\pi x\cos\pi y$"> is an eigenfunction and we compute 
+               <!-- MATH
+ \begin{displaymath}
+\underline f = (2\pi^2 + c)\pi \left(\begin{array}{cc} \cos\pi x\sin\pi y \\-\sin\pi x\cos\pi y \end{array}\right)\,, \qquad
+                       \underline E = \pi \left(\begin{array}{cc} \cos\pi x\sin\pi y \\-\sin\pi x\cos\pi y \end{array}\right)\,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="536" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
+ SRC="img389.gif"
+ ALT="$\displaystyle \underline f = (2\pi^2 + c)\pi \left(\begin{array}{cc} \cos\pi x\...
+...in{array}{cc} \cos\pi x\sin\pi y \\  -\sin\pi x\cos\pi y \end{array}\right)\,.
+$">
+</DIV><P></P></DIV><P></P>
+
+<P>
+<P>
+<DIV><B>E<SMALL>XAMPLE</SMALL>  6</B> (Solutions from any scalar function satiesfying the boundary condition)  &nbsp; 
+Take again <!-- MATH
+ $\Omega = [-1,1]^2$
+ -->
+<IMG
+ WIDTH="98" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img386.gif"
+ ALT="$ \Omega = [-1,1]^2$">. We have to find a scalar function <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img371.gif"
+ ALT="$ w$"> which satiesfies the homogeneous Neumann boundary condition. Take
+               for example <!-- MATH
+ $w(x,y) = (1-x^2)^2(1-y^2)^2$
+ -->
+<IMG
+ WIDTH="220" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img390.gif"
+ ALT="$ w(x,y) = (1-x^2)^2(1-y^2)^2$">, for which we have <!-- MATH
+ $\underline n \cdot \nabla w = 0$
+ -->
+<IMG
+ WIDTH="89" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img391.gif"
+ ALT="$ \underline n \cdot \nabla w = 0$"> on <!-- MATH
+ $\partial [-1,1]^2$
+ -->
+<IMG
+ WIDTH="73" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img392.gif"
+ ALT="$ \partial [-1,1]^2$">. The right hand side is then 
+           <!-- MATH
+ $\varphi = -\Delta w + c w$
+ -->
+<IMG
+ WIDTH="124" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img393.gif"
+ ALT="$ \varphi = -\Delta w + c w$">. 
+       </DIV><P></P>
+
+<P>
+<FONT SIZE="-1">
+</FONT>
+<BR><HR>
+<ADDRESS>
+
+2003-04-30
+</ADDRESS>
+</BODY>
+</HTML>
diff --git a/deal.II/doc/reports/nedelec/node6.html b/deal.II/doc/reports/nedelec/node6.html
new file mode 100644 (file)
index 0000000..423df4c
--- /dev/null
@@ -0,0 +1,310 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
+
+<!--Converted with LaTeX2HTML 2K.1beta (1.47)
+original version by:  Nikos Drakos, CBLU, University of Leeds
+* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
+* with significant contributions from:
+  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
+<HTML>
+<HEAD>
+<TITLE>A. Time-harmonic Maxwell's equations with low-frequency approximation</TITLE>
+<META NAME="description" CONTENT="A. Time-harmonic Maxwell's equations with low-frequency approximation">
+<META NAME="keywords" CONTENT="main">
+<META NAME="resource-type" CONTENT="document">
+<META NAME="distribution" CONTENT="global">
+
+<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
+<META NAME="Generator" CONTENT="LaTeX2HTML v2K.1beta">
+<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
+
+<LINK REL="STYLESHEET" HREF="main.css">
+
+</HEAD>
+
+<BODY >
+<!--Table of Child-Links-->
+<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
+
+<UL>
+<LI><A NAME="tex2html110"
+  HREF="#SECTION00061000000000000000">Time-harmonic, low-frequency case</A>
+</UL>
+<!--End of Table of Child-Links-->
+<HR>
+
+<H1><A NAME="SECTION00060000000000000000"></A> 
+<A NAME="appendix:_Maxwell_s_Eq."></A>
+<BR>
+A. <FONT SIZE="+1">Time-harmonic Maxwell's equations with low-frequency approximation</FONT>
+</H1><FONT SIZE="-1">
+We show, how the model problem can be derived from the time-harmonic Maxwell's equations in the low-frequency case.
+We follow the outline of [<A
+ HREF="node4.html#Alonso-Valli">1</A>]:
+<BR>
+We consider the following primal formulation of Maxwell's equations: 
+</FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_maxwell"></A><!-- MATH
+ \begin{equation}
+\begin{split}
+\varepsilon \frac{\partial \mathcal{E}}{\partial t} & = \mathop{\rm curl}\mathcal{H} - \sigma \mathcal{E} \,, \\
+       \mu \frac{\partial \mathcal{H}}{\partial t} & = -\mathop{\rm curl}\mathcal{E}\,,
+\end{split}
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="361" HEIGHT="85" BORDER="0"
+ SRC="img394.gif"
+ ALT="\begin{displaymath}\begin{split}\varepsilon \frac{\partial \mathcal{E}}{\partial...
+...}}{\partial t} &amp; = -\mathop{\rm curl}\mathcal{E}\,, \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(35)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+where <!-- MATH
+ $\mathcal{E}$
+ -->
+<IMG
+ WIDTH="17" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img395.gif"
+ ALT="$ \mathcal{E}$"> and <!-- MATH
+ $\mathcal{H}$
+ -->
+<IMG
+ WIDTH="21" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img396.gif"
+ ALT="$ \mathcal{H}$"> are the electric and magnetic field. 
+<!-- MATH
+ $\varepsilon (x), \mu(x)$
+ -->
+<IMG
+ WIDTH="80" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img397.gif"
+ ALT="$ \varepsilon (x), \mu(x)$"> are the dielectric and magnetic permeability coefficients, and <IMG
+ WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img398.gif"
+ ALT="$ \sigma(x)$"> denotes the electric conductivity.
+<!-- MATH
+ $\varepsilon (x), \mu(x)$
+ -->
+<IMG
+ WIDTH="80" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img397.gif"
+ ALT="$ \varepsilon (x), \mu(x)$"> and <IMG
+ WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img398.gif"
+ ALT="$ \sigma(x)$"> are assumed to be symmetric matrices in <!-- MATH
+ $L^{\infty}(\Omega )^{d\times d}$
+ -->
+<IMG
+ WIDTH="84" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img399.gif"
+ ALT="$ L^{\infty}(\Omega )^{d\times d}$">, and <!-- MATH
+ $\varepsilon (x)$
+ -->
+<IMG
+ WIDTH="38" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img400.gif"
+ ALT="$ \varepsilon (x)$"> and <IMG
+ WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img401.gif"
+ ALT="$ \mu(x)$"> are
+positive definite. <IMG
+ WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img398.gif"
+ ALT="$ \sigma(x)$"> is positive definite in a conductor and vanishes in an insulator.
+</FONT>
+<P>
+
+<H2><A NAME="SECTION00061000000000000000">
+Time-harmonic, low-frequency case</A>
+</H2><FONT SIZE="-1">
+We assume that <!-- MATH
+ $\mathcal{E}(x,t)$
+ -->
+<IMG
+ WIDTH="55" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img402.gif"
+ ALT="$ \mathcal{E}(x,t)$"> and <!-- MATH
+ $\mathcal{H}(x,t)$
+ -->
+<IMG
+ WIDTH="59" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img403.gif"
+ ALT="$ \mathcal{H}(x,t)$"> are <I>time-harmonic</I>, i.&nbsp;e.&nbsp;they can be represented as
+</FONT><P></P>
+<DIV ALIGN="CENTER"><!-- MATH
+ \begin{equation*}
+\begin{split}
+       \mathcal{E}(x,t) &= \mathrm{Re} \left(E(x) \exp(i\omega t)\right) \,, \\
+       \mathcal{H}(x,t) &= \mathrm{Re} \left(H(x) \exp(i\omega t)\right) \,.
+\end{split}
+\end{equation*}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="396" HEIGHT="55" BORDER="0"
+ SRC="img404.gif"
+ ALT="\begin{displaymath}\begin{split}\mathcal{E}(x,t) &amp;= \mathrm{Re} \left(E(x) \exp(...
+...= \mathrm{Re} \left(H(x) \exp(i\omega t)\right) \,. \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+&nbsp;&nbsp;&nbsp;</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+Here, <!-- MATH
+ $E(x), H(x)$
+ -->
+<IMG
+ WIDTH="91" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img405.gif"
+ ALT="$ E(x), H(x)$"> are complex-valued vector fields and <!-- MATH
+ $\omega\neq 0$
+ -->
+<IMG
+ WIDTH="50" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img406.gif"
+ ALT="$ \omega\neq 0$"> is a given angular frequency. 
+</FONT><P>
+<DIV><B>R<SMALL>EMARK</SMALL>  8</B> &nbsp; 
+For example, a monofrequent laser can be described by the time-harmonic Maxwell's equations.</DIV><P></P>
+
+<P>
+<FONT SIZE="-1">In the time-harmonic case the space and time variables decouple and we can eliminate the time dependency. For this, we ask 
+<!-- MATH
+ $E(x) \exp(i\omega t)$
+ -->
+<IMG
+ WIDTH="111" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img407.gif"
+ ALT="$ E(x) \exp(i\omega t)$"> and <!-- MATH
+ $H(x) \exp(i\omega t)$
+ -->
+<IMG
+ WIDTH="113" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img408.gif"
+ ALT="$ H(x) \exp(i\omega t)$"> to satiesfy (<A HREF="node6.html#eq:_maxwell">35</A>).
+By then inserting the second equation of (<A HREF="node6.html#eq:_maxwell">35</A>) into the first one, we can eliminate the magnetic field <IMG
+ WIDTH="46" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img409.gif"
+ ALT="$ H(x)$">. This yields
+</FONT><!-- MATH
+ \begin{displaymath}
+\mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}E) - \omega^2\varepsilon E + i\omega\sigma E = 0
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="284" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img410.gif"
+ ALT="$\displaystyle \mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}E) - \omega^2\varepsilon E + i\omega\sigma E = 0
+$">
+</DIV><P></P><FONT SIZE="-1">
+In the <I>low-frequency case</I> where <IMG
+ WIDTH="28" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img411.gif"
+ ALT="$ \vert\omega\vert$"> is small, it is known that for general materials the material parameters are such that
+</FONT><!-- MATH
+ \begin{displaymath}
+\omega^2\varepsilon \ll \mu^{-1} \,,\quad \omega^2\varepsilon \ll \omega\sigma \,.
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="201" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img412.gif"
+ ALT="$\displaystyle \omega^2\varepsilon \ll \mu^{-1} \,,\quad \omega^2\varepsilon \ll \omega\sigma \,.
+$">
+</DIV><P></P><FONT SIZE="-1">
+Hence, neglecting the expression <!-- MATH
+ $\omega^2\varepsilon E(x)$
+ -->
+<IMG
+ WIDTH="71" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
+ SRC="img413.gif"
+ ALT="$ \omega^2\varepsilon E(x)$"> is reasonable and it brings us to the low-frequency approximation of the
+time-harmonic Maxwell's equations:
+</FONT><!-- MATH
+ \begin{displaymath}
+\mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}E) + i\omega\sigma E = 0
+\end{displaymath}
+ -->
+<P></P>
+<DIV ALIGN="CENTER">
+<IMG
+ WIDTH="222" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
+ SRC="img414.gif"
+ ALT="$\displaystyle \mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}E) + i\omega\sigma E = 0
+$">
+</DIV><P></P>
+<P>
+<FONT SIZE="-1">We consider this equation in a conductor <IMG
+ WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
+ SRC="img10.gif"
+ ALT="$ \Omega $"> (<IMG
+ WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
+ SRC="img398.gif"
+ ALT="$ \sigma(x)$"> pos.&nbsp;def.) and a impose Dirichlet boundary condition on the tangential trace
+of the field:
+</FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_non-hom._bc"></A><!-- MATH
+ \begin{equation}
+E \wedge n = \Phi \quad \mathrm{on} \quad \partial \Omega \,.
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="170" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
+ SRC="img415.gif"
+ ALT="$\displaystyle E \wedge n = \Phi \quad \mathrm{on} \quad \partial \Omega \,.$"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(36)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+Proceeding as in [<A
+ HREF="node4.html#Alonso-Valli">1</A>], we assume that a vector funciton <IMG
+ WIDTH="20" HEIGHT="23" ALIGN="BOTTOM" BORDER="0"
+ SRC="img416.gif"
+ ALT="$ \tilde{E}$"> is known, 
+satiesfying (<A HREF="node6.html#eq:_non-hom._bc">36</A>), and we end up with the following boundary value problem for <!-- MATH
+ $\underline u = E - \tilde{E}$
+ -->
+<IMG
+ WIDTH="89" HEIGHT="43" ALIGN="MIDDLE" BORDER="0"
+ SRC="img417.gif"
+ ALT="$ \underline u = E - \tilde{E}$">
+</FONT><P></P>
+<DIV ALIGN="CENTER"><A NAME="eq:_real_problem"></A><!-- MATH
+ \begin{equation}
+\begin{split}
+\mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}u) + i\omega\sigma u &= F \quad \mathrm{in} \quad \Omega \,, \\
+       u \wedge n &= 0 \quad \mathrm{on} \quad \partial \Omega \,.
+\end{split}
+\end{equation}
+ -->
+<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
+<TR VALIGN="MIDDLE">
+<TD NOWRAP ALIGN="CENTER"><IMG
+ WIDTH="426" HEIGHT="55" BORDER="0"
+ SRC="img418.gif"
+ ALT="\begin{displaymath}\begin{split}\mathop{\rm curl}(\mu^{-1} \mathop{\rm curl}u) +...
+... n &amp;= 0 \quad \mathrm{on} \quad \partial \Omega \,. \end{split}\end{displaymath}"></TD>
+<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
+(37)</TD></TR>
+</TABLE></DIV>
+<BR CLEAR="ALL"><P></P><FONT SIZE="-1">
+Although problem (<A HREF="node6.html#eq:_real_problem">37</A>) is complex-valued, finding a finite element method to approximate (<A HREF="node6.html#eq:_real_problem">37</A>)
+basically boils down to finding a finite element method for the real valued model problem (<A HREF="node1.html#eq:model_problem">1</A>).
+</FONT>
+<P>
+<BR><HR>
+<ADDRESS>
+
+2003-04-30
+</ADDRESS>
+</BODY>
+</HTML>
index 0397686d23c2eb8a0fced81c516fb98bb756322b..2403d584ecc0fa151eafeefda1b39e305b0050d0 100644 (file)
         &nbsp; MinRes linear solver.
 
     <li><em>Anna Schneebeli:</em>
-       Help and advice for Nedelec elements.
+       Help and advice for Nedelec elements, writing the excellent
+       report on Nedelec elements.
 
     <li><em>Jan Schrage:</em>
        Initial parts of the tutorial.

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.