* The main quantities which are stored are associated with edge and face
* parameterisations. These are:
* <ul>
- * <li> \lambda_{i} - trilinear function, equal to one at the i-th vertex
+ * <li> $\lambda_{i}$ - trilinear function, equal to one at the $i$-th vertex
* and zero at all other vertices.</li>
- * <li> \sigma_{i} - linear functional associated with the i-th vertex.</li>
+ * <li> $\sigma_{i}$ - linear functional associated with the $i$-th vertex.</li>
* </ul>
*
* The definitions of these functionals, as well as the edge and face
* cell-dependent.
*
* The edge parameterisation of an edge, E, starting at vertex i and ending
- * at vertex j is given by \sigma_{E} = \sigma_{i} - \sigma{j}.
+ * at vertex $j$ is given by $\sigma_{E} = \sigma_{i} - \sigma{j}$.
*
* sigma_imj_values[q][i][j] stores the value of the edge parametrisation
- * connected by vertices i and j at the q-th quadrature point.
+ * connected by vertices $i$ and $j$ at the q-th quadrature point.
*
- * Note that not all of the i and j combinations result in valid edges on
+ * Note that not all of the $i$ and $j$ combinations result in valid edges on
* the hexahedral cell, but they are computed in this fashion for use with
* non-standard edge and face orientations.
*/
* DoFs, which are cell-dependent. Note that the components of the gradient
* are constant.
*
- * The edge parameterisation of an edge, E, starting at vertex i and ending
- * at vertex j is given by \sigma_{E} = \sigma_{i} - \sigma{j}.
+ * The edge parameterisation of an edge, $E$, starting at vertex $i$ and ending
+ * at vertex $j$ is given by $\sigma_{E} = \sigma_{i} - \sigma{j}$.
*
* sigma_imj_grads[i][j][d] stores the gradient of the edge parametrisation
- * connected by vertices i and j in component d.
+ * connected by vertices $i$ and $j$ in component $d$.
*
* Note that the gradient of the edge parametrisation is constant on an
* edge, so we do not need to store it at every quadrature point.
* stored for the 12 edges such that the global vertex numbering would
* follow the order defined by the "standard" deal.II cell.
*
- * The edge extension parameter of an edge, E, starting at vertex i and
- * ending at vertex j is given by \lambda_{E} = \lambda_{i} + \lambda_{j}.
+ * The edge extension parameter of an edge, $E$, starting at vertex $i$ and
+ * ending at vertex $j$ is given by $\lambda_{E} = \lambda_{i} + \lambda_{j}$.
*
- * Note that under this definition, the values of \lambda_{E} do not change
+ * Note that under this definition, the values of $\lambda_{E}$ do not change
* with the orientation of the edge.
*
* edge_lambda_values[m][q] stores the edge extension parameter value at
- * the q-th quadrature point on edge m.
+ * the $q$-th quadrature point on edge $m$.
*/
std::vector<std::vector<double> > edge_lambda_values;
* deal.II cell.
*
* edge_lambda_grads_2d[m][d] stores the gradient of the edge extension
- * parameter for component d on edge m.
+ * parameter for component $d$ on edge $m$.
*/
std::vector<std::vector<double> > edge_lambda_grads_2d;
* "standard" deal.II cell.
*
* edge_lambda_grads_3d[m][q][d] stores the gradient of the edge extension
- * parameter for component d at the q-th quadrature point on edge m.
+ * parameter for component $d$ at the $q$-th quadrature point on edge m.
*/
std::vector<std::vector<std::vector<double> > > edge_lambda_grads_3d;
* "standard" deal.II cell.
*
* edge_lambda_gradgrads_3d[m][d1][d2] stores the 2nd derivatives of the
- * edge extension parameters with respect to components d1 and d2 on edge m.
+ * edge extension parameters with respect to components d1 and d2 on edge $m$.
*/
std::vector<std::vector<std::vector<double> > > edge_lambda_gradgrads_3d;
*
* The face extension parameter of a face, F, defined by the vertices
* v1, v2, v3, v4 is given by
- * \lambda_{F} = \lambda_{v1} + \lambda_{v2} + \lambda_{v3} + \lambda_{v4}.
+ * $\lambda_{F} = \lambda_{v1} + \lambda_{v2} + \lambda_{v3} + \lambda_{v4}$.
*
- * Note that under this definition, the values of \lambda_{F} do not change
+ * Note that under this definition, the values of $\lambda_{F}$ do not change
* with the orientation of the face.
*
* face_lambda_values[m][q] stores the face extension parameter value at
- * the q-th quadrature point on face m.
+ * the $q$-th quadrature point on face $m$.
*/
std::vector<std::vector<double> > face_lambda_values;
* defined by the "standard" deal.II cell.
*
* face_lambda_grads[m][d] stores the gradient of the face extension
- * parameters for component d on face m.
+ * parameters for component $d$ on face $m$.
*/
std::vector<std::vector<double> > face_lambda_grads;
};