]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Comments cleanup.
authorkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 4 Sep 2009 17:11:39 +0000 (17:11 +0000)
committerkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 4 Sep 2009 17:11:39 +0000 (17:11 +0000)
git-svn-id: https://svn.dealii.org/trunk@19394 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-37/step-37.cc

index 306bdb67f6fb82bd6c66f423b4ad6ac8b3be05f3..b146710be2726c504c9a445d0eaa3518d4a45a17 100644 (file)
@@ -602,7 +602,7 @@ MatrixFree<number,Transformation>::vmult (Vector<number2>       &dst,
 
                                 // Transposed matrix-vector products: do
                                 // the same. Since we implement a symmetric
-                                // operation, we can refer to the vmult
+                                // operation, we can refer to the vmult_add
                                 // operation.
 template <typename number, class Transformation>
 template <typename number2>
@@ -616,6 +616,17 @@ MatrixFree<number,Transformation>::Tvmult (Vector<number2>       &dst,
 
 
 
+template <typename number, class Transformation>
+template <typename number2>
+void
+MatrixFree<number,Transformation>::Tvmult_add (Vector<number2>       &dst,
+                                              const Vector<number2> &src) const
+{
+  vmult_add (dst,src);
+}
+
+
+
                                 // The <code>vmult_add</code> function that
                                 // multiplies the matrix with vector
                                 // <code>src</code> and adds the result to
@@ -678,17 +689,6 @@ MatrixFree<number,Transformation>::vmult_add (Vector<number2>       &dst,
 
 
 
-template <typename number, class Transformation>
-template <typename number2>
-void
-MatrixFree<number,Transformation>::Tvmult_add (Vector<number2>       &dst,
-                                              const Vector<number2> &src) const
-{
-  vmult_add (dst,src);
-}
-
-
-
                                 // This function returns the entries of the
                                 // matrix. Since this class is intended not
                                 // to store the matrix entries, it would
@@ -699,7 +699,7 @@ MatrixFree<number,Transformation>::Tvmult_add (Vector<number2>       &dst,
                                 // constrained degrees of freedom or for
                                 // the implementation of the Chebyshev
                                 // smoother that we intend to use in the
-                                // multigrid implemenation. This matrix is
+                                // multigrid preconditioner. This matrix is
                                 // equipped with a vector that stores the
                                 // diagonal, and we compute it when this
                                 // function is called for the first time.
@@ -727,14 +727,14 @@ MatrixFree<number,Transformation>::el (const unsigned int row,
                                 // go through all the cells (now in serial,
                                 // since this function should not be called
                                 // very often anyway), then all the degrees
-                                // of freedom. On that level, we first copy
+                                // of freedom. At this place, we first copy
                                 // the first basis functions in all the
-                                // quadrature points, then apply the
-                                // derivatives from the Jacobian matrix,
-                                // and finally multiply with the second
-                                // basis function. This is the value that
-                                // would be written into the diagonal of a
-                                // sparse matrix.
+                                // quadrature points to a temporary array,
+                                // apply the derivatives from the Jacobian
+                                // matrix, and finally multiply with the
+                                // second basis function. This is exactly
+                                // the value that would be written into the
+                                // diagonal of a sparse matrix.
 template <typename number, class Transformation>
 void
 MatrixFree<number,Transformation>::calculate_diagonal() const
@@ -794,26 +794,27 @@ std::size_t MatrixFree<number,Transformation>::memory_consumption () const
                                 // class. There is one point worth noting:
                                 // The quadrature-point related action of
                                 // the Laplace operator is a tensor of rank
-                                // two. It is even symmetric since it is
-                                // the product of the inverse Jacobian
+                                // two. It is symmetric since it is the
+                                // product of the inverse Jacobian
                                 // transformation between unit and real
                                 // cell with its transpose (times
                                 // quadrature weights and a coefficient,
                                 // which are scalar), so we can just save
-                                // the symmetric part. We could use the
-                                // SymmetricTensor<2,dim> class for doing
-                                // this, however, that is only based on
-                                // <code>double</code> numbers. Since we
+                                // the diagonal and upper diagonal part. We
+                                // could use the SymmetricTensor<2,dim>
+                                // class for doing this, however, that
+                                // class is only based on
+                                // <code>double</code> %numbers. Since we
                                 // also want to use <code>float</code>
-                                // numbers for the multigrid preconditioner
-                                // (in order to save memory and computing
-                                // time), we manually implement this
-                                // operator. Note that <code>dim</code> is
-                                // a template argument and hence known at
-                                // compile-time, so the compiler knows that
-                                // this symmetric rank-2 tensor has 3
-                                // entries if used in 2D and 6 entries if
-                                // used in 3D.
+                                // %numbers for the multigrid
+                                // preconditioner (in order to save memory
+                                // and computing time), we manually
+                                // implement this operator. Note that
+                                // <code>dim</code> is a template argument
+                                // and hence known at compile-time, so the
+                                // compiler knows that this symmetric
+                                // rank-2 tensor has 3 entries if used in
+                                // 2D and 6 entries if used in 3D.
 template <int dim,typename number>
 class LaplaceOperator
 {
@@ -864,14 +865,14 @@ LaplaceOperator<dim,number>::LaplaceOperator(const Tensor<2,dim> &tensor)
                                 //
                                 // It might seem inefficient that we have
                                 // an <code>if</code> clause at this place
-                                // (which is the innermost loop, so it
-                                // could be expensive), but note once again
-                                // that <code>dim</code> is known when this
-                                // piece of code is compiled, so the
-                                // compiler can optize away the
-                                // <code>if</code> statement (and actually
-                                // even inline these few lines of code into
-                                // the <code>MatrixFree</code> class).
+                                // (which is the innermost loop), but note
+                                // once again that <code>dim</code> is
+                                // known when this piece of code is
+                                // compiled, so the compiler can optize
+                                // away the <code>if</code> statement (and
+                                // actually even inline these few lines of
+                                // code into the <code>MatrixFree</code>
+                                // class).
 template <int dim, typename number>
 void LaplaceOperator<dim,number>::transform (number* result) const
 {

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.