]> https://gitweb.dealii.org/ - dealii.git/commitdiff
step:44 changes to documentation in cc file. Needs final check and format
authorAndrew McBride <mcbride.andrew@gmail.com>
Fri, 24 Feb 2012 09:13:16 +0000 (09:13 +0000)
committerAndrew McBride <mcbride.andrew@gmail.com>
Fri, 24 Feb 2012 09:13:16 +0000 (09:13 +0000)
git-svn-id: https://svn.dealii.org/trunk@25160 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-44/step-44.cc

index 6c84c4b6d7255b79ae9c44210f397f56b52df875..b61ff2dda373a4b79840d49ef3617077d174be7c 100644 (file)
@@ -2908,24 +2908,79 @@ namespace Step44
                                 // in the original $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$ block.
                                     // That is, we make $\mathbf{\mathsf{K}}_{\textrm{store}}$.
     {
-       // ToDo: fixed notation to here
       assemble_sc();
 
-                                      // $A_J = K_pJ^{-1} F_p$
+                                               //              $
+                                               //      \mathsf{\mathbf{A}}_{\widetilde{J}}
+                                               //      =
+                                               //              \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}}
+                                               //              \mathsf{\mathbf{F}}_{\widetilde{p}}
+                                               //              $
       tangent_matrix.block(p_dof, J_dof).vmult(A.block(J_dof),
                                               system_rhs.block(p_dof));
-                                      // $B_J = K_{JJ}  K_pJ^{-1}  F_p$.
+                                               //      $
+                                               //      \mathsf{\mathbf{B}}_{\widetilde{J}}
+                                               //      =
+                                               //      \mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{J}}
+                                               //      \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}}
+                                               //      \mathsf{\mathbf{F}}_{\widetilde{p}}
+                                               //      $
       tangent_matrix.block(J_dof, J_dof).vmult(B.block(J_dof),
                                               A.block(J_dof));
-                                      // $A_J = F_J - K_JJ  K_pJ^{-1}  F_p$
+                                               //      $
+                                               //      \mathsf{\mathbf{A}}_{\widetilde{J}}
+                                               //      =
+                                               //      \mathsf{\mathbf{F}}_{\widetilde{J}}
+                                               //      -
+                                               //      \mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{J}}
+                                               //      \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}}
+                                               //      \mathsf{\mathbf{F}}_{\widetilde{p}}
+                                               //      $
       A.block(J_dof).equ(1.0, system_rhs.block(J_dof), -1.0, B.block(J_dof));
-                                      // $A_p = K_Jp^{-1} [  F_J - K_JJ  K_pJ^{-1}  F_p ]$
+                                               //      $
+                                               //      \mathsf{\mathbf{A}}_{\widetilde{J}}
+                                               //      =
+                                               //      \mathsf{\mathbf{K}}^{-1}_{\widetilde{J} \widetilde{p}}
+                                               //      [
+                                               //      \mathsf{\mathbf{F}}_{\widetilde{J}}
+                                               //      -
+                                               //      \mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{J}}
+                                               //      \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}}
+                                               //      \mathsf{\mathbf{F}}_{\widetilde{p}}
+                                               //      ]
+                                               //      $
       tangent_matrix.block(p_dof, J_dof).Tvmult(A.block(p_dof),
                                                A.block(J_dof));
-                                      // $A_u = K_{up}  K_Jp^{-1} [  F_J - K_{JJ}  K_pJ^{-1}  F_p ]$
+                                               //      $
+                                               //      \mathsf{\mathbf{A}}_{\mathbf{u}}
+                                               //      =
+                                               //      \mathsf{\mathbf{K}}_{\mathbf{u} \widetilde{p}}
+                                               //      \mathsf{\mathbf{K}}^{-1}_{\widetilde{J} \widetilde{p}}
+                                               //      [
+                                               //      \mathsf{\mathbf{F}}_{\widetilde{J}}
+                                               //      -
+                                               //      \mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{J}}
+                                               //      \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}}
+                                               //      \mathsf{\mathbf{F}}_{\widetilde{p}}
+                                               //      ]
+                                               //      $
       tangent_matrix.block(u_dof, p_dof).vmult(A.block(u_dof),
                                               A.block(p_dof));
-                                      // $F_{con} = F_u -  K_{up}  K_Jp^{-1} [  F_J - K_{JJ}  K_pJ^{-1}  F_p ]$
+                                               //      $
+                                               //      \mathsf{\mathbf{F}}_{\text{con}}
+                                               //      =
+                                               //      \mathsf{\mathbf{F}}_{\mathbf{u}}
+                                               //      -
+                                               //      \mathsf{\mathbf{K}}_{\mathbf{u} \widetilde{p}}
+                                               //      \mathsf{\mathbf{K}}^{-1}_{\widetilde{J} \widetilde{p}}
+                                               //      [
+                                               //      \mathsf{\mathbf{F}}_{\widetilde{J}}
+                                               //      -
+                                               //      \mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{J}}
+                                               //      \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}}
+                                               //      \mathsf{\mathbf{K}}_{\widetilde{p}}
+                                               //      ]
+                                               //      $
       system_rhs.block(u_dof) -= A.block(u_dof);
 
       timer.enter_subsection("Linear solver");
@@ -2992,40 +3047,105 @@ namespace Step44
                                     // The next step after solving the displacement
                                     // problem is to post-process to get the
                                     // dilatation solution from the
-                                    // substitution $dJ = KpJ^{-1} (F_p - K_pu
-                                    // du )$:
+                                    // substitution:
+                                        //    $
+                                        //     d \widetilde{\mathbf{\mathsf{J}}}
+                                        //      = \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1} \bigl[
+                                        //       \mathbf{\mathsf{F}}_{\widetilde{p}}
+                                        //     - \mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}}
+                                        //      \bigr]
+                                        //    $
     {
-                                      // $A_p  = K_{pu} du$
+                                       //      $
+                                       //      \mathbf{\mathsf{A}}_{\widetilde{p}}
+                                       //      =
+                                       //      \mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}}
+                                       //      $
       tangent_matrix.block(p_dof, u_dof).vmult(A.block(p_dof),
                                               newton_update.block(u_dof));
-                                      // $A_p  = -K_{pu} du$
+                                       //      $
+                                       //      \mathbf{\mathsf{A}}_{\widetilde{p}}
+                                       //      =
+                                       //      -\mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}}
+                                       //      $
       A.block(p_dof) *= -1.0;
-                                      // $A_p  = F_p - K_{pu} du$
+                                       //      $
+                                       //      \mathbf{\mathsf{A}}_{\widetilde{p}}
+                                       //      =
+                                       //      \mathbf{\mathsf{F}}_{\widetilde{p}}
+                                       //      -\mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}}
+                                       //      $
       A.block(p_dof) += system_rhs.block(p_dof);
-                                      // $dJ = K_pJ^{-1} [ F_p - K_{pu} du ]$
+                                       //      $
+                                       //      d\mathbf{\mathsf{\widetilde{J}}}
+                                       //      =
+                                       //      \mathbf{\mathsf{K}}^{-1}_{\widetilde{p}\widetilde{J}}
+                                       //      [
+                                       //      \mathbf{\mathsf{F}}_{\widetilde{p}}
+                                       //      -\mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}}
+                                       //      ]
+                                       //      $
       tangent_matrix.block(p_dof, J_dof).vmult(newton_update.block(J_dof),
                                               A.block(p_dof));
     }
 
+    // we insure here that any Dirichlet constraints
+    // are distributed on the updated solution:
     constraints.distribute(newton_update);
 
                                     // Finally we solve for the pressure
-                                    // update with the substitution $dp =
-                                    // K_Jp^{-1} [ R_J - K_{JJ} dJ ]$
+                                    // update with the substitution:
+                                       //    $
+                                       //    d \widetilde{\mathbf{\mathsf{p}}}
+                                       //     =
+                                       //    \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1}
+                                       //    \bigl[
+                                       //     \mathbf{\mathsf{F}}_{\widetilde{J}}
+                                       //      - \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
+                                       //    d \widetilde{\mathbf{\mathsf{J}}}
+                                       //    \bigr]
+                                       //    $
     {
-                                      // $A_J = K_{JJ} dJ$
+                                               //      $
+                                               //      \mathsf{\mathbf{A}}_{\widetilde{J}}
+                                               //       =
+                                               //      \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
+                                               //      d \widetilde{\mathbf{\mathsf{J}}}
+                                               //      $
       tangent_matrix.block(J_dof, J_dof).vmult(A.block(J_dof),
                                               newton_update.block(J_dof));
-                                      // $A_J = -K_{JJ} dJ$
+                                               //      $
+                                               //      \mathsf{\mathbf{A}}_{\widetilde{J}}
+                                               //       =
+                                               //      -\mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
+                                               //      d \widetilde{\mathbf{\mathsf{J}}}
+                                               //      $
       A.block(J_dof) *= -1.0;
-                                      // $A_J = F_J - K_{JJ} dJ$
+                                               //      $
+                                               //      \mathsf{\mathbf{A}}_{\widetilde{J}}
+                                               //       =
+                                               //      \mathsf{\mathbf{F}}_{\widetilde{J}}
+                                               //      -
+                                               //      \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
+                                               //      d \widetilde{\mathbf{\mathsf{J}}}
+                                               //      $
       A.block(J_dof) += system_rhs.block(J_dof);
-                                      // $dp = K_Jp^{-1}   [F_J - K_{JJ} dJ]$
+                                       // and finally....
+                                               //    $
+                                               //    d \widetilde{\mathbf{\mathsf{p}}}
+                                               //     =
+                                               //    \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1}
+                                               //    \bigl[
+                                               //     \mathbf{\mathsf{F}}_{\widetilde{J}}
+                                               //      - \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
+                                               //    d \widetilde{\mathbf{\mathsf{J}}}
+                                               //    \bigr]
+                                               //    $
       tangent_matrix.block(p_dof, J_dof).Tvmult(newton_update.block(p_dof),
                                                A.block(J_dof));
     }
 
-                                    // At the end, we can distribute all
+                                    // We are now at the end, so we distribute all
                                     // constrained dofs back to the Newton
                                     // update:
     constraints.distribute(newton_update);
@@ -3041,13 +3161,18 @@ namespace Step44
 // need the inverse of one of the blocks. However, since the pressure and
 // dilatation variables are discontinuous, the static condensation (SC)
 // operation can be done on a per-cell basis and we can produce the inverse of
-// the block-diagonal $K_{pt}$ block by inverting the local blocks. We can again
+// the block-diagonal $ \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}$
+ // block by inverting the local blocks. We can again
 // use TBB to do this since each operation will be independent of one another.
 //
-// Using the TBB via the WorkStream class, we assemble the contributions to
-// add to $K_{uu}$ to form $K_{con}$ from each element's contributions.  These
-// contributions are then added to the glabal stiffness matrix. Given this
-// description, the following two functions should be obvious:
+// Using the TBB via the WorkStream class, we assemble the contributions to form
+//  $
+//  \mathbf{\mathsf{K}}_{\textrm{con}}
+//  = \bigl[ \mathbf{\mathsf{K}}_{uu} + \overline{\overline{\mathbf{\mathsf{K}}}}~ \bigr]
+//  $
+// from each element's contributions. These
+// contributions are then added to the global stiffness matrix. Given this
+// description, the following two functions should be clear:
   template <int dim>
   void Solid<dim>::assemble_sc()
   {
@@ -3103,34 +3228,63 @@ namespace Step44
                                     // interpolations mean that their is no
                                     // coupling of the local contributions at the
                                     // global level. This is not the case with the u dof.
-                                    // In other words, $k_{Jp}, k_{pJ} and k_{JJ}$, when extracted
+                                    // In other words,
+                                // $\mathsf{\mathbf{k}}_{\widetilde{J} \widetilde{p}}$,
+                                // $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{p}}$
+                                // and
+                                // $\mathsf{\mathbf{k}}_{\widetilde{J} \widetilde{p}}$,
+                                // when extracted
                                     // from the global stiffness matrix are the element
-                                    // contributions. This is not the case for $k_{uu}$.
+                                    // contributions.
+                                // This is not the case for
+                                // $\mathsf{\mathbf{k}}_{\mathbf{u} \mathbf{u}}$
+                                //
+                                // Note: a lower-case symbol is used to denote
+                                // element stiffness matrices.
 
                                     // Currently the matrix corresponding to
                                     // the dof associated with the current element
-                                    // (denoted somewhat loosely as k) is of the form
-                                    // @code
-                                    //  | k_uu  |   k_up   |   0   |
-                                    //  | k_pu  |     0    |  k_pJ |
-                                    //  |   0   |   k_Jp   |  k_JJ |
-                                    // @endcode
+                                    // (denoted somewhat loosely as $\mathsf{\mathbf{k}}$)
+                                // is of the form:
+                               // @f{align*}
+                                       //    \begin{bmatrix}
+                                       //                      \mathbf{\mathsf{k}}_{uu}        &       \mathbf{\mathsf{k}}_{u\widetilde{p}}    & \mathbf{0}
+                                       //                      \\
+                                       //                      \mathbf{\mathsf{k}}_{\widetilde{p}u}    &       \mathbf{0}      &       \mathbf{\mathsf{k}}_{\widetilde{p}\widetilde{J}}
+                                       //                      \\
+                                       //                      \mathbf{0}      &       \mathbf{\mathsf{k}}_{\widetilde{J}\widetilde{p}}                & \mathbf{\mathsf{k}}_{\widetilde{J}\widetilde{J}}
+                                       //    \end{bmatrix}
+                               // @f}
                                     //
                                     // We now need to modify it such that it appear as
-                                    // @code
-                                    //  | k_con |   k_up   |     0     |
-                                    //  | k_pu  |     0    |   k_pJ^-1 |
-                                    //  |   0   |   k_Jp   |   k_JJ    |
-                                    // @endcode
-                                    // with $k_{con} = k_{uu} + k_{\bar b}$
+                               // @f{align*}
+                                       //    \begin{bmatrix}
+                                       //                      \mathbf{\mathsf{k}}_{\textrm{con}}      &       \mathbf{\mathsf{k}}_{u\widetilde{p}}    & \mathbf{0}
+                                       //                      \\
+                                       //                      \mathbf{\mathsf{k}}_{\widetilde{p}u}    &       \mathbf{0}      &       \mathbf{\mathsf{k}}_{\widetilde{p}\widetilde{J}}^{-1}
+                                       //                      \\
+                                       //                      \mathbf{0}      &       \mathbf{\mathsf{k}}_{\widetilde{J}\widetilde{p}}                & \mathbf{\mathsf{k}}_{\widetilde{J}\widetilde{J}}
+                                       //    \end{bmatrix}
+                               // @f}
+                                    // with $\mathbf{\mathsf{k}}_{\textrm{con}} = \bigl[ \mathbf{\mathsf{k}}_{uu} +\overline{\overline{\mathbf{\mathsf{k}}}}~ \bigr]$
                                     // where
-                                    // $k_{\bar b} = k_{up} k_{bar} k_{pu}$
+                                    // $               \overline{\overline{\mathbf{\mathsf{k}}}} :=
+                                // \mathbf{\mathsf{k}}_{u\widetilde{p}} \overline{\mathbf{\mathsf{k}}} \mathbf{\mathsf{k}}_{\widetilde{p}u}
+                               // $
                                     // and
-                                    // $k_{bar} = k_{Jp}^{-1} k_{JJ} k_{pJ}^{-1}$.
+                               // $
+                                       //    \overline{\mathbf{\mathsf{K}}} =
+                                       //     \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
+                                       //    \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1}
+                               // $.
                                     //
                                     // At this point, we need to take note of
                                     // the fact that global data already exists
-                                    // in the $K_{uu}, K_{pt}, K_{tp}$ sub-blocks.  So
+                                    // in the $\mathsf{\mathbf{K}}_{uu}$,
+                                // $\mathsf{\mathbf{K}}_{\widetilde{p} \widetilde{J}}$
+                                // and
+                                //  $\mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{p}}$
+                                // sub-blocks.  So
                                     // if we are to modify them, we must
                                     // account for the data that is already
                                     // there (i.e. simply add to it or remove
@@ -3139,48 +3293,56 @@ namespace Step44
                                     // operation, we need to take this into
                                     // account
                                     //
-                                    // For the $K_{uu}$ block in particular, this
+                                    // For the $\mathsf{\mathbf{K}}_{uu}$ block in particular, this
                                     // means that contributions have been added
                                     // from the surrounding cells, so we need
                                     // to be careful when we manipulate this
                                     // block.  We can't just erase the
-                                    // subblocks.
+                                    // sub-blocks.
                                     //
                                     // This is the strategy we will employ to
-                                    // get the subblocks we want:
+                                    // get the sub-blocks we want:
                                     //
-                                    // - $k_{store}$:
-                                    // Since we don't have access to $k_{uu}$,
+                                    // - $ {\mathbf{\mathsf{k}}}_{\textrm{store}}$:
+                                    // Since we don't have access to $\mathsf{\mathbf{k}}_{uu}$,
                                     // but we know its contribution is added to
-                                    // the global $K_{uu}$ matrix, we just want
+                                    // the global $\mathsf{\mathbf{K}}_{uu}$ matrix, we just want
                                     // to add the element wise
-                                    // static-condensation $k_{\bar b}$.
+                                    // static-condensation $\overline{\overline{\mathbf{\mathsf{k}}}}$.
                                     //
-                                    // - $k_{pJ}^{-1}$: Similarly, $k_{pJ}$ exists in
+                                    // - $\mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}}$:
+                                //                      Similarly, $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$ exists in
                                     //          the subblock. Since the copy
                                     //          operation is a += operation, we
                                     //          need to subtract the existing
-                                    //          $k_{pJ}$ submatrix in addition to
+                                    //          $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$
+                                //                      submatrix in addition to
                                     //          "adding" that which we wish to
                                     //          replace it with.
                                     //
-                                    // - $k_{Jp}^{-1}$: Since the global matrix
+                                    // - $\mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{p}}$:
+                                //              Since the global matrix
                                     //          is symmetric, this block is the
                                     //          same as the one above and we
-                                    //          can simply use $k_{pJ}^{-1}$ as a
-                                    //          substitute for this one
+                                    //          can simply use
+                                //              $\mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}}$
+                                    //          as a substitute for this one.
                                     //
                                     // We first extract element data from the
                                     // system matrix. So first we get the
                                     // entire subblock for the cell, then
-                                    // extract $k$ for the dofs associated with
+                                    // extract $\mathsf{\mathbf{k}}$
+                                // for the dofs associated with
                                     // the current element
     AdditionalTools::extract_submatrix(data.local_dof_indices,
                                       data.local_dof_indices,
                                       tangent_matrix,
                                       data.k_orig);
-                                    // and next the local matrices for $k_{pu}$,
-                                    // $k_{pJ}$ and $k_{JJ}$
+                                    // and next the local matrices for
+                                // $\mathsf{\mathbf{k}}_{ \widetilde{p} \mathbf{u}}$
+                                // $\mathsf{\mathbf{k}}_{ \widetilde{p} \widetilde{J}}$
+                                // and
+                                // $\mathsf{\mathbf{k}}_{ \widetilde{J} \widetilde{J}}$:
     AdditionalTools::extract_submatrix(element_indices_p,
                                       element_indices_u,
                                       data.k_orig,
@@ -3194,30 +3356,63 @@ namespace Step44
                                       data.k_orig,
                                       data.k_JJ);
 
-                                    // To get the inverse of $k_{pJ}$, we invert it
+                                    // To get the inverse of
+                                // $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$,
+                                // we invert it
                                     // directly.  This operation is relatively
-                                    // inexpensive since $k_{pJ}$ is
-                                    // block-diagonal.
+                                    // inexpensive since $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$
+                                    // since block-diagonal.
     data.k_pJ_inv.invert(data.k_pJ);
 
                                     // Now we can make condensation terms to
-                                    // add to the $k_{uu}$ block and put them in
-                                    // the cell local matrix $A = k_pJ^{-1} k_{pu}$:
-    data.k_pJ_inv.mmult(data.A, data.k_pu);
-                                    // $B = k_{JJ} k_{pJ}^{-1} k_{pu}$
+                                    // add to the $\mathsf{\mathbf{k}}_{\mathbf{u} \mathbf{u}}$
+                                // block and put them in
+                                    // the cell local matrix
+                                       //    $
+                                       //    \mathsf{\mathbf{A}}
+                                       //    =
+                                       //    \mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}}
+                                       //    \mathsf{\mathbf{k}}_{\widetilde{p} \mathbf{u}}
+                                       //    $:
+       data.k_pJ_inv.mmult(data.A, data.k_pu);
+                                       //      $
+                                       //      \mathsf{\mathbf{B}}
+                                       //      =
+                                       //      \mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{J}}
+                                       //      \mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}}
+                                       //      \mathsf{\mathbf{k}}_{\widetilde{p} \mathbf{u}}
+                                       //      $
     data.k_JJ.mmult(data.B, data.A);
-                                    // $C = k_{Jp}^{-1} k_{JJ} k_{pJ}^{-1} k_{pu}$
+                                       //    $
+                                       //    \mathsf{\mathbf{C}}
+                                       //    =
+                                       //    \mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{p}}
+                                       //    \mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{J}}
+                                       //    \mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}}
+                                       //    \mathsf{\mathbf{k}}_{\widetilde{p} \mathbf{u}}
+                                       //    $
     data.k_pJ_inv.Tmmult(data.C, data.B);
-                                    // $k_{\bar b} = k_{up} k_{Jp}^{-1} k_{JJ} k_{pJ}^{-1} k_{pu}$
+                                       //    $
+                                       //    \overline{\overline{\mathsf{\mathbf{k}}}}
+                                       //    =
+                                       //    \mathsf{\mathbf{k}}_{\mathbf{u} \widetilde{p}}
+                                       //    \mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{p}}
+                                       //    \mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{J}}
+                                       //    \mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}}
+                                       //    \mathsf{\mathbf{k}}_{\widetilde{p} \mathbf{u}}
+                                       //    $
     data.k_pu.Tmmult(data.k_bbar, data.C);
     AdditionalTools::replace_submatrix(element_indices_u,
                                       element_indices_u,
                                       data.k_bbar,
                                       data.cell_matrix);
 
-                                    // Next we place $k_{pJ}^{-1}$ in the $k_{pJ}$
+                                    // Next we place
+                                // $\mathsf{\mathbf{k}}^{-1}_{ \widetilde{p} \widetilde{J}}$
+                                // in the
+                                // $\mathsf{\mathbf{k}}_{ \widetilde{p} \widetilde{J}}$
                                     // block for post-processing.  Note again
-                                    // that we need to remove the k_{pJ}
+                                    // that we need to remove the
                                     // contribution that already exists there.
     data.k_pJ_inv.add(-1.0, data.k_pJ);
     AdditionalTools::replace_submatrix(element_indices_p,

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.