]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Allow interfacing in an hp context between FE_Q and FE_Nothing.
authorbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 25 Sep 2009 02:47:48 +0000 (02:47 +0000)
committerbangerth <bangerth@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 25 Sep 2009 02:47:48 +0000 (02:47 +0000)
git-svn-id: https://svn.dealii.org/trunk@19538 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/source/fe/fe_q.cc

index efd1b085709c8bcbe57e92fc49ff6aecad7910ba..fe0d0caebc2f77432d53f5334c6ac7bc232ecec2 100644 (file)
@@ -2,7 +2,7 @@
 //    $Id$
 //    Version: $Name$
 //
-//    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by the deal.II authors
+//    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by the deal.II authors
 //
 //    This file is subject to QPL and may not be  distributed
 //    without copyright and license information. Please refer
@@ -15,6 +15,7 @@
 #include <base/qprojector.h>
 #include <base/template_constraints.h>
 #include <fe/fe_q.h>
+#include <fe/fe_nothing.h>
 #include <fe/fe_tools.h>
 #include <base/quadrature_lib.h>
 
@@ -33,11 +34,11 @@ DEAL_II_NAMESPACE_OPEN
 // function is static:
 // --------------------
 // template <int> struct int2type {};
-// 
-// namespace {    
+//
+// namespace {
 //   static void SYMBOL (const int2type<1> & ) {}
 // }
-// 
+//
 // template <int dim, int spacedim> void g() {
 //   SYMBOL(int2type<dim>());
 // }
@@ -120,8 +121,8 @@ namespace FE_Q_Helper
       const double h = 1./(N-1);
       return Point<1>(i*h);
     }
-  
-    
+
+
                                     // given N, generate i=0...N-1
                                     // equidistant points in the domain
                                     // [0,1]^2
@@ -136,7 +137,7 @@ namespace FE_Q_Helper
     {
       Assert (i<N, ExcInternalError());
       Assert (N>=4, ExcInternalError());
-    
+
       const unsigned int N1d = int_sqrt(N);
       const double h = 1./(N1d-1);
 
@@ -144,7 +145,7 @@ namespace FE_Q_Helper
                       i/N1d * h);
     }
 
-  
+
 
                                     // given N, generate i=0...N-1
                                     // equidistant points in the domain
@@ -160,7 +161,7 @@ namespace FE_Q_Helper
     {
       Assert (i<N, ExcInternalError());
       Assert (N>=8, ExcInternalError());
-    
+
       const unsigned int N1d = int_cuberoot(N);
       const double h = 1./(N1d-1);
 
@@ -168,7 +169,7 @@ namespace FE_Q_Helper
                       (i/N1d)%N1d * h,
                       i/(N1d*N1d) * h);
     }
-    
+
   }
 }
 
@@ -221,7 +222,7 @@ struct FE_Q<xdim,xspacedim>::Implementation
                                         // we seek a relation between x and
                                         // y such that
                                         //   sum_j a_j phi^c_j(x)
-                                        //   == sum_j b_j phi_j(x)  
+                                        //   == sum_j b_j phi_j(x)
                                         // for all points x on the
                                         // interface. here, phi^c_j are the
                                         // shape functions on the small
@@ -307,9 +308,9 @@ struct FE_Q<xdim,xspacedim>::Implementation
        for (unsigned int i=0; i<constraint_points.size(); ++i)
          for (unsigned j=0; j<fe.degree+1; ++j)
            {
-             fe.interface_constraints(i,j) = 
+             fe.interface_constraints(i,j) =
                polynomials[fe.face_index_map[j]].value (constraint_points[i](0));
-                   
+
                                               // if the value is small up
                                               // to round-off, then
                                               // simply set it to zero to
@@ -375,7 +376,7 @@ struct FE_Q<xdim,xspacedim>::Implementation
 
                                             // auxiliary points in 2d
            std::vector<Point<dim-1> > p_line(n);
-  
+
                                             // Add nodes of lines interior
                                             // in the "mother-face"
 
@@ -395,7 +396,7 @@ struct FE_Q<xdim,xspacedim>::Implementation
            QProjector<dim-1>::project_to_subface(qline, 2, 1, p_line);
            for (unsigned int i=0; i<n; ++i)
              constraint_points.push_back (p_line[i] + Point<dim-1> (0, 0.5));
-      
+
                                             // DoFs on bordering lines
                                             // lines 9-16
            for (unsigned int face=0; face<GeometryInfo<dim-1>::faces_per_cell; ++face)
@@ -406,7 +407,7 @@ struct FE_Q<xdim,xspacedim>::Implementation
                  constraint_points.insert(constraint_points.end(),
                                           p_line.begin(), p_line.end());
                }
-      
+
                                             // Create constraints for
                                             // interior nodes
            std::vector<Point<dim-1> > inner_points(n*n);
@@ -416,7 +417,7 @@ struct FE_Q<xdim,xspacedim>::Implementation
 
                                             // at the moment do this for
                                             // isotropic face refinement only
-           for (unsigned int child=0; 
+           for (unsigned int child=0;
                 child<GeometryInfo<dim-1>::max_children_per_cell; ++child)
              for (unsigned int i=0; i<inner_points.size(); ++i)
                constraint_points.push_back (
@@ -426,9 +427,9 @@ struct FE_Q<xdim,xspacedim>::Implementation
                                         // Now construct relation between
                                         // destination (child) and source (mother)
                                         // dofs.
-       const unsigned int pnts=(fe.degree+1)*(fe.degree+1); 
+       const unsigned int pnts=(fe.degree+1)*(fe.degree+1);
        const std::vector<Polynomials::Polynomial<double> > polynomial_basis=
-         Polynomials::Lagrange::generate_complete_basis(points.get_points()); 
+         Polynomials::Lagrange::generate_complete_basis(points.get_points());
 
        const TensorProductPolynomials<dim-1> face_polynomials(polynomial_basis);
 
@@ -513,17 +514,17 @@ struct FE_Q<xdim,xspacedim>::Implementation
                unsigned int indices[2]
                  = { fe.face_index_map[j] % (fe.degree + 1),
                      fe.face_index_map[j] / (fe.degree + 1) };
-          
+
                for (unsigned int k = 0; k<2; ++k)
                  if (mirror[k])
                    indices[k] = fe.degree - indices[k];
-          
+
                const unsigned int
                  new_index = indices[1] * (fe.degree + 1) + indices[0];
 
-               fe.interface_constraints(i,j) = 
+               fe.interface_constraints(i,j) =
                  face_polynomials.compute_value (new_index, constraint_point);
-           
+
                                                 // if the value is small up
                                                 // to round-off, then
                                                 // simply set it to zero to
@@ -542,7 +543,7 @@ struct FE_Q<xdim,xspacedim>::Implementation
 };
 
 
-    
+
 
 
 template <int dim, int spacedim>
@@ -560,11 +561,11 @@ FE_Q<dim,spacedim>::FE_Q (const unsigned int degree)
   Assert (degree > 0,
           ExcMessage ("This element can only be used for polynomial degrees "
                       "at least zero"));
-  
+
   std::vector<unsigned int> renumber (this->dofs_per_cell);
   FETools::hierarchic_to_lexicographic_numbering (*this, renumber);
   this->poly_space.set_numbering(renumber);
-  
+
                                   // finally fill in support points
                                   // on cell and face
   initialize_unit_support_points ();
@@ -595,7 +596,7 @@ FE_Q<dim,spacedim>::FE_Q (const Quadrature<1> &points)
                face_index_map(FE_Q_Helper::invert_numbering(face_lexicographic_to_hierarchic_numbering (points.n_quadrature_points-1)))
 {
   const unsigned int degree = points.n_quadrature_points-1;
-  
+
   Assert (degree > 0,
           ExcMessage ("This element can only be used for polynomial degrees "
                       "at least zero"));
@@ -603,11 +604,11 @@ FE_Q<dim,spacedim>::FE_Q (const Quadrature<1> &points)
          ExcMessage ("The first support point has to be zero."));
   Assert (points.point(degree)(0) == 1,
          ExcMessage ("The last support point has to be one."));
-  
+
   std::vector<unsigned int> renumber (this->dofs_per_cell);
   FETools::hierarchic_to_lexicographic_numbering (*this, renumber);
   this->poly_space.set_numbering(renumber);
-  
+
                                   // finally fill in support points
                                   // on cell and face
   initialize_unit_support_points (points);
@@ -644,9 +645,9 @@ FE_Q<dim,spacedim>::get_name () const
                                   // particular format of the string
                                   // this function returns, so they
                                   // have to be kept in synch
-  
-  std::ostringstream namebuf;  
-  bool type = true;  
+
+  std::ostringstream namebuf;
+  bool type = true;
   const unsigned int n_points = this->degree +1;
   std::vector<double> points(n_points);
   const unsigned int dofs_per_cell = this->dofs_per_cell;
@@ -657,7 +658,7 @@ FE_Q<dim,spacedim>::get_name () const
                                   // in one coordinate direction.
   for (unsigned int j=0;j<dofs_per_cell;j++)
     {
-      if ((dim>1) ? (unit_support_points[j](1)==0 && 
+      if ((dim>1) ? (unit_support_points[j](1)==0 &&
           ((dim>2) ? unit_support_points[j](2)==0: true)) : true)
        {
          if (index == 0)
@@ -682,7 +683,7 @@ FE_Q<dim,spacedim>::get_name () const
        break;
       }
 
-  if (type == true)    
+  if (type == true)
     namebuf << "FE_Q<" << dim << ">(" << this->degree << ")";
   else
     {
@@ -733,7 +734,7 @@ get_interpolation_matrix (const FiniteElement<dim,spacedim> &x_source_fe,
                (dynamic_cast<const FEQ*>(&x_source_fe) != 0),
                typename FEL::
                ExcInterpolationNotImplemented());
-  
+
   Assert (interpolation_matrix.m() == this->dofs_per_cell,
          ExcDimensionMismatch (interpolation_matrix.m(),
                                this->dofs_per_cell));
@@ -875,7 +876,7 @@ get_face_interpolation_matrix (const FiniteElement<dim,spacedim> &x_source_fe,
                (dynamic_cast<const FEQ*>(&x_source_fe) != 0),
                typename FEL::
                ExcInterpolationNotImplemented());
-  
+
   Assert (interpolation_matrix.n() == this->dofs_per_face,
          ExcDimensionMismatch (interpolation_matrix.n(),
                                this->dofs_per_face));
@@ -902,7 +903,7 @@ get_face_interpolation_matrix (const FiniteElement<dim,spacedim> &x_source_fe,
   Assert (this->dofs_per_face <= source_fe.dofs_per_face,
          typename FEL::
          ExcInterpolationNotImplemented ());
-  
+
                                    // generate a quadrature
                                    // with the unit support points.
                                    // This is later based as a
@@ -910,14 +911,14 @@ get_face_interpolation_matrix (const FiniteElement<dim,spacedim> &x_source_fe,
                                   // which returns the support
                                    // points on the face.
   Quadrature<dim-1> quad_face_support (source_fe.get_unit_face_support_points ());
-  
+
                                   // Rule of thumb for FP accuracy,
                                   // that can be expected for a
                                   // given polynomial degree.
                                   // This value is used to cut
                                   // off values close to zero.
   const double eps = 2e-13*this->degree*(dim-1);
-  
+
                                   // compute the interpolation
                                   // matrix by simply taking the
                                    // value at the support points.
@@ -946,7 +947,7 @@ get_face_interpolation_matrix (const FiniteElement<dim,spacedim> &x_source_fe,
            matrix_entry = 0.0;
 
          interpolation_matrix(i,j) = matrix_entry;
-       }  
+       }
     }
 
                                   // make sure that the row sum of
@@ -985,7 +986,7 @@ get_subface_interpolation_matrix (const FiniteElement<dim,spacedim> &x_source_fe
                (dynamic_cast<const FEQ*>(&x_source_fe) != 0),
                typename FEL::
                ExcInterpolationNotImplemented());
-  
+
   Assert (interpolation_matrix.n() == this->dofs_per_face,
          ExcDimensionMismatch (interpolation_matrix.n(),
                                this->dofs_per_face));
@@ -1012,7 +1013,7 @@ get_subface_interpolation_matrix (const FiniteElement<dim,spacedim> &x_source_fe
   Assert (this->dofs_per_face <= source_fe.dofs_per_face,
          typename FEL::
          ExcInterpolationNotImplemented ());
-  
+
                                    // generate a point on this
                                    // cell and evaluate the
                                    // shape functions there
@@ -1039,7 +1040,7 @@ get_subface_interpolation_matrix (const FiniteElement<dim,spacedim> &x_source_fe
       const Point<dim> &p = subface_quadrature.point (i);
 
       for (unsigned int j=0; j<this->dofs_per_face; ++j)
-       { 
+       {
          double matrix_entry = this->shape_value (this->face_to_cell_index(j, 0), p);
 
                                           // Correct the interpolated
@@ -1094,13 +1095,26 @@ hp_vertex_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const
 {
                                   // we can presently only compute
                                   // these identities if both FEs are
-                                  // FE_Qs. in that case, there
-                                  // should be exactly one single DoF
-                                  // of each FE at a vertex, and they
-                                  // should have identical value
+                                  // FE_Qs or if the other one is an
+                                  // FE_Nothing. in the first case,
+                                  // there should be exactly one
+                                  // single DoF of each FE at a
+                                  // vertex, and they should have
+                                  // identical value
   if (dynamic_cast<const FE_Q<dim,spacedim>*>(&fe_other) != 0)
-    return
-      std::vector<std::pair<unsigned int, unsigned int> > (1, std::make_pair (0U, 0U));
+    {
+      return
+       std::vector<std::pair<unsigned int, unsigned int> >
+       (1, std::make_pair (0U, 0U));
+    }
+  else if (dynamic_cast<const FE_Nothing<dim>*>(&fe_other) != 0)
+    {
+                                      // the FE_Nothing has no
+                                      // degrees of freedom, so there
+                                      // are no equivalencies to be
+                                      // recorded
+      return std::vector<std::pair<unsigned int, unsigned int> > ();
+    }
   else
     {
       Assert (false, ExcNotImplemented());
@@ -1117,7 +1131,8 @@ hp_line_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const
 {
                                   // we can presently only compute
                                   // these identities if both FEs are
-                                  // FE_Qs
+                                  // FE_Qs or if the other one is an
+                                  // FE_Nothing
   if (const FE_Q<dim,spacedim> *fe_q_other = dynamic_cast<const FE_Q<dim,spacedim>*>(&fe_other))
     {
                                       // dofs are located along
@@ -1134,16 +1149,24 @@ hp_line_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const
                                       // i.e. (i+1)*q == (j+1)*p
       const unsigned int p = this->degree;
       const unsigned int q = fe_q_other->degree;
-      
+
       std::vector<std::pair<unsigned int, unsigned int> > identities;
 
       for (unsigned int i=0; i<p-1; ++i)
        for (unsigned int j=0; j<q-1; ++j)
          if ((i+1)*q == (j+1)*p)
            identities.push_back (std::make_pair(i,j));
-      
+
       return identities;
     }
+  else if (dynamic_cast<const FE_Nothing<dim>*>(&fe_other) != 0)
+    {
+                                      // the FE_Nothing has no
+                                      // degrees of freedom, so there
+                                      // are no equivalencies to be
+                                      // recorded
+      return std::vector<std::pair<unsigned int, unsigned int> > ();
+    }
   else
     {
       Assert (false, ExcNotImplemented());
@@ -1160,7 +1183,8 @@ hp_quad_dof_identities (const FiniteElement<dim,spacedim>        &fe_other) cons
 {
                                   // we can presently only compute
                                   // these identities if both FEs are
-                                  // FE_Qs
+                                  // FE_Qs or if the other one is an
+                                  // FE_Nothing
   if (const FE_Q<dim,spacedim> *fe_q_other = dynamic_cast<const FE_Q<dim,spacedim>*>(&fe_other))
     {
                                       // this works exactly like the line
@@ -1174,7 +1198,7 @@ hp_quad_dof_identities (const FiniteElement<dim,spacedim>        &fe_other) cons
                                       // straightforward
       const unsigned int p = this->degree;
       const unsigned int q = fe_q_other->degree;
-      
+
       std::vector<std::pair<unsigned int, unsigned int> > identities;
 
       for (unsigned int i1=0; i1<p-1; ++i1)
@@ -1186,9 +1210,17 @@ hp_quad_dof_identities (const FiniteElement<dim,spacedim>        &fe_other) cons
                  ((i2+1)*q == (j2+1)*p))
                identities.push_back (std::make_pair(i1*(p-1)+i2,
                                                     j1*(q-1)+j2));
-      
+
       return identities;
     }
+  else if (dynamic_cast<const FE_Nothing<dim>*>(&fe_other) != 0)
+    {
+                                      // the FE_Nothing has no
+                                      // degrees of freedom, so there
+                                      // are no equivalencies to be
+                                      // recorded
+      return std::vector<std::pair<unsigned int, unsigned int> > ();
+    }
   else
     {
       Assert (false, ExcNotImplemented());
@@ -1213,7 +1245,21 @@ compare_for_face_domination (const FiniteElement<dim,spacedim> &fe_other) const
       else
        return FiniteElementDomination::other_element_dominates;
     }
-  
+  else if (dynamic_cast<const FE_Nothing<dim>*>(&fe_other) != 0)
+    {
+                                      // the FE_Nothing has no
+                                      // degrees of
+                                      // freedom. nevertheless, we
+                                      // say that the FE_Q element
+                                      // dominates so that we don't
+                                      // have to force the FE_Q side
+                                      // to become a zero function
+                                      // and rather allow the
+                                      // function to be discontinuous
+                                      // along the interface
+      return FiniteElementDomination::this_element_dominates;
+    }
+
   Assert (false, ExcNotImplemented());
   return FiniteElementDomination::neither_element_dominates;
 }
@@ -1232,15 +1278,15 @@ void FE_Q<dim,spacedim>::initialize_unit_support_points ()
   unsigned int n = this->degree+1;
   for (unsigned int i=1; i<dim; ++i)
     n *= this->degree+1;
-  
+
   this->unit_support_points.resize(n);
 
   const std::vector<unsigned int> &index_map_inverse=
     this->poly_space.get_numbering_inverse();
-  
+
   const double step = 1./this->degree;
   Point<dim> p;
-  
+
   unsigned int k=0;
   for (unsigned int iz=0; iz <= ((dim>2) ? this->degree : 0) ; ++iz)
     for (unsigned int iy=0; iy <= ((dim>1) ? this->degree : 0) ; ++iy)
@@ -1251,7 +1297,7 @@ void FE_Q<dim,spacedim>::initialize_unit_support_points ()
            p(1) = iy * step;
          if (dim>2)
            p(2) = iz * step;
-         
+
          this->unit_support_points[index_map_inverse[k++]] = p;
        }
 }
@@ -1265,16 +1311,16 @@ void FE_Q<dim,spacedim>::initialize_unit_support_points (const Quadrature<1> &po
   unsigned int n = this->degree+1;
   for (unsigned int i=1; i<dim; ++i)
     n *= this->degree+1;
-  
+
   this->unit_support_points.resize(n);
 
   const std::vector<unsigned int> &index_map_inverse=
     this->poly_space.get_numbering_inverse();
-       
+
   Quadrature<dim> support_quadrature(points);
 
   Point<dim> p;
-  
+
   for (unsigned int k=0;k<n ;k++)
     {
       this->unit_support_points[index_map_inverse[k]] = support_quadrature.point(k);
@@ -1315,20 +1361,20 @@ template <int dim, int spacedim>
 void FE_Q<dim,spacedim>::initialize_unit_face_support_points ()
 {
   const unsigned int codim = dim-1;
-  
+
                                   // number of points: (degree+1)^codim
   unsigned int n = this->degree+1;
   for (unsigned int i=1; i<codim; ++i)
     n *= this->degree+1;
-  
+
   this->unit_face_support_points.resize(n);
 
   const std::vector<unsigned int> &face_index_map_inverse=
     FE_Q_Helper::invert_numbering(face_index_map);
-  
+
   const double step = 1./this->degree;
   Point<codim> p;
-  
+
   unsigned int k=0;
   for (unsigned int iz=0; iz <= ((codim>2) ? this->degree : 0) ; ++iz)
     for (unsigned int iy=0; iy <= ((codim>1) ? this->degree : 0) ; ++iy)
@@ -1339,7 +1385,7 @@ void FE_Q<dim,spacedim>::initialize_unit_face_support_points ()
            p(1) = iy * step;
          if (codim>2)
            p(2) = iz * step;
-         
+
          this->unit_face_support_points[face_index_map_inverse[k++]] = p;
        }
 }
@@ -1350,21 +1396,21 @@ template <int dim, int spacedim>
 void FE_Q<dim,spacedim>::initialize_unit_face_support_points (const Quadrature<1> &points)
 {
   const unsigned int codim = dim-1;
-  
+
                                   // number of points: (degree+1)^codim
   unsigned int n = this->degree+1;
   for (unsigned int i=1; i<codim; ++i)
     n *= this->degree+1;
-  
+
   this->unit_face_support_points.resize(n);
 
   const std::vector< Point<1> > edge = points.get_points();
 
   const std::vector<unsigned int> &face_index_map_inverse=
     FE_Q_Helper::invert_numbering(face_index_map);
-  
+
   Point<codim> p;
-  
+
   unsigned int k=0;
   for (unsigned int iz=0; iz <= ((codim>2) ? this->degree : 0) ; ++iz)
     for (unsigned int iy=0; iy <= ((codim>1) ? this->degree : 0) ; ++iy)
@@ -1375,7 +1421,7 @@ void FE_Q<dim,spacedim>::initialize_unit_face_support_points (const Quadrature<1
            p(1) = edge[iy](0);
          if (codim>2)
            p(2) = edge[iz](0);
-         
+
          this->unit_face_support_points[face_index_map_inverse[k++]] = p;
        }
 }
@@ -1404,7 +1450,7 @@ FE_Q<3>::initialize_quad_dof_index_permutation ()
 
                                   // alias for the table to fill
   Table<2,int> &data=this->adjust_quad_dof_index_for_face_orientation_table;
-  
+
                                   // the dofs on a face are connected to a n x
                                   // n matrix. for example, for degree==4 we
                                   // have the following dofs on a quad
@@ -1433,7 +1479,7 @@ FE_Q<3>::initialize_quad_dof_index_permutation ()
     {
       unsigned int i=local%n,
                   j=local/n;
-      
+
                                       // face_orientation=false, face_flip=false, face_rotation=false
       data(local,0)=j       + i      *n - local;
                                       // face_orientation=false, face_flip=false, face_rotation=true
@@ -1478,7 +1524,7 @@ std::vector<unsigned int>
 FE_Q<dim,spacedim>::face_lexicographic_to_hierarchic_numbering (const unsigned int degree)
 {
   const FiniteElementData<dim-1> face_data(FE_Q<dim-1>::get_dpo_vector(degree),1,degree);
-  std::vector<unsigned int> face_renumber (face_data.dofs_per_cell);  
+  std::vector<unsigned int> face_renumber (face_data.dofs_per_cell);
   FETools::lexicographic_to_hierarchic_numbering (face_data, face_renumber);
   return face_renumber;
 }
@@ -1597,7 +1643,7 @@ FE_Q<dim,spacedim>::initialize_embedding ()
              = FE_Q_Helper::generate_unit_point (index_map[j], this->dofs_per_cell,
                                                  dealii::internal::int2type<dim>());
            const Point<dim> p_cell =
-             GeometryInfo<dim>::child_to_cell_coordinates (p_subcell, child, 
+             GeometryInfo<dim>::child_to_cell_coordinates (p_subcell, child,
                                                            RefinementCase<dim>(ref+1));
 
            for (unsigned int i=0; i<this->dofs_per_cell; ++i)
@@ -1634,7 +1680,7 @@ FE_Q<dim,spacedim>::initialize_embedding ()
                if (std::fabs(cell_value) < eps)
                  this->prolongation[ref][child](subcell_permutations[j],i) = 0;
                else
-                 this->prolongation[ref][child](subcell_permutations[j],i) = 
+                 this->prolongation[ref][child](subcell_permutations[j],i) =
                    cell_value;
              }
          }
@@ -1860,10 +1906,10 @@ FE_Q<dim,spacedim>::has_support_on_face (const unsigned int shape_index,
       ||
       ((dim==3) && (shape_index>=this->first_hex_index)))
     return false;
-                                       
+
                                    // let's see whether this is a
                                    // vertex
-  if (shape_index < this->first_line_index) 
+  if (shape_index < this->first_line_index)
     {
                                        // for Q elements, there is
                                        // one dof per vertex, so
@@ -1912,12 +1958,12 @@ FE_Q<dim,spacedim>::has_support_on_face (const unsigned int shape_index,
   else if (shape_index < this->first_hex_index)
                                      // dof is on a quad
     {
-      const unsigned int quad_index 
+      const unsigned int quad_index
         = (shape_index - this->first_quad_index) / this->dofs_per_quad;
       Assert (static_cast<signed int>(quad_index) <
               static_cast<signed int>(GeometryInfo<dim>::quads_per_cell),
               ExcInternalError());
-          
+
                                        // in 2d, cell bubble are
                                        // zero on all faces. but
                                        // we have treated this

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.