]> https://gitweb.dealii.org/ - dealii.git/commitdiff
step:44 changes to documentation in cc file (texify); more to come
authorAndrew McBride <mcbride.andrew@gmail.com>
Thu, 23 Feb 2012 17:40:06 +0000 (17:40 +0000)
committerAndrew McBride <mcbride.andrew@gmail.com>
Thu, 23 Feb 2012 17:40:06 +0000 (17:40 +0000)
git-svn-id: https://svn.dealii.org/trunk@25158 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-44/step-44.cc

index 1b6fc658f7e91c4124bbb485fb37e37217206930..6c84c4b6d7255b79ae9c44210f397f56b52df875 100644 (file)
@@ -124,8 +124,8 @@ namespace Step44
 // @sect4{Geometry}
 // Make adjustments to the problem geometry and the applied load.
 // Since the problem modelled here is quite specific, the load
-// scale can be altered to specific values to attain results given
-// in the literature.
+// scale can be altered to specific values to compare with the
+// results given in the literature.
     struct Geometry
     {
        unsigned int global_refinement;
@@ -211,10 +211,10 @@ namespace Step44
     }
 
 // @sect4{Linear solver}
-// Next, choose both solver and preconditioner settings.
+// Next, we choose both solver and preconditioner settings.
 // The use of an effective preconditioner is critical to ensure
 // convergence when a large nonlinear motion occurs
-// in a Newton increment.
+// within a Newton increment.
     struct LinearSolver
     {
        std::string type_lin;
@@ -273,7 +273,7 @@ namespace Step44
 // @sect4{Nonlinear solver}
 // A Newton-Raphson scheme is used to
 // solve the nonlinear system of governing equations.
-// Define the tolerances and the maximum number of
+// We now define the tolerances and the maximum number of
 // iterations for the Newton-Raphson nonlinear solver.
     struct NonlinearSolver
     {
@@ -412,7 +412,7 @@ namespace Step44
 // in the deal.II library yet.
 // We place these common operations
 // in a separate namespace for convenience.
-// We also include some widely used operators
+// We also include some widely used operators.
   namespace AdditionalTools
   {
 
@@ -525,7 +525,7 @@ namespace Step44
        }
     }
 
-// Define some frequently used
+// Now we define some frequently used
 // second and fourth-order tensors:
     template <int dim>
     class StandardTensors
@@ -543,7 +543,7 @@ namespace Step44
                                         // we name the tensor $\mathcal{I}$
        static const SymmetricTensor<4, dim> II;
                                         // Fourth-order deviatoric such that
-                                        // $\textrm{dev}(\bullet) = (\bullet) - (1/3)[(\bullet):\mathbf{I}]\mathbf{I}$
+                                        // $\textrm{dev} \{ \bullet \} = \{ \bullet \} - [1/\textrm{dim}][ \{ \bullet\} :\mathbf{I}]\mathbf{I}$
        static const SymmetricTensor<4, dim> dev_P;
     };
 
@@ -612,7 +612,7 @@ namespace Step44
       const double delta_t;
   };
 
-// @sect3{Compressible neo-Hookean material}
+// @sect3{Compressible neo-Hookean material within a three-field formulation}
 
 // As discussed in the Introduction, Neo-Hookean materials are a type of
 // hyperelastic materials.  The entire domain is assumed to be composed of a
@@ -629,7 +629,7 @@ namespace Step44
 // That is $\overline{I}_1 :=\textrm{tr}(\overline{\mathbf{b}})$.  In this
 // example the SEF that governs the volumetric response is defined as $
 // \Psi_{\text{vol}}(\widetilde{J}) = \kappa \frac{1}{4} [ \widetilde{J}^2 - 1
-// - 2\textrm{ln}\; \widetilde{J} ]$.  where $\kappa:= \lambda + 2/3 \mu$ is
+// - 2\textrm{ln}\; \widetilde{J} ]$,  where $\kappa:= \lambda + 2/3 \mu$ is
 // the <a href="http://en.wikipedia.org/wiki/Bulk_modulus">bulk modulus</a>
 // and $\lambda$ is <a
 // href="http://en.wikipedia.org/wiki/Lam%C3%A9_parameters">Lame's first
@@ -639,7 +639,7 @@ namespace Step44
 // and provides a central point that one would need to modify if one were to
 // implement a different material model. For it to work, we will store one
 // object of this type per quadrature point, and in each of these objects
-// store the current state (characterized by the values of the three fields)
+// store the current state (characterized by the values or measures  of the three fields)
 // so that we can compute the elastic coefficients linearized around the
 // current state.
   template <int dim>
@@ -662,37 +662,12 @@ namespace Step44
       ~Material_Compressible_Neo_Hook_Three_Field()
        {}
 
-                                      // The Kirchhoff stress tensor
-                                      // $\boldsymbol{\tau}$ is the chosen
-                                      // stress measure.  Recall that
-                                      // $\boldsymbol{\tau} =
-                                      // \chi_{*}(\mathbf{S})$, i.e.
-                                      // $\boldsymbol{\tau} = \mathbf{F}
-                                      // \mathbf{S} \mathbf{F}^{T}$.
-                                      // Furthermore, $\boldsymbol{\tau} = 2
-                                      // \mathbf{F} \frac{\partial
-                                      // \Psi(\mathbf{C})}{\partial
-                                      // \mathbf{C}} \mathbf{F}^{T} = 2
-                                      // \mathbf{b} \frac{\partial
-                                      // \Psi(\mathbf{b})}{\partial
-                                      // \mathbf{b}}$.  Therefore,
-                                      // $\boldsymbol{\tau} = 2 \mathbf{b}
-                                      // \bigl[ \frac{\partial
-                                      // \Psi_{\text{iso}}(\mathbf{b})}{\partial
-                                      // \mathbf{b}} + \frac{\partial
-                                      // \Psi_{\text{vol}}(J)}{\partial
-                                      // J}\frac{\partial J}{\partial
-                                      // \mathbf{b}} \bigr] = 2 \mathbf{b}
-                                      // \frac{\partial
-                                      // \Psi_{\text{iso}}(\mathbf{b})}{\partial
-                                      // \mathbf{b}} + J\frac{\partial
-                                      // \Psi_{\text{vol}}(J)}{\partial
-                                      // J}\mathbf{I} $
-
                                       // We update the material model with
                                       // various deformation dependent data
-                                      // based on $F$ and at the end of the
-                                      // function include a safety check for
+                                      // based on $F$ and the pressure $\widetilde{p}$
+                                  // and dilatation $\widetilde{J}$,
+                                  // and at the end of the
+                                      // function include a physical check for
                                       // internal consistency:
       void update_material_data(const Tensor<2, dim> & F,
                                const double p_tilde_in,
@@ -741,7 +716,7 @@ namespace Step44
        }
 
                                       // Second derivative of the volumetric
-                                      // free energy wrt $\widetilde{J}$ We
+                                      // free energy wrt $\widetilde{J}$. We
                                       // need the following computation
                                       // explicitly in the tangent so we make
                                       // it public.  We calculate
@@ -774,7 +749,8 @@ namespace Step44
 
     protected:
                                       // Define constitutive model paramaters
-                                      // $\kappa$ and the neo-Hookean model
+                                      // $\kappa$ (bulk modulus)
+                                  // and the neo-Hookean model
                                       // parameter $c_1$:
       const double kappa;
       const double c_1;
@@ -807,7 +783,7 @@ namespace Step44
          return AdditionalTools::StandardTensors<dim>::dev_P * get_tau_bar();
        }
 
-                                      // Then, tetermine the fictitious
+                                      // Then, determine the fictitious
                                       // Kirchhoff stress
                                       // $\overline{\boldsymbol{\tau}}$:
       SymmetricTensor<2, dim> get_tau_bar() const
@@ -890,6 +866,13 @@ namespace Step44
                                       // The first function is used to create
                                       // a material object and to initialize
                                       // all tensors correctly:
+                                  // The second one updates the stored
+                                  // values and stresses based on the
+                       // current deformation measure
+                       // $\textrm{Grad}\mathbf{u}_{\textrm{n}}$,
+                       // pressure $\widetilde{p}$ and
+                       // dilation $\widetilde{J}$ field
+                       // values.
       void setup_lqp (const Parameters::AllParameters & parameters)
        {
          material = new Material_Compressible_Neo_Hook_Three_Field<dim>(parameters.mu,
@@ -897,14 +880,6 @@ namespace Step44
          update_values(Tensor<2, dim>(), 0.0, 1.0);
        }
 
-                                      // The second one updates the stored
-                                      // values and stresses based on the
-                                      // current deformation measure
-                                      // $\textrm{Grad}\mathbf{u}_{\textrm{n}}$,
-                                      // pressure $\widetilde{p}$ and
-                                      // dilation $\widetilde{J}$ field
-                                      // values.
-                                      //
                                       // To this end, we calculate the
                                       // deformation gradient $\mathbf{F}$
                                       // from the displacement gradient
@@ -945,17 +920,19 @@ namespace Step44
 
                                           // The material has been updated so
                                           // we now calculate the Kirchhoff
-                                          // stress $\mathbf{\tau}$ and the
+                                          // stress $\mathbf{\tau}$, the
                                           // tangent $J\mathfrak{c}$
+                                          // and the first and second derivatives
+                                          // of the volumetric free energy.
+                                          //
+                                          // Finally, we store the inverse of
+                                          // the deformation gradient since
+                                          // we frequently use it:
          tau = material->get_tau();
 
          Jc = material->get_Jc();
          dPsi_vol_dJ = material->get_dPsi_vol_dJ();
          d2Psi_vol_dJ2 = material->get_d2Psi_vol_dJ2();
-
-                                          // Finally, we store the inverse of
-                                          // the deformation gradient since
-                                          // we frequently use it:
          F_inv = invert(F);
        }
 
@@ -1056,7 +1033,7 @@ namespace Step44
                                       // parallelizing work using the
                                       // WorkStream object (see the @ref
                                       // threads module for more information
-                                      // on this.)
+                                      // on this).
                                       //
                                       // We declare such structures for the
                                       // computation of tangent (stiffness)
@@ -1310,6 +1287,7 @@ namespace Step44
       get_error_dilation();
 
                                       // Print information to screen
+                                  // in a pleasing way...
       static
       void
       print_conv_header();
@@ -1340,14 +1318,15 @@ namespace Step44
                                                   // discontinuous pressure
                                                   // and dilatation DOFs. In
                                                   // an attempt to satisfy
-                                                  // the LBB conditions, we
+                                                  // the Babuska-Brezzi or LBB stability
+                                                  // conditions (see Hughes (2000)), we
                                                   // setup a $Q_n \times
-                                                  // DGP_{n-1} \times DGP_{n-1}$
-                                                  // system. $Q_2 \times DGP_1
-                                                  // \times DGP_1$ elements
+                                                  // DGPM_{n-1} \times DGPM_{n-1}$
+                                                  // system. $Q_2 \times DGPM_1
+                                                  // \times DGPM_1$ elements
                                                   // satisfy this condition,
-                                                  // while $Q_1 \times DGP_0
-                                                  // \times DGP_0$ elements do
+                                                  // while $Q_1 \times DGPM_0
+                                                  // \times DGPM_0$ elements do
                                                   // not. However, it has
                                                   // been shown that the
                                                   // latter demonstrate good
@@ -1411,9 +1390,7 @@ namespace Step44
 
                                         // ...solve the current time step and
                                         // update total solution vector
-                                        // $\varDelta
-                                        // \mathbf{\Xi}_{\textrm{n}} =
-                                        // \varDelta
+                                        // $\mathbf{\Xi}_{\textrm{n}} =
                                         // \mathbf{\Xi}_{\textrm{n-1}} +
                                         // \varDelta \mathbf{\Xi}$...
        solve_nonlinear_timestep(solution_delta);
@@ -1732,7 +1709,7 @@ namespace Step44
 // @sect4{Solid::make_grid}
 
 // On to the first of the private member functions. Here we create the
-// triangulation of the domain, for which we choose the unit cube with each
+// triangulation of the domain, for which we choose the scaled cube with each
 // face given a boundary ID number.  The grid must be refined at least once
 // for the indentation problem.
 //
@@ -1758,7 +1735,7 @@ namespace Step44
                                     // the domain and mark them with a
                                     // distinct boundary ID number.  The
                                     // faces we are looking for are on the +y
-                                    // surface and will get boundary id 6
+                                    // surface and will get boundary ID 6
                                     // (zero through five are already used
                                     // when creating the six faces of the
                                     // cube domain):
@@ -1831,13 +1808,26 @@ namespace Step44
 
                                       // In order to perform the static condensation efficiently,
                                       // we choose to exploit the symmetry of the the system matrix.
-                                      // The global system matrix has the following structure
+                                      // The global system matrix initially has the following structure
                                       // @f{align*}
-                                      // K = \begin{pmatrix}
-                                      //  K_{con} & K_{up} & 0 \\ K_{pu} & 0 & K_{p}J^{-1} \\ 0 & K_{Jp} & K_{JJ}
-                                      // \end{pmatrix},
-                                      // dU = \begin{pmatrix} dU_u \\ dU_p \\ dU_J \end{pmatrix},
-                                      // R = \begin{pmatrix} R_u \\ R_p \\ R_J \end{pmatrix}.
+                                               // \underbrace{\begin{bmatrix}
+                                               // \mathbf{\mathsf{K}}_{uu}     &       \mathbf{\mathsf{K}}_{u\widetilde{p}}    & \mathbf{0}
+                                               //      \\
+                                               //      \mathbf{\mathsf{K}}_{\widetilde{p}u}    &       \mathbf{0}      &       \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}
+                                               //      \\
+                                               //      \mathbf{0}      &       \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}                & \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
+                                               //      \end{bmatrix}}_{\mathbf{\mathsf{K}}(\mathbf{\Xi}_{\textrm{i}})}
+                                               //      \underbrace{\begin{bmatrix}
+                                               //                      d \mathbf{\mathsf{u}}\\
+                                               //          d \widetilde{\mathbf{\mathsf{p}}} \\
+                                               //          d \widetilde{\mathbf{\mathsf{J}}}
+                                               //      \end{bmatrix}}_{d \mathbf{\Xi}}
+                                               // =
+                                               // \underbrace{\begin{bmatrix}
+                                               // \mathbf{\mathsf{F}}_{u}(\mathbf{u}_{\textrm{i}}) \\
+                                               //  \mathbf{\mathsf{F}}_{\widetilde{p}}(\widetilde{p}_{\textrm{i}}) \\
+                                               //  \mathbf{\mathsf{F}}_{\widetilde{J}}(\widetilde{J}_{\textrm{i}})
+                                               //\end{bmatrix}}_{ \mathbf{\mathsf{F}}(\mathbf{\Xi}_{\textrm{i}}) } \, .
                                       // @f}
                                       // We optimise the sparsity pattern to reflect this structure
                                       // and prevent unnecessary data creation for the right-diagonal
@@ -1881,7 +1871,7 @@ namespace Step44
 
 
 // @sect4{Solid::determine_component_extractors}
-// We next compute some information from the FE system that describes which local
+// Next we compute some information from the FE system that describes which local
 // element DOFs are attached to which block component.  This is used later to
 // extract sub-blocks from the global matrix.
 //
@@ -1969,7 +1959,7 @@ namespace Step44
 // the task across a number of CPU cores.
 //
 // To start this, we first we need to obtain the total solution as it stands
-// at this Newton increment and then create the initial copy of scratch and
+// at this Newton increment and then create the initial copy of the scratch and
 // copy data objects:
   template <int dim>
   void Solid<dim>::update_qph_incremental(const BlockVector<double> & solution_delta)
@@ -2278,7 +2268,7 @@ namespace Step44
 // @sect4{Solid::get_error_residual}
 
 // Determine the true residual error for the problem.  That is, determine the
-// error in the residual for unconstrained degrees of freedom.  Note that to
+// error in the residual for the unconstrained degrees of freedom.  Note that to
 // do so, we need to ignore constrained DOFs by setting the residual in these
 // vector components to zero.
   template <int dim>
@@ -2432,9 +2422,13 @@ namespace Step44
                                     // the lower half of the local matrix and
                                     // copying the values to the upper half.
                                     // So we only assemble half of the
-                                    // $K_{uu}$, $K_{pp} (= 0)$, $K_{JJ}$
-                                    // blocks, while the whole $K_{pJ},
-                                    // K_{uJ} (=0), K_{up}$ blocks are built.
+                                    // $\mathsf{\mathbf{k}}_{uu}$,
+                                // $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{p}} = \mathbf{0}$,
+                                // $\mathsf{\mathbf{k}}_{\widetilde{J} \widetilde{J}}$
+                                    // blocks, while the whole $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$,
+                                    // $\mathsf{\mathbf{k}}_{\mathbf{u} \widetilde{J}} = \mathbf{0}$,
+                                // $\mathsf{\mathbf{k}}_{\mathbf{u} \widetilde{p}}$
+                                // blocks are built.
                                     //
                                     // In doing so, we first extract some
                                     // configuration dependent variables from
@@ -2467,12 +2461,12 @@ namespace Step44
                const unsigned int component_j = fe.system_to_component_index(j).first;
                const unsigned int j_group     = fe.system_to_base_index(j).first.first;
 
-                                                // This is the K_{uu}
-                                                // contribution. It comprises of a
-                                                // material contribution and a
+                                                // This is the $\mathsf{\mathbf{k}}_{\mathbf{u} \mathbf{u}}$
+                                                // contribution. It comprises a
+                                                // material contribution, and a
                                                 // geometrical stress contribution
                                                 // which is only added along the
-                                                // local matrix diagonals
+                                                // local matrix diagonals:
                if ((i_group == j_group) && (i_group == u_dof))
                  {
                    data.cell_matrix(i, j) += symm_grad_Nx[i] * Jc // The material contribution:
@@ -2481,7 +2475,7 @@ namespace Step44
                      data.cell_matrix(i, j) += grad_Nx[i][component_i] * tau
                                                * grad_Nx[j][component_j] * JxW;
                  }
-                                                // Next is the K_{pu} contribution
+                                                // Next is the $\mathsf{\mathbf{k}}_{ \widetilde{p} \mathbf{u}}$ contribution
                else if ((i_group == p_dof) && (j_group == u_dof))
                  {
                    data.cell_matrix(i, j) += N[i] * det_F
@@ -2489,8 +2483,8 @@ namespace Step44
                                                 * AdditionalTools::StandardTensors<dim>::I)
                                              * JxW;
                  }
-                                                // and lastly the $K_{Jp}$
-                                                // and $K_{JJ}$
+                                                // and lastly the $\mathsf{\mathbf{k}}_{ \widetilde{J} \widetilde{p}}$
+                                                // and $\mathsf{\mathbf{k}}_{ \widetilde{J} \widetilde{J}}$
                                                 // contributions:
                else if ((i_group == J_dof) && (j_group == p_dof))
                  data.cell_matrix(i, j) -= N[i] * N[j] * JxW;
@@ -2645,8 +2639,8 @@ namespace Step44
                scratch.fe_face_values_ref.normal_vector(f_q_point);
 
                                               // Using the face normal at
-                                              // this quadrature point as
-                                              // just retrieved, we specify
+                                              // this quadrature point
+                                              // we specify
                                               // the traction in reference
                                               // configuration. For this
                                               // problem, a defined pressure
@@ -2658,8 +2652,10 @@ namespace Step44
                                               // of the domain. The traction
                                               // is defined using the first
                                               // Piola-Kirchhoff stress is
-                                              // simply t_0 = P*N = (pI)*N =
-                                              // p*N. We choose to use the
+                                              // simply
+                                          // $\mathbf{t} = \mathbf{P}\mathbf{N}
+                                          // = [p_0 \mathbf{I}] \mathbf{N} = p_0 \mathbf{N}$
+                                              // We use the
                                               // time variable to linearly
                                               // ramp up the pressure load.
                                               //
@@ -2834,7 +2830,8 @@ namespace Step44
 
 // @sect4{Solid::solve_linear_system}
 // Solving the entire block system is a bit problematic as there are no
-// contributions to the $K_{JJ}$ block, rendering it non-invertible.
+// contributions to the $\mathsf{\mathbf{k}}_{ \widetilde{J} \widetilde{J}}$
+// block, rendering it non-invertible.
 // Since the pressure and dilatation variables DOFs are discontinuous, we can
 // condense them out to form a smaller displacement-only system which
 // we will then solve and subsequently post-process to retrieve the
@@ -2846,12 +2843,52 @@ namespace Step44
 //
 // For the following, recall that
 // @f{align*}
-// K_{store} = \begin{pmatrix}
-//  K_{con} & K_{up} & 0 \\ K_{pu} & 0 & K_{p}J^{-1} \\ 0 & K_{Jp} & K_{JJ}
-// \end{pmatrix},
-// d\Xi = \begin{pmatrix} du \\ dp \\ dJ \end{pmatrix},
-// R = \begin{pmatrix} R_u \\ R_p \\ R_J \end{pmatrix}.
+//  \mathbf{\mathsf{K}}_{\textrm{store}}
+//:=
+//  \begin{bmatrix}
+//             \mathbf{\mathsf{K}}_{\textrm{con}}      &       \mathbf{\mathsf{K}}_{u\widetilde{p}}    & \mathbf{0}
+//             \\
+//             \mathbf{\mathsf{K}}_{\widetilde{p}u}    &       \mathbf{0}      &       \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1}
+//             \\
+//             \mathbf{0}      &       \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}                & \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
+//     \end{bmatrix} \, .
 // @f}
+// and
+//  @f{align*}
+//             d \widetilde{\mathbf{\mathsf{p}}}
+//             & = \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \bigl[
+//                      \mathbf{\mathsf{F}}_{\widetilde{J}}
+//                      - \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} d \widetilde{\mathbf{\mathsf{J}}} \bigr]
+//                     \\
+//             d \widetilde{\mathbf{\mathsf{J}}}
+//             & = \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1} \bigl[
+//                     \mathbf{\mathsf{F}}_{\widetilde{p}}
+//                     - \mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}}
+//                     \bigr]
+//             \\
+//              \Rightarrow d \widetilde{\mathbf{\mathsf{p}}}
+//             &=  \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{F}}_{\widetilde{J}}
+//             - \underbrace{\bigl[\mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
+//             \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1}\bigr]}_{\overline{\mathbf{\mathsf{K}}}}\bigl[ \mathbf{\mathsf{F}}_{\widetilde{p}}
+//             - \mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}} \bigr]
+//  @f}
+//  and thus
+//  @f[
+//             \underbrace{\bigl[ \mathbf{\mathsf{K}}_{uu} + \overline{\overline{\mathbf{\mathsf{K}}}}~ \bigr]
+//             }_{\mathbf{\mathsf{K}}_{\textrm{con}}} d \mathbf{\mathsf{u}}
+//             =
+//          \underbrace{
+//             \Bigl[
+//             \mathbf{\mathsf{F}}_{u}
+//                     - \mathbf{\mathsf{K}}_{u\widetilde{p}} \bigl[ \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{F}}_{\widetilde{J}}
+//                     - \overline{\mathbf{\mathsf{K}}}\mathbf{\mathsf{F}}_{\widetilde{p}} \bigr]
+//             \Bigr]}_{\mathbf{\mathsf{F}}_{\textrm{con}}}
+//  @f]
+//  where
+//  @f[
+//             \overline{\overline{\mathbf{\mathsf{K}}}} :=
+//                     \mathbf{\mathsf{K}}_{u\widetilde{p}} \overline{\mathbf{\mathsf{K}}} \mathbf{\mathsf{K}}_{\widetilde{p}u} \, .
+//  @f]
   template <int dim>
   std::pair<unsigned int, double>
   Solid<dim>::solve_linear_system(BlockVector<double> & newton_update)
@@ -2862,18 +2899,19 @@ namespace Step44
     unsigned int lin_it = 0;
     double lin_res = 0.0;
 
-                                    // In the first step of this function, we solve for the incremental displacement $du$.
+                                    // In the first step of this function, we solve for the incremental displacement $d\mathbf{u}$.
                                     // To this end, we perform static condensation to make
-                                    // $K_{con} = K_{uu} + K_{\bar b}$, and put
-                                    // $K_pJ^{-1}$ in the original $K_pJ$ block.
-                                    // That is, we make $K_{store}$.
+                                //    $\mathbf{\mathsf{K}}_{\textrm{con}}
+                                //    = \bigl[ \mathbf{\mathsf{K}}_{uu} + \overline{\overline{\mathbf{\mathsf{K}}}}~ \bigr]$
+                                // and put
+                                    // $\mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}}$
+                                // in the original $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$ block.
+                                    // That is, we make $\mathbf{\mathsf{K}}_{\textrm{store}}$.
     {
+       // ToDo: fixed notation to here
       assemble_sc();
 
-                                      // $K_{con} du = F_{con}$ with $F_{con} = F_u +
-                                      // K_{up} [- K_Jp^{-1} F_j + K_{bar} F_p]$.
-                                      // Assemble the RHS vector to solve for
-                                      // $du A_J = K_pJ^{-1} F_p$
+                                      // $A_J = K_pJ^{-1} F_p$
       tangent_matrix.block(p_dof, J_dof).vmult(A.block(J_dof),
                                               system_rhs.block(p_dof));
                                       // $B_J = K_{JJ}  K_pJ^{-1}  F_p$.

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.