]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Some small modifications.
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 11 Jan 2000 22:29:13 +0000 (22:29 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 11 Jan 2000 22:29:13 +0000 (22:29 +0000)
git-svn-id: https://svn.dealii.org/trunk@2207 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/Attic/examples/step-by-step/step-3/step-3.cc
deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc
deal.II/deal.II/Attic/examples/step-by-step/step-5/step-5.cc
deal.II/examples/step-3/step-3.cc
deal.II/examples/step-4/step-4.cc
deal.II/examples/step-5/step-5.cc

index 6a2c095c2af5dfeb8baab41bc124329588651ee8..10e649fe44aca1680ccd847d829ef3bdc9e79256 100644 (file)
@@ -313,11 +313,17 @@ void LaplaceProblem::assemble_system ()
                                   // quadrature formula for the
                                   // evaluation of the integrals on
                                   // each cell. Let's take a Gauss
-                                  // formula with three quadrature
+                                  // formula with two quadrature
                                   // points in each direction, i.e. a
-                                  // total of nine points since we
-                                  // are in 2D:
-  QGauss3<2>  quadrature_formula;
+                                  // total of four points since we
+                                  // are in 2D. This quadrature
+                                  // formula integrates polynomials
+                                  // of degrees up to three exactly
+                                  // (in 1D). Since the integrands in
+                                  // the matrix entries are quadratic
+                                  // (in 1D), this is sufficient. The
+                                  // same holds for 2D.
+  QGauss2<2>  quadrature_formula;
                                   // And we initialize the object
                                   // which we have briefly talked
                                   // about above. It needs to be told
index 73967fb1e55f0151ab326a30a8fc24f68acca45e..9b45c7d7f57b2edba6f5c5ac6ba255fe8cd95651 100644 (file)
@@ -310,7 +310,7 @@ void LaplaceProblem<dim>::make_grid_and_dofs ()
 template <int dim>
 void LaplaceProblem<dim>::assemble_system () 
 {  
-  QGauss3<dim>  quadrature_formula;
+  QGauss2<dim>  quadrature_formula;
 
                                   // We wanted to have a non-constant
                                   // right hand side, so we use an
index e215db92ca5be22782749c003327a3361c6780c8..21ad88c48405e8d0f188ed80b8b387cab1f3662e 100644 (file)
@@ -327,7 +327,7 @@ void LaplaceProblem<dim>::assemble_system ()
                                   // object will be used for this:
   const Coefficient<dim> coefficient;
 
-  QGauss3<dim>  quadrature_formula;
+  QGauss2<dim>  quadrature_formula;
 
   FEValues<dim> fe_values (fe, quadrature_formula, 
                           UpdateFlags(update_values    |
index 6a2c095c2af5dfeb8baab41bc124329588651ee8..10e649fe44aca1680ccd847d829ef3bdc9e79256 100644 (file)
@@ -313,11 +313,17 @@ void LaplaceProblem::assemble_system ()
                                   // quadrature formula for the
                                   // evaluation of the integrals on
                                   // each cell. Let's take a Gauss
-                                  // formula with three quadrature
+                                  // formula with two quadrature
                                   // points in each direction, i.e. a
-                                  // total of nine points since we
-                                  // are in 2D:
-  QGauss3<2>  quadrature_formula;
+                                  // total of four points since we
+                                  // are in 2D. This quadrature
+                                  // formula integrates polynomials
+                                  // of degrees up to three exactly
+                                  // (in 1D). Since the integrands in
+                                  // the matrix entries are quadratic
+                                  // (in 1D), this is sufficient. The
+                                  // same holds for 2D.
+  QGauss2<2>  quadrature_formula;
                                   // And we initialize the object
                                   // which we have briefly talked
                                   // about above. It needs to be told
index 73967fb1e55f0151ab326a30a8fc24f68acca45e..9b45c7d7f57b2edba6f5c5ac6ba255fe8cd95651 100644 (file)
@@ -310,7 +310,7 @@ void LaplaceProblem<dim>::make_grid_and_dofs ()
 template <int dim>
 void LaplaceProblem<dim>::assemble_system () 
 {  
-  QGauss3<dim>  quadrature_formula;
+  QGauss2<dim>  quadrature_formula;
 
                                   // We wanted to have a non-constant
                                   // right hand side, so we use an
index e215db92ca5be22782749c003327a3361c6780c8..21ad88c48405e8d0f188ed80b8b387cab1f3662e 100644 (file)
@@ -327,7 +327,7 @@ void LaplaceProblem<dim>::assemble_system ()
                                   // object will be used for this:
   const Coefficient<dim> coefficient;
 
-  QGauss3<dim>  quadrature_formula;
+  QGauss2<dim>  quadrature_formula;
 
   FEValues<dim> fe_values (fe, quadrature_formula, 
                           UpdateFlags(update_values    |

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.