]> https://gitweb.dealii.org/ - dealii.git/commitdiff
projection compiles, but results are wrong
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Tue, 28 Jun 2005 22:39:02 +0000 (22:39 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Tue, 28 Jun 2005 22:39:02 +0000 (22:39 +0000)
git-svn-id: https://svn.dealii.org/trunk@10960 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/source/fe/fe_tools.cc

index 3bba9f9d9e17d138e08769c580250f4eea55c898..090cf49d20ccddcaca5cb25d20b3c5585e066988 100644 (file)
@@ -500,23 +500,21 @@ FETools::compute_embedding_matrices(const FiniteElement<dim>& fe,
   const unsigned int nq = q_fine.n_quadrature_points;
   
   FEValues<dim> fine (mapping, fe, q_fine,
-                     update_q_points | update_JxW_values | update_values);  
-
-                                  /**
-                                   * We search for the polynomial on
-                                   * the small cell, being equal to
-                                   * the coarse polynomial in all
-                                   * quadrature points.
-                                   *
-                                   * First build the matrix for this
-                                   * least squares problem. This
-                                   * contains the values of the fine
-                                   * cell polynomials in the fine
-                                   * cell grid points.
-                                   *
-                                   * This matrix is the same for all
-                                   * children.
-                                   */
+                     update_q_points | update_JxW_values | update_values);
+  
+                                  // We search for the polynomial on
+                                  // the small cell, being equal to
+                                  // the coarse polynomial in all
+                                  // quadrature points.
+                                   
+                                  // First build the matrix for this
+                                  // least squares problem. This
+                                  // contains the values of the fine
+                                  // cell polynomials in the fine
+                                  // cell grid points.
+                                   
+                                  // This matrix is the same for all
+                                  // children.
   fine.reinit(tria.begin_active());
   FullMatrix<number> A(nq*nd, n);
   for (unsigned int d=0;d<nd;++d)
@@ -588,15 +586,13 @@ FETools::compute_embedding_matrices(const FiniteElement<dim>& fe,
 
 
 
-//TODO[GK]: this function is presently not instantiated, and probably doesn't even compile.
+//TODO[GK]: this function does not work yet.
 template<int dim, typename number>
 void
 FETools::compute_projection_matrices(const FiniteElement<dim>& fe,
                                     FullMatrix<number>* matrices)
 {
-//TODO[GK]: clean up this function and make it work  
-  Assert (false, ExcNotImplemented());
-  
+  Assert(false, ExcNotImplemented());
   const unsigned int nc = GeometryInfo<dim>::children_per_cell;
   const unsigned int n  = fe.dofs_per_cell;
   const unsigned int nd = fe.n_components();
@@ -608,23 +604,10 @@ FETools::compute_projection_matrices(const FiniteElement<dim>& fe,
       Assert(matrices[i].m() == n, ExcDimensionMismatch(matrices[i].m(),n));
     }
   
-                                  /*
-                                   * Set up two meshes, one with a
-                                   * single reference cell and the
-                                   * other refined, together with
-                                   * DoFHandler and finite elements.
-                                   */
-//TODO[GK]: This should be changed just like the function above, i.e. not use a DoFHandler at all (and use the Triangulation alone), and to use only a single triangulation. this would make it significantly more efficient
-  Triangulation<dim> tr_coarse;
-  Triangulation<dim> tr_fine;
-  GridGenerator::hyper_cube (tr_coarse, 0, 1);
-  GridGenerator::hyper_cube (tr_fine, 0, 1);
-  tr_fine.refine_global(1);
-  DoFHandler<dim> dof_coarse(tr_coarse);
-  dof_coarse.distribute_dofs(fe);
-  DoFHandler<dim> dof_fine(tr_fine);
-  dof_fine.distribute_dofs(fe);
-
+  Triangulation<dim> tr;
+  GridGenerator::hyper_cube (tr, 0, 1);
+  tr.refine_global(1);
+  
   MappingCartesian<dim> mapping;
   QGauss<dim> q_fine(degree+1);
   const unsigned int nq = q_fine.n_quadrature_points;
@@ -634,43 +617,88 @@ FETools::compute_projection_matrices(const FiniteElement<dim>& fe,
   FEValues<dim> fine (mapping, fe, q_fine,
                      update_q_points | update_JxW_values | update_values);
   
-  typename DoFHandler<dim>::active_cell_iterator coarse_cell
-    = dof_coarse.begin_active();
-  typename DoFHandler<dim>::active_cell_iterator fine_cell;
+  typename Triangulation<dim>::cell_iterator coarse_cell
+    = tr.begin(0);
+  typename Triangulation<dim>::cell_iterator fine_cell;
 
                                   // Compute the coarse level mass
                                   // matrix
-  coarse.reinit(dof_coarse);
+  coarse.reinit(coarse_cell);
   FullMatrix<number> A(n, n);
   for (unsigned int k=0;k<nq;++k)
     for (unsigned int i=0;i<n;++i)
       for (unsigned int j=0;j<n;++j)
-       A(i,j) = coarse.JxW(k)
-                * coarse.shape_value(i,k)
-                * coarse.shape_value(j,k);
+       if (fe.is_primitive())
+         A(i,j) = coarse.JxW(k)
+                  * coarse.shape_value(i,k)
+                  * coarse.shape_value(j,k);
+       else
+         for (unsigned int d=0;d<nd;++d)
+           A(i,j) = coarse.JxW(k)
+                    * coarse.shape_value_component(i,k,d)
+                    * coarse.shape_value_component(j,k,d);
   
   Householder<double> H(A);
   
   Vector<number> v_coarse(n);
   Vector<number> v_fine(n);
   
-  unsigned int cell_number = 0;
-  for (fine_cell = dof_fine.begin_active();
-       fine_cell != dof_fine.end();
-       ++fine_cell, ++cell_number)
+  for (unsigned int cell_number=0;cell_number<GeometryInfo<dim>::children_per_cell;++cell_number)
     {
+      FullMatrix<double> &this_matrix = matrices[cell_number];
+      
                                       // Compute right hand side,
                                       // which is a fine level basis
                                       // function tested with the
                                       // coarse level functions.
-      Assert(false, ExcNotImplemented());
+      fine.reinit(coarse_cell->child(cell_number));
+      Quadrature<dim> q_coarse (fine.get_quadrature_points(),
+                               fine.get_JxW_values());
+      FEValues<dim> coarse (mapping, fe, q_coarse, update_values);
+      coarse.reinit(coarse_cell);
+      
+                                      // Build RHS
+
+                                      // Outer loop over all fine
+                                      // grid shape functions phi_j
+      for (unsigned int j=0;j<fe.dofs_per_cell;++j)
+       {
+                                          // Loop over all quadrature points
+         for (unsigned int k=0;k<fine.n_quadrature_points;++k)
+           {
+                                              // integrate the scalar
+                                              // product
+                                              // (phi_i,phi_j) for
+                                              // all coarse shape
+                                              // functions to get the
+                                              // right hand side
+             for (unsigned int i=0;i<fe.dofs_per_cell;++i)
+               {
+                 if (fe.is_primitive())
+                   v_fine(i) += fine.JxW(k)
+                                * coarse.shape_value(i,k)
+                                * fine.shape_value(j,k);
+                 else
+                   for (unsigned int d=0;d<nd;++d)
+                     v_fine(i) += fine.JxW(k)
+                                  * coarse.shape_value_component(i,k,d)
+                                  * fine.shape_value_component(j,k,d);
+               }
+           }
+                                          // RHS ready. Solve system
+                                          // and enter row into
+                                          // matrix
+         H.least_squares(v_coarse, v_fine);
+         for (unsigned int i=0;i<fe.dofs_per_cell;++i)
+           this_matrix(j,i) = v_coarse(i);
+       }
       
                                       // Remove small entries from
                                       // the matrix
-//       for (unsigned int i=0; i<matrix.m(); ++i)
-//     for (unsigned int j=0; j<matrix.n(); ++j)
-//       if (std::fabs(matrix(i,j)) < 1e-12)
-//         matrix(i,j) = 0.;
+      for (unsigned int i=0; i<this_matrix.m(); ++i)
+       for (unsigned int j=0; j<this_matrix.n(); ++j)
+         if (std::fabs(this_matrix(i,j)) < 1e-12)
+           this_matrix(i,j) = 0.;
     }
 }
 
@@ -1525,6 +1553,10 @@ template
 void FETools::compute_embedding_matrices<deal_II_dimension>
 (const FiniteElement<deal_II_dimension> &, FullMatrix<double>*);
 
+template
+void FETools::compute_projection_matrices<deal_II_dimension>
+(const FiniteElement<deal_II_dimension> &, FullMatrix<double>*);
+
 template
 void FETools::interpolate<deal_II_dimension>
 (const DoFHandler<deal_II_dimension> &, const Vector<double> &,

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.