*
* <dl>
*
- * <dt>@anchor GlossActive active cells</dt>
+ * <dt>@anchor GlossActive Active cells</dt>
* <dd>Mesh cells not refined any further in the hierarchy.</dd>
*
+ * <dt>@anchor GlossGeneralizedSupport Generalized support points</dt>
+ * <dd>While @ref GlossSupport "support points" allow very simple interpolation
+ * into the finite element space, their concept is restricted to
+ * @ref GlossLagrange "Lagrange elements". For other elements, more general
+ * interpolation operators can be defined, often relying on integral values
+ * or moments. Since these integral values are again computed using a
+ * Quadrature rule, we consider them a generalization of support
+ * points.
+ *
+ * Note that there is no simple relation between
+ * @ref GlossShape "shape functions" and generalized support points as for
+ * regular @ref GlossSupport "support points". Instead, FiniteElement defines
+ * a couple of interpolation functions doing the actual interpolation.
+ *
+ * @note If a finite element is Lagrangian, generalized support points
+ * and support points coincide.
+ *
+ * </dd>
+ *
+ * <dt>@anchor GlossLagrange Lagrange elements</dt>
+ * <dd>Finite elements based on Lagrangian interpolation at
+ * @ref GlossSupport "support points".</dd>
+ *
+ * <dt>@anchor GlossReferenceCell Reference cell</dt>
+ * <dd>The hypercube [0,1]<sup>dim</sup>, on which all parametric finite
+ * element shape functions are defined.</dd>
+ *
+ * <dt>@anchor GlossSupport Support points</dt>
+ * <dd>Support points are by definition those points <i>p<sub>i</sub></i>,
+ * such that for the shape functions <i>v<sub>j</sub></i> holds
+ * <i>v<sub>j</sub>(p<sub>i</sub>) = δ<sub>ij</sub></i>. Therefore, a
+ * finite element interpolation can be defined uniquely by the values in the
+ * support points.
+ *
+ * Lagrangian elements fill the vector accessed by
+ * FiniteElementBase::get_unit_support_points(), such that the
+ * function FiniteElementBase::has_support_points() returns
+ * <tt>true</tt>. Naturally, these support points are on the
+ * @ref GlossReferenceCell "reference cell". Then, FEValues can be used
+ * (in conjuncton with a Mapping) to access support points on the
+ * actual grid cells.
+ *
+ * @note The concept of @ref GlossSupport "support points" is
+ * restricted to the finite element families based on Lagrange
+ * interpolation. For a more general concept, see
+ * @ref GlossGeneralizedSupport "generalized support points".
+ * </dd>
+ *
+ * <dt>@anchor GlossUnitCell Unit cell</dt>
+ * <dd>See @ref GlossReferenceCell "Reference cell".</dd>
+ *
+ * <dt>@anchor GlossUnitSupport Unit support points</dt>
+ * <dd>@ref GlossSupport "Support points" on the reference cell, defined in
+ * FiniteElementBase.
+ * </dd>
+ *
* </dl>
*/
/**
-@page Iterators Iterators on mesh like containers
+ @defgroup Iterators Iterators on mesh like containers
deal.II has several classes which are understood conceptionally as
meshes. Apart from the obvious Triangulation, these are DoFHandler and
The standard loops are
<dl>
-<dt>TriaIterator</tt>
+<dt>TriaIterator</dt>
<dd>Traverse all cells on all levels</dd>
-<dt>TriaActiveIterator</tt>
+<dt>TriaActiveIterator</dt>
<dd>Loop over @ref GlossActive "active cells" only</dd>
</dl>
<tt>i</tt>, the term <tt>i-></tt> grants access to <b>all</b>
attributes of this Accessor.
-
@section IteratorsTypedefs Iterators defined in the containers
The standard iterators are typedefed inside the classes. These are
<tr><th></th>
<th>cell_iterator</th>
<th>face_iterator</th>
+</tr>
+<tr>
+<th>Triangulation</th>
+<td>TriaIterator<dim, CellAccessor<dim> ></td>
+<td>TriaIterator<dim, TriaObjectAccessor<dim-1, dim> ></td>
+</tr>
+<tr>
+<th>DoFHandler</th>
+<td>TriaIterator<dim, DoFCellAccessor<dim> ></td>
+<td>TriaIterator<dim, DoFObjectAccessor<dim-1, dim> ></td>
+</tr>
</table>
+
+@section IteratorsFiltered Filtered iterators
+...
+*/
+