]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
move tests known to fail to fail
authorkanschat <kanschat@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 13 Oct 2006 18:40:00 +0000 (18:40 +0000)
committerkanschat <kanschat@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 13 Oct 2006 18:40:00 +0000 (18:40 +0000)
git-svn-id: https://svn.dealii.org/trunk@14002 0785d39b-7218-0410-832d-ea1e28bc413d

34 files changed:
tests/deal.II/Makefile
tests/deal.II/wave-test-3.cc [deleted file]
tests/deal.II/wave-test-3/cmp/generic [deleted file]
tests/deal.II/wave-test-3/cmp/mips-sgi-irix6.5+MIPSpro7.4 [deleted file]
tests/fail/Makefile [new file with mode: 0644]
tests/fail/abf_approximation_01.cc [moved from tests/fe/abf_approximation_01.cc with 100% similarity]
tests/fail/abf_approximation_01/cmp/generic [moved from tests/fe/abf_approximation_01/cmp/generic with 100% similarity]
tests/fail/abf_approximation_01/rt.gpl [moved from tests/fe/abf_approximation_01/rt.gpl with 100% similarity]
tests/fail/project_abf_01.cc [moved from tests/deal.II/project_abf_01.cc with 95% similarity]
tests/fail/project_abf_02.cc [moved from tests/deal.II/project_abf_02.cc with 95% similarity]
tests/fail/project_abf_03.cc [moved from tests/deal.II/project_abf_03.cc with 95% similarity]
tests/fail/project_abf_04.cc [moved from tests/deal.II/project_abf_04.cc with 95% similarity]
tests/fail/project_abf_05.cc [moved from tests/deal.II/project_abf_05.cc with 95% similarity]
tests/fail/project_dgp_nonparametric_01.cc [moved from tests/deal.II/project_dgp_nonparametric_01.cc with 95% similarity]
tests/fail/project_dgp_nonparametric_02.cc [moved from tests/deal.II/project_dgp_nonparametric_02.cc with 95% similarity]
tests/fail/project_dgp_nonparametric_03.cc [moved from tests/deal.II/project_dgp_nonparametric_03.cc with 95% similarity]
tests/fail/project_dgp_nonparametric_04.cc [moved from tests/deal.II/project_dgp_nonparametric_04.cc with 95% similarity]
tests/fail/project_dgp_nonparametric_05.cc [moved from tests/deal.II/project_dgp_nonparametric_05.cc with 95% similarity]
tests/fail/project_rt_03.cc [moved from tests/deal.II/project_rt_03.cc with 96% similarity]
tests/fail/project_rt_03/cmp/generic [moved from tests/deal.II/project_rt_03/cmp/generic with 100% similarity]
tests/fail/rt_4.cc [moved from tests/fe/rt_4.cc with 100% similarity]
tests/fail/rt_4/cmp/generic [moved from tests/fe/rt_4/cmp/generic with 100% similarity]
tests/fail/rt_4/cmp/mips-sgi-irix6.5+MIPSpro7.4 [moved from tests/fe/rt_4/cmp/mips-sgi-irix6.5+MIPSpro7.4 with 100% similarity]
tests/fail/rt_4/cmp/x86_64-unknown-linux-gnu+gcc3.3 [moved from tests/fe/rt_4/cmp/x86_64-unknown-linux-gnu+gcc3.3 with 100% similarity]
tests/fail/rt_6.cc [moved from tests/fe/rt_6.cc with 100% similarity]
tests/fail/rt_6/cmp/generic [moved from tests/fe/rt_6/cmp/generic with 100% similarity]
tests/fail/rt_crash_01.cc [moved from tests/bits/rt_crash_01.cc with 98% similarity]
tests/fail/rt_crash_01/cmp/generic [moved from tests/bits/rt_crash_01/cmp/generic with 100% similarity]
tests/fail/rt_distorted_01.cc [moved from tests/fe/rt_distorted_01.cc with 100% similarity]
tests/fail/rt_distorted_01/cmp/generic [moved from tests/fe/rt_distorted_01/cmp/generic with 100% similarity]
tests/fail/rt_distorted_01/rt.gpl [moved from tests/fe/rt_distorted_01/rt.gpl with 100% similarity]
tests/fail/rt_distorted_02.cc [moved from tests/fe/rt_distorted_02.cc with 100% similarity]
tests/fail/rt_distorted_02/cmp/generic [moved from tests/fe/rt_distorted_02/cmp/generic with 100% similarity]
tests/fail/rt_distorted_02/rt.gpl [moved from tests/fe/rt_distorted_02/rt.gpl with 100% similarity]

index dff4a91d40da60ce442eac36de5e450e85d1f989..9114cf876508615f4a7bc5d71b6f91d1948c5661 100644 (file)
@@ -38,7 +38,6 @@ tests_x = block_matrices \
        intergrid_constraints \
        intergrid_map \
        matrices \
-       wave-test-3 \
        support_point_map \
        filtered_matrix \
        boundaries \
diff --git a/tests/deal.II/wave-test-3.cc b/tests/deal.II/wave-test-3.cc
deleted file mode 100644 (file)
index 35687b8..0000000
+++ /dev/null
@@ -1,7596 +0,0 @@
-//----------------------------  wave-test-3.cc  ---------------------------
-//    $Id$
-//    Version: $Name$ 
-//
-//    std::copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 by Wolfgang Bangerth
-//
-//    This file is subject to QPL and may not be  distributed
-//    without std::copyright and license information. Please refer
-//    to the file deal.II/doc/license.html for the  text  and
-//    further information on this license.
-//
-//----------------------------  wave-test-3.cc  ---------------------------
-
-//TODO:[WB] Figure out why postscript output changes output-precision.
-
-#include "../tests.h"
-#include <base/logstream.h>
-#include <grid/tria_boundary_lib.h>
-#include <numerics/time_dependent.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_tools.h>
-#include <dofs/dof_constraints.h>
-#include <lac/sparse_matrix.h>
-#include <lac/full_matrix.h>
-#include <base/parameter_handler.h>
-#include <base/exceptions.h>
-#include <base/quadrature_lib.h>
-#include <base/timer.h>
-
-#include <lac/vector.h>
-
-#include <fe/fe_q.h>
-#include <fstream>
-#include <string>
-#include <vector>
-#include <iostream>
-#include <list>
-#include <functional>
-
-using namespace std;
-
-std::ofstream logfile("wave-test-3/output");
-
-class UserMatrix;
-class SweepInfo;
-template <int dim> class SweepData;
-template <int dim> class WaveParameters;
-template <int dim> class TimeStep_Primal;
-template <int dim> class TimeStep_Dual;
-template <int dim> class DualFunctional;
-template <int dim> class EvaluationBase;
-template <int dim> class TimeStep_ErrorEstimation;
-template <int dim> class TimeStep_Postprocess;
-
-
-template <int dim>
-class TimeStepBase_Wave :  public TimeStepBase_Tria<dim>{
-  public:
-    TimeStepBase_Wave ();
-    TimeStepBase_Wave (const double                    time,
-                      typename TimeStepBase_Tria<dim>::Flags   flags,
-                      const WaveParameters<dim>      &parameters);
-    const TimeStep_Primal<dim> & get_timestep_primal () const;
-    const TimeStep_Dual<dim> &   get_timestep_dual () const;
-    const TimeStep_Postprocess<dim> &   get_timestep_postprocess () const;
-    std::string tmp_filename_base (const std::string &branch_signature) const;
-    void attach_sweep_info (SweepInfo &sweep_info);
-    void attach_sweep_data (SweepData<dim> &sweep_data);
-
-  protected:
-    const WaveParameters<dim> &parameters;
-    SweepInfo *sweep_info;
-    SweepData<dim> *sweep_data;
-};
-
-
-template <int dim>
-class TimeStep_Wave :  public virtual TimeStepBase_Wave<dim>
-{
-  public:
-    TimeStep_Wave (const std::string fe_name);
-    ~TimeStep_Wave();
-    virtual void wake_up (const unsigned int wakeup_level);
-    virtual void sleep (const unsigned int sleep_level);
-    virtual void end_sweep ();
-    unsigned int solve (const UserMatrix       &matrix,
-                       Vector<double>         &solution,
-                       const Vector<double>   &rhs) const;
-    virtual std::string branch_signature () const = 0;
-    DeclException0 (ExcIO);
-    DeclException0 (ExcCoarsestGridsDiffer);
-
-
-protected:
-    struct StatisticData 
-    {
-       StatisticData ();
-       StatisticData (const unsigned int        n_active_cells,
-                      const unsigned int        n_dofs,
-                      const unsigned int        n_solver_steps_helmholtz,
-                      const unsigned int        n_solver_steps_projection,
-                      const std::pair<double,double> energy);
-       static void write_descriptions (std::ostream &out);
-       void write (std::ostream &out) const;
-       unsigned int n_active_cells;
-       unsigned int n_dofs;
-       unsigned int n_solver_steps_helmholtz;
-       unsigned int n_solver_steps_projection;
-       std::pair<double,double> energy;
-    }; 
-
-    DoFHandler<dim>           *dof_handler;
-    const FiniteElement<dim> &fe;
-    const Quadrature<dim>    &quadrature;
-    const Quadrature<dim-1>  &quadrature_face;
-    ConstraintMatrix          constraints;
-    SparsityPattern           system_sparsity;
-    SparseMatrix<double>       mass_matrix, laplace_matrix;
-    Vector<double>             u, v;
-    StatisticData              statistic_data;
-    void create_matrices ();
-    void transfer_old_solutions (Vector<double> &old_u,
-                                Vector<double> &old_v) const;
-    void transfer_old_solutions (const typename DoFHandler<dim>::cell_iterator &old_cell,
-                                const typename DoFHandler<dim>::cell_iterator &new_cell,
-                                const Vector<double>  &old_grid_u,
-                                const Vector<double>  &old_grid_v,
-                                Vector<double>        &old_u,
-                                Vector<double>        &old_v) const;
-    std::pair<double,double> compute_energy ();
-    template <int anydim> friend class DualFunctional;
-    template <int anydim> friend class EvaluationBase;
-    template <int anydim> friend class TimeStep_ErrorEstimation;
-    template <int anydim> friend class TimeStep_Postprocess;
-};
-
-
-template <int dim>
-class TimeStep_Primal :  public TimeStep_Wave<dim> 
-{
-  public:
-    TimeStep_Primal (const std::string &primal_fe);
-    void do_initial_step ();
-    void do_timestep ();
-    virtual void solve_primal_problem ();    
-    virtual std::string branch_signature () const;
-    virtual void wake_up (const unsigned int wakeup_level);
-    virtual void end_sweep ()
-      {
-       TimeStep_Wave<dim>::end_sweep();
-      };
-    virtual void sleep (const unsigned int sleep_level)
-      {
-       TimeStep_Wave<dim>::sleep (sleep_level);
-      };
-    
-    
-  private:
-    void assemble_vectors (Vector<double> &right_hand_side1,
-                          Vector<double> &right_hand_side2);
-    void build_rhs (Vector<double> &right_hand_side1,
-                   Vector<double> &right_hand_side2);
-    void build_rhs (const typename DoFHandler<dim>::cell_iterator &old_cell,
-                   const typename DoFHandler<dim>::cell_iterator &new_cell,
-                   FEValues<dim>        &fe_values,
-                   Vector<double>       &right_hand_side1,
-                   Vector<double>       &right_hand_side2);
-    unsigned int
-    collect_from_children (const typename DoFHandler<dim>::cell_iterator &old_cell,
-                          FEValues<dim>  &fe_values,
-                          Vector<double>        &rhs1,
-                          Vector<double>        &rhs2) const;
-    unsigned int
-    distribute_to_children (const typename DoFHandler<dim>::cell_iterator &cell,
-                           FEValues<dim>  &fe_values,
-                           const Vector<double>  &old_dof_values_u,
-                           const Vector<double>  &old_dof_values_v,
-                           Vector<double>        &right_hand_side1,
-                           Vector<double>        &right_hand_side2);
-};
-
-
-template <int dim>
-class TimeStep_Dual :  public TimeStep_Wave<dim>
-{
-  public:
-    TimeStep_Dual (const std::string &dual_fe);
-    void do_initial_step ();
-    void do_timestep ();
-    virtual void solve_dual_problem ();    
-    virtual std::string branch_signature () const;
-    virtual void wake_up (const unsigned int wakeup_level);
-
-    virtual void end_sweep ()
-      {
-       TimeStep_Wave<dim>::end_sweep();
-      };
-    virtual void sleep (const unsigned int sleep_level)
-      {
-       TimeStep_Wave<dim>::sleep (sleep_level);
-      };
-    
-
-  private:
-    void assemble_vectors (Vector<double> &right_hand_side1,
-                          Vector<double> &right_hand_side2);
-    void build_rhs (Vector<double> &right_hand_side1,
-                   Vector<double> &right_hand_side2);
-    void build_rhs (const typename DoFHandler<dim>::cell_iterator &old_cell,
-                   const typename DoFHandler<dim>::cell_iterator &new_cell,
-                   FEValues<dim>        &fe_values,
-                   Vector<double>       &right_hand_side1,
-                   Vector<double>       &right_hand_side2);
-    unsigned int
-    collect_from_children (const typename DoFHandler<dim>::cell_iterator &old_cell,
-                          FEValues<dim>  &fe_values,
-                          Vector<double>        &rhs1,
-                          Vector<double>        &rhs2) const;
-    unsigned int
-    distribute_to_children (const typename DoFHandler<dim>::cell_iterator &cell,
-                           FEValues<dim>  &fe_values,
-                           const Vector<double>  &old_dof_values_u,
-                           const Vector<double>  &old_dof_values_v,
-                           Vector<double>        &right_hand_side1,
-                           Vector<double>        &right_hand_side2);
-};
-
-
-
-
-template <int dim>
-class TimeStep_ErrorEstimation :  public virtual TimeStepBase_Wave<dim>
-{
-  public:
-    TimeStep_ErrorEstimation ();
-    virtual void estimate_error ();
-    virtual void wake_up (const unsigned int wakeup_level);
-    virtual void sleep (const unsigned int sleep_level);
-    virtual void get_tria_refinement_criteria (Vector<float> &indicators) const;
-    void get_error_indicators (Vector<float> &indicators) const;
-    virtual std::string branch_signature () const = 0;
-    
-  protected:
-    struct StatisticData 
-    {
-       StatisticData ();
-       StatisticData (const double estimated_error);
-       static void write_descriptions (std::ostream &out);
-       void write (std::ostream &out) const;
-       double estimated_error;
-    };
-
-  public:
-    
-    struct ErrorOnCell {
-       double part[8];
-       ErrorOnCell ();
-       ErrorOnCell operator += (const ErrorOnCell &eoc);
-       double sum () const;
-    };
-
-
-    struct CellwiseError
-    {
-       CellwiseError (const unsigned int n_errors);
-       std::vector<ErrorOnCell>                    errors;
-       ErrorOnCell* next_free_slot;
-    };
-
-  protected:
-    
-    Vector<float> estimated_error_per_cell;
-    FullMatrix<double> embedding_matrix;
-    FullMatrix<double> interpolation_matrix;
-    FullMatrix<double> difference_matrix;
-    StatisticData      statistic_data;
-    void estimate_error_energy (const unsigned int which_variables);
-    void estimate_error_dual ();
-    void estimate_error_dual (const typename DoFHandler<dim>::cell_iterator &primal_cell,
-                             const typename DoFHandler<dim>::cell_iterator &dual_cell,
-                             const typename DoFHandler<dim>::cell_iterator &primal_cell_old,
-                             const typename DoFHandler<dim>::cell_iterator &dual_cell_old,
-                             CellwiseError                                 &cellwise_error,
-                             FEValues<dim>                                 &fe_values) const;
-    void compute_error_on_new_children (const typename DoFHandler<dim>::cell_iterator &primal_cell,
-                                       const typename DoFHandler<dim>::cell_iterator &dual_cell,
-                                       const Vector<double>  &local_u_old,
-                                       const Vector<double>  &local_v_old,
-                                       const Vector<double>  &local_u_bar_old,
-                                       const Vector<double>  &local_v_bar_old,
-                                       CellwiseError         &cellwise_error,
-                                       FEValues<dim>         &fe_values) const;
-    ErrorOnCell collect_error_from_children (const typename DoFHandler<dim>::cell_iterator &primal_cell_old,
-                                            const typename DoFHandler<dim>::cell_iterator &dual_cell_old,
-                                            const Vector<double>  &local_u,
-                                            const Vector<double>  &local_v,
-                                            const Vector<double>  &local_u_bar,
-                                            const Vector<double>  &local_v_bar,
-                                            const Vector<double>  &local_Ih_u_bar,
-                                            const Vector<double>  &local_Ih_v_bar,
-                                            const Vector<double>  &local_Ih_u_bar_old,
-                                            const Vector<double>  &local_Ih_v_bar_old,
-                                            FEValues<dim>  &fe_values) const;
-    ErrorOnCell error_formula (const typename DoFHandler<dim>::active_cell_iterator &cell,
-                              const Vector<double>  &local_u,
-                              const Vector<double>  &local_v,
-                              const Vector<double>  &local_u_bar,
-                              const Vector<double>  &local_v_bar,
-                              const Vector<double>  &local_u_old,
-                              const Vector<double>  &local_v_old,
-                              const Vector<double>  &local_u_bar_old,
-                              const Vector<double>  &local_v_bar_old,
-                              FEValues<dim>         &fe_values) const;
-    ErrorOnCell error_formula (const typename DoFHandler<dim>::active_cell_iterator &cell,
-                              const Vector<double>  &local_u,
-                              const Vector<double>  &local_v,
-                              const Vector<double>  &local_u_bar,
-                              const Vector<double>  &local_v_bar,
-                              const Vector<double>  &local_u_old,
-                              const Vector<double>  &local_v_old,
-                              const Vector<double>  &local_u_bar_old,
-                              const Vector<double>  &local_v_bar_old,
-                              const Vector<double>  &local_difference_u_bar,
-                              const Vector<double>  &local_difference_v_bar,
-                              const Vector<double>  &local_difference_u_bar_old,
-                              const Vector<double>  &local_difference_v_bar_old,
-                              FEValues<dim>         &fe_values) const;
-    void make_interpolation_matrices ();
-};
-
-
-
-
-template <int dim>
-class TimeStep_Postprocess : public TimeStep_ErrorEstimation<dim> 
-{
-  public:
-    virtual void postprocess_timestep ();
-    virtual void wake_up (const unsigned int wakeup_level);
-    virtual void sleep (const unsigned int sleep_level);
-    virtual void end_sweep ();
-    std::string branch_signature () const;
-
-  protected:
-    struct StatisticData 
-    {
-       static void write_descriptions (std::ostream &out,
-                                       const WaveParameters<dim> &parameters);
-       void write (std::ostream &out) const;
-       std::vector<double> evaluation_results;
-    };
-
-    StatisticData statistic_data;
-
-  private:
-    void interpolate_dual_solution (Vector<double> &interpolated_u_bar,
-                                   Vector<double> &interpolated_v_bar) const;
-};
-
-
-template <int dim> class WaveParameters;
-
-
-template <int dim>
-class TimeStep :  public TimeStep_Primal<dim>, public TimeStep_Dual<dim>, public TimeStep_Postprocess<dim>
-{
-  public:
-    TimeStep (const double               time,
-             const WaveParameters<dim> &parameters);
-
-    virtual void wake_up (const unsigned int wakeup_level);
-    virtual void sleep (const unsigned int sleep_level);
-    virtual void end_sweep ();
-    static void write_statistics_descriptions (std::ostream                   &out,
-                                              const WaveParameters<dim> &parameters);
-    void write_statistics (std::ostream &out) const;
-};
-
-template <int dim> class TimeStep_Primal;
-template <int dim> class TimeStep_Dual;
-
-
-template <int dim>
-class DualFunctional {
-  public:
-    DualFunctional (const bool use_primal_problem            = false,
-                   const bool use_primal_problem_at_endtime = false);
-    virtual ~DualFunctional () {}
-    virtual void compute_endtime_vectors (Vector<double> &final_u_bar,
-                                         Vector<double> &final_v_bar);
-    virtual void compute_functionals (Vector<double> &j1,
-                                     Vector<double> &j2);
-    bool use_primal_solutions () const;
-    bool use_primal_solutions_at_endtime () const;
-    virtual void reset (const TimeStep_Primal<dim> &primal_problem);
-    virtual void reset (const TimeStep_Dual<dim> &dual_problem);
-    DeclException0 (ExcPrimalProblemNotRequested);
-    
-  protected:
-    const bool use_primal_problem;
-    const bool use_primal_problem_at_endtime;
-
-    const Triangulation<dim> *tria;
-    const Boundary<dim>      *boundary;
-    const DoFHandler<dim>    *dof;
-    const FiniteElement<dim> *fe;
-    const Quadrature<dim>    *quadrature;
-    const Quadrature<dim-1>  *quadrature_face;
-    const Function<dim>      *density, *stiffness;
-
-    const DoFHandler<dim>    *primal_dof;
-    const FiniteElement<dim> *primal_fe;
-    const Quadrature<dim>    *primal_quadrature;
-    const Quadrature<dim-1>  *primal_quadrature_face;
-
-    const Vector<double>     *u;
-    const Vector<double>     *v;
-
-    double       time;
-    double       time_step;
-    unsigned int step_no;
-};
-
-
-template <int dim>
-class EndEnergy : public DualFunctional<dim> {
-  public:
-    EndEnergy (const bool use_primal_problem_at_any_time = false);
-
-  protected:
-    enum PartOfDomain { low_atmosphere, high_atmosphere };
-    void compute_vectors (const PartOfDomain pod,
-                         Vector<double> &final_u_bar,
-                         Vector<double> &final_v_bar) const;
-};
-
-
-template <int dim>
-class IntegratedValueAtOrigin : public EndEnergy<dim> {
-  public:
-    virtual void compute_functionals (Vector<double> &j1,
-                                     Vector<double> &j2);
-    DeclException0 (ExcVertexNotFound);
-};
-
-
-template <int dim>
-class SeismicSignal : public DualFunctional<dim> {
-  public:
-    virtual void compute_functionals (Vector<double> &j1,
-                                     Vector<double> &j2);
-};
-
-
-template <int dim>
-class EarthSurface : public DualFunctional<dim> {
-  public:
-    virtual void compute_functionals (Vector<double> &j1,
-                                     Vector<double> &j2);
-};
-
-
-template <int dim>
-class SplitSignal : public DualFunctional<dim> {
-  public:
-    virtual ~SplitSignal () {}    
-    virtual void compute_functionals (Vector<double> &j1,
-                                     Vector<double> &j2);
-};
-
-
-template <int dim>
-class SplitLine : public DualFunctional<dim> {
-  public:
-    virtual ~SplitLine () {}
-    void compute_endtime_vectors (Vector<double> &final_u_bar,
-                                 Vector<double> &final_v_bar);
-};
-
-
-template <int dim>
-class OneBranch1d : public DualFunctional<dim> {
-  public:
-    virtual ~OneBranch1d () {}
-    virtual void compute_functionals (Vector<double> &j1,
-                                     Vector<double> &j2);
-};
-
-
-template <int dim>
-class SecondCrossing : public DualFunctional<dim> {
-  public:
-    virtual ~SecondCrossing () {}
-    virtual void compute_functionals (Vector<double> &j1,
-                                     Vector<double> &j2);
-};
-
-
-template <int dim>
-class HuyghensWave : public DualFunctional<dim> {
-  public:
-    virtual void compute_functionals (Vector<double> &j1,
-                                     Vector<double> &j2);
-};
-
-
-
-
-template <int dim>
-class EvaluationBase {
-  public:
-                                    /**
-                                     * Constructor. Set all pointers in this
-                                     * class to invalid values.
-                                     */
-    EvaluationBase ();
-
-                                    /**
-                                     * Destructor. Does nothing but needs
-                                     * to be declared to make it virtual.
-                                     */
-    virtual ~EvaluationBase () {};
-
-                                    /**
-                                     * Reset pointers to triangulation, dof
-                                     * handler, quadrature formulae etc.
-                                     * to the right values for the time level
-                                     * to be evaluated next. This function
-                                     * needs to be called each time an
-                                     * evaluation is to take place.
-                                     */
-    virtual void reset_timelevel (const TimeStep_Primal<dim> &target);
-
-                                    /**
-                                     * Template for the evaluation functions.
-                                     * Return one value for the output file.
-                                     */
-    virtual double evaluate () = 0;
-
-                                    /**
-                                     * Reset the evaluator for the
-                                     * next sweep. This may be useful
-                                     * if you want to sum up the contributions
-                                     * of each time step and print them
-                                     * at the end; you then have to
-                                     * reset the sum at the start of
-                                     * the next sweep, which is done through
-                                     * this function.
-                                     *
-                                     * Default is: do nothing.
-                                     */
-    virtual void reset ();
-
-                                    /**
-                                     * Print the result at the end of
-                                     * each sweep. This function may
-                                     * print lines of data with four
-                                     * spaces at the beginning of each
-                                     * line.
-                                     *
-                                     * Default is: do nothing.
-                                     */
-    virtual void print_final_result (std::ostream &out);
-
-                                    /**
-                                     * Return the final result as a number
-                                     * for the result file.
-                                     *
-                                     * Default is: do nothing.
-                                     */
-    virtual double get_final_result ();
-
-                                    /**
-                                     * Return a brief std::string of description
-                                     * which will go into the first line
-                                     * of the "results" file.
-                                     */
-    virtual std::string description () const = 0;
-
-                                    /**
-                                     * Exception.
-                                     */
-    DeclException0 (ExcIO);
-    
-  protected:
-                                    /**
-                                     * Pointers to the solution vectors
-                                     * of the primal problem.
-                                     */
-    const Vector<double>     *u, *v;
-
-                                    /**
-                                     * Underlying triangulation.
-                                     */
-    const Triangulation<dim> *tria;
-
-                                    /**
-                                     * Boundary object.
-                                     */
-    const Boundary<dim>      *boundary;
-
-                                    /**
-                                     * Degrees of freedom of the primal
-                                     * problem.
-                                     */
-    const DoFHandler<dim>    *dof;
-
-                                    /**
-                                     * Primal finite element.
-                                     */
-    const FiniteElement<dim> *fe;
-
-                                    /**
-                                     * Quadrature rule appropriate for
-                                     * the primal finite element.
-                                     */
-    const Quadrature<dim>    *quadrature;
-
-                                    /**
-                                     * Same for quadrature on faces.
-                                     */
-    const Quadrature<dim-1>  *quadrature_face;
-
-                                    /**
-                                     * Density and stiffness coefficients
-                                     * for the modell presently under
-                                     * investigation.
-                                     */
-    const Function<dim>      *density, *stiffness;
-
-                                    /**
-                                     * Continuous time of the time step
-                                     * we are evaluating at present.
-                                     */
-    double                    time;
-
-                                    /**
-                                     * Length of the last time step, i.e. in
-                                     * the backward direction in time. If
-                                     * this is the first timestep, the this
-                                     * value is set to zero.
-                                     */
-    double                    time_step;
-
-                                    /**
-                                     * Number of that time step.
-                                     */
-    unsigned int              step_no;
-
-                                    /**
-                                     * Base of the filenames under which
-                                     * we shall store our results.
-                                     */
-    std::string                    base_file_name;
-};
-
-
-/**
- * This class is a common base class to the following two. It provides
- * for some infrastructure for evaluations computing the energy in part
- * of the domain and computing the in/outflow of energy.
- *
- * Central is the #compute_energy# function, which takes an argument
- * describing which part of the domain to take and returns the energy
- * therein.
- */
-template <int dim>
-class EvaluateEnergyContent : public EvaluationBase<dim> {
-  public:
-                                    /**
-                                     * Constructor.
-                                     */
-    EvaluateEnergyContent ();
-
-                                    /**
-                                     * Reset the accumulated energy to zero.
-                                     */
-    virtual void reset ();
-
-  protected:
-                                    /**
-                                     * Enum denoting for which of the two
-                                     * subdomains the computation is to be
-                                     * performed.
-                                     */
-    enum PartOfDomain { low_atmosphere, high_atmosphere };
-
-                                    /**
-                                     * Compute the energy for the given
-                                     * subdomain.
-                                     */
-    double compute_energy (const PartOfDomain pod) const;
-      
-  protected:
-                                    /**
-                                     * Energy in the domain in the previous
-                                     * time step. This information is needed
-                                     * to compute the accumulated in/outflux
-                                     * of energy from the domain.
-                                     */
-    double old_energy;
-
-                                    /**
-                                     * Accumulated in/outflux into/from the
-                                     * domain integrated over time.
-                                     */
-    double integrated_outflux;
-};
-
-
-/**
- * Evaluate the value of $u$ at the origin, i.e. $u(0,0)$.
- *
- * As final result, the time integrated value at the origin is computed.
- * The origin shall be a vertex in the finest grid.
- */
-template <int dim>
-class EvaluateIntegratedValueAtOrigin : public EvaluationBase<dim> {
-  public:
-    EvaluateIntegratedValueAtOrigin ():
-                   integrated_value (0) {};
-    
-    virtual double evaluate ();
-    virtual void print_final_result (std::ostream &out);
-    virtual double get_final_result ();
-    virtual std::string description () const;
-
-                                    /**
-                                     * Reset the average value to zero.
-                                     */
-    virtual void reset ();
-
-                                    /**
-                                     * Exception.
-                                     */
-    DeclException0 (ExcVertexNotFound);
-    
-  private:
-    double integrated_value;
-};
-
-
-/**
- * Integrate the value of $u_h$ at the top boundary over $x$ and $t$ using a
- * highly oscillatory weight.
- */
-template <int dim>
-class EvaluateSeismicSignal : public EvaluationBase<dim> {
-  public:
-    EvaluateSeismicSignal () :
-                   result (0) {};
-
-    static inline double weight (const Point<dim> &p, const double time) {
-      const double pi = 3.14159265359;
-      return sin(3*pi*p(0))*sin(5*pi*time/2);
-    };
-
-
-virtual double evaluate ();
-    virtual void print_final_result (std::ostream &out);
-    virtual double get_final_result ();
-    virtual std::string description () const;
-
-                                    /**
-                                     * Reset the value to zero.
-                                     */
-    virtual void reset ();
-
-  private:
-    double result;
-};
-
-
-/**
- * Integrate the value of $u_h$ at the top line $x=1.5, y=0..1/16$ at $t=1.6..1.8$.
- */
-template <int dim>
-class EvaluateSplitSignal : public EvaluationBase<dim> {
-  public:
-    EvaluateSplitSignal () :
-                   result (0) {};
-
-
-virtual double evaluate ();
-    virtual void print_final_result (std::ostream &out);
-    virtual double get_final_result ();
-    virtual std::string description () const;
-
-                                    /**
-                                     * Reset the value to zero.
-                                     */
-    virtual void reset ();
-
-  private:
-    double result;
-};
-
-
-template <int dim>
-class EvaluateOneBranch1d : public EvaluationBase<dim> {
-  public:
-    EvaluateOneBranch1d () :
-                   result (0) {};
-
-
-virtual double evaluate ();
-    virtual void print_final_result (std::ostream &out);
-    virtual double get_final_result ();
-    virtual std::string description () const;
-
-                                    /**
-                                     * Reset the value to zero.
-                                     */
-    virtual void reset ();
-
-  private:
-    double result;
-};
-
-
-template <int dim>
-class EvaluateSecondCrossing1d : public EvaluationBase<dim> {
-  public:
-    EvaluateSecondCrossing1d () :
-                   result (0) {};
-
-
-virtual double evaluate ();
-    virtual void print_final_result (std::ostream &out);
-    virtual double get_final_result ();
-    virtual std::string description () const;
-
-                                    /**
-                                     * Reset the value to zero.
-                                     */
-    virtual void reset ();
-
-  private:
-    double result;
-};
-
-
-template <int dim>
-class EvaluateHuyghensWave : public EvaluationBase<dim> {
-  public:
-    EvaluateHuyghensWave () :
-                   integrated_value (0),
-                   weighted_value (0) {};
-
-
-virtual double evaluate ();
-    virtual void print_final_result (std::ostream &out);
-    virtual double get_final_result ();
-    virtual std::string description () const;
-
-                                    /**
-                                     * Reset the value to zero.
-                                     */
-    virtual void reset ();
-
-  private:
-    double integrated_value, weighted_value;
-};
-
-#include <numerics/data_out_stack.h>
-
-/**
- * This class has some data members which are shared between the different
- * time steps within one sweep. Unlike the #SweepInfo# class, the members
- * do not collect information for later output, but provide services to
- * the time steps.
- */
-template <int dim>
-class SweepData 
-{
-  public:
-    SweepData (const bool use_data_out_stack);
-    ~SweepData ();
-
-    DataOutStack<dim> *data_out_stack;
-};
-
-
-
-
-/**
- * This class provides some data members which collect information on the
- * different time steps of one sweep.
- */
-class SweepInfo 
-{
-  public:
-    struct Data 
-    {
-                                        /**
-                                         * Constructor. Set all fields to
-                                         * their initial values.
-                                         */
-       Data ();
-       
-       double accumulated_error;
-
-       unsigned int cells;
-       unsigned int primal_dofs;
-       unsigned int dual_dofs;
-    };
-
-
-struct Timers 
-    {
-       Timer grid_generation;
-       Timer primal_problem;
-       Timer dual_problem;
-       Timer error_estimation;
-       Timer postprocessing;
-    };
-
-
-Data & get_data ();
-
-    Timers & get_timers ();
-
-
-template <int dim>
-    void write_summary (const std::list<EvaluationBase<dim>*> & eval_list,
-                       std::ostream &out) const;
-    
-  private:
-    Data data;
-    Timers timers;
-};
-
-
-
-
-/**
- * Enum denoting the different possibilities to precondition a solver.
- */
-enum Preconditioning {
-      no_preconditioning,
-      jacobi,
-      sor,
-      ssor
-};
-
-
-/**
- * Wrapper for the #SparseMatrix<double># class which handles the preconditioning.
- */
-class UserMatrix :  public SparseMatrix<double> {
-  public:
-                                    /**
-                                     * Constructor. The parameter specifies
-                                     * which way to precondition.
-                                     */
-    UserMatrix (Preconditioning p) :
-                   SparseMatrix<double> (),
-                   preconditioning (p) {};
-
-                                    /**
-                                     * Constructor. The second parameter
-                                     * specifies which way to precondition.
-                                     * The first parameter is simply passed
-                                     * down to the base class.
-                                     */
-    UserMatrix (const SparsityPattern &sparsity,
-               Preconditioning       p) :
-                   SparseMatrix<double>(sparsity),
-                   preconditioning (p) {};
-
-                                    /**
-                                     * Precondition a vector #src# and write
-                                     * the result into #dst#. This function
-                                     * does not much more than delegating to
-                                     * the respective #precondition_*#
-                                     * function of the base class, according
-                                     * to the preconditioning method specified
-                                     * to the constructor of this class.
-                                     */
-    void precondition (Vector<double> &dst, const Vector<double> &src) const;
-
-  private:
-                                    /**
-                                     * Variable denoting the preconditioning
-                                     * method.
-                                     */
-    Preconditioning preconditioning;
-};
-
-
-
-std::string int_to_string (const unsigned int i, const unsigned int digits);
-
-
-template <typename number>
-inline number sqr (const number a) {
-  return a*a;
-}
-
-
-/**
- * This is a helper class which has a collection of static elements and returns
- * the right finite element as a pointer when the name of the element is given.
- * It is also able to return the correct quadrature formula for domain and
- * boundary integrals for the specified finite element.
- */
-template <int dim>
-struct FEHelper {
-    static const FE_Q<dim>           fe_linear;
-    static const FE_Q<dim>           fe_quadratic_sub;
-#if 2 < 3    
-    static const FE_Q<dim>           fe_cubic_sub;
-    static const FE_Q<dim>           fe_quartic_sub;
-#endif
-
-    static const QGauss2<dim>        q_gauss_2;
-    static const QGauss3<dim>        q_gauss_3;
-    static const QGauss4<dim>        q_gauss_4;
-    static const QGauss5<dim>        q_gauss_5;
-    static const QGauss6<dim>        q_gauss_6;
-    static const QGauss7<dim>        q_gauss_7;
-
-    static const QGauss2<dim-1>      q_gauss_2_face;
-    static const QGauss3<dim-1>      q_gauss_3_face;
-    static const QGauss4<dim-1>      q_gauss_4_face;
-    static const QGauss5<dim-1>      q_gauss_5_face;
-    static const QGauss6<dim-1>      q_gauss_6_face;
-    static const QGauss7<dim-1>      q_gauss_7_face;
-
-                                    /**
-                                     * Return a reference to the finite
-                                     * element specified by the name
-                                     * #name#.
-                                     */
-    static const FiniteElement<dim> & get_fe (const std::string &name);
-
-                                    /**
-                                     * Return the correct domain quadrature
-                                     * formula for the finite element denoted
-                                     * by the name #name#.
-                                     */
-    static const Quadrature<dim>    & get_quadrature (const std::string &name);
-
-                                    /**
-                                     * Return the correct boundary quadrature
-                                     * formula for the finite element denoted
-                                     * by the name #name#.
-                                     */
-    static const Quadrature<dim-1>  & get_quadrature_face (const std::string &name);
-};
-
-template<int dim> const FE_Q<dim> FEHelper<dim>::fe_linear(1);
-template<int dim> const FE_Q<dim> FEHelper<dim>::fe_quadratic_sub(2);
-#if 2 < 3    
-template<int dim> const FE_Q<dim> FEHelper<dim>::fe_cubic_sub(3);
-template<int dim> const FE_Q<dim> FEHelper<dim>::fe_quartic_sub(4);
-#endif
-
-template <int dim> class DualFunctional;
-template <int dim> class EvaluationBase;
-
-
-/**
- * This is a class holding all the input parameters to the program. It is more
- * or less a loose collection of data and the only purpose of this class is
- * to assemble all the parameters and the functions evaluating them from the
- * input file at one place without the need to scatter this functionality
- * all over the program.
- *
- *
- * \section{Description of the input parameters}
- *
- * Note that this std::list may not be up-tp-date at present.
- *
- * \subsection{Subsection #Grid#}
- * \begin{itemize}
- * @item #Coarse mesh#: Names a grid to be taken as a coarse grid. The following
- *    names are allowed:
- *    \begin{itemize}
- *    @item #uniform channel#: The domain is $[0,3]\times[0,1]$, triangulated
- *        by three cells. Left and right boundary are of Dirichlet type, top
- *        and bottom boundary are of homogeneous Neumann type.
- *    @item #split channel bottom#: As above, but the lower half is refined once
- *        more than the top half.
- *    @item #split channel {left | right}#: Same as #uniform channel#, but with
- *        cells on the left or right, according to the last word, more refined
- *        than on the other side.
- *    @item #square#: $[-1,1]\times[-1,1]$.
- *    @item #seismic square#: same as #square#, but with Neumann boundary
- *        at top.
- *    @item #temperature-square#: Square with size $400,000,000$ (we use the
- *        cgs system, so this amounts to 4000 km).
- *    @item #temperature-testcase#: As above, but with a sequence of
- *        continuously growing cells set atop to avoid the implementation of
- *        absorbing boundary conditions. The left boundary is of Neumann
- *        type (mirror boundary).
- *    @item #random#: Unit square, but randomly refined to test for correctness
- *        of the time stepping scheme.
- *    @item #earth#: Circle with radius 6371 (measured in km).
- *    @begin{itemize}
- * @item #Initial refinement#: States how often the grid named by the above
- *    parameter shall be globally refined to form the coarse mesh.
- * @item #Maximum refinement#: std::maximum refinement level a cell may attain.
- *    Cells with such a refinement level are flagged as others are, but they
- *    are not refined any more; it is therefore not necessary to lower the
- *    fraction of cells to be refined in order to avoid the refinement of a
- *    similar number of cells with a lower level number.
- *
- *    The default to this value is zero, meaning no limit.
- * @item #Refinement fraction#: Upon refinement, those cells are refined which
- *    together make up for a given fraction of the total error. This parameter
- *    gives that fraction. Default is #0.95#.
- * @item #Coarsening fraction#: Similar as above, gives the fraction of the
- *    total error for which the cells shall be coarsened. Default is #0.03#.
- * @item #Top cell number deviation#: Denotes a fraction by which the number of
- *    cells on a time level may be higher than the number of cells on the
- *    previous time level. This and the next two parameters help to avoid
- *    to much differing grids on the time levels and try to smooth the numbers
- *    of cells as a function of time. The default value is #0.1#.
- * @item #Bottom cell number deviation#: Denotes the fraction by which the
- *    number of cells on a time level may be lower than on the previous time
- *    level. Default is #0.03#.
- * @item #Cell number correction steps#: Usually, the goal denoted by the two
- *    parameters above cannot be reached directly because the number of cells
- *    is modified by grid regularization etc. The goal can therefore only be
- *    reached by an iterative process. This parameter tells how many iterations
- *    of this process shall be done. Default is #2#.
- * @begin{itemize}
- *
- * \subsection{Subsection #Equation data#}
- * \begin{itemize}
- * @item #Coefficient#: Names for the different coefficients for the Laplace
- *    like part of the wave operator. Allowed values are:
- *    \begin{itemize}
- *    @item #unit#: Constant one.
- *    @item #kink#: One for $y<\frac 13$, 4 otherwise.
- *    @item #gradient#: $1+8*y^2$.
- *    @item #tube#: $0.2$ for $|x|<0.2$, one otherwise.
- *    @item #temperature VAL81#: Coefficient computed from the temperature
- *        field given by Varnazza, Avrett, Loeser 1981.
- *    @item #temperature kolmogorov#: Broadened temperature spectrum.
- *    @item #temperature undisturbed#: Quiet atmosphere.
- *    @item #temperature monochromatic 20s#: Temperature as computed with
- *        shock waves with $T=20s$.
- *    @item #temperature monochromatic 40s#: Temperature as computed with
- *        shock waves with $T=40s$.
- *    @begin{itemize}
- * @item #Initial u#: Names for the initial value for the amplitude. Allowed
- *    names are:
- *    \begin{itemize}
- *    @item #zero#: $u_0=0$.
- *    @item #eigenmode#: $u_0=sin(2\pi x)sin(2\pi y)$.
- *    @item #bump#: $u_0=(1-\frac{\vec x^2}{a^2})e^{-\frac{\vec x^2}{a^2}}$
- *        for $|\vec x|<a$ and $u_0=0$ otherwise. $a=0.1$
- *    @item #center-kink#: $u_0=r/a$ for $r<a$, $u_0=2-r/a$ for $a<r<2a$,
- *        $u=0$ otherwise. $a=0.1$, $r=|\vec x|$.
- *    @item #shifted bump#: Same as #bump# but the center of the bump is
- *        located at $x=0.5, y=0$.
- *    @item #tube#: $u_0=1$ for $|x|<0.2, zero otherwise.
- *    @begin{itemize}
- * @item #Initial v#: Names for the initial value for the amplitude. Allowed
- *    names are the same as above.
- * @item #Boundary#: Names for the boundary functions. The boundary values
- *    for $u$ and $v$ are always set together. The boundary values apply only
- *    to those boundary parts which are of Dirichlet type. Allowed names are:
- *    \begin{itemize}
- *    @item #zero#: Homogeneous boundary values.
- *    @item #wave from left#: For $t<T=0.4$ we set $u=sin^2(\pi \frac tT)$ at
- *        the boundary where $x=0$.
- *    @item #wave from left center#: For $t<T=0.4$ and $0.4<y<0.6$ we set
- *        $u=sin^2(\pi \frac tT) (y-0.4) (0.6-y)$ at
- *        the boundary where $x=0$.
- *    @item #wave from left bottom#: For $t<T=60s$ and $r=|\vec x|<a=5000000cm=50km$
- *        let $u=(cos(\pi/2 r/a) sin(\pi t/T))^2$.
- *        This boundary condition is only suited to the temperature domains. 
- *    @begin{itemize}
- * @begin{itemize}
- *
- * \subsection{Subsection #Time stepping#}
- * \begin{itemize}
- * @item #Primal method#: Time stepping method for the primal problem.
- *     Allowed values are:
- *     \begin{itemize}
- *     @item #theta#: Use the $\theta$ scheme with the $\theta$-parameter
- *         as given below.
- *     @item #fractional step#: Use the fractional step $\theta$ scheme.
- *     @begin{itemize}
- * @item #Dual method#: Time stepping method for the dual problem. Allowed
- *     values are the same as above. Note that the fractional step scheme
- *     is not implemented for right hand sides not equal to zero, i.e. the
- *     fractional step scheme will fail of the error functional evaluates
- *     to non-zero at times not equal to the end time.
- * @item #Theta#: $\theta$ parameter for the $\theta$ time stepping scheme.
- *     $\theta=1/2$ denotes the Crank-Nicolson scheme.
- * @item #Time step#: Selfdocumenting.
- * @item #End time#: Selfdocumenting.
- * @begin{itemize}
- */
-template <int dim>
-class WaveParameters
-{
-  public:
-                                    /**
-                                     * Constructor.
-                                     */
-    WaveParameters ();
-
-                                    /**
-                                     * Destructor.
-                                     */
-    ~WaveParameters ();
-
-                                    /**
-                                     * Declare all the parameters to the
-                                     * given parameter handler.
-                                     */
-    void declare_parameters (ParameterHandler &prm);
-
-                                    /**
-                                     * Extract the parameters values provided
-                                     * by the input file and/or the default
-                                     * values from the parameter handler.
-                                     */
-    void parse_parameters (ParameterHandler &prm);
-
-                                    /**
-                                     * Delete the contents of this class and
-                                     * set up a clean state.
-                                     */
-    void delete_parameters ();
-
-                                    /**
-                                     * Enum holding a std::list of possible coarse
-                                     * mesh choices.
-                                     */
-    enum InitialMesh {
-         uniform_channel,
-         split_channel_bottom,
-         split_channel_right,
-         split_channel_left,
-         square,
-         ring,
-         seismic_square,
-         earth,
-         line,
-         split_line
-    };
-
-                                    /**
-                                     * Enum holding a std::list of possible
-                                     * boundary condition choices.
-                                     */
-    enum BoundaryConditions {
-         wave_from_left,
-         fast_wave_from_left,
-         wave_from_left_center,
-         wave_from_left_bottom,
-         zero
-    };
-
-                                    /**
-                                     * Enum denoting possible strategies
-                                     * for output of meshes and solutions.
-                                     * This enum tells us, at which sweeps
-                                     * data is to be written.
-                                     */
-    enum WriteStrategy {
-         never,
-         all_sweeps,
-         last_sweep_only
-    };
-
-                                    /**
-                                     * Boundary values. Continuous function
-                                     * of space and time.
-                                     */
-    Function<dim>      *boundary_values_u;
-
-                                    /**
-                                     * Same for the velocity variable v.
-                                     */
-    Function<dim>      *boundary_values_v;
-
-                                    /**
-                                     * Initial values for u.
-                                     */
-    Function<dim>      *initial_u;
-
-                                    /**
-                                     * Same for the velocity variable v.
-                                     */
-    Function<dim>      *initial_v;
-
-                                    /**
-                                     * Object describing the boundary. By
-                                     * default the domain is polygonal made
-                                     * from the vertices of the coarsest
-                                     * triangulation. However, some of the
-                                     * example geometries set in
-                                     * #make_coarse_grid# may set this variable
-                                     * to another address. The object pointed
-                                     * will be deleted at the end of the
-                                     * lifetime of this object; when setting
-                                     * this variable to another object, you
-                                     * may want to delete the object pointed
-                                     * to previously.
-                                     */
-    const Boundary<dim>*boundary;
-
-                                    /**
-                                     * Function denoting the coefficient
-                                     * within the generalized laplacian
-                                     * operator.
-                                     */
-    Function<dim>      *density;
-
-                                    /**
-                                     * Same for the stiffness parameter.
-                                     */
-    Function<dim>      *stiffness;
-
-                                    /**
-                                     * Store whether the density is a function
-                                     * that is constant in space (not
-                                     * necessarily in time as well, but at
-                                     * each fixed time).
-                                     */
-    bool density_constant;
-
-                                    /**
-                                     * Same thing for the stiffness parameter.
-                                     */
-    bool stiffness_constant;
-    
-                                    /**
-                                     * Pointer to an object denoting the
-                                     * error functional.
-                                     */
-    DualFunctional<dim>*dual_functional;
-    
-                                    /**
-                                     * Level of initial refinement, i.e. the
-                                     * std::minimum level cells on all grids at
-                                     * all times need to have.
-                                     */
-    unsigned int        initial_refinement;
-
-                                    /**
-                                     * std::maximum refinement level a cell may
-                                     * have. This one defaults to zero,
-                                     * meaning no limit.
-                                     */
-    unsigned int        maximum_refinement;
-
-                                    /**
-                                     * Define structure of initial mesh:
-                                     * created by regular refinement of
-                                     * the coarsest mesh (uniform) or
-                                     * refine one half once more than
-                                     * the other (split) or some other
-                                     */
-    Triangulation<dim>      *coarse_grid;
-    
-                                    /**
-                                     * Pair of numbers denoting the fraction
-                                     * of the total error for which the cells
-                                     * are to be refined (first) and
-                                     * coarsened (second).
-                                     */
-    std::pair<double,double>      refinement_fraction;
-
-                                    /**
-                                     * Fraction by which the number of cells
-                                     * on a time level may differ from the
-                                     * number on the previous time level
-                                     * (first: top deviation, second: bottom
-                                     * deviation).
-                                     */
-    std::pair<double,double>      cell_number_corridor;
-
-                                    /**
-                                     * Number of iterations to be performed
-                                     * to adjust the number of cells on a
-                                     * time level to those on the previous
-                                     * one.
-                                     */
-    unsigned int             cell_number_correction_steps;
-
-                                    /**
-                                     * Shall we renumber the degrees of
-                                     * freedom according to the Cuthill-McKee
-                                     * algorithm or not.
-                                     */
-    bool                     renumber_dofs;
-
-                                    /**
-                                     * Compare error indicators globally or
-                                     * refine each time step separately from
-                                     * the others.
-                                     */
-    bool                     compare_indicators_globally;
-    
-                                    /**
-                                     * Parameters for the time discretization
-                                     * of the two equations using the
-                                     * theta scheme.
-                                     */
-    double              theta;
-
-                                    /**
-                                     * Time step size.
-                                     */
-    double              time_step;
-    
-                                    /**
-                                     * Time up to which we want to compute.
-                                     */
-    double              end_time;
-
-                                    /**
-                                     * Mode of preconditioning.
-                                     */
-    Preconditioning     preconditioning;
-
-                                    /**
-                                     * Use extrapolated values of the old
-                                     * solutions as starting values for
-                                     * the solver on the new timestep.
-                                     */
-    bool                extrapolate_old_solutions;
-    
-                                    /**
-                                     * Directory to which we want the output
-                                     * written.
-                                     */
-    std::string              output_directory;
-
-                                    /**
-                                     * Directory to which we want the temporary
-                                     * file to be written.
-                                     */
-    std::string              tmp_directory;
-    
-                                    /**
-                                     * Format in which the results on the
-                                     * meshes is to be written to files.
-                                     */
-    std::string              output_format;
-
-                                    /**
-                                     * Denotes in which sweeps the solution is
-                                     * to be written.
-                                     */
-    WriteStrategy       write_solution_strategy;
-
-                                    /**
-                                     * Denote the interval between the steps
-                                     * which are to be written.
-                                     */
-    unsigned int        write_steps_interval;
-
-                                    /**
-                                     * Specify whether error information is
-                                     * to be written as cell data or node
-                                     * data.
-                                     */
-    bool                write_error_as_cell_data;
-
-                                    /**
-                                     * Flag determining whether we shall
-                                     * write out the data of the different
-                                     * time steps stacked together for a
-                                     * whole sweep, and into one file for
-                                     * the whole sweep.
-                                     */
-    bool                write_stacked_data;
-
-                                    /**
-                                     * Same as #write_steps_interval#, but
-                                     * for stacked output.
-                                     */
-    unsigned int        write_stacked_interval;
-    
-                                    /**
-                                     * Write statistics for the error
-                                     * distribution in each sweep.
-                                     */
-    bool                produce_error_statistics;
-
-                                    /**
-                                     * Number of histogram intervals for
-                                     * the error statistics.
-                                     */
-    unsigned int        error_statistic_intervals;
-
-                                    /**
-                                     * How to break the intervals: linear
-                                     * or logarithmic.
-                                     */
-    std::string              error_statistics_scaling;
-    
-                                    /**
-                                     * Names of the finite element classes to
-                                     * be used for the primal and dual problems.
-                                     */
-    std::string              primal_fe, dual_fe;
-    
-                                    /**
-                                     * Strategy for mesh refinement.
-                                     */
-    enum { energy_estimator, dual_estimator } refinement_strategy;
-
-                                    /**
-                                     * Try to adjust the mesh to the error
-                                     * functional as well as to the dual
-                                     * solution. For the dual solution, an
-                                     * energy estimator is used.
-                                     */
-    bool adapt_mesh_to_dual_solution;
-
-                                    /**
-                                     * When adapting the mesh for the dual
-                                     * problem as well, we have to weigh
-                                     * the error indicator for the dual
-                                     * problem with that for the primal
-                                     * one. This is the factor.
-                                     */
-    double primal_to_dual_weight;
-
-                                    /**
-                                     * Number of sweeps at the beginning
-                                     * where the energy estimator is to
-                                     * be used rather than the dual
-                                     * estimator.
-                                     */
-    unsigned int initial_energy_estimator_sweeps;
-
-                                    /**
-                                     * How many adaptive cycles of solving
-                                     * the whole problem shall be made.
-                                     */
-    unsigned int        number_of_sweeps;
-
-                                    /**
-                                     * std::list of operations which shall be
-                                     * done on each time step after finishing
-                                     * a sweep.
-                                     */
-    std::list<EvaluationBase<dim>*> eval_list;
-
-                                    /**
-                                     * Symbolic name of the boundary conditions
-                                     * (additionally to the boundary functions
-                                     * themselves), which may be used by some
-                                     * of the evaluations and other functionals
-                                     * in the program.
-                                     */
-    BoundaryConditions boundary_conditions;
-
-                                    /**
-                                     * Exception.
-                                     */
-    DeclException1 (ExcParameterNotInList,
-                   std::string,
-                   << "The given parameter <" << arg1 << "> is not "
-                   << "recognized to be a valid one.");
-    
-  private:
-
-                                    /**
-                                     * Undefined std::copy constructor.
-                                     */
-    WaveParameters (const WaveParameters &);
-
-                                    /**
-                                     * Undefined std::copy operator.
-                                     */
-    WaveParameters & operator = (const WaveParameters &);
-
-
-/**
-                                     * std::list of names for the initial values.
-                                     * Make this a member of the templated
-                                     * class since the supported initial
-                                     * values could be different from
-                                     * dimension to dimension.
-                                     */
-    static const std::string initial_value_names;
-
-                                    /**
-                                     * Names of coefficient functions. The
-                                     * same applies as for
-                                     * #initial_value_names#.
-                                     */
-    static const std::string coefficient_names;
-
-                                    /**
-                                     * Names of boundary value functions. The
-                                     * same applies as for
-                                     * #initial_value_names#.
-                                     */
-    static const std::string boundary_function_names;
-
-                                    /**
-                                     * Names of error functionals. The
-                                     * same applies as for
-                                     * #initial_value_names#.
-                                     */
-    static const std::string dual_functional_names;
-
-
-/**
-                                     * Set the initial function pointers
-                                     * depending on the given names.
-                                     */
-    void set_initial_functions (const std::string &u_name,
-                               const std::string &v_name);
-
-                                    /**
-                                     * Set the coefficient functions.
-                                     */
-    void set_coefficient_functions (const std::string &name);
-
-                                    /**
-                                     * Set the boundary values.
-                                     */
-    void set_boundary_functions (const std::string &name);
-
-                                    /**
-                                     * Make a std::list of evaluations to be
-                                     * performed after each sweep.
-                                     */
-    void make_eval_list (const std::string &names);
-
-                                    /**
-                                     * Set the dual functional after
-                                     * which the dual solution will be
-                                     * computed.
-                                     */
-    void set_dual_functional (const std::string &name);
-
-                                    /**
-                                     * Create the coarse grid for
-                                     * this run.
-                                     */
-    void make_coarse_grid (const std::string &name);
-};
-
-
-
-template <int dim> class WaveParameters;
-class SweepInfo;
-
-
-/**
- * Top-level class of the timestepping mechanism. This class manages
- * the execution and solution of primal and dual problem, of computing
- * error estimates and doing the refinement of grids.
- *
- * @author Wolfgang Bangerth, 1999
- */
-template <int dim>
-class TimestepManager : public TimeDependent {
-  public:
-                                    /**
-                                     * Constructor.
-                                     */
-    TimestepManager (const WaveParameters<dim> &parameters);
-
-                                    /**
-                                     * Run a complete sweep, consisting
-                                     * of the solution of the primal problem,
-                                     * the solution of the dual problem if
-                                     * requested, computation of error
-                                     * quantities and refinement.
-                                     */
-    void run_sweep (const unsigned int sweep_no);
-
-                                    /**
-                                     * Exception
-                                     */
-    DeclException0 (ExcIO);
-    
-  private:
-                                    /**
-                                     * Reference to the global parameters
-                                     * object.
-                                     */
-    const WaveParameters<dim> &parameters;
-
-                                    /**
-                                     * Refine the grids, or, better, find
-                                     * out which cells need to be refined.
-                                     * Refinement is done by a following
-                                     * sweep.
-                                     */
-    void refine_grids ();
-
-                                    /**
-                                     * Write some statistics to a file.
-                                     */
-    void write_statistics (const SweepInfo &sweep_info) const;
-
-                                    /**
-                                     * Write the data stacked together
-                                     * from all the time steps into
-                                     * one single file.
-                                     */
-    void write_stacked_data (DataOutStack<dim> &data_out_stack) const;
-};
-
-
-/**
- * Top-level class providing the set up of a simulation. The
- * class provides an interface suitable to the #MultipleParameterLoop#
- * class to do several simulations in a row, stores global simulation
- * parameters, and so on.
- *
- * @author Wolfgang Bangerth, 1998, 1999
- */
-template <int dim>
-class WaveProblem :  public MultipleParameterLoop::UserClass {
-  public:
-
-                                    /**
-                                     * Constructor.
-                                     */
-    WaveProblem ();
-
-                                    /**
-                                     * Destructor.
-                                     */
-    virtual ~WaveProblem ();
-
-                                    /**
-                                     * Put this object into a clean state.
-                                     * This function is called at the
-                                     * beginning of each loop by the
-                                     * #MultipleParameterHandler#.
-                                     */
-    virtual void create_new (const unsigned int run_no);
-
-                                    /**
-                                     * Make the std::list of parameters known
-                                     * to the parameter handler. This
-                                     * function only delegates its work
-                                     * to the #parameters# sub-object.
-                                     */
-    virtual void declare_parameters (ParameterHandler &prm);
-
-                                    /**
-                                     * Parse the std::list of parameters given
-                                     * by the parameter handler. This
-                                     * function only delegates its work
-                                     * to the #parameters# sub-object.
-                                     */
-    virtual void parse_parameters (ParameterHandler &prm);
-
-                                    /**
-                                     * Run a complete simulation.
-                                     */
-    virtual void run (ParameterHandler &prm);
-
-  private:
-                                    /**
-                                     * Object holding the parameters of
-                                     * the present simulation.
-                                     */
-    WaveParameters<dim> parameters;
-};
-
-
-
-
-#include <lac/vector.h>
-#include <lac/sparse_matrix.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_constraints.h>
-#include <fe/fe.h>
-#include <fe/fe_values.h>
-#include <base/quadrature.h>
-#include <base/function.h>
-
-#include <cmath>
-
-
-/*------------------------ DualFunctional --------------------------------*/
-
-template <int dim>
-DualFunctional<dim>::DualFunctional (const bool use_primal_problem,
-                                    const bool use_primal_problem_at_endtime) :
-               use_primal_problem (use_primal_problem),
-               use_primal_problem_at_endtime (use_primal_problem_at_endtime),
-               tria (0),
-               boundary (0),
-               dof (0),
-               fe(0),
-               quadrature(0),
-               quadrature_face(0),
-               density(0),
-               stiffness(0),
-               primal_dof(0),
-               primal_fe(0),
-               primal_quadrature(0),
-               primal_quadrature_face(0),
-               u(0),
-               v(0),
-               time(0),
-               time_step(0),
-               step_no(0)
-{}
-
-
-template <int dim>
-void DualFunctional<dim>::compute_functionals (Vector<double> &j1,
-                                              Vector<double> &j2) {
-  j1.reinit (dof->n_dofs());
-  j2.reinit (dof->n_dofs());
-}
-
-
-template <int dim>
-void DualFunctional<dim>::compute_endtime_vectors (Vector<double> &final_u_bar,
-                                                  Vector<double> &final_v_bar) {
-  final_u_bar.reinit (dof->n_dofs());
-  final_v_bar.reinit (dof->n_dofs());
-}
-
-
-template <int dim>
-bool DualFunctional<dim>::use_primal_solutions () const {
-  return use_primal_problem;
-}
-
-
-template <int dim>
-bool DualFunctional<dim>::use_primal_solutions_at_endtime () const {
-  return use_primal_problem_at_endtime;
-}
-
-
-template <int dim>
-void DualFunctional<dim>::reset (const TimeStep_Primal<dim> &primal_problem) {
-  Assert (use_primal_problem ||
-         (use_primal_problem_at_endtime &&
-          (primal_problem.parameters.end_time==primal_problem.time)),
-         ExcPrimalProblemNotRequested());
-
-  primal_dof             = primal_problem.dof_handler;
-  primal_fe              = &primal_problem.fe;
-  primal_quadrature      = &primal_problem.quadrature;
-  primal_quadrature_face = &primal_problem.quadrature_face;
-
-  u = &primal_problem.u;
-  v = &primal_problem.v;
-}
-
-
-template <int dim>
-void DualFunctional<dim>::reset (const TimeStep_Dual<dim> &dual_problem) {
-  tria            = dual_problem.tria;
-  boundary        = dual_problem.parameters.boundary;
-  dof             = dual_problem.dof_handler;
-  fe              = &dual_problem.fe;
-  quadrature      = &dual_problem.quadrature;
-  quadrature_face = &dual_problem.quadrature_face;
-  density         = dual_problem.parameters.density;
-  stiffness       = dual_problem.parameters.stiffness;
-  time            = dual_problem.time;
-  time_step       = (dual_problem.next_timestep == 0 ?
-                    0 :
-                    dual_problem.get_forward_timestep());
-  step_no         = dual_problem.timestep_no;
-}
-
-
-/* ----------------------- EndEnergy ------------------------------*/
-
-
-template <int dim>
-EndEnergy<dim>::EndEnergy (const bool use_primal_problem) :
-               DualFunctional<dim> (use_primal_problem, true) {}
-
-
-template <int dim>
-void EndEnergy<dim>::compute_vectors (const PartOfDomain pod,
-                                     Vector<double> &final_u_bar,
-                                     Vector<double> &final_v_bar) const {
-  const double y_offset = 300000000;
-  const unsigned int n_q_points = this->quadrature->n_quadrature_points;
-  const unsigned int dofs_per_cell = this->fe->dofs_per_cell;
-  
-  final_u_bar.reinit (this->dof->n_dofs());
-  final_v_bar.reinit (this->dof->n_dofs());
-
-  typename DoFHandler<dim>::active_cell_iterator cell, primal_cell, endc;
-  cell = this->dof->begin_active ();
-  endc = this->dof->end ();
-  primal_cell = this->primal_dof->begin_active();
-
-  FEValues<dim> fe_values (*this->fe, *this->quadrature,
-                          UpdateFlags(update_values         |
-                                      update_gradients      |
-                                      update_JxW_values     |
-                                      update_q_points));
-  FEValues<dim> fe_values_primal (*this->primal_fe, *this->quadrature,
-                                 UpdateFlags(update_values | update_gradients));
-  
-  FullMatrix<double>  cell_matrix (dofs_per_cell, dofs_per_cell);
-
-  std::vector<Tensor<1,dim> > local_u_grad (n_q_points);
-  std::vector<double>         local_v (n_q_points);
-  
-  std::vector<double> density_values(this->quadrature->n_quadrature_points);
-  std::vector<double> stiffness_values(this->quadrature->n_quadrature_points);
-
-  std::vector<unsigned int> cell_dof_indices (dofs_per_cell);
-
-  for (; cell!=endc; ++cell, ++primal_cell)
-    {
-      switch (pod)
-       {
-         case low_atmosphere:
-               if (cell->center()(1) >= y_offset)
-                 continue;
-               break;
-         case high_atmosphere:
-               if (cell->center()(1) < y_offset)
-                 continue;
-               break;
-       };
-
-
-      fe_values.reinit (cell);
-      fe_values_primal.reinit (primal_cell);
-      fe_values_primal.get_function_values (*this->v, local_v);
-      fe_values_primal.get_function_grads (*this->u, local_u_grad);
-
-      this->density->value_list (fe_values.get_quadrature_points(),
-                          density_values);
-      this->stiffness->value_list (fe_values.get_quadrature_points(),
-                            stiffness_values);
-      
-      std::vector<double> local_functional1 (dofs_per_cell, 0);
-      std::vector<double> local_functional2 (dofs_per_cell, 0);
-      for (unsigned int shape_func=0; shape_func<dofs_per_cell; ++shape_func)
-       for (unsigned int point=0; point<n_q_points; ++point) 
-         {
-           local_functional1[shape_func] += local_u_grad[point] *
-                                            fe_values.shape_grad(shape_func,point) *
-                                            stiffness_values[point] *
-                                            fe_values.JxW(point);
-           local_functional2[shape_func] += local_v[point] *
-                                            fe_values.shape_value(shape_func,point) *
-                                            density_values[point] *
-                                            fe_values.JxW(point);
-         };
-
-      cell->get_dof_indices (cell_dof_indices);
-      for (unsigned int shape_func=0; shape_func<dofs_per_cell; ++shape_func)
-       {
-         final_u_bar(cell_dof_indices[shape_func]) += local_functional1[shape_func];
-         final_v_bar(cell_dof_indices[shape_func]) += local_functional2[shape_func];
-       };
-    };
-}
-
-
-/*------------------------ IntegrateValueAtOrigin --------------------------------*/
-
-
-template <int dim>
-void IntegratedValueAtOrigin<dim>::compute_functionals (Vector<double> &j1,
-                                                       Vector<double> &j2) {
-  j1.reinit (this->dof->n_dofs());
-  j2.reinit (this->dof->n_dofs());
-
-  typename DoFHandler<dim>::active_cell_iterator cell = this->dof->begin_active(),
-                                       endc = this->dof->end();
-
-  Point<dim> origin;
-
-  bool origin_found = false;
-  for (; (cell!=endc) && !origin_found; ++cell) 
-    {
-      for (unsigned int vertex=0; vertex<GeometryInfo<dim>::vertices_per_cell; ++vertex)
-       if (cell->vertex(vertex) == origin) 
-         {
-           j1(cell->vertex_dof_index(vertex,0)) = 1;
-           origin_found = true;
-         };
-    };
-
-  Assert (origin_found, ExcVertexNotFound());
-}
-
-
-/*------------------------ SeismicSignal --------------------------------*/
-
-
-template <int dim>
-void SeismicSignal<dim>::compute_functionals (Vector<double> &j1,
-                                             Vector<double> &j2) {
-  const double y_offset = 1.0;
-  const unsigned int n_q_points = this->quadrature_face->n_quadrature_points;
-  const unsigned int dofs_per_cell = this->fe->dofs_per_cell;
-  
-  j1.reinit (this->dof->n_dofs());
-  j2.reinit (this->dof->n_dofs());
-
-  typename DoFHandler<dim>::active_cell_iterator cell, endc;
-  typename DoFHandler<dim>::face_iterator        face;
-  cell = this->dof->begin_active();
-  endc = this->dof->end();
-
-  std::vector<unsigned int> cell_dof_indices (dofs_per_cell);
-
-  FEFaceValues<dim> fe_face_values (*this->fe, *this->quadrature_face,
-                                   UpdateFlags(update_values         |
-                                               update_JxW_values     |
-                                               update_q_points));
-  
-  for (; cell!=endc; ++cell)
-    for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
-        ++face_no)
-      if (face=cell->face(face_no),
-         (face->vertex(0)(1) == y_offset) &&
-         (face->vertex(1)(1) == y_offset))
-       {
-         fe_face_values.reinit (cell, face_no);
-         const std::vector<Point<dim> > &q_points (fe_face_values.get_quadrature_points());
-
-         std::vector<double> local_integral (dofs_per_cell, 0);
-         for (unsigned int shape_func=0; shape_func<dofs_per_cell; ++shape_func)
-           for (unsigned int point=0; point<n_q_points; ++point)
-             local_integral[shape_func] += fe_face_values.shape_value(shape_func,point) *
-                                           (EvaluateSeismicSignal<dim>
-                                            ::weight(q_points[point], this->time)) *
-                                           fe_face_values.JxW(point);
-
-         cell->get_dof_indices (cell_dof_indices);
-         for (unsigned int shape_func=0; shape_func<dofs_per_cell; ++shape_func)
-           j1(cell_dof_indices[shape_func]) += local_integral[shape_func];
-       };
-}
-
-
-/*------------------------ EarthSurface --------------------------------*/
-
-
-template <int dim>
-void EarthSurface<dim>::compute_functionals (Vector<double> &j1,
-                                            Vector<double> &j2) {
-  const unsigned int face_dofs = this->fe->dofs_per_face;
-  
-  j1.reinit (this->dof->n_dofs());
-  j2.reinit (this->dof->n_dofs());
-
-  typename DoFHandler<dim>::active_cell_iterator cell, endc;
-  typename DoFHandler<dim>::face_iterator        face;
-  cell = this->dof->begin_active();
-  endc = this->dof->end();
-
-  std::vector<unsigned int> face_dof_indices (face_dofs);
-
-  for (; cell!=endc; ++cell)
-    for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
-        ++face_no)
-      if (face=cell->face(face_no),
-         face->at_boundary())
-       {
-         const double x = face->center()(0),
-                      y = face->center()(1);
-
-         if (!  (((x>0) && (fabs(y) < 500)) ||
-                 ((x>0) && (y<0) && (fabs(x+y)<500))))
-           continue;
-
-         const double h = face->measure ();
-         
-         face->get_dof_indices (face_dof_indices);
-         for (unsigned int shape_func=0; shape_func<face_dofs; ++shape_func)
-           j1(face_dof_indices[shape_func]) = h;
-       };
-}
-
-
-/*------------------------ SplitSignal --------------------------------*/
-
-
-template <int dim>
-void SplitSignal<dim>::compute_functionals (Vector<double> &j1,
-                                           Vector<double> &j2) {
-  const unsigned int dofs_per_cell = this->fe->dofs_per_cell;
-  const unsigned int n_q_points = this->quadrature_face->n_quadrature_points;
-  
-  j1.reinit (this->dof->n_dofs());
-  j2.reinit (this->dof->n_dofs());
-
-  if ((this->time<=1.6) || (this->time>1.8))
-    return;
-  
-  typename DoFHandler<dim>::active_cell_iterator cell, endc;
-  typename DoFHandler<dim>::face_iterator        face;
-  cell = this->dof->begin_active();
-  endc = this->dof->end();
-
-  std::vector<unsigned int> dof_indices (this->fe->dofs_per_cell);
-  FEFaceValues<dim> fe_face_values (*this->fe, *this->quadrature_face, UpdateFlags(update_values | update_JxW_values));
-  
-  for (; cell!=endc; ++cell)
-    for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
-        ++face_no)
-      if (cell->face(face_no)->center()(0) == 1.5)
-       {
-         face=cell->face(face_no);
-         bool wrong_face = face->center()(1) > 0.0625;
-         if (!wrong_face)
-           for (unsigned int v=0; v<GeometryInfo<dim>::vertices_per_face; ++v)
-             if (face->vertex(v)(0) != 1.5)
-               {
-                 wrong_face=true;
-                 break;
-               };
-         if (wrong_face)
-           continue;
-
-         fe_face_values.reinit (cell, face_no);
-         cell->get_dof_indices (dof_indices);
-
-         for (unsigned int i=0; i<dofs_per_cell; ++i)
-           {
-             double sum=0;
-             for (unsigned int j=0; j<n_q_points; ++j)
-               sum += fe_face_values.shape_value(i,j)*fe_face_values.JxW(j);
-
-             j1(dof_indices[i]) += sum * this->time_step / 2;
-           };
-       };
-}
-
-
-/* ------------------------------ Split line 1d case ----------------------------- */
-
-template <int dim>
-void SplitLine<dim>::compute_endtime_vectors (Vector<double> &,
-                                             Vector<double> &) {
-  Assert (false, ExcNotImplemented ());
-}
-
-
-
-
-/*------------------------ OneBranch1d --------------------------------*/
-
-
-template <int dim>
-void OneBranch1d<dim>::compute_functionals (Vector<double> &j1,
-                                           Vector<double> &j2) {
-  const unsigned int dofs_per_cell = this->fe->dofs_per_cell;
-  const unsigned int n_q_points = this->quadrature->n_quadrature_points;
-  
-  j1.reinit (this->dof->n_dofs());
-  j2.reinit (this->dof->n_dofs());
-  
-  if ((this->time<=2.5-this->time_step) || (this->time>2.5))
-    return;
-
-  typename DoFHandler<dim>::active_cell_iterator cell, endc;
-  cell = this->dof->begin_active();
-  endc = this->dof->end();
-
-  std::vector<unsigned int> dof_indices (this->fe->dofs_per_cell);
-  FEValues<dim> fe_values (*this->fe, *this->quadrature, UpdateFlags(update_values | update_JxW_values));
-  
-  for (; cell!=endc; ++cell)
-    if ((cell->center()(0) > -0.6) &&
-       (cell->center()(0) < -0.4))
-      {
-       fe_values.reinit (cell);
-       cell->get_dof_indices (dof_indices);
-       
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         {
-           double sum=0;
-           for (unsigned int j=0; j<n_q_points; ++j)
-             sum += fe_values.shape_value(i,j)
-                    *fe_values.JxW(j);
-           
-           j1(dof_indices[i]) += sum;
-         };
-      };
-}
-
-
-/*------------------------ SecondCrossing --------------------------------*/
-
-
-template <int dim>
-void SecondCrossing<dim>::compute_functionals (Vector<double> &j1,
-                                              Vector<double> &j2) {
-  const unsigned int dofs_per_cell = this->fe->dofs_per_cell;
-  const unsigned int n_q_points = this->quadrature->n_quadrature_points;
-  
-  j1.reinit (this->dof->n_dofs());
-  j2.reinit (this->dof->n_dofs());
-  
-  if ((this->time<=2.4-this->time_step) || (this->time>2.4))
-    return;
-
-  typename DoFHandler<dim>::active_cell_iterator cell, endc;
-  cell = this->dof->begin_active();
-  endc = this->dof->end();
-
-  std::vector<unsigned int> dof_indices (this->fe->dofs_per_cell);
-  FEValues<dim> fe_values (*this->fe, *this->quadrature, UpdateFlags(update_values | update_JxW_values));
-  
-  for (; cell!=endc; ++cell)
-    if ((cell->center()(0) > -0.03) &&
-       (cell->center()(0) < 0.03))
-      {
-       fe_values.reinit (cell);
-       cell->get_dof_indices (dof_indices);
-       
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         {
-           double sum=0;
-           for (unsigned int j=0; j<n_q_points; ++j)
-             sum += fe_values.shape_value(i,j)
-                    *fe_values.JxW(j);
-           
-           j1(dof_indices[i]) += sum / this->time_step;
-         };
-      };
-}
-
-
-/*------------------------ HuyghensWave --------------------------------*/
-
-
-template <int dim>
-void HuyghensWave<dim>::compute_functionals (Vector<double> &j1,
-                                            Vector<double> &j2) {
-  j1.reinit (this->dof->n_dofs());
-  j2.reinit (this->dof->n_dofs());
-  
-  if ((this->time < 0.5) || (this->time > 0.69)) 
-    return;
-  
-  Point<dim> p;
-  p(0) = 0.75;
-  const Point<dim> evaluation_point (p);
-
-  const typename DoFHandler<dim>::cell_iterator endc = this->dof->end(3);
-  bool point_found = false;
-  for (typename DoFHandler<dim>::cell_iterator cell=this->dof->begin(3);
-       (cell!=endc) && !point_found; ++cell)
-    for (unsigned int vertex=0; vertex<GeometryInfo<dim>::vertices_per_cell; ++vertex) 
-      if (cell->vertex(vertex) == evaluation_point)
-       {
-         typename DoFHandler<dim>::cell_iterator terminal_cell = cell;
-         while (terminal_cell->has_children())
-           terminal_cell = terminal_cell->child(vertex);
-         
-         j1(cell->vertex_dof_index(vertex,0)) = this->time*this->time_step;
-         point_found = true;
-
-         break;
-       };
-  
-  AssertThrow (point_found, ExcInternalError());
-}
-
-
-
-template class DualFunctional<2>;
-template class EndEnergy<2>;
-template class IntegratedValueAtOrigin<2>;
-template class SeismicSignal<2>;
-template class EarthSurface<2>;
-template class SplitSignal<2>;
-template class SplitLine<2>;
-template class OneBranch1d<2>;
-template class SecondCrossing<2>;
-template class HuyghensWave<2>;
-
-
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_constraints.h>
-#include <base/geometry_info.h>
-#include <fe/fe.h>
-#include <fe/fe_values.h>
-#include <base/quadrature.h>
-#include <base/function.h>
-#include <lac/vector.h>
-#include <lac/sparse_matrix.h>
-
-#include <cmath>
-#include <fstream>
-
-
-/*--------------------------- EvaluationBase --------------------------*/
-
-template <int dim>
-EvaluationBase<dim>::EvaluationBase () :
-               u (0),
-               v (0),
-               tria (0),
-               boundary (0),
-               dof (0),
-               fe (0),
-               quadrature (0),
-               quadrature_face (0),
-               density (0),
-               stiffness (0),
-               time (0),
-               time_step (0),
-               step_no (0)
-{}
-
-
-template <int dim>
-void EvaluationBase<dim>::reset_timelevel (const TimeStep_Primal<dim> &target) {
-  u               = &target.u;
-  v               = &target.v;
-  tria            = target.tria;
-  boundary        = target.parameters.boundary;
-  dof             = target.dof_handler;
-  fe              = &target.fe;
-  quadrature      = &target.quadrature;
-  quadrature_face = &target.quadrature_face;
-  density         = target.parameters.density;
-  stiffness       = target.parameters.stiffness;
-  time            = target.time;
-  time_step       = (target.timestep_no == 0 ?
-                    0 :
-                    target.get_backward_timestep());
-  step_no         = target.timestep_no;
-
-  base_file_name  = target.parameters.output_directory +
-                   "sweep"+int_to_string(target.sweep_no, 2) + "/evaluation/" +
-                   int_to_string(step_no,4);
-}
-
-
-template <int dim>
-void EvaluationBase<dim>::reset () {}
-
-
-template <int dim>
-void EvaluationBase<dim>::print_final_result (std::ostream &) {}
-
-
-template <int dim>
-double EvaluationBase<dim>::get_final_result () {
-  return 0;
-}
-
-
-/*--------------------------- EvaluateEnergyContent ----------------------*/
-
-template <int dim>
-EvaluateEnergyContent<dim>::EvaluateEnergyContent () :
-               old_energy (0),
-               integrated_outflux (0) {}
-
-
-template <int dim>
-void EvaluateEnergyContent<dim>::reset () {
-  old_energy         = 0;
-  integrated_outflux = 0;
-}
-
-
-template <int dim>
-double EvaluateEnergyContent<dim>::compute_energy (const PartOfDomain pod) const {
-  const double y_offset = 300000000;
-
-  typename DoFHandler<dim>::active_cell_iterator cell, endc;
-  cell = this->dof->begin_active ();
-  endc = this->dof->end ();
-
-  FEValues<dim> fe_values (*this->fe, *this->quadrature,
-                          UpdateFlags(update_values         |
-                                      update_gradients      |
-                                      update_JxW_values     |
-                                      update_q_points));
-  FullMatrix<double>  cell_matrix (this->fe->dofs_per_cell, this->fe->dofs_per_cell);
-  Vector<double>   local_u (this->fe->dofs_per_cell);
-  Vector<double>   local_v (this->fe->dofs_per_cell);
-  
-  std::vector<double> density_values(this->quadrature->n_quadrature_points);
-  std::vector<double> stiffness_values(this->quadrature->n_quadrature_points);
-
-  double total_energy = 0;
-  
-  for (; cell!=endc; ++cell)
-    {
-      switch (pod)
-       {
-         case low_atmosphere:
-               if (cell->center()(1) >= y_offset)
-                 continue;
-               break;
-         case high_atmosphere:
-               if (cell->center()(1) < y_offset)
-                 continue;
-               break;
-       };
-
-
-      fe_values.reinit (cell);
-      cell->get_dof_values (*this->u, local_u);
-      cell->get_dof_values (*this->v, local_v);
-
-      cell_matrix = 0;
-      this->density->value_list (fe_values.get_quadrature_points(),
-                          density_values);
-      for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-       for (unsigned int i=0; i<this->fe->dofs_per_cell; ++i) 
-         for (unsigned int j=0; j<this->fe->dofs_per_cell; ++j)
-           cell_matrix(i,j) += (fe_values.shape_value(i,point) *
-                                fe_values.shape_value(j,point)) *
-                               fe_values.JxW(point) *
-                               density_values[point];
-
-      total_energy += 1./2. * cell_matrix.matrix_norm_square (local_v);
-
-      cell_matrix = 0;
-      this->stiffness->value_list (fe_values.get_quadrature_points(),
-                            stiffness_values);
-      for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-       for (unsigned int i=0; i<this->fe->dofs_per_cell; ++i) 
-         for (unsigned int j=0; j<this->fe->dofs_per_cell; ++j)
-           cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                                fe_values.shape_grad(j,point)) *
-                               fe_values.JxW(point) *
-                               stiffness_values[point];
-      total_energy += 1./2. * cell_matrix.matrix_norm_square (local_u);
-    };
-
-  return total_energy;
-}
-
-
-/* ---------------------------- EvaluateIntegratedValueAtOrigin ------------------- */
-
-
-template <int dim>
-void EvaluateIntegratedValueAtOrigin<dim>::print_final_result (std::ostream &out) {
-  out << "    Integrated value of u at origin: "
-      << integrated_value << std::endl;
-}
-
-
-template <int dim>
-double EvaluateIntegratedValueAtOrigin<dim>::get_final_result () {
-  return integrated_value;
-}
-
-
-template <int dim>
-std::string EvaluateIntegratedValueAtOrigin<dim>::description () const {
-  return "integrated value at origin";
-}
-
-
-template <int dim>
-void EvaluateIntegratedValueAtOrigin<dim>::reset () {
-  integrated_value = 0;
-}
-
-
-template <int dim>
-double EvaluateIntegratedValueAtOrigin<dim>::evaluate () {
-  typename DoFHandler<dim>::active_cell_iterator cell = this->dof->begin_active(),
-                                       endc = this->dof->end();
-
-  double     value_at_origin = 0;
-  Point<dim> origin;
-
-  bool origin_found = false;
-  for (; (cell!=endc) && !origin_found; ++cell) 
-    {
-      for (unsigned int vertex=0; vertex<GeometryInfo<dim>::vertices_per_cell; ++vertex)
-       if (cell->vertex(vertex) == origin) 
-         {
-           value_at_origin = (*this->u)(cell->vertex_dof_index(vertex,0));
-           origin_found = true;
-         };
-    };
-
-  Assert (origin_found, ExcVertexNotFound());
-
-  if (time > 0)
-    integrated_value += value_at_origin * this->time_step;
-      
-  return value_at_origin;
-}
-
-
-/*------------------------- EvaluateSeismicSignal --------------------------*/
-
-
-template <int dim>
-void EvaluateSeismicSignal<dim>::print_final_result (std::ostream &out) {
-  out << "    Integrated seismic signal: " << result << std::endl;
-}
-
-
-template <int dim>
-double EvaluateSeismicSignal<dim>::get_final_result () {
-  return result;
-}
-
-
-template <int dim>
-std::string EvaluateSeismicSignal<dim>::description () const {
-  return "Integrated seismic signal at top";
-}
-
-
-template <int dim>
-void EvaluateSeismicSignal<dim>::reset () {
-  result = 0;
-}
-
-
-template <int dim>
-double EvaluateSeismicSignal<dim>::evaluate () {
-  const unsigned int n_q_points = this->quadrature_face->n_quadrature_points;
-
-  std::ofstream out((this->base_file_name + ".seismic").c_str());
-  AssertThrow (out, typename EvaluationBase<dim>::ExcIO());
-  
-  typename DoFHandler<dim>::active_cell_iterator cell = this->dof->begin_active(),
-                                       endc = this->dof->end();
-  double u_integrated=0;
-  FEFaceValues<dim> face_values (*this->fe, *this->quadrature_face,
-                                UpdateFlags(update_values         |
-                                            update_JxW_values     |
-                                            update_q_points));
-  std::vector<double>    face_u (this->fe->dofs_per_face);
-  
-  for (; cell!=endc; ++cell)
-    for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-      if (cell->face(face)->center()(1) == 1.0)
-       {
-         face_values.reinit (cell, face);
-         face_values.get_function_values (*this->u, face_u);
-         const std::vector<Point<dim> > &q_points   (face_values.get_quadrature_points());
-         
-         double local_integral = 0;
-         for (unsigned int point=0; point<n_q_points; ++point)
-           local_integral += face_u[point] *
-                             weight (q_points[point], this->time) *
-                             face_values.JxW(point);
-         u_integrated += local_integral;
-
-         out << this->time
-             << ' '
-             << cell->face(face)->vertex(0)(0)
-             << "  "
-             << (*this->u)(cell->face(face)->vertex_dof_index(0,0))
-             << std::endl
-             << this->time
-             << ' '
-             << cell->face(face)->vertex(1)(0)
-             << "  "
-             << (*this->u)(cell->face(face)->vertex_dof_index(1,0))
-             << std::endl
-             << std::endl;
-       };
-  AssertThrow (out, typename EvaluationBase<dim>::ExcIO());
-  out.close ();
-  
-  if (time!=0)
-    result += u_integrated*this->time_step;
-  
-  return u_integrated;
-}
-
-
-/*------------------------- EvaluateSplitSignal --------------------------*/
-
-
-template <int dim>
-void EvaluateSplitSignal<dim>::print_final_result (std::ostream &out) {
-  out << "    Integrated split signal: " << result << std::endl;
-}
-
-
-template <int dim>
-double EvaluateSplitSignal<dim>::get_final_result () {
-  return result;
-}
-
-
-template <int dim>
-std::string EvaluateSplitSignal<dim>::description () const {
-  return "Integrated split signal (exact: (2+pi)/(16-pi)=0.010229)";
-}
-
-
-template <int dim>
-void EvaluateSplitSignal<dim>::reset () {
-  result = 0;
-}
-
-
-template <int dim>
-double EvaluateSplitSignal<dim>::evaluate () {
-  if ((this->time<=1.6) || (this->time>1.8))
-    return 0;
-
-  const unsigned int n_q_points = this->quadrature_face->n_quadrature_points;
-  typename DoFHandler<dim>::active_cell_iterator cell = this->dof->begin_active(),
-                                       endc = this->dof->end();
-  double u_integrated=0;
-  FEFaceValues<dim> face_values (*this->fe, *this->quadrature_face, UpdateFlags(update_values | update_JxW_values));
-  std::vector<double>    face_u (this->fe->dofs_per_face);
-  
-  for (; cell!=endc; ++cell)
-    for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell; ++face_no)
-      if (cell->face(face_no)->center()(0) == 1.5)
-       {
-         typename DoFHandler<dim>::face_iterator face=cell->face(face_no);
-         bool wrong_face = face->center()(1) > 0.0625;
-         if (!wrong_face)
-           for (unsigned int v=0; v<GeometryInfo<dim>::vertices_per_face; ++v)
-             if (face->vertex(v)(0) != 1.5)
-               {
-                 wrong_face=true;
-                 break;
-               };
-         if (wrong_face)
-           continue;
-
-         face_values.reinit (cell, face_no);
-         face_values.get_function_values (*this->u, face_u);
-         
-         double local_integral = 0;
-         for (unsigned int point=0; point<n_q_points; ++point)
-           local_integral += face_u[point] *
-                             face_values.JxW(point);
-         u_integrated += local_integral;
-       };
-
-  if (time!=0)
-    result += u_integrated*this->time_step / 2;
-  
-  return u_integrated;
-}
-
-
-/*------------------------- EvaluateOneBranch1d --------------------------*/
-
-
-template <int dim>
-void EvaluateOneBranch1d<dim>::print_final_result (std::ostream &out) {
-  out << "    One branch integrated: " << result << std::endl;
-}
-
-
-template <int dim>
-double EvaluateOneBranch1d<dim>::get_final_result () {
-  return result;
-}
-
-
-template <int dim>
-std::string EvaluateOneBranch1d<dim>::description () const {
-  return "One branch integrated (exact: 0.055735)";
-}
-
-
-template <int dim>
-void EvaluateOneBranch1d<dim>::reset () {
-  result = 0;
-}
-
-
-template <int dim>
-double EvaluateOneBranch1d<dim>::evaluate ()
-{
-  Assert (false, ExcNotImplemented());
-  return 0;
-}
-
-
-
-
-/*------------------------- EvaluateSecondCrossing1d --------------------------*/
-
-
-template <int dim>
-void EvaluateSecondCrossing1d<dim>::print_final_result (std::ostream &out) {
-  out << "    Second crossing: " << result << std::endl;
-}
-
-
-template <int dim>
-double EvaluateSecondCrossing1d<dim>::get_final_result () {
-  return result;
-}
-
-
-template <int dim>
-std::string EvaluateSecondCrossing1d<dim>::description () const {
-  return "Second crossing (exact: 0.011147)";
-}
-
-
-template <int dim>
-void EvaluateSecondCrossing1d<dim>::reset () {
-  result = 0;
-}
-
-
-template <int dim>
-double EvaluateSecondCrossing1d<dim>::evaluate ()
-{
-  Assert (false, ExcNotImplemented());
-  return 0;
-}
-
-
-
-/*------------------------- EvaluateHuyghensWave --------------------------*/
-
-
-template <int dim>
-void EvaluateHuyghensWave<dim>::print_final_result (std::ostream &out) {
-  out << "    Hughens wave -- weighted time: " << weighted_value / integrated_value << std::endl;
-  out << "                    average      : " << integrated_value << std::endl;
-}
-
-
-template <int dim>
-double EvaluateHuyghensWave<dim>::get_final_result () {
-  return weighted_value / integrated_value;
-}
-
-
-template <int dim>
-std::string EvaluateHuyghensWave<dim>::description () const {
-  return "Huyghens wave";
-}
-
-
-template <int dim>
-void EvaluateHuyghensWave<dim>::reset () {
-  integrated_value = weighted_value = 0;
-}
-
-
-template <int dim>
-double EvaluateHuyghensWave<dim>::evaluate ()
-{
-  double     value_at_origin = 0;
-  Point<dim> p;
-  p(0) = 0.75;
-  const Point<dim> evaluation_point (p);
-
-  const typename DoFHandler<dim>::cell_iterator endc = this->dof->end(3);
-  bool point_found = false;
-  for (typename DoFHandler<dim>::cell_iterator cell=this->dof->begin(3);
-       (cell!=endc) && !point_found; ++cell)
-    for (unsigned int vertex=0; vertex<GeometryInfo<dim>::vertices_per_cell; ++vertex)
-      if (cell->vertex(vertex) == evaluation_point)
-       {
-         typename DoFHandler<dim>::cell_iterator terminal_cell = cell;
-         while (terminal_cell->has_children())
-           terminal_cell = terminal_cell->child(vertex);
-         
-         value_at_origin = (*this->u)(cell->vertex_dof_index(vertex,0));
-         point_found = true;
-         
-         break;
-       };
-
-  AssertThrow (point_found, ExcInternalError());
-
-  if ((this->time > 0.5) && (this->time < 0.69)) 
-    {
-      integrated_value += value_at_origin * this->time_step;
-      weighted_value += value_at_origin * this->time_step * this->time;
-    };
-  
-  return value_at_origin;
-}
-
-
-template class EvaluationBase<2>;
-template class EvaluateEnergyContent<2>;
-template class EvaluateIntegratedValueAtOrigin<2>;
-template class EvaluateSeismicSignal<2>;
-template class EvaluateSplitSignal<2>;
-template class EvaluateOneBranch1d<2>;
-template class EvaluateSecondCrossing1d<2>;
-template class EvaluateHuyghensWave<2>;
-
-
-#include <base/data_out_base.h>
-#include <numerics/histogram.h>
-#include <lac/sparse_matrix.h>
-#include <lac/vector.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_handler.h>
-#include <base/geometry_info.h>
-
-#include <cmath>
-#include <algorithm>
-#include <numeric>
-#include <fstream>
-#include <iomanip>
-
-#include <numerics/data_out_stack.h>
-
-
-template <int dim>
-TimestepManager<dim>::TimestepManager (const WaveParameters<dim> &parameters) :
-                TimeDependent(TimeDependent::TimeSteppingData(0,1),
-                              TimeDependent::TimeSteppingData(0,1),
-                              TimeDependent::TimeSteppingData(0,1)),
-                parameters (parameters)
-{}
-
-
-template <int dim>
-void TimestepManager<dim>::run_sweep (const unsigned int sweep_no)
-{
-  SweepInfo      sweep_info;
-  SweepData<dim> sweep_data (parameters.write_stacked_data);
-  if (parameters.write_stacked_data)
-    {
-      sweep_data.data_out_stack->declare_data_vector ("u", DataOutStack<dim>::dof_vector);
-      sweep_data.data_out_stack->declare_data_vector ("v", DataOutStack<dim>::dof_vector);
-      if ((parameters.refinement_strategy == WaveParameters<dim>::dual_estimator)
-         &&
-         (sweep_no >= parameters.initial_energy_estimator_sweeps))
-       {
-         sweep_data.data_out_stack->declare_data_vector ("dual_u", DataOutStack<dim>::dof_vector);
-         sweep_data.data_out_stack->declare_data_vector ("dual_v", DataOutStack<dim>::dof_vector);
-       };
-      if ((sweep_no<parameters.number_of_sweeps-1) ||
-         (parameters.refinement_strategy == WaveParameters<dim>::dual_estimator))
-       sweep_data.data_out_stack->declare_data_vector ("est_error", DataOutStack<dim>::cell_vector);
-    };
-
-
-  deallog << "Sweep " << std::setw(2) << sweep_no << ':' << std::endl
-       << "---------" << std::endl;
-
-  for (typename std::list<EvaluationBase<dim>*>::const_iterator i = parameters.eval_list.begin();
-       i != parameters.eval_list.end(); ++i)
-    (*i)->reset ();
-  
-  start_sweep (sweep_no);
-
-  for (std::vector<SmartPointer<TimeStepBase> >::iterator timestep=timesteps.begin();
-       timestep!=timesteps.end(); ++timestep)
-    {
-      TimeStepBase* t = *timestep;
-      dynamic_cast<TimeStepBase_Wave<dim>*>(t)->attach_sweep_info (sweep_info);
-      dynamic_cast<TimeStepBase_Wave<dim>*>(t)->attach_sweep_data (sweep_data);
-    };
-  
-  solve_primal_problem ();
-  deallog << std::endl;
-
-  if ((parameters.refinement_strategy == WaveParameters<dim>::dual_estimator)
-      &&
-      (sweep_no >= parameters.initial_energy_estimator_sweeps))
-    {
-      solve_dual_problem ();
-      deallog << std::endl;
-    };
-  
-  postprocess ();
-
-  if (parameters.write_stacked_data)
-    write_stacked_data (*sweep_data.data_out_stack);
-
-  deallog << std::endl;
-  
-  if (sweep_no != parameters.number_of_sweeps-1)
-    refine_grids ();
-
-  write_statistics (sweep_info);
-
-  end_sweep ();
-  
-  deallog << std::endl << std::endl;
-}
-
-
-template <int dim>
-void TimestepManager<dim>::refine_grids () 
-{
-  deallog << "  Collecting refinement data: " << std::endl;
-
-
-const unsigned int n_timesteps = timesteps.size();
-      
-  std::vector<Vector<float> > indicators (n_timesteps);
-      
-  for (unsigned int i=0; i<n_timesteps; ++i)
-    {
-      TimeStepBase* t = timesteps[i];
-      static_cast<TimeStepBase_Wave<dim>*>(t)
-       ->get_timestep_postprocess().get_tria_refinement_criteria (indicators[i]);
-    }
-
-  unsigned int total_number_of_cells = 0;
-  for (unsigned int i=0; i<timesteps.size(); ++i)
-    total_number_of_cells += indicators[i].size();
-
-
-if (parameters.produce_error_statistics)
-    {
-      deallog << "    Generating error statistics ";
-
-      std::vector<double> time_values (timesteps.size());
-      for (unsigned int i=0; i<timesteps.size(); ++i)
-       time_values[i] = timesteps[i]->get_time();
-      
-      Histogram error_statistics;
-      error_statistics.evaluate (indicators,
-                                time_values,
-                                parameters.error_statistic_intervals,
-                                Histogram::parse_interval_spacing(parameters.error_statistics_scaling));
-      error_statistics.write_gnuplot (logfile);
-
-      deallog << std::endl;
-    };
-
-
-if (parameters.compare_indicators_globally)
-    {
-
-      Vector<float> all_indicators (total_number_of_cells);
-      unsigned int next_index=0;
-      for (unsigned int i=0; i<timesteps.size(); ++i)
-       {
-         std::copy (indicators[0].begin(),
-               indicators[0].end(),
-               &all_indicators(next_index));
-         next_index += (indicators[0].end() - indicators[0].begin());
-         
-         indicators.erase (indicators.begin());
-       };
-
-      Assert (next_index==all_indicators.size(),
-             ExcInternalError());
-
-      const double total_error = all_indicators.l1_norm();
-
-      Vector<float> partial_sums(all_indicators.size());
-      std::sort (all_indicators.begin(), all_indicators.end(), std::greater<double>());
-      std::partial_sum (all_indicators.begin(), all_indicators.end(),
-                  partial_sums.begin());
-
-      const Vector<float>::const_iterator
-       p = std::upper_bound (partial_sums.begin(), partial_sums.end(),
-                        total_error*(1-parameters.refinement_fraction.second)),
-       q = std::lower_bound (partial_sums.begin(), partial_sums.end(),
-                        parameters.refinement_fraction.first*total_error);
-
-      double bottom_threshold = all_indicators(p != partial_sums.end() ?
-                                              p-partial_sums.begin() :
-                                              all_indicators.size()-1),
-            top_threshold    = all_indicators(q-partial_sums.begin());
-      
-      if (bottom_threshold==top_threshold)
-         bottom_threshold = 0.999*top_threshold;
-
-      deallog << "    " << all_indicators.size()
-          << " cells in total."
-          << std::endl;
-      deallog << "    Thresholds are [" << bottom_threshold << "," << top_threshold << "]"
-          << " out of ["
-          << *min_element(all_indicators.begin(),all_indicators.end())
-          << ','
-          << *max_element(all_indicators.begin(),all_indicators.end())
-          << "]. "
-          << std::endl;
-      deallog << "    Expecting "
-          << (all_indicators.size() +
-              (q-partial_sums.begin())*(GeometryInfo<dim>::children_per_cell-1) -
-              (partial_sums.end() - p)/(GeometryInfo<dim>::children_per_cell-1))
-          << " cells in next sweep."
-          << std::endl;
-      deallog << "    Now refining...";
-      do_loop (mem_fun (&TimeStepBase_Tria<dim>::init_for_refinement),
-              bind2nd (mem_fun (&TimeStepBase_Wave<dim>::refine_grid),
-                       typename TimeStepBase_Tria<dim>::RefinementData (top_threshold,
-                                                               bottom_threshold)),
-              TimeDependent::TimeSteppingData (0,1),
-              TimeDependent::forward);
-      deallog << std::endl;
-    }
-
-  else
-    {
-      deallog << "    Refining each time step separately." << std::endl;
-      
-      for (unsigned int timestep=0; timestep<timesteps.size(); ++timestep)
-       {
-         TimeStepBase* t = timesteps[timestep];
-         static_cast<TimeStepBase_Tria<dim>*>(t)->init_for_refinement();
-       }
-      
-      unsigned int total_expected_cells = 0;
-      
-      for (unsigned int timestep=0; timestep<timesteps.size(); ++timestep)
-       {
-         TimeStepBase* t = timesteps[timestep];
-         TimeStepBase_Wave<dim> *this_timestep
-           = static_cast<TimeStepBase_Wave<dim>*>(t);
-           
-         this_timestep->wake_up (0);
-
-         Assert (indicators.size() > 0, ExcInternalError());
-         Vector<float> criteria (indicators[0]);
-         indicators.erase (indicators.begin());
-         
-         const double total_error = criteria.l1_norm();
-         
-         Vector<float> partial_sums(criteria.size());
-
-         std::sort (criteria.begin(), criteria.end(), std::greater<double>());
-         std::partial_sum (criteria.begin(), criteria.end(),
-                      partial_sums.begin());
-
-         const Vector<float>::const_iterator
-           p = std::upper_bound (partial_sums.begin(), partial_sums.end(),
-                            total_error*(1-parameters.refinement_fraction.second)),
-           q = std::lower_bound (partial_sums.begin(), partial_sums.end(),
-                            parameters.refinement_fraction.first*total_error);
-
-         double bottom_threshold = criteria(p != partial_sums.end() ?
-                                            p-partial_sums.begin() :
-                                            criteria.size()-1),
-                top_threshold    = criteria(q != partial_sums.end() ?
-                                            q-partial_sums.begin() :
-                                            criteria.size()-1);
-         
-         if (bottom_threshold==top_threshold)
-           bottom_threshold = 0.999*top_threshold;
-         
-         total_expected_cells += (criteria.size() +
-                                  (q-partial_sums.begin())*(GeometryInfo<dim>::children_per_cell-1) -
-                                  (partial_sums.end() - p)/(GeometryInfo<dim>::children_per_cell-1));
-         
-         this_timestep->refine_grid (typename TimeStepBase_Tria<dim>::RefinementData (top_threshold,
-                                                                             bottom_threshold));
-
-         this_timestep->sleep (0);
-         if (timestep!=0)
-           static_cast<TimeStepBase_Tria<dim>&>(*timesteps[timestep-1]).sleep(1);
-       };
-      
-      if (timesteps.size() != 0)
-       static_cast<TimeStepBase_Tria<dim>&>(*timesteps.back()).sleep(1);
-
-
-deallog << "    Got " << total_number_of_cells << " presently, expecting "
-          << total_expected_cells << " for next sweep." << std::endl;
-    };
-}
-
-
-template <int dim>
-void TimestepManager<dim>::write_statistics (const SweepInfo &sweep_info) const 
-{
-  if (true)
-    {
-      deallog << "    Writing statistics for whole sweep.";
-      
-      deallog << "#  Description of fields" << std::endl
-          << "#  =====================" << std::endl
-          << "#  General:"              << std::endl
-          << "#    time"                << std::endl;
-      
-      TimeStep<dim>::write_statistics_descriptions (logfile, parameters);
-      deallog << std::endl << std::endl;
-      
-      for (unsigned int timestep=0; timestep<timesteps.size(); ++timestep)
-       {
-         deallog << timesteps[timestep]->get_time()
-              << "   ";
-         dynamic_cast<TimeStep<dim>&>
-           (static_cast<TimeStepBase_Wave<dim>&>
-            (*timesteps[timestep])).write_statistics (logfile);
-         deallog << std::endl;
-       };
-
-      AssertThrow (logfile, ExcIO());
-      
-      deallog << std::endl;
-    };
-
-
-  if (true)
-    {
-      deallog << "    Writing summary.";
-      
-      sweep_info.write_summary (parameters.eval_list,
-                               logfile);
-      AssertThrow (logfile, ExcIO());
-
-      deallog << std::endl;
-    };
-}
-
-
-template <int dim>
-void TimestepManager<dim>::write_stacked_data (DataOutStack<dim> &data_out_stack) const 
-{
-  DataOutBase::OutputFormat output_format
-    = DataOutBase::parse_output_format (parameters.output_format);
-  
-  deallog << "    Writing stacked time steps";
-  DataOutBase::EpsFlags eps_flags;
-  eps_flags.height_vector = eps_flags.color_vector = 2;
-  eps_flags.draw_mesh = false;
-  eps_flags.draw_cells = true;
-  eps_flags.azimut_angle = 0;
-  eps_flags.turn_angle = 0;
-  data_out_stack.set_flags (eps_flags);
-  data_out_stack.write (logfile, output_format);
-  deallog << '.' << std::endl;
-}
-
-
-template class TimestepManager<2>;
-  
-
-#include <base/exceptions.h>
-#include <base/function.h>
-#include <base/parameter_handler.h>
-#include <numerics/histogram.h>
-#include <base/data_out_base.h>
-#include <grid/tria.h>
-#include <grid/tria_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria_boundary.h>
-#include <grid/grid_generator.h>
-
-#include <map>
-#include <list>
-#include <cmath>
-
-
-template <int dim>
-const std::string WaveParameters<dim>::initial_value_names ("zero"
-                                                      "|eigenmode"
-                                                      "|bump"
-                                                      "|small bump"
-                                                      "|center-kink"
-                                                      "|shifted bump"
-                                                      "|plateau"
-                                                      "|earthquake");
-template <int dim>
-const std::string WaveParameters<dim>::coefficient_names ("unit"
-                                                    "|kink"
-                                                    "|gradient"
-                                                    "|preliminary earth model"
-                                                    "|distorted");
-template <int dim>
-const std::string WaveParameters<dim>::boundary_function_names ("wave from left"
-                                                          "|fast wave from left"
-                                                          "|wave from left center"
-                                                          "|wave from left bottom"
-                                                          "|zero");
-template <int dim>
-const std::string WaveParameters<dim>::dual_functional_names ("none"
-                                                        "|integrated value at origin"
-                                                        "|seismic signature"
-                                                        "|split signal"
-                                                        "|earth surface"
-                                                        "|split line"
-                                                        "|one branch 1d"
-                                                        "|second crossing"
-                                                        "|Huyghens wave");
-
-
-DeclException1 (ExcUnknownName,
-               std::string,
-               << "Unknown description std::string " << arg1);
-
-
-template <int dim>
-class InitialValues {
-  public:
-    class EigenMode : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double pi = 3.1415926539;
-         return sin(2*pi*p(0))*sin(2*pi*p(1));
-       };
-    };
-
-    class Bump : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double width = 0.1;
-         const double r2 = p.square();
-         return exp(-r2/width/width) * (r2<width*width ?
-                                        1-r2/width/width :
-                                        0);
-       };
-    };
-
-
-class SmallBump : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double width = 0.02;
-         const double r2 = p.square();
-         return exp(-r2/width/width) * (r2<width*width ?
-                                        1-r2/width/width :
-                                        0);
-       };
-    };
-
-
-class ShiftedBump : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double width = 0.1;
-         Point<dim> shift;
-         shift(0) = 0.5;
-         const double r2 = (p-shift).square();
-         return exp(-r2/width/width) * (r2<width*width ?
-                                        1-r2/width/width :
-                                        0);
-       };
-    };
-
-    class CenterKink : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double width = 0.1;
-         const double r     = sqrt(p.square());
-         return (r<width ? r/width : (r<2*width ? 2-r/width : 0));
-       };
-    };
-
-    class Plateau : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double width = 0.1;
-         const double r     = sqrt(p.square());
-         return (r<width ? 1 : 0);
-       };
-    };
-
-
-class Earthquake : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         Point<dim> earthquake_center = p;
-         earthquake_center(1) -= 5500;
-         const double r2 = earthquake_center.square();
-         
-         return (r2<300*300 ? 1-r2/300/300 : 0);
-       };
-    };
-};
-
-
-template <int dim>
-class Coefficients {
-  public:
-    class Kink : public Function<dim> {
-      public:
-       inline virtual double value (const Point<dim> &p,
-                                    const unsigned int) const {
-         return 1+8*(p(dim-1)>1./5. ? 1. : 0.);
-       };
-       
-       virtual void value_list (const std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int) const {
-         Assert (values.size() == points.size(),
-                 ExcDimensionMismatch(values.size(), points.size()));
-         for (unsigned int i=0; i<points.size(); ++i)
-           values[i]  = this->Kink::value(points[i], 0);
-       };
-
-       virtual Tensor<1,dim> gradient (const Point<dim> &p,
-                                       const unsigned int) const {
-         Tensor<1,dim> tmp;
-         if (fabs(p(1)-1./5.) < 1./400.)
-           tmp[1] = 100;
-         return tmp;
-       };
-       
-       virtual void gradient_list (const std::vector<Point<dim> > &points,
-                                   std::vector<Tensor<1,dim> >    &gradients,
-                                   const unsigned int) const {
-         for (unsigned int i=0; i<points.size(); ++i)
-           gradients[i] = Kink::gradient (points[i], 0);
-       };
-    };
-
-
-class Gradient : public Function<dim> {
-      public:
-       inline virtual double value (const Point<dim> &p,
-                                    const unsigned int) const {
-         return 1+8*p(1)*p(1);
-       };
-       
-       virtual void value_list (const std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int) const {
-         Assert (values.size() == points.size(),
-                 ExcDimensionMismatch(values.size(), points.size()));
-         for (unsigned int i=0; i<points.size(); ++i)
-           values[i]  = this->Gradient::value(points[i], 0);
-       };
-
-       virtual Tensor<1,dim> gradient (const Point<dim> &p,
-                                       const unsigned int) const {
-         Tensor<1,dim> tmp;
-         tmp[1] = 16*p(1);
-         return tmp;
-       };
-       
-       virtual void gradient_list (const std::vector<Point<dim> > &points,
-                                   std::vector<Tensor<1,dim> >    &gradients,
-                                   const unsigned int) const {
-         for (unsigned int i=0; i<points.size(); ++i)
-           gradients[i] = Gradient::gradient (points[i], 0);
-       };
-    };
-
-
-class PreliminaryEarthModel : public Function<dim> {
-      public:
-       inline virtual double value (const Point<dim> &p,
-                                    const unsigned int) const {
-         const double r=sqrt(p.square());
-         return 10+2.5*(2-r/6371)*(2-r/6371)+20*(r<2000 ? 1 : 0);
-       };
-       
-       virtual void value_list (const std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int) const {
-         Assert (values.size() == points.size(),
-                 ExcDimensionMismatch(values.size(), points.size()));
-         for (unsigned int i=0; i<points.size(); ++i)
-           values[i]  = this->PreliminaryEarthModel::value(points[i], 0);
-       };
-
-       virtual Tensor<1,dim> gradient (const Point<dim> &p,
-                                       const unsigned int) const {
-         Tensor<1,dim> tmp(p);
-         const double r=sqrt(p.square());        
-         tmp *= 1./r * 2*(10-5*r/6371);
-         return tmp;
-       };
-       
-       virtual void gradient_list (const std::vector<Point<dim> > &points,
-                                   std::vector<Tensor<1,dim> >    &gradients,
-                                   const unsigned int) const {
-         for (unsigned int i=0; i<points.size(); ++i)
-           gradients[i] = PreliminaryEarthModel::gradient (points[i], 0);
-       };
-    };
-
-
-class Distorted : public Function<dim> {
-      public:
-       inline virtual double value (const Point<dim> &p,
-                                    const unsigned int) const {
-         const double x=p(0),
-                      y=p(1);
-         const double pi = 3.1415926539;
-         
-         return (1+0.5*((sin(3*pi*x)>0 ? 1 : 0)+
-                        (sin(3*pi*(2*x+y)/sqrt(3.0)))>0 ? 1 : 0));
-       };
-       
-       virtual void value_list (const std::vector<Point<dim> > &points,
-                                std::vector<double>            &values,
-                                const unsigned int) const {
-         Assert (values.size() == points.size(),
-                 ExcDimensionMismatch(values.size(), points.size()));
-         for (unsigned int i=0; i<points.size(); ++i)
-           values[i]  = this->Distorted::value(points[i], 0);
-       };
-
-       virtual Tensor<1,dim> gradient (const Point<dim> &,
-                                       const unsigned int) const {
-         return Tensor<1,dim>();
-       };
-       
-       virtual void gradient_list (const std::vector<Point<dim> > &points,
-                                   std::vector<Tensor<1,dim> >    &gradients,
-                                   const unsigned int) const {
-         for (unsigned int i=0; i<points.size(); ++i)
-           gradients[i] = Distorted::gradient (points[i], 0);
-       };
-    };
-};
-
-
-template <int dim>
-class BoundaryValues {
-  public:
-
-    class WaveFromLeft_u : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double pi = 3.1415926536;
-         if (p(0)==0)
-           return sin(pi*this->get_time()/0.4)*sin(pi*this->get_time()/0.4);
-         else
-           return 0;
-       };
-    };
-
-    class WaveFromLeft_v : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double pi = 3.1415926536;
-         if (p(0)==0)
-           return 2*pi/0.4*sin(pi*this->get_time()/0.4)*cos(pi*this->get_time()/0.4);
-         else
-           return 0;
-       };
-    };
-
-
-class FastWaveFromLeft_u : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double pi = 3.1415926536;
-         if ((this->get_time()<0.2) && (p(0)==0))
-           return sin(pi*this->get_time()/0.2)*sin(pi*this->get_time()/0.2);
-         else
-           return 0;
-       };
-    };
-
-    class FastWaveFromLeft_v : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double pi = 3.1415926536;
-         if ((this->get_time()<0.2) && (p(0)==0))
-           return 2*pi/0.2*sin(pi*this->get_time()/0.2)*cos(pi*this->get_time()/0.2);
-         else
-           return 0;
-       };
-    };
-
-
-class WaveFromLeftCenter_u : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double pi = 3.1415926536;
-         if ((0.4 <= p(1)) && (p(1) <= 0.6) && (p(0) <= 0.5))
-           return (p(1)-0.4)*(0.6-p(1)) * sin(pi*this->get_time()/0.2);
-         else
-           return 0;
-       };
-    };
-
-    class WaveFromLeftCenter_v : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double pi = 3.1415926536;
-         if ((0.4 <= p(1)) && (p(1) <= 0.6) && (p(0) <= 0.5))
-           return pi/0.2*(p(1)-0.4)*(0.6-p(1)) * cos(pi*this->get_time()/0.2);
-         else
-           return 0;
-       };
-    };
-
-
-class WaveFromLeftBottom_u : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double pi = 3.1415926536;
-         const double r  = sqrt(p.square());
-         const double a  = 5000000;
-
-         const double period = 60;
-
-         if ((this->get_time()>=period) || (r>=a))
-           return 0;
-
-         const double s = cos(r/a*pi/2)*sin(pi*this->get_time()/period);
-         return s*s;
-       };
-    };
-
-    class WaveFromLeftBottom_v : public Function<dim> {
-      public:
-       virtual double value (const Point<dim> &p,
-                             const unsigned int) const {
-         const double pi = 3.1415926536;
-         const double r  = sqrt(p.square());
-         const double a  = 5000000;
-         const double period = 60;
-
-         if ((this->get_time()>=period) || (r>=a))
-           return 0;
-         else
-           return (2*pi/period*cos(r/a*pi/2)*cos(r/a*pi/2)*
-                   sin(pi*this->get_time()/period)*cos(pi*this->get_time()/period));
-       };
-    };
-
-};
-
-
-template <int dim>
-class Boundaries 
-{
-  public:
-    class Ring :  public StraightBoundary<dim> 
-    {
-      public:
-       virtual Point<dim>
-       get_new_point_on_line (const typename Triangulation<dim>::line_iterator &line) const {
-         Point<dim> middle = StraightBoundary<dim>::get_new_point_on_line (line);
-         middle *= sqrt(line->vertex(0).square()) / sqrt(middle.square());
-         return middle;
-       };
-
-
-virtual Point<dim>
-       get_new_point_on_quad (const typename Triangulation<dim>::quad_iterator &quad) const {
-         Point<dim> middle = StraightBoundary<dim>::get_new_point_on_quad (quad);
-         middle *= sqrt(quad->vertex(0).square()) / sqrt(middle.square());
-         return middle;
-       };
-    };
-};
-
-
-template <int dim>
-WaveParameters<dim>::WaveParameters () :
-               boundary_values_u (0),
-               boundary_values_v (0),
-               initial_u (0),
-               initial_v (0),
-               boundary (0),
-               density (0),
-               stiffness (0),
-               dual_functional (0),
-               coarse_grid (0)
-{}
-
-
-template <int dim>
-WaveParameters<dim>::~WaveParameters ()
-{
-  delete_parameters ();
-}
-
-
-template <int dim>
-void WaveParameters<dim>::delete_parameters ()
-{
-  if (boundary_values_u)
-    delete boundary_values_u;
-  boundary_values_u = 0;
-
-  if (boundary_values_v)
-    delete boundary_values_v;
-  boundary_values_v = 0;
-
-  if (initial_u)
-    delete initial_u;
-  initial_u = 0;
-
-  if (initial_v)
-    delete initial_v;
-  initial_v = 0;
-
-  if (boundary)
-    delete boundary;
-  boundary = 0;
-
-  if (density)
-    delete density;
-  density = 0;
-
-  if (stiffness)
-    delete stiffness;
-  stiffness = 0;
-
-  if (dual_functional)
-    delete dual_functional;
-  dual_functional = 0;
-
-  if (coarse_grid)
-    delete coarse_grid;
-  coarse_grid = 0;
-
-  for (typename std::list<EvaluationBase<dim>*>::iterator i=eval_list.begin();
-       i!=eval_list.end(); ++i)
-    delete *i;
-  eval_list.erase (eval_list.begin(), eval_list.end());
-}
-
-
-template <int dim>
-void WaveParameters<dim>::set_initial_functions (const std::string &u_name,
-                                                const std::string &v_name) {
-  Assert (initial_u==0, ExcInternalError());
-  Assert (initial_v==0, ExcInternalError());
-  
-  const std::string names[2] = {u_name, v_name};
-  Function<dim> *functions[2];
-  
-  for (unsigned int i=0; i<2; ++i)
-    {
-      if (names[i]=="eigenmode")
-       functions[i] = new typename InitialValues<dim>::EigenMode();
-      else
-       if (names[i]=="zero")
-         functions[i] = new ZeroFunction<dim>();
-       else
-         if (names[i]=="center-kink")
-           functions[i] = new typename InitialValues<dim>::CenterKink();
-         else
-           if (names[i]=="bump")
-             functions[i] = new typename InitialValues<dim>::Bump();
-           else
-             if (names[i]=="small bump")
-               functions[i] = new typename InitialValues<dim>::SmallBump();
-             else
-               if (names[i]=="shifted bump")
-                 functions[i] = new typename InitialValues<dim>::ShiftedBump();
-               else
-                 if (names[i]=="plateau")
-                   functions[i] = new typename InitialValues<dim>::Plateau ();
-                 else
-                   if (names[i]=="earthquake")
-                     functions[i] = new typename InitialValues<dim>::Earthquake ();
-                   else
-                     AssertThrow (false, ExcUnknownName(names[i]));
-    };
-
-  initial_u = functions[0];
-  initial_v = functions[1];
-}
-
-
-template <int dim>
-void WaveParameters<dim>::set_coefficient_functions (const std::string &name) {  
-  Assert (density==0, ExcInternalError());
-  Assert (stiffness==0, ExcInternalError());
-
-  density = new ConstantFunction<dim>(1);
-  density_constant = true;
-  
-  if (name=="kink")
-    {
-      stiffness = new typename Coefficients<dim>::Kink();
-      stiffness_constant = false;
-    }
-  else
-    if (name=="gradient")
-      {
-       stiffness = new typename Coefficients<dim>::Gradient();
-       stiffness_constant = false;
-      }
-    else
-      if (name=="unit")
-       {
-         stiffness = new ConstantFunction<dim>(1);
-         stiffness_constant = true;
-       }
-      else
-       if (name=="preliminary earth model")
-         {
-           stiffness = new typename Coefficients<dim>::PreliminaryEarthModel();
-           stiffness_constant = false;
-         }
-       else
-         if (name=="distorted")
-           {
-             stiffness = new typename Coefficients<dim>::Distorted();
-             stiffness_constant = false;
-         }
-         else
-           AssertThrow (false, ExcUnknownName (name));
-}
-
-
-template <int dim>
-void WaveParameters<dim>::set_boundary_functions (const std::string &name) {
-  Assert (boundary_values_u==0, ExcInternalError());
-  Assert (boundary_values_v==0, ExcInternalError());
-  
-  if (name=="wave from left") 
-    {
-      boundary_values_u = new typename BoundaryValues<dim>::WaveFromLeft_u ();
-      boundary_values_v = new typename BoundaryValues<dim>::WaveFromLeft_v ();
-    }
-  else
-    if (name=="fast wave from left") 
-      {
-       boundary_values_u = new typename BoundaryValues<dim>::FastWaveFromLeft_u ();
-       boundary_values_v = new typename BoundaryValues<dim>::FastWaveFromLeft_v ();
-      }
-    else
-      if (name=="wave from left center")
-       {
-         boundary_values_u = new typename BoundaryValues<dim>::WaveFromLeftCenter_u ();
-         boundary_values_v = new typename BoundaryValues<dim>::WaveFromLeftCenter_v ();
-       }
-      else
-       if (name=="wave from left bottom")
-         {
-           boundary_values_u = new typename BoundaryValues<dim>::WaveFromLeftBottom_u ();
-           boundary_values_v = new typename BoundaryValues<dim>::WaveFromLeftBottom_v ();
-         }
-       else
-         if (name=="zero")
-           {
-             boundary_values_u = new ZeroFunction<dim>();
-             boundary_values_v = new ZeroFunction<dim>();
-           }
-         else
-           AssertThrow (false, ExcUnknownName (name));
-}
-
-
-template <int dim>
-void WaveParameters<dim>::make_eval_list (const std::string &names) {
-  Assert (eval_list.size()==0, ExcInternalError());
-  std::string split_list = names;
-
-  while (split_list.length())
-    {
-      std::string name;
-      name = split_list;
-      
-      if (name.find(",") != std::string::npos)
-       {
-         name.erase (name.find(","), std::string::npos);
-         split_list.erase (0, split_list.find(",")+1);
-       }
-      else
-       split_list = "";
-
-      while (name[0] == ' ')
-       name.erase (0,1);
-      while (name[name.length()-1] == ' ')
-       name.erase (name.length()-1, 1);
-
-      if (name == "integrated value at origin")
-       eval_list.push_back (new EvaluateIntegratedValueAtOrigin<dim>());
-      else
-       if (name == "seismic signature")
-         eval_list.push_back (new EvaluateSeismicSignal<dim>());
-       else
-         if (name == "split signal")
-           eval_list.push_back (new EvaluateSplitSignal<dim>());
-         else
-           if (name == "one branch 1d")
-             eval_list.push_back (new EvaluateOneBranch1d<dim>());
-           else
-             if (name == "second crossing")
-               eval_list.push_back (new EvaluateSecondCrossing1d<dim>());
-             else
-               if (name == "Huyghens wave")
-                 eval_list.push_back (new EvaluateHuyghensWave<dim>());
-               else
-                 AssertThrow (false, ExcUnknownName (name));
-    };
-}
-
-
-template <int dim>
-void WaveParameters<dim>::set_dual_functional (const std::string &name) {
-  Assert (dual_functional==0, ExcInternalError());
-  if (name == "none")
-    dual_functional = new DualFunctional<dim>();
-  else
-    if (name == "integrated value at origin")
-      dual_functional = new IntegratedValueAtOrigin<dim> ();
-    else
-      if (name == "seismic signature")
-       dual_functional = new  SeismicSignal<dim> ();
-      else
-       if (name == "split signal")
-         dual_functional = new SplitSignal<dim> ();
-       else
-         if (name == "earth surface")
-           dual_functional = new EarthSurface<dim> ();
-         else
-           if (name == "split line")
-             dual_functional = new SplitLine<dim> ();
-           else
-             if (name == "one branch 1d")
-               dual_functional = new OneBranch1d<dim> ();
-             else
-               if (name == "second crossing")
-                 dual_functional = new SecondCrossing<dim> ();
-               else
-                 if (name == "Huyghens wave")
-                   dual_functional = new HuyghensWave<dim> ();
-                 else
-                   AssertThrow (false, ExcUnknownName (name));
-}
-
-
-
-#if 2 == 2
-
-template <>
-void WaveParameters<2>::make_coarse_grid (const std::string &name) {
-  const unsigned int dim=2;
-
-  std::map<std::string,InitialMesh> initial_mesh_list;
-  initial_mesh_list["split channel bottom"] = split_channel_bottom;
-  initial_mesh_list["split channel left"]   = split_channel_left;
-  initial_mesh_list["split channel right"]  = split_channel_right;
-  initial_mesh_list["uniform channel"] = uniform_channel;
-  initial_mesh_list["square"]          = square;
-  initial_mesh_list["ring"]            = ring;
-  initial_mesh_list["earth"]           = earth;
-  initial_mesh_list["seismic square"]  = seismic_square;
-  AssertThrow (initial_mesh_list.find(name) != initial_mesh_list.end(),
-              ExcParameterNotInList(name));
-
-  const InitialMesh initial_mesh = initial_mesh_list[name];
-
-  coarse_grid = new Triangulation<dim>
-               (Triangulation<dim>::MeshSmoothing(Triangulation<dim>::smoothing_on_refinement |
-                                                  Triangulation<dim>::eliminate_refined_inner_islands));
-  
-  switch (initial_mesh) 
-    {
-      case uniform_channel:
-      case split_channel_bottom:
-      case split_channel_left:
-      case split_channel_right:
-      {
-       const Point<dim> vertices[8] = { Point<dim> (0,0),
-                                        Point<dim> (1,0),
-                                        Point<dim> (1,1),
-                                        Point<dim> (0,1),
-                                        Point<dim> (2,0),
-                                        Point<dim> (2,1),
-                                        Point<dim> (3,0),
-                                        Point<dim> (3,1)  };
-       const int cell_vertices[3][4] = {{0, 1, 2, 3},
-                                        {1, 4, 5, 2},
-                                        {4, 6, 7, 5}};
-       
-       std::vector<CellData<dim> > cells (3, CellData<dim>());
-       
-       for (unsigned int i=0; i<3; ++i) 
-         {
-           for (unsigned int j=0; j<4; ++j)
-             cells[i].vertices[j] = cell_vertices[i][j];
-           cells[i].material_id = 0;
-         };
-       
-       SubCellData boundary_info;
-       if ((boundary_conditions == wave_from_left) ||
-           (boundary_conditions == fast_wave_from_left))
-         {
-           for (unsigned int i=0; i<6; ++i)
-             {
-               boundary_info.boundary_lines.push_back (CellData<1>());
-               boundary_info.boundary_lines.back().material_id = 1;
-             };
-           
-           boundary_info.boundary_lines[0].vertices[0] = 0;
-           boundary_info.boundary_lines[0].vertices[1] = 1;
-           boundary_info.boundary_lines[1].vertices[0] = 1;
-           boundary_info.boundary_lines[1].vertices[1] = 4;
-           boundary_info.boundary_lines[2].vertices[0] = 4;
-           boundary_info.boundary_lines[2].vertices[1] = 6;
-           boundary_info.boundary_lines[3].vertices[0] = 3;
-           boundary_info.boundary_lines[3].vertices[1] = 2;
-           boundary_info.boundary_lines[4].vertices[0] = 2;
-           boundary_info.boundary_lines[4].vertices[1] = 5;
-           boundary_info.boundary_lines[5].vertices[0] = 5;
-           boundary_info.boundary_lines[5].vertices[1] = 7;      
-         };
-
-       if (boundary_conditions == wave_from_left_bottom)
-         {
-           boundary_info.boundary_lines.push_back (CellData<1>());
-           boundary_info.boundary_lines.back().material_id = 1;
-           boundary_info.boundary_lines[0].vertices[0] = 0;
-           boundary_info.boundary_lines[0].vertices[1] = 3;
-         };
-       
-       coarse_grid->create_triangulation (std::vector<Point<dim> >(&vertices[0],
-                                                              &vertices[8]),
-                                          cells, boundary_info);
-       
-       if (initial_refinement >= 1) 
-         {
-           coarse_grid->refine_global (1);
-
-           switch (initial_mesh)
-             {
-               case split_channel_bottom:
-               {
-                 Triangulation<dim>::active_cell_iterator cell;
-                 cell = coarse_grid->begin_active();
-                 (cell++)->set_refine_flag ();
-                 (cell++)->set_refine_flag ();
-                 ++cell; ++cell;
-                 (cell++)->set_refine_flag ();
-                 (cell++)->set_refine_flag ();
-                 ++cell; ++cell;
-                 (cell++)->set_refine_flag ();
-                 (cell++)->set_refine_flag ();
-                 coarse_grid->execute_coarsening_and_refinement ();
-
-                 coarse_grid->refine_global (initial_refinement-1);
-
-                 break;
-               };
-
-               case split_channel_left:
-               case split_channel_right:
-               {
-                 coarse_grid->refine_global (1);
-                 for (unsigned int i=0; i<2; ++i)
-                   {
-                     Triangulation<dim>::active_cell_iterator
-                       cell = coarse_grid->begin_active();
-
-                     for (; cell!=coarse_grid->end(); ++cell)
-                       if (((cell->center()(0) >= 1) &&
-                            (initial_mesh == split_channel_right)) ||
-                           ((cell->center()(0) <= 1) &&
-                            (initial_mesh == split_channel_left)))
-                         cell->set_refine_flag ();
-                     coarse_grid->execute_coarsening_and_refinement ();
-                   };
-
-                 if (initial_refinement > 4)
-                   coarse_grid->refine_global (initial_refinement-4);
-
-                 break;
-               };
-
-
-               case uniform_channel:
-               {
-                 coarse_grid->refine_global (initial_refinement-1);
-                 break;
-               };
-
-
-               default:
-                     Assert (false, ExcInternalError());
-             };
-         };
-       break;
-      };
-
-
-      case square:
-      case seismic_square:
-      {
-       GridGenerator::hyper_cube (*coarse_grid, -1, 1);
-       if (initial_mesh==seismic_square)
-         coarse_grid->begin_active()->face(2)->set_boundary_indicator(1);
-
-       coarse_grid->refine_global (initial_refinement);
-
-       break;
-      };
-
-      case earth:
-      {
-       GridGenerator::hyper_ball (*coarse_grid, Point<dim>(), 6371);
-
-       if (boundary)
-         delete boundary;
-       
-       Triangulation<dim>::active_face_iterator face;
-       for (face=coarse_grid->begin_active_face();
-            face != coarse_grid->end_face();
-            ++face)
-         if (face->at_boundary())
-           face->set_boundary_indicator (1);
-
-       const Point<dim> origin;
-       boundary = new HyperBallBoundary<dim>(origin, 6371);
-       coarse_grid->set_boundary (1, *boundary);
-
-       coarse_grid->refine_global (initial_refinement);
-
-       break;
-      };
-
-      case ring:
-      {
-       const double radius = 1.;
-       const double a = radius/2;
-       const Point<2> vertices[8] = { Point<2>(-1,-1)*(radius/sqrt(2.0)),
-                                      Point<2>(+1,-1)*(radius/sqrt(2.0)),
-                                      Point<2>(-1,-1)*(radius/sqrt(2.0)*a),
-                                      Point<2>(+1,-1)*(radius/sqrt(2.0)*a),
-                                      Point<2>(-1,+1)*(radius/sqrt(2.0)*a),
-                                      Point<2>(+1,+1)*(radius/sqrt(2.0)*a),
-                                      Point<2>(-1,+1)*(radius/sqrt(2.0)),
-                                      Point<2>(+1,+1)*(radius/sqrt(2.0)) };
-       
-       const int cell_vertices[4][4] = {{0, 1, 3, 2},
-                                        {0, 2, 4, 6},
-                                        {1, 7, 5, 3},
-                                        {6, 4, 5, 7}};
-       
-       std::vector<CellData<2> > cells (4, CellData<2>());
-       
-       for (unsigned int i=0; i<4; ++i) 
-         {
-           for (unsigned int j=0; j<4; ++j)
-             cells[i].vertices[j] = cell_vertices[i][j];
-           cells[i].material_id = 0;
-         };
-  
-       coarse_grid->create_triangulation (std::vector<Point<2> >(&vertices[0],
-                                                            &vertices[8]),
-                                          cells,
-                                          SubCellData());
-       if (boundary)
-         delete boundary;
-       boundary = new Boundaries<dim>::Ring();
-       coarse_grid->set_boundary (0, *boundary);
-
-       coarse_grid->refine_global (initial_refinement);
-       
-       break;
-      };
-      
-      default:
-           Assert (false, ExcInternalError());
-    };
-}
-
-#endif
-
-
-#if 2 == 3
-
-template <>
-void WaveParameters<3>::make_coarse_grid (const std::string &name) {
-  const unsigned int dim=3;
-
-  std::map<std::string,InitialMesh> initial_mesh_list;
-  initial_mesh_list["square"]          = square;
-  initial_mesh_list["earth"]           = earth;
-  initial_mesh_list["seismic square"]  = seismic_square;
-  AssertThrow (initial_mesh_list.find(name) != initial_mesh_list.end(),
-              ExcParameterNotInList(name));
-
-  const InitialMesh initial_mesh = initial_mesh_list[name];
-
-  coarse_grid = new Triangulation<dim>(MeshSmoothing(smoothing_on_refinement |
-                                                    eliminate_refined_inner_islands));
-  
-  switch (initial_mesh) 
-    {
-      case square:
-      case seismic_square:
-      {
-       GridGenerator::hyper_cube (*coarse_grid, -1, 1);
-       if (initial_mesh==seismic_square)
-         coarse_grid->begin_active()->face(2)->set_boundary_indicator(1);
-
-       coarse_grid->refine_global (initial_refinement);
-
-       break;
-      };
-
-      case earth:
-      {
-       GridGenerator::hyper_ball (*coarse_grid, Point<dim>(), 6371);
-
-       if (boundary)
-         delete boundary;
-       
-       Triangulation<dim>::active_face_iterator face;
-       for (face=coarse_grid->begin_active_face();
-            face != coarse_grid->end_face();
-            ++face)
-         if (face->at_boundary())
-           face->set_boundary_indicator (1);
-
-       const Point<dim> origin;
-       boundary = new HyperBallBoundary<dim>(origin, 6371);
-       coarse_grid->set_boundary (1, *boundary);
-
-       coarse_grid->refine_global (initial_refinement);
-
-       break;
-      };
-
-      default:
-           AssertThrow (false, ExcInternalError());
-           break;
-    };
-};
-
-#endif
-
-
-template <int dim>
-void WaveParameters<dim>::declare_parameters (ParameterHandler &prm) 
-{
-  prm.enter_subsection ("Grid");
-  if (true) {
-    prm.declare_entry ("Initial refinement", "0", Patterns::Integer());
-    prm.declare_entry ("Coarse mesh", "uniform channel",
-                      Patterns::Selection ("uniform channel|split channel bottom|"
-                                          "split channel left|split channel right|"
-                                          "square|line|split line|ring|"
-                                          "seismic square|temperature-square|"
-                                          "temperature-testcase|random|earth"));
-    prm.enter_subsection ("Refinement");
-    if (true) {
-      prm.declare_entry ("Refinement fraction", "0.95",
-                        Patterns::Double());
-      prm.declare_entry ("Coarsening fraction", "0.02",
-                        Patterns::Double());
-      prm.declare_entry ("Compare indicators globally", "true", Patterns::Bool());
-      prm.declare_entry ("Maximum refinement", "0", Patterns::Integer());
-      prm.declare_entry ("Adapt mesh to dual solution", "true",
-                        Patterns::Bool());
-      prm.declare_entry ("Primal to dual weight", "1.0",
-                        Patterns::Double());
-      prm.declare_entry ("Initial energy estimator sweeps", "0",
-                        Patterns::Integer());
-    };
-    prm.leave_subsection ();
-     
-    prm.enter_subsection ("Mesh smoothing");
-    if (true) {
-      prm.declare_entry ("Top cell number deviation", "0.1", Patterns::Double());
-      prm.declare_entry ("Bottom cell number deviation", "0.03", Patterns::Double());
-      prm.declare_entry ("Cell number correction steps", "2", Patterns::Integer());
-    };
-    prm.leave_subsection ();
-  };
-  prm.declare_entry ("Renumber dofs", "false", Patterns::Bool());
-  prm.leave_subsection ();
-
-  prm.enter_subsection ("Equation data");
-  if (true) {
-    prm.declare_entry ("Coefficient", "unit", Patterns::Selection(coefficient_names));
-    prm.declare_entry ("Initial u", "zero", Patterns::Selection (initial_value_names));
-    prm.declare_entry ("Initial v", "zero", Patterns::Selection (initial_value_names));
-    prm.declare_entry ("Boundary", "wave from left",
-                      Patterns::Selection (boundary_function_names));
-  };
-  prm.leave_subsection ();
-
-  prm.enter_subsection ("Discretization");
-  prm.declare_entry ("Primal FE", "linear",
-                    Patterns::Selection ("linear|quadratic|cubic|quartic"));
-  prm.declare_entry ("Dual FE", "linear",
-                    Patterns::Selection ("linear|quadratic|cubic|quartic"));
-
-  prm.enter_subsection ("Time stepping");
-  prm.declare_entry ("Primal method", "fractional step",
-                    Patterns::Selection ("theta|fractional step"));
-  prm.declare_entry ("Dual method", "fractional step",
-                    Patterns::Selection ("theta|fractional step"));
-  prm.declare_entry ("Theta", "0.5", Patterns::Double());
-  prm.declare_entry ("Time step", "0.1", Patterns::Double());
-  prm.declare_entry ("End time", "1",  Patterns::Double());
-  prm.leave_subsection ();
-  prm.leave_subsection ();
-
-  prm.enter_subsection ("Solver");
-  prm.declare_entry ("Preconditioning", "none",
-                    Patterns::Selection ("none|jacobi|sor|ssor"));
-  prm.declare_entry ("Extrapolate old solutions", "true",
-                    Patterns::Bool());
-  prm.leave_subsection ();
-
-  prm.enter_subsection ("Output");
-  prm.declare_entry ("Format", "gnuplot",
-                    Patterns::Selection(DataOutBase::get_output_format_names()));
-  prm.declare_entry ("Directory", "data");
-  prm.declare_entry ("Directory for temporaries", "data/tmp");
-  prm.declare_entry ("Write solutions", "all sweeps",
-                    Patterns::Selection ("never|all sweeps|last sweep only"));
-  prm.declare_entry ("Write stacked time steps", "false", Patterns::Bool());
-  prm.declare_entry ("Write stacked interval", "1", Patterns::Integer());
-  prm.declare_entry ("Write steps interval", "1", Patterns::Integer());
-  prm.declare_entry ("Write error as cell data", "true", Patterns::Bool());
-  prm.enter_subsection ("Error statistics");
-  prm.declare_entry ("Produce error statistics", "false", Patterns::Bool());
-  prm.declare_entry ("Number of intervals", "10", Patterns::Integer());
-  prm.declare_entry ("Interval spacing", "linear",
-                    Patterns::Selection(Histogram::get_interval_spacing_names()));
-  prm.leave_subsection ();
-  prm.leave_subsection ();
-
-
-prm.enter_subsection ("Goal");
-  prm.declare_entry ("Goal", "none",
-                    Patterns::Selection (dual_functional_names));
-  prm.declare_entry ("Evaluate", "");
-  prm.leave_subsection ();  
-
-
-prm.declare_entry ("Refinement criterion", "energy estimator",
-                    Patterns::Selection ("energy estimator|dual estimator"));
-  prm.declare_entry ("Sweeps", "3", Patterns::Integer());
-}
-
-
-template <int dim>
-void WaveParameters<dim>::parse_parameters (ParameterHandler &prm) {
-  std::map<std::string,BoundaryConditions> boundary_conditions_list;
-  boundary_conditions_list["wave from left"]        = wave_from_left;
-  boundary_conditions_list["fast wave from left"]   = fast_wave_from_left;
-  boundary_conditions_list["wave from left center"] = wave_from_left_center;
-  boundary_conditions_list["wave from left bottom"] = wave_from_left_bottom;
-  boundary_conditions_list["zero"] = zero;
-  
-  std::map<std::string,Preconditioning> preconditioning_list;
-  preconditioning_list["jacobi"] = jacobi;
-  preconditioning_list["sor"]    = sor;
-  preconditioning_list["ssor"]   = ssor;
-  preconditioning_list["none"]   = no_preconditioning;
-  
-  std::map<std::string,WriteStrategy> write_strategy_list;
-  write_strategy_list["never"] = never;
-  write_strategy_list["all sweeps"] = all_sweeps;
-  write_strategy_list["last sweep only"] = last_sweep_only;
-
-
-prm.enter_subsection ("Grid");
-  initial_refinement = prm.get_integer ("Initial refinement");
-
-  prm.enter_subsection ("Refinement");
-  {
-    refinement_fraction.first   = prm.get_double ("Refinement fraction");
-    refinement_fraction.second  = prm.get_double ("Coarsening fraction");
-    compare_indicators_globally = prm.get_bool ("Compare indicators globally");
-    maximum_refinement          = prm.get_integer ("Maximum refinement");
-    adapt_mesh_to_dual_solution = prm.get_bool ("Adapt mesh to dual solution");
-    primal_to_dual_weight       = prm.get_double ("Primal to dual weight");
-    initial_energy_estimator_sweeps = prm.get_integer("Initial energy estimator sweeps");
-  };
-  prm.leave_subsection ();
-
-  prm.enter_subsection ("Mesh smoothing");
-  {
-    cell_number_corridor.first  = prm.get_double ("Top cell number deviation");
-    cell_number_corridor.second = prm.get_double ("Bottom cell number deviation");
-    cell_number_correction_steps= prm.get_integer ("Cell number correction steps");
-  };
-  prm.leave_subsection ();
-
-  renumber_dofs               = prm.get_bool ("Renumber dofs");
-  prm.leave_subsection ();
-
-  prm.enter_subsection ("Equation data");
-  set_coefficient_functions (prm.get("Coefficient"));
-  set_initial_functions (prm.get("Initial u"), prm.get("Initial v"));
-  boundary_conditions = boundary_conditions_list[prm.get("Boundary")];
-  set_boundary_functions (prm.get("Boundary"));  
-  Assert (boundary_conditions_list.find(prm.get("Boundary")) !=
-         boundary_conditions_list.end(),
-         ExcParameterNotInList(prm.get("Boundary")));
-  prm.leave_subsection ();
-  
-  prm.enter_subsection ("Discretization");
-  primal_fe = prm.get("Primal FE");
-  dual_fe = prm.get("Dual FE");
-  prm.enter_subsection ("Time stepping");
-  theta    = prm.get_double ("Theta");
-  time_step= prm.get_double ("Time step");
-  end_time = prm.get_double ("End time");
-  prm.leave_subsection ();
-  prm.leave_subsection ();
-
-  prm.enter_subsection ("Solver");
-  preconditioning = preconditioning_list[prm.get("Preconditioning")];
-  Assert (preconditioning_list.find(prm.get("Preconditioning")) !=
-         preconditioning_list.end(),
-         ExcParameterNotInList(prm.get("Preconditioning")));
-  extrapolate_old_solutions = prm.get_bool ("Extrapolate old solutions");
-  prm.leave_subsection ();
-  
-  prm.enter_subsection ("Output");
-  output_format = prm.get("Format");
-  output_directory = prm.get("Directory");
-  if (output_directory[output_directory.size()-1] != '/')
-    output_directory += '/';
-  tmp_directory = prm.get ("Directory for temporaries");
-  if (tmp_directory[tmp_directory.size()-1] != '/')
-    tmp_directory += '/';
-  write_solution_strategy = write_strategy_list[prm.get("Write solutions")];
-  Assert (write_strategy_list.find(prm.get("Write solutions")) !=
-         write_strategy_list.end(),
-         ExcParameterNotInList(prm.get("Write solutions")));
-  write_stacked_data       = prm.get_bool ("Write stacked time steps");
-  write_stacked_interval   = prm.get_integer ("Write stacked interval");
-  write_steps_interval     = prm.get_integer ("Write steps interval");
-  write_error_as_cell_data = prm.get_bool ("Write error as cell data");
-  prm.enter_subsection ("Error statistics");
-  produce_error_statistics = prm.get_bool ("Produce error statistics");
-  error_statistic_intervals= prm.get_integer ("Number of intervals");
-  error_statistics_scaling = prm.get ("Interval spacing");
-  prm.leave_subsection ();
-  prm.leave_subsection ();
-
-
-prm.enter_subsection ("Goal");
-  set_dual_functional (prm.get("Goal"));
-  make_eval_list (prm.get("Evaluate"));
-  prm.leave_subsection ();
-
-
-if (prm.get("Refinement criterion")=="energy estimator")
-    refinement_strategy = energy_estimator;
-  else
-    refinement_strategy = dual_estimator;
-
-  number_of_sweeps = prm.get_integer ("Sweeps");
-
-  prm.enter_subsection ("Grid");
-  make_coarse_grid (prm.get("Coarse mesh"));
-  prm.leave_subsection ();
-}
-
-
-template class WaveParameters<2>;
-
-#include <numerics/data_out_stack.h>
-#include <dofs/dof_handler.h>  //??
-#include <lac/vector.h>
-
-
-template <int dim>
-SweepData<dim>::SweepData (const bool use_data_out_stack) 
-{
-  if (use_data_out_stack)
-    data_out_stack = new DataOutStack<dim>();
-  else
-    data_out_stack = 0;
-}
-
-
-template <int dim>
-SweepData<dim>::~SweepData () 
-{
-  if (data_out_stack != 0)
-    delete data_out_stack;
-  data_out_stack = 0;
-}
-
-
-template class SweepData<2>;
-
-
-#include <iomanip>
-#include <ctime>
-
-
-SweepInfo::Data &
-SweepInfo::get_data () 
-{
-  return data;
-}
-
-
-SweepInfo::Timers &
-SweepInfo::get_timers () 
-{
-  return timers;
-}
-
-
-template <int dim>
-void
-SweepInfo::write_summary (const std::list<EvaluationBase<dim>*> &eval_list,
-                         std::ostream &out) const
-{
-  out << "Summary of this sweep:" << std::endl
-      << "======================" << std::endl
-      << std::endl;
-
-  out << "  Accumulated number of cells: " << data.cells       << std::endl
-      << "  Acc. number of primal dofs : " << data.primal_dofs << std::endl
-      << "  Acc. number of dual dofs   : " << data.dual_dofs   << std::endl
-      << "  Accumulated error          : " << data.accumulated_error       << std::endl;
-  
-  if (eval_list.size() != 0)
-    {
-      out << std::endl;
-      out << "  Evaluations:" << std::endl
-         << "  ------------" << std::endl;
-      
-      for (typename std::list<EvaluationBase<dim>*>::const_iterator i = eval_list.begin();
-          i != eval_list.end(); ++i)
-
-      (*i)->print_final_result (out);
-    };
-  
-  time_t  time1= time (0);
-  tm     *time = localtime(&time1); 
-  out << "  Time tag: "
-      << time->tm_year+1900 << "/"
-      << time->tm_mon+1 << "/"
-      << time->tm_mday << ' '
-      << int_to_string (time->tm_hour, 2) << ":"
-      << int_to_string (time->tm_min, 2) << ":"
-      << int_to_string (time->tm_sec, 2) << std::endl;
-}
-
-
-SweepInfo::Data::Data () :
-               accumulated_error (0),
-               cells (0),
-               primal_dofs (0),
-               dual_dofs (0)
-{}
-
-
-template 
-void SweepInfo::write_summary (const std::list<EvaluationBase<2>*> &eval_list,
-                              std::ostream &out) const;
-
-
-
-#include <base/quadrature.h>
-#include <base/function.h>
-#include <lac/vector.h>
-#include <lac/full_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/solver_cg.h>
-#include <lac/vector_memory.h>
-#include <lac/precondition.h>
-#include <base/geometry_info.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria_iterator.h>
-#include <grid/tria.h>
-#include <fe/fe.h>
-#include <fe/fe_values.h>
-#include <fe/fe_update_flags.h>
-#include <numerics/matrices.h>
-#include <dofs/dof_renumbering.h>
-
-
-#include <fstream>
-#include <iomanip>
-
-
-static const std::pair<unsigned int, double> relaxations[3]
-= { std::make_pair(100,5), std::make_pair(300,3), std::make_pair(500,2) };
-
-
-static const TimeStepBase_Tria<2>::RefinementFlags::CorrectionRelaxations
-wave_correction_relaxations (1,
-                            std::vector<std::pair<unsigned int,double> > (&relaxations[0],
-                                                                &relaxations[3]));
-
-
-template <int dim>
-TimeStepBase_Wave<dim>::TimeStepBase_Wave ():
-               TimeStepBase_Tria<dim> (),
-  parameters (parameters)
-{}
-
-
-template <int dim>
-TimeStepBase_Wave<dim>::TimeStepBase_Wave (const double                    time,
-                                          typename TimeStepBase_Tria<dim>::Flags   flags,
-                                          const WaveParameters<dim>      &parameters)
-               :
-               TimeStepBase_Tria<dim> (time,
-                                       *parameters.coarse_grid,
-                                       flags,
-                                       typename TimeStepBase_Wave<dim>::RefinementFlags
-                                       (parameters.maximum_refinement,
-                                        1,
-                                        0,
-                                        parameters.cell_number_corridor.first,
-                                        parameters.cell_number_corridor.first,
-                                        wave_correction_relaxations,
-                                        parameters.cell_number_correction_steps,
-                                        (parameters.refinement_strategy ==
-                                         WaveParameters<dim>::dual_estimator),
-                                        true)),
-                                           parameters (parameters)
-{}
-
-
-template <int dim>
-const TimeStep_Primal<dim> &
-TimeStepBase_Wave<dim>::get_timestep_primal () const
-{
-  return dynamic_cast<const TimeStep_Primal<dim> &> (*this);
-}
-
-
-template <int dim>
-const TimeStep_Dual<dim> &
-TimeStepBase_Wave<dim>::get_timestep_dual () const
-{
-  return dynamic_cast<const TimeStep_Dual<dim> &> (*this);
-}
-
-
-template <int dim>
-const TimeStep_Postprocess<dim> &
-TimeStepBase_Wave<dim>::get_timestep_postprocess () const
-{
-  return dynamic_cast<const TimeStep_Postprocess<dim> &> (*this);
-}
-
-
-template <int dim>
-std::string TimeStepBase_Wave<dim>::tmp_filename_base (const std::string &branch_signature) const
-{
-  return (parameters.tmp_directory +
-         branch_signature + 's' +
-         int_to_string (this->sweep_no, 2) + 't' +
-         int_to_string (this->timestep_no, 4));
-}
-
-
-template <int dim>
-void TimeStepBase_Wave<dim>::attach_sweep_info (SweepInfo &si)
-{
-  this->sweep_info = &si;
-}
-
-
-template <int dim>
-void TimeStepBase_Wave<dim>::attach_sweep_data (SweepData<dim> &sd)
-{
-  sweep_data = &sd;
-}
-
-
-/* --------------------------------------------------------------*/
-
-
-template <int dim>
-TimeStep_Wave<dim>::TimeStep_Wave (const std::string fe_name) :
-               dof_handler (0),
-               fe (FEHelper<dim>::get_fe(fe_name)),
-               quadrature (FEHelper<dim>::get_quadrature(fe_name)),
-               quadrature_face (FEHelper<dim>::get_quadrature_face(fe_name)),
-               statistic_data()
-{}
-
-
-template <int dim>
-TimeStep_Wave<dim>::~TimeStep_Wave ()
-{
-  Assert (dof_handler == 0, ExcInternalError());
-  Assert (constraints.n_constraints() == 0, ExcInternalError());
-  Assert (system_sparsity.empty(), ExcInternalError());
-  Assert (mass_matrix.empty(), ExcInternalError());
-  Assert (laplace_matrix.empty(), ExcInternalError());
-  Assert (u.size() ==0, ExcInternalError());
-  Assert (v.size() ==0, ExcInternalError());
-}
-
-
-template <int dim>
-void TimeStep_Wave<dim>::wake_up (const unsigned int wakeup_level) 
-{
-  if (wakeup_level==0)
-    {
-      Assert (dof_handler==0, ExcInternalError());
-
-      this->sweep_info->get_timers().grid_generation.start();
-
-      dof_handler = new DoFHandler<dim>(*this->tria);
-      dof_handler->distribute_dofs (fe);
-
-      if (this->parameters.renumber_dofs)
-       DoFRenumbering::Cuthill_McKee (*dof_handler);
-
-
-constraints.clear ();
-      DoFTools::make_hanging_node_constraints (*dof_handler, constraints);
-      constraints.close ();
-
-      this->sweep_info->get_timers().grid_generation.stop();
-      
-      Assert (u.size()==0, ExcInternalError ());
-      Assert (v.size()==0, ExcInternalError ());
-
-      switch (this->next_action)
-       {
-         case TimeStepBase::primal_problem:
-         case TimeStepBase::dual_problem:
-         {
-           Assert (((this->next_action == TimeStepBase::primal_problem) &&
-                    (static_cast<const TimeStep_Wave<dim>*>(&this->get_timestep_primal())
-                     == this))
-                   ||
-                   ((this->next_action == TimeStepBase::dual_problem) &&
-                    (static_cast<const TimeStep_Wave<dim>*>(&this->get_timestep_dual())
-                     == this)),
-                   ExcInternalError());
-           
-           u.reinit (dof_handler->n_dofs(),
-                     this->parameters.extrapolate_old_solutions && (this->timestep_no!=0));
-           v.reinit (dof_handler->n_dofs(),
-                     this->parameters.extrapolate_old_solutions && (this->timestep_no!=0));
-           break;
-         };
-          
-         case TimeStepBase::postprocess:
-         {
-           this->sweep_info->get_timers().postprocessing.start();
-           std::ifstream tmp_in(this->tmp_filename_base(branch_signature()).c_str());
-           u.block_read (tmp_in);
-           v.block_read (tmp_in);
-           tmp_in.close ();
-
-           this->sweep_info->get_timers().postprocessing.stop();
-                   
-           break;
-         };
-          
-         default:
-               Assert (false, ExcInternalError());
-       };
-    };
-}
-
-
-template <int dim>
-void TimeStep_Wave<dim>::sleep (const unsigned int sleep_level) 
-{
-  switch (sleep_level)
-    {
-      case 1:
-      {
-       Assert (dof_handler!=0, ExcInternalError());
-      
-       delete dof_handler;
-       dof_handler = 0;
-
-       Assert (u.size() != 0, ExcInternalError());
-       Assert (v.size() != 0, ExcInternalError());
-
-       std::ofstream tmp_out(this->tmp_filename_base(branch_signature()).c_str());
-       u.block_write (tmp_out);
-       v.block_write (tmp_out);
-       tmp_out.close ();
-       
-       u.reinit (0);
-       v.reinit (0);
-       
-       Assert (constraints.n_constraints() == 0, ExcInternalError());
-       Assert (system_sparsity.empty(), ExcInternalError());
-       Assert (mass_matrix.empty(), ExcInternalError());
-       Assert (laplace_matrix.empty(), ExcInternalError());
-
-       break;
-      };
-
-      case 0:
-      {
-       constraints.clear ();
-       system_sparsity.reinit (0,0,0);
-       mass_matrix.reinit (system_sparsity);
-       laplace_matrix.reinit (system_sparsity);
-
-       break;
-      };
-
-      default:
-           Assert (false, ExcInternalError());
-    };
-}
-
-
-template <int dim>
-void TimeStep_Wave<dim>::end_sweep ()
-{
-  std::string tmp_filename = this->tmp_filename_base(branch_signature());
-  remove (tmp_filename.c_str());
-}
-
-
-template <int dim>
-unsigned int TimeStep_Wave<dim>::solve (const UserMatrix       &matrix,
-                                       Vector<double>         &solution,
-                                       const Vector<double>   &rhs) const {
-  SolverControl            control(2000, 1.e-12);
-  PrimitiveVectorMemory<>  memory;
-  SolverCG<>               pcg(control,memory);
-
-  pcg.template solve<UserMatrix> (matrix, solution, rhs,
-                                 PreconditionUseMatrix<UserMatrix>
-                                 (matrix,
-                                  &UserMatrix::precondition));
-  constraints.distribute (solution);
-
-  return control.last_step();
-}
-
-
-template <int dim>
-void TimeStep_Wave<dim>::create_matrices () 
-{        
-  system_sparsity.reinit (dof_handler->n_dofs(), dof_handler->n_dofs(),
-                         dof_handler->max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (*dof_handler, system_sparsity);
-  constraints.condense (system_sparsity);
-  system_sparsity.compress ();
-      
-  laplace_matrix.reinit (system_sparsity);
-  mass_matrix.reinit (system_sparsity);
-
-  const unsigned int dofs_per_cell       = fe.dofs_per_cell,
-                    n_q_points       = quadrature.n_quadrature_points;
-
-  const bool   density_constant = this->parameters.density_constant,
-            stiffness_constant = this->parameters.stiffness_constant;
-
-  std::vector<double> density_values   (n_q_points, 1.);
-  std::vector<double> stiffness_values (n_q_points, 1.);
-
-  if (density_constant)
-    fill_n (density_values.begin(), n_q_points,
-           this->parameters.density->value(Point<dim>()));
-  if (stiffness_constant)
-    fill_n (stiffness_values.begin(), n_q_points,
-           this->parameters.stiffness->value(Point<dim>()));
-
-
-FEValues<dim>  fe_values (fe, quadrature,
-                           UpdateFlags(update_values |
-                                       update_gradients  |
-                                       update_JxW_values |
-                                       (!density_constant || !stiffness_constant ?
-                                        update_q_points :
-                                        0)));
-
-  std::vector<unsigned int>    dof_indices_on_cell (dofs_per_cell);
-  FullMatrix<double> cell_mass_matrix (dofs_per_cell, dofs_per_cell);
-  FullMatrix<double> cell_laplace_matrix (dofs_per_cell, dofs_per_cell);
-
-
-  for (typename DoFHandler<dim>::active_cell_iterator cell=dof_handler->begin_active();
-       cell != dof_handler->end(); ++cell)
-    {
-      fe_values.reinit (cell);
-      cell_mass_matrix = 0;
-      cell_laplace_matrix = 0;
-      cell->get_dof_indices (dof_indices_on_cell);
-
-      if (!density_constant || !stiffness_constant)
-       {
-         if (!density_constant)
-           this->parameters.density->value_list (fe_values.get_quadrature_points (),
-                                           density_values);
-         if (!stiffness_constant)
-           this->parameters.stiffness->value_list (fe_values.get_quadrature_points (),
-                                             stiffness_values);
-       };
-      
-      for (unsigned int q_point=0; q_point<fe_values.n_quadrature_points; ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           {
-             cell_mass_matrix(i,j) += (fe_values.shape_value(i, q_point) *
-                                       fe_values.shape_value(j, q_point) *
-                                       fe_values.JxW(q_point)      *
-                                       density_values[q_point]);
-             cell_laplace_matrix(i,j) += (fe_values.shape_grad(i,q_point) *
-                                          fe_values.shape_grad(j,q_point) *
-                                          fe_values.JxW(q_point)      *
-                                          stiffness_values[q_point]);
-           };
-
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-         {
-           mass_matrix.add(dof_indices_on_cell[i],
-                           dof_indices_on_cell[j],
-                           cell_mass_matrix(i,j));
-           laplace_matrix.add(dof_indices_on_cell[i],
-                              dof_indices_on_cell[j],
-                              cell_laplace_matrix(i,j));
-         };
-    };
-}
-
-
-template <int dim>
-void TimeStep_Wave<dim>::transfer_old_solutions (Vector<double> &old_u,
-                                                Vector<double> &old_v) const 
-{
-  const DoFHandler<dim> *present_dof_handler = dof_handler,
-                       *    old_dof_handler = 0;
-  const Vector<double>  *old_grid_u = 0,
-                       *old_grid_v = 0;
-  
-  switch (this->next_action)
-    {
-      case TimeStepBase::primal_problem:
-           Assert (this->previous_timestep != 0, ExcInternalError());
-           
-           old_dof_handler = (static_cast<const TimeStepBase_Wave<dim>*>
-                              (this->previous_timestep)->get_timestep_primal()).dof_handler;
-           old_grid_u      = &(static_cast<const TimeStepBase_Wave<dim>*>
-                               (this->previous_timestep)->get_timestep_primal()).u;
-           old_grid_v      = &(static_cast<const TimeStepBase_Wave<dim>*>
-                               (this->previous_timestep)->get_timestep_primal()).v;
-           
-           break;
-
-      case TimeStepBase::dual_problem:
-           Assert (this->next_timestep != 0, ExcInternalError());
-           
-           old_dof_handler = (static_cast<const TimeStepBase_Wave<dim>*>
-                              (this->next_timestep)->get_timestep_dual()).dof_handler;
-           old_grid_u      = &(static_cast<const TimeStepBase_Wave<dim>*>
-                               (this->next_timestep)->get_timestep_dual()).u;
-           old_grid_v      = &(static_cast<const TimeStepBase_Wave<dim>*>
-                               (this->next_timestep)->get_timestep_dual()).v;
-
-           break;
-    };
-  
-  Assert (old_dof_handler != 0, ExcInternalError());
-
-  typename DoFHandler<dim>::cell_iterator old_cell = old_dof_handler->begin(),
-                                new_cell = present_dof_handler->begin();
-// In the following loop, we should really increment new_cell as well. but we
-// don't. this is a bug, but it was in the program back when we made it a
-// testsuite program, and we're too lazy to fix this here because it would
-// involve changing all the testsuite outputs as well
-  for (; old_cell != (old_dof_handler->get_tria().n_levels() == 1  ?
-                     static_cast<typename DoFHandler<dim>::cell_iterator>(old_dof_handler->end()) :
-                     old_dof_handler->begin(1));
-       ++old_cell)
-    transfer_old_solutions (old_cell, new_cell,
-                           *old_grid_u, *old_grid_v,
-                           old_u, old_v);
-}
-
-
-template <int dim>
-void
-TimeStep_Wave<dim>::transfer_old_solutions (const typename DoFHandler<dim>::cell_iterator &old_cell,
-                                           const typename DoFHandler<dim>::cell_iterator &new_cell,
-                                           const Vector<double>  &old_grid_u,
-                                           const Vector<double>  &old_grid_v,
-                                           Vector<double>        &old_u,
-                                           Vector<double>        &old_v) const 
-{
-  if (!old_cell->has_children() && !new_cell->has_children()) 
-    {
-      for (unsigned int c=0; c<GeometryInfo<dim>::children_per_cell; ++c)
-       transfer_old_solutions (old_cell->child(c),
-                               new_cell->child(c),
-                               old_grid_u, old_grid_v,
-                               old_u, old_v);
-    }
-  else
-    {
-      Vector<double> cell_data (fe.dofs_per_cell);
-
-      old_cell->get_interpolated_dof_values (old_grid_u, cell_data);
-      new_cell->set_dof_values_by_interpolation (cell_data, old_u);
-      
-      old_cell->get_interpolated_dof_values (old_grid_v, cell_data);
-      new_cell->set_dof_values_by_interpolation (cell_data, old_v);
-    };
-}
-
-
-template <int dim>
-std::pair<double,double>
-TimeStep_Wave<dim>::compute_energy () {
-  std::pair<double,double> energy;
-  
-  switch (this->next_action)
-    {
-      case TimeStepBase::primal_problem:
-           energy.first = 0.5*laplace_matrix.matrix_norm_square (u);
-           energy.second = 0.5*mass_matrix.matrix_norm_square(v);
-           break;
-
-      case TimeStepBase::dual_problem:
-           energy.first = 0.5*laplace_matrix.matrix_norm_square (v);
-           energy.second = 0.5*mass_matrix.matrix_norm_square(u);
-           break;
-
-      default:
-           Assert (false, ExcInternalError());
-    };
-
-  return energy;
-}
-
-
-template <int dim>
-TimeStep_Wave<dim>::StatisticData::
-StatisticData () :
-               n_active_cells (0),
-               n_dofs (0),
-               n_solver_steps_helmholtz (0),
-               n_solver_steps_projection (0),
-               energy (std::make_pair(0.0, 0.0))
-{}
-
-
-template <int dim>
-TimeStep_Wave<dim>::StatisticData::
-StatisticData (const unsigned int        n_active_cells,
-              const unsigned int        n_dofs,
-              const unsigned int        n_solver_steps_helmholtz,
-              const unsigned int        n_solver_steps_projection,
-              const std::pair<double,double> energy) :
-               n_active_cells (n_active_cells),
-               n_dofs (n_dofs),
-               n_solver_steps_helmholtz (n_solver_steps_helmholtz),
-               n_solver_steps_projection (n_solver_steps_projection),
-               energy (energy)
-{}
-
-
-template <int dim>
-void
-TimeStep_Wave<dim>::StatisticData::write_descriptions (std::ostream &out) 
-{
-  out << "#    number of active cells"                 << std::endl
-      << "#    number of degrees of freedom"           << std::endl
-      << "#    iterations for the helmholtz equation"  << std::endl
-      << "#    iterations for the projection equation" << std::endl
-      << "#    elastic energy"                         << std::endl
-      << "#    kinetic energy"                         << std::endl
-      << "#    total energy"                           << std::endl;
-}
-
-
-template <int dim>
-void TimeStep_Wave<dim>::StatisticData::write (std::ostream &out) const
-{
-  out << n_active_cells             << ' '
-      << n_dofs                     << ' '
-      << n_solver_steps_helmholtz   << ' '
-      << n_solver_steps_projection  << ' '
-      << energy.first               << ' '
-      << energy.second              << ' '
-      << energy.first+energy.second;
-}
-
-
-template class TimeStepBase_Wave<2>;
-template class TimeStep_Wave<2>;
-
-#include <base/function.h>
-#include <lac/full_matrix.h>
-#include <lac/vector.h>
-#include <lac/sparse_matrix.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria_iterator.h>
-#include <fe/fe_values.h>
-#include <fe/fe.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-
-
-#include <iomanip>
-
-
-template <int dim>
-TimeStep_Dual<dim>::TimeStep_Dual (const std::string &dual_fe)
-               :
-               TimeStep_Wave<dim> (dual_fe)
-{}
-
-
-template <int dim>
-void TimeStep_Dual<dim>::do_initial_step () {
-  deallog << "  Dual problem: time="
-       << this->time
-       << ", step=" << this->timestep_no
-       << ", sweep=" << this->sweep_no
-       << ". "
-       << this->tria->n_active_cells() << " cells, "
-       << this->dof_handler->n_dofs() << " dofs";
-  
-  this->sweep_info->get_data().dual_dofs += this->dof_handler->n_dofs() * 2;
-
-  Vector<double> tmp_u_bar, tmp_v_bar;
-
-  this->parameters.dual_functional->reset (*this);
-  this->parameters.dual_functional->
-    compute_endtime_vectors (tmp_u_bar, tmp_v_bar);
-  this->u.reinit (tmp_u_bar.size());
-  this->v.reinit (tmp_v_bar.size());
-  if ((tmp_u_bar.linfty_norm() > 0) || (tmp_v_bar.linfty_norm() > 0))
-    {
-      UserMatrix system_matrix (this->system_sparsity,
-                               this->parameters.preconditioning);
-      system_matrix.copy_from (this->mass_matrix);
-      this->constraints.condense (static_cast<SparseMatrix<double>&>(system_matrix));
-      const unsigned int
-       solver_steps1 = this->solve (system_matrix, this->u, tmp_u_bar),
-       solver_steps2 = this->solve (system_matrix, this->v, tmp_v_bar);
-
-      this->statistic_data = typename TimeStep_Wave<dim>::StatisticData (this->tria->n_active_cells(),
-                                                                  this->dof_handler->n_dofs(),
-                                                                  solver_steps1, solver_steps2,
-                                                                  this->compute_energy ());
-    }
-  else
-    this->statistic_data = typename TimeStep_Wave<dim>::StatisticData (this->tria->n_active_cells(),
-                                                                this->dof_handler->n_dofs(),
-                                                                0, 0,
-                                                                std::make_pair (0.0, 0.0));
-  deallog << "." << std::endl;
-}
-
-
-template <int dim>
-void TimeStep_Dual<dim>::do_timestep ()
-{
-  deallog << "  Dual problem: time="
-       << this->time
-       << ", step=" << this->timestep_no
-       << ", sweep=" << this->sweep_no
-       << ". "
-       << this->tria->n_active_cells() << " cells, "
-       << this->dof_handler->n_dofs() << " dofs";
-
-  this->sweep_info->get_data().dual_dofs += this->dof_handler->n_dofs() * 2;
-
-  const double time_step = this->get_forward_timestep ();
-
-  Vector<double> right_hand_side1 (this->dof_handler->n_dofs());
-  Vector<double> right_hand_side2 (this->dof_handler->n_dofs());
-  
-  Vector<double> old_u, old_v;
-  if (this->parameters.extrapolate_old_solutions)
-    {
-      old_u.reinit (this->dof_handler->n_dofs());
-      old_v.reinit (this->dof_handler->n_dofs());
-
-      this->transfer_old_solutions (old_u, old_v);
-    };
-    
-  assemble_vectors (right_hand_side1, right_hand_side2);
-
-  UserMatrix system_matrix (this->system_sparsity, this->parameters.preconditioning);
-  system_matrix.copy_from (this->mass_matrix);
-  system_matrix.add_scaled (time_step * time_step *
-                           this->parameters.theta *
-                           this->parameters.theta,
-                           this->laplace_matrix);
-  this->constraints.condense (static_cast<SparseMatrix<double>&>(system_matrix));
-       
-  if (this->parameters.extrapolate_old_solutions)
-    {
-      this->v  = old_v;
-      this->v.add (time_step, old_u);
-    };
-
-
-  std::map<unsigned int,double> boundary_value_list;
-  if (dim != 1)
-    {
-      static const ZeroFunction<dim> boundary_values;
-      
-      VectorTools::interpolate_boundary_values (*this->dof_handler, 0, boundary_values,
-                                                    boundary_value_list);
-      MatrixTools::apply_boundary_values (boundary_value_list,
-                                         system_matrix, this->v,
-                                         right_hand_side1);
-    };
-  
-  const unsigned int solver_steps1 = this->solve (system_matrix, this->v, right_hand_side1);
-       
-  system_matrix.copy_from (this->mass_matrix);
-  this->constraints.condense (static_cast<SparseMatrix<double>&>(system_matrix));
-  if (true)
-    {
-      Vector<double> tmp (right_hand_side2.size());
-      this->laplace_matrix.vmult (tmp, this->v);
-      right_hand_side2.add (-this->parameters.theta*time_step, tmp);
-    };
-  this->constraints.condense (right_hand_side2);
-  if (dim != 1)
-    MatrixTools::apply_boundary_values (boundary_value_list,
-                                       system_matrix, this->u,
-                                       right_hand_side2);
-  
-  if (this->parameters.extrapolate_old_solutions)
-    {
-      this->u  = this->v;
-      this->u -= old_v;
-      this->u.scale (2./time_step);
-      this->u -= old_u;
-    };
-  
-  const unsigned int solver_steps2 = this->solve (system_matrix, this->u, right_hand_side2);
-
-  this->statistic_data = typename TimeStep_Wave<dim>::StatisticData (this->tria->n_active_cells(),
-                                                              this->dof_handler->n_dofs(),
-                                                              solver_steps1,
-                                                              solver_steps2,
-                                                              this->compute_energy ());
-  
-  deallog << "." << std::endl;
-}
-
-
-template <int dim>
-void TimeStep_Dual<dim>::solve_dual_problem ()
-{
-  this->sweep_info->get_timers().dual_problem.start();
-  if (this->next_timestep == 0)
-    do_initial_step ();
-  else
-    do_timestep ();
-  this->sweep_info->get_timers().dual_problem.stop();
-}
-
-
-template <int dim>
-std::string TimeStep_Dual<dim>::branch_signature () const 
-{
-  return "d";
-}
-
-
-template <int dim>
-void TimeStep_Dual<dim>::wake_up (const unsigned int wakeup_level)
-{
-  TimeStep_Wave<dim>::wake_up (wakeup_level);
-  
-  this->sweep_info->get_timers().dual_problem.start();
-  if ((wakeup_level==0) && (this->next_action==TimeStepBase::dual_problem))
-    {
-      Assert (this->system_sparsity.empty(), ExcInternalError());
-      
-      this->create_matrices ();
-    };
-  this->sweep_info->get_timers().dual_problem.stop();
-}
-
-
-template <int dim>
-void TimeStep_Dual<dim>::assemble_vectors (Vector<double> &right_hand_side1,
-                                          Vector<double> &right_hand_side2) {
-  Assert (this->next_timestep != 0, ExcInternalError());
-  
-  build_rhs (right_hand_side1, right_hand_side2);
-
-  Vector<double> dual1, dual2;
-  this->parameters.dual_functional->reset (*this);
-  this->parameters.dual_functional->compute_functionals (dual1, dual2);
-
-  const double timestep = this->get_forward_timestep();
-  right_hand_side1.add (timestep, dual2);
-  right_hand_side1.add (this->parameters.theta * timestep * timestep, dual1);
-
-  right_hand_side2.add (timestep, dual1);
-
-  this->constraints.condense (right_hand_side1);
-}
-
-
-template <int dim>
-void TimeStep_Dual<dim>::build_rhs (Vector<double> &right_hand_side1,
-                                   Vector<double> &right_hand_side2) {
-  const TimeStep_Dual<dim> &previous_time_level
-    = static_cast<const TimeStepBase_Wave<dim>*>(this->next_timestep)->get_timestep_dual();
-
-  Assert (previous_time_level.tria->n_cells(0) == this->tria->n_cells(0),
-         typename TimeStep_Wave<dim>::ExcCoarsestGridsDiffer());
-
-  typedef typename DoFHandler<dim>::cell_iterator cell_iterator;
-
-  FEValues<dim> fe_values (this->fe, this->quadrature,
-                          UpdateFlags(update_values |
-                                      update_gradients |
-                                      update_JxW_values |
-                                      update_q_points));
-
-
-cell_iterator old_cell = previous_time_level.dof_handler->begin(),
-               new_cell = this->dof_handler->begin(),
-               end_cell = (this->tria->n_levels() == 1                  ?
-                           static_cast<cell_iterator>(this->dof_handler->end()) :
-                           this->dof_handler->begin(1));  
-  for (; new_cell!=end_cell; ++new_cell, ++old_cell)
-    build_rhs (old_cell, new_cell,
-              fe_values,
-              right_hand_side1, right_hand_side2);
-}
-
-
-template <int dim>
-void
-TimeStep_Dual<dim>::build_rhs (const typename DoFHandler<dim>::cell_iterator &old_cell,
-                              const typename DoFHandler<dim>::cell_iterator &new_cell,
-                              FEValues<dim>        &fe_values,
-                              Vector<double>       &right_hand_side1,
-                              Vector<double>       &right_hand_side2)
-{
-  typedef typename DoFHandler<dim>::cell_iterator cell_iterator;
-
-  if (old_cell->has_children() && new_cell->has_children()) 
-    {
-      for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
-       build_rhs (old_cell->child(child),
-                  new_cell->child(child),
-                  fe_values,
-                  right_hand_side1,
-                  right_hand_side2);
-      return;
-    };
-
-
-  const TimeStep_Dual<dim> &previous_time_level
-    = static_cast<const TimeStepBase_Wave<dim>*>(this->next_timestep)->get_timestep_dual();
-
-  const unsigned int dofs_per_cell = this->fe.dofs_per_cell;
-  const double time_step = this->get_forward_timestep();
-
-  if (!old_cell->has_children() && !new_cell->has_children()) 
-    {
-      fe_values.reinit (old_cell);
-      FullMatrix<double>    cell_matrix (dofs_per_cell, dofs_per_cell);
-
-      std::vector<double> density_values(fe_values.n_quadrature_points);
-      this->parameters.density->value_list (fe_values.get_quadrature_points(),
-                                     density_values);
-      for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i) 
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           cell_matrix(i,j) += (fe_values.shape_value(i,point) *
-                                fe_values.shape_value(j,point)) *
-                               fe_values.JxW(point) *
-                               density_values[point];
-
-      Vector<double> tmp (dofs_per_cell);
-      Vector<double> rhs1 (dofs_per_cell);
-
-      Vector<double> rhs2 (dofs_per_cell);
-           
-      Vector<double> old_dof_values_v (dofs_per_cell);
-      Vector<double> local_M_u (dofs_per_cell);
-      Vector<double> local_M_v (dofs_per_cell);
-      Vector<double> local_A_v (dofs_per_cell);      
-      old_cell->get_dof_values (previous_time_level.v, old_dof_values_v);
-      cell_matrix.vmult (local_M_v, old_dof_values_v);
-      
-      old_cell->get_dof_values (previous_time_level.u, tmp);
-      cell_matrix.vmult (local_M_u, tmp);
-
-      cell_matrix = 0;
-      std::vector<double> stiffness_values(fe_values.n_quadrature_points);
-      this->parameters.stiffness->value_list (fe_values.get_quadrature_points(),
-                                       stiffness_values);
-      for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i) 
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                                fe_values.shape_grad(j,point)) *
-                               fe_values.JxW(point) *
-                               stiffness_values[point];
-      cell_matrix.vmult (local_A_v, old_dof_values_v);
-
-      rhs1 = local_M_v;
-      rhs1.add (time_step, local_M_u);
-      rhs1.add ((-time_step*time_step*
-                this->parameters.theta*
-                (1-this->parameters.theta)),
-               local_A_v);
-      rhs2 = local_M_u;
-      rhs2.add (-(1-this->parameters.theta)*
-               time_step,
-               local_A_v);
-
-      std::vector<unsigned int> new_dof_indices (dofs_per_cell, DoFHandler<dim>::invalid_dof_index);
-      new_cell->get_dof_indices (new_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         right_hand_side1(new_dof_indices[i]) += rhs1(i);
-         right_hand_side2(new_dof_indices[i]) += rhs2(i);
-       };
-      
-      return;
-    };
-
-  if (old_cell->has_children() && !new_cell->has_children())
-    {
-      Vector<double> rhs1 (dofs_per_cell);
-      Vector<double> rhs2 (dofs_per_cell);
-
-      collect_from_children (old_cell, fe_values, rhs1, rhs2);
-      
-      std::vector<unsigned int> new_dof_indices (dofs_per_cell);
-      new_cell->get_dof_indices (new_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i) 
-       {
-         right_hand_side1(new_dof_indices[i]) += rhs1(i);
-         right_hand_side2(new_dof_indices[i]) += rhs2(i);
-       };
-
-      return;
-    };
-
-  if (!old_cell->has_children() && new_cell->has_children())
-    {
-      Vector<double>  old_dof_values_u (dofs_per_cell);
-      Vector<double>  old_dof_values_v (dofs_per_cell);
-      old_cell->get_dof_values (previous_time_level.u, old_dof_values_u);
-      old_cell->get_dof_values (previous_time_level.v, old_dof_values_v);
-
-      distribute_to_children (new_cell, fe_values,
-                             old_dof_values_u, old_dof_values_v,
-                             right_hand_side1, right_hand_side2);
-
-      return;
-    };
-
-  Assert (false, ExcInternalError());
-}
-
-
-template <int dim>
-unsigned int
-TimeStep_Dual<dim>::collect_from_children (const typename DoFHandler<dim>::cell_iterator &old_cell,
-                                          FEValues<dim>  &fe_values,
-                                          Vector<double> &rhs1,
-                                          Vector<double> &rhs2) const {
-  unsigned int level_difference = 1;  
-  
-  const TimeStep_Dual<dim> &previous_time_level
-    = static_cast<const TimeStepBase_Wave<dim>*>(this->next_timestep)->get_timestep_dual();
-
-  const unsigned int dofs_per_cell = this->fe.dofs_per_cell;
-  const double time_step = this->get_forward_timestep();
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-
-  Vector<double>  local_old_dof_values_u (dofs_per_cell);
-  Vector<double>  local_old_dof_values_v (dofs_per_cell);
-
-  Vector<double>  local_M_u (dofs_per_cell);
-  Vector<double>  local_M_v (dofs_per_cell);
-  Vector<double>  local_A_v (dofs_per_cell);
-      
-  Vector<double> child_rhs1 (dofs_per_cell);
-  Vector<double> child_rhs2 (dofs_per_cell);
-      
-  for (unsigned int c=0; c<GeometryInfo<dim>::children_per_cell; ++c) 
-    {
-      const typename DoFHandler<dim>::cell_iterator old_child = old_cell->child(c);
-
-      child_rhs1 = 0;
-      child_rhs2 = 0;
-      
-      if (old_child->has_children())
-       {
-         const unsigned int l = collect_from_children (old_child, fe_values,
-                                                       child_rhs1, child_rhs2);
-         level_difference = std::max (l+1, level_difference);
-       }
-      else
-       {
-         fe_values.reinit (old_child);
-         old_child->get_dof_values (previous_time_level.u, local_old_dof_values_u);
-         old_child->get_dof_values (previous_time_level.v, local_old_dof_values_v);
-
-         cell_matrix = 0;
-         std::vector<double> density_values(fe_values.n_quadrature_points);
-         this->parameters.density->value_list (fe_values.get_quadrature_points(),
-                                         density_values);
-         for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-           for (unsigned int i=0; i<dofs_per_cell; ++i) 
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               cell_matrix(i,j) += (fe_values.shape_value(i,point) *
-                                    fe_values.shape_value(j,point)) *
-                                   fe_values.JxW(point) *
-                                   density_values[point];
-
-         cell_matrix.vmult (local_M_u, local_old_dof_values_u);
-         cell_matrix.vmult (local_M_v, local_old_dof_values_v);
-
-         cell_matrix = 0;
-         std::vector<double> stiffness_values(fe_values.n_quadrature_points);
-         this->parameters.stiffness->value_list (fe_values.get_quadrature_points(),
-                                               stiffness_values);
-         for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-           for (unsigned int i=0; i<dofs_per_cell; ++i) 
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                                    fe_values.shape_grad(j,point)) *
-                                   fe_values.JxW(point) *
-                                   stiffness_values[point];
-         cell_matrix.vmult (local_A_v, local_old_dof_values_v);
-         
-         child_rhs1 = local_M_v;
-         child_rhs1.add (time_step, local_M_u);
-         child_rhs1.add ((-time_step*time_step*
-                          this->parameters.theta*
-                          (1-this->parameters.theta)),
-                         local_A_v);
-         child_rhs2 = local_M_u;
-         child_rhs2.add (-(1-this->parameters.theta)*
-                         time_step,
-                         local_A_v);
-       };
-      
-      this->fe.get_prolongation_matrix(c).Tvmult (rhs1, child_rhs1, true);
-      this->fe.get_prolongation_matrix(c).Tvmult (rhs2, child_rhs2, true);
-    };
-
-  return level_difference;
-}
-
-
-template <int dim>
-unsigned int
-TimeStep_Dual<dim>::distribute_to_children (const typename DoFHandler<dim>::cell_iterator &new_cell,
-                                           FEValues<dim>         &fe_values,
-                                           const Vector<double>  &old_dof_values_u,
-                                           const Vector<double>  &old_dof_values_v,
-                                           Vector<double>        &right_hand_side1,
-                                           Vector<double>        &right_hand_side2) {
-  unsigned int level_difference = 1;  
-  
-  const unsigned int dofs_per_cell = this->fe.dofs_per_cell;
-  const double time_step = this->get_forward_timestep();
-
-  FullMatrix<double>    cell_matrix(dofs_per_cell, dofs_per_cell);
-  Vector<double> local_old_dof_values_u (dofs_per_cell);
-  Vector<double> local_old_dof_values_v (dofs_per_cell);
-
-  Vector<double> local_M_u (dofs_per_cell);
-  Vector<double> local_M_v (dofs_per_cell);
-  Vector<double> local_A_v (dofs_per_cell);
-
-  Vector<double> rhs1 (dofs_per_cell);
-
-  Vector<double> rhs2 (dofs_per_cell);
-           
-  std::vector<unsigned int> new_dof_indices (dofs_per_cell, DoFHandler<dim>::invalid_dof_index);
-
-
-  for (unsigned int c=0; c<GeometryInfo<dim>::children_per_cell; ++c) 
-    {
-      const typename DoFHandler<dim>::cell_iterator new_child = new_cell->child(c);
-
-      this->fe.get_prolongation_matrix(c).vmult (local_old_dof_values_u,
-                                  old_dof_values_u);
-      this->fe.get_prolongation_matrix(c).vmult (local_old_dof_values_v,
-                                  old_dof_values_v);
-
-      if (new_child->has_children())
-       {
-         const unsigned int l = distribute_to_children (new_child, fe_values,
-                                                        local_old_dof_values_u,
-                                                        local_old_dof_values_v,
-                                                        right_hand_side1,
-                                                        right_hand_side2);
-         level_difference = std::max (l+1, level_difference);
-       }
-      else
-       {
-         fe_values.reinit (new_child);
-         cell_matrix = 0;
-         std::vector<double> density_values(fe_values.n_quadrature_points);
-         this->parameters.density->value_list (fe_values.get_quadrature_points(),
-                                         density_values);
-         for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-           for (unsigned int i=0; i<dofs_per_cell; ++i) 
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               cell_matrix(i,j) += (fe_values.shape_value(i,point) *
-                                    fe_values.shape_value(j,point)) *
-                                   fe_values.JxW(point) *
-                                   density_values[point];
-
-         cell_matrix.vmult (local_M_u, local_old_dof_values_u);
-         cell_matrix.vmult (local_M_v, local_old_dof_values_v);
-
-         cell_matrix = 0;
-         std::vector<double> stiffness_values(fe_values.n_quadrature_points);
-         this->parameters.stiffness->value_list (fe_values.get_quadrature_points(),
-                                           stiffness_values);
-         for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-           for (unsigned int i=0; i<dofs_per_cell; ++i) 
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                                    fe_values.shape_grad(j,point)) *
-                                   fe_values.JxW(point) *
-                                   stiffness_values[point];
-         cell_matrix.vmult (local_A_v, local_old_dof_values_v);
-
-         rhs1 = local_M_v;
-         rhs1.add (time_step, local_M_u);
-         rhs1.add ((-time_step*time_step*
-                    this->parameters.theta*
-                    (1-this->parameters.theta)),
-                   local_A_v);
-         rhs2 = local_M_u;
-         rhs2.add (-(1-this->parameters.theta)*
-                   time_step,
-                   local_A_v);
-         
-         new_child->get_dof_indices (new_dof_indices);
-         for (unsigned int i=0; i<dofs_per_cell; ++i)
-           {
-             right_hand_side1(new_dof_indices[i]) += rhs1(i);
-             right_hand_side2(new_dof_indices[i]) += rhs2(i);
-           };
-       };
-    };
-
-  return level_difference;
-}
-
-
-template class TimeStep_Dual<2>;
-
-
-#include <base/tensor.h>
-#include <lac/vector.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria_iterator.h>
-#include <dofs/dof_constraints.h>
-#include <fe/fe.h>
-#include <fe/fe_values.h>
-#include <numerics/error_estimator.h>
-
-
-#include <fstream>
-#include <iomanip>
-#include <cmath>
-#include <numeric>
-
-
-template <int dim>
-TimeStep_ErrorEstimation<dim>::TimeStep_ErrorEstimation () 
-{}
-
-
-template <int dim>
-void TimeStep_ErrorEstimation<dim>::estimate_error ()
-{
-  this->sweep_info->get_timers().error_estimation.start();
-
-  deallog << "[ee]";
-  
-  if ((this->parameters.refinement_strategy == WaveParameters<dim>::energy_estimator)
-      ||
-      (this->sweep_no < this->parameters.initial_energy_estimator_sweeps))
-    estimate_error_energy (0);
-
-  else
-    {
-      if (this->timestep_no != 0)
-       estimate_error_dual ();
-    };
-
-  const double accumulated_error = std::accumulate (estimated_error_per_cell.begin(),
-                                                   estimated_error_per_cell.end(),
-                                                   0.0);
-  statistic_data = StatisticData (accumulated_error);
-  this->sweep_info->get_data().accumulated_error += accumulated_error;
-
-  this->sweep_info->get_timers().error_estimation.stop();
-}
-
-
-template <int dim>
-void TimeStep_ErrorEstimation<dim>::wake_up (const unsigned int wakeup_level)
-{
-  Assert (this->next_action==TimeStepBase::postprocess, ExcInternalError());
-
-  if (wakeup_level==0)
-    {
-      Assert (estimated_error_per_cell.size()==0,
-             ExcInternalError());
-      
-      estimated_error_per_cell.reinit (this->tria->n_active_cells());
-    };
-}
-
-
-template <int dim>
-void TimeStep_ErrorEstimation<dim>::sleep (const unsigned int sleep_level)
-{
-  Assert (this->next_action==TimeStepBase::postprocess, ExcInternalError());
-
-  if (sleep_level==0)
-    {
-      Assert (estimated_error_per_cell.size()!=0,
-             ExcInternalError());
-
-      std::ofstream tmp_out(this->tmp_filename_base(branch_signature()).c_str());
-      estimated_error_per_cell.block_write (tmp_out);
-      tmp_out.close ();
-
-      estimated_error_per_cell.reinit (0);
-    };
-}
-
-
-template <int dim>
-void
-TimeStep_ErrorEstimation<dim>::get_tria_refinement_criteria (Vector<float> &indicators) const 
-{
-  get_error_indicators (indicators);
-  for (Vector<float>::iterator i=indicators.begin(); i!=indicators.end(); ++i)
-    *i = fabs(*i);
-}
-
-
-template <int dim>
-void
-TimeStep_ErrorEstimation<dim>::get_error_indicators (Vector<float> &indicators) const 
-{
-  std::ifstream in (this->tmp_filename_base(branch_signature()).c_str());
-  indicators.block_read (in);
-}
-
-
-template <int dim>
-void TimeStep_ErrorEstimation<dim>::estimate_error_energy (const unsigned int which_variables) {
-  Assert (which_variables<=1, ExcInternalError());
-  
-  typename FunctionMap<dim>::type neumann_boundary;
-  static ZeroFunction<dim> homogeneous_neumann_bc;
-  neumann_boundary[1] = &homogeneous_neumann_bc;
-
-  const TimeStep_Wave<dim> &target = (which_variables==0 ?
-                                     static_cast<const TimeStep_Wave<dim>&>(this->get_timestep_primal()) :
-                                     static_cast<const TimeStep_Wave<dim>&>(this->get_timestep_dual ()));
-
-  KellyErrorEstimator<dim>::estimate (*target.dof_handler,
-                                     target.quadrature_face,
-                                     neumann_boundary,
-                                     (which_variables==0 ?
-                                      target.u :
-                                      target.v),
-                                     estimated_error_per_cell,
-                                     std::vector<bool>(),
-                                     this->parameters.stiffness);
-
-  if (((this->previous_timestep == 0) && (which_variables==0)) ||
-      ((this->next_timestep     == 0) && (which_variables==1)  ))
-    {
-      Vector<float> v_estimator(estimated_error_per_cell.size());
-      KellyErrorEstimator<dim>::estimate (*target.dof_handler,
-                                         target.quadrature_face,
-                                         neumann_boundary,
-                                         (which_variables==0 ?
-                                          target.v :
-                                          target.u),
-                                         v_estimator,
-                                         std::vector<bool>(),
-                                         this->parameters.density);
-      estimated_error_per_cell += v_estimator;
-    };
-}
-
-
-template <int dim>
-void TimeStep_ErrorEstimation<dim>::estimate_error_dual () {
-  CellwiseError cellwise_error (this->tria->n_active_cells());
-
-  const TimeStep_Primal<dim> &primal_problem     = this->get_timestep_primal(),
-                            &primal_problem_old = static_cast<const TimeStepBase_Wave<dim>*>
-                                                  (this->previous_timestep)->get_timestep_primal();
-  const TimeStep_Dual<dim>   &dual_problem     = this->get_timestep_dual(),
-                            &dual_problem_old = static_cast<const TimeStepBase_Wave<dim>*>
-                                                (this->previous_timestep)->get_timestep_dual();
-
-
-  if (true)
-    {
-      typename DoFHandler<dim>::active_cell_iterator
-       cell = primal_problem.dof_handler->begin_active();
-      const typename DoFHandler<dim>::active_cell_iterator
-       endc = primal_problem.dof_handler->end();
-      for (; cell!=endc; ++cell)
-       cell->clear_user_pointer();
-    };
-  
-  make_interpolation_matrices ();
-
-  if (true)
-    {
-      FEValues<dim> fe_values (dual_problem.fe,
-                              dual_problem.quadrature,
-                              UpdateFlags(update_values |
-                                          update_gradients |
-                                          update_second_derivatives |
-                                          update_JxW_values |
-                                          update_q_points));
-
-      typename DoFHandler<dim>::cell_iterator
-       primal_cell     = primal_problem.dof_handler->begin(),
-       dual_cell       = dual_problem.dof_handler->begin(),
-       primal_cell_old = primal_problem_old.dof_handler->begin(),
-       dual_cell_old   = dual_problem_old.dof_handler->begin();
-      const typename DoFHandler<dim>::cell_iterator
-       endc            = primal_problem.dof_handler->end(0);
-
-      for (; primal_cell!=endc; (++primal_cell, ++dual_cell,
-                                ++primal_cell_old, ++dual_cell_old))
-       estimate_error_dual (primal_cell, dual_cell,
-                            primal_cell_old, dual_cell_old,
-                            cellwise_error,
-                            fe_values);
-    };
-
-  ErrorOnCell total_estimated_error;
-
-
-  Vector<float>::iterator i = estimated_error_per_cell.begin();
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = primal_problem.dof_handler->begin_active();
-  const typename DoFHandler<dim>::active_cell_iterator
-    endc = primal_problem.dof_handler->end();
-  for (; cell!=endc; ++cell, ++i)
-    {
-      const ErrorOnCell *
-       error_on_this_cell = static_cast<ErrorOnCell*>(cell->user_pointer());
-      Assert (error_on_this_cell != 0, ::ExcInternalError());
-
-      cell->clear_user_pointer ();
-      
-      *i = error_on_this_cell->sum();
-      total_estimated_error += *error_on_this_cell;
-    };
-}
-
-
-template <int dim>
-void
-TimeStep_ErrorEstimation<dim>::estimate_error_dual (const typename DoFHandler<dim>::cell_iterator &primal_cell,
-                                                   const typename DoFHandler<dim>::cell_iterator &dual_cell,
-                                                   const typename DoFHandler<dim>::cell_iterator &primal_cell_old,
-                                                   const typename DoFHandler<dim>::cell_iterator &dual_cell_old,
-                                                   CellwiseError  &cellwise_error,
-                                                   FEValues<dim>  &fe_values) const {
-  
-  if (primal_cell->has_children() && primal_cell_old->has_children())
-    {
-      for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
-       estimate_error_dual (primal_cell->child(child),
-                            dual_cell->child(child),
-                            primal_cell_old->child(child),
-                            dual_cell_old->child(child),
-                            cellwise_error,
-                            fe_values);
-      return;
-    };
-
-
-const TimeStep_Primal<dim> &primal_problem     = this->get_timestep_primal(),
-                            &primal_problem_old = static_cast<const TimeStepBase_Wave<dim>*>
-                                                  (this->previous_timestep)->get_timestep_primal();
-  const TimeStep_Dual<dim>   &dual_problem     = this->get_timestep_dual(),
-                            &dual_problem_old = static_cast<const TimeStepBase_Wave<dim>*>
-                                                (this->previous_timestep)->get_timestep_dual();
-
-  const FiniteElement<dim> &primal_fe = this->get_timestep_primal().fe,
-                          &dual_fe   = this->get_timestep_dual().fe;
-
-  const unsigned int        dofs_per_cell_primal = primal_fe.dofs_per_cell,
-                           dofs_per_cell_dual   = dual_fe.dofs_per_cell;  
-
-
-  if (!primal_cell->has_children() && !primal_cell_old->has_children())
-    {
-      Vector<double> local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual);
-      Vector<double> local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual);
-
-      Vector<double> local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual);
-      Vector<double> local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual);
-
-      Vector<double> primal_tmp(dofs_per_cell_primal);
-      
-      primal_cell->get_dof_values (primal_problem.u, primal_tmp);
-      embedding_matrix.vmult (local_u, primal_tmp);
-
-      primal_cell->get_dof_values (primal_problem.v, primal_tmp);
-      embedding_matrix.vmult (local_v, primal_tmp);
-
-      dual_cell->get_dof_values (dual_problem.u, local_u_bar);
-      dual_cell->get_dof_values (dual_problem.v, local_v_bar);
-
-
-      primal_cell_old->get_dof_values (primal_problem_old.u, primal_tmp);
-      embedding_matrix.vmult (local_u_old, primal_tmp);
-
-      primal_cell_old->get_dof_values (primal_problem_old.v, primal_tmp);
-      embedding_matrix.vmult (local_v_old, primal_tmp);
-
-      dual_cell_old->get_dof_values (dual_problem_old.u, local_u_bar_old);
-      dual_cell_old->get_dof_values (dual_problem_old.v, local_v_bar_old);
-
-      primal_cell->set_user_pointer (cellwise_error.next_free_slot);
-      *cellwise_error.next_free_slot = error_formula (dual_cell,
-                                                     local_u,     local_v,
-                                                     local_u_bar, local_v_bar,
-                                                     local_u_old,     local_v_old,
-                                                     local_u_bar_old, local_v_bar_old,
-                                                     fe_values);
-      ++cellwise_error.next_free_slot;
-      
-      return;
-    };
-
-
-  if (!primal_cell_old->has_children() && primal_cell->has_children())
-    {
-      Vector<double> local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual);
-      Vector<double> local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual);
-
-      Vector<double> primal_tmp(dofs_per_cell_primal);
-      
-      primal_cell_old->get_dof_values (primal_problem_old.u, primal_tmp);
-      embedding_matrix.vmult (local_u_old, primal_tmp);
-  
-      primal_cell_old->get_dof_values (primal_problem_old.v, primal_tmp);
-      embedding_matrix.vmult (local_v_old, primal_tmp);
-  
-      dual_cell_old->get_dof_values (dual_problem_old.u, local_u_bar_old);
-      dual_cell_old->get_dof_values (dual_problem_old.v, local_v_bar_old);
-
-
-compute_error_on_new_children (primal_cell, dual_cell,
-                                    local_u_old,
-                                    local_v_old,
-                                    local_u_bar_old,
-                                    local_v_bar_old,
-                                    cellwise_error,
-                                    fe_values);
-
-      return;
-    };
-
-
-  if (primal_cell_old->has_children() && !primal_cell->has_children())
-    {
-      Vector<double> local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual);
-      Vector<double> local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual);
-      Vector<double> local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual);
-      Vector<double> local_Ih_u_bar(dofs_per_cell_dual), local_Ih_v_bar(dofs_per_cell_dual);
-      Vector<double> local_Ih_u_bar_old(dofs_per_cell_dual), local_Ih_v_bar_old(dofs_per_cell_dual);
-      
-      Vector<double> primal_tmp(embedding_matrix.n());
-      
-      primal_cell->get_dof_values (primal_problem.u, primal_tmp);
-      embedding_matrix.vmult (local_u, primal_tmp);
-      
-      primal_cell->get_dof_values (primal_problem.v, primal_tmp);
-      embedding_matrix.vmult (local_v, primal_tmp);
-
-      dual_cell->get_dof_values (dual_problem.u, local_u_bar);
-      dual_cell->get_dof_values (dual_problem.v, local_v_bar);
-
-      dual_cell_old->get_interpolated_dof_values (dual_problem_old.u,
-                                                 local_u_bar_old);
-      dual_cell_old->get_interpolated_dof_values (dual_problem_old.v,
-                                                 local_v_bar_old);
-
-      interpolation_matrix.vmult (local_Ih_u_bar, local_u_bar);
-      interpolation_matrix.vmult (local_Ih_v_bar, local_v_bar);
-      interpolation_matrix.vmult (local_Ih_u_bar_old, local_u_bar_old);
-      interpolation_matrix.vmult (local_Ih_v_bar_old, local_v_bar_old);
-
-      primal_cell->set_user_pointer (cellwise_error.next_free_slot);
-      *cellwise_error.next_free_slot
-       = collect_error_from_children (primal_cell_old,
-                                      dual_cell_old,
-                                      local_u,            local_v,
-                                      local_u_bar,        local_v_bar,
-                                      local_Ih_u_bar,     local_Ih_v_bar,
-                                      local_Ih_u_bar_old, local_Ih_v_bar_old,
-                                      fe_values);
-      ++cellwise_error.next_free_slot;
-      
-      return;
-    };
-
-
-Assert (false, ExcInternalError());
-}
-
-
-template <int dim>
-void TimeStep_ErrorEstimation<dim>::
-compute_error_on_new_children (const typename DoFHandler<dim>::cell_iterator &primal_cell,
-                              const typename DoFHandler<dim>::cell_iterator &dual_cell,
-                              const Vector<double>  &local_u_old,
-                              const Vector<double>  &local_v_old,
-                              const Vector<double>  &local_u_bar_old,
-                              const Vector<double>  &local_v_bar_old,
-                              CellwiseError         &cellwise_error,
-                              FEValues<dim>  &fe_values) const {
-  const TimeStep_Primal<dim> &primal_problem = this->get_timestep_primal();
-  const TimeStep_Dual<dim>   &dual_problem   = this->get_timestep_dual();
-
-  const FiniteElement<dim> &dual_fe  = this->get_timestep_dual().fe;
-  const unsigned int dofs_per_cell_dual = dual_fe.dofs_per_cell;
-
-
-for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
-    {
-      Vector<double> child_u_old(dofs_per_cell_dual), child_v_old(dofs_per_cell_dual);
-      Vector<double> child_u_bar_old(dofs_per_cell_dual), child_v_bar_old(dofs_per_cell_dual);
-
-      dual_fe.get_prolongation_matrix(child).vmult (child_u_old, local_u_old);
-      dual_fe.get_prolongation_matrix(child).vmult (child_v_old, local_v_old);
-      dual_fe.get_prolongation_matrix(child).vmult (child_u_bar_old, local_u_bar_old);
-      dual_fe.get_prolongation_matrix(child).vmult (child_v_bar_old, local_v_bar_old);
-
-      const typename DoFHandler<dim>::cell_iterator
-       new_primal_child = primal_cell->child(child),
-       new_dual_child   = dual_cell->child(child);
-
-      if (new_primal_child->has_children())
-       compute_error_on_new_children (new_primal_child, new_dual_child,
-                                      child_u_old,
-                                      child_v_old,
-                                      child_u_bar_old,
-                                      child_v_bar_old,
-                                      cellwise_error,
-                                      fe_values);
-      else
-       {
-         Vector<double> local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual);
-         Vector<double> local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual);
-         
-         Vector<double> primal_tmp(embedding_matrix.n());
-         
-         new_primal_child->get_dof_values (primal_problem.u, primal_tmp);
-         embedding_matrix.vmult (local_u, primal_tmp);
-         
-         new_primal_child->get_dof_values (primal_problem.v, primal_tmp);
-         embedding_matrix.vmult (local_v, primal_tmp);
-         
-         new_dual_child->get_dof_values (dual_problem.u, local_u_bar);
-         new_dual_child->get_dof_values (dual_problem.v, local_v_bar);
-
-         new_primal_child->set_user_pointer (cellwise_error.next_free_slot);
-         *cellwise_error.next_free_slot
-           = error_formula (new_dual_child,
-                            local_u,     local_v,
-                            local_u_bar, local_v_bar,
-                            child_u_old,     child_v_old,
-                            child_u_bar_old, child_v_bar_old,
-                            fe_values);
-         ++cellwise_error.next_free_slot;
-       };
-    };
-}
-
-
-template <int dim>
-typename TimeStep_ErrorEstimation<dim>::ErrorOnCell
-TimeStep_ErrorEstimation<dim>::collect_error_from_children (const typename DoFHandler<dim>::cell_iterator &primal_cell_old,
-                                                           const typename DoFHandler<dim>::cell_iterator &dual_cell_old,
-                                                           const Vector<double>  &local_u,
-                                                           const Vector<double>  &local_v,
-                                                           const Vector<double>  &local_u_bar,
-                                                           const Vector<double>  &local_v_bar,
-                                                           const Vector<double>  &local_Ih_u_bar,
-                                                           const Vector<double>  &local_Ih_v_bar,
-                                                           const Vector<double>  &local_Ih_u_bar_old,
-                                                           const Vector<double>  &local_Ih_v_bar_old,
-                                                           FEValues<dim>  &fe_values) const {
-  const TimeStep_Primal<dim> &primal_problem_old = static_cast<const TimeStepBase_Wave<dim>*>
-                                                  (this->previous_timestep)->get_timestep_primal();
-  const TimeStep_Dual<dim>   &dual_problem_old = static_cast<const TimeStepBase_Wave<dim>*>
-                                                (this->previous_timestep)->get_timestep_dual();
-  const FiniteElement<dim>   &dual_fe          = dual_problem_old.fe;
-  
-  ErrorOnCell error_sum;
-
-  const unsigned int dofs_per_cell_dual = local_u_bar.size();
-  
-  for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
-    {
-      Vector<double> child_u(dofs_per_cell_dual), child_v(dofs_per_cell_dual);
-      Vector<double> child_u_bar(dofs_per_cell_dual), child_v_bar(dofs_per_cell_dual);
-      Vector<double> child_Ih_u_bar(dofs_per_cell_dual), child_Ih_v_bar(dofs_per_cell_dual);
-      Vector<double> child_Ih_u_bar_old(dofs_per_cell_dual), child_Ih_v_bar_old(dofs_per_cell_dual);      
-
-      dual_fe.get_prolongation_matrix(child).vmult (child_u, local_u);
-      dual_fe.get_prolongation_matrix(child).vmult (child_v, local_v);
-      dual_fe.get_prolongation_matrix(child).vmult (child_u_bar, local_u_bar);
-      dual_fe.get_prolongation_matrix(child).vmult (child_v_bar, local_v_bar);
-      dual_fe.get_prolongation_matrix(child).vmult (child_Ih_u_bar, local_Ih_u_bar);
-      dual_fe.get_prolongation_matrix(child).vmult (child_Ih_v_bar, local_Ih_v_bar);
-      dual_fe.get_prolongation_matrix(child).vmult (child_Ih_u_bar_old, local_Ih_u_bar_old);
-      dual_fe.get_prolongation_matrix(child).vmult (child_Ih_v_bar_old, local_Ih_v_bar_old);
-
-      const typename DoFHandler<dim>::cell_iterator
-       old_primal_child = primal_cell_old->child(child),
-       old_dual_child   = dual_cell_old->child(child);
-
-      if (old_primal_child->has_children())
-       error_sum += collect_error_from_children (old_primal_child,
-                                                 old_dual_child,
-                                                 child_u,            child_v,
-                                                 child_u_bar,        child_v_bar,
-                                                 child_Ih_u_bar,     child_Ih_v_bar,
-                                                 child_Ih_u_bar_old, child_Ih_v_bar_old,
-                                                 fe_values);
-      else
-       {
-         Vector<double> local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual);
-         Vector<double> local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual);
-
-         Vector<double> primal_tmp(embedding_matrix.n());
-      
-         old_primal_child->get_dof_values (primal_problem_old.u, primal_tmp);
-         embedding_matrix.vmult (local_u_old, primal_tmp);
-  
-         old_primal_child->get_dof_values (primal_problem_old.v, primal_tmp);
-         embedding_matrix.vmult (local_v_old, primal_tmp);
-
-         Vector<double> child_difference_u_bar (dofs_per_cell_dual);
-         Vector<double> child_difference_v_bar (dofs_per_cell_dual);
-         Vector<double> local_difference_u_bar_old (dofs_per_cell_dual);
-         Vector<double> local_difference_v_bar_old (dofs_per_cell_dual);
-
-         child_difference_u_bar =  child_u_bar;
-         child_difference_u_bar -= child_Ih_u_bar;
-         child_difference_v_bar =  child_v_bar;
-         child_difference_v_bar -= child_Ih_v_bar;
-
-         local_difference_u_bar_old =  local_u_bar_old;
-         local_difference_u_bar_old -= local_Ih_u_bar_old;
-         local_difference_v_bar_old =  local_v_bar_old;
-         local_difference_v_bar_old -= local_Ih_v_bar_old;
-
-
-error_sum += error_formula (old_dual_child,
-                                     child_u,            child_v,
-                                     child_u_bar,        child_v_bar,
-                                     local_u_old,        local_v_old,
-                                     local_u_bar_old,    local_v_bar_old,
-                                     fe_values);
-       };
-    };
-
-  return error_sum;
-}
-
-
-template <int dim>
-typename TimeStep_ErrorEstimation<dim>::ErrorOnCell
-TimeStep_ErrorEstimation<dim>::error_formula (const typename DoFHandler<dim>::active_cell_iterator &cell,
-                                             const Vector<double>  &local_u,
-                                             const Vector<double>  &local_v,
-                                             const Vector<double>  &local_u_bar,
-                                             const Vector<double>  &local_v_bar,
-                                             const Vector<double>  &local_u_old,
-                                             const Vector<double>  &local_v_old,
-                                             const Vector<double>  &local_u_bar_old,
-                                             const Vector<double>  &local_v_bar_old,
-                                             FEValues<dim>  &fe_values) const {
-  Vector<double> local_difference_u_bar(local_u_bar.size());
-  Vector<double> local_difference_v_bar(local_u_bar.size());
-  Vector<double> local_difference_u_bar_old(local_u_bar.size());
-  Vector<double> local_difference_v_bar_old(local_u_bar.size());
-  
-  difference_matrix.vmult (local_difference_u_bar, local_u_bar);
-  difference_matrix.vmult (local_difference_v_bar, local_v_bar);
-  difference_matrix.vmult (local_difference_u_bar_old, local_u_bar_old);
-  difference_matrix.vmult (local_difference_v_bar_old, local_v_bar_old);
-
-  return error_formula (cell,
-                       local_u,            local_v,
-                       local_u_bar,        local_v_bar,
-                       local_u_old,        local_v_old,
-                       local_u_bar_old,    local_v_bar_old,
-                       local_difference_u_bar,
-                       local_difference_v_bar,
-                       local_difference_u_bar_old,
-                       local_difference_v_bar_old,
-                       fe_values);                     
-}
-
-
-template <int dim>
-typename TimeStep_ErrorEstimation<dim>::ErrorOnCell
-TimeStep_ErrorEstimation<dim>::error_formula (const typename DoFHandler<dim>::active_cell_iterator &cell,
-                                             const Vector<double>  &local_u,
-                                             const Vector<double>  &local_v,
-                                             const Vector<double>  &local_u_bar,
-                                             const Vector<double>  &local_v_bar,
-                                             const Vector<double>  &local_u_old,
-                                             const Vector<double>  &local_v_old,
-                                             const Vector<double>  &local_u_bar_old,
-                                             const Vector<double>  &local_v_bar_old,
-                                             const Vector<double>  &local_difference_u_bar,
-                                             const Vector<double>  &local_difference_v_bar,
-                                             const Vector<double>  &local_difference_u_bar_old,
-                                             const Vector<double>  &local_difference_v_bar_old,
-                                             FEValues<dim>         &fe_values) const {
-
-  ErrorOnCell error_on_cell;
-
-  const unsigned int dofs_per_cell = this->get_timestep_dual().fe.dofs_per_cell;
-  
-  Vector<double> tmp1(dofs_per_cell);
-  Vector<double> tmp2(dofs_per_cell);
-
-
-std::vector<double> stiffness(fe_values.n_quadrature_points);
-  this->parameters.stiffness->value_list (fe_values.get_quadrature_points(),
-                                   stiffness);
-  std::vector<Tensor<1,dim> > grad_stiffness(fe_values.n_quadrature_points);
-  this->parameters.stiffness->gradient_list (fe_values.get_quadrature_points(),
-                                      grad_stiffness);
-
-  FullMatrix<double> mass_matrix (tmp1.size(), tmp1.size());
-  FullMatrix<double> laplace_matrix (tmp1.size(), tmp1.size());
-  
-  fe_values.reinit (cell);
-  std::vector<double> density_values(fe_values.n_quadrature_points);
-  this->parameters.density->value_list (fe_values.get_quadrature_points(),
-                                 density_values);
-  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-    for (unsigned int i=0; i<dofs_per_cell; ++i) 
-      for (unsigned int j=0; j<dofs_per_cell; ++j)
-       {
-         mass_matrix(i,j) += (fe_values.shape_value(i,point) *
-                              fe_values.shape_value(j,point)) *
-                             fe_values.JxW(point) *
-                             density_values[point];
-
-         double laplace_phi_i = 0;
-         for (unsigned int t=0; t<dim; ++t)
-           laplace_phi_i += fe_values.shape_2nd_derivative(i,point)[t][t];
-         
-
-
-         laplace_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                                 fe_values.shape_grad(j,point)) *
-                                fe_values.JxW(point) *
-                                stiffness[point];
-       };
-
-
-
-
-  tmp2  = local_difference_u_bar;
-  tmp2 += local_difference_u_bar_old;
-  tmp2.scale (1./2.);
-  
-  tmp1  = local_u;
-  tmp1 -= local_u_old;
-  
-  error_on_cell.part[0] = mass_matrix.matrix_scalar_product (tmp1, tmp2);
-
-
-  tmp2  = local_difference_v_bar;
-  tmp2 += local_difference_v_bar_old;
-  tmp2.scale (1./2.);
-  
-  tmp1  = local_v;
-  tmp1 -= local_v_old;
-  
-  error_on_cell.part[1] = mass_matrix.matrix_scalar_product (tmp1, tmp2);
-
-
-  tmp2  = local_difference_u_bar;
-  tmp2 += local_difference_u_bar_old;
-
-  tmp1  = local_v;
-  tmp1 += local_v_old;
-
-  error_on_cell.part[2] = -(this->get_backward_timestep() / 4 *
-                           mass_matrix.matrix_scalar_product (tmp1, tmp2));
-
-
-  tmp1  = local_v;
-  tmp1 -= local_v_old;
-
-  tmp2  = local_u_bar;
-  tmp2 -= local_u_bar_old;
-
-  error_on_cell.part[3] = -(this->get_backward_timestep() / 12 *
-                           mass_matrix.matrix_scalar_product (tmp1, tmp2));
-
-
-  tmp2  = local_difference_v_bar;
-  tmp2 += local_difference_v_bar_old;
-
-  tmp1  = local_u;
-  tmp1 += local_u_old;
-
-  error_on_cell.part[4] = (this->get_backward_timestep() / 4 *
-                          laplace_matrix.matrix_scalar_product (tmp1, tmp2));
-
-
-  tmp1  = local_u;
-  tmp1 -= local_u_old;
-
-  tmp2  = local_v_bar;
-  tmp2 -= local_v_bar_old;
-
-  error_on_cell.part[5] = (this->get_backward_timestep() / 12 *
-                          laplace_matrix.matrix_scalar_product (tmp1, tmp2));
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-return error_on_cell;
-}
-
-#include <fe/fe_tools.h>
-
-template <int dim>
-void TimeStep_ErrorEstimation<dim>::make_interpolation_matrices () {
-  const FiniteElement<dim> &primal_fe = this->get_timestep_primal().fe,
-                          &dual_fe   = this->get_timestep_dual().fe;
-  
-  embedding_matrix.reinit (dual_fe.dofs_per_cell,
-                          primal_fe.dofs_per_cell);
-
-  FETools::get_interpolation_matrix (primal_fe, dual_fe,
-                                    embedding_matrix);
-
-
-  FullMatrix<double> inverse_interpolation (primal_fe.dofs_per_cell,
-                                           dual_fe.dofs_per_cell);
-  FETools::get_interpolation_matrix (dual_fe, primal_fe,
-                                    inverse_interpolation);
-
-  interpolation_matrix.reinit (dual_fe.dofs_per_cell, dual_fe.dofs_per_cell);
-  embedding_matrix.mmult (interpolation_matrix, inverse_interpolation);
-  
-  difference_matrix.reinit (dual_fe.dofs_per_cell, dual_fe.dofs_per_cell);
-  for (unsigned int i=0; i<dual_fe.dofs_per_cell; ++i)
-    difference_matrix(i,i) = 1.;
-  difference_matrix.add (-1, interpolation_matrix);
-}
-
-
-template <int dim>
-TimeStep_ErrorEstimation<dim>::StatisticData::StatisticData () :
-               estimated_error (0)
-{}
-
-
-template <int dim>
-TimeStep_ErrorEstimation<dim>::StatisticData::StatisticData (const double estimated_error) :
-               estimated_error (estimated_error)
-{}
-
-
-template <int dim>
-void TimeStep_ErrorEstimation<dim>::StatisticData::write_descriptions (std::ostream &out)
-{
-  out << "#    total estimated error in this timestep" << std::endl;
-}
-
-
-template <int dim>
-void TimeStep_ErrorEstimation<dim>::StatisticData::write (std::ostream &out) const
-{
-  out << estimated_error*100000;
-}
-
-
-template <int dim>
-TimeStep_ErrorEstimation<dim>::ErrorOnCell::ErrorOnCell () {
-  for (unsigned int i=0; i<sizeof(part)/sizeof(part[0]); ++i)
-    part[i] = 0;
-}
-
-
-template <int dim>
-typename TimeStep_ErrorEstimation<dim>::ErrorOnCell
-TimeStep_ErrorEstimation<dim>::ErrorOnCell::operator += (const ErrorOnCell &eoc) {
-  for (unsigned int i=0; i<sizeof(part)/sizeof(part[0]); ++i)
-    part[i] += eoc.part[i];
-  return *this;
-}
-
-
-template <int dim>
-double TimeStep_ErrorEstimation<dim>::ErrorOnCell::sum () const {
-  double x=0;
-  for (unsigned int i=0; i<sizeof(part)/sizeof(part[0]); ++i)
-    x += part[i];
-  return x;
-}
-
-
-template <int dim>
-TimeStep_ErrorEstimation<dim>::CellwiseError::CellwiseError (const unsigned int n_errors) :
-               errors (n_errors),
-               next_free_slot (&*errors.begin())
-{}
-
-
-template class TimeStep_ErrorEstimation<2>;
-
-
-#include <lac/vector.h>
-#include <lac/sparse_matrix.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_handler.h>
-
-
-template <int dim>
-TimeStep<dim>::TimeStep (const double               time,
-                        const WaveParameters<dim> &parameters):
-               TimeStepBase_Wave<dim> (time,
-                                       typename TimeStepBase_Tria<dim>::Flags(true, 0, 1),
-                                       parameters),
-               TimeStep_Primal<dim>(parameters.primal_fe),
-               TimeStep_Dual<dim>  (parameters.dual_fe)
-{}
-
-
-template <int dim>
-void TimeStep<dim>::wake_up (const unsigned int wakeup_level)
-{
-  this->sweep_info->get_timers().grid_generation.start();
-  TimeStepBase_Wave<dim>::wake_up (wakeup_level);
-  this->sweep_info->get_timers().grid_generation.stop();
-
-  switch (this->next_action)
-    {
-      case TimeStepBase::primal_problem:
-           TimeStep_Primal<dim>::wake_up (wakeup_level);
-           break;
-           
-      case TimeStepBase::dual_problem:
-           TimeStep_Dual<dim>::wake_up (wakeup_level);
-           break;
-           
-      case TimeStepBase::postprocess:      
-           TimeStep_Primal<dim>::wake_up (wakeup_level);
-
-           if ((this->parameters.refinement_strategy == WaveParameters<dim>::dual_estimator)
-               &&
-               (this->sweep_no >= this->parameters.initial_energy_estimator_sweeps))
-             TimeStep_Dual<dim>::wake_up (wakeup_level);
-           
-           TimeStep_Postprocess<dim>::wake_up (wakeup_level);
-           
-           break;
-
-      case TimeStepBase_Tria<dim>::grid_refinement:
-           break;
-
-      default:
-           Assert (false, ExcInternalError());
-    };
-}
-
-
-template <int dim>
-void TimeStep<dim>::sleep (const unsigned int sleep_level)
-{  
-  switch (this->next_action)
-    {
-      case TimeStepBase::primal_problem:
-           TimeStep_Primal<dim>::sleep (sleep_level);
-           break;
-           
-      case TimeStepBase::dual_problem:
-           TimeStep_Dual<dim>::sleep (sleep_level);
-           break;
-
-      case TimeStepBase::postprocess:
-           TimeStep_Primal<dim>::sleep (sleep_level);
-           
-           if ((this->parameters.refinement_strategy == WaveParameters<dim>::dual_estimator)
-               &&
-               (this->sweep_no >= this->parameters.initial_energy_estimator_sweeps))
-             TimeStep_Dual<dim>::sleep (sleep_level);
-           
-           TimeStep_Postprocess<dim>::sleep (sleep_level);
-           break;
-
-      case TimeStepBase_Tria<dim>::grid_refinement:
-           if (sleep_level == 1)
-             this->save_refine_flags ();
-           break;
-
-      default:
-           Assert (false, ExcInternalError());
-    };
-
-  this->sweep_info->get_timers().grid_generation.start();
-  TimeStepBase_Wave<dim>::sleep (sleep_level);
-  this->sweep_info->get_timers().grid_generation.stop();
-}
-
-
-template <int dim>
-void TimeStep<dim>::end_sweep ()
-{
-  TimeStep_Primal<dim>::end_sweep ();
-  TimeStep_Dual<dim>::end_sweep ();
-  TimeStep_Postprocess<dim>::end_sweep ();
-}
-
-
-template <int dim>
-void TimeStep<dim>::write_statistics_descriptions (std::ostream                   &out,
-                                                  const WaveParameters<dim> &parameters)
-{
-  out << "#  Primal problem:" << std::endl;
-  typename TimeStep_Primal<dim>::StatisticData xp;
-  xp.write_descriptions (out);
-
-  out << "#  Dual problem:" << std::endl;
-  typename TimeStep_Dual<dim>::StatisticData xd;
-  xd.write_descriptions (out);
-
-  out << "#  Error estimation:" << std::endl;
-  TimeStep_ErrorEstimation<dim>::StatisticData::write_descriptions (out);
-
-  if (parameters.eval_list.size() != 0)
-    {
-      out << "#  Postprocessing:" << std::endl;
-      TimeStep_Postprocess<dim>::StatisticData::write_descriptions (out, parameters);
-    };
-}
-
-
-template <int dim>
-void TimeStep<dim>::write_statistics (std::ostream &out) const 
-{
-  TimeStep_Primal<dim>::statistic_data.write (out);
-  out << "    ";
-  TimeStep_Dual<dim>::statistic_data.write (out);
-  out << "    ";
-  TimeStep_ErrorEstimation<dim>::statistic_data.write (out);
-  out << "    ";
-  TimeStep_Postprocess<dim>::statistic_data.write (out);
-}
-
-
-template class TimeStep<2>;
-
-
-#include <lac/vector.h>
-#include <numerics/data_out.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria.h>
-#include <grid/tria_iterator.h>
-#include <base/geometry_info.h>
-#include <numerics/data_out_stack.h>
-
-#include <fstream>
-#include <iomanip>
-
-
-template <int dim>
-void TimeStep_Postprocess<dim>::postprocess_timestep () 
-{
-  deallog << "  Postprocessing: time="
-       << this->time
-       << ", step=" << this->timestep_no
-       << ", sweep=" << this->sweep_no
-       << ". ";
-
-  if ((this->sweep_no < this->parameters.number_of_sweeps-1) ||
-      (this->parameters.refinement_strategy == WaveParameters<dim>::dual_estimator))
-    this->estimate_error ();
-
-  this->sweep_info->get_timers().postprocessing.start();
-
-  statistic_data.evaluation_results.clear();
-  for (typename std::list<EvaluationBase<dim>*>::const_iterator i = this->parameters.eval_list.begin();
-       i != this->parameters.eval_list.end(); ++i)
-    {
-      (*i)->reset_timelevel (this->get_timestep_primal());
-      statistic_data.evaluation_results.push_back ((*i)->evaluate());
-    };
-
-  if (((this->parameters.write_solution_strategy == WaveParameters<dim>::all_sweeps) ||
-       ((this->parameters.write_solution_strategy == WaveParameters<dim>::last_sweep_only) &&
-       (this->sweep_no == this->parameters.number_of_sweeps-1)))
-      &&
-      (((this->timestep_no % this->parameters.write_steps_interval) == 0) ||
-       (this->next_timestep == 0)))
-    {
-      deallog << "[o]";
-
-      DataOut<dim> out;
-      DataOutBase::OutputFormat output_format
-       = DataOutBase::parse_output_format (this->parameters.output_format);
-      
-      out.attach_dof_handler (*this->get_timestep_primal().dof_handler);
-      out.add_data_vector (this->get_timestep_primal().u, "u");
-      out.add_data_vector (this->get_timestep_primal().v, "v");
-
-      Vector<double> u_bar, v_bar;
-      
-      if ((this->parameters.refinement_strategy == WaveParameters<dim>::dual_estimator)
-         &&
-         (this->sweep_no >= this->parameters.initial_energy_estimator_sweeps))
-       {
-         u_bar.reinit (this->get_timestep_primal().u.size());
-         v_bar.reinit (this->get_timestep_primal().u.size());
-         
-         if (this->parameters.primal_fe == this->parameters.dual_fe)
-           {
-             u_bar = this->get_timestep_dual().u;
-             v_bar = this->get_timestep_dual().v;
-           }
-         else
-           interpolate_dual_solution (u_bar, v_bar);
-         
-         out.add_data_vector (u_bar, "dual_u");
-         out.add_data_vector (v_bar, "dual_v");
-       };
-
-      Vector<double> estimated_error;
-      if ((this->sweep_no<this->parameters.number_of_sweeps-1) ||
-         (this->parameters.refinement_strategy == WaveParameters<dim>::dual_estimator))
-       {
-         if (this->parameters.write_error_as_cell_data) 
-           {
-             estimated_error.reinit (this->estimated_error_per_cell.size());
-             std::copy (this->estimated_error_per_cell.begin(),
-                   this->estimated_error_per_cell.end(),
-                   estimated_error.begin());
-           }
-         else
-           {
-             estimated_error.reinit (this->get_timestep_primal().dof_handler->n_dofs());
-             DoFTools::distribute_cell_to_dof_vector (*this->get_timestep_primal().dof_handler,
-                                                      this->estimated_error_per_cell,
-                                                      estimated_error);
-           };
-      
-         out.add_data_vector (estimated_error, "est_error");
-       };
-
-      out.build_patches ();
-      
-      out.write (logfile, output_format);
-
-      deallog << ".";
-    };
-
-  if (this->parameters.write_stacked_data &&
-      (this->timestep_no % this->parameters.write_stacked_interval == 0))
-    {
-      deallog << "[st]";
-
-      this->sweep_data->data_out_stack->new_parameter_value (this->time,
-                                                      (this->timestep_no == 0 ?
-                                                       0 :
-                                                       this->get_backward_timestep() *
-                                                       this->parameters.write_stacked_interval));
-      this->sweep_data->data_out_stack->attach_dof_handler (*this->get_timestep_primal().dof_handler);
-      this->sweep_data->data_out_stack->add_data_vector (this->get_timestep_primal().u, "u");
-      this->sweep_data->data_out_stack->add_data_vector (this->get_timestep_primal().v, "v");
-
-      if ((this->parameters.refinement_strategy == WaveParameters<dim>::dual_estimator)
-         &&
-         (this->sweep_no >= this->parameters.initial_energy_estimator_sweeps))
-       {
-         if (this->parameters.primal_fe == this->parameters.dual_fe)
-           {
-             this->sweep_data->data_out_stack->add_data_vector (this->get_timestep_dual().u, "dual_u");
-             this->sweep_data->data_out_stack->add_data_vector (this->get_timestep_dual().v, "dual_v");
-           }
-         else
-           {
-             Vector<double> u_bar(this->get_timestep_primal().dof_handler->n_dofs());
-             Vector<double> v_bar(this->get_timestep_primal().dof_handler->n_dofs());
-             
-             interpolate_dual_solution (u_bar, v_bar);
-             
-             this->sweep_data->data_out_stack->add_data_vector (u_bar, "dual_u");
-             this->sweep_data->data_out_stack->add_data_vector (v_bar, "dual_v");
-           };
-       };
-
-      if ((this->sweep_no < this->parameters.number_of_sweeps-1) ||
-         (this->parameters.refinement_strategy == WaveParameters<dim>::dual_estimator))
-       this->sweep_data->data_out_stack->add_data_vector (this->estimated_error_per_cell, "est_error");
-
-      this->sweep_data->data_out_stack->build_patches ();
-      this->sweep_data->data_out_stack->finish_parameter_value ();
-    };
-
-
-deallog << std::endl;
-  this->sweep_info->get_timers().postprocessing.stop();
-}
-
-
-template <int dim>
-void TimeStep_Postprocess<dim>::wake_up (const unsigned int wakeup_level) 
-{
-  TimeStep_ErrorEstimation<dim>::wake_up (wakeup_level);
-}
-
-
-template <int dim>
-void TimeStep_Postprocess<dim>::sleep (const unsigned int sleep_level) 
-{
-  TimeStep_ErrorEstimation<dim>::sleep (sleep_level);
-}
-
-
-template <int dim>
-std::string TimeStep_Postprocess<dim>::branch_signature () const 
-{
-  return "o";
-}
-
-
-template <int dim>
-void TimeStep_Postprocess<dim>::end_sweep ()
-{
-  std::string tmp_filename = this->tmp_filename_base(branch_signature());
-  remove (tmp_filename.c_str());
-}
-
-
-template <int dim>
-void TimeStep_Postprocess<dim>::interpolate_dual_solution (Vector<double> &interpolated_u_bar,
-                                                          Vector<double> &interpolated_v_bar) const {
-  const unsigned int n_primal_dofs = this->get_timestep_primal().dof_handler->n_dofs();
-  
-  interpolated_u_bar.reinit (n_primal_dofs);
-  interpolated_v_bar.reinit (n_primal_dofs);
-
-  const TimeStep_Wave<dim> &target = this->get_timestep_dual ();
-  
-  typename DoFHandler<dim>::active_cell_iterator primal_cell, dual_cell, endc;
-  primal_cell = this->get_timestep_primal().dof_handler->begin_active();
-  endc        = this->get_timestep_primal().dof_handler->end();
-  dual_cell   = target.dof_handler->begin_active();
-  
-  for (; primal_cell != endc; ++primal_cell, ++dual_cell)
-    for (unsigned int vertex=0; vertex<GeometryInfo<dim>::vertices_per_cell; ++vertex)
-      {
-       const unsigned int  primal_vertex_index = primal_cell->vertex_dof_index(vertex,0),
-                           dual_vertex_index   = dual_cell->vertex_dof_index(vertex,0);
-       interpolated_u_bar(primal_vertex_index) = target.u(dual_vertex_index);
-       interpolated_v_bar(primal_vertex_index) = target.v(dual_vertex_index);
-      };      
-}
-
-
-template <int dim>
-void TimeStep_Postprocess<dim>::StatisticData::
-write_descriptions (std::ostream &out,
-                   const WaveParameters<dim> &parameters) 
-{
-  for (typename std::list<EvaluationBase<dim>*>::const_iterator i = parameters.eval_list.begin();
-       i != parameters.eval_list.end(); ++i)
-    out << "#    " << (*i)->description() << std::endl;
-}
-
-
-template <int dim>
-void TimeStep_Postprocess<dim>::StatisticData::write (std::ostream &out) const
-{
-  for (unsigned int i=0; i<evaluation_results.size(); ++i)
-    out << evaluation_results[i]*100000 << ' ';
-}
-
-
-template class TimeStep_Postprocess<2>;
-
-#include <base/function.h>
-#include <lac/full_matrix.h>
-#include <lac/vector.h>
-#include <lac/sparse_matrix.h>
-#include <grid/tria.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_constraints.h>
-#include <dofs/dof_accessor.h>
-#include <grid/tria_iterator.h>
-#include <fe/fe_values.h>
-#include <fe/fe.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
-
-
-#include <iomanip>
-
-
-template <int dim>
-TimeStep_Primal<dim>::TimeStep_Primal (const std::string &primal_fe)
-               :
-               TimeStep_Wave<dim> (primal_fe)
-{}
-
-
-template <int dim>
-void TimeStep_Primal<dim>::do_initial_step ()
-{
-  deallog << "  Primal problem: time="
-       << this->time
-       << ", step=" << this->timestep_no
-       << ", sweep=" <<this-> sweep_no
-       << ". "
-       << this->tria->n_active_cells() << " cells, "
-       << this->dof_handler->n_dofs() << " dofs";
-
-
-  this->sweep_info->get_data().cells       += this->tria->n_active_cells();
-  this->sweep_info->get_data().primal_dofs += this->dof_handler->n_dofs() * 2;
-
-#if 2 == 1
-  VectorTools::interpolate (*dof_handler, *parameters.initial_u, u);
-  VectorTools::interpolate (*dof_handler, *parameters.initial_v, v);
-#else
-  VectorTools::project (*this->dof_handler, this->constraints,
-                            this->quadrature, *this->parameters.initial_u, this->u,
-                            false, this->quadrature_face, (dim==2 ? true : false));
-  VectorTools::project (*this->dof_handler, this->constraints,
-                            this->quadrature, *this->parameters.initial_v, this->v,
-                            false, this->quadrature_face, (dim==2 ? true : false));
-#endif
-  this->statistic_data = typename TimeStep_Wave<dim>::StatisticData (this->tria->n_active_cells(),
-                                                              this->dof_handler->n_dofs(),
-                                                              0,
-                                                              0,
-                                                              std::make_pair (0.0, 0.0));
-
-  deallog << "." << std::endl;
-}
-
-
-template <int dim>
-void TimeStep_Primal<dim>::do_timestep ()
-{
-  deallog << "  Primal problem: time="
-       << this->time
-       << ", step=" << this->timestep_no
-       << ", sweep=" << this->sweep_no
-       << ". "
-       << this->tria->n_active_cells() << " cells, "
-       << this->dof_handler->n_dofs() << " dofs";
-  
-  this->sweep_info->get_data().cells       += this->tria->n_active_cells();
-  this->sweep_info->get_data().primal_dofs += this->dof_handler->n_dofs() * 2;
-
-
-  const double time_step = this->get_backward_timestep ();
-  
-  Vector<double> right_hand_side1 (this->dof_handler->n_dofs());
-  Vector<double> right_hand_side2 (this->dof_handler->n_dofs());
-
-  Vector<double> old_u, old_v;
-  if (this->parameters.extrapolate_old_solutions)
-    {
-      old_u.reinit (this->dof_handler->n_dofs());
-      old_v.reinit (this->dof_handler->n_dofs());
-
-      this->transfer_old_solutions (old_u, old_v);
-    };
-
-
-  assemble_vectors (right_hand_side1, right_hand_side2);
-
-  UserMatrix system_matrix (this->system_sparsity, this->parameters.preconditioning);
-  system_matrix.copy_from (this->mass_matrix);
-  system_matrix.add_scaled (time_step * time_step *
-                           this->parameters.theta *
-                           this->parameters.theta,
-                           this->laplace_matrix);
-  this->constraints.condense (static_cast<SparseMatrix<double>&>(system_matrix));
-       
-  if (this->parameters.extrapolate_old_solutions)
-    {
-      this->u  = old_u;
-      this->u.add (time_step, old_v);
-    };
-
-  if (dim!=1) 
-    {
-      this->parameters.boundary_values_u->set_time (this->time);
-      this->parameters.boundary_values_v->set_time (this->time);
-      
-      std::map<unsigned int,double> boundary_value_list;
-      VectorTools::interpolate_boundary_values (*this->dof_handler, 0,
-                                                    *(this->parameters.boundary_values_u),
-                                                    boundary_value_list);
-      MatrixTools::apply_boundary_values (boundary_value_list,
-                                         system_matrix, this->u,
-                                         right_hand_side1);
-    };
-
-  const unsigned int solver_steps1 = this->solve (system_matrix, this->u, right_hand_side1);
-               
-  system_matrix.copy_from (this->mass_matrix);
-  this->constraints.condense (static_cast<SparseMatrix<double>&>(system_matrix));
-  if (true)
-    { 
-      Vector<double> tmp (right_hand_side2.size());
-      this->laplace_matrix.vmult (tmp, this->u);
-      right_hand_side2.add (-this->parameters.theta*time_step, tmp);
-    };
-  this->constraints.condense (right_hand_side2);
-
-
-  if (dim != 1)
-    {
-      std::map<unsigned int,double> boundary_value_list;
-      VectorTools::interpolate_boundary_values (*this->dof_handler, 0,
-                                                    *(this->parameters.boundary_values_v),
-                                                    boundary_value_list);
-      MatrixTools::apply_boundary_values (boundary_value_list,
-                                         system_matrix, this->v,
-                                         right_hand_side2);
-    };
-
-
-if (this->parameters.extrapolate_old_solutions)
-    {
-      this->v  = this->u;
-      this->v -= old_u;
-      this->v.scale (2./time_step);
-      this->v -= old_v;
-    };
-
-  const unsigned int solver_steps2 = this->solve (system_matrix, this->v, right_hand_side2);
-
-  this->statistic_data = typename TimeStep_Wave<dim>::StatisticData (this->tria->n_active_cells(),
-                                                              this->dof_handler->n_dofs(),
-                                                              solver_steps1,
-                                                              solver_steps2,
-                                                              this->compute_energy ());
-  
-  deallog << "." << std::endl;
-}
-
-
-template <int dim>
-void TimeStep_Primal<dim>::solve_primal_problem ()
-{
-  this->sweep_info->get_timers().primal_problem.start();
-  if (this->timestep_no == 0)
-    do_initial_step ();
-  else
-    do_timestep ();
-  this->sweep_info->get_timers().primal_problem.stop();
-}
-
-
-template <int dim>
-std::string TimeStep_Primal<dim>::branch_signature () const 
-{
-  return "p";
-}
-
-
-template <int dim>
-void TimeStep_Primal<dim>::wake_up (const unsigned int wakeup_level)
-{
-  TimeStep_Wave<dim>::wake_up (wakeup_level);
-  
-  this->sweep_info->get_timers().primal_problem.start();
-  if ((wakeup_level==0) && (this->next_action==TimeStepBase::primal_problem))
-    {
-      Assert (this->system_sparsity.empty(), ExcInternalError());
-      
-      this->create_matrices ();
-    };
-  this->sweep_info->get_timers().primal_problem.stop();
-}
-
-
-template <int dim>
-void TimeStep_Primal<dim>::assemble_vectors (Vector<double> &right_hand_side1,
-                                            Vector<double> &right_hand_side2) {
-  Assert (this->timestep_no>=1, ExcInternalError());
-  
-  build_rhs (right_hand_side1, right_hand_side2);
-  this->constraints.condense (right_hand_side1);
-}
-
-
-template <int dim>
-void TimeStep_Primal<dim>::build_rhs (Vector<double> &right_hand_side1,
-                                     Vector<double> &right_hand_side2) {
-  const TimeStep_Primal<dim> &previous_time_level
-    = static_cast<const TimeStepBase_Wave<dim>*>(this->previous_timestep)->get_timestep_primal();
-
-  Assert (previous_time_level.tria->n_cells(0) == this->tria->n_cells(0),
-         typename TimeStep_Wave<dim>::ExcCoarsestGridsDiffer());
-
-  typedef typename DoFHandler<dim>::cell_iterator cell_iterator;
-
-  FEValues<dim> fe_values (this->fe, this->quadrature,
-                          UpdateFlags(update_values |
-                                      update_gradients |
-                                      update_JxW_values |
-                                      update_q_points));
-
-
-cell_iterator old_cell = previous_time_level.dof_handler->begin(),
-               new_cell = this->dof_handler->begin(),
-               end_cell = (this->tria->n_levels() == 1                  ?
-                           static_cast<cell_iterator>(this->dof_handler->end()) :
-                           this->dof_handler->begin(1));  
-  for (; new_cell!=end_cell; ++new_cell, ++old_cell)
-    build_rhs (old_cell, new_cell,
-              fe_values,
-              right_hand_side1, right_hand_side2);
-}
-
-
-template <int dim>
-void
-TimeStep_Primal<dim>::build_rhs (const typename DoFHandler<dim>::cell_iterator &old_cell,
-                                const typename DoFHandler<dim>::cell_iterator &new_cell,
-                                FEValues<dim>        &fe_values,
-                                Vector<double>       &right_hand_side1,
-                                Vector<double>       &right_hand_side2) {
-  typedef typename DoFHandler<dim>::cell_iterator cell_iterator;
-  
-  if (old_cell->has_children() && new_cell->has_children()) 
-    {
-      for (unsigned int child=0; child<GeometryInfo<dim>::children_per_cell; ++child)
-       build_rhs (old_cell->child(child),
-                  new_cell->child(child),
-                  fe_values,
-                  right_hand_side1,
-                  right_hand_side2);
-      return;
-    };
-
-
-  const TimeStep_Primal<dim> &previous_time_level
-    = static_cast<const TimeStepBase_Wave<dim>*>(this->previous_timestep)->get_timestep_primal();
-
-  const unsigned int dofs_per_cell = this->fe.dofs_per_cell;
-  const double time_step = this->get_backward_timestep();
-
-  if (!old_cell->has_children() && !new_cell->has_children()) 
-    {
-      fe_values.reinit (old_cell);
-
-      FullMatrix<double>                    cell_matrix (dofs_per_cell, dofs_per_cell);
-      std::vector<double> density_values(fe_values.n_quadrature_points);
-      this->parameters.density->value_list (fe_values.get_quadrature_points(),
-                                     density_values);
-      for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i) 
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           cell_matrix(i,j) += (fe_values.shape_value(i,point) *
-                                fe_values.shape_value(j,point)) *
-                               fe_values.JxW(point) *
-                               density_values[point];
-
-      Vector<double> tmp (dofs_per_cell);
-      Vector<double> rhs1 (dofs_per_cell);
-
-      Vector<double> rhs2 (dofs_per_cell);
-           
-      Vector<double>     old_dof_values_u (dofs_per_cell);
-      Vector<double> local_M_u (dofs_per_cell);
-      Vector<double> local_M_v (dofs_per_cell);
-      Vector<double> local_A_u (dofs_per_cell);      
-      old_cell->get_dof_values (previous_time_level.u, old_dof_values_u);
-      cell_matrix.vmult (local_M_u, old_dof_values_u);
-      
-      old_cell->get_dof_values (previous_time_level.v, tmp);
-      cell_matrix.vmult (local_M_v, tmp);
-
-      cell_matrix = 0;
-      std::vector<double> stiffness_values(fe_values.n_quadrature_points);
-      this->parameters.stiffness->value_list (fe_values.get_quadrature_points(),
-                                           stiffness_values);
-      for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i) 
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                                fe_values.shape_grad(j,point)) *
-                               fe_values.JxW(point) *
-                               stiffness_values[point];
-      cell_matrix.vmult (local_A_u, old_dof_values_u);
-
-
-rhs1 = local_M_u;
-      rhs1.add (time_step, local_M_v);
-      rhs1.add ((-time_step*time_step*
-                this->parameters.theta*
-                (1-this->parameters.theta)),
-               local_A_u);
-      rhs2 = local_M_v;
-      rhs2.add (-(1-this->parameters.theta)*
-               time_step,
-               local_A_u);
-
-      std::vector<unsigned int> new_dof_indices (dofs_per_cell, DoFHandler<dim>::invalid_dof_index);
-      new_cell->get_dof_indices (new_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         right_hand_side1(new_dof_indices[i]) += rhs1(i);
-         right_hand_side2(new_dof_indices[i]) += rhs2(i);
-       };
-      
-      return;
-    };
-  
-  if (old_cell->has_children() && !new_cell->has_children())
-    {
-      Vector<double> rhs1 (dofs_per_cell);
-
-      Vector<double> rhs2 (dofs_per_cell);
-
-      collect_from_children (old_cell, fe_values, rhs1, rhs2);
-
-      std::vector<unsigned int> new_dof_indices (dofs_per_cell);
-      new_cell->get_dof_indices (new_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i) 
-       {
-         right_hand_side1(new_dof_indices[i]) += rhs1(i);
-         right_hand_side2(new_dof_indices[i]) += rhs2(i);
-       };
-
-      return;
-    };
-
-  if (!old_cell->has_children() && new_cell->has_children())
-    {
-      Vector<double>  old_dof_values_u (dofs_per_cell);
-      Vector<double>  old_dof_values_v (dofs_per_cell);
-      old_cell->get_dof_values (previous_time_level.u, old_dof_values_u);
-      old_cell->get_dof_values (previous_time_level.v, old_dof_values_v);
-
-      distribute_to_children (new_cell, fe_values,
-                             old_dof_values_u, old_dof_values_v,
-                             right_hand_side1, right_hand_side2);
-
-      return;
-    };
-
-  Assert (false, ExcInternalError());
-}
-
-
-template <int dim>
-unsigned int
-TimeStep_Primal<dim>::collect_from_children (const typename DoFHandler<dim>::cell_iterator &old_cell,
-                                            FEValues<dim>  &fe_values,
-                                            Vector<double> &rhs1,
-                                            Vector<double> &rhs2) const
-{
-  unsigned int level_difference = 1;  
-  
-  const TimeStep_Primal<dim> &previous_time_level
-    = static_cast<const TimeStepBase_Wave<dim>*>(this->previous_timestep)->get_timestep_primal();
-
-  const unsigned int dofs_per_cell = this->fe.dofs_per_cell;
-  const double time_step = this->get_backward_timestep();
-
-
-FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  
-  Vector<double>  local_old_dof_values_u (dofs_per_cell);
-  Vector<double>  local_old_dof_values_v (dofs_per_cell);
-  
-  Vector<double>  local_M_u (dofs_per_cell);
-  Vector<double>  local_M_v (dofs_per_cell);
-  Vector<double>  local_A_u (dofs_per_cell);
-  Vector<double> child_rhs1 (dofs_per_cell);
-
-  Vector<double> child_rhs2 (dofs_per_cell);
-
-  for (unsigned int c=0; c<GeometryInfo<dim>::children_per_cell; ++c) 
-    {
-      const typename DoFHandler<dim>::cell_iterator old_child = old_cell->child(c);
-
-      child_rhs1 = 0;
-      child_rhs2 = 0;
-      
-      if (old_child->has_children())
-       {
-         const unsigned int l = collect_from_children (old_child, fe_values,
-                                                       child_rhs1, child_rhs2);
-         level_difference = std::max (l+1, level_difference);
-       }
-      else
-       {
-         fe_values.reinit (old_child);
-         old_child->get_dof_values (previous_time_level.u, local_old_dof_values_u);
-         old_child->get_dof_values (previous_time_level.v, local_old_dof_values_v);
-      
-         cell_matrix = 0;
-         std::vector<double> density_values(fe_values.n_quadrature_points);
-         this->parameters.density->value_list (fe_values.get_quadrature_points(),
-                                         density_values);
-         for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-           for (unsigned int i=0; i<dofs_per_cell; ++i) 
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               cell_matrix(i,j) += (fe_values.shape_value(i,point) *
-                                    fe_values.shape_value(j,point)) *
-                                   fe_values.JxW(point) *
-                                   density_values[point];
-
-         cell_matrix.vmult (local_M_u, local_old_dof_values_u);
-         cell_matrix.vmult (local_M_v, local_old_dof_values_v);
-      
-         cell_matrix = 0;
-
-         std::vector<double> stiffness_values(fe_values.n_quadrature_points);
-         this->parameters.stiffness->value_list (fe_values.get_quadrature_points(),
-                                           stiffness_values);
-         for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-           for (unsigned int i=0; i<dofs_per_cell; ++i) 
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                                    fe_values.shape_grad(j,point)) *
-                                   fe_values.JxW(point) *
-                                   stiffness_values[point];
-         cell_matrix.vmult (local_A_u, local_old_dof_values_u);
-      
-         child_rhs1 = local_M_u;
-         child_rhs1.add (time_step, local_M_v);
-         child_rhs1.add ((-time_step*time_step*
-                          this->parameters.theta*
-                          (1-this->parameters.theta)),
-                         local_A_u);
-         child_rhs2 = local_M_v;
-         child_rhs2.add (-(1-this->parameters.theta)*
-                         time_step,
-                         local_A_u);
-       };
-      
-      this->fe.get_prolongation_matrix(c).Tvmult (rhs1, child_rhs1, true);
-      this->fe.get_prolongation_matrix(c).Tvmult (rhs2, child_rhs2, true);
-    };
-
-  return level_difference;
-}
-
-
-template <int dim>
-unsigned int
-TimeStep_Primal<dim>::distribute_to_children (const typename DoFHandler<dim>::cell_iterator &new_cell,
-                                             FEValues<dim>         &fe_values,
-                                             const Vector<double>  &old_dof_values_u,
-                                             const Vector<double>  &old_dof_values_v,
-                                             Vector<double>        &right_hand_side1,
-                                             Vector<double>        &right_hand_side2) {
-  unsigned int level_difference = 1;  
-  
-  const unsigned int dofs_per_cell = this->fe.dofs_per_cell;
-  const double time_step = this->get_backward_timestep();
-
-  FullMatrix<double>    cell_matrix(dofs_per_cell, dofs_per_cell);
-  Vector<double> local_old_dof_values_u (dofs_per_cell);
-  Vector<double> local_old_dof_values_v (dofs_per_cell);
-
-  Vector<double> local_M_u (dofs_per_cell);
-  Vector<double> local_M_v (dofs_per_cell);
-  Vector<double> local_A_u (dofs_per_cell);
-
-  Vector<double> rhs1 (dofs_per_cell);
-
-  Vector<double> rhs2 (dofs_per_cell);
-           
-  std::vector<unsigned int> new_dof_indices (dofs_per_cell, DoFHandler<dim>::invalid_dof_index);
-
-
-  for (unsigned int c=0; c<GeometryInfo<dim>::children_per_cell; ++c) 
-    {
-      const typename DoFHandler<dim>::cell_iterator new_child = new_cell->child(c);
-
-      this->fe.get_prolongation_matrix(c).vmult (local_old_dof_values_u,
-                             old_dof_values_u);
-      this->fe.get_prolongation_matrix(c).vmult (local_old_dof_values_v,
-                             old_dof_values_v);
-
-      if (new_child->has_children())
-       {
-         const unsigned int l = distribute_to_children (new_child, fe_values,
-                                                        local_old_dof_values_u,
-                                                        local_old_dof_values_v,
-                                                        right_hand_side1,
-                                                        right_hand_side2);
-         level_difference = std::max (l+1, level_difference);
-       }
-      else
-       {
-         fe_values.reinit (new_child);
-         cell_matrix = 0;
-         std::vector<double> density_values(fe_values.n_quadrature_points);
-         this->parameters.density->value_list (fe_values.get_quadrature_points(),
-                                             density_values);
-         for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-           for (unsigned int i=0; i<dofs_per_cell; ++i) 
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               cell_matrix(i,j) += (fe_values.shape_value(i,point) *
-                                    fe_values.shape_value(j,point)) *
-                                   fe_values.JxW(point) *
-                                   density_values[point];
-
-         cell_matrix.vmult (local_M_u, local_old_dof_values_u);
-         cell_matrix.vmult (local_M_v, local_old_dof_values_v);
-
-         cell_matrix = 0;
-         std::vector<double> stiffness_values(fe_values.n_quadrature_points);
-         this->parameters.stiffness->value_list (fe_values.get_quadrature_points(),
-                                               stiffness_values);
-         for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-           for (unsigned int i=0; i<dofs_per_cell; ++i) 
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                                    fe_values.shape_grad(j,point)) *
-                                   fe_values.JxW(point) *
-                                   stiffness_values[point];
-         cell_matrix.vmult (local_A_u, local_old_dof_values_u);
-
-         rhs1 = local_M_u;
-         rhs1.add (time_step, local_M_v);
-         rhs1.add ((-time_step*time_step*
-                    this->parameters.theta*
-                    (1-this->parameters.theta)),
-                   local_A_u);
-         rhs2 = local_M_v;
-         rhs2.add (-(1-this->parameters.theta)*
-                   time_step,
-                   local_A_u);
-         
-         new_child->get_dof_indices (new_dof_indices);
-         for (unsigned int i=0; i<dofs_per_cell; ++i)
-           {
-             right_hand_side1(new_dof_indices[i]) += rhs1(i);
-             right_hand_side2(new_dof_indices[i]) += rhs2(i);
-           };
-       };
-    };
-
-  return level_difference;
-}
-
-
-template class TimeStep_Primal<2>;
-
-#include <lac/vector.h>
-
-
-void UserMatrix::precondition (Vector<double> &dst,
-                              const Vector<double> &src) const {
-  switch (preconditioning)
-    {
-      case jacobi:
-           precondition_Jacobi (dst, src);
-           return;
-      case sor:
-           precondition_SOR (dst, src);
-           return;
-      case ssor:
-           precondition_SSOR (dst, src);
-           return;
-      default:
-           dst = src;
-           return;
-    };
-}
-
-
-#include <fe/mapping_q1.h>
-#include <base/quadrature_lib.h>
-
-
-
-template <> const FE_Q<2>   FEHelper<2>::fe_linear = FE_Q<2>(1);
-template <> const FE_Q<2>   FEHelper<2>::fe_quadratic_sub = FE_Q<2>(2);
-#if 2 < 3
-template <> const FE_Q<2>   FEHelper<2>::fe_cubic_sub = FE_Q<2>(3);
-template <> const FE_Q<2>   FEHelper<2>::fe_quartic_sub = FE_Q<2>(4);
-#endif
-    
-template <> const QGauss2<2> FEHelper<2>::q_gauss_2 = QGauss2<2>();
-template <> const QGauss3<2> FEHelper<2>::q_gauss_3 = QGauss3<2>();
-template <> const QGauss4<2> FEHelper<2>::q_gauss_4 = QGauss4<2>();
-template <> const QGauss5<2> FEHelper<2>::q_gauss_5 = QGauss5<2>();
-template <> const QGauss6<2> FEHelper<2>::q_gauss_6 = QGauss6<2>();
-template <> const QGauss7<2> FEHelper<2>::q_gauss_7 = QGauss7<2>();
-
-#if 2 > 1
-template <> const QGauss2<2-1> FEHelper<2>::q_gauss_2_face = QGauss2<1>();
-template <> const QGauss3<2-1> FEHelper<2>::q_gauss_3_face = QGauss3<1>();
-template <> const QGauss4<2-1> FEHelper<2>::q_gauss_4_face = QGauss4<1>();
-template <> const QGauss5<2-1> FEHelper<2>::q_gauss_5_face = QGauss5<1>();
-template <> const QGauss6<2-1> FEHelper<2>::q_gauss_6_face = QGauss6<1>();
-template <> const QGauss7<2-1> FEHelper<2>::q_gauss_7_face = QGauss7<1>();
-#endif
-
-
-template <int dim>
-const FiniteElement<dim> & FEHelper<dim>::get_fe (const std::string &name) {
-  if (name=="linear")
-    return fe_linear;
-  else
-    if (name=="quadratic")
-      return fe_quadratic_sub;
-#if 2 < 3
-    else
-      if (name=="cubic")
-       return fe_cubic_sub;
-      else
-       if (name=="quartic")
-         return fe_quartic_sub;
-#endif
-  
-  Assert (false, ExcInternalError());
-
-  return fe_linear;
-}
-
-
-template <int dim>
-const Quadrature<dim> &FEHelper<dim>::get_quadrature (const std::string &name) {
-  if (name=="linear")
-    return q_gauss_2;
-  else
-    if (name=="quadratic")
-      return q_gauss_3;
-#if 2 < 3
-    else
-      if (name=="cubic")
-       return q_gauss_4;
-      else
-       if (name=="quartic")
-         return q_gauss_5;
-#endif
-  
-  Assert (false, ExcInternalError());
-
-  return q_gauss_2;
-}
-
-
-template <int dim>
-const Quadrature<dim-1> &FEHelper<dim>::get_quadrature_face (const std::string &name) {
-  if (name=="linear")
-    return q_gauss_2_face;
-  else
-    if (name=="quadratic")
-      return q_gauss_3_face;
-#if 2 < 3
-    else
-      if (name=="cubic")
-       return q_gauss_4_face;
-      else
-       if (name=="quartic")
-         return q_gauss_5_face;
-#endif
-  
-  Assert (false, ExcInternalError());
-
-  return q_gauss_2_face;
-}
-
-
-std::string int_to_string (const unsigned int i, const unsigned int digits) {
-  std::string s;
-  switch (digits) 
-    {
-      case 4:
-           s += '0' + i/1000;
-      case 3:
-           s += '0' + (i%1000)/100;
-      case 2:
-           s += '0' + (i%100)/10;
-      case 1:
-           s += '0' + i%10;
-           break;
-      default:
-           s += "invalid digits information";
-    };
-  return s;
-}
-
-
-template class FEHelper<2>;
-
-
-
-
-#include <base/logstream.h>
-#include <lac/sparse_matrix.h>
-#include <lac/vector.h>
-#include <dofs/dof_handler.h>
-#include <dofs/dof_constraints.h>
-
-
-template <int dim>
-WaveProblem<dim>::WaveProblem ()
-{}
-
-
-template <int dim>
-WaveProblem<dim>::~WaveProblem ()
-{}
-
-
-template <int dim>
-void WaveProblem<dim>::declare_parameters (ParameterHandler &prm)
-{
-  parameters.declare_parameters (prm);
-}
-
-
-template <int dim>
-void WaveProblem<dim>::parse_parameters (ParameterHandler &prm)
-{
-  parameters.parse_parameters (prm);
-}
-
-
-template <int dim>
-void WaveProblem<dim>::create_new (const unsigned int)
-{
-  parameters.delete_parameters ();
-}
-
-
-template <int dim>
-void WaveProblem<dim>::run (ParameterHandler &prm) 
-{
-  parse_parameters (prm);
-
-
-  TimestepManager<dim> timestep_manager (parameters);
-  if (true) {
-    timestep_manager.add_timestep (new TimeStep<dim>(0, parameters));
-    double       time = 0;
-    unsigned int step_no = 0;
-    double       local_time_step;
-    
-    while (time<parameters.end_time)
-      {
-       ++step_no;
-       
-       if (time+parameters.time_step*1.1 >= parameters.end_time)
-         local_time_step = parameters.end_time-time;
-       else
-         if (time+2*parameters.time_step >= parameters.end_time)
-           local_time_step = (parameters.end_time-time)/2;
-         else
-           local_time_step = parameters.time_step;
-       
-       time += local_time_step;
-       
-       timestep_manager.add_timestep (new TimeStep<dim>(time, parameters));
-      };
-  };
-
-
-  for (unsigned int sweep=0; sweep<parameters.number_of_sweeps; ++sweep)
-    timestep_manager.run_sweep (sweep);
-}
-
-
-int main ()
-{
-  deallog.attach(logfile);
-  logfile.setf(std::ios::fixed);
-  logfile.precision (2);
-  deallog.depth_console(0);
-  deallog.threshold_double(1.e-10);
-
-  WaveProblem<2> waves;
-  MultipleParameterLoop input_data;
-
-  waves.declare_parameters(input_data);
-
-  try 
-    {
-      input_data.read_input ("wave-test-3.prm");
-    }
-  catch (std::exception &e)
-    {
-      std::cerr << std::endl << std::endl
-          << "----------------------------------------------------"
-          << std::endl;
-      std::cerr << "Exception on input: " << e.what() << std::endl
-          << "Aborting!" << std::endl
-          << "----------------------------------------------------"
-          << std::endl;
-      return 1;
-    };
-
-  try
-    {
-      input_data.loop (waves);
-    }
-  catch (std::exception &e)
-    {
-      std::cerr << std::endl << std::endl
-          << "----------------------------------------------------"
-          << std::endl;
-      std::cerr << "Exception on processing: " << e.what() << std::endl
-          << "Aborting!" << std::endl
-          << "----------------------------------------------------"
-          << std::endl;
-      return 2;
-    }
-  catch (...) 
-    {
-      std::cerr << std::endl << std::endl
-          << "----------------------------------------------------"
-          << std::endl;
-      std::cerr << "Unknown exception!" << std::endl
-          << "Aborting!" << std::endl
-          << "----------------------------------------------------"
-          << std::endl;
-      return 3;
-    };
-
-
-return 0;
-}
-
-
diff --git a/tests/deal.II/wave-test-3/cmp/generic b/tests/deal.II/wave-test-3/cmp/generic
deleted file mode 100644 (file)
index 5a62e4a..0000000
+++ /dev/null
@@ -1,3307 +0,0 @@
-
-DEAL::Sweep 0 :
-DEAL::---------
-DEAL::  Primal problem: time=0, step=0, sweep=0. 256 cells, 289 dofsStarting value 0
-DEAL:cg::Convergence step 0 value 0
-DEAL:cg::Starting value 0.01
-DEAL:cg::Convergence step 12 value 0
-DEAL:cg::Starting value 0
-DEAL:cg::Convergence step 0 value 0
-DEAL:cg::Starting value 0
-DEAL:cg::Convergence step 0 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.03, step=1, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.06, step=2, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.14
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.08, step=3, sweep=0. 256 cells, 289 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.13
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.11, step=4, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.14, step=5, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.17, step=6, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.20, step=7, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.13
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.22, step=8, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.25, step=9, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.28, step=10, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.13
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.31, step=11, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.13
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.34, step=12, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.36, step=13, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.39, step=14, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.13
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.42, step=15, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.45, step=16, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.48, step=17, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.50, step=18, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.53, step=19, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.56, step=20, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.59, step=21, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.62, step=22, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.64, step=23, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.67, step=24, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.70, step=25, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::
-DEAL::  Dual problem: time=0.70, step=25, sweep=0. 256 cells, 1089 dofs.
-DEAL::  Dual problem: time=0.67, step=24, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 5 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.64, step=23, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.62, step=22, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.59, step=21, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.56, step=20, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.53, step=19, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.50, step=18, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.48, step=17, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.45, step=16, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.42, step=15, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.39, step=14, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.36, step=13, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.34, step=12, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.31, step=11, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.28, step=10, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.25, step=9, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.22, step=8, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.20, step=7, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.17, step=6, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.14, step=5, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.11, step=4, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.08, step=3, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.06, step=2, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.03, step=1, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0, step=0, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::
-DEAL::  Postprocessing: time=0, step=0, sweep=0. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 189
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50 setlinewidth
-0.00000 0.00000 0.40691 s 102.94464 144.05649 m 114.83167 140.62500 l 121.69464 146.56851 l 109.80762 150.00000 lf
-0 sg 102.94464 144.05649 m 114.83167 140.62500 l 121.69464 146.56851 l 109.80762 150.00000 lx
-0.00000 0.00000 0.40691 s 114.83167 140.62500 m 126.71869 137.19351 l 133.58167 143.13702 l 121.69464 146.56851 lf
-0 sg 114.83167 140.62500 m 126.71869 137.19351 l 133.58167 143.13702 l 121.69464 146.56851 lx
-0.00000 0.00000 0.40691 s 96.08167 138.11298 m 107.96869 134.68149 l 114.83167 140.62500 l 102.94464 144.05649 lf
-0 sg 96.08167 138.11298 m 107.96869 134.68149 l 114.83167 140.62500 l 102.94464 144.05649 lx
-0.00000 0.00000 0.40691 s 126.71869 137.19351 m 138.60572 133.76203 l 145.46869 139.70554 l 133.58167 143.13702 lf
-0 sg 126.71869 137.19351 m 138.60572 133.76203 l 145.46869 139.70554 l 133.58167 143.13702 lx
-0.00000 0.00000 0.40691 s 107.96869 134.68149 m 119.85572 131.25000 l 126.71869 137.19351 l 114.83167 140.62500 lf
-0 sg 107.96869 134.68149 m 119.85572 131.25000 l 126.71869 137.19351 l 114.83167 140.62500 lx
-0.00000 0.00000 0.40691 s 138.60572 133.76203 m 150.49274 130.33052 l 157.35572 136.27405 l 145.46869 139.70554 lf
-0 sg 138.60572 133.76203 m 150.49274 130.33052 l 157.35572 136.27405 l 145.46869 139.70554 lx
-0.00000 0.00000 0.40691 s 89.21869 132.16946 m 101.10572 128.73798 l 107.96869 134.68149 l 96.08167 138.11298 lf
-0 sg 89.21869 132.16946 m 101.10572 128.73798 l 107.96869 134.68149 l 96.08167 138.11298 lx
-0.00000 0.00000 0.40691 s 119.85572 131.25000 m 131.74274 127.81850 l 138.60572 133.76203 l 126.71869 137.19351 lf
-0 sg 119.85572 131.25000 m 131.74274 127.81850 l 138.60572 133.76203 l 126.71869 137.19351 lx
-0.00000 0.00000 0.40691 s 150.49274 130.33052 m 162.37976 126.89910 l 169.24274 132.84256 l 157.35572 136.27405 lf
-0 sg 150.49274 130.33052 m 162.37976 126.89910 l 169.24274 132.84256 l 157.35572 136.27405 lx
-0.00000 0.00000 0.40691 s 101.10572 128.73798 m 112.99274 125.30647 l 119.85572 131.25000 l 107.96869 134.68149 lf
-0 sg 101.10572 128.73798 m 112.99274 125.30647 l 119.85572 131.25000 l 107.96869 134.68149 lx
-0.00000 0.00000 0.40691 s 131.74274 127.81850 m 143.62976 124.38708 l 150.49274 130.33052 l 138.60572 133.76203 lf
-0 sg 131.74274 127.81850 m 143.62976 124.38708 l 150.49274 130.33052 l 138.60572 133.76203 lx
-0.00000 0.00000 0.40691 s 162.37976 126.89910 m 174.26679 123.46737 l 181.12976 129.41107 l 169.24274 132.84256 lf
-0 sg 162.37976 126.89910 m 174.26679 123.46737 l 181.12976 129.41107 l 169.24274 132.84256 lx
-0.00000 0.00000 0.40691 s 82.35572 126.22595 m 94.24274 122.79445 l 101.10572 128.73798 l 89.21869 132.16946 lf
-0 sg 82.35572 126.22595 m 94.24274 122.79445 l 101.10572 128.73798 l 89.21869 132.16946 lx
-0.00000 0.00000 0.40691 s 112.99274 125.30647 m 124.87976 121.87505 l 131.74274 127.81850 l 119.85572 131.25000 lf
-0 sg 112.99274 125.30647 m 124.87976 121.87505 l 131.74274 127.81850 l 119.85572 131.25000 lx
-0.00000 0.00000 0.40691 s 143.62976 124.38708 m 155.51679 120.95533 l 162.37976 126.89910 l 150.49274 130.33052 lf
-0 sg 143.62976 124.38708 m 155.51679 120.95533 l 162.37976 126.89910 l 150.49274 130.33052 lx
-0.00000 0.00000 0.40693 s 174.26679 123.46737 m 186.15381 120.03678 l 193.01679 125.97958 l 181.12976 129.41107 lf
-0 sg 174.26679 123.46737 m 186.15381 120.03678 l 193.01679 125.97958 l 181.12976 129.41107 lx
-0.00000 0.00000 0.40691 s 94.24274 122.79445 m 106.12976 119.36303 l 112.99274 125.30647 l 101.10572 128.73798 lf
-0 sg 94.24274 122.79445 m 106.12976 119.36303 l 112.99274 125.30647 l 101.10572 128.73798 lx
-0.00000 0.00000 0.40691 s 124.87976 121.87505 m 136.76679 118.44331 l 143.62976 124.38708 l 131.74274 127.81850 lf
-0 sg 124.87976 121.87505 m 136.76679 118.44331 l 143.62976 124.38708 l 131.74274 127.81850 lx
-0.00000 0.00000 0.40693 s 155.51679 120.95533 m 167.40381 117.52480 l 174.26679 123.46737 l 162.37976 126.89910 lf
-0 sg 155.51679 120.95533 m 167.40381 117.52480 l 174.26679 123.46737 l 162.37976 126.89910 lx
-0.00000 0.00000 0.40691 s 75.49274 120.28244 m 87.37976 116.85100 l 94.24274 122.79445 l 82.35572 126.22595 lf
-0 sg 75.49274 120.28244 m 87.37976 116.85100 l 94.24274 122.79445 l 82.35572 126.22595 lx
-0.00000 0.00000 0.40672 s 186.15381 120.03678 m 198.04083 116.59932 l 204.90381 122.54809 l 193.01679 125.97958 lf
-0 sg 186.15381 120.03678 m 198.04083 116.59932 l 204.90381 122.54809 l 193.01679 125.97958 lx
-0.00000 0.00000 0.40691 s 106.12976 119.36303 m 118.01679 115.93128 l 124.87976 121.87505 l 112.99274 125.30647 lf
-0 sg 106.12976 119.36303 m 118.01679 115.93128 l 124.87976 121.87505 l 112.99274 125.30647 lx
-0.00000 0.00000 0.40693 s 136.76679 118.44331 m 148.65381 115.01278 l 155.51679 120.95533 l 143.62976 124.38708 lf
-0 sg 136.76679 118.44331 m 148.65381 115.01278 l 155.51679 120.95533 l 143.62976 124.38708 lx
-0.00000 0.00000 0.40685 s 167.40381 117.52480 m 179.29083 114.08974 l 186.15381 120.03678 l 174.26679 123.46737 lf
-0 sg 167.40381 117.52480 m 179.29083 114.08974 l 186.15381 120.03678 l 174.26679 123.46737 lx
-0.00000 0.00000 0.40691 s 87.37976 116.85100 m 99.26679 113.41926 l 106.12976 119.36303 l 94.24274 122.79445 lf
-0 sg 87.37976 116.85100 m 99.26679 113.41926 l 106.12976 119.36303 l 94.24274 122.79445 lx
-0.00000 0.00000 0.40672 s 198.04083 116.59932 m 209.92786 113.17380 l 216.79083 119.11661 l 204.90381 122.54809 lf
-0 sg 198.04083 116.59932 m 209.92786 113.17380 l 216.79083 119.11661 l 204.90381 122.54809 lx
-0.00000 0.00000 0.40693 s 118.01679 115.93128 m 129.90381 112.50076 l 136.76679 118.44331 l 124.87976 121.87505 lf
-0 sg 118.01679 115.93128 m 129.90381 112.50076 l 136.76679 118.44331 l 124.87976 121.87505 lx
-0.00000 0.00000 0.40685 s 148.65381 115.01278 m 160.54083 111.57770 l 167.40381 117.52480 l 155.51679 120.95533 lf
-0 sg 148.65381 115.01278 m 160.54083 111.57770 l 167.40381 117.52480 l 155.51679 120.95533 lx
-0.00000 0.00000 0.40691 s 68.62976 114.33893 m 80.51679 110.90725 l 87.37976 116.85100 l 75.49274 120.28244 lf
-0 sg 68.62976 114.33893 m 80.51679 110.90725 l 87.37976 116.85100 l 75.49274 120.28244 lx
-0.00000 0.00000 0.40749 s 179.29083 114.08974 m 191.17786 110.68213 l 198.04083 116.59932 l 186.15381 120.03678 lf
-0 sg 179.29083 114.08974 m 191.17786 110.68213 l 198.04083 116.59932 l 186.15381 120.03678 lx
-0.00000 0.00000 0.40693 s 99.26679 113.41926 m 111.15381 109.98874 l 118.01679 115.93128 l 106.12976 119.36303 lf
-0 sg 99.26679 113.41926 m 111.15381 109.98874 l 118.01679 115.93128 l 106.12976 119.36303 lx
-0.00000 0.00000 0.40693 s 209.92786 113.17380 m 221.81488 109.74142 l 228.67786 115.68512 l 216.79083 119.11661 lf
-0 sg 209.92786 113.17380 m 221.81488 109.74142 l 228.67786 115.68512 l 216.79083 119.11661 lx
-0.00000 0.00000 0.40685 s 129.90381 112.50076 m 141.79083 109.06568 l 148.65381 115.01278 l 136.76679 118.44331 lf
-0 sg 129.90381 112.50076 m 141.79083 109.06568 l 148.65381 115.01278 l 136.76679 118.44331 lx
-0.00000 0.00000 0.40715 s 160.54083 111.57770 m 172.42786 108.15963 l 179.29083 114.08974 l 167.40381 117.52480 lf
-0 sg 160.54083 111.57770 m 172.42786 108.15963 l 179.29083 114.08974 l 167.40381 117.52480 lx
-0.00000 0.00000 0.40693 s 80.51679 110.90725 m 92.40381 107.47671 l 99.26679 113.41926 l 87.37976 116.85100 lf
-0 sg 80.51679 110.90725 m 92.40381 107.47671 l 99.26679 113.41926 l 87.37976 116.85100 lx
-0.00000 0.00000 0.40749 s 191.17786 110.68213 m 203.06488 107.22676 l 209.92786 113.17380 l 198.04083 116.59932 lf
-0 sg 191.17786 110.68213 m 203.06488 107.22676 l 209.92786 113.17380 l 198.04083 116.59932 lx
-0.00000 0.00000 0.40685 s 111.15381 109.98874 m 123.04083 106.55365 l 129.90381 112.50076 l 118.01679 115.93128 lf
-0 sg 111.15381 109.98874 m 123.04083 106.55365 l 129.90381 112.50076 l 118.01679 115.93128 lx
-0.00000 0.00000 0.40691 s 221.81488 109.74142 m 233.70191 106.31017 l 240.56488 112.25363 l 228.67786 115.68512 lf
-0 sg 221.81488 109.74142 m 233.70191 106.31017 l 240.56488 112.25363 l 228.67786 115.68512 lx
-0.00000 0.00000 0.40715 s 141.79083 109.06568 m 153.67786 105.64761 l 160.54083 111.57770 l 148.65381 115.01278 lf
-0 sg 141.79083 109.06568 m 153.67786 105.64761 l 160.54083 111.57770 l 148.65381 115.01278 lx
-0.00000 0.00000 0.40693 s 61.76679 108.39542 m 73.65381 104.96463 l 80.51679 110.90725 l 68.62976 114.33893 lf
-0 sg 61.76679 108.39542 m 73.65381 104.96463 l 80.51679 110.90725 l 68.62976 114.33893 lx
-0.00000 0.00000 0.40481 s 172.42786 108.15963 m 184.31488 104.63857 l 191.17786 110.68213 l 179.29083 114.08974 lf
-0 sg 172.42786 108.15963 m 184.31488 104.63857 l 191.17786 110.68213 l 179.29083 114.08974 lx
-0.00000 0.00000 0.40685 s 92.40381 107.47671 m 104.29083 104.04163 l 111.15381 109.98874 l 99.26679 113.41926 lf
-0 sg 92.40381 107.47671 m 104.29083 104.04163 l 111.15381 109.98874 l 99.26679 113.41926 lx
-0.00000 0.00000 0.40685 s 203.06488 107.22676 m 214.95191 103.79885 l 221.81488 109.74142 l 209.92786 113.17380 lf
-0 sg 203.06488 107.22676 m 214.95191 103.79885 l 221.81488 109.74142 l 209.92786 113.17380 lx
-0.00000 0.00000 0.40715 s 123.04083 106.55365 m 134.92786 103.13559 l 141.79083 109.06568 l 129.90381 112.50076 lf
-0 sg 123.04083 106.55365 m 134.92786 103.13559 l 141.79083 109.06568 l 129.90381 112.50076 lx
-0.00000 0.00000 0.40691 s 233.70191 106.31017 m 245.58893 102.87862 l 252.45191 108.82214 l 240.56488 112.25363 lf
-0 sg 233.70191 106.31017 m 245.58893 102.87862 l 252.45191 108.82214 l 240.56488 112.25363 lx
-0.00000 0.00000 0.40603 s 153.67786 105.64761 m 165.56488 102.16603 l 172.42786 108.15963 l 160.54083 111.57770 lf
-0 sg 153.67786 105.64761 m 165.56488 102.16603 l 172.42786 108.15963 l 160.54083 111.57770 lx
-0.00000 0.00000 0.40685 s 73.65381 104.96463 m 85.54083 101.52962 l 92.40381 107.47671 l 80.51679 110.90725 lf
-0 sg 73.65381 104.96463 m 85.54083 101.52962 l 92.40381 107.47671 l 80.51679 110.90725 lx
-0.00000 0.00000 0.40481 s 184.31488 104.63857 m 196.20191 101.29665 l 203.06488 107.22676 l 191.17786 110.68213 lf
-0 sg 184.31488 104.63857 m 196.20191 101.29665 l 203.06488 107.22676 l 191.17786 110.68213 lx
-0.00000 0.00000 0.40715 s 104.29083 104.04163 m 116.17786 100.62356 l 123.04083 106.55365 l 111.15381 109.98874 lf
-0 sg 104.29083 104.04163 m 116.17786 100.62356 l 123.04083 106.55365 l 111.15381 109.98874 lx
-0.00000 0.00000 0.40693 s 214.95191 103.79885 m 226.83893 100.36640 l 233.70191 106.31017 l 221.81488 109.74142 lf
-0 sg 214.95191 103.79885 m 226.83893 100.36640 l 233.70191 106.31017 l 221.81488 109.74142 lx
-0.00000 0.00000 0.40603 s 134.92786 103.13559 m 146.81488 99.65400 l 153.67786 105.64761 l 141.79083 109.06568 lf
-0 sg 134.92786 103.13559 m 146.81488 99.65400 l 153.67786 105.64761 l 141.79083 109.06568 lx
-0.00000 0.00000 0.40691 s 245.58893 102.87862 m 257.47595 99.44715 l 264.33893 105.39065 l 252.45191 108.82214 lf
-0 sg 245.58893 102.87862 m 257.47595 99.44715 l 264.33893 105.39065 l 252.45191 108.82214 lx
-0.00000 0.00000 0.40672 s 54.90381 102.45191 m 66.79083 99.01515 l 73.65381 104.96463 l 61.76679 108.39542 lf
-0 sg 54.90381 102.45191 m 66.79083 99.01515 l 73.65381 104.96463 l 61.76679 108.39542 lx
-0.00000 0.00000 0.41474 s 165.56488 102.16603 m 177.45191 99.06893 l 184.31488 104.63857 l 172.42786 108.15963 lf
-0 sg 165.56488 102.16603 m 177.45191 99.06893 l 184.31488 104.63857 l 172.42786 108.15963 lx
-0.00000 0.00000 0.40715 s 85.54083 101.52962 m 97.42786 98.11153 l 104.29083 104.04163 l 92.40381 107.47671 lf
-0 sg 85.54083 101.52962 m 97.42786 98.11153 l 104.29083 104.04163 l 92.40381 107.47671 lx
-0.00000 0.00000 0.40715 s 196.20191 101.29665 m 208.08893 97.85175 l 214.95191 103.79885 l 203.06488 107.22676 lf
-0 sg 196.20191 101.29665 m 208.08893 97.85175 l 214.95191 103.79885 l 203.06488 107.22676 lx
-0.00000 0.00000 0.40603 s 116.17786 100.62356 m 128.06488 97.14198 l 134.92786 103.13559 l 123.04083 106.55365 lf
-0 sg 116.17786 100.62356 m 128.06488 97.14198 l 134.92786 103.13559 l 123.04083 106.55365 lx
-0.00000 0.00000 0.40691 s 226.83893 100.36640 m 238.72595 96.93517 l 245.58893 102.87862 l 233.70191 106.31017 lf
-0 sg 226.83893 100.36640 m 238.72595 96.93517 l 245.58893 102.87862 l 233.70191 106.31017 lx
-0.00000 0.00000 0.41022 s 146.81488 99.65400 m 158.70191 96.40947 l 165.56488 102.16603 l 153.67786 105.64761 lf
-0 sg 146.81488 99.65400 m 158.70191 96.40947 l 165.56488 102.16603 l 153.67786 105.64761 lx
-0.00000 0.00000 0.40691 s 257.47595 99.44715 m 269.36298 96.01565 l 276.22595 101.95917 l 264.33893 105.39065 lf
-0 sg 257.47595 99.44715 m 269.36298 96.01565 l 276.22595 101.95917 l 264.33893 105.39065 lx
-0.00000 0.00000 0.40749 s 66.79083 99.01515 m 78.67786 95.60999 l 85.54083 101.52962 l 73.65381 104.96463 lf
-0 sg 66.79083 99.01515 m 78.67786 95.60999 l 85.54083 101.52962 l 73.65381 104.96463 lx
-0.00000 0.00000 0.41474 s 177.45191 99.06893 m 189.33893 95.30305 l 196.20191 101.29665 l 184.31488 104.63857 lf
-0 sg 177.45191 99.06893 m 189.33893 95.30305 l 196.20191 101.29665 l 184.31488 104.63857 lx
-0.00000 0.00000 0.40603 s 97.42786 98.11153 m 109.31488 94.62996 l 116.17786 100.62356 l 104.29083 104.04163 lf
-0 sg 97.42786 98.11153 m 109.31488 94.62996 l 116.17786 100.62356 l 104.29083 104.04163 lx
-0.00000 0.00000 0.40685 s 208.08893 97.85175 m 219.97595 94.42385 l 226.83893 100.36640 l 214.95191 103.79885 lf
-0 sg 208.08893 97.85175 m 219.97595 94.42385 l 226.83893 100.36640 l 214.95191 103.79885 lx
-0.00000 0.00000 0.41022 s 128.06488 97.14198 m 139.95191 93.89744 l 146.81488 99.65400 l 134.92786 103.13559 lf
-0 sg 128.06488 97.14198 m 139.95191 93.89744 l 146.81488 99.65400 l 134.92786 103.13559 lx
-0.00000 0.00000 0.40691 s 238.72595 96.93517 m 250.61298 93.50362 l 257.47595 99.44715 l 245.58893 102.87862 lf
-0 sg 238.72595 96.93517 m 250.61298 93.50362 l 257.47595 99.44715 l 245.58893 102.87862 lx
-0.00000 0.00000 0.40672 s 48.04083 96.50839 m 59.92786 93.07761 l 66.79083 99.01515 l 54.90381 102.45191 lf
-0 sg 48.04083 96.50839 m 59.92786 93.07761 l 66.79083 99.01515 l 54.90381 102.45191 lx
-0.00000 0.00000 0.37770 s 158.70191 96.40947 m 170.58893 91.72999 l 177.45191 99.06893 l 165.56488 102.16603 lf
-0 sg 158.70191 96.40947 m 170.58893 91.72999 l 177.45191 99.06893 l 165.56488 102.16603 lx
-0.00000 0.00000 0.40691 s 269.36298 96.01565 m 281.25000 92.58417 l 288.11298 98.52768 l 276.22595 101.95917 lf
-0 sg 269.36298 96.01565 m 281.25000 92.58417 l 288.11298 98.52768 l 276.22595 101.95917 lx
-0.00000 0.00000 0.40481 s 78.67786 95.60999 m 90.56488 92.07845 l 97.42786 98.11153 l 85.54083 101.52962 lf
-0 sg 78.67786 95.60999 m 90.56488 92.07845 l 97.42786 98.11153 l 85.54083 101.52962 lx
-0.00000 0.00000 0.40603 s 189.33893 95.30305 m 201.22595 91.92166 l 208.08893 97.85175 l 196.20191 101.29665 lf
-0 sg 189.33893 95.30305 m 201.22595 91.92166 l 208.08893 97.85175 l 196.20191 101.29665 lx
-0.00000 0.00000 0.41022 s 109.31488 94.62996 m 121.20191 91.38542 l 128.06488 97.14198 l 116.17786 100.62356 lf
-0 sg 109.31488 94.62996 m 121.20191 91.38542 l 128.06488 97.14198 l 116.17786 100.62356 lx
-0.00000 0.00000 0.40693 s 219.97595 94.42385 m 231.86298 90.99140 l 238.72595 96.93517 l 226.83893 100.36640 lf
-0 sg 219.97595 94.42385 m 231.86298 90.99140 l 238.72595 96.93517 l 226.83893 100.36640 lx
-0.00000 0.00000 0.39456 s 139.95191 93.89744 m 151.83893 89.76824 l 158.70191 96.40947 l 146.81488 99.65400 lf
-0 sg 139.95191 93.89744 m 151.83893 89.76824 l 158.70191 96.40947 l 146.81488 99.65400 lx
-0.00000 0.00000 0.40691 s 250.61298 93.50362 m 262.50000 90.07215 l 269.36298 96.01565 l 257.47595 99.44715 lf
-0 sg 250.61298 93.50362 m 262.50000 90.07215 l 269.36298 96.01565 l 257.47595 99.44715 lx
-0.00000 0.00000 0.40749 s 59.92786 93.07761 m 71.81488 89.64260 l 78.67786 95.60999 l 66.79083 99.01515 lf
-0 sg 59.92786 93.07761 m 71.81488 89.64260 l 78.67786 95.60999 l 66.79083 99.01515 lx
-0.00000 0.00000 0.37770 s 170.58893 91.72999 m 182.47595 89.54649 l 189.33893 95.30305 l 177.45191 99.06893 lf
-0 sg 170.58893 91.72999 m 182.47595 89.54649 l 189.33893 95.30305 l 177.45191 99.06893 lx
-0.00000 0.00000 0.40691 s 281.25000 92.58417 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lf
-0 sg 281.25000 92.58417 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lx
-0.00000 0.00000 0.41474 s 90.56488 92.07845 m 102.45191 89.02083 l 109.31488 94.62996 l 97.42786 98.11153 lf
-0 sg 90.56488 92.07845 m 102.45191 89.02083 l 109.31488 94.62996 l 97.42786 98.11153 lx
-0.00000 0.00000 0.40715 s 201.22595 91.92166 m 213.11298 88.47675 l 219.97595 94.42385 l 208.08893 97.85175 lf
-0 sg 201.22595 91.92166 m 213.11298 88.47675 l 219.97595 94.42385 l 208.08893 97.85175 lx
-0.00000 0.00000 0.39456 s 121.20191 91.38542 m 133.08893 87.25622 l 139.95191 93.89744 l 128.06488 97.14198 lf
-0 sg 121.20191 91.38542 m 133.08893 87.25622 l 139.95191 93.89744 l 128.06488 97.14198 lx
-0.00000 0.00000 0.40691 s 231.86298 90.99140 m 243.75000 87.56017 l 250.61298 93.50362 l 238.72595 96.93517 lf
-0 sg 231.86298 90.99140 m 243.75000 87.56017 l 250.61298 93.50362 l 238.72595 96.93517 lx
-0.00000 0.00000 0.40693 s 41.17786 90.56488 m 53.06488 87.13320 l 59.92786 93.07761 l 48.04083 96.50839 lf
-0 sg 41.17786 90.56488 m 53.06488 87.13320 l 59.92786 93.07761 l 48.04083 96.50839 lx
-0.00000 0.00000 0.51594 s 151.83893 89.76824 m 163.72595 90.99431 l 170.58893 91.72999 l 158.70191 96.40947 lf
-0 sg 151.83893 89.76824 m 163.72595 90.99431 l 170.58893 91.72999 l 158.70191 96.40947 lx
-0.00000 0.00000 0.40691 s 262.50000 90.07215 m 274.38702 86.64065 l 281.25000 92.58417 l 269.36298 96.01565 lf
-0 sg 262.50000 90.07215 m 274.38702 86.64065 l 281.25000 92.58417 l 269.36298 96.01565 lx
-0.00000 0.00000 0.40481 s 71.81488 89.64260 m 83.70191 86.22451 l 90.56488 92.07845 l 78.67786 95.60999 lf
-0 sg 71.81488 89.64260 m 83.70191 86.22451 l 90.56488 92.07845 l 78.67786 95.60999 lx
-0.00000 0.00000 0.41022 s 182.47595 89.54649 m 194.36298 85.92805 l 201.22595 91.92166 l 189.33893 95.30305 lf
-0 sg 182.47595 89.54649 m 194.36298 85.92805 l 201.22595 91.92166 l 189.33893 95.30305 lx
-0.00000 0.00000 0.37770 s 102.45191 89.02083 m 114.33893 84.19392 l 121.20191 91.38542 l 109.31488 94.62996 lf
-0 sg 102.45191 89.02083 m 114.33893 84.19392 l 121.20191 91.38542 l 109.31488 94.62996 lx
-0.00000 0.00000 0.40685 s 213.11298 88.47675 m 225.00000 85.04885 l 231.86298 90.99140 l 219.97595 94.42385 lf
-0 sg 213.11298 88.47675 m 225.00000 85.04885 l 231.86298 90.99140 l 219.97595 94.42385 lx
-0.00000 0.00000 0.45299 s 133.08893 87.25622 m 144.97595 86.42864 l 151.83893 89.76824 l 139.95191 93.89744 lf
-0 sg 133.08893 87.25622 m 144.97595 86.42864 l 151.83893 89.76824 l 139.95191 93.89744 lx
-0.00000 0.00000 0.40691 s 243.75000 87.56017 m 255.63702 84.12862 l 262.50000 90.07215 l 250.61298 93.50362 lf
-0 sg 243.75000 87.56017 m 255.63702 84.12862 l 262.50000 90.07215 l 250.61298 93.50362 lx
-0.00000 0.00000 0.40685 s 53.06488 87.13320 m 64.95191 83.70266 l 71.81488 89.64260 l 59.92786 93.07761 lf
-0 sg 53.06488 87.13320 m 64.95191 83.70266 l 71.81488 89.64260 l 59.92786 93.07761 lx
-0.00000 0.00000 0.51594 s 163.72595 90.99431 m 175.61298 82.90526 l 182.47595 89.54649 l 170.58893 91.72999 lf
-0 sg 163.72595 90.99431 m 175.61298 82.90526 l 182.47595 89.54649 l 170.58893 91.72999 lx
-0.00000 0.00000 0.40691 s 274.38702 86.64065 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.58417 lf
-0 sg 274.38702 86.64065 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.58417 lx
-0.00000 0.00000 0.41474 s 83.70191 86.22451 m 95.58893 82.74293 l 102.45191 89.02083 l 90.56488 92.07845 lf
-0 sg 83.70191 86.22451 m 95.58893 82.74293 l 102.45191 89.02083 l 90.56488 92.07845 lx
-0.00000 0.00000 0.40603 s 194.36298 85.92805 m 206.25000 82.54666 l 213.11298 88.47675 l 201.22595 91.92166 lf
-0 sg 194.36298 85.92805 m 206.25000 82.54666 l 213.11298 88.47675 l 201.22595 91.92166 lx
-0.00000 sg 144.97595 86.42864 m 156.86298 65.61491 l 163.72595 90.99431 l 151.83893 89.76824 lf
-0 sg 144.97595 86.42864 m 156.86298 65.61491 l 163.72595 90.99431 l 151.83893 89.76824 lx
-0.00000 0.00000 0.51594 s 114.33893 84.19392 m 126.22595 85.97026 l 133.08893 87.25622 l 121.20191 91.38542 lf
-0 sg 114.33893 84.19392 m 126.22595 85.97026 l 133.08893 87.25622 l 121.20191 91.38542 lx
-0.00000 0.00000 0.40693 s 225.00000 85.04885 m 236.88702 81.61640 l 243.75000 87.56017 l 231.86298 90.99140 lf
-0 sg 225.00000 85.04885 m 236.88702 81.61640 l 243.75000 87.56017 l 231.86298 90.99140 lx
-0.00000 0.00000 0.40691 s 34.31488 84.62137 m 46.20191 81.18993 l 53.06488 87.13320 l 41.17786 90.56488 lf
-0 sg 34.31488 84.62137 m 46.20191 81.18993 l 53.06488 87.13320 l 41.17786 90.56488 lx
-0.00000 0.00000 0.40691 s 255.63702 84.12862 m 267.52405 80.69715 l 274.38702 86.64065 l 262.50000 90.07215 lf
-0 sg 255.63702 84.12862 m 267.52405 80.69715 l 274.38702 86.64065 l 262.50000 90.07215 lx
-0.00000 0.00000 0.40715 s 64.95191 83.70266 m 76.83893 80.26758 l 83.70191 86.22451 l 71.81488 89.64260 lf
-0 sg 64.95191 83.70266 m 76.83893 80.26758 l 83.70191 86.22451 l 71.81488 89.64260 lx
-0.00000 0.00000 0.39456 s 175.61298 82.90526 m 187.50000 80.17149 l 194.36298 85.92805 l 182.47595 89.54649 lf
-0 sg 175.61298 82.90526 m 187.50000 80.17149 l 194.36298 85.92805 l 182.47595 89.54649 lx
-0.00000 0.00000 0.37770 s 95.58893 82.74293 m 107.47595 79.49840 l 114.33893 84.19392 l 102.45191 89.02083 lf
-0 sg 95.58893 82.74293 m 107.47595 79.49840 l 114.33893 84.19392 l 102.45191 89.02083 lx
-0.00000 sg 126.22595 85.97026 m 138.11298 63.10288 l 144.97595 86.42864 l 133.08893 87.25622 lf
-0 sg 126.22595 85.97026 m 138.11298 63.10288 l 144.97595 86.42864 l 133.08893 87.25622 lx
-0.00000 0.00000 0.40715 s 206.25000 82.54666 m 218.13702 79.10175 l 225.00000 85.04885 l 213.11298 88.47675 lf
-0 sg 206.25000 82.54666 m 218.13702 79.10175 l 225.00000 85.04885 l 213.11298 88.47675 lx
-0.00000 sg 156.86298 65.61491 m 168.75000 79.56567 l 175.61298 82.90526 l 163.72595 90.99431 lf
-0 sg 156.86298 65.61491 m 168.75000 79.56567 l 175.61298 82.90526 l 163.72595 90.99431 lx
-0.00000 0.00000 0.40691 s 236.88702 81.61640 m 248.77405 78.18517 l 255.63702 84.12862 l 243.75000 87.56017 lf
-0 sg 236.88702 81.61640 m 248.77405 78.18517 l 255.63702 84.12862 l 243.75000 87.56017 lx
-0.00000 0.00000 0.40693 s 46.20191 81.18993 m 58.08893 77.75819 l 64.95191 83.70266 l 53.06488 87.13320 lf
-0 sg 46.20191 81.18993 m 58.08893 77.75819 l 64.95191 83.70266 l 53.06488 87.13320 lx
-0.00000 0.00000 0.40691 s 267.52405 80.69715 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 86.64065 lf
-0 sg 267.52405 80.69715 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 86.64065 lx
-0.00000 0.00000 0.40603 s 76.83893 80.26758 m 88.72595 76.84951 l 95.58893 82.74293 l 83.70191 86.22451 lf
-0 sg 76.83893 80.26758 m 88.72595 76.84951 l 95.58893 82.74293 l 83.70191 86.22451 lx
-0.00000 0.00000 0.41022 s 187.50000 80.17149 m 199.38702 76.55305 l 206.25000 82.54666 l 194.36298 85.92805 lf
-0 sg 187.50000 80.17149 m 199.38702 76.55305 l 206.25000 82.54666 l 194.36298 85.92805 lx
-0.00000 0.00000 0.51594 s 107.47595 79.49840 m 119.36298 75.36919 l 126.22595 85.97026 l 114.33893 84.19392 lf
-0 sg 107.47595 79.49840 m 119.36298 75.36919 l 126.22595 85.97026 l 114.33893 84.19392 lx
-0.00000 0.00000 0.40685 s 218.13702 79.10175 m 230.02405 75.67385 l 236.88702 81.61640 l 225.00000 85.04885 lf
-0 sg 218.13702 79.10175 m 230.02405 75.67385 l 236.88702 81.61640 l 225.00000 85.04885 lx
-0.00000 0.00000 0.40691 s 27.45191 78.67786 m 39.33893 75.24636 l 46.20191 81.18993 l 34.31488 84.62137 lf
-0 sg 27.45191 78.67786 m 39.33893 75.24636 l 46.20191 81.18993 l 34.31488 84.62137 lx
-0.00000 0.00000 0.40691 s 248.77405 78.18517 m 260.66107 74.75362 l 267.52405 80.69715 l 255.63702 84.12862 lf
-0 sg 248.77405 78.18517 m 260.66107 74.75362 l 267.52405 80.69715 l 255.63702 84.12862 lx
-0.00000 0.00000 0.40685 s 58.08893 77.75819 m 69.97595 74.32767 l 76.83893 80.26758 l 64.95191 83.70266 lf
-0 sg 58.08893 77.75819 m 69.97595 74.32767 l 76.83893 80.26758 l 64.95191 83.70266 lx
-0.00000 0.00000 0.45299 s 168.75000 79.56567 m 180.63702 73.53026 l 187.50000 80.17149 l 175.61298 82.90526 lf
-0 sg 168.75000 79.56567 m 180.63702 73.53026 l 187.50000 80.17149 l 175.61298 82.90526 lx
-0.00000 0.00000 0.41022 s 88.72595 76.84951 m 100.61298 73.36793 l 107.47595 79.49840 l 95.58893 82.74293 lf
-0 sg 88.72595 76.84951 m 100.61298 73.36793 l 107.47595 79.49840 l 95.58893 82.74293 lx
-0.00000 sg 119.36298 75.36919 m 131.25000 74.54162 l 138.11298 63.10288 l 126.22595 85.97026 lf
-0 sg 119.36298 75.36919 m 131.25000 74.54162 l 138.11298 63.10288 l 126.22595 85.97026 lx
-0.00000 0.00000 0.40603 s 199.38702 76.55305 m 211.27405 73.17166 l 218.13702 79.10175 l 206.25000 82.54666 lf
-0 sg 199.38702 76.55305 m 211.27405 73.17166 l 218.13702 79.10175 l 206.25000 82.54666 lx
-0.00000 0.00000 0.40693 s 230.02405 75.67385 m 241.91107 72.24140 l 248.77405 78.18517 l 236.88702 81.61640 lf
-0 sg 230.02405 75.67385 m 241.91107 72.24140 l 248.77405 78.18517 l 236.88702 81.61640 lx
-0.00000 0.00000 0.40691 s 39.33893 75.24636 m 51.22595 71.81494 l 58.08893 77.75819 l 46.20191 81.18993 lf
-0 sg 39.33893 75.24636 m 51.22595 71.81494 l 58.08893 77.75819 l 46.20191 81.18993 lx
-0.00000 0.00000 0.40691 s 260.66107 74.75362 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 80.69715 lf
-0 sg 260.66107 74.75362 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 80.69715 lx
-0.00000 0.00000 0.40715 s 69.97595 74.32767 m 81.86298 70.89258 l 88.72595 76.84951 l 76.83893 80.26758 lf
-0 sg 69.97595 74.32767 m 81.86298 70.89258 l 88.72595 76.84951 l 76.83893 80.26758 lx
-0.00000 0.00000 0.39456 s 180.63702 73.53026 m 192.52405 70.79649 l 199.38702 76.55305 l 187.50000 80.17149 lf
-0 sg 180.63702 73.53026 m 192.52405 70.79649 l 199.38702 76.55305 l 187.50000 80.17149 lx
-0.00000 0.00000 0.39456 s 100.61298 73.36793 m 112.50000 70.12340 l 119.36298 75.36919 l 107.47595 79.49840 lf
-0 sg 100.61298 73.36793 m 112.50000 70.12340 l 119.36298 75.36919 l 107.47595 79.49840 lx
-0.00000 0.00000 0.40715 s 211.27405 73.17166 m 223.16107 69.72675 l 230.02405 75.67385 l 218.13702 79.10175 lf
-0 sg 211.27405 73.17166 m 223.16107 69.72675 l 230.02405 75.67385 l 218.13702 79.10175 lx
-0.00000 0.00000 0.40691 s 20.58893 72.73435 m 32.47595 69.30286 l 39.33893 75.24636 l 27.45191 78.67786 lf
-0 sg 20.58893 72.73435 m 32.47595 69.30286 l 39.33893 75.24636 l 27.45191 78.67786 lx
-0.00000 sg 161.88702 56.23991 m 173.77405 72.24431 l 180.63702 73.53026 l 168.75000 79.56567 lf
-0 sg 161.88702 56.23991 m 173.77405 72.24431 l 180.63702 73.53026 l 168.75000 79.56567 lx
-0.00000 0.00000 0.40691 s 241.91107 72.24140 m 253.79809 68.81017 l 260.66107 74.75362 l 248.77405 78.18517 lf
-0 sg 241.91107 72.24140 m 253.79809 68.81017 l 260.66107 74.75362 l 248.77405 78.18517 lx
-0.00000 0.00000 0.40693 s 51.22595 71.81494 m 63.11298 68.38319 l 69.97595 74.32767 l 58.08893 77.75819 lf
-0 sg 51.22595 71.81494 m 63.11298 68.38319 l 69.97595 74.32767 l 58.08893 77.75819 lx
-1.00000 sg 138.11298 63.10288 m 150.00000 189.41427 l 156.86298 65.61491 l 144.97595 86.42864 lf
-0 sg 138.11298 63.10288 m 150.00000 189.41427 l 156.86298 65.61491 l 144.97595 86.42864 lx
-0.00000 0.00000 0.40603 s 81.86298 70.89258 m 93.75000 67.47451 l 100.61298 73.36793 l 88.72595 76.84951 lf
-0 sg 81.86298 70.89258 m 93.75000 67.47451 l 100.61298 73.36793 l 88.72595 76.84951 lx
-0.00000 0.00000 0.41022 s 192.52405 70.79649 m 204.41107 67.17805 l 211.27405 73.17166 l 199.38702 76.55305 lf
-0 sg 192.52405 70.79649 m 204.41107 67.17805 l 211.27405 73.17166 l 199.38702 76.55305 lx
-0.00000 0.00000 0.45299 s 112.50000 70.12340 m 124.38702 65.99419 l 131.25000 74.54162 l 119.36298 75.36919 lf
-0 sg 112.50000 70.12340 m 124.38702 65.99419 l 131.25000 74.54162 l 119.36298 75.36919 lx
-0.00000 0.00000 0.40685 s 223.16107 69.72675 m 235.04809 66.29885 l 241.91107 72.24140 l 230.02405 75.67385 lf
-0 sg 223.16107 69.72675 m 235.04809 66.29885 l 241.91107 72.24140 l 230.02405 75.67385 lx
-0.00000 0.00000 0.40691 s 32.47595 69.30286 m 44.36298 65.87136 l 51.22595 71.81494 l 39.33893 75.24636 lf
-0 sg 32.47595 69.30286 m 44.36298 65.87136 l 51.22595 71.81494 l 39.33893 75.24636 lx
-0.00000 0.00000 0.40691 s 253.79809 68.81017 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 74.75362 lf
-0 sg 253.79809 68.81017 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 74.75362 lx
-0.00000 0.00000 0.40685 s 63.11298 68.38319 m 75.00000 64.95267 l 81.86298 70.89258 l 69.97595 74.32767 lf
-0 sg 63.11298 68.38319 m 75.00000 64.95267 l 81.86298 70.89258 l 69.97595 74.32767 lx
-0.00000 0.00000 0.51594 s 173.77405 72.24431 m 185.66107 63.60499 l 192.52405 70.79649 l 180.63702 73.53026 lf
-0 sg 173.77405 72.24431 m 185.66107 63.60499 l 192.52405 70.79649 l 180.63702 73.53026 lx
-1.00000 sg 150.00000 189.41427 m 161.88702 56.23991 l 168.75000 79.56567 l 156.86298 65.61491 lf
-0 sg 150.00000 189.41427 m 161.88702 56.23991 l 168.75000 79.56567 l 156.86298 65.61491 lx
-0.00000 0.00000 0.41022 s 93.75000 67.47451 m 105.63702 63.99293 l 112.50000 70.12340 l 100.61298 73.36793 lf
-0 sg 93.75000 67.47451 m 105.63702 63.99293 l 112.50000 70.12340 l 100.61298 73.36793 lx
-0.00000 sg 124.38702 65.99419 m 136.27405 67.22026 l 143.13702 53.72788 l 131.25000 74.54162 lf
-0 sg 124.38702 65.99419 m 136.27405 67.22026 l 143.13702 53.72788 l 131.25000 74.54162 lx
-0.00000 0.00000 0.40603 s 204.41107 67.17805 m 216.29809 63.79665 l 223.16107 69.72675 l 211.27405 73.17166 lf
-0 sg 204.41107 67.17805 m 216.29809 63.79665 l 223.16107 69.72675 l 211.27405 73.17166 lx
-0.00000 0.00000 0.40691 s 13.72595 66.79083 m 25.61298 63.35935 l 32.47595 69.30286 l 20.58893 72.73435 lf
-0 sg 13.72595 66.79083 m 25.61298 63.35935 l 32.47595 69.30286 l 20.58893 72.73435 lx
-0.00000 sg 155.02405 67.67864 m 166.91107 61.64324 l 173.77405 72.24431 l 161.88702 56.23991 lf
-0 sg 155.02405 67.67864 m 166.91107 61.64324 l 173.77405 72.24431 l 161.88702 56.23991 lx
-0.00000 0.00000 0.40693 s 235.04809 66.29885 m 246.93512 62.86642 l 253.79809 68.81017 l 241.91107 72.24140 lf
-0 sg 235.04809 66.29885 m 246.93512 62.86642 l 253.79809 68.81017 l 241.91107 72.24140 lx
-0.00000 0.00000 0.40691 s 44.36298 65.87136 m 56.25000 62.43994 l 63.11298 68.38319 l 51.22595 71.81494 lf
-0 sg 44.36298 65.87136 m 56.25000 62.43994 l 63.11298 68.38319 l 51.22595 71.81494 lx
-1.00000 sg 131.25000 74.54162 m 143.13702 53.72788 l 150.00000 189.41427 l 138.11298 63.10288 lf
-0 sg 131.25000 74.54162 m 143.13702 53.72788 l 150.00000 189.41427 l 138.11298 63.10288 lx
-0.00000 0.00000 0.40715 s 75.00000 64.95267 m 86.88702 61.51758 l 93.75000 67.47451 l 81.86298 70.89258 lf
-0 sg 75.00000 64.95267 m 86.88702 61.51758 l 93.75000 67.47451 l 81.86298 70.89258 lx
-0.00000 0.00000 0.37770 s 185.66107 63.60499 m 197.54809 61.56893 l 204.41107 67.17805 l 192.52405 70.79649 lf
-0 sg 185.66107 63.60499 m 197.54809 61.56893 l 204.41107 67.17805 l 192.52405 70.79649 lx
-0.00000 0.00000 0.39456 s 105.63702 63.99293 m 117.52405 60.74840 l 124.38702 65.99419 l 112.50000 70.12340 lf
-0 sg 105.63702 63.99293 m 117.52405 60.74840 l 124.38702 65.99419 l 112.50000 70.12340 lx
-0.00000 sg 136.27405 67.22026 m 148.16107 59.13122 l 155.02405 67.67864 l 143.13702 53.72788 lf
-0 sg 136.27405 67.22026 m 148.16107 59.13122 l 155.02405 67.67864 l 143.13702 53.72788 lx
-0.00000 0.00000 0.40715 s 216.29809 63.79665 m 228.18512 60.35176 l 235.04809 66.29885 l 223.16107 69.72675 lf
-0 sg 216.29809 63.79665 m 228.18512 60.35176 l 235.04809 66.29885 l 223.16107 69.72675 lx
-0.00000 0.00000 0.40691 s 25.61298 63.35935 m 37.50000 59.92786 l 44.36298 65.87136 l 32.47595 69.30286 lf
-0 sg 25.61298 63.35935 m 37.50000 59.92786 l 44.36298 65.87136 l 32.47595 69.30286 lx
-0.00000 0.00000 0.40691 s 246.93512 62.86642 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.81017 lf
-0 sg 246.93512 62.86642 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.81017 lx
-0.00000 0.00000 0.40693 s 56.25000 62.43994 m 68.13702 59.00819 l 75.00000 64.95267 l 63.11298 68.38319 lf
-0 sg 56.25000 62.43994 m 68.13702 59.00819 l 75.00000 64.95267 l 63.11298 68.38319 lx
-0.00000 0.00000 0.51594 s 166.91107 61.64324 m 178.79809 58.90947 l 185.66107 63.60499 l 173.77405 72.24431 lf
-0 sg 166.91107 61.64324 m 178.79809 58.90947 l 185.66107 63.60499 l 173.77405 72.24431 lx
-1.00000 sg 143.13702 53.72788 m 155.02405 67.67864 l 161.88702 56.23991 l 150.00000 189.41427 lf
-0 sg 143.13702 53.72788 m 155.02405 67.67864 l 161.88702 56.23991 l 150.00000 189.41427 lx
-0.00000 0.00000 0.40603 s 86.88702 61.51758 m 98.77405 58.09951 l 105.63702 63.99293 l 93.75000 67.47451 lf
-0 sg 86.88702 61.51758 m 98.77405 58.09951 l 105.63702 63.99293 l 93.75000 67.47451 lx
-0.00000 0.00000 0.41474 s 197.54809 61.56893 m 209.43512 57.76357 l 216.29809 63.79665 l 204.41107 67.17805 lf
-0 sg 197.54809 61.56893 m 209.43512 57.76357 l 216.29809 63.79665 l 204.41107 67.17805 lx
-0.00000 0.00000 0.40691 s 6.86298 60.84732 m 18.75000 57.41583 l 25.61298 63.35935 l 13.72595 66.79083 lf
-0 sg 6.86298 60.84732 m 18.75000 57.41583 l 25.61298 63.35935 l 13.72595 66.79083 lx
-0.00000 0.00000 0.51594 s 117.52405 60.74840 m 129.41107 56.06892 l 136.27405 67.22026 l 124.38702 65.99419 lf
-0 sg 117.52405 60.74840 m 129.41107 56.06892 l 136.27405 67.22026 l 124.38702 65.99419 lx
-0.00000 0.00000 0.40685 s 228.18512 60.35176 m 240.07214 56.92380 l 246.93512 62.86642 l 235.04809 66.29885 lf
-0 sg 228.18512 60.35176 m 240.07214 56.92380 l 246.93512 62.86642 l 235.04809 66.29885 lx
-0.00000 0.00000 0.40691 s 37.50000 59.92786 m 49.38702 56.49636 l 56.25000 62.43994 l 44.36298 65.87136 lf
-0 sg 37.50000 59.92786 m 49.38702 56.49636 l 56.25000 62.43994 l 44.36298 65.87136 lx
-0.00000 0.00000 0.45299 s 148.16107 59.13122 m 160.04809 56.39744 l 166.91107 61.64324 l 155.02405 67.67864 lf
-0 sg 148.16107 59.13122 m 160.04809 56.39744 l 166.91107 61.64324 l 155.02405 67.67864 lx
-0.00000 0.00000 0.40685 s 68.13702 59.00819 m 80.02405 55.57767 l 86.88702 61.51758 l 75.00000 64.95267 lf
-0 sg 68.13702 59.00819 m 80.02405 55.57767 l 86.88702 61.51758 l 75.00000 64.95267 lx
-0.00000 0.00000 0.37770 s 178.79809 58.90947 m 190.68512 55.29103 l 197.54809 61.56893 l 185.66107 63.60499 lf
-0 sg 178.79809 58.90947 m 190.68512 55.29103 l 197.54809 61.56893 l 185.66107 63.60499 lx
-0.00000 0.00000 0.41022 s 98.77405 58.09951 m 110.66107 54.61793 l 117.52405 60.74840 l 105.63702 63.99293 lf
-0 sg 98.77405 58.09951 m 110.66107 54.61793 l 117.52405 60.74840 l 105.63702 63.99293 lx
-0.00000 0.00000 0.40481 s 209.43512 57.76357 m 221.32214 54.43213 l 228.18512 60.35176 l 216.29809 63.79665 lf
-0 sg 209.43512 57.76357 m 221.32214 54.43213 l 228.18512 60.35176 l 216.29809 63.79665 lx
-0.00000 0.00000 0.40691 s 18.75000 57.41583 m 30.63702 53.98435 l 37.50000 59.92786 l 25.61298 63.35935 lf
-0 sg 18.75000 57.41583 m 30.63702 53.98435 l 37.50000 59.92786 l 25.61298 63.35935 lx
-0.00000 0.00000 0.51594 s 129.41107 56.06892 m 141.29809 53.88542 l 148.16107 59.13122 l 136.27405 67.22026 lf
-0 sg 129.41107 56.06892 m 141.29809 53.88542 l 148.16107 59.13122 l 136.27405 67.22026 lx
-0.00000 0.00000 0.40693 s 240.07214 56.92380 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.86642 lf
-0 sg 240.07214 56.92380 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.86642 lx
-0.00000 0.00000 0.40691 s 49.38702 56.49636 m 61.27405 53.06494 l 68.13702 59.00819 l 56.25000 62.43994 lf
-0 sg 49.38702 56.49636 m 61.27405 53.06494 l 68.13702 59.00819 l 56.25000 62.43994 lx
-0.00000 0.00000 0.39456 s 160.04809 56.39744 m 171.93512 52.77900 l 178.79809 58.90947 l 166.91107 61.64324 lf
-0 sg 160.04809 56.39744 m 171.93512 52.77900 l 178.79809 58.90947 l 166.91107 61.64324 lx
-0.00000 0.00000 0.40715 s 80.02405 55.57767 m 91.91107 52.14258 l 98.77405 58.09951 l 86.88702 61.51758 lf
-0 sg 80.02405 55.57767 m 91.91107 52.14258 l 98.77405 58.09951 l 86.88702 61.51758 lx
-0.00000 0.00000 0.41474 s 190.68512 55.29103 m 202.57214 51.90963 l 209.43512 57.76357 l 197.54809 61.56893 lf
-0 sg 190.68512 55.29103 m 202.57214 51.90963 l 209.43512 57.76357 l 197.54809 61.56893 lx
-0.00000 0.00000 0.40691 s 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.41583 l 6.86298 60.84732 lf
-0 sg 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.41583 l 6.86298 60.84732 lx
-0.00000 0.00000 0.37770 s 110.66107 54.61793 m 122.54809 51.52083 l 129.41107 56.06892 l 117.52405 60.74840 lf
-0 sg 110.66107 54.61793 m 122.54809 51.52083 l 129.41107 56.06892 l 117.52405 60.74840 lx
-0.00000 0.00000 0.40749 s 221.32214 54.43213 m 233.20917 50.97432 l 240.07214 56.92380 l 228.18512 60.35176 lf
-0 sg 221.32214 54.43213 m 233.20917 50.97432 l 240.07214 56.92380 l 228.18512 60.35176 lx
-0.00000 0.00000 0.40691 s 30.63702 53.98435 m 42.52405 50.55286 l 49.38702 56.49636 l 37.50000 59.92786 lf
-0 sg 30.63702 53.98435 m 42.52405 50.55286 l 49.38702 56.49636 l 37.50000 59.92786 lx
-0.00000 0.00000 0.39456 s 141.29809 53.88542 m 153.18512 50.26698 l 160.04809 56.39744 l 148.16107 59.13122 lf
-0 sg 141.29809 53.88542 m 153.18512 50.26698 l 160.04809 56.39744 l 148.16107 59.13122 lx
-0.00000 0.00000 0.40693 s 61.27405 53.06494 m 73.16107 49.63319 l 80.02405 55.57767 l 68.13702 59.00819 lf
-0 sg 61.27405 53.06494 m 73.16107 49.63319 l 80.02405 55.57767 l 68.13702 59.00819 lx
-0.00000 0.00000 0.41022 s 171.93512 52.77900 m 183.82214 49.39761 l 190.68512 55.29103 l 178.79809 58.90947 lf
-0 sg 171.93512 52.77900 m 183.82214 49.39761 l 190.68512 55.29103 l 178.79809 58.90947 lx
-0.00000 0.00000 0.40603 s 91.91107 52.14258 m 103.79809 48.72451 l 110.66107 54.61793 l 98.77405 58.09951 lf
-0 sg 91.91107 52.14258 m 103.79809 48.72451 l 110.66107 54.61793 l 98.77405 58.09951 lx
-0.00000 0.00000 0.40481 s 202.57214 51.90963 m 214.45917 48.46474 l 221.32214 54.43213 l 209.43512 57.76357 lf
-0 sg 202.57214 51.90963 m 214.45917 48.46474 l 221.32214 54.43213 l 209.43512 57.76357 lx
-0.00000 0.00000 0.40691 s 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.98435 l 18.75000 57.41583 lf
-0 sg 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.98435 l 18.75000 57.41583 lx
-0.00000 0.00000 0.37770 s 122.54809 51.52083 m 134.43512 47.75496 l 141.29809 53.88542 l 129.41107 56.06892 lf
-0 sg 122.54809 51.52083 m 134.43512 47.75496 l 141.29809 53.88542 l 129.41107 56.06892 lx
-0.00000 0.00000 0.40672 s 233.20917 50.97432 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 56.92380 lf
-0 sg 233.20917 50.97432 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 56.92380 lx
-0.00000 0.00000 0.40691 s 42.52405 50.55286 m 54.41107 47.12136 l 61.27405 53.06494 l 49.38702 56.49636 lf
-0 sg 42.52405 50.55286 m 54.41107 47.12136 l 61.27405 53.06494 l 49.38702 56.49636 lx
-0.00000 0.00000 0.41022 s 153.18512 50.26698 m 165.07214 46.88559 l 171.93512 52.77900 l 160.04809 56.39744 lf
-0 sg 153.18512 50.26698 m 165.07214 46.88559 l 171.93512 52.77900 l 160.04809 56.39744 lx
-0.00000 0.00000 0.40685 s 73.16107 49.63319 m 85.04809 46.20266 l 91.91107 52.14258 l 80.02405 55.57767 lf
-0 sg 73.16107 49.63319 m 85.04809 46.20266 l 91.91107 52.14258 l 80.02405 55.57767 lx
-0.00000 0.00000 0.40603 s 183.82214 49.39761 m 195.70917 45.95270 l 202.57214 51.90963 l 190.68512 55.29103 lf
-0 sg 183.82214 49.39761 m 195.70917 45.95270 l 202.57214 51.90963 l 190.68512 55.29103 lx
-0.00000 0.00000 0.41474 s 103.79809 48.72451 m 115.68512 45.20345 l 122.54809 51.52083 l 110.66107 54.61793 lf
-0 sg 103.79809 48.72451 m 115.68512 45.20345 l 122.54809 51.52083 l 110.66107 54.61793 lx
-0.00000 0.00000 0.40749 s 214.45917 48.46474 m 226.34619 45.03678 l 233.20917 50.97432 l 221.32214 54.43213 lf
-0 sg 214.45917 48.46474 m 226.34619 45.03678 l 233.20917 50.97432 l 221.32214 54.43213 lx
-0.00000 0.00000 0.40691 s 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 50.55286 l 30.63702 53.98435 lf
-0 sg 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 50.55286 l 30.63702 53.98435 lx
-0.00000 0.00000 0.41022 s 134.43512 47.75496 m 146.32214 44.37356 l 153.18512 50.26698 l 141.29809 53.88542 lf
-0 sg 134.43512 47.75496 m 146.32214 44.37356 l 153.18512 50.26698 l 141.29809 53.88542 lx
-0.00000 0.00000 0.40691 s 54.41107 47.12136 m 66.29809 43.68993 l 73.16107 49.63319 l 61.27405 53.06494 lf
-0 sg 54.41107 47.12136 m 66.29809 43.68993 l 73.16107 49.63319 l 61.27405 53.06494 lx
-0.00000 0.00000 0.40603 s 165.07214 46.88559 m 176.95917 43.44068 l 183.82214 49.39761 l 171.93512 52.77900 lf
-0 sg 165.07214 46.88559 m 176.95917 43.44068 l 183.82214 49.39761 l 171.93512 52.77900 lx
-0.00000 0.00000 0.40715 s 85.04809 46.20266 m 96.93512 42.76760 l 103.79809 48.72451 l 91.91107 52.14258 lf
-0 sg 85.04809 46.20266 m 96.93512 42.76760 l 103.79809 48.72451 l 91.91107 52.14258 lx
-0.00000 0.00000 0.40715 s 195.70917 45.95270 m 207.59619 42.52480 l 214.45917 48.46474 l 202.57214 51.90963 lf
-0 sg 195.70917 45.95270 m 207.59619 42.52480 l 214.45917 48.46474 l 202.57214 51.90963 lx
-0.00000 0.00000 0.41474 s 115.68512 45.20345 m 127.57214 41.86153 l 134.43512 47.75496 l 122.54809 51.52083 lf
-0 sg 115.68512 45.20345 m 127.57214 41.86153 l 134.43512 47.75496 l 122.54809 51.52083 lx
-0.00000 0.00000 0.40672 s 226.34619 45.03678 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 50.97432 lf
-0 sg 226.34619 45.03678 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 50.97432 lx
-0.00000 0.00000 0.40691 s 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 47.12136 l 42.52405 50.55286 lf
-0 sg 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 47.12136 l 42.52405 50.55286 lx
-0.00000 0.00000 0.40603 s 146.32214 44.37356 m 158.20917 40.92865 l 165.07214 46.88559 l 153.18512 50.26698 lf
-0 sg 146.32214 44.37356 m 158.20917 40.92865 l 165.07214 46.88559 l 153.18512 50.26698 lx
-0.00000 0.00000 0.40693 s 66.29809 43.68993 m 78.18512 40.25820 l 85.04809 46.20266 l 73.16107 49.63319 lf
-0 sg 66.29809 43.68993 m 78.18512 40.25820 l 85.04809 46.20266 l 73.16107 49.63319 lx
-0.00000 0.00000 0.40715 s 176.95917 43.44068 m 188.84619 40.01278 l 195.70917 45.95270 l 183.82214 49.39761 lf
-0 sg 176.95917 43.44068 m 188.84619 40.01278 l 195.70917 45.95270 l 183.82214 49.39761 lx
-0.00000 0.00000 0.40481 s 96.93512 42.76760 m 108.82214 39.35999 l 115.68512 45.20345 l 103.79809 48.72451 lf
-0 sg 96.93512 42.76760 m 108.82214 39.35999 l 115.68512 45.20345 l 103.79809 48.72451 lx
-0.00000 0.00000 0.40685 s 207.59619 42.52480 m 219.48321 39.09237 l 226.34619 45.03678 l 214.45917 48.46474 lf
-0 sg 207.59619 42.52480 m 219.48321 39.09237 l 226.34619 45.03678 l 214.45917 48.46474 lx
-0.00000 0.00000 0.40603 s 127.57214 41.86153 m 139.45917 38.41663 l 146.32214 44.37356 l 134.43512 47.75496 lf
-0 sg 127.57214 41.86153 m 139.45917 38.41663 l 146.32214 44.37356 l 134.43512 47.75496 lx
-0.00000 0.00000 0.40691 s 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 43.68993 l 54.41107 47.12136 lf
-0 sg 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 43.68993 l 54.41107 47.12136 lx
-0.00000 0.00000 0.40715 s 158.20917 40.92865 m 170.09619 37.50076 l 176.95917 43.44068 l 165.07214 46.88559 lf
-0 sg 158.20917 40.92865 m 170.09619 37.50076 l 176.95917 43.44068 l 165.07214 46.88559 lx
-0.00000 0.00000 0.40685 s 78.18512 40.25820 m 90.07214 36.82761 l 96.93512 42.76760 l 85.04809 46.20266 lf
-0 sg 78.18512 40.25820 m 90.07214 36.82761 l 96.93512 42.76760 l 85.04809 46.20266 lx
-0.00000 0.00000 0.40685 s 188.84619 40.01278 m 200.73321 36.58033 l 207.59619 42.52480 l 195.70917 45.95270 lf
-0 sg 188.84619 40.01278 m 200.73321 36.58033 l 207.59619 42.52480 l 195.70917 45.95270 lx
-0.00000 0.00000 0.40481 s 108.82214 39.35999 m 120.70917 35.90462 l 127.57214 41.86153 l 115.68512 45.20345 lf
-0 sg 108.82214 39.35999 m 120.70917 35.90462 l 127.57214 41.86153 l 115.68512 45.20345 lx
-0.00000 0.00000 0.40693 s 219.48321 39.09237 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 45.03678 lf
-0 sg 219.48321 39.09237 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 45.03678 lx
-0.00000 0.00000 0.40715 s 139.45917 38.41663 m 151.34619 34.98874 l 158.20917 40.92865 l 146.32214 44.37356 lf
-0 sg 139.45917 38.41663 m 151.34619 34.98874 l 158.20917 40.92865 l 146.32214 44.37356 lx
-0.00000 0.00000 0.40691 s 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 40.25820 l 66.29809 43.68993 lf
-0 sg 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 40.25820 l 66.29809 43.68993 lx
-0.00000 0.00000 0.40685 s 170.09619 37.50076 m 181.98321 34.06831 l 188.84619 40.01278 l 176.95917 43.44068 lf
-0 sg 170.09619 37.50076 m 181.98321 34.06831 l 188.84619 40.01278 l 176.95917 43.44068 lx
-0.00000 0.00000 0.40749 s 90.07214 36.82761 m 101.95917 33.39015 l 108.82214 39.35999 l 96.93512 42.76760 lf
-0 sg 90.07214 36.82761 m 101.95917 33.39015 l 108.82214 39.35999 l 96.93512 42.76760 lx
-0.00000 0.00000 0.40693 s 200.73321 36.58033 m 212.62024 33.14910 l 219.48321 39.09237 l 207.59619 42.52480 lf
-0 sg 200.73321 36.58033 m 212.62024 33.14910 l 219.48321 39.09237 l 207.59619 42.52480 lx
-0.00000 0.00000 0.40715 s 120.70917 35.90462 m 132.59619 32.47671 l 139.45917 38.41663 l 127.57214 41.86153 lf
-0 sg 120.70917 35.90462 m 132.59619 32.47671 l 139.45917 38.41663 l 127.57214 41.86153 lx
-0.00000 0.00000 0.40685 s 151.34619 34.98874 m 163.23321 31.55628 l 170.09619 37.50076 l 158.20917 40.92865 lf
-0 sg 151.34619 34.98874 m 163.23321 31.55628 l 170.09619 37.50076 l 158.20917 40.92865 lx
-0.00000 0.00000 0.40693 s 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 36.82761 l 78.18512 40.25820 lf
-0 sg 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 36.82761 l 78.18512 40.25820 lx
-0.00000 0.00000 0.40693 s 181.98321 34.06831 m 193.87024 30.63708 l 200.73321 36.58033 l 188.84619 40.01278 lf
-0 sg 181.98321 34.06831 m 193.87024 30.63708 l 200.73321 36.58033 l 188.84619 40.01278 lx
-0.00000 0.00000 0.40749 s 101.95917 33.39015 m 113.84619 29.96463 l 120.70917 35.90462 l 108.82214 39.35999 lf
-0 sg 101.95917 33.39015 m 113.84619 29.96463 l 120.70917 35.90462 l 108.82214 39.35999 lx
-0.00000 0.00000 0.40691 s 212.62024 33.14910 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 39.09237 lf
-0 sg 212.62024 33.14910 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 39.09237 lx
-0.00000 0.00000 0.40685 s 132.59619 32.47671 m 144.48321 29.04426 l 151.34619 34.98874 l 139.45917 38.41663 lf
-0 sg 132.59619 32.47671 m 144.48321 29.04426 l 151.34619 34.98874 l 139.45917 38.41663 lx
-0.00000 0.00000 0.40693 s 163.23321 31.55628 m 175.12024 28.12505 l 181.98321 34.06831 l 170.09619 37.50076 lf
-0 sg 163.23321 31.55628 m 175.12024 28.12505 l 181.98321 34.06831 l 170.09619 37.50076 lx
-0.00000 0.00000 0.40672 s 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 33.39015 l 90.07214 36.82761 lf
-0 sg 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 33.39015 l 90.07214 36.82761 lx
-0.00000 0.00000 0.40691 s 193.87024 30.63708 m 205.75726 27.20552 l 212.62024 33.14910 l 200.73321 36.58033 lf
-0 sg 193.87024 30.63708 m 205.75726 27.20552 l 212.62024 33.14910 l 200.73321 36.58033 lx
-0.00000 0.00000 0.40685 s 113.84619 29.96463 m 125.73321 26.53225 l 132.59619 32.47671 l 120.70917 35.90462 lf
-0 sg 113.84619 29.96463 m 125.73321 26.53225 l 132.59619 32.47671 l 120.70917 35.90462 lx
-0.00000 0.00000 0.40693 s 144.48321 29.04426 m 156.37024 25.61303 l 163.23321 31.55628 l 151.34619 34.98874 lf
-0 sg 144.48321 29.04426 m 156.37024 25.61303 l 163.23321 31.55628 l 151.34619 34.98874 lx
-0.00000 0.00000 0.40691 s 175.12024 28.12505 m 187.00726 24.69350 l 193.87024 30.63708 l 181.98321 34.06831 lf
-0 sg 175.12024 28.12505 m 187.00726 24.69350 l 193.87024 30.63708 l 181.98321 34.06831 lx
-0.00000 0.00000 0.40672 s 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 29.96463 l 101.95917 33.39015 lf
-0 sg 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 29.96463 l 101.95917 33.39015 lx
-0.00000 0.00000 0.40691 s 205.75726 27.20552 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 33.14910 lf
-0 sg 205.75726 27.20552 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 33.14910 lx
-0.00000 0.00000 0.40693 s 125.73321 26.53225 m 137.62024 23.10100 l 144.48321 29.04426 l 132.59619 32.47671 lf
-0 sg 125.73321 26.53225 m 137.62024 23.10100 l 144.48321 29.04426 l 132.59619 32.47671 lx
-0.00000 0.00000 0.40691 s 156.37024 25.61303 m 168.25726 22.18147 l 175.12024 28.12505 l 163.23321 31.55628 lf
-0 sg 156.37024 25.61303 m 168.25726 22.18147 l 175.12024 28.12505 l 163.23321 31.55628 lx
-0.00000 0.00000 0.40691 s 187.00726 24.69350 m 198.89428 21.26203 l 205.75726 27.20552 l 193.87024 30.63708 lf
-0 sg 187.00726 24.69350 m 198.89428 21.26203 l 205.75726 27.20552 l 193.87024 30.63708 lx
-0.00000 0.00000 0.40693 s 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.53225 l 113.84619 29.96463 lf
-0 sg 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.53225 l 113.84619 29.96463 lx
-0.00000 0.00000 0.40691 s 137.62024 23.10100 m 149.50726 19.66945 l 156.37024 25.61303 l 144.48321 29.04426 lf
-0 sg 137.62024 23.10100 m 149.50726 19.66945 l 156.37024 25.61303 l 144.48321 29.04426 lx
-0.00000 0.00000 0.40691 s 168.25726 22.18147 m 180.14428 18.75000 l 187.00726 24.69350 l 175.12024 28.12505 lf
-0 sg 168.25726 22.18147 m 180.14428 18.75000 l 187.00726 24.69350 l 175.12024 28.12505 lx
-0.00000 0.00000 0.40691 s 198.89428 21.26203 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.20552 lf
-0 sg 198.89428 21.26203 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.20552 lx
-0.00000 0.00000 0.40691 s 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 23.10100 l 125.73321 26.53225 lf
-0 sg 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 23.10100 l 125.73321 26.53225 lx
-0.00000 0.00000 0.40691 s 149.50726 19.66945 m 161.39428 16.23798 l 168.25726 22.18147 l 156.37024 25.61303 lf
-0 sg 149.50726 19.66945 m 161.39428 16.23798 l 168.25726 22.18147 l 156.37024 25.61303 lx
-0.00000 0.00000 0.40691 s 180.14428 18.75000 m 192.03131 15.31851 l 198.89428 21.26203 l 187.00726 24.69350 lf
-0 sg 180.14428 18.75000 m 192.03131 15.31851 l 198.89428 21.26203 l 187.00726 24.69350 lx
-0.00000 0.00000 0.40691 s 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 19.66945 l 137.62024 23.10100 lf
-0 sg 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 19.66945 l 137.62024 23.10100 lx
-0.00000 0.00000 0.40691 s 161.39428 16.23798 m 173.28131 12.80649 l 180.14428 18.75000 l 168.25726 22.18147 lf
-0 sg 161.39428 16.23798 m 173.28131 12.80649 l 180.14428 18.75000 l 168.25726 22.18147 lx
-0.00000 0.00000 0.40691 s 192.03131 15.31851 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 21.26203 lf
-0 sg 192.03131 15.31851 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 21.26203 lx
-0.00000 0.00000 0.40691 s 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 16.23798 l 149.50726 19.66945 lf
-0 sg 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 16.23798 l 149.50726 19.66945 lx
-0.00000 0.00000 0.40691 s 173.28131 12.80649 m 185.16833 9.37500 l 192.03131 15.31851 l 180.14428 18.75000 lf
-0 sg 173.28131 12.80649 m 185.16833 9.37500 l 192.03131 15.31851 l 180.14428 18.75000 lx
-0.00000 0.00000 0.40691 s 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.80649 l 161.39428 16.23798 lf
-0 sg 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.80649 l 161.39428 16.23798 lx
-0.00000 0.00000 0.40691 s 185.16833 9.37500 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.31851 lf
-0 sg 185.16833 9.37500 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.31851 lx
-0.00000 0.00000 0.40691 s 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.37500 l 173.28131 12.80649 lf
-0 sg 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.37500 l 173.28131 12.80649 lx
-0.00000 0.00000 0.40691 s 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.37500 lf
-0 sg 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.37500 lx
-showpage
-.
-DEAL::  Postprocessing: time=0.03, step=1, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.06, step=2, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.08, step=3, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.11, step=4, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.14, step=5, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.17, step=6, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.20, step=7, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.22, step=8, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.25, step=9, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.28, step=10, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.31, step=11, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.34, step=12, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.36, step=13, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.39, step=14, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.42, step=15, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.45, step=16, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.48, step=17, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.50, step=18, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.53, step=19, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.56, step=20, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.59, step=21, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.62, step=22, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.64, step=23, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.67, step=24, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.70, step=25, sweep=0. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 150
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50 setlinewidth
-0.00000 0.95990 0.04010 s 102.94464 144.05649 m 114.83167 140.54285 l 121.69464 146.56851 l 109.80762 150.00000 lf
-0 sg 102.94464 144.05649 m 114.83167 140.54285 l 121.69464 146.56851 l 109.80762 150.00000 lx
-0.16685 0.83315 0.00000 s 114.83167 140.54285 m 126.71869 139.95520 l 133.58167 143.13702 l 121.69464 146.56851 lf
-0 sg 114.83167 140.54285 m 126.71869 139.95520 l 133.58167 143.13702 l 121.69464 146.56851 lx
-0.15365 0.84635 0.00000 s 96.08167 138.11298 m 107.96869 137.26708 l 114.83167 140.54285 l 102.94464 144.05649 lf
-0 sg 96.08167 138.11298 m 107.96869 137.26708 l 114.83167 140.54285 l 102.94464 144.05649 lx
-0.29608 0.70392 0.00000 s 126.71869 139.95520 m 138.60572 135.40448 l 145.46869 139.70554 l 133.58167 143.13702 lf
-0 sg 126.71869 139.95520 m 138.60572 135.40448 l 145.46869 139.70554 l 133.58167 143.13702 lx
-0.54050 0.45950 0.00000 s 107.96869 137.26708 m 119.85572 133.65079 l 126.71869 139.95520 l 114.83167 140.54285 lf
-0 sg 107.96869 137.26708 m 119.85572 133.65079 l 126.71869 139.95520 l 114.83167 140.54285 lx
-0.05603 0.94397 0.00000 s 138.60572 135.40448 m 150.49274 129.88878 l 157.35572 136.27405 l 145.46869 139.70554 lf
-0 sg 138.60572 135.40448 m 150.49274 129.88878 l 157.35572 136.27405 l 145.46869 139.70554 lx
-0.43065 0.56935 0.00000 s 89.21869 132.16946 m 101.10572 132.35232 l 107.96869 137.26708 l 96.08167 138.11298 lf
-0 sg 89.21869 132.16946 m 101.10572 132.35232 l 107.96869 137.26708 l 96.08167 138.11298 lx
-0.00000 0.82167 0.17833 s 150.49274 129.88878 m 162.37976 125.41398 l 169.24274 132.84256 l 157.35572 136.27405 lf
-0 sg 150.49274 129.88878 m 162.37976 125.41398 l 169.24274 132.84256 l 157.35572 136.27405 lx
-0.70913 0.29087 0.00000 s 119.85572 133.65079 m 131.74274 130.92985 l 138.60572 135.40448 l 126.71869 139.95520 lf
-0 sg 119.85572 133.65079 m 131.74274 130.92985 l 138.60572 135.40448 l 126.71869 139.95520 lx
-0.87044 0.12956 0.00000 s 101.10572 132.35232 m 112.99274 128.77472 l 119.85572 133.65079 l 107.96869 137.26708 lf
-0 sg 101.10572 132.35232 m 112.99274 128.77472 l 119.85572 133.65079 l 107.96869 137.26708 lx
-0.32597 0.67404 0.00000 s 131.74274 130.92985 m 143.62976 124.87790 l 150.49274 129.88878 l 138.60572 135.40448 lf
-0 sg 131.74274 130.92985 m 143.62976 124.87790 l 150.49274 129.88878 l 138.60572 135.40448 lx
-0.00000 0.77878 0.22122 s 162.37976 125.41398 m 174.26679 122.45334 l 181.12976 129.41107 l 169.24274 132.84256 lf
-0 sg 162.37976 125.41398 m 174.26679 122.45334 l 181.12976 129.41107 l 169.24274 132.84256 lx
-0.35995 0.64005 0.00000 s 82.35572 126.22595 m 94.24274 124.43654 l 101.10572 132.35232 l 89.21869 132.16946 lf
-0 sg 82.35572 126.22595 m 94.24274 124.43654 l 101.10572 132.35232 l 89.21869 132.16946 lx
-0.00000 0.69985 0.30015 s 143.62976 124.87790 m 155.51679 118.83898 l 162.37976 125.41398 l 150.49274 129.88878 lf
-0 sg 143.62976 124.87790 m 155.51679 118.83898 l 162.37976 125.41398 l 150.49274 129.88878 lx
-0.78864 0.21136 0.00000 s 112.99274 128.77472 m 124.87976 123.87196 l 131.74274 130.92985 l 119.85572 133.65079 lf
-0 sg 112.99274 128.77472 m 124.87976 123.87196 l 131.74274 130.92985 l 119.85572 133.65079 lx
-0.00000 0.85117 0.14883 s 174.26679 122.45334 m 186.15381 119.51714 l 193.01679 125.97958 l 181.12976 129.41107 lf
-0 sg 174.26679 122.45334 m 186.15381 119.51714 l 193.01679 125.97958 l 181.12976 129.41107 lx
-0.81365 0.18635 0.00000 s 94.24274 124.43654 m 106.12976 121.94937 l 112.99274 128.77472 l 101.10572 132.35232 lf
-0 sg 94.24274 124.43654 m 106.12976 121.94937 l 112.99274 128.77472 l 101.10572 132.35232 lx
-0.00000 0.50326 0.49674 s 155.51679 118.83898 m 167.40381 115.96393 l 174.26679 122.45334 l 162.37976 125.41398 lf
-0 sg 155.51679 118.83898 m 167.40381 115.96393 l 174.26679 122.45334 l 162.37976 125.41398 lx
-0.37472 0.62528 0.00000 s 124.87976 123.87196 m 136.76679 118.29790 l 143.62976 124.87790 l 131.74274 130.92985 lf
-0 sg 124.87976 123.87196 m 136.76679 118.29790 l 143.62976 124.87790 l 131.74274 130.92985 lx
-0.07505 0.92495 0.00000 s 75.49274 120.28244 m 87.37976 116.66333 l 94.24274 124.43654 l 82.35572 126.22595 lf
-0 sg 75.49274 120.28244 m 87.37976 116.66333 l 94.24274 124.43654 l 82.35572 126.22595 lx
-0.00000 0.88777 0.11223 s 186.15381 119.51714 m 198.04083 116.07875 l 204.90381 122.54809 l 193.01679 125.97958 lf
-0 sg 186.15381 119.51714 m 198.04083 116.07875 l 204.90381 122.54809 l 193.01679 125.97958 lx
-0.00000 0.81548 0.18452 s 136.76679 118.29790 m 148.65381 114.77389 l 155.51679 118.83898 l 143.62976 124.87790 lf
-0 sg 136.76679 118.29790 m 148.65381 114.77389 l 155.51679 118.83898 l 143.62976 124.87790 lx
-0.64742 0.35258 0.00000 s 106.12976 121.94937 m 118.01679 116.97263 l 124.87976 123.87196 l 112.99274 128.77472 lf
-0 sg 106.12976 121.94937 m 118.01679 116.97263 l 124.87976 123.87196 l 112.99274 128.77472 lx
-0.00000 0.63766 0.36234 s 167.40381 115.96393 m 179.29083 112.80341 l 186.15381 119.51714 l 174.26679 122.45334 lf
-0 sg 167.40381 115.96393 m 179.29083 112.80341 l 186.15381 119.51714 l 174.26679 122.45334 lx
-0.00000 0.88777 0.11223 s 198.04083 116.07875 m 209.92786 112.65416 l 216.79083 119.11661 l 204.90381 122.54809 lf
-0 sg 198.04083 116.07875 m 209.92786 112.65416 l 216.79083 119.11661 l 204.90381 122.54809 lx
-0.25101 0.74899 0.00000 s 87.37976 116.66333 m 99.26679 113.18128 l 106.12976 121.94937 l 94.24274 124.43654 lf
-0 sg 87.37976 116.66333 m 99.26679 113.18128 l 106.12976 121.94937 l 94.24274 124.43654 lx
-0.24057 0.75943 0.00000 s 118.01679 116.97263 m 129.90381 113.27086 l 136.76679 118.29790 l 124.87976 123.87196 lf
-0 sg 118.01679 116.97263 m 129.90381 113.27086 l 136.76679 118.29790 l 124.87976 123.87196 lx
-0.00000 0.61832 0.38168 s 148.65381 114.77389 m 160.54083 110.85473 l 167.40381 115.96393 l 155.51679 118.83898 lf
-0 sg 148.65381 114.77389 m 160.54083 110.85473 l 167.40381 115.96393 l 155.51679 118.83898 lx
-0.00000 0.75152 0.24848 s 179.29083 112.80341 m 191.17786 110.13203 l 198.04083 116.07875 l 186.15381 119.51714 lf
-0 sg 179.29083 112.80341 m 191.17786 110.13203 l 198.04083 116.07875 l 186.15381 119.51714 lx
-0.01473 0.98527 0.00000 s 68.62976 114.33893 m 80.51679 111.74459 l 87.37976 116.66333 l 75.49274 120.28244 lf
-0 sg 68.62976 114.33893 m 80.51679 111.74459 l 87.37976 116.66333 l 75.49274 120.28244 lx
-0.00000 0.85117 0.14883 s 209.92786 112.65416 m 221.81488 108.72739 l 228.67786 115.68512 l 216.79083 119.11661 lf
-0 sg 209.92786 112.65416 m 221.81488 108.72739 l 228.67786 115.68512 l 216.79083 119.11661 lx
-0.13581 0.86419 0.00000 s 99.26679 113.18128 m 111.15381 108.86388 l 118.01679 116.97263 l 106.12976 121.94937 lf
-0 sg 99.26679 113.18128 m 111.15381 108.86388 l 118.01679 116.97263 l 106.12976 121.94937 lx
-0.00000 0.94432 0.05568 s 129.90381 113.27086 m 141.79083 108.39131 l 148.65381 114.77389 l 136.76679 118.29790 lf
-0 sg 129.90381 113.27086 m 141.79083 108.39131 l 148.65381 114.77389 l 136.76679 118.29790 lx
-0.00000 0.76910 0.23090 s 160.54083 110.85473 m 172.42786 109.09566 l 179.29083 112.80341 l 167.40381 115.96393 lf
-0 sg 160.54083 110.85473 m 172.42786 109.09566 l 179.29083 112.80341 l 167.40381 115.96393 lx
-0.00000 0.92420 0.07580 s 80.51679 111.74459 m 92.40381 106.50601 l 99.26679 113.18128 l 87.37976 116.66333 lf
-0 sg 80.51679 111.74459 m 92.40381 106.50601 l 99.26679 113.18128 l 87.37976 116.66333 lx
-0.00000 0.75152 0.24848 s 191.17786 110.13203 m 203.06488 105.94043 l 209.92786 112.65416 l 198.04083 116.07875 lf
-0 sg 191.17786 110.13203 m 203.06488 105.94043 l 209.92786 112.65416 l 198.04083 116.07875 lx
-0.00000 0.99211 0.00789 s 111.15381 108.86388 m 123.04083 106.21626 l 129.90381 113.27086 l 118.01679 116.97263 lf
-0 sg 111.15381 108.86388 m 123.04083 106.21626 l 129.90381 113.27086 l 118.01679 116.97263 lx
-0.00000 0.77878 0.22122 s 221.81488 108.72739 m 233.70191 104.82505 l 240.56488 112.25363 l 228.67786 115.68512 lf
-0 sg 221.81488 108.72739 m 233.70191 104.82505 l 240.56488 112.25363 l 228.67786 115.68512 lx
-0.00000 0.80928 0.19072 s 141.79083 108.39131 m 153.67786 105.18601 l 160.54083 110.85473 l 148.65381 114.77389 lf
-0 sg 141.79083 108.39131 m 153.67786 105.18601 l 160.54083 110.85473 l 148.65381 114.77389 lx
-0.00000 0.93868 0.06132 s 172.42786 109.09566 m 184.31488 105.22372 l 191.17786 110.13203 l 179.29083 112.80341 lf
-0 sg 172.42786 109.09566 m 184.31488 105.22372 l 191.17786 110.13203 l 179.29083 112.80341 lx
-0.00000 0.45822 0.54178 s 92.40381 106.50601 m 104.29083 99.59960 l 111.15381 108.86388 l 99.26679 113.18128 lf
-0 sg 92.40381 106.50601 m 104.29083 99.59960 l 111.15381 108.86388 l 99.26679 113.18128 lx
-0.34403 0.65597 0.00000 s 61.76679 108.39542 m 73.65381 109.17077 l 80.51679 111.74459 l 68.62976 114.33893 lf
-0 sg 61.76679 108.39542 m 73.65381 109.17077 l 80.51679 111.74459 l 68.62976 114.33893 lx
-0.00000 0.63766 0.36234 s 203.06488 105.94043 m 214.95191 102.23798 l 221.81488 108.72739 l 209.92786 112.65416 lf
-0 sg 203.06488 105.94043 m 214.95191 102.23798 l 221.81488 108.72739 l 209.92786 112.65416 lx
-0.00000 0.95062 0.04938 s 123.04083 106.21626 m 134.92786 103.16558 l 141.79083 108.39131 l 129.90381 113.27086 lf
-0 sg 123.04083 106.21626 m 134.92786 103.16558 l 141.79083 108.39131 l 129.90381 113.27086 lx
-0.00000 0.82167 0.17833 s 233.70191 104.82505 m 245.58893 102.43687 l 252.45191 108.82214 l 240.56488 112.25363 lf
-0 sg 233.70191 104.82505 m 245.58893 102.43687 l 252.45191 108.82214 l 240.56488 112.25363 lx
-0.00000 0.98545 0.01455 s 153.67786 105.18601 m 165.56488 102.69449 l 172.42786 109.09566 l 160.54083 110.85473 lf
-0 sg 153.67786 105.18601 m 165.56488 102.69449 l 172.42786 109.09566 l 160.54083 110.85473 lx
-0.00000 0.31336 0.68664 s 104.29083 99.59960 m 116.17786 97.81190 l 123.04083 106.21626 l 111.15381 108.86388 lf
-0 sg 104.29083 99.59960 m 116.17786 97.81190 l 123.04083 106.21626 l 111.15381 108.86388 lx
-0.00000 0.93868 0.06132 s 184.31488 105.22372 m 196.20191 102.23268 l 203.06488 105.94043 l 191.17786 110.13203 lf
-0 sg 184.31488 105.22372 m 196.20191 102.23268 l 203.06488 105.94043 l 191.17786 110.13203 lx
-0.00000 0.50326 0.49674 s 214.95191 102.23798 m 226.83893 98.25005 l 233.70191 104.82505 l 221.81488 108.72739 lf
-0 sg 214.95191 102.23798 m 226.83893 98.25005 l 233.70191 104.82505 l 221.81488 108.72739 lx
-0.67823 0.32177 0.00000 s 73.65381 109.17077 m 85.54083 106.96222 l 92.40381 106.50601 l 80.51679 111.74459 lf
-0 sg 73.65381 109.17077 m 85.54083 106.96222 l 92.40381 106.50601 l 80.51679 111.74459 lx
-0.00000 0.92046 0.07954 s 134.92786 103.16558 m 146.81488 100.17258 l 153.67786 105.18601 l 141.79083 108.39131 lf
-0 sg 134.92786 103.16558 m 146.81488 100.17258 l 153.67786 105.18601 l 141.79083 108.39131 lx
-0.05603 0.94397 0.00000 s 245.58893 102.43687 m 257.47595 101.08960 l 264.33893 105.39065 l 252.45191 108.82214 lf
-0 sg 245.58893 102.43687 m 257.47595 101.08960 l 264.33893 105.39065 l 252.45191 108.82214 lx
-0.00000 0.07310 0.92690 s 85.54083 106.96222 m 97.42786 86.16951 l 104.29083 99.59960 l 92.40381 106.50601 lf
-0 sg 85.54083 106.96222 m 97.42786 86.16951 l 104.29083 99.59960 l 92.40381 106.50601 lx
-0.18494 0.81506 0.00000 s 165.56488 102.69449 m 177.45191 99.75325 l 184.31488 105.22372 l 172.42786 109.09566 lf
-0 sg 165.56488 102.69449 m 177.45191 99.75325 l 184.31488 105.22372 l 172.42786 109.09566 lx
-0.50399 0.49601 0.00000 s 54.90381 102.45191 m 66.79083 101.99217 l 73.65381 109.17077 l 61.76679 108.39542 lf
-0 sg 54.90381 102.45191 m 66.79083 101.99217 l 73.65381 109.17077 l 61.76679 108.39542 lx
-0.00000 0.76910 0.23090 s 196.20191 102.23268 m 208.08893 97.12878 l 214.95191 102.23798 l 203.06488 105.94043 lf
-0 sg 196.20191 102.23268 m 208.08893 97.12878 l 214.95191 102.23798 l 203.06488 105.94043 lx
-0.00000 0.67338 0.32662 s 116.17786 97.81190 m 128.06488 96.37647 l 134.92786 103.16558 l 123.04083 106.21626 lf
-0 sg 116.17786 97.81190 m 128.06488 96.37647 l 134.92786 103.16558 l 123.04083 106.21626 lx
-0.00000 0.69985 0.30015 s 226.83893 98.25005 m 238.72595 97.42600 l 245.58893 102.43687 l 233.70191 104.82505 lf
-0 sg 226.83893 98.25005 m 238.72595 97.42600 l 245.58893 102.43687 l 233.70191 104.82505 lx
-0.00000 0.00000 0.30666 s 97.42786 86.16951 m 109.31488 91.70224 l 116.17786 97.81190 l 104.29083 99.59960 lf
-0 sg 97.42786 86.16951 m 109.31488 91.70224 l 116.17786 97.81190 l 104.29083 99.59960 lx
-0.05177 0.94823 0.00000 s 146.81488 100.17258 m 158.70191 96.88879 l 165.56488 102.69449 l 153.67786 105.18601 lf
-0 sg 146.81488 100.17258 m 158.70191 96.88879 l 165.56488 102.69449 l 153.67786 105.18601 lx
-0.00000 0.87830 0.12170 s 66.79083 101.99217 m 78.67786 81.80942 l 85.54083 106.96222 l 73.65381 109.17077 lf
-0 sg 66.79083 101.99217 m 78.67786 81.80942 l 85.54083 106.96222 l 73.65381 109.17077 lx
-0.29608 0.70392 0.00000 s 257.47595 101.08960 m 269.36298 98.77734 l 276.22595 101.95917 l 264.33893 105.39065 lf
-0 sg 257.47595 101.08960 m 269.36298 98.77734 l 276.22595 101.95917 l 264.33893 105.39065 lx
-0.18494 0.81506 0.00000 s 177.45191 99.75325 m 189.33893 95.83151 l 196.20191 102.23268 l 184.31488 105.22372 lf
-0 sg 177.45191 99.75325 m 189.33893 95.83151 l 196.20191 102.23268 l 184.31488 105.22372 lx
-0.00000 0.61832 0.38168 s 208.08893 97.12878 m 219.97595 94.18496 l 226.83893 98.25005 l 214.95191 102.23798 lf
-0 sg 208.08893 97.12878 m 219.97595 94.18496 l 226.83893 98.25005 l 214.95191 102.23798 lx
-0.00000 0.92655 0.07345 s 128.06488 96.37647 m 139.95191 93.50814 l 146.81488 100.17258 l 134.92786 103.16558 lf
-0 sg 128.06488 96.37647 m 139.95191 93.50814 l 146.81488 100.17258 l 134.92786 103.16558 lx
-0.00000 0.00000 0.91269 s 78.67786 81.80942 m 90.56488 98.38153 l 97.42786 86.16951 l 85.54083 106.96222 lf
-0 sg 78.67786 81.80942 m 90.56488 98.38153 l 97.42786 86.16951 l 85.54083 106.96222 lx
-0.32597 0.67404 0.00000 s 238.72595 97.42600 m 250.61298 96.61497 l 257.47595 101.08960 l 245.58893 102.43687 lf
-0 sg 238.72595 97.42600 m 250.61298 96.61497 l 257.47595 101.08960 l 245.58893 102.43687 lx
-0.22268 0.77732 0.00000 s 158.70191 96.88879 m 170.58893 94.16016 l 177.45191 99.75325 l 165.56488 102.69449 lf
-0 sg 158.70191 96.88879 m 170.58893 94.16016 l 177.45191 99.75325 l 165.56488 102.69449 lx
-0.16685 0.83315 0.00000 s 269.36298 98.77734 m 281.25000 92.50202 l 288.11298 98.52768 l 276.22595 101.95917 lf
-0 sg 269.36298 98.77734 m 281.25000 92.50202 l 288.11298 98.52768 l 276.22595 101.95917 lx
-0.00000 0.98545 0.01455 s 189.33893 95.83151 m 201.22595 91.46006 l 208.08893 97.12878 l 196.20191 102.23268 lf
-0 sg 189.33893 95.83151 m 201.22595 91.46006 l 208.08893 97.12878 l 196.20191 102.23268 lx
-1.00000 0.05341 0.05341 s 48.04083 96.50839 m 59.92786 104.61580 l 66.79083 101.99217 l 54.90381 102.45191 lf
-0 sg 48.04083 96.50839 m 59.92786 104.61580 l 66.79083 101.99217 l 54.90381 102.45191 lx
-0.00000 0.56052 0.43948 s 109.31488 91.70224 m 121.20191 92.39947 l 128.06488 96.37647 l 116.17786 97.81190 lf
-0 sg 109.31488 91.70224 m 121.20191 92.39947 l 128.06488 96.37647 l 116.17786 97.81190 lx
-0.00000 0.81548 0.18452 s 219.97595 94.18496 m 231.86298 90.84600 l 238.72595 97.42600 l 226.83893 98.25005 lf
-0 sg 219.97595 94.18496 m 231.86298 90.84600 l 238.72595 97.42600 l 226.83893 98.25005 lx
-0.04293 0.95707 0.00000 s 139.95191 93.50814 m 151.83893 90.48043 l 158.70191 96.88879 l 146.81488 100.17258 lf
-0 sg 139.95191 93.50814 m 151.83893 90.48043 l 158.70191 96.88879 l 146.81488 100.17258 lx
-0.03730 0.96270 0.00000 s 59.92786 104.61580 m 71.81488 89.86493 l 78.67786 81.80942 l 66.79083 101.99217 lf
-0 sg 59.92786 104.61580 m 71.81488 89.86493 l 78.67786 81.80942 l 66.79083 101.99217 lx
-0.70913 0.29087 0.00000 s 250.61298 96.61497 m 262.50000 92.47294 l 269.36298 98.77734 l 257.47595 101.08960 lf
-0 sg 250.61298 96.61497 m 262.50000 92.47294 l 269.36298 98.77734 l 257.47595 101.08960 lx
-0.00000 0.54541 0.45459 s 90.56488 98.38153 m 102.45191 91.78698 l 109.31488 91.70224 l 97.42786 86.16951 lf
-0 sg 90.56488 98.38153 m 102.45191 91.78698 l 109.31488 91.70224 l 97.42786 86.16951 lx
-0.00000 0.95990 0.04010 s 281.25000 92.50202 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lf
-0 sg 281.25000 92.50202 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lx
-0.22268 0.77732 0.00000 s 170.58893 94.16016 m 182.47595 90.02581 l 189.33893 95.83151 l 177.45191 99.75325 lf
-0 sg 170.58893 94.16016 m 182.47595 90.02581 l 189.33893 95.83151 l 177.45191 99.75325 lx
-0.00000 0.18293 0.81707 s 121.20191 92.39947 m 133.08893 77.24104 l 139.95191 93.50814 l 128.06488 96.37647 lf
-0 sg 121.20191 92.39947 m 133.08893 77.24104 l 139.95191 93.50814 l 128.06488 96.37647 lx
-0.00000 0.80928 0.19072 s 201.22595 91.46006 m 213.11298 87.80238 l 219.97595 94.18496 l 208.08893 97.12878 lf
-0 sg 201.22595 91.46006 m 213.11298 87.80238 l 219.97595 94.18496 l 208.08893 97.12878 lx
-0.00000 sg 71.81488 89.86493 m 83.70191 67.31293 l 90.56488 98.38153 l 78.67786 81.80942 lf
-0 sg 71.81488 89.86493 m 83.70191 67.31293 l 90.56488 98.38153 l 78.67786 81.80942 lx
-0.37472 0.62528 0.00000 s 231.86298 90.84600 m 243.75000 89.55708 l 250.61298 96.61497 l 238.72595 97.42600 lf
-0 sg 231.86298 90.84600 m 243.75000 89.55708 l 250.61298 96.61497 l 238.72595 97.42600 lx
-0.17552 0.82448 0.00000 s 151.83893 90.48043 m 163.72595 87.56392 l 170.58893 94.16016 l 158.70191 96.88879 lf
-0 sg 151.83893 90.48043 m 163.72595 87.56392 l 170.58893 94.16016 l 158.70191 96.88879 lx
-0.79737 0.20263 0.00000 s 41.17786 90.56488 m 53.06488 86.68822 l 59.92786 104.61580 l 48.04083 96.50839 lf
-0 sg 41.17786 90.56488 m 53.06488 86.68822 l 59.92786 104.61580 l 48.04083 96.50839 lx
-0.54050 0.45950 0.00000 s 262.50000 92.47294 m 274.38702 89.22625 l 281.25000 92.50202 l 269.36298 98.77734 lf
-0 sg 262.50000 92.47294 m 274.38702 89.22625 l 281.25000 92.50202 l 269.36298 98.77734 lx
-0.00000 0.43592 0.56408 s 102.45191 91.78698 m 114.33893 76.96454 l 121.20191 92.39947 l 109.31488 91.70224 lf
-0 sg 102.45191 91.78698 m 114.33893 76.96454 l 121.20191 92.39947 l 109.31488 91.70224 lx
-0.05177 0.94823 0.00000 s 182.47595 90.02581 m 194.36298 86.44663 l 201.22595 91.46006 l 189.33893 95.83151 lf
-0 sg 182.47595 90.02581 m 194.36298 86.44663 l 201.22595 91.46006 l 189.33893 95.83151 lx
-0.00000 0.22633 0.77367 s 133.08893 77.24104 m 144.97595 85.14873 l 151.83893 90.48043 l 139.95191 93.50814 lf
-0 sg 133.08893 77.24104 m 144.97595 85.14873 l 151.83893 90.48043 l 139.95191 93.50814 lx
-0.00000 0.94432 0.05568 s 213.11298 87.80238 m 225.00000 85.81896 l 231.86298 90.84600 l 219.97595 94.18496 lf
-0 sg 213.11298 87.80238 m 225.00000 85.81896 l 231.86298 90.84600 l 219.97595 94.18496 lx
-0.17552 0.82448 0.00000 s 163.72595 87.56392 m 175.61298 83.61746 l 182.47595 90.02581 l 170.58893 94.16016 lf
-0 sg 163.72595 87.56392 m 175.61298 83.61746 l 182.47595 90.02581 l 170.58893 94.16016 lx
-0.78864 0.21136 0.00000 s 243.75000 89.55708 m 255.63702 87.59686 l 262.50000 92.47294 l 250.61298 96.61497 lf
-0 sg 243.75000 89.55708 m 255.63702 87.59686 l 262.50000 92.47294 l 250.61298 96.61497 lx
-0.15365 0.84635 0.00000 s 274.38702 89.22625 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.50202 lf
-0 sg 274.38702 89.22625 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.50202 lx
-0.03741 0.96259 0.00000 s 83.70191 67.31293 m 95.58893 93.35057 l 102.45191 91.78698 l 90.56488 98.38153 lf
-0 sg 83.70191 67.31293 m 95.58893 93.35057 l 102.45191 91.78698 l 90.56488 98.38153 lx
-0.00000 0.92046 0.07954 s 194.36298 86.44663 m 206.25000 82.57665 l 213.11298 87.80238 l 201.22595 91.46006 lf
-0 sg 194.36298 86.44663 m 206.25000 82.57665 l 213.11298 87.80238 l 201.22595 91.46006 lx
-0.00000 0.40271 0.59729 s 114.33893 76.96454 m 126.22595 92.07893 l 133.08893 77.24104 l 121.20191 92.39947 lf
-0 sg 114.33893 76.96454 m 126.22595 92.07893 l 133.08893 77.24104 l 121.20191 92.39947 lx
-0.00000 0.26154 0.73846 s 144.97595 85.14873 m 156.86298 69.92921 l 163.72595 87.56392 l 151.83893 90.48043 lf
-0 sg 144.97595 85.14873 m 156.86298 69.92921 l 163.72595 87.56392 l 151.83893 90.48043 lx
-0.00000 0.50352 0.49648 s 34.31488 84.62137 m 46.20191 75.46244 l 53.06488 86.68822 l 41.17786 90.56488 lf
-0 sg 34.31488 84.62137 m 46.20191 75.46244 l 53.06488 86.68822 l 41.17786 90.56488 lx
-1.00000 sg 53.06488 86.68822 m 64.95191 99.53146 l 71.81488 89.86493 l 59.92786 104.61580 lf
-0 sg 53.06488 86.68822 m 64.95191 99.53146 l 71.81488 89.86493 l 59.92786 104.61580 lx
-0.24057 0.75943 0.00000 s 225.00000 85.81896 m 236.88702 82.65775 l 243.75000 89.55708 l 231.86298 90.84600 lf
-0 sg 225.00000 85.81896 m 236.88702 82.65775 l 243.75000 89.55708 l 231.86298 90.84600 lx
-0.00000 0.14593 0.85407 s 64.95191 99.53146 m 76.83893 72.17779 l 83.70191 67.31293 l 71.81488 89.86493 lf
-0 sg 64.95191 99.53146 m 76.83893 72.17779 l 83.70191 67.31293 l 71.81488 89.86493 lx
-0.04293 0.95707 0.00000 s 175.61298 83.61746 m 187.50000 79.78219 l 194.36298 86.44663 l 182.47595 90.02581 lf
-0 sg 175.61298 83.61746 m 187.50000 79.78219 l 194.36298 86.44663 l 182.47595 90.02581 lx
-0.87044 0.12956 0.00000 s 255.63702 87.59686 m 267.52405 84.31148 l 274.38702 89.22625 l 262.50000 92.47294 lf
-0 sg 255.63702 87.59686 m 267.52405 84.31148 l 274.38702 89.22625 l 262.50000 92.47294 lx
-0.00000 0.93302 0.06698 s 95.58893 93.35057 m 107.47595 73.61085 l 114.33893 76.96454 l 102.45191 91.78698 lf
-0 sg 95.58893 93.35057 m 107.47595 73.61085 l 114.33893 76.96454 l 102.45191 91.78698 lx
-0.00000 0.95062 0.04938 s 206.25000 82.57665 m 218.13702 78.76436 l 225.00000 85.81896 l 213.11298 87.80238 lf
-0 sg 206.25000 82.57665 m 218.13702 78.76436 l 225.00000 85.81896 l 213.11298 87.80238 lx
-0.00000 0.37663 0.62337 s 126.22595 92.07893 m 138.11298 70.14132 l 144.97595 85.14873 l 133.08893 77.24104 lf
-0 sg 126.22595 92.07893 m 138.11298 70.14132 l 144.97595 85.14873 l 133.08893 77.24104 lx
-0.00000 0.00000 0.44665 s 76.83893 72.17779 m 88.72595 72.98801 l 95.58893 93.35057 l 83.70191 67.31293 lf
-0 sg 76.83893 72.17779 m 88.72595 72.98801 l 95.58893 93.35057 l 83.70191 67.31293 lx
-0.00000 0.26154 0.73846 s 156.86298 69.92921 m 168.75000 78.28575 l 175.61298 83.61746 l 163.72595 87.56392 lf
-0 sg 156.86298 69.92921 m 168.75000 78.28575 l 175.61298 83.61746 l 163.72595 87.56392 lx
-0.64742 0.35258 0.00000 s 236.88702 82.65775 m 248.77405 80.77151 l 255.63702 87.59686 l 243.75000 89.55708 lf
-0 sg 236.88702 82.65775 m 248.77405 80.77151 l 255.63702 87.59686 l 243.75000 89.55708 lx
-0.43065 0.56935 0.00000 s 267.52405 84.31148 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 89.22625 lf
-0 sg 267.52405 84.31148 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 89.22625 lx
-0.00000 0.92655 0.07345 s 187.50000 79.78219 m 199.38702 75.78754 l 206.25000 82.57665 l 194.36298 86.44663 lf
-0 sg 187.50000 79.78219 m 199.38702 75.78754 l 206.25000 82.57665 l 194.36298 86.44663 lx
-1.00000 0.18511 0.18511 s 46.20191 75.46244 m 58.08893 84.36954 l 64.95191 99.53146 l 53.06488 86.68822 lf
-0 sg 46.20191 75.46244 m 58.08893 84.36954 l 64.95191 99.53146 l 53.06488 86.68822 lx
-0.00000 0.52415 0.47585 s 27.45191 78.67786 m 39.33893 75.07661 l 46.20191 75.46244 l 34.31488 84.62137 lf
-0 sg 27.45191 78.67786 m 39.33893 75.07661 l 46.20191 75.46244 l 34.31488 84.62137 lx
-0.00000 0.99211 0.00789 s 218.13702 78.76436 m 230.02405 74.54900 l 236.88702 82.65775 l 225.00000 85.81896 lf
-0 sg 218.13702 78.76436 m 230.02405 74.54900 l 236.88702 82.65775 l 225.00000 85.81896 lx
-0.22985 0.77015 0.00000 s 107.47595 73.61085 m 119.36298 83.29377 l 126.22595 92.07893 l 114.33893 76.96454 lf
-0 sg 107.47595 73.61085 m 119.36298 83.29377 l 126.22595 92.07893 l 114.33893 76.96454 lx
-0.00000 0.44501 0.55499 s 138.11298 70.14132 m 150.00000 86.57742 l 156.86298 69.92921 l 144.97595 85.14873 lf
-0 sg 138.11298 70.14132 m 150.00000 86.57742 l 156.86298 69.92921 l 144.97595 85.14873 lx
-0.00000 0.22633 0.77367 s 168.75000 78.28575 m 180.63702 63.51509 l 187.50000 79.78219 l 175.61298 83.61746 lf
-0 sg 168.75000 78.28575 m 180.63702 63.51509 l 187.50000 79.78219 l 175.61298 83.61746 lx
-0.81365 0.18635 0.00000 s 248.77405 80.77151 m 260.66107 76.39570 l 267.52405 84.31148 l 255.63702 87.59686 lf
-0 sg 248.77405 80.77151 m 260.66107 76.39570 l 267.52405 84.31148 l 255.63702 87.59686 lx
-0.00000 0.82168 0.17832 s 88.72595 72.98801 m 100.61298 70.50366 l 107.47595 73.61085 l 95.58893 93.35057 lf
-0 sg 88.72595 72.98801 m 100.61298 70.50366 l 107.47595 73.61085 l 95.58893 93.35057 lx
-0.00000 0.67338 0.32662 s 199.38702 75.78754 m 211.27405 70.36000 l 218.13702 78.76436 l 206.25000 82.57665 lf
-0 sg 199.38702 75.78754 m 211.27405 70.36000 l 218.13702 78.76436 l 206.25000 82.57665 lx
-1.00000 0.53147 0.53147 s 58.08893 84.36954 m 69.97595 80.86909 l 76.83893 72.17779 l 64.95191 99.53146 lf
-0 sg 58.08893 84.36954 m 69.97595 80.86909 l 76.83893 72.17779 l 64.95191 99.53146 lx
-0.15566 0.84434 0.00000 s 119.36298 83.29377 m 131.25000 65.71813 l 138.11298 70.14132 l 126.22595 92.07893 lf
-0 sg 119.36298 83.29377 m 131.25000 65.71813 l 138.11298 70.14132 l 126.22595 92.07893 lx
-0.00000 0.44501 0.55499 s 150.00000 86.57742 m 161.88702 63.27835 l 168.75000 78.28575 l 156.86298 69.92921 lf
-0 sg 150.00000 86.57742 m 161.88702 63.27835 l 168.75000 78.28575 l 156.86298 69.92921 lx
-0.00000 0.00000 0.85332 s 69.97595 80.86909 m 81.86298 61.44737 l 88.72595 72.98801 l 76.83893 72.17779 lf
-0 sg 69.97595 80.86909 m 81.86298 61.44737 l 88.72595 72.98801 l 76.83893 72.17779 lx
-0.13581 0.86419 0.00000 s 230.02405 74.54900 m 241.91107 72.00342 l 248.77405 80.77151 l 236.88702 82.65775 lf
-0 sg 230.02405 74.54900 m 241.91107 72.00342 l 248.77405 80.77151 l 236.88702 82.65775 lx
-0.00000 0.77296 0.22704 s 39.33893 75.07661 m 51.22595 68.52406 l 58.08893 84.36954 l 46.20191 75.46244 lf
-0 sg 39.33893 75.07661 m 51.22595 68.52406 l 58.08893 84.36954 l 46.20191 75.46244 lx
-0.00000 0.18293 0.81707 s 180.63702 63.51509 m 192.52405 71.81054 l 199.38702 75.78754 l 187.50000 79.78219 lf
-0 sg 180.63702 63.51509 m 192.52405 71.81054 l 199.38702 75.78754 l 187.50000 79.78219 lx
-0.35995 0.64005 0.00000 s 260.66107 76.39570 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 84.31148 lf
-0 sg 260.66107 76.39570 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 84.31148 lx
-0.00000 0.31336 0.68664 s 211.27405 70.36000 m 223.16107 65.28471 l 230.02405 74.54900 l 218.13702 78.76436 lf
-0 sg 211.27405 70.36000 m 223.16107 65.28471 l 230.02405 74.54900 l 218.13702 78.76436 lx
-0.00000 0.67603 0.32397 s 100.61298 70.50366 m 112.50000 67.37510 l 119.36298 83.29377 l 107.47595 73.61085 lf
-0 sg 100.61298 70.50366 m 112.50000 67.37510 l 119.36298 83.29377 l 107.47595 73.61085 lx
-0.02910 0.97090 0.00000 s 20.58893 72.73435 m 32.47595 70.31383 l 39.33893 75.07661 l 27.45191 78.67786 lf
-0 sg 20.58893 72.73435 m 32.47595 70.31383 l 39.33893 75.07661 l 27.45191 78.67786 lx
-0.06389 0.93611 0.00000 s 131.25000 65.71813 m 143.13702 73.84467 l 150.00000 86.57742 l 138.11298 70.14132 lf
-0 sg 131.25000 65.71813 m 143.13702 73.84467 l 150.00000 86.57742 l 138.11298 70.14132 lx
-0.00000 0.37663 0.62337 s 161.88702 63.27835 m 173.77405 78.35298 l 180.63702 63.51509 l 168.75000 78.28575 lf
-0 sg 161.88702 63.27835 m 173.77405 78.35298 l 180.63702 63.51509 l 168.75000 78.28575 lx
-0.25101 0.74899 0.00000 s 241.91107 72.00342 m 253.79809 68.62250 l 260.66107 76.39570 l 248.77405 80.77151 lf
-0 sg 241.91107 72.00342 m 253.79809 68.62250 l 260.66107 76.39570 l 248.77405 80.77151 lx
-0.00000 0.17267 0.82733 s 81.86298 61.44737 m 93.75000 73.07902 l 100.61298 70.50366 l 88.72595 72.98801 lf
-0 sg 81.86298 61.44737 m 93.75000 73.07902 l 100.61298 70.50366 l 88.72595 72.98801 lx
-0.00000 0.56052 0.43948 s 192.52405 71.81054 m 204.41107 64.25033 l 211.27405 70.36000 l 199.38702 75.78754 lf
-0 sg 192.52405 71.81054 m 204.41107 64.25033 l 211.27405 70.36000 l 199.38702 75.78754 lx
-0.00000 0.45822 0.54178 s 223.16107 65.28471 m 235.04809 65.32815 l 241.91107 72.00342 l 230.02405 74.54900 lf
-0 sg 223.16107 65.28471 m 235.04809 65.32815 l 241.91107 72.00342 l 230.02405 74.54900 lx
-1.00000 0.41711 0.41711 s 51.22595 68.52406 m 63.11298 77.88509 l 69.97595 80.86909 l 58.08893 84.36954 lf
-0 sg 51.22595 68.52406 m 63.11298 77.88509 l 69.97595 80.86909 l 58.08893 84.36954 lx
-0.14401 0.85599 0.00000 s 112.50000 67.37510 m 124.38702 70.91566 l 131.25000 65.71813 l 119.36298 83.29377 lf
-0 sg 112.50000 67.37510 m 124.38702 70.91566 l 131.25000 65.71813 l 119.36298 83.29377 lx
-0.00000 0.68070 0.31930 s 32.47595 70.31383 m 44.36298 64.51283 l 51.22595 68.52406 l 39.33893 75.07661 lf
-0 sg 32.47595 70.31383 m 44.36298 64.51283 l 51.22595 68.52406 l 39.33893 75.07661 lx
-0.00000 0.00000 0.30666 s 204.41107 64.25033 m 216.29809 51.85463 l 223.16107 65.28471 l 211.27405 70.36000 lf
-0 sg 204.41107 64.25033 m 216.29809 51.85463 l 223.16107 65.28471 l 211.27405 70.36000 lx
-0.06389 0.93611 0.00000 s 143.13702 73.84467 m 155.02405 58.85515 l 161.88702 63.27835 l 150.00000 86.57742 lf
-0 sg 143.13702 73.84467 m 155.02405 58.85515 l 161.88702 63.27835 l 150.00000 86.57742 lx
-0.00000 0.40271 0.59729 s 173.77405 78.35298 m 185.66107 56.37562 l 192.52405 71.81054 l 180.63702 63.51509 lf
-0 sg 173.77405 78.35298 m 185.66107 56.37562 l 192.52405 71.81054 l 180.63702 63.51509 lx
-0.07505 0.92495 0.00000 s 253.79809 68.62250 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 76.39570 lf
-0 sg 253.79809 68.62250 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 76.39570 lx
-0.00000 0.47943 0.52057 s 93.75000 73.07902 m 105.63702 57.42793 l 112.50000 67.37510 l 100.61298 70.50366 lf
-0 sg 93.75000 73.07902 m 105.63702 57.42793 l 112.50000 67.37510 l 100.61298 70.50366 lx
-0.52958 0.47042 0.00000 s 63.11298 77.88509 m 75.00000 65.87617 l 81.86298 61.44737 l 69.97595 80.86909 lf
-0 sg 63.11298 77.88509 m 75.00000 65.87617 l 81.86298 61.44737 l 69.97595 80.86909 lx
-0.01998 0.98002 0.00000 s 13.72595 66.79083 m 25.61298 63.06800 l 32.47595 70.31383 l 20.58893 72.73435 lf
-0 sg 13.72595 66.79083 m 25.61298 63.06800 l 32.47595 70.31383 l 20.58893 72.73435 lx
-0.00985 0.99015 0.00000 s 124.38702 70.91566 m 136.27405 61.30785 l 143.13702 73.84467 l 131.25000 65.71813 lf
-0 sg 124.38702 70.91566 m 136.27405 61.30785 l 143.13702 73.84467 l 131.25000 65.71813 lx
-0.00000 0.92420 0.07580 s 235.04809 65.32815 m 246.93512 63.70375 l 253.79809 68.62250 l 241.91107 72.00342 lf
-0 sg 235.04809 65.32815 m 246.93512 63.70375 l 253.79809 68.62250 l 241.91107 72.00342 lx
-0.00000 0.04636 0.95364 s 75.00000 65.87617 m 86.88702 52.15581 l 93.75000 73.07902 l 81.86298 61.44737 lf
-0 sg 75.00000 65.87617 m 86.88702 52.15581 l 93.75000 73.07902 l 81.86298 61.44737 lx
-0.17549 0.82451 0.00000 s 44.36298 64.51283 m 56.25000 60.38234 l 63.11298 77.88509 l 51.22595 68.52406 lf
-0 sg 44.36298 64.51283 m 56.25000 60.38234 l 63.11298 77.88509 l 51.22595 68.52406 lx
-0.15566 0.84434 0.00000 s 155.02405 58.85515 m 166.91107 69.56782 l 173.77405 78.35298 l 161.88702 63.27835 lf
-0 sg 155.02405 58.85515 m 166.91107 69.56782 l 173.77405 78.35298 l 161.88702 63.27835 lx
-0.00000 0.43592 0.56408 s 185.66107 56.37562 m 197.54809 64.33508 l 204.41107 64.25033 l 192.52405 71.81054 lf
-0 sg 185.66107 56.37562 m 197.54809 64.33508 l 204.41107 64.25033 l 192.52405 71.81054 lx
-0.00000 0.07310 0.92690 s 216.29809 51.85463 m 228.18512 65.78436 l 235.04809 65.32815 l 223.16107 65.28471 lf
-0 sg 216.29809 51.85463 m 228.18512 65.78436 l 235.04809 65.32815 l 223.16107 65.28471 lx
-0.00000 0.77966 0.22034 s 105.63702 57.42793 m 117.52405 62.94761 l 124.38702 70.91566 l 112.50000 67.37510 lf
-0 sg 105.63702 57.42793 m 117.52405 62.94761 l 124.38702 70.91566 l 112.50000 67.37510 lx
-0.00000 0.99739 0.00261 s 25.61298 63.06800 m 37.50000 60.98494 l 44.36298 64.51283 l 32.47595 70.31383 lf
-0 sg 25.61298 63.06800 m 37.50000 60.98494 l 44.36298 64.51283 l 32.47595 70.31383 lx
-0.00985 0.99015 0.00000 s 136.27405 61.30785 m 148.16107 64.05269 l 155.02405 58.85515 l 143.13702 73.84467 lf
-0 sg 136.27405 61.30785 m 148.16107 64.05269 l 155.02405 58.85515 l 143.13702 73.84467 lx
-0.01473 0.98527 0.00000 s 246.93512 63.70375 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.62250 lf
-0 sg 246.93512 63.70375 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.62250 lx
-0.00000 0.27002 0.72998 s 86.88702 52.15581 m 98.77405 59.15437 l 105.63702 57.42793 l 93.75000 73.07902 lf
-0 sg 86.88702 52.15581 m 98.77405 59.15437 l 105.63702 57.42793 l 93.75000 73.07902 lx
-0.22985 0.77015 0.00000 s 166.91107 69.56782 m 178.79809 53.02192 l 185.66107 56.37562 l 173.77405 78.35298 lf
-0 sg 166.91107 69.56782 m 178.79809 53.02192 l 185.66107 56.37562 l 173.77405 78.35298 lx
-0.00000 0.54541 0.45459 s 197.54809 64.33508 m 209.43512 64.06665 l 216.29809 51.85463 l 204.41107 64.25033 lf
-0 sg 197.54809 64.33508 m 209.43512 64.06665 l 216.29809 51.85463 l 204.41107 64.25033 lx
-1.00000 0.36982 0.36982 s 56.25000 60.38234 m 68.13702 69.37304 l 75.00000 65.87617 l 63.11298 77.88509 lf
-0 sg 56.25000 60.38234 m 68.13702 69.37304 l 75.00000 65.87617 l 63.11298 77.88509 lx
-0.00000 0.94365 0.05635 s 6.86298 60.84732 m 18.75000 57.40812 l 25.61298 63.06800 l 13.72595 66.79083 lf
-0 sg 6.86298 60.84732 m 18.75000 57.40812 l 25.61298 63.06800 l 13.72595 66.79083 lx
-0.00000 0.83348 0.16652 s 117.52405 62.94761 m 129.41107 50.48747 l 136.27405 61.30785 l 124.38702 70.91566 lf
-0 sg 117.52405 62.94761 m 129.41107 50.48747 l 136.27405 61.30785 l 124.38702 70.91566 lx
-0.00000 0.66761 0.33239 s 37.50000 60.98494 m 49.38702 54.87254 l 56.25000 60.38234 l 44.36298 64.51283 lf
-0 sg 37.50000 60.98494 m 49.38702 54.87254 l 56.25000 60.38234 l 44.36298 64.51283 lx
-0.67823 0.32177 0.00000 s 228.18512 65.78436 m 240.07214 61.12993 l 246.93512 63.70375 l 235.04809 65.32815 lf
-0 sg 228.18512 65.78436 m 240.07214 61.12993 l 246.93512 63.70375 l 235.04809 65.32815 lx
-0.14401 0.85599 0.00000 s 148.16107 64.05269 m 160.04809 53.64915 l 166.91107 69.56782 l 155.02405 58.85515 lf
-0 sg 148.16107 64.05269 m 160.04809 53.64915 l 166.91107 69.56782 l 155.02405 58.85515 lx
-0.00000 0.00000 0.91269 s 209.43512 64.06665 m 221.32214 40.63156 l 228.18512 65.78436 l 216.29809 51.85463 lf
-0 sg 209.43512 64.06665 m 221.32214 40.63156 l 228.18512 65.78436 l 216.29809 51.85463 lx
-0.00000 0.93302 0.06698 s 178.79809 53.02192 m 190.68512 65.89866 l 197.54809 64.33508 l 185.66107 56.37562 lf
-0 sg 178.79809 53.02192 m 190.68512 65.89866 l 197.54809 64.33508 l 185.66107 56.37562 lx
-0.00000 0.43536 0.56464 s 98.77405 59.15437 m 110.66107 50.76776 l 117.52405 62.94761 l 105.63702 57.42793 lf
-0 sg 98.77405 59.15437 m 110.66107 50.76776 l 117.52405 62.94761 l 105.63702 57.42793 lx
-0.34713 0.65287 0.00000 s 68.13702 69.37304 m 80.02405 58.73792 l 86.88702 52.15581 l 75.00000 65.87617 lf
-0 sg 68.13702 69.37304 m 80.02405 58.73792 l 86.88702 52.15581 l 75.00000 65.87617 lx
-0.00323 0.99677 0.00000 s 18.75000 57.40812 m 30.63702 53.72241 l 37.50000 60.98494 l 25.61298 63.06800 lf
-0 sg 18.75000 57.40812 m 30.63702 53.72241 l 37.50000 60.98494 l 25.61298 63.06800 lx
-0.00000 0.83348 0.16652 s 129.41107 50.48747 m 141.29809 56.08463 l 148.16107 64.05269 l 136.27405 61.30785 lf
-0 sg 129.41107 50.48747 m 141.29809 56.08463 l 148.16107 64.05269 l 136.27405 61.30785 lx
-0.00000 0.67603 0.32397 s 160.04809 53.64915 m 171.93512 49.91473 l 178.79809 53.02192 l 166.91107 69.56782 lf
-0 sg 160.04809 53.64915 m 171.93512 49.91473 l 178.79809 53.02192 l 166.91107 69.56782 lx
-0.34403 0.65597 0.00000 s 240.07214 61.12993 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 63.70375 lf
-0 sg 240.07214 61.12993 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 63.70375 lx
-0.00000 0.19338 0.80662 s 80.02405 58.73792 m 91.91107 46.97230 l 98.77405 59.15437 l 86.88702 52.15581 lf
-0 sg 80.02405 58.73792 m 91.91107 46.97230 l 98.77405 59.15437 l 86.88702 52.15581 lx
-0.25750 0.74250 0.00000 s 49.38702 54.87254 m 61.27405 50.27083 l 68.13702 69.37304 l 56.25000 60.38234 lf
-0 sg 49.38702 54.87254 m 61.27405 50.27083 l 68.13702 69.37304 l 56.25000 60.38234 lx
-0.03741 0.96259 0.00000 s 190.68512 65.89866 m 202.57214 32.99804 l 209.43512 64.06665 l 197.54809 64.33508 lf
-0 sg 190.68512 65.89866 m 202.57214 32.99804 l 209.43512 64.06665 l 197.54809 64.33508 lx
-0.00000 0.66846 0.33154 s 110.66107 50.76776 m 122.54809 55.47952 l 129.41107 50.48747 l 117.52405 62.94761 lf
-0 sg 110.66107 50.76776 m 122.54809 55.47952 l 129.41107 50.48747 l 117.52405 62.94761 lx
-0.00000 0.96548 0.03452 s 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.40812 l 6.86298 60.84732 lf
-0 sg 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.40812 l 6.86298 60.84732 lx
-0.00000 0.87830 0.12170 s 221.32214 40.63156 m 233.20917 53.95134 l 240.07214 61.12993 l 228.18512 65.78436 lf
-0 sg 221.32214 40.63156 m 233.20917 53.95134 l 240.07214 61.12993 l 228.18512 65.78436 lx
-0.00000 sg 202.57214 32.99804 m 214.45917 48.68707 l 221.32214 40.63156 l 209.43512 64.06665 lf
-0 sg 202.57214 32.99804 m 214.45917 48.68707 l 221.32214 40.63156 l 209.43512 64.06665 lx
-0.00000 0.98458 0.01542 s 30.63702 53.72241 m 42.52405 51.62863 l 49.38702 54.87254 l 37.50000 60.98494 lf
-0 sg 30.63702 53.72241 m 42.52405 51.62863 l 49.38702 54.87254 l 37.50000 60.98494 lx
-0.00000 0.77966 0.22034 s 141.29809 56.08463 m 153.18512 43.70198 l 160.04809 53.64915 l 148.16107 64.05269 lf
-0 sg 141.29809 56.08463 m 153.18512 43.70198 l 160.04809 53.64915 l 148.16107 64.05269 lx
-0.00000 0.00000 0.93358 s 91.91107 46.97230 m 103.79809 42.93293 l 110.66107 50.76776 l 98.77405 59.15437 lf
-0 sg 91.91107 46.97230 m 103.79809 42.93293 l 110.66107 50.76776 l 98.77405 59.15437 lx
-0.00000 0.82168 0.17832 s 171.93512 49.91473 m 183.82214 45.53610 l 190.68512 65.89866 l 178.79809 53.02192 lf
-0 sg 171.93512 49.91473 m 183.82214 45.53610 l 190.68512 65.89866 l 178.79809 53.02192 lx
-0.00000 0.66846 0.33154 s 122.54809 55.47952 m 134.43512 43.90478 l 141.29809 56.08463 l 129.41107 50.48747 lf
-0 sg 122.54809 55.47952 m 134.43512 43.90478 l 141.29809 56.08463 l 129.41107 50.48747 lx
-1.00000 0.37522 0.37522 s 61.27405 50.27083 m 73.16107 57.70700 l 80.02405 58.73792 l 68.13702 69.37304 lf
-0 sg 61.27405 50.27083 m 73.16107 57.70700 l 80.02405 58.73792 l 68.13702 69.37304 lx
-0.00000 0.94585 0.05415 s 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.72241 l 18.75000 57.40812 lf
-0 sg 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.72241 l 18.75000 57.40812 lx
-0.00000 0.00000 0.44665 s 183.82214 45.53610 m 195.70917 37.86291 l 202.57214 32.99804 l 190.68512 65.89866 lf
-0 sg 183.82214 45.53610 m 195.70917 37.86291 l 202.57214 32.99804 l 190.68512 65.89866 lx
-0.00000 0.66045 0.33955 s 42.52405 51.62863 m 54.41107 46.38518 l 61.27405 50.27083 l 49.38702 54.87254 lf
-0 sg 42.52405 51.62863 m 54.41107 46.38518 l 61.27405 50.27083 l 49.38702 54.87254 lx
-0.00000 0.47943 0.52057 s 153.18512 43.70198 m 165.07214 52.49009 l 171.93512 49.91473 l 160.04809 53.64915 lf
-0 sg 153.18512 43.70198 m 165.07214 52.49009 l 171.93512 49.91473 l 160.04809 53.64915 lx
-0.50399 0.49601 0.00000 s 233.20917 53.95134 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 61.12993 lf
-0 sg 233.20917 53.95134 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 61.12993 lx
-0.00000 0.00000 0.97197 s 103.79809 42.93293 m 115.68512 37.43349 l 122.54809 55.47952 l 110.66107 50.76776 lf
-0 sg 103.79809 42.93293 m 115.68512 37.43349 l 122.54809 55.47952 l 110.66107 50.76776 lx
-1.00000 0.04594 0.04594 s 73.16107 57.70700 m 85.04809 54.55137 l 91.91107 46.97230 l 80.02405 58.73792 lf
-0 sg 73.16107 57.70700 m 85.04809 54.55137 l 91.91107 46.97230 l 80.02405 58.73792 lx
-0.03730 0.96270 0.00000 s 214.45917 48.68707 m 226.34619 56.57497 l 233.20917 53.95134 l 221.32214 40.63156 lf
-0 sg 214.45917 48.68707 m 226.34619 56.57497 l 233.20917 53.95134 l 221.32214 40.63156 lx
-0.00000 0.43536 0.56464 s 134.43512 43.90478 m 146.32214 45.42841 l 153.18512 43.70198 l 141.29809 56.08463 lf
-0 sg 134.43512 43.90478 m 146.32214 45.42841 l 153.18512 43.70198 l 141.29809 56.08463 lx
-0.02704 0.97296 0.00000 s 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 51.62863 l 30.63702 53.72241 lf
-0 sg 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 51.62863 l 30.63702 53.72241 lx
-0.00000 0.17267 0.82733 s 165.07214 52.49009 m 176.95917 33.99547 l 183.82214 45.53610 l 171.93512 49.91473 lf
-0 sg 165.07214 52.49009 m 176.95917 33.99547 l 183.82214 45.53610 l 171.93512 49.91473 lx
-0.00000 0.96569 0.03431 s 54.41107 46.38518 m 66.29809 39.14156 l 73.16107 57.70700 l 61.27405 50.27083 lf
-0 sg 54.41107 46.38518 m 66.29809 39.14156 l 73.16107 57.70700 l 61.27405 50.27083 lx
-0.00000 0.14593 0.85407 s 195.70917 37.86291 m 207.59619 58.35361 l 214.45917 48.68707 l 202.57214 32.99804 lf
-0 sg 195.70917 37.86291 m 207.59619 58.35361 l 214.45917 48.68707 l 202.57214 32.99804 lx
-0.00000 0.00000 0.97197 s 115.68512 37.43349 m 127.57214 36.06995 l 134.43512 43.90478 l 122.54809 55.47952 lf
-0 sg 115.68512 37.43349 m 127.57214 36.06995 l 134.43512 43.90478 l 122.54809 55.47952 lx
-0.22858 0.77142 0.00000 s 85.04809 54.55137 m 96.93512 48.87835 l 103.79809 42.93293 l 91.91107 46.97230 lf
-0 sg 85.04809 54.55137 m 96.93512 48.87835 l 103.79809 42.93293 l 91.91107 46.97230 lx
-0.00000 0.27002 0.72998 s 146.32214 45.42841 m 158.20917 31.56688 l 165.07214 52.49009 l 153.18512 43.70198 lf
-0 sg 146.32214 45.42841 m 158.20917 31.56688 l 165.07214 52.49009 l 153.18512 43.70198 lx
-0.00000 0.00000 0.85332 s 176.95917 33.99547 m 188.84619 46.55421 l 195.70917 37.86291 l 183.82214 45.53610 lf
-0 sg 176.95917 33.99547 m 188.84619 46.55421 l 195.70917 37.86291 l 183.82214 45.53610 lx
-0.00000 0.99151 0.00849 s 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 46.38518 l 42.52405 51.62863 lf
-0 sg 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 46.38518 l 42.52405 51.62863 lx
-1.00000 0.05341 0.05341 s 226.34619 56.57497 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 53.95134 lf
-0 sg 226.34619 56.57497 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 53.95134 lx
-0.00000 0.69278 0.30722 s 96.93512 48.87835 m 108.82214 43.21409 l 115.68512 37.43349 l 103.79809 42.93293 lf
-0 sg 96.93512 48.87835 m 108.82214 43.21409 l 115.68512 37.43349 l 103.79809 42.93293 lx
-0.00000 0.00000 0.93358 s 127.57214 36.06995 m 139.45917 33.24634 l 146.32214 45.42841 l 134.43512 43.90478 lf
-0 sg 127.57214 36.06995 m 139.45917 33.24634 l 146.32214 45.42841 l 134.43512 43.90478 lx
-0.82860 0.17140 0.00000 s 66.29809 39.14156 m 78.18512 39.89426 l 85.04809 54.55137 l 73.16107 57.70700 lf
-0 sg 66.29809 39.14156 m 78.18512 39.89426 l 85.04809 54.55137 l 73.16107 57.70700 lx
-0.00000 0.04636 0.95364 s 158.20917 31.56688 m 170.09619 38.42427 l 176.95917 33.99547 l 165.07214 52.49009 lf
-0 sg 158.20917 31.56688 m 170.09619 38.42427 l 176.95917 33.99547 l 165.07214 52.49009 lx
-0.00000 0.57007 0.42993 s 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 39.14156 l 54.41107 46.38518 lf
-0 sg 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 39.14156 l 54.41107 46.38518 lx
-1.00000 sg 207.59619 58.35361 m 219.48321 38.64739 l 226.34619 56.57497 l 214.45917 48.68707 lf
-0 sg 207.59619 58.35361 m 219.48321 38.64739 l 226.34619 56.57497 l 214.45917 48.68707 lx
-0.00000 0.69278 0.30722 s 108.82214 43.21409 m 120.70917 42.01538 l 127.57214 36.06995 l 115.68512 37.43349 lf
-0 sg 108.82214 43.21409 m 120.70917 42.01538 l 127.57214 36.06995 l 115.68512 37.43349 lx
-0.00000 0.19338 0.80662 s 139.45917 33.24634 m 151.34619 38.14899 l 158.20917 31.56688 l 146.32214 45.42841 lf
-0 sg 139.45917 33.24634 m 151.34619 38.14899 l 158.20917 31.56688 l 146.32214 45.42841 lx
-1.00000 0.25610 0.25610 s 78.18512 39.89426 m 90.07214 39.94921 l 96.93512 48.87835 l 85.04809 54.55137 lf
-0 sg 78.18512 39.89426 m 90.07214 39.94921 l 96.93512 48.87835 l 85.04809 54.55137 lx
-1.00000 0.53147 0.53147 s 188.84619 46.55421 m 200.73321 43.19168 l 207.59619 58.35361 l 195.70917 37.86291 lf
-0 sg 188.84619 46.55421 m 200.73321 43.19168 l 207.59619 58.35361 l 195.70917 37.86291 lx
-0.79737 0.20263 0.00000 s 219.48321 38.64739 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 56.57497 lf
-0 sg 219.48321 38.64739 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 56.57497 lx
-0.00000 0.59794 0.40206 s 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 39.89426 l 66.29809 39.14156 lf
-0 sg 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 39.89426 l 66.29809 39.14156 lx
-0.52958 0.47042 0.00000 s 170.09619 38.42427 m 181.98321 43.57021 l 188.84619 46.55421 l 176.95917 33.99547 lf
-0 sg 170.09619 38.42427 m 181.98321 43.57021 l 188.84619 46.55421 l 176.95917 33.99547 lx
-0.22858 0.77142 0.00000 s 120.70917 42.01538 m 132.59619 40.82542 l 139.45917 33.24634 l 127.57214 36.06995 lf
-0 sg 120.70917 42.01538 m 132.59619 40.82542 l 139.45917 33.24634 l 127.57214 36.06995 lx
-1.00000 0.35670 0.35670 s 90.07214 39.94921 m 101.95917 38.84805 l 108.82214 43.21409 l 96.93512 48.87835 lf
-0 sg 90.07214 39.94921 m 101.95917 38.84805 l 108.82214 43.21409 l 96.93512 48.87835 lx
-1.00000 0.18511 0.18511 s 200.73321 43.19168 m 212.62024 27.42160 l 219.48321 38.64739 l 207.59619 58.35361 lf
-0 sg 200.73321 43.19168 m 212.62024 27.42160 l 219.48321 38.64739 l 207.59619 58.35361 lx
-0.34713 0.65287 0.00000 s 151.34619 38.14899 m 163.23321 41.92113 l 170.09619 38.42427 l 158.20917 31.56688 lf
-0 sg 151.34619 38.14899 m 163.23321 41.92113 l 170.09619 38.42427 l 158.20917 31.56688 lx
-0.17274 0.82726 0.00000 s 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 39.94921 l 78.18512 39.89426 lf
-0 sg 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 39.94921 l 78.18512 39.89426 lx
-0.00000 0.50352 0.49648 s 212.62024 27.42160 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.64739 lf
-0 sg 212.62024 27.42160 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.64739 lx
-1.00000 0.41711 0.41711 s 181.98321 43.57021 m 193.87024 27.34620 l 200.73321 43.19168 l 188.84619 46.55421 lf
-0 sg 181.98321 43.57021 m 193.87024 27.34620 l 200.73321 43.19168 l 188.84619 46.55421 lx
-1.00000 0.35670 0.35670 s 101.95917 38.84805 m 113.84619 33.08623 l 120.70917 42.01538 l 108.82214 43.21409 lf
-0 sg 101.95917 38.84805 m 113.84619 33.08623 l 120.70917 42.01538 l 108.82214 43.21409 lx
-1.00000 0.04594 0.04594 s 132.59619 40.82542 m 144.48321 37.11807 l 151.34619 38.14899 l 139.45917 33.24634 lf
-0 sg 132.59619 40.82542 m 144.48321 37.11807 l 151.34619 38.14899 l 139.45917 33.24634 lx
-0.00000 0.77296 0.22704 s 193.87024 27.34620 m 205.75726 27.03577 l 212.62024 27.42160 l 200.73321 43.19168 lf
-0 sg 193.87024 27.34620 m 205.75726 27.03577 l 212.62024 27.42160 l 200.73321 43.19168 lx
-0.60862 0.39138 0.00000 s 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 38.84805 l 90.07214 39.94921 lf
-0 sg 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 38.84805 l 90.07214 39.94921 lx
-1.00000 0.36982 0.36982 s 163.23321 41.92113 m 175.12024 26.06746 l 181.98321 43.57021 l 170.09619 38.42427 lf
-0 sg 163.23321 41.92113 m 175.12024 26.06746 l 181.98321 43.57021 l 170.09619 38.42427 lx
-1.00000 0.25610 0.25610 s 113.84619 33.08623 m 125.73321 26.16830 l 132.59619 40.82542 l 120.70917 42.01538 lf
-0 sg 113.84619 33.08623 m 125.73321 26.16830 l 132.59619 40.82542 l 120.70917 42.01538 lx
-0.17549 0.82451 0.00000 s 175.12024 26.06746 m 187.00726 23.33497 l 193.87024 27.34620 l 181.98321 43.57021 lf
-0 sg 175.12024 26.06746 m 187.00726 23.33497 l 193.87024 27.34620 l 181.98321 43.57021 lx
-0.00000 0.52415 0.47585 s 205.75726 27.03577 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 27.42160 lf
-0 sg 205.75726 27.03577 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 27.42160 lx
-1.00000 0.37522 0.37522 s 144.48321 37.11807 m 156.37024 22.81892 l 163.23321 41.92113 l 151.34619 38.14899 lf
-0 sg 144.48321 37.11807 m 156.37024 22.81892 l 163.23321 41.92113 l 151.34619 38.14899 lx
-0.60862 0.39138 0.00000 s 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 33.08623 l 101.95917 38.84805 lf
-0 sg 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 33.08623 l 101.95917 38.84805 lx
-0.82860 0.17140 0.00000 s 125.73321 26.16830 m 137.62024 18.55263 l 144.48321 37.11807 l 132.59619 40.82542 lf
-0 sg 125.73321 26.16830 m 137.62024 18.55263 l 144.48321 37.11807 l 132.59619 40.82542 lx
-0.25750 0.74250 0.00000 s 156.37024 22.81892 m 168.25726 20.55766 l 175.12024 26.06746 l 163.23321 41.92113 lf
-0 sg 156.37024 22.81892 m 168.25726 20.55766 l 175.12024 26.06746 l 163.23321 41.92113 lx
-0.00000 0.68070 0.31930 s 187.00726 23.33497 m 198.89428 22.27300 l 205.75726 27.03577 l 193.87024 27.34620 lf
-0 sg 187.00726 23.33497 m 198.89428 22.27300 l 205.75726 27.03577 l 193.87024 27.34620 lx
-0.17274 0.82726 0.00000 s 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.16830 l 113.84619 33.08623 lf
-0 sg 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.16830 l 113.84619 33.08623 lx
-0.00000 0.96569 0.03431 s 137.62024 18.55263 m 149.50726 18.93328 l 156.37024 22.81892 l 144.48321 37.11807 lf
-0 sg 137.62024 18.55263 m 149.50726 18.93328 l 156.37024 22.81892 l 144.48321 37.11807 lx
-0.00000 0.66761 0.33239 s 168.25726 20.55766 m 180.14428 19.80708 l 187.00726 23.33497 l 175.12024 26.06746 lf
-0 sg 168.25726 20.55766 m 180.14428 19.80708 l 187.00726 23.33497 l 175.12024 26.06746 lx
-0.02910 0.97090 0.00000 s 198.89428 22.27300 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.03577 lf
-0 sg 198.89428 22.27300 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.03577 lx
-0.00000 0.59794 0.40206 s 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 18.55263 l 125.73321 26.16830 lf
-0 sg 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 18.55263 l 125.73321 26.16830 lx
-0.00000 0.66045 0.33955 s 149.50726 18.93328 m 161.39428 17.31375 l 168.25726 20.55766 l 156.37024 22.81892 lf
-0 sg 149.50726 18.93328 m 161.39428 17.31375 l 168.25726 20.55766 l 156.37024 22.81892 lx
-0.00000 0.99739 0.00261 s 180.14428 19.80708 m 192.03131 15.02716 l 198.89428 22.27300 l 187.00726 23.33497 lf
-0 sg 180.14428 19.80708 m 192.03131 15.02716 l 198.89428 22.27300 l 187.00726 23.33497 lx
-0.00000 0.57007 0.42993 s 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 18.93328 l 137.62024 18.55263 lf
-0 sg 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 18.93328 l 137.62024 18.55263 lx
-0.00000 0.98458 0.01542 s 161.39428 17.31375 m 173.28131 12.54455 l 180.14428 19.80708 l 168.25726 20.55766 lf
-0 sg 161.39428 17.31375 m 173.28131 12.54455 l 180.14428 19.80708 l 168.25726 20.55766 lx
-0.01998 0.98002 0.00000 s 192.03131 15.02716 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 22.27300 lf
-0 sg 192.03131 15.02716 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 22.27300 lx
-0.00000 0.99151 0.00849 s 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 17.31375 l 149.50726 18.93328 lf
-0 sg 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 17.31375 l 149.50726 18.93328 lx
-0.00323 0.99677 0.00000 s 173.28131 12.54455 m 185.16833 9.36729 l 192.03131 15.02716 l 180.14428 19.80708 lf
-0 sg 173.28131 12.54455 m 185.16833 9.36729 l 192.03131 15.02716 l 180.14428 19.80708 lx
-0.02704 0.97296 0.00000 s 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.54455 l 161.39428 17.31375 lf
-0 sg 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.54455 l 161.39428 17.31375 lx
-0.00000 0.94365 0.05635 s 185.16833 9.36729 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.02716 lf
-0 sg 185.16833 9.36729 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.02716 lx
-0.00000 0.94585 0.05415 s 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.36729 l 173.28131 12.54455 lf
-0 sg 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.36729 l 173.28131 12.54455 lx
-0.00000 0.96548 0.03452 s 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.36729 lf
-0 sg 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.36729 lx
-showpage
-.
-DEAL::
-DEAL::  Collecting refinement data: 
-DEAL::    Refining each time step separately.
-DEAL::    Got 6656 presently, expecting 6150 for next sweep.
-DEAL::    Writing statistics for whole sweep.#  Description of fields
-DEAL::#  =====================
-DEAL::#  General:
-DEAL::#    time
-#  Primal problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Dual problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Error estimation:
-#    total estimated error in this timestep
-#  Postprocessing:
-#    Huyghens wave
-DEAL::
-DEAL::
-DEAL::0   256 289 0 0 0.00 0.00 0.00    256 1089 7 10 0.00 0.00 0.00    0.00    22.15 
-DEAL::0.03   256 289 9 12 1.23 1.12 2.35    256 1089 7 10 0.00 0.00 0.00    -2.69    -6.02 
-DEAL::0.06   256 289 9 12 0.34 2.01 2.35    256 1089 7 10 0.00 0.00 0.00    2.02    -40.60 
-DEAL::0.08   256 289 9 12 1.05 1.30 2.35    256 1089 6 10 0.00 0.00 0.00    0.81    -2.18 
-DEAL::0.11   256 289 9 12 1.58 0.77 2.35    256 1089 7 10 0.00 0.00 0.00    2.48    95.00 
-DEAL::0.14   256 289 9 12 1.22 1.13 2.35    256 1089 7 10 0.00 0.00 0.00    2.04    123.43 
-DEAL::0.17   256 289 9 12 1.00 1.35 2.35    256 1089 7 10 0.00 0.00 0.00    0.32    -26.86 
-DEAL::0.20   256 289 9 12 1.11 1.24 2.35    256 1089 7 10 0.00 0.00 0.00    0.44    -294.74 
-DEAL::0.22   256 289 9 12 1.29 1.06 2.35    256 1089 7 10 0.00 0.00 0.00    -0.39    -448.29 
-DEAL::0.25   256 289 9 12 1.30 1.05 2.35    256 1089 7 10 0.00 0.00 0.00    0.32    -243.66 
-DEAL::0.28   256 289 9 12 1.04 1.31 2.35    256 1089 7 10 0.00 0.00 0.00    1.60    388.73 
-DEAL::0.31   256 289 9 12 1.05 1.30 2.35    256 1089 7 10 0.00 0.00 0.00    0.56    1192.77 
-DEAL::0.34   256 289 9 12 1.35 1.00 2.35    256 1089 7 10 0.00 0.00 0.00    -0.66    1568.28 
-DEAL::0.36   256 289 9 12 1.23 1.12 2.35    256 1089 7 10 0.00 0.00 0.00    -1.99    884.33 
-DEAL::0.39   256 289 9 12 1.01 1.34 2.35    256 1089 7 10 0.00 0.00 0.00    -1.56    -974.08 
-DEAL::0.42   256 289 9 12 1.19 1.16 2.35    256 1089 7 10 0.00 0.00 0.00    -1.06    -3288.24 
-DEAL::0.45   256 289 9 12 1.24 1.11 2.35    256 1089 6 10 0.00 0.00 0.00    -2.09    -4676.94 
-DEAL::0.48   256 289 9 12 1.17 1.18 2.35    256 1089 6 10 0.00 0.00 0.00    1.87    -3655.94 
-DEAL::0.50   256 289 9 12 1.16 1.19 2.35    256 1089 6 10 0.00 0.00 0.00    4.56    502.28 
-DEAL::0.53   256 289 9 12 1.11 1.24 2.35    256 1089 6 10 0.00 0.00 0.00    0.75    6813.83 
-DEAL::0.56   256 289 9 12 1.20 1.15 2.35    256 1089 6 10 0.00 0.00 0.00    0.91    12313.33 
-DEAL::0.59   256 289 9 12 1.30 1.05 2.35    256 1089 6 10 0.00 0.00 0.00    1.79    13352.70 
-DEAL::0.62   256 289 9 12 1.12 1.23 2.35    256 1089 6 10 0.00 0.00 0.00    -1.95    8120.27 
-DEAL::0.64   256 289 9 12 1.08 1.27 2.35    256 1089 6 10 0.00 0.00 0.00    -2.21    -1528.89 
-DEAL::0.67   256 289 9 12 1.22 1.13 2.35    256 1089 5 10 0.00 0.00 0.00    0.73    -10713.04 
-DEAL::0.70   256 289 9 12 1.21 1.14 2.35    256 1089 0 0 0.00 0.00 0.00    0.98    -14490.08 
-DEAL::
-DEAL::    Writing summary.Summary of this sweep:
-======================
-
-  Accumulated number of cells: 6656
-  Acc. number of primal dofs : 15028
-  Acc. number of dual dofs   : 56628
-  Accumulated error          : 0.00
-
-  Evaluations:
-  ------------
-    Hughens wave -- weighted time: 0.54
-                    average      : 0.01
-  
-
-DEAL::
-DEAL::
-DEAL::Sweep 1 :
-DEAL::---------
-DEAL::  Primal problem: time=0, step=0, sweep=1. 157 cells, 194 dofsStarting value 0
-DEAL:cg::Convergence step 0 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 13 value 0
-DEAL:cg::Starting value 0
-DEAL:cg::Convergence step 0 value 0
-DEAL:cg::Starting value 0
-DEAL:cg::Convergence step 0 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.03, step=1, sweep=1. 157 cells, 194 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.07
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.06, step=2, sweep=1. 202 cells, 242 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.08, step=3, sweep=1. 205 cells, 246 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.07
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.11, step=4, sweep=1. 190 cells, 230 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.07
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.14, step=5, sweep=1. 211 cells, 252 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.07
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.17, step=6, sweep=1. 229 cells, 272 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.08
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.20, step=7, sweep=1. 226 cells, 267 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.22, step=8, sweep=1. 229 cells, 274 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.08
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.25, step=9, sweep=1. 286 cells, 333 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.08
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.28, step=10, sweep=1. 283 cells, 328 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.31, step=11, sweep=1. 244 cells, 287 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.34, step=12, sweep=1. 238 cells, 279 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.36, step=13, sweep=1. 202 cells, 244 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.39, step=14, sweep=1. 193 cells, 231 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.10
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.42, step=15, sweep=1. 190 cells, 228 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.45, step=16, sweep=1. 166 cells, 201 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.48, step=17, sweep=1. 154 cells, 189 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.50, step=18, sweep=1. 148 cells, 181 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.10
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.53, step=19, sweep=1. 148 cells, 181 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.10
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.56, step=20, sweep=1. 133 cells, 166 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.59, step=21, sweep=1. 133 cells, 166 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.10
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.62, step=22, sweep=1. 112 cells, 141 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.64, step=23, sweep=1. 106 cells, 135 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.10
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.67, step=24, sweep=1. 118 cells, 149 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.70, step=25, sweep=1. 115 cells, 146 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.10
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::
-DEAL::  Dual problem: time=0.70, step=25, sweep=1. 115 cells, 545 dofs.
-DEAL::  Dual problem: time=0.67, step=24, sweep=1. 118 cells, 557 dofsStarting value 0.00
-DEAL:cg::Convergence step 5 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.64, step=23, sweep=1. 106 cells, 502 dofsStarting value 0.00
-DEAL:cg::Convergence step 5 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.62, step=22, sweep=1. 112 cells, 526 dofsStarting value 0.00
-DEAL:cg::Convergence step 5 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.59, step=21, sweep=1. 133 cells, 621 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.56, step=20, sweep=1. 133 cells, 621 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.53, step=19, sweep=1. 148 cells, 681 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.50, step=18, sweep=1. 148 cells, 681 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.48, step=17, sweep=1. 154 cells, 713 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.45, step=16, sweep=1. 166 cells, 761 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.42, step=15, sweep=1. 190 cells, 867 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.39, step=14, sweep=1. 193 cells, 879 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.36, step=13, sweep=1. 202 cells, 932 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.34, step=12, sweep=1. 238 cells, 1071 dofsStarting value 0.00
-DEAL:cg::Convergence step 11 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.31, step=11, sweep=1. 244 cells, 1103 dofsStarting value 0.00
-DEAL:cg::Convergence step 11 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.28, step=10, sweep=1. 283 cells, 1267 dofsStarting value 0.00
-DEAL:cg::Convergence step 12 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.25, step=9, sweep=1. 286 cells, 1288 dofsStarting value 0.00
-DEAL:cg::Convergence step 12 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.22, step=8, sweep=1. 229 cells, 1057 dofsStarting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.20, step=7, sweep=1. 226 cells, 1029 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.17, step=6, sweep=1. 229 cells, 1051 dofsStarting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.14, step=5, sweep=1. 211 cells, 971 dofsStarting value 0.00
-DEAL:cg::Convergence step 11 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.11, step=4, sweep=1. 190 cells, 884 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.08, step=3, sweep=1. 205 cells, 949 dofsStarting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.06, step=2, sweep=1. 202 cells, 933 dofsStarting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.03, step=1, sweep=1. 157 cells, 741 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0, step=0, sweep=1. 157 cells, 741 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL::.
-DEAL::
-DEAL::  Postprocessing: time=0, step=0, sweep=1. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 199
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50 setlinewidth
-0.00000 0.00000 0.10488 s 96.08167 138.11298 m 119.85572 131.24996 l 133.58167 143.13702 l 109.80762 150.00000 lf
-0 sg 96.08167 138.11298 m 119.85572 131.24996 l 133.58167 143.13702 l 109.80762 150.00000 lx
-0.00000 0.00000 0.10489 s 119.85572 131.24996 m 143.62976 124.38720 l 157.35572 136.27405 l 133.58167 143.13702 lf
-0 sg 119.85572 131.24996 m 143.62976 124.38720 l 157.35572 136.27405 l 133.58167 143.13702 lx
-0.00000 0.00000 0.10489 s 82.35572 126.22595 m 106.12976 119.36315 l 119.85572 131.24996 l 96.08167 138.11298 lf
-0 sg 82.35572 126.22595 m 106.12976 119.36315 l 119.85572 131.24996 l 96.08167 138.11298 lx
-0.00000 0.00000 0.10488 s 143.62976 124.38720 m 167.40381 117.52361 l 181.12976 129.41107 l 157.35572 136.27405 lf
-0 sg 143.62976 124.38720 m 167.40381 117.52361 l 181.12976 129.41107 l 157.35572 136.27405 lx
-0.00000 0.00000 0.10488 s 106.12976 119.36315 m 129.90381 112.49931 l 143.62976 124.38720 l 119.85572 131.24996 lf
-0 sg 106.12976 119.36315 m 129.90381 112.49931 l 143.62976 124.38720 l 119.85572 131.24996 lx
-0.00000 0.00000 0.10491 s 167.40381 117.52361 m 191.17786 110.66302 l 204.90381 122.54809 l 181.12976 129.41107 lf
-0 sg 167.40381 117.52361 m 191.17786 110.66302 l 204.90381 122.54809 l 181.12976 129.41107 lx
-0.00000 0.00000 0.10488 s 68.62976 114.33893 m 92.40381 107.47550 l 106.12976 119.36315 l 82.35572 126.22595 lf
-0 sg 68.62976 114.33893 m 92.40381 107.47550 l 106.12976 119.36315 l 82.35572 126.22595 lx
-0.00000 0.00000 0.10490 s 129.90381 112.49931 m 153.67786 105.63877 l 167.40381 117.52361 l 143.62976 124.38720 lf
-0 sg 129.90381 112.49931 m 153.67786 105.63877 l 167.40381 117.52361 l 143.62976 124.38720 lx
-0.00000 0.00000 0.10492 s 191.17786 110.66302 m 214.95191 103.79782 l 228.67786 115.68512 l 204.90381 122.54809 lf
-0 sg 191.17786 110.66302 m 214.95191 103.79782 l 228.67786 115.68512 l 204.90381 122.54809 lx
-0.00000 0.00000 0.10490 s 92.40381 107.47550 m 116.17786 100.61477 l 129.90381 112.49931 l 106.12976 119.36315 lf
-0 sg 92.40381 107.47550 m 116.17786 100.61477 l 129.90381 112.49931 l 106.12976 119.36315 lx
-0.00000 0.00000 0.10480 s 153.67786 105.63877 m 177.45191 98.76625 l 191.17786 110.66302 l 167.40381 117.52361 lf
-0 sg 153.67786 105.63877 m 177.45191 98.76625 l 191.17786 110.66302 l 167.40381 117.52361 lx
-0.00000 0.00000 0.10488 s 214.95191 103.79782 m 238.72595 96.93519 l 252.45191 108.82214 l 228.67786 115.68512 lf
-0 sg 214.95191 103.79782 m 238.72595 96.93519 l 252.45191 108.82214 l 228.67786 115.68512 lx
-0.00000 0.00000 0.10491 s 54.90381 102.45191 m 78.67786 95.59094 l 92.40381 107.47550 l 68.62976 114.33893 lf
-0 sg 54.90381 102.45191 m 78.67786 95.59094 l 92.40381 107.47550 l 68.62976 114.33893 lx
-0.00000 0.00000 0.10487 s 116.17786 100.61477 m 139.95191 93.74643 l 153.67786 105.63877 l 129.90381 112.49931 lf
-0 sg 116.17786 100.61477 m 139.95191 93.74643 l 153.67786 105.63877 l 129.90381 112.49931 lx
-0.00000 0.00000 0.10479 s 177.45191 98.76625 m 201.22595 91.91216 l 214.95191 103.79782 l 191.17786 110.66302 lf
-0 sg 177.45191 98.76625 m 201.22595 91.91216 l 214.95191 103.79782 l 191.17786 110.66302 lx
-0.00000 0.00000 0.10486 s 146.81488 99.69260 m 158.70191 96.26299 l 165.56488 102.20251 l 153.67786 105.63877 lf
-0 sg 146.81488 99.69260 m 158.70191 96.26299 l 165.56488 102.20251 l 153.67786 105.63877 lx
-0.00000 0.00000 0.10489 s 238.72595 96.93519 m 262.50000 90.07212 l 276.22595 101.95917 l 252.45191 108.82214 lf
-0 sg 238.72595 96.93519 m 262.50000 90.07212 l 276.22595 101.95917 l 252.45191 108.82214 lx
-0.00000 0.00000 0.10480 s 78.67786 95.59094 m 102.45191 88.71792 l 116.17786 100.61477 l 92.40381 107.47550 lf
-0 sg 78.67786 95.59094 m 102.45191 88.71792 l 116.17786 100.61477 l 92.40381 107.47550 lx
-0.00000 0.00000 0.10582 s 158.70191 96.26299 m 170.58893 92.89194 l 177.45191 98.76625 l 165.56488 102.20251 lf
-0 sg 158.70191 96.26299 m 170.58893 92.89194 l 177.45191 98.76625 l 165.56488 102.20251 lx
-0.00000 0.00000 0.10486 s 109.31488 94.66635 m 121.20191 91.23899 l 128.06488 97.18060 l 116.17786 100.61477 lf
-0 sg 109.31488 94.66635 m 121.20191 91.23899 l 128.06488 97.18060 l 116.17786 100.61477 lx
-0.00000 0.00000 0.10483 s 139.95191 93.74643 m 151.83893 90.31908 l 158.70191 96.26299 l 146.81488 99.69260 lf
-0 sg 139.95191 93.74643 m 151.83893 90.31908 l 158.70191 96.26299 l 146.81488 99.69260 lx
-0.00000 0.00000 0.10490 s 201.22595 91.91216 m 225.00000 85.04781 l 238.72595 96.93519 l 214.95191 103.79782 lf
-0 sg 201.22595 91.91216 m 225.00000 85.04781 l 238.72595 96.93519 l 214.95191 103.79782 lx
-0.00000 0.00000 0.10582 s 170.58893 92.89194 m 182.47595 89.39985 l 189.33893 95.33920 l 177.45191 98.76625 lf
-0 sg 170.58893 92.89194 m 182.47595 89.39985 l 189.33893 95.33920 l 177.45191 98.76625 lx
-0.00000 0.00000 0.10491 s 41.17786 90.56488 m 64.95191 83.70142 l 78.67786 95.59094 l 54.90381 102.45191 lf
-0 sg 41.17786 90.56488 m 64.95191 83.70142 l 78.67786 95.59094 l 54.90381 102.45191 lx
-0.00000 0.00000 0.10489 s 262.50000 90.07212 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lf
-0 sg 262.50000 90.07212 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lx
-0.00000 0.00000 0.10483 s 121.20191 91.23899 m 133.08893 87.80711 l 139.95191 93.74643 l 128.06488 97.18060 lf
-0 sg 121.20191 91.23899 m 133.08893 87.80711 l 139.95191 93.74643 l 128.06488 97.18060 lx
-0.00000 0.00000 0.10170 s 151.83893 90.31908 m 163.72595 86.64899 l 170.58893 92.89194 l 158.70191 96.26299 lf
-0 sg 151.83893 90.31908 m 163.72595 86.64899 l 170.58893 92.89194 l 158.70191 96.26299 lx
-0.00000 0.00000 0.10487 s 182.47595 89.39985 m 194.36298 85.96793 l 201.22595 91.91216 l 189.33893 95.33920 lf
-0 sg 182.47595 89.39985 m 194.36298 85.96793 l 201.22595 91.91216 l 189.33893 95.33920 lx
-0.00000 0.00000 0.10582 s 102.45191 88.71792 m 114.33893 85.35584 l 121.20191 91.23899 l 109.31488 94.66635 lf
-0 sg 102.45191 88.71792 m 114.33893 85.35584 l 121.20191 91.23899 l 109.31488 94.66635 lx
-0.00000 0.00000 0.10631 s 133.08893 87.80711 m 144.97595 84.45549 l 151.83893 90.31908 l 139.95191 93.74643 lf
-0 sg 133.08893 87.80711 m 144.97595 84.45549 l 151.83893 90.31908 l 139.95191 93.74643 lx
-0.00000 0.00000 0.10168 s 163.72595 86.64899 m 175.61298 83.45520 l 182.47595 89.39985 l 170.58893 92.89194 lf
-0 sg 163.72595 86.64899 m 175.61298 83.45520 l 182.47595 89.39985 l 170.58893 92.89194 lx
-0.00000 0.00000 0.10824 s 148.40744 87.38728 m 154.35095 85.89299 l 157.78244 88.48404 l 151.83893 90.31908 lf
-0 sg 148.40744 87.38728 m 154.35095 85.89299 l 157.78244 88.48404 l 151.83893 90.31908 lx
-0.00000 0.00000 0.10488 s 225.00000 85.04781 m 248.77405 78.18519 l 262.50000 90.07212 l 238.72595 96.93519 lf
-0 sg 225.00000 85.04781 m 248.77405 78.18519 l 262.50000 90.07212 l 238.72595 96.93519 lx
-0.00000 0.00000 0.10169 s 114.33893 85.35584 m 126.22595 81.62462 l 133.08893 87.80711 l 121.20191 91.23899 lf
-0 sg 114.33893 85.35584 m 126.22595 81.62462 l 133.08893 87.80711 l 121.20191 91.23899 lx
-0.00000 0.00000 0.10480 s 64.95191 83.70142 m 88.72595 76.84089 l 102.45191 88.71792 l 78.67786 95.59094 lf
-0 sg 64.95191 83.70142 m 88.72595 76.84089 l 102.45191 88.71792 l 78.67786 95.59094 lx
-0.00000 0.00000 0.13529 s 154.35095 85.89299 m 160.29446 85.67952 l 163.72595 86.64899 l 157.78244 88.48404 lf
-0 sg 154.35095 85.89299 m 160.29446 85.67952 l 163.72595 86.64899 l 157.78244 88.48404 lx
-0.00000 0.00000 0.10824 s 129.65744 84.71586 m 135.60095 83.38106 l 139.03244 86.13130 l 133.08893 87.80711 lf
-0 sg 129.65744 84.71586 m 135.60095 83.38106 l 139.03244 86.13130 l 133.08893 87.80711 lx
-0.00000 0.00000 0.09366 s 144.97595 84.45549 m 150.91946 81.66021 l 154.35095 85.89299 l 148.40744 87.38728 lf
-0 sg 144.97595 84.45549 m 150.91946 81.66021 l 154.35095 85.89299 l 148.40744 87.38728 lx
-0.00000 0.00000 0.10489 s 175.61298 83.45520 m 187.50000 80.02369 l 194.36298 85.96793 l 182.47595 89.39985 lf
-0 sg 175.61298 83.45520 m 187.50000 80.02369 l 194.36298 85.96793 l 182.47595 89.39985 lx
-0.00000 0.00000 0.13527 s 160.29446 85.67952 m 166.23798 82.46074 l 169.66946 85.05210 l 163.72595 86.64899 lf
-0 sg 160.29446 85.67952 m 166.23798 82.46074 l 169.66946 85.05210 l 163.72595 86.64899 lx
-0.00000 0.00000 0.10582 s 95.58893 82.77940 m 107.47595 79.35201 l 114.33893 85.35584 l 102.45191 88.71792 lf
-0 sg 95.58893 82.77940 m 107.47595 79.35201 l 114.33893 85.35584 l 102.45191 88.71792 lx
-0.00000 0.00000 0.09367 s 135.60095 83.38106 m 141.54446 80.40439 l 144.97595 84.45549 l 139.03244 86.13130 lf
-0 sg 135.60095 83.38106 m 141.54446 80.40439 l 144.97595 84.45549 l 139.03244 86.13130 lx
-0.00000 0.00000 0.00005 s 150.91946 81.66021 m 156.86298 74.16088 l 160.29446 85.67952 l 154.35095 85.89299 lf
-0 sg 150.91946 81.66021 m 156.86298 74.16088 l 160.29446 85.67952 l 154.35095 85.89299 lx
-0.00000 0.00000 0.10827 s 166.23798 82.46074 m 172.18149 80.52805 l 175.61298 83.45520 l 169.66946 85.05210 lf
-0 sg 166.23798 82.46074 m 172.18149 80.52805 l 175.61298 83.45520 l 169.66946 85.05210 lx
-0.00000 0.00000 0.10490 s 187.50000 80.02369 m 211.27405 73.16113 l 225.00000 85.04781 l 201.22595 91.91216 lf
-0 sg 187.50000 80.02369 m 211.27405 73.16113 l 225.00000 85.04781 l 201.22595 91.91216 lx
-0.00000 0.00000 0.13528 s 126.22595 81.62462 m 132.16946 81.91130 l 135.60095 83.38106 l 129.65744 84.71586 lf
-0 sg 126.22595 81.62462 m 132.16946 81.91130 l 135.60095 83.38106 l 129.65744 84.71586 lx
-0.00000 sg 156.86298 74.16088 m 162.80649 78.22658 l 166.23798 82.46074 l 160.29446 85.67952 lf
-0 sg 156.86298 74.16088 m 162.80649 78.22658 l 166.23798 82.46074 l 160.29446 85.67952 lx
-0.00000 0.00000 0.15447 s 141.54446 80.40439 m 147.48798 84.32716 l 150.91946 81.66021 l 144.97595 84.45549 lf
-0 sg 141.54446 80.40439 m 147.48798 84.32716 l 150.91946 81.66021 l 144.97595 84.45549 lx
-0.00000 0.00000 0.00004 s 132.16946 81.91130 m 138.11298 71.64802 l 141.54446 80.40439 l 135.60095 83.38106 lf
-0 sg 132.16946 81.91130 m 138.11298 71.64802 l 141.54446 80.40439 l 135.60095 83.38106 lx
-0.00000 0.00000 0.10488 s 27.45191 78.67786 m 51.22595 71.81502 l 64.95191 83.70142 l 41.17786 90.56488 lf
-0 sg 27.45191 78.67786 m 51.22595 71.81502 l 64.95191 83.70142 l 41.17786 90.56488 lx
-0.00000 0.00000 0.10489 s 248.77405 78.18519 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 90.07212 lf
-0 sg 248.77405 78.18519 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 90.07212 lx
-0.00000 0.00000 0.10170 s 107.47595 79.35201 m 119.36298 75.92031 l 126.22595 81.62462 l 114.33893 85.35584 lf
-0 sg 107.47595 79.35201 m 119.36298 75.92031 l 126.22595 81.62462 l 114.33893 85.35584 lx
-0.00000 0.00000 0.09383 s 162.80649 78.22658 m 168.75000 77.60089 l 172.18149 80.52805 l 166.23798 82.46074 lf
-0 sg 162.80649 78.22658 m 168.75000 77.60089 l 172.18149 80.52805 l 166.23798 82.46074 lx
-0.00000 0.00000 0.13529 s 122.79446 78.77246 m 128.73798 77.43770 l 132.16946 81.91130 l 126.22595 81.62462 lf
-0 sg 122.79446 78.77246 m 128.73798 77.43770 l 132.16946 81.91130 l 126.22595 81.62462 lx
-0.00000 0.00000 0.10606 s 168.75000 77.60089 m 180.63702 74.05690 l 187.50000 80.02369 l 175.61298 83.45520 lf
-0 sg 168.75000 77.60089 m 180.63702 74.05690 l 187.50000 80.02369 l 175.61298 83.45520 lx
-0.00000 0.00000 0.00005 s 128.73798 77.43770 m 134.68149 74.46134 l 138.11298 71.64802 l 132.16946 81.91130 lf
-0 sg 128.73798 77.43770 m 134.68149 74.46134 l 138.11298 71.64802 l 132.16946 81.91130 lx
-0.00000 0.00000 0.10486 s 88.72595 76.84089 m 100.61298 73.40624 l 107.47595 79.35201 l 95.58893 82.77940 lf
-0 sg 88.72595 76.84089 m 100.61298 73.40624 l 107.47595 79.35201 l 95.58893 82.77940 lx
-0.00000 0.00000 0.82442 s 147.48798 84.32716 m 153.43149 120.61681 l 156.86298 74.16088 l 150.91946 81.66021 lf
-0 sg 147.48798 84.32716 m 153.43149 120.61681 l 156.86298 74.16088 l 150.91946 81.66021 lx
-0.00000 0.00000 0.15460 s 159.37500 80.89544 m 165.31851 73.54237 l 168.75000 77.60089 l 162.80649 78.22658 lf
-0 sg 159.37500 80.89544 m 165.31851 73.54237 l 168.75000 77.60089 l 162.80649 78.22658 lx
-0.00000 0.00000 0.10824 s 119.36298 75.92031 m 125.30649 74.24350 l 128.73798 77.43770 l 122.79446 78.77246 lf
-0 sg 119.36298 75.92031 m 125.30649 74.24350 l 128.73798 77.43770 l 122.79446 78.77246 lx
-0.00000 0.00000 0.82441 s 138.11298 71.64802 m 144.05649 119.36101 l 147.48798 84.32716 l 141.54446 80.40439 lf
-0 sg 138.11298 71.64802 m 144.05649 119.36101 l 147.48798 84.32716 l 141.54446 80.40439 lx
-0.00000 0.00000 0.10488 s 211.27405 73.16113 m 235.04809 66.29808 l 248.77405 78.18519 l 225.00000 85.04781 lf
-0 sg 211.27405 73.16113 m 235.04809 66.29808 l 248.77405 78.18519 l 225.00000 85.04781 lx
-0.00000 0.00000 0.10456 s 180.63702 74.05690 m 192.52405 70.65537 l 199.38702 76.59241 l 187.50000 80.02369 lf
-0 sg 180.63702 74.05690 m 192.52405 70.65537 l 199.38702 76.59241 l 187.50000 80.02369 lx
-0.00000 0.00000 0.82437 s 153.43149 120.61681 m 159.37500 80.89544 l 162.80649 78.22658 l 156.86298 74.16088 lf
-0 sg 153.43149 120.61681 m 159.37500 80.89544 l 162.80649 78.22658 l 156.86298 74.16088 lx
-0.00000 0.00000 0.09350 s 165.31851 73.54237 m 171.26202 73.07571 l 174.69351 75.82890 l 168.75000 77.60089 lf
-0 sg 165.31851 73.54237 m 171.26202 73.07571 l 174.69351 75.82890 l 168.75000 77.60089 lx
-0.00000 0.00000 0.09363 s 125.30649 74.24350 m 131.25000 72.56669 l 134.68149 74.46134 l 128.73798 77.43770 lf
-0 sg 125.30649 74.24350 m 131.25000 72.56669 l 134.68149 74.46134 l 128.73798 77.43770 lx
-0.00000 0.00000 0.10482 s 100.61298 73.40624 m 112.50000 69.97159 l 119.36298 75.92031 l 107.47595 79.35201 lf
-0 sg 100.61298 73.40624 m 112.50000 69.97159 l 119.36298 75.92031 l 107.47595 79.35201 lx
-0.00000 0.00000 0.10490 s 51.22595 71.81502 m 75.00000 64.95134 l 88.72595 76.84089 l 64.95191 83.70142 lf
-0 sg 51.22595 71.81502 m 75.00000 64.95134 l 88.72595 76.84089 l 64.95191 83.70142 lx
-0.00000 0.00000 0.10848 s 171.26202 73.07571 m 177.20554 71.04573 l 180.63702 74.05690 l 174.69351 75.82890 lf
-0 sg 171.26202 73.07571 m 177.20554 71.04573 l 180.63702 74.05690 l 174.69351 75.82890 lx
-0.00000 0.00000 0.15444 s 131.25000 72.56669 m 137.19351 69.77296 l 140.62500 78.38370 l 134.68149 74.46134 lf
-0 sg 131.25000 72.56669 m 137.19351 69.77296 l 140.62500 78.38370 l 134.68149 74.46134 lx
-0.00000 0.00000 0.82442 s 134.68149 74.46134 m 140.62500 78.38370 l 144.05649 119.36101 l 138.11298 71.64802 lf
-0 sg 134.68149 74.46134 m 140.62500 78.38370 l 144.05649 119.36101 l 138.11298 71.64802 lx
-0.00000 0.00000 0.00077 s 161.88702 64.76892 m 167.83054 71.68308 l 171.26202 73.07571 l 165.31851 73.54237 lf
-0 sg 161.88702 64.76892 m 167.83054 71.68308 l 171.26202 73.07571 l 165.31851 73.54237 lx
-0.00000 0.00000 0.10497 s 192.52405 70.65537 m 204.41107 67.21620 l 211.27405 73.16113 l 199.38702 76.59241 lf
-0 sg 192.52405 70.65537 m 204.41107 67.21620 l 211.27405 73.16113 l 199.38702 76.59241 lx
-0.00000 0.00000 0.10354 s 177.20554 71.04573 m 183.14905 69.41425 l 186.58054 72.35614 l 180.63702 74.05690 lf
-0 sg 177.20554 71.04573 m 183.14905 69.41425 l 186.58054 72.35614 l 180.63702 74.05690 lx
-0.00000 0.00000 0.10636 s 112.50000 69.97159 m 124.38702 66.55019 l 131.25000 72.56669 l 119.36298 75.92031 lf
-0 sg 112.50000 69.97159 m 124.38702 66.55019 l 131.25000 72.56669 l 119.36298 75.92031 lx
-0.00000 0.00000 0.82420 s 155.94351 115.93356 m 161.88702 64.76892 l 165.31851 73.54237 l 159.37500 80.89544 lf
-0 sg 155.94351 115.93356 m 161.88702 64.76892 l 165.31851 73.54237 l 159.37500 80.89544 lx
-0.00000 0.00000 0.13268 s 167.83054 71.68308 m 173.77405 67.64444 l 177.20554 71.04573 l 171.26202 73.07571 lf
-0 sg 167.83054 71.68308 m 173.77405 67.64444 l 177.20554 71.04573 l 171.26202 73.07571 lx
-0.00000 0.00000 0.09369 s 127.81851 69.55844 m 133.76202 68.06430 l 137.19351 69.77296 l 131.25000 72.56669 lf
-0 sg 127.81851 69.55844 m 133.76202 68.06430 l 137.19351 69.77296 l 131.25000 72.56669 lx
-0.00000 0.00000 0.10510 s 183.14905 69.41425 m 189.09256 67.67041 l 192.52405 70.65537 l 186.58054 72.35614 lf
-0 sg 183.14905 69.41425 m 189.09256 67.67041 l 192.52405 70.65537 l 186.58054 72.35614 lx
-0.00000 0.00000 0.00073 s 158.45554 67.59727 m 164.39905 67.13156 l 167.83054 71.68308 l 161.88702 64.76892 lf
-0 sg 158.45554 67.59727 m 164.39905 67.13156 l 167.83054 71.68308 l 161.88702 64.76892 lx
-0.00000 0.00000 0.10489 s 13.72595 66.79083 m 37.50000 59.92782 l 51.22595 71.81502 l 27.45191 78.67786 lf
-0 sg 13.72595 66.79083 m 37.50000 59.92782 l 51.22595 71.81502 l 27.45191 78.67786 lx
-0.00000 0.00000 0.00016 s 133.76202 68.06430 m 139.70554 67.85476 l 143.13702 62.27257 l 137.19351 69.77296 lf
-0 sg 133.76202 68.06430 m 139.70554 67.85476 l 143.13702 62.27257 l 137.19351 69.77296 lx
-0.00000 0.00000 0.10489 s 235.04809 66.29808 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18519 lf
-0 sg 235.04809 66.29808 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18519 lx
-0.00000 0.00000 0.09751 s 173.77405 67.64444 m 179.71756 66.55101 l 183.14905 69.41425 l 177.20554 71.04573 lf
-0 sg 173.77405 67.64444 m 179.71756 66.55101 l 183.14905 69.41425 l 177.20554 71.04573 lx
-0.00000 0.00000 0.10487 s 204.41107 67.21620 m 216.29809 63.78642 l 223.16107 69.72961 l 211.27405 73.16113 lf
-0 sg 204.41107 67.21620 m 216.29809 63.78642 l 223.16107 69.72961 l 211.27405 73.16113 lx
-0.00000 0.00000 0.10494 s 189.09256 67.67041 m 195.03607 65.96245 l 198.46756 68.93578 l 192.52405 70.65537 lf
-0 sg 189.09256 67.67041 m 195.03607 65.96245 l 198.46756 68.93578 l 192.52405 70.65537 lx
-0.00000 0.00000 0.82439 s 137.19351 69.77296 m 143.13702 62.27257 l 146.56851 114.67362 l 140.62500 78.38370 lf
-0 sg 137.19351 69.77296 m 143.13702 62.27257 l 146.56851 114.67362 l 140.62500 78.38370 lx
-0.00000 0.00000 0.15466 s 149.08054 66.33756 m 155.02405 65.72023 l 158.45554 67.59727 l 152.51202 74.95243 lf
-0 sg 149.08054 66.33756 m 155.02405 65.72023 l 158.45554 67.59727 l 152.51202 74.95243 lx
-0.00000 0.00000 0.82418 s 152.51202 74.95243 m 158.45554 67.59727 l 161.88702 64.76892 l 155.94351 115.93356 lf
-0 sg 152.51202 74.95243 m 158.45554 67.59727 l 161.88702 64.76892 l 155.94351 115.93356 lx
-0.00000 0.00000 0.10486 s 75.00000 64.95134 m 98.77405 58.09025 l 112.50000 69.97159 l 88.72595 76.84089 lf
-0 sg 75.00000 64.95134 m 98.77405 58.09025 l 112.50000 69.97159 l 88.72595 76.84089 lx
-0.00000 0.00000 0.13267 s 164.39905 67.13156 m 170.34256 65.10252 l 173.77405 67.64444 l 167.83054 71.68308 lf
-0 sg 164.39905 67.13156 m 170.34256 65.10252 l 173.77405 67.64444 l 167.83054 71.68308 lx
-0.00000 0.00000 0.00010 s 139.70554 67.85476 m 145.64905 64.63297 l 149.08054 66.33756 l 143.13702 62.27257 lf
-0 sg 139.70554 67.85476 m 145.64905 64.63297 l 149.08054 66.33756 l 143.13702 62.27257 lx
-0.00000 0.00000 0.10823 s 124.38702 66.55019 m 130.33054 64.70074 l 133.76202 68.06430 l 127.81851 69.55844 lf
-0 sg 124.38702 66.55019 m 130.33054 64.70074 l 133.76202 68.06430 l 127.81851 69.55844 lx
-0.00000 0.00000 0.10689 s 179.71756 66.55101 m 185.66107 64.67144 l 189.09256 67.67041 l 183.14905 69.41425 lf
-0 sg 179.71756 66.55101 m 185.66107 64.67144 l 189.09256 67.67041 l 183.14905 69.41425 lx
-0.00000 0.00000 0.10490 s 195.03607 65.96245 m 200.97958 64.24482 l 204.41107 67.21620 l 198.46756 68.93578 lf
-0 sg 195.03607 65.96245 m 200.97958 64.24482 l 204.41107 67.21620 l 198.46756 68.93578 lx
-0.00000 0.00000 0.82433 s 143.13702 62.27257 m 149.08054 66.33756 l 152.51202 74.95243 l 146.56851 114.67362 lf
-0 sg 143.13702 62.27257 m 149.08054 66.33756 l 152.51202 74.95243 l 146.56851 114.67362 lx
-0.00000 0.00000 0.09362 s 155.02405 65.72023 m 160.96756 63.94445 l 164.39905 67.13156 l 158.45554 67.59727 lf
-0 sg 155.02405 65.72023 m 160.96756 63.94445 l 164.39905 67.13156 l 158.45554 67.59727 lx
-0.00000 0.00000 0.09752 s 170.34256 65.10252 m 176.28607 63.47094 l 179.71756 66.55101 l 173.77405 67.64444 lf
-0 sg 170.34256 65.10252 m 176.28607 63.47094 l 179.71756 66.55101 l 173.77405 67.64444 lx
-0.00000 0.00000 0.10432 s 185.66107 64.67144 m 191.60458 62.99899 l 195.03607 65.96245 l 189.09256 67.67041 lf
-0 sg 185.66107 64.67144 m 191.60458 62.99899 l 195.03607 65.96245 l 189.09256 67.67041 lx
-0.00000 0.00000 0.13483 s 130.33054 64.70074 m 136.27405 62.85129 l 139.70554 67.85476 l 133.76202 68.06430 lf
-0 sg 130.33054 64.70074 m 136.27405 62.85129 l 139.70554 67.85476 l 133.76202 68.06430 lx
-0.00000 0.00000 0.10495 s 105.63702 64.03092 m 117.52405 60.60467 l 124.38702 66.55019 l 112.50000 69.97159 lf
-0 sg 105.63702 64.03092 m 117.52405 60.60467 l 124.38702 66.55019 l 112.50000 69.97159 lx
-0.00000 0.00000 0.09385 s 145.64905 64.63297 m 151.59256 62.69156 l 155.02405 65.72023 l 149.08054 66.33756 lf
-0 sg 145.64905 64.63297 m 151.59256 62.69156 l 155.02405 65.72023 l 149.08054 66.33756 lx
-0.00000 0.00000 0.10489 s 216.29809 63.78642 m 228.18512 60.35453 l 235.04809 66.29808 l 223.16107 69.72961 lf
-0 sg 216.29809 63.78642 m 228.18512 60.35453 l 235.04809 66.29808 l 223.16107 69.72961 lx
-0.00000 0.00000 0.10850 s 160.96756 63.94445 m 166.91107 62.16868 l 170.34256 65.10252 l 164.39905 67.13156 lf
-0 sg 160.96756 63.94445 m 166.91107 62.16868 l 170.34256 65.10252 l 164.39905 67.13156 lx
-0.00000 0.00000 0.10689 s 176.28607 63.47094 m 182.22958 61.72702 l 185.66107 64.67144 l 179.71756 66.55101 lf
-0 sg 176.28607 63.47094 m 182.22958 61.72702 l 185.66107 64.67144 l 179.71756 66.55101 lx
-0.00000 0.00000 0.10504 s 191.60458 62.99899 m 197.54809 61.27343 l 200.97958 64.24482 l 195.03607 65.96245 lf
-0 sg 191.60458 62.99899 m 197.54809 61.27343 l 200.97958 64.24482 l 195.03607 65.96245 lx
-0.00000 0.00000 0.13500 s 136.27405 62.85129 m 142.21756 61.27839 l 145.64905 64.63297 l 139.70554 67.85476 lf
-0 sg 136.27405 62.85129 m 142.21756 61.27839 l 145.64905 64.63297 l 139.70554 67.85476 lx
-0.00000 0.00000 0.10351 s 166.91107 62.16868 m 172.85458 60.46830 l 176.28607 63.47094 l 170.34256 65.10252 lf
-0 sg 166.91107 62.16868 m 172.85458 60.46830 l 176.28607 63.47094 l 170.34256 65.10252 lx
-0.00000 0.00000 0.10486 s 197.54809 61.27343 m 209.43512 57.84270 l 216.29809 63.78642 l 204.41107 67.21620 lf
-0 sg 197.54809 61.27343 m 209.43512 57.84270 l 216.29809 63.78642 l 204.41107 67.21620 lx
-0.00000 0.00000 0.10488 s 37.50000 59.92782 m 61.27405 53.06502 l 75.00000 64.95134 l 51.22595 71.81502 lf
-0 sg 37.50000 59.92782 m 61.27405 53.06502 l 75.00000 64.95134 l 51.22595 71.81502 lx
-0.00000 0.00000 0.10432 s 182.22958 61.72702 m 188.17309 60.01891 l 191.60458 62.99899 l 185.66107 64.67144 lf
-0 sg 182.22958 61.72702 m 188.17309 60.01891 l 191.60458 62.99899 l 185.66107 64.67144 lx
-0.00000 0.00000 0.10789 s 142.21756 61.27839 m 148.16107 59.66289 l 151.59256 62.69156 l 145.64905 64.63297 lf
-0 sg 142.21756 61.27839 m 148.16107 59.66289 l 151.59256 62.69156 l 145.64905 64.63297 lx
-0.00000 0.00000 0.10122 s 117.52405 60.60467 m 129.41107 57.22043 l 136.27405 62.85129 l 124.38702 66.55019 lf
-0 sg 117.52405 60.60467 m 129.41107 57.22043 l 136.27405 62.85129 l 124.38702 66.55019 lx
-0.00000 0.00000 0.10509 s 172.85458 60.46830 m 178.79809 58.76792 l 182.22958 61.72702 l 176.28607 63.47094 lf
-0 sg 172.85458 60.46830 m 178.79809 58.76792 l 182.22958 61.72702 l 176.28607 63.47094 lx
-0.00000 0.00000 0.10589 s 148.16107 59.66289 m 160.04809 56.25308 l 166.91107 62.16868 l 155.02405 65.72023 lf
-0 sg 148.16107 59.66289 m 160.04809 56.25308 l 166.91107 62.16868 l 155.02405 65.72023 lx
-0.00000 0.00000 0.09730 s 132.84256 60.03586 m 138.78607 58.49503 l 142.21756 61.27839 l 136.27405 62.85129 lf
-0 sg 132.84256 60.03586 m 138.78607 58.49503 l 142.21756 61.27839 l 136.27405 62.85129 lx
-0.00000 0.00000 0.10504 s 188.17309 60.01891 m 194.11661 58.30143 l 197.54809 61.27343 l 191.60458 62.99899 lf
-0 sg 188.17309 60.01891 m 194.11661 58.30143 l 197.54809 61.27343 l 191.60458 62.99899 lx
-1.00000 0.99992 0.99992 s 144.05649 119.36101 m 150.00000 198.91174 l 153.43149 120.61681 l 147.48798 84.32716 lf
-0 sg 144.05649 119.36101 m 150.00000 198.91174 l 153.43149 120.61681 l 147.48798 84.32716 lx
-0.00000 0.00000 0.10493 s 178.79809 58.76792 m 184.74161 57.04867 l 188.17309 60.01891 l 182.22958 61.72702 lf
-0 sg 178.79809 58.76792 m 184.74161 57.04867 l 188.17309 60.01891 l 182.22958 61.72702 lx
-0.00000 0.00000 0.10491 s 98.77405 58.09025 m 110.66107 54.65510 l 117.52405 60.60467 l 105.63702 64.03092 lf
-0 sg 98.77405 58.09025 m 110.66107 54.65510 l 117.52405 60.60467 l 105.63702 64.03092 lx
-0.00000 0.00000 0.10489 s 209.43512 57.84270 m 221.32214 54.41098 l 228.18512 60.35453 l 216.29809 63.78642 lf
-0 sg 209.43512 57.84270 m 221.32214 54.41098 l 228.18512 60.35453 l 216.29809 63.78642 lx
-0.00000 0.00000 0.10339 s 138.78607 58.49503 m 144.72958 56.69528 l 148.16107 59.66289 l 142.21756 61.27839 lf
-0 sg 138.78607 58.49503 m 144.72958 56.69528 l 148.16107 59.66289 l 142.21756 61.27839 lx
-1.00000 0.99999 0.99999 s 150.00000 198.91174 m 155.94351 115.93356 l 159.37500 80.89544 l 153.43149 120.61681 lf
-0 sg 150.00000 198.91174 m 155.94351 115.93356 l 159.37500 80.89544 l 153.43149 120.61681 lx
-0.00000 0.00000 0.10553 s 129.41107 57.22043 m 135.35458 55.47405 l 138.78607 58.49503 l 132.84256 60.03586 lf
-0 sg 129.41107 57.22043 m 135.35458 55.47405 l 138.78607 58.49503 l 132.84256 60.03586 lx
-0.00000 0.00000 0.10491 s 184.74161 57.04867 m 190.68512 55.32942 l 194.11661 58.30143 l 188.17309 60.01891 lf
-0 sg 184.74161 57.04867 m 190.68512 55.32942 l 194.11661 58.30143 l 188.17309 60.01891 lx
-0.00000 0.00000 0.10462 s 160.04809 56.25308 m 171.93512 52.81964 l 178.79809 58.76792 l 166.91107 62.16868 lf
-0 sg 160.04809 56.25308 m 171.93512 52.81964 l 178.79809 58.76792 l 166.91107 62.16868 lx
-0.00000 0.00000 0.10489 s 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 59.92782 l 13.72595 66.79083 lf
-0 sg 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 59.92782 l 13.72595 66.79083 lx
-0.00000 0.00000 0.10488 s 221.32214 54.41098 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29808 lf
-0 sg 221.32214 54.41098 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29808 lx
-0.00000 0.00000 0.10486 s 190.68512 55.32942 m 202.57214 51.89945 l 209.43512 57.84270 l 197.54809 61.27343 lf
-0 sg 190.68512 55.32942 m 202.57214 51.89945 l 209.43512 57.84270 l 197.54809 61.27343 lx
-1.00000 0.99992 0.99992 s 140.62500 78.38370 m 146.56851 114.67362 l 150.00000 198.91174 l 144.05649 119.36101 lf
-0 sg 140.62500 78.38370 m 146.56851 114.67362 l 150.00000 198.91174 l 144.05649 119.36101 lx
-0.00000 0.00000 0.10607 s 135.35458 55.47405 m 141.29809 53.72768 l 144.72958 56.69528 l 138.78607 58.49503 lf
-0 sg 135.35458 55.47405 m 141.29809 53.72768 l 144.72958 56.69528 l 138.78607 58.49503 lx
-0.00000 0.00000 0.10573 s 110.66107 54.65510 m 122.54809 51.21995 l 129.41107 57.22043 l 117.52405 60.60467 lf
-0 sg 110.66107 54.65510 m 122.54809 51.21995 l 129.41107 57.22043 l 117.52405 60.60467 lx
-0.00000 0.00000 0.10490 s 61.27405 53.06502 m 85.04809 46.20157 l 98.77405 58.09025 l 75.00000 64.95134 lf
-0 sg 61.27405 53.06502 m 85.04809 46.20157 l 98.77405 58.09025 l 75.00000 64.95134 lx
-0.00000 0.00000 0.10446 s 141.29809 53.72768 m 153.18512 50.30868 l 160.04809 56.25308 l 148.16107 59.66289 lf
-0 sg 141.29809 53.72768 m 153.18512 50.30868 l 160.04809 56.25308 l 148.16107 59.66289 lx
-1.00000 sg 146.56851 114.67362 m 152.51202 74.95243 l 155.94351 115.93356 l 150.00000 198.91174 lf
-0 sg 146.56851 114.67362 m 152.51202 74.95243 l 155.94351 115.93356 l 150.00000 198.91174 lx
-0.00000 0.00000 0.10498 s 171.93512 52.81964 m 183.82214 49.38619 l 190.68512 55.32942 l 178.79809 58.76792 lf
-0 sg 171.93512 52.81964 m 183.82214 49.38619 l 190.68512 55.32942 l 178.79809 58.76792 lx
-0.00000 0.00000 0.10489 s 202.57214 51.89945 m 214.45917 48.46759 l 221.32214 54.41098 l 209.43512 57.84270 lf
-0 sg 202.57214 51.89945 m 214.45917 48.46759 l 221.32214 54.41098 l 209.43512 57.84270 lx
-0.00000 0.00000 0.10547 s 122.54809 51.21995 m 134.43512 47.79211 l 141.29809 53.72768 l 129.41107 57.22043 lf
-0 sg 122.54809 51.21995 m 134.43512 47.79211 l 141.29809 53.72768 l 129.41107 57.22043 lx
-0.00000 0.00000 0.10485 s 183.82214 49.38619 m 195.70917 45.95520 l 202.57214 51.89945 l 190.68512 55.32942 lf
-0 sg 183.82214 49.38619 m 195.70917 45.95520 l 202.57214 51.89945 l 190.68512 55.32942 lx
-0.00000 0.00000 0.10489 s 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 53.06502 l 37.50000 59.92782 lf
-0 sg 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 53.06502 l 37.50000 59.92782 lx
-0.00000 0.00000 0.10472 s 134.43512 47.79211 m 146.32214 44.36428 l 153.18512 50.30868 l 141.29809 53.72768 lf
-0 sg 134.43512 47.79211 m 146.32214 44.36428 l 153.18512 50.30868 l 141.29809 53.72768 lx
-0.00000 0.00000 0.10482 s 85.04809 46.20157 m 108.82214 39.34043 l 122.54809 51.21995 l 98.77405 58.09025 lf
-0 sg 85.04809 46.20157 m 108.82214 39.34043 l 122.54809 51.21995 l 98.77405 58.09025 lx
-0.00000 0.00000 0.10489 s 195.70917 45.95520 m 207.59619 42.52421 l 214.45917 48.46759 l 202.57214 51.89945 lf
-0 sg 195.70917 45.95520 m 207.59619 42.52421 l 214.45917 48.46759 l 202.57214 51.89945 lx
-0.00000 0.00000 0.10494 s 146.32214 44.36428 m 170.09619 37.49966 l 183.82214 49.38619 l 160.04809 56.25308 lf
-0 sg 146.32214 44.36428 m 170.09619 37.49966 l 183.82214 49.38619 l 160.04809 56.25308 lx
-0.00000 0.00000 0.10489 s 207.59619 42.52421 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41098 lf
-0 sg 207.59619 42.52421 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41098 lx
-0.00000 0.00000 0.10488 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20157 l 61.27405 53.06502 lf
-0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20157 l 61.27405 53.06502 lx
-0.00000 0.00000 0.10482 s 108.82214 39.34043 m 132.59619 32.47563 l 146.32214 44.36428 l 122.54809 51.21995 lf
-0 sg 108.82214 39.34043 m 132.59619 32.47563 l 146.32214 44.36428 l 122.54809 51.21995 lx
-0.00000 0.00000 0.10487 s 170.09619 37.49966 m 193.87024 30.63712 l 207.59619 42.52421 l 183.82214 49.38619 lf
-0 sg 170.09619 37.49966 m 193.87024 30.63712 l 207.59619 42.52421 l 183.82214 49.38619 lx
-0.00000 0.00000 0.10491 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.34043 l 85.04809 46.20157 lf
-0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.34043 l 85.04809 46.20157 lx
-0.00000 0.00000 0.10490 s 132.59619 32.47563 m 156.37024 25.61306 l 170.09619 37.49966 l 146.32214 44.36428 lf
-0 sg 132.59619 32.47563 m 156.37024 25.61306 l 170.09619 37.49966 l 146.32214 44.36428 lx
-0.00000 0.00000 0.10489 s 193.87024 30.63712 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52421 lf
-0 sg 193.87024 30.63712 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52421 lx
-0.00000 0.00000 0.10491 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47563 l 108.82214 39.34043 lf
-0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47563 l 108.82214 39.34043 lx
-0.00000 0.00000 0.10488 s 156.37024 25.61306 m 180.14428 18.74998 l 193.87024 30.63712 l 170.09619 37.49966 lf
-0 sg 156.37024 25.61306 m 180.14428 18.74998 l 193.87024 30.63712 l 170.09619 37.49966 lx
-0.00000 0.00000 0.10488 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61306 l 132.59619 32.47563 lf
-0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61306 l 132.59619 32.47563 lx
-0.00000 0.00000 0.10489 s 180.14428 18.74998 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.63712 lf
-0 sg 180.14428 18.74998 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.63712 lx
-0.00000 0.00000 0.10489 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 18.74998 l 156.37024 25.61306 lf
-0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 18.74998 l 156.37024 25.61306 lx
-0.00000 0.00000 0.10489 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 18.74998 lf
-0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 18.74998 lx
-showpage
-.
-DEAL::  Postprocessing: time=0.03, step=1, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.06, step=2, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.08, step=3, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.11, step=4, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.14, step=5, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.17, step=6, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.20, step=7, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.22, step=8, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.25, step=9, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.28, step=10, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.31, step=11, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.34, step=12, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.36, step=13, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.39, step=14, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.42, step=15, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.45, step=16, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.48, step=17, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.50, step=18, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.53, step=19, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.56, step=20, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.59, step=21, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.62, step=22, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.64, step=23, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.67, step=24, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.70, step=25, sweep=1. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 150
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50 setlinewidth
-0.03070 0.96930 0.00000 s 96.08167 138.11298 m 119.85572 133.93237 l 133.58167 143.13702 l 109.80762 150.00000 lf
-0 sg 96.08167 138.11298 m 119.85572 133.93237 l 133.58167 143.13702 l 109.80762 150.00000 lx
-0.00000 0.93855 0.06145 s 119.85572 133.93237 m 143.62976 122.77036 l 157.35572 136.27405 l 133.58167 143.13702 lf
-0 sg 119.85572 133.93237 m 143.62976 122.77036 l 157.35572 136.27405 l 133.58167 143.13702 lx
-0.12047 0.87953 0.00000 s 82.35572 126.22595 m 106.12976 120.93776 l 119.85572 133.93237 l 96.08167 138.11298 lf
-0 sg 82.35572 126.22595 m 106.12976 120.93776 l 119.85572 133.93237 l 96.08167 138.11298 lx
-0.00000 0.65262 0.34738 s 143.62976 122.77036 m 167.40381 115.19041 l 181.12976 129.41107 l 157.35572 136.27405 lf
-0 sg 143.62976 122.77036 m 167.40381 115.19041 l 181.12976 129.41107 l 157.35572 136.27405 lx
-0.08421 0.91579 0.00000 s 106.12976 120.93776 m 129.90381 113.48070 l 143.62976 122.77036 l 119.85572 133.93237 lf
-0 sg 106.12976 120.93776 m 129.90381 113.48070 l 143.62976 122.77036 l 119.85572 133.93237 lx
-0.00000 0.75987 0.24013 s 167.40381 115.19041 m 191.17786 110.92595 l 204.90381 122.54809 l 181.12976 129.41107 lf
-0 sg 167.40381 115.19041 m 191.17786 110.92595 l 204.90381 122.54809 l 181.12976 129.41107 lx
-0.00000 0.82764 0.17236 s 68.62976 114.33893 m 92.40381 105.02134 l 106.12976 120.93776 l 82.35572 126.22595 lf
-0 sg 68.62976 114.33893 m 92.40381 105.02134 l 106.12976 120.93776 l 82.35572 126.22595 lx
-0.00000 0.68535 0.31465 s 129.90381 113.48070 m 153.67786 105.23056 l 167.40381 115.19041 l 143.62976 122.77036 lf
-0 sg 129.90381 113.48070 m 153.67786 105.23056 l 167.40381 115.19041 l 143.62976 122.77036 lx
-0.00000 0.83150 0.16850 s 191.17786 110.92595 m 214.95191 102.72105 l 228.67786 115.68512 l 204.90381 122.54809 lf
-0 sg 191.17786 110.92595 m 214.95191 102.72105 l 228.67786 115.68512 l 204.90381 122.54809 lx
-0.00000 0.68064 0.31936 s 92.40381 105.02134 m 116.17786 97.05333 l 129.90381 113.48070 l 106.12976 120.93776 lf
-0 sg 92.40381 105.02134 m 116.17786 97.05333 l 129.90381 113.48070 l 106.12976 120.93776 lx
-0.00000 0.85817 0.14183 s 153.67786 105.23056 m 177.45191 100.90503 l 191.17786 110.92595 l 167.40381 115.19041 lf
-0 sg 153.67786 105.23056 m 177.45191 100.90503 l 191.17786 110.92595 l 167.40381 115.19041 lx
-0.00000 0.83219 0.16781 s 214.95191 102.72105 m 238.72595 97.21203 l 252.45191 108.82214 l 228.67786 115.68512 lf
-0 sg 214.95191 102.72105 m 238.72595 97.21203 l 252.45191 108.82214 l 228.67786 115.68512 lx
-0.00000 0.81282 0.18718 s 54.90381 102.45191 m 78.67786 96.90365 l 92.40381 105.02134 l 68.62976 114.33893 lf
-0 sg 54.90381 102.45191 m 78.67786 96.90365 l 92.40381 105.02134 l 68.62976 114.33893 lx
-0.00000 0.48420 0.51580 s 116.17786 97.05333 m 139.95191 89.83044 l 153.67786 105.23056 l 129.90381 113.48070 lf
-0 sg 116.17786 97.05333 m 139.95191 89.83044 l 153.67786 105.23056 l 129.90381 113.48070 lx
-0.00000 0.92601 0.07399 s 177.45191 100.90503 m 201.22595 91.43805 l 214.95191 102.72105 l 191.17786 110.92595 lf
-0 sg 177.45191 100.90503 m 201.22595 91.43805 l 214.95191 102.72105 l 191.17786 110.92595 lx
-0.06489 0.93511 0.00000 s 238.72595 97.21203 m 262.50000 93.07743 l 276.22595 101.95917 l 252.45191 108.82214 lf
-0 sg 238.72595 97.21203 m 262.50000 93.07743 l 276.22595 101.95917 l 252.45191 108.82214 lx
-0.00000 0.34418 0.65582 s 78.67786 96.90365 m 102.45191 84.06417 l 116.17786 97.05333 l 92.40381 105.02134 lf
-0 sg 78.67786 96.90365 m 102.45191 84.06417 l 116.17786 97.05333 l 92.40381 105.02134 lx
-0.00000 0.74923 0.25077 s 139.95191 89.83044 m 163.72595 86.82660 l 177.45191 100.90503 l 153.67786 105.23056 lf
-0 sg 139.95191 89.83044 m 163.72595 86.82660 l 177.45191 100.90503 l 153.67786 105.23056 lx
-0.00000 0.86213 0.13787 s 201.22595 91.43805 m 225.00000 86.04636 l 238.72595 97.21203 l 214.95191 102.72105 lf
-0 sg 201.22595 91.43805 m 225.00000 86.04636 l 238.72595 97.21203 l 214.95191 102.72105 lx
-0.04911 0.95089 0.00000 s 262.50000 93.07743 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lf
-0 sg 262.50000 93.07743 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lx
-0.40306 0.59694 0.00000 s 41.17786 90.56488 m 64.95191 91.60196 l 78.67786 96.90365 l 54.90381 102.45191 lf
-0 sg 41.17786 90.56488 m 64.95191 91.60196 l 78.67786 96.90365 l 54.90381 102.45191 lx
-0.00000 0.42421 0.57579 s 102.45191 84.06417 m 126.22595 86.04657 l 139.95191 89.83044 l 116.17786 97.05333 lf
-0 sg 102.45191 84.06417 m 126.22595 86.04657 l 139.95191 89.83044 l 116.17786 97.05333 lx
-0.00000 0.79085 0.20915 s 163.72595 86.82660 m 187.50000 76.90119 l 201.22595 91.43805 l 177.45191 100.90503 lf
-0 sg 163.72595 86.82660 m 187.50000 76.90119 l 201.22595 91.43805 l 177.45191 100.90503 lx
-0.19638 0.80362 0.00000 s 225.00000 86.04636 m 248.77405 79.49350 l 262.50000 93.07743 l 238.72595 97.21203 lf
-0 sg 225.00000 86.04636 m 248.77405 79.49350 l 262.50000 93.07743 l 238.72595 97.21203 lx
-0.00000 0.62064 0.37936 s 64.95191 91.60196 m 88.72595 67.77465 l 102.45191 84.06417 l 78.67786 96.90365 lf
-0 sg 64.95191 91.60196 m 88.72595 67.77465 l 102.45191 84.06417 l 78.67786 96.90365 lx
-0.00000 0.70203 0.29797 s 126.22595 86.04657 m 150.00000 71.71291 l 163.72595 86.82660 l 139.95191 89.83044 lf
-0 sg 126.22595 86.04657 m 150.00000 71.71291 l 163.72595 86.82660 l 139.95191 89.83044 lx
-0.00000 0.63680 0.36320 s 187.50000 76.90119 m 211.27405 71.53085 l 225.00000 86.04636 l 201.22595 91.43805 lf
-0 sg 187.50000 76.90119 m 211.27405 71.53085 l 225.00000 86.04636 l 201.22595 91.43805 lx
-0.39387 0.60613 0.00000 s 27.45191 78.67786 m 51.22595 72.96838 l 64.95191 91.60196 l 41.17786 90.56488 lf
-0 sg 27.45191 78.67786 m 51.22595 72.96838 l 64.95191 91.60196 l 41.17786 90.56488 lx
-0.12369 0.87631 0.00000 s 248.77405 79.49350 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.07743 lf
-0 sg 248.77405 79.49350 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.07743 lx
-0.00000 0.43879 0.56121 s 88.72595 67.77465 m 112.50000 71.81693 l 126.22595 86.04657 l 102.45191 84.06417 lf
-0 sg 88.72595 67.77465 m 112.50000 71.81693 l 126.22595 86.04657 l 102.45191 84.06417 lx
-0.00000 0.43790 0.56209 s 150.00000 71.71291 m 173.77405 66.89033 l 187.50000 76.90119 l 163.72595 86.82660 lf
-0 sg 150.00000 71.71291 m 173.77405 66.89033 l 187.50000 76.90119 l 163.72595 86.82660 lx
-0.00000 0.37439 0.62561 s 180.63702 71.89576 m 192.52405 69.50198 l 199.38702 74.21602 l 187.50000 76.90119 lf
-0 sg 180.63702 71.89576 m 192.52405 69.50198 l 199.38702 74.21602 l 187.50000 76.90119 lx
-0.00000 0.81394 0.18606 s 211.27405 71.53085 m 235.04809 64.50138 l 248.77405 79.49350 l 225.00000 86.04636 lf
-0 sg 211.27405 71.53085 m 235.04809 64.50138 l 248.77405 79.49350 l 225.00000 86.04636 lx
-0.14884 0.85116 0.00000 s 51.22595 72.96838 m 75.00000 69.71759 l 88.72595 67.77465 l 64.95191 91.60196 lf
-0 sg 51.22595 72.96838 m 75.00000 69.71759 l 88.72595 67.77465 l 64.95191 91.60196 lx
-0.00000 0.94343 0.05657 s 241.91107 71.99744 m 253.79809 68.24319 l 260.66107 75.40782 l 248.77405 79.49350 lf
-0 sg 241.91107 71.99744 m 253.79809 68.24319 l 260.66107 75.40782 l 248.77405 79.49350 lx
-0.00000 0.36158 0.63842 s 192.52405 69.50198 m 204.41107 63.31537 l 211.27405 71.53085 l 199.38702 74.21602 lf
-0 sg 192.52405 69.50198 m 204.41107 63.31537 l 211.27405 71.53085 l 199.38702 74.21602 lx
-0.00000 0.94874 0.05126 s 112.50000 71.81693 m 136.27405 61.62006 l 150.00000 71.71291 l 126.22595 86.04657 lf
-0 sg 112.50000 71.81693 m 136.27405 61.62006 l 150.00000 71.71291 l 126.22595 86.04657 lx
-0.00000 0.88277 0.11723 s 253.79809 68.24319 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 75.40782 lf
-0 sg 253.79809 68.24319 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 75.40782 lx
-0.00000 0.25212 0.74788 s 204.41107 63.31537 m 216.29809 60.05564 l 223.16107 68.01612 l 211.27405 71.53085 lf
-0 sg 204.41107 63.31537 m 216.29809 60.05564 l 223.16107 68.01612 l 211.27405 71.53085 lx
-0.00000 0.89403 0.10597 s 173.77405 66.89033 m 185.66107 69.56880 l 192.52405 69.50198 l 180.63702 71.89576 lf
-0 sg 173.77405 66.89033 m 185.66107 69.56880 l 192.52405 69.50198 l 180.63702 71.89576 lx
-0.00000 0.87454 0.12546 s 13.72595 66.79083 m 37.50000 58.71720 l 51.22595 72.96838 l 27.45191 78.67786 lf
-0 sg 13.72595 66.79083 m 37.50000 58.71720 l 51.22595 72.96838 l 27.45191 78.67786 lx
-0.00000 0.32865 0.67135 s 75.00000 69.71759 m 98.77405 50.91286 l 112.50000 71.81693 l 88.72595 67.77465 lf
-0 sg 75.00000 69.71759 m 98.77405 50.91286 l 112.50000 71.81693 l 88.72595 67.77465 lx
-0.00000 0.69735 0.30265 s 235.04809 64.50138 m 246.93512 62.30889 l 253.79809 68.24319 l 241.91107 71.99744 lf
-0 sg 235.04809 64.50138 m 246.93512 62.30889 l 253.79809 68.24319 l 241.91107 71.99744 lx
-0.00000 0.69177 0.30823 s 136.27405 61.62006 m 160.04809 59.01324 l 173.77405 66.89033 l 150.00000 71.71291 lf
-0 sg 136.27405 61.62006 m 160.04809 59.01324 l 173.77405 66.89033 l 150.00000 71.71291 lx
-0.00000 0.32321 0.67679 s 200.97958 64.37639 m 206.92309 60.38875 l 210.35458 61.68550 l 204.41107 63.31537 lf
-0 sg 200.97958 64.37639 m 206.92309 60.38875 l 210.35458 61.68550 l 204.41107 63.31537 lx
-0.10452 0.89548 0.00000 s 185.66107 69.56880 m 197.54809 65.43740 l 204.41107 63.31537 l 192.52405 69.50198 lf
-0 sg 185.66107 69.56880 m 197.54809 65.43740 l 204.41107 63.31537 l 192.52405 69.50198 lx
-0.00000 0.49854 0.50146 s 216.29809 60.05564 m 228.18512 60.94194 l 235.04809 64.50138 l 223.16107 68.01612 lf
-0 sg 216.29809 60.05564 m 228.18512 60.94194 l 235.04809 64.50138 l 223.16107 68.01612 lx
-0.00000 0.62369 0.37631 s 231.61661 62.72166 m 237.56012 60.73131 l 240.99161 63.40513 l 235.04809 64.50138 lf
-0 sg 231.61661 62.72166 m 237.56012 60.73131 l 240.99161 63.40513 l 235.04809 64.50138 lx
-0.00000 0.08223 0.91777 s 206.92309 60.38875 m 212.86661 56.54561 l 216.29809 60.05564 l 210.35458 61.68550 lf
-0 sg 206.92309 60.38875 m 212.86661 56.54561 l 216.29809 60.05564 l 210.35458 61.68550 lx
-0.00000 0.81369 0.18631 s 246.93512 62.30889 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.24319 lf
-0 sg 246.93512 62.30889 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.24319 lx
-0.00000 0.00000 0.73021 s 212.86661 56.54561 m 218.81012 48.53698 l 222.24161 60.49879 l 216.29809 60.05564 lf
-0 sg 212.86661 56.54561 m 218.81012 48.53698 l 222.24161 60.49879 l 216.29809 60.05564 lx
-0.12688 0.87312 0.00000 s 166.91107 62.95179 m 178.79809 58.75679 l 185.66107 69.56880 l 173.77405 66.89033 lf
-0 sg 166.91107 62.95179 m 178.79809 58.75679 l 185.66107 69.56880 l 173.77405 66.89033 lx
-0.00000 0.72802 0.27198 s 237.56012 60.73131 m 243.50363 59.88153 l 246.93512 62.30889 l 240.99161 63.40513 lf
-0 sg 237.56012 60.73131 m 243.50363 59.88153 l 246.93512 62.30889 l 240.99161 63.40513 lx
-0.00000 0.81885 0.18115 s 197.54809 65.43740 m 203.49161 56.37151 l 206.92309 60.38875 l 200.97958 64.37639 lf
-0 sg 197.54809 65.43740 m 203.49161 56.37151 l 206.92309 60.38875 l 200.97958 64.37639 lx
-0.22812 0.77188 0.00000 s 37.50000 58.71720 m 61.27405 54.50209 l 75.00000 69.71759 l 51.22595 72.96838 lf
-0 sg 37.50000 58.71720 m 61.27405 54.50209 l 75.00000 69.71759 l 51.22595 72.96838 lx
-0.00000 0.32314 0.67686 s 98.77405 50.91286 m 122.54809 48.32349 l 136.27405 61.62006 l 112.50000 71.81693 lf
-0 sg 98.77405 50.91286 m 122.54809 48.32349 l 136.27405 61.62006 l 112.50000 71.81693 lx
-0.00000 0.05229 0.94771 s 203.49161 56.37151 m 209.43512 52.95748 l 212.86661 56.54561 l 206.92309 60.38875 lf
-0 sg 203.49161 56.37151 m 209.43512 52.95748 l 212.86661 56.54561 l 206.92309 60.38875 lx
-0.00000 sg 209.43512 52.95748 m 215.37863 42.89983 l 218.81012 48.53698 l 212.86661 56.54561 lf
-0 sg 209.43512 52.95748 m 215.37863 42.89983 l 218.81012 48.53698 l 212.86661 56.54561 lx
-0.00000 0.93643 0.06357 s 228.18512 60.94194 m 234.12863 60.56399 l 237.56012 60.73131 l 231.61661 62.72166 lf
-0 sg 228.18512 60.94194 m 234.12863 60.56399 l 237.56012 60.73131 l 231.61661 62.72166 lx
-0.00000 0.44047 0.55953 s 218.81012 48.53698 m 224.75363 61.25647 l 228.18512 60.94194 l 222.24161 60.49879 lf
-0 sg 218.81012 48.53698 m 224.75363 61.25647 l 228.18512 60.94194 l 222.24161 60.49879 lx
-0.24120 0.75880 0.00000 s 178.79809 58.75679 m 190.68512 52.68430 l 197.54809 65.43740 l 185.66107 69.56880 lf
-0 sg 178.79809 58.75679 m 190.68512 52.68430 l 197.54809 65.43740 l 185.66107 69.56880 lx
-0.00000 0.52429 0.47571 s 194.11661 59.06085 m 200.06012 48.64973 l 203.49161 56.37151 l 197.54809 65.43740 lf
-0 sg 194.11661 59.06085 m 200.06012 48.64973 l 203.49161 56.37151 l 197.54809 65.43740 lx
-0.00000 0.96693 0.03307 s 234.12863 60.56399 m 240.07214 57.45418 l 243.50363 59.88153 l 237.56012 60.73131 lf
-0 sg 234.12863 60.56399 m 240.07214 57.45418 l 243.50363 59.88153 l 237.56012 60.73131 lx
-0.00000 0.00000 0.64658 s 200.06012 48.64973 m 206.00363 49.28020 l 209.43512 52.95748 l 203.49161 56.37151 lf
-0 sg 200.06012 48.64973 m 206.00363 49.28020 l 209.43512 52.95748 l 203.49161 56.37151 lx
-0.00000 0.87628 0.12372 s 240.07214 57.45418 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.30889 lf
-0 sg 240.07214 57.45418 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.30889 lx
-0.00000 0.00000 0.22348 s 206.00363 49.28020 m 211.94714 47.83592 l 215.37863 42.89983 l 209.43512 52.95748 lf
-0 sg 206.00363 49.28020 m 211.94714 47.83592 l 215.37863 42.89983 l 209.43512 52.95748 lx
-0.00000 0.25900 0.74100 s 215.37863 42.89983 m 221.32214 63.47033 l 224.75363 61.25647 l 218.81012 48.53698 lf
-0 sg 215.37863 42.89983 m 221.32214 63.47033 l 224.75363 61.25647 l 218.81012 48.53698 lx
-0.00000 0.80879 0.19121 s 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 58.71720 l 13.72595 66.79083 lf
-0 sg 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 58.71720 l 13.72595 66.79083 lx
-0.00000 0.93087 0.06913 s 160.04809 59.01324 m 171.93512 50.23330 l 178.79809 58.75679 l 166.91107 62.95179 lf
-0 sg 160.04809 59.01324 m 171.93512 50.23330 l 178.79809 58.75679 l 166.91107 62.95179 lx
-0.00000 0.08175 0.91825 s 190.68512 52.68430 m 196.62863 49.47409 l 200.06012 48.64973 l 194.11661 59.06085 lf
-0 sg 190.68512 52.68430 m 196.62863 49.47409 l 200.06012 48.64973 l 194.11661 59.06085 lx
-0.60447 0.39553 0.00000 s 224.75363 61.25647 m 230.69714 62.02898 l 234.12863 60.56399 l 228.18512 60.94194 lf
-0 sg 224.75363 61.25647 m 230.69714 62.02898 l 234.12863 60.56399 l 228.18512 60.94194 lx
-0.00000 0.00000 0.54945 s 196.62863 49.47409 m 202.57214 46.26388 l 206.00363 49.28020 l 200.06012 48.64973 lf
-0 sg 196.62863 49.47409 m 202.57214 46.26388 l 206.00363 49.28020 l 200.06012 48.64973 lx
-0.25733 0.74267 0.00000 s 230.69714 62.02898 m 236.64065 51.79144 l 240.07214 57.45418 l 234.12863 60.56399 lf
-0 sg 230.69714 62.02898 m 236.64065 51.79144 l 240.07214 57.45418 l 234.12863 60.56399 lx
-0.13874 0.86126 0.00000 s 61.27405 54.50209 m 85.04809 51.75275 l 98.77405 50.91286 l 75.00000 69.71759 lf
-0 sg 61.27405 54.50209 m 85.04809 51.75275 l 98.77405 50.91286 l 75.00000 69.71759 lx
-0.00000 0.12705 0.87295 s 171.93512 50.23330 m 183.82214 41.45336 l 190.68512 52.68430 l 178.79809 58.75679 lf
-0 sg 171.93512 50.23330 m 183.82214 41.45336 l 190.68512 52.68430 l 178.79809 58.75679 lx
-0.00000 0.42084 0.57916 s 122.54809 48.32349 m 146.32214 37.97874 l 160.04809 59.01324 l 136.27405 61.62006 lf
-0 sg 122.54809 48.32349 m 146.32214 37.97874 l 160.04809 59.01324 l 136.27405 61.62006 lx
-0.00000 0.16804 0.83196 s 202.57214 46.26388 m 208.51565 54.27688 l 211.94714 47.83592 l 206.00363 49.28020 lf
-0 sg 202.57214 46.26388 m 208.51565 54.27688 l 211.94714 47.83592 l 206.00363 49.28020 lx
-0.08702 0.91298 0.00000 s 211.94714 47.83592 m 217.89065 64.59655 l 221.32214 63.47033 l 215.37863 42.89983 lf
-0 sg 211.94714 47.83592 m 217.89065 64.59655 l 221.32214 63.47033 l 215.37863 42.89983 lx
-1.00000 0.22512 0.22512 s 221.32214 63.47033 m 227.26565 57.03676 l 230.69714 62.02898 l 224.75363 61.25647 lf
-0 sg 221.32214 63.47033 m 227.26565 57.03676 l 230.69714 62.02898 l 224.75363 61.25647 lx
-0.08828 0.91172 0.00000 s 227.26565 57.03676 m 233.20917 46.12871 l 236.64065 51.79144 l 230.69714 62.02898 lf
-0 sg 227.26565 57.03676 m 233.20917 46.12871 l 236.64065 51.79144 l 230.69714 62.02898 lx
-0.00000 0.63156 0.36844 s 233.20917 46.12871 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 57.45418 lf
-0 sg 233.20917 46.12871 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 57.45418 lx
-0.00000 0.07454 0.92546 s 183.82214 41.45336 m 195.70917 48.07909 l 202.57214 46.26388 l 190.68512 52.68430 lf
-0 sg 183.82214 41.45336 m 195.70917 48.07909 l 202.57214 46.26388 l 190.68512 52.68430 lx
-0.00000 0.89071 0.10929 s 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 54.50209 l 37.50000 58.71720 lf
-0 sg 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 54.50209 l 37.50000 58.71720 lx
-0.00000 0.94576 0.05424 s 223.83417 54.54176 m 229.77768 44.89144 l 233.20917 46.12871 l 227.26565 57.03676 lf
-0 sg 223.83417 54.54176 m 229.77768 44.89144 l 233.20917 46.12871 l 227.26565 57.03676 lx
-1.00000 0.66631 0.66631 s 217.89065 64.59655 m 223.83417 54.54176 l 227.26565 57.03676 l 221.32214 63.47033 lf
-0 sg 217.89065 64.59655 m 223.83417 54.54176 l 227.26565 57.03676 l 221.32214 63.47033 lx
-0.00000 0.80486 0.19514 s 85.04809 51.75275 m 108.82214 42.58699 l 122.54809 48.32349 l 98.77405 50.91286 lf
-0 sg 85.04809 51.75275 m 108.82214 42.58699 l 122.54809 48.32349 l 98.77405 50.91286 lx
-1.00000 0.34584 0.34584 s 208.51565 54.27688 m 214.45917 62.28989 l 217.89065 64.59655 l 211.94714 47.83592 lf
-0 sg 208.51565 54.27688 m 214.45917 62.28989 l 217.89065 64.59655 l 211.94714 47.83592 lx
-0.00000 0.47320 0.52680 s 146.32214 37.97874 m 170.09619 41.95681 l 183.82214 41.45336 l 160.04809 59.01324 lf
-0 sg 146.32214 37.97874 m 170.09619 41.95681 l 183.82214 41.45336 l 160.04809 59.01324 lx
-0.20568 0.79432 0.00000 s 220.40268 52.18405 m 226.34619 43.65418 l 229.77768 44.89144 l 223.83417 54.54176 lf
-0 sg 220.40268 52.18405 m 226.34619 43.65418 l 229.77768 44.89144 l 223.83417 54.54176 lx
-0.00000 0.52251 0.47749 s 226.34619 43.65418 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 46.12871 lf
-0 sg 226.34619 43.65418 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 46.12871 lx
-1.00000 sg 214.45917 62.28989 m 220.40268 52.18405 l 223.83417 54.54176 l 217.89065 64.59655 lf
-0 sg 214.45917 62.28989 m 220.40268 52.18405 l 223.83417 54.54176 l 217.89065 64.59655 lx
-0.81742 0.18258 0.00000 s 195.70917 48.07909 m 207.59619 48.69724 l 214.45917 62.28989 l 202.57214 46.26388 lf
-0 sg 195.70917 48.07909 m 207.59619 48.69724 l 214.45917 62.28989 l 202.57214 46.26388 lx
-0.00000 0.67542 0.32458 s 176.95917 41.70508 m 188.84619 44.01018 l 195.70917 48.07909 l 183.82214 41.45336 lf
-0 sg 176.95917 41.70508 m 188.84619 44.01018 l 195.70917 48.07909 l 183.82214 41.45336 lx
-0.19357 0.80643 0.00000 s 216.97119 47.13070 m 222.91470 40.20305 l 226.34619 43.65418 l 220.40268 52.18405 lf
-0 sg 216.97119 47.13070 m 222.91470 40.20305 l 226.34619 43.65418 l 220.40268 52.18405 lx
-1.00000 0.73625 0.73625 s 211.02768 55.49356 m 216.97119 47.13070 l 220.40268 52.18405 l 214.45917 62.28989 lf
-0 sg 211.02768 55.49356 m 216.97119 47.13070 l 220.40268 52.18405 l 214.45917 62.28989 lx
-0.27613 0.72387 0.00000 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 51.75275 l 61.27405 54.50209 lf
-0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 51.75275 l 61.27405 54.50209 lx
-0.00000 0.81634 0.18366 s 108.82214 42.58699 m 132.59619 37.43648 l 146.32214 37.97874 l 122.54809 48.32349 lf
-0 sg 108.82214 42.58699 m 132.59619 37.43648 l 146.32214 37.97874 l 122.54809 48.32349 lx
-1.00000 0.09981 0.09981 s 207.59619 48.69724 m 213.53970 42.72458 l 216.97119 47.13070 l 211.02768 55.49356 lf
-0 sg 207.59619 48.69724 m 213.53970 42.72458 l 216.97119 47.13070 l 211.02768 55.49356 lx
-0.00000 0.93850 0.06150 s 213.53970 42.72458 m 219.48321 36.75192 l 222.91470 40.20305 l 216.97119 47.13070 lf
-0 sg 213.53970 42.72458 m 219.48321 36.75192 l 222.91470 40.20305 l 216.97119 47.13070 lx
-0.00000 0.66560 0.33440 s 219.48321 36.75192 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 43.65418 lf
-0 sg 219.48321 36.75192 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 43.65418 lx
-0.72347 0.27653 0.00000 s 188.84619 44.01018 m 200.73321 39.12128 l 207.59619 48.69724 l 195.70917 48.07909 lf
-0 sg 188.84619 44.01018 m 200.73321 39.12128 l 207.59619 48.69724 l 195.70917 48.07909 lx
-0.40125 0.59875 0.00000 s 170.09619 41.95681 m 181.98321 36.53500 l 188.84619 44.01018 l 176.95917 41.70508 lf
-0 sg 170.09619 41.95681 m 181.98321 36.53500 l 188.84619 44.01018 l 176.95917 41.70508 lx
-0.12133 0.87867 0.00000 s 200.73321 39.12128 m 212.62024 31.04810 l 219.48321 36.75192 l 207.59619 48.69724 lf
-0 sg 200.73321 39.12128 m 212.62024 31.04810 l 219.48321 36.75192 l 207.59619 48.69724 lx
-0.37936 0.62064 0.00000 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 42.58699 l 85.04809 51.75275 lf
-0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 42.58699 l 85.04809 51.75275 lx
-0.00000 0.62462 0.37538 s 212.62024 31.04810 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 36.75192 lf
-0 sg 212.62024 31.04810 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 36.75192 lx
-0.11439 0.88561 0.00000 s 132.59619 37.43648 m 156.37024 26.73043 l 170.09619 41.95681 l 146.32214 37.97874 lf
-0 sg 132.59619 37.43648 m 156.37024 26.73043 l 170.09619 41.95681 l 146.32214 37.97874 lx
-0.41827 0.58173 0.00000 s 181.98321 36.53500 m 193.87024 31.11318 l 200.73321 39.12128 l 188.84619 44.01018 lf
-0 sg 181.98321 36.53500 m 193.87024 31.11318 l 200.73321 39.12128 l 188.84619 44.01018 lx
-0.00000 0.94358 0.05642 s 193.87024 31.11318 m 205.75726 27.44362 l 212.62024 31.04810 l 200.73321 39.12128 lf
-0 sg 193.87024 31.11318 m 205.75726 27.44362 l 212.62024 31.04810 l 200.73321 39.12128 lx
-0.34571 0.65429 0.00000 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 37.43648 l 108.82214 42.58699 lf
-0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 37.43648 l 108.82214 42.58699 lx
-0.00000 0.77161 0.22839 s 205.75726 27.44362 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.04810 lf
-0 sg 205.75726 27.44362 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.04810 lx
-0.17968 0.82032 0.00000 s 156.37024 26.73043 m 180.14428 17.99560 l 193.87024 31.11318 l 170.09619 41.95681 lf
-0 sg 156.37024 26.73043 m 180.14428 17.99560 l 193.87024 31.11318 l 170.09619 41.95681 lx
-0.22426 0.77574 0.00000 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 26.73043 l 132.59619 37.43648 lf
-0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 26.73043 l 132.59619 37.43648 lx
-0.00000 0.86194 0.13806 s 180.14428 17.99560 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 31.11318 lf
-0 sg 180.14428 17.99560 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 31.11318 lx
-0.00000 0.89849 0.10151 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.99560 l 156.37024 26.73043 lf
-0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.99560 l 156.37024 26.73043 lx
-0.00000 0.83479 0.16521 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.99560 lf
-0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.99560 lx
-showpage
-.
-DEAL::
-DEAL::  Collecting refinement data: 
-DEAL::    Refining each time step separately.
-DEAL::    Got 4775 presently, expecting 7243 for next sweep.
-DEAL::    Writing statistics for whole sweep.#  Description of fields
-DEAL::#  =====================
-DEAL::#  General:
-DEAL::#    time
-#  Primal problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Dual problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Error estimation:
-#    total estimated error in this timestep
-#  Postprocessing:
-#    Huyghens wave
-DEAL::
-DEAL::
-DEAL::0   157 194 0 0 0.00 0.00 0.00    157 741 8 9 0.00 0.00 0.00    0.00    -0.10 
-DEAL::0.03   157 194 8 12 0.92 1.33 2.26    157 741 8 10 0.00 0.00 0.00    -0.23    0.02 
-DEAL::0.06   202 242 8 11 0.60 1.66 2.26    202 933 10 10 0.00 0.00 0.00    -0.14    0.27 
-DEAL::0.08   205 246 8 11 1.29 0.96 2.26    205 949 10 10 0.00 0.00 0.00    0.06    0.27 
-DEAL::0.11   190 230 9 11 1.12 1.14 2.26    190 884 9 10 0.00 0.00 0.00    0.00    0.17 
-DEAL::0.14   211 252 9 12 1.19 1.07 2.26    211 971 11 10 0.00 0.00 0.00    0.09    0.10 
-DEAL::0.17   229 272 9 12 1.06 1.20 2.26    229 1051 10 10 0.00 0.00 0.00    -0.01    -0.25 
-DEAL::0.20   226 267 9 12 0.94 1.10 2.04    226 1029 9 10 0.00 0.00 0.00    0.13    -1.07 
-DEAL::0.22   229 274 9 11 0.88 0.77 1.65    229 1057 10 10 0.00 0.00 0.00    0.06    -3.49 
-DEAL::0.25   286 333 9 12 0.90 0.76 1.66    286 1288 12 10 0.00 0.00 0.00    -0.10    -7.40 
-DEAL::0.28   283 328 9 11 0.79 0.73 1.52    283 1267 12 10 0.00 0.00 0.00    0.15    -2.00 
-DEAL::0.31   244 287 9 12 0.62 0.78 1.40    244 1103 11 10 0.00 0.00 0.00    0.07    21.50 
-DEAL::0.34   238 279 9 12 0.68 0.72 1.40    238 1071 11 10 0.00 0.00 0.00    0.24    37.53 
-DEAL::0.36   202 244 9 12 0.64 0.54 1.18    202 932 9 10 0.00 0.00 0.00    0.02    -9.57 
-DEAL::0.39   193 231 9 12 0.49 0.52 1.01    193 879 9 10 0.00 0.00 0.00    0.07    -132.80 
-DEAL::0.42   190 228 9 12 0.50 0.51 1.01    190 867 9 10 0.00 0.00 0.00    0.00    -176.92 
-DEAL::0.45   166 201 9 11 0.51 0.41 0.92    166 761 8 10 0.00 0.00 0.00    -0.05    101.55 
-DEAL::0.48   154 189 9 12 0.40 0.41 0.81    154 713 8 10 0.00 0.00 0.00    0.28    669.64 
-DEAL::0.50   148 181 9 12 0.36 0.40 0.76    148 681 8 10 0.00 0.00 0.00    -0.31    1025.25 
-DEAL::0.53   148 181 9 12 0.37 0.39 0.76    148 681 7 10 0.00 0.00 0.00    0.53    511.15 
-DEAL::0.56   133 166 9 12 0.39 0.34 0.73    133 621 7 10 0.00 0.00 0.00    0.82    -713.25 
-DEAL::0.59   133 166 9 12 0.37 0.36 0.73    133 621 6 10 0.00 0.00 0.00    0.34    -1066.62 
-DEAL::0.62   112 141 9 11 0.31 0.39 0.71    112 526 5 9 0.00 0.00 0.00    0.43    1228.72 
-DEAL::0.64   106 135 9 11 0.36 0.32 0.68    106 502 5 9 0.00 0.00 0.00    -0.41    6735.49 
-DEAL::0.67   118 149 9 11 0.37 0.31 0.68    118 557 5 9 0.00 0.00 0.00    -1.37    12320.43 
-DEAL::0.70   115 146 9 11 0.32 0.36 0.67    115 545 0 0 0.00 0.00 0.00    -0.69    9526.42 
-DEAL::
-DEAL::    Writing summary.Summary of this sweep:
-======================
-
-  Accumulated number of cells: 4775
-  Acc. number of primal dofs : 11512
-  Acc. number of dual dofs   : 43942
-  Accumulated error          : 0.00
-
-  Evaluations:
-  ------------
-    Hughens wave -- weighted time: 0.66
-                    average      : 0.01
-  
-
-DEAL::
-DEAL::
-DEAL::Sweep 2 :
-DEAL::---------
-DEAL::  Primal problem: time=0, step=0, sweep=2. 157 cells, 198 dofsStarting value 0
-DEAL:cg::Convergence step 0 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 14 value 0
-DEAL:cg::Starting value 0
-DEAL:cg::Convergence step 0 value 0
-DEAL:cg::Starting value 0
-DEAL:cg::Convergence step 0 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.03, step=1, sweep=2. 190 cells, 233 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.05
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.06, step=2, sweep=2. 247 cells, 297 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.06
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.08, step=3, sweep=2. 316 cells, 370 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.05
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.11, step=4, sweep=2. 409 cells, 472 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.05
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.14, step=5, sweep=2. 472 cells, 536 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.05
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.17, step=6, sweep=2. 496 cells, 563 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.06
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.20, step=7, sweep=2. 475 cells, 543 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.06
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.22, step=8, sweep=2. 526 cells, 597 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.06
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.25, step=9, sweep=2. 589 cells, 668 dofsStarting value 0.00
-DEAL:cg::Convergence step 11 value 0
-DEAL:cg::Starting value 0.06
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.28, step=10, sweep=2. 544 cells, 623 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0
-DEAL:cg::Starting value 0.08
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.31, step=11, sweep=2. 520 cells, 593 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.10
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.34, step=12, sweep=2. 490 cells, 559 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 13 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.36, step=13, sweep=2. 460 cells, 526 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.10
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.39, step=14, sweep=2. 439 cells, 501 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 13 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.42, step=15, sweep=2. 406 cells, 464 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.10
-DEAL:cg::Convergence step 13 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.45, step=16, sweep=2. 343 cells, 400 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.48, step=17, sweep=2. 301 cells, 353 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.08
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.50, step=18, sweep=2. 295 cells, 345 dofsStarting value 0.01
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.08
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.53, step=19, sweep=2. 223 cells, 268 dofsStarting value 0.01
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.08
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.56, step=20, sweep=2. 199 cells, 241 dofsStarting value 0.01
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.07
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.59, step=21, sweep=2. 187 cells, 227 dofsStarting value 0.01
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.07
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.62, step=22, sweep=2. 154 cells, 192 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.06
-DEAL:cg::Convergence step 12 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.64, step=23, sweep=2. 121 cells, 157 dofsStarting value 0.01
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.07
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.67, step=24, sweep=2. 124 cells, 162 dofsStarting value 0.01
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.07
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::  Primal problem: time=0.70, step=25, sweep=2. 124 cells, 162 dofsStarting value 0.01
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.06
-DEAL:cg::Convergence step 11 value 0
-DEAL::.
-DEAL::
-DEAL::  Dual problem: time=0.70, step=25, sweep=2. 124 cells, 615 dofs.
-DEAL::  Dual problem: time=0.67, step=24, sweep=2. 124 cells, 615 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.64, step=23, sweep=2. 121 cells, 599 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.62, step=22, sweep=2. 154 cells, 734 dofsStarting value 0.00
-DEAL:cg::Convergence step 8 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.59, step=21, sweep=2. 187 cells, 874 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.56, step=20, sweep=2. 199 cells, 930 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.53, step=19, sweep=2. 223 cells, 1038 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.50, step=18, sweep=2. 295 cells, 1344 dofsStarting value 0.00
-DEAL:cg::Convergence step 13 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.48, step=17, sweep=2. 301 cells, 1376 dofsStarting value 0.00
-DEAL:cg::Convergence step 15 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.45, step=16, sweep=2. 343 cells, 1561 dofsStarting value 0.00
-DEAL:cg::Convergence step 16 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.42, step=15, sweep=2. 406 cells, 1815 dofsStarting value 0.00
-DEAL:cg::Convergence step 16 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.39, step=14, sweep=2. 439 cells, 1963 dofsStarting value 0.00
-DEAL:cg::Convergence step 18 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.36, step=13, sweep=2. 460 cells, 2060 dofsStarting value 0.00
-DEAL:cg::Convergence step 17 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.34, step=12, sweep=2. 490 cells, 2195 dofsStarting value 0.00
-DEAL:cg::Convergence step 20 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.31, step=11, sweep=2. 520 cells, 2330 dofsStarting value 0.00
-DEAL:cg::Convergence step 19 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.28, step=10, sweep=2. 544 cells, 2450 dofsStarting value 0.00
-DEAL:cg::Convergence step 20 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.25, step=9, sweep=2. 589 cells, 2624 dofsStarting value 0.00
-DEAL:cg::Convergence step 21 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.22, step=8, sweep=2. 526 cells, 2342 dofsStarting value 0.00
-DEAL:cg::Convergence step 18 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.20, step=7, sweep=2. 475 cells, 2130 dofsStarting value 0.00
-DEAL:cg::Convergence step 18 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.17, step=6, sweep=2. 496 cells, 2210 dofsStarting value 0.00
-DEAL:cg::Convergence step 19 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.14, step=5, sweep=2. 472 cells, 2103 dofsStarting value 0.00
-DEAL:cg::Convergence step 18 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.11, step=4, sweep=2. 409 cells, 1852 dofsStarting value 0.00
-DEAL:cg::Convergence step 17 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.08, step=3, sweep=2. 316 cells, 1446 dofsStarting value 0.00
-DEAL:cg::Convergence step 13 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.06, step=2, sweep=2. 247 cells, 1159 dofsStarting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0.03, step=1, sweep=2. 190 cells, 903 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0
-DEAL::.
-DEAL::  Dual problem: time=0, step=0, sweep=2. 157 cells, 765 dofsStarting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 9 value 0
-DEAL::.
-DEAL::
-DEAL::  Postprocessing: time=0, step=0, sweep=2. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 191
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50 setlinewidth
-0.00000 0.00000 0.06763 s 82.35572 126.22595 m 129.90381 112.50060 l 157.35572 136.27405 l 109.80762 150.00000 lf
-0 sg 82.35572 126.22595 m 129.90381 112.50060 l 157.35572 136.27405 l 109.80762 150.00000 lx
-0.00000 0.00000 0.06763 s 143.62976 124.38732 m 167.40381 117.52436 l 181.12976 129.41107 l 157.35572 136.27405 lf
-0 sg 143.62976 124.38732 m 167.40381 117.52436 l 181.12976 129.41107 l 157.35572 136.27405 lx
-0.00000 0.00000 0.06764 s 167.40381 117.52436 m 191.17786 110.66293 l 204.90381 122.54809 l 181.12976 129.41107 lf
-0 sg 167.40381 117.52436 m 191.17786 110.66293 l 204.90381 122.54809 l 181.12976 129.41107 lx
-0.00000 0.00000 0.06764 s 68.62976 114.33893 m 92.40381 107.47743 l 106.12976 119.36328 l 82.35572 126.22595 lf
-0 sg 68.62976 114.33893 m 92.40381 107.47743 l 106.12976 119.36328 l 82.35572 126.22595 lx
-0.00000 0.00000 0.06761 s 129.90381 112.50060 m 153.67786 105.63531 l 167.40381 117.52436 l 143.62976 124.38732 lf
-0 sg 129.90381 112.50060 m 153.67786 105.63531 l 167.40381 117.52436 l 143.62976 124.38732 lx
-0.00000 0.00000 0.06764 s 191.17786 110.66293 m 214.95191 103.79774 l 228.67786 115.68512 l 204.90381 122.54809 lf
-0 sg 191.17786 110.66293 m 214.95191 103.79774 l 228.67786 115.68512 l 204.90381 122.54809 lx
-0.00000 0.00000 0.06757 s 92.40381 107.47743 m 116.17786 100.60654 l 129.90381 112.50060 l 106.12976 119.36328 lf
-0 sg 92.40381 107.47743 m 116.17786 100.60654 l 129.90381 112.50060 l 106.12976 119.36328 lx
-0.00000 0.00000 0.06754 s 153.67786 105.63531 m 177.45191 98.76670 l 191.17786 110.66293 l 167.40381 117.52436 lf
-0 sg 153.67786 105.63531 m 177.45191 98.76670 l 191.17786 110.66293 l 167.40381 117.52436 lx
-0.00000 0.00000 0.06761 s 214.95191 103.79774 m 238.72595 96.93504 l 252.45191 108.82214 l 228.67786 115.68512 lf
-0 sg 214.95191 103.79774 m 238.72595 96.93504 l 252.45191 108.82214 l 228.67786 115.68512 lx
-0.00000 0.00000 0.06756 s 54.90381 102.45191 m 78.67786 95.58232 l 92.40381 107.47743 l 68.62976 114.33893 lf
-0 sg 54.90381 102.45191 m 78.67786 95.58232 l 92.40381 107.47743 l 68.62976 114.33893 lx
-0.00000 0.00000 0.06764 s 116.17786 100.60654 m 139.95191 93.75970 l 153.67786 105.63531 l 129.90381 112.50060 lf
-0 sg 116.17786 100.60654 m 139.95191 93.75970 l 153.67786 105.63531 l 129.90381 112.50060 lx
-0.00000 0.00000 0.06757 s 177.45191 98.76670 m 201.22595 91.91258 l 214.95191 103.79774 l 191.17786 110.66293 lf
-0 sg 177.45191 98.76670 m 201.22595 91.91258 l 214.95191 103.79774 l 191.17786 110.66293 lx
-0.00000 0.00000 0.06778 s 146.81488 99.69751 m 158.70191 96.27870 l 165.56488 102.20101 l 153.67786 105.63531 lf
-0 sg 146.81488 99.69751 m 158.70191 96.27870 l 165.56488 102.20101 l 153.67786 105.63531 lx
-0.00000 0.00000 0.06779 s 78.67786 95.58232 m 102.45191 88.75277 l 116.17786 100.60654 l 92.40381 107.47743 lf
-0 sg 78.67786 95.58232 m 102.45191 88.75277 l 116.17786 100.60654 l 92.40381 107.47743 lx
-0.00000 0.00000 0.06831 s 158.70191 96.27870 m 170.58893 92.88658 l 177.45191 98.76670 l 165.56488 102.20101 lf
-0 sg 158.70191 96.27870 m 170.58893 92.88658 l 177.45191 98.76670 l 165.56488 102.20101 lx
-0.00000 0.00000 0.06793 s 109.31488 94.67965 m 121.20191 91.26018 l 128.06488 97.18312 l 116.17786 100.60654 lf
-0 sg 109.31488 94.67965 m 121.20191 91.26018 l 128.06488 97.18312 l 116.17786 100.60654 lx
-0.00000 0.00000 0.06719 s 139.95191 93.75970 m 151.83893 90.24996 l 158.70191 96.27870 l 146.81488 99.69751 lf
-0 sg 139.95191 93.75970 m 151.83893 90.24996 l 158.70191 96.27870 l 146.81488 99.69751 lx
-0.00000 0.00000 0.06763 s 201.22595 91.91258 m 225.00000 85.04794 l 238.72595 96.93504 l 214.95191 103.79774 lf
-0 sg 201.22595 91.91258 m 225.00000 85.04794 l 238.72595 96.93504 l 214.95191 103.79774 lx
-0.00000 0.00000 0.06811 s 170.58893 92.88658 m 182.47595 89.39683 l 189.33893 95.33964 l 177.45191 98.76670 lf
-0 sg 170.58893 92.88658 m 182.47595 89.39683 l 189.33893 95.33964 l 177.45191 98.76670 lx
-0.00000 0.00000 0.06757 s 41.17786 90.56488 m 64.95191 83.70382 l 78.67786 95.58232 l 54.90381 102.45191 lf
-0 sg 41.17786 90.56488 m 64.95191 83.70382 l 78.67786 95.58232 l 54.90381 102.45191 lx
-0.00000 0.00000 0.06684 s 121.20191 91.26018 m 133.08893 87.70440 l 139.95191 93.75970 l 128.06488 97.18312 lf
-0 sg 121.20191 91.26018 m 133.08893 87.70440 l 139.95191 93.75970 l 128.06488 97.18312 lx
-0.00000 0.00000 0.06522 s 151.83893 90.24996 m 163.72595 86.67180 l 170.58893 92.88658 l 158.70191 96.27870 lf
-0 sg 151.83893 90.24996 m 163.72595 86.67180 l 170.58893 92.88658 l 158.70191 96.27870 lx
-0.00000 0.00000 0.06758 s 182.47595 89.39683 m 194.36298 85.96729 l 201.22595 91.91258 l 189.33893 95.33964 lf
-0 sg 182.47595 89.39683 m 194.36298 85.96729 l 201.22595 91.91258 l 189.33893 95.33964 lx
-0.00000 0.00000 0.06762 s 225.00000 85.04794 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lf
-0 sg 225.00000 85.04794 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lx
-0.00000 0.00000 0.06559 s 102.45191 88.75277 m 114.33893 85.05660 l 121.20191 91.26018 l 109.31488 94.67965 lf
-0 sg 102.45191 88.75277 m 114.33893 85.05660 l 121.20191 91.26018 l 109.31488 94.67965 lx
-0.00000 0.00000 0.07027 s 133.08893 87.70440 m 144.97595 84.76952 l 151.83893 90.24996 l 139.95191 93.75970 lf
-0 sg 133.08893 87.70440 m 144.97595 84.76952 l 151.83893 90.24996 l 139.95191 93.75970 lx
-0.00000 0.00000 0.06592 s 163.72595 86.67180 m 175.61298 83.46732 l 182.47595 89.39683 l 170.58893 92.88658 lf
-0 sg 163.72595 86.67180 m 175.61298 83.46732 l 182.47595 89.39683 l 170.58893 92.88658 lx
-0.00000 0.00000 0.07044 s 148.40744 87.50974 m 154.35095 85.92644 l 157.78244 88.46088 l 151.83893 90.24996 lf
-0 sg 148.40744 87.50974 m 154.35095 85.92644 l 157.78244 88.46088 l 151.83893 90.24996 lx
-0.00000 0.00000 0.07455 s 114.33893 85.05660 m 126.22595 82.79022 l 133.08893 87.70440 l 121.20191 91.26018 lf
-0 sg 114.33893 85.05660 m 126.22595 82.79022 l 133.08893 87.70440 l 121.20191 91.26018 lx
-0.00000 0.00000 0.06777 s 64.95191 83.70382 m 88.72595 76.83035 l 102.45191 88.75277 l 78.67786 95.58232 lf
-0 sg 64.95191 83.70382 m 88.72595 76.83035 l 102.45191 88.75277 l 78.67786 95.58232 lx
-0.00000 0.00000 0.08676 s 154.35095 85.92644 m 160.29446 85.66082 l 163.72595 86.67180 l 157.78244 88.46088 lf
-0 sg 154.35095 85.92644 m 160.29446 85.66082 l 163.72595 86.67180 l 157.78244 88.46088 lx
-0.00000 0.00000 0.06248 s 144.97595 84.76952 m 150.91946 81.35435 l 154.35095 85.92644 l 148.40744 87.50974 lf
-0 sg 144.97595 84.76952 m 150.91946 81.35435 l 154.35095 85.92644 l 148.40744 87.50974 lx
-0.00000 0.00000 0.06770 s 175.61298 83.46732 m 187.50000 80.02200 l 194.36298 85.96729 l 182.47595 89.39683 lf
-0 sg 175.61298 83.46732 m 187.50000 80.02200 l 194.36298 85.96729 l 182.47595 89.39683 lx
-0.00000 0.00000 0.08517 s 160.29446 85.66082 m 166.23798 82.31527 l 169.66946 85.06956 l 163.72595 86.67180 lf
-0 sg 160.29446 85.66082 m 166.23798 82.31527 l 169.66946 85.06956 l 163.72595 86.67180 lx
-0.00000 0.00000 0.06572 s 95.58893 82.79156 m 107.47595 79.38597 l 114.33893 85.05660 l 102.45191 88.75277 lf
-0 sg 95.58893 82.79156 m 107.47595 79.38597 l 114.33893 85.05660 l 102.45191 88.75277 lx
-0.00000 sg 150.91946 81.35435 m 156.86298 74.25891 l 160.29446 85.66082 l 154.35095 85.92644 lf
-0 sg 150.91946 81.35435 m 156.86298 74.25891 l 160.29446 85.66082 l 154.35095 85.92644 lx
-0.00000 0.00000 0.04197 s 126.22595 82.79022 m 138.11298 74.95503 l 144.97595 84.76952 l 133.08893 87.70440 lf
-0 sg 126.22595 82.79022 m 138.11298 74.95503 l 144.97595 84.76952 l 133.08893 87.70440 lx
-0.00000 0.00000 0.06825 s 166.23798 82.31527 m 172.18149 80.51308 l 175.61298 83.46732 l 169.66946 85.06956 lf
-0 sg 166.23798 82.31527 m 172.18149 80.51308 l 175.61298 83.46732 l 169.66946 85.06956 lx
-0.00000 0.00000 0.06762 s 187.50000 80.02200 m 211.27405 73.16156 l 225.00000 85.04794 l 201.22595 91.91258 lf
-0 sg 187.50000 80.02200 m 211.27405 73.16156 l 225.00000 85.04794 l 201.22595 91.91258 lx
-0.00000 0.00000 0.00795 s 156.86298 74.25891 m 162.80649 78.80194 l 166.23798 82.31527 l 160.29446 85.66082 lf
-0 sg 156.86298 74.25891 m 162.80649 78.80194 l 166.23798 82.31527 l 160.29446 85.66082 lx
-0.00000 0.00000 0.10344 s 141.54446 79.86228 m 147.48798 85.28974 l 150.91946 81.35435 l 144.97595 84.76952 lf
-0 sg 141.54446 79.86228 m 147.48798 85.28974 l 150.91946 81.35435 l 144.97595 84.76952 lx
-0.00000 0.00000 0.06765 s 27.45191 78.67786 m 51.22595 71.81544 l 64.95191 83.70382 l 41.17786 90.56488 lf
-0 sg 27.45191 78.67786 m 51.22595 71.81544 l 64.95191 83.70382 l 41.17786 90.56488 lx
-0.00000 0.00000 0.07407 s 107.47595 79.38597 m 119.36298 75.76296 l 126.22595 82.79022 l 114.33893 85.05660 lf
-0 sg 107.47595 79.38597 m 119.36298 75.76296 l 126.22595 82.79022 l 114.33893 85.05660 lx
-0.00000 0.00000 0.06496 s 162.80649 78.80194 m 168.75000 77.55884 l 172.18149 80.51308 l 166.23798 82.31527 lf
-0 sg 162.80649 78.80194 m 168.75000 77.55884 l 172.18149 80.51308 l 166.23798 82.31527 lx
-0.00000 0.00000 0.06814 s 168.75000 77.55884 m 180.63702 74.06967 l 187.50000 80.02200 l 175.61298 83.46732 lf
-0 sg 168.75000 77.55884 m 180.63702 74.06967 l 187.50000 80.02200 l 175.61298 83.46732 lx
-0.00000 0.00000 0.06807 s 88.72595 76.83035 m 100.61298 73.41190 l 107.47595 79.38597 l 95.58893 82.79156 lf
-0 sg 88.72595 76.83035 m 100.61298 73.41190 l 107.47595 79.38597 l 95.58893 82.79156 lx
-0.00000 0.00000 0.04373 s 119.36298 75.76296 m 131.25000 73.09203 l 138.11298 74.95503 l 126.22595 82.79022 lf
-0 sg 119.36298 75.76296 m 131.25000 73.09203 l 138.11298 74.95503 l 126.22595 82.79022 lx
-0.00000 0.00000 0.52183 s 147.48798 85.28974 m 153.43149 120.31655 l 156.86298 74.25891 l 150.91946 81.35435 lf
-0 sg 147.48798 85.28974 m 153.43149 120.31655 l 156.86298 74.25891 l 150.91946 81.35435 lx
-0.00000 0.00000 0.08367 s 159.37500 78.67422 m 165.31851 73.91334 l 168.75000 77.55884 l 162.80649 78.80194 lf
-0 sg 159.37500 78.67422 m 165.31851 73.91334 l 168.75000 77.55884 l 162.80649 78.80194 lx
-0.00000 0.00000 0.06762 s 211.27405 73.16156 m 235.04809 66.29801 l 248.77405 78.18504 l 225.00000 85.04794 lf
-0 sg 211.27405 73.16156 m 235.04809 66.29801 l 248.77405 78.18504 l 225.00000 85.04794 lx
-0.00000 0.00000 0.54087 s 138.11298 74.95503 m 144.05649 117.76274 l 147.48798 85.28974 l 141.54446 79.86228 lf
-0 sg 138.11298 74.95503 m 144.05649 117.76274 l 147.48798 85.28974 l 141.54446 79.86228 lx
-0.00000 0.00000 0.49563 s 153.43149 120.31655 m 159.37500 78.67422 l 162.80649 78.80194 l 156.86298 74.25891 lf
-0 sg 153.43149 120.31655 m 159.37500 78.67422 l 162.80649 78.80194 l 156.86298 74.25891 lx
-0.00000 0.00000 0.06749 s 180.63702 74.06967 m 192.52405 70.65169 l 199.38702 76.59178 l 187.50000 80.02200 lf
-0 sg 180.63702 74.06967 m 192.52405 70.65169 l 199.38702 76.59178 l 187.50000 80.02200 lx
-0.00000 0.00000 0.06255 s 165.31851 73.91334 m 171.26202 72.94090 l 174.69351 75.81425 l 168.75000 77.55884 lf
-0 sg 165.31851 73.91334 m 171.26202 72.94090 l 174.69351 75.81425 l 168.75000 77.55884 lx
-0.00000 0.00000 0.06649 s 100.61298 73.41190 m 112.50000 69.99344 l 119.36298 75.76296 l 107.47595 79.38597 lf
-0 sg 100.61298 73.41190 m 112.50000 69.99344 l 119.36298 75.76296 l 107.47595 79.38597 lx
-0.00000 0.00000 0.06756 s 51.22595 71.81544 m 75.00000 64.95303 l 88.72595 76.83035 l 64.95191 83.70382 lf
-0 sg 51.22595 71.81544 m 75.00000 64.95303 l 88.72595 76.83035 l 64.95191 83.70382 lx
-0.00000 0.00000 0.06085 s 160.63101 72.66737 m 163.60277 73.43473 l 165.31851 73.91334 l 162.34676 76.29378 lf
-0 sg 160.63101 72.66737 m 163.60277 73.43473 l 165.31851 73.91334 l 162.34676 76.29378 lx
-0.00000 0.00000 0.06869 s 171.26202 72.94090 m 177.20554 71.07952 l 180.63702 74.06967 l 174.69351 75.81425 lf
-0 sg 171.26202 72.94090 m 177.20554 71.07952 l 180.63702 74.06967 l 174.69351 75.81425 lx
-0.00000 0.00000 0.06228 s 163.60277 73.43473 m 166.57452 72.22846 l 168.29027 73.42712 l 165.31851 73.91334 lf
-0 sg 163.60277 73.43473 m 166.57452 72.22846 l 168.29027 73.42712 l 165.31851 73.91334 lx
-0.00000 0.00000 0.08949 s 131.25000 73.09203 m 137.19351 69.72875 l 140.62500 77.54359 l 134.68149 74.02353 lf
-0 sg 131.25000 73.09203 m 137.19351 69.72875 l 140.62500 77.54359 l 134.68149 74.02353 lx
-0.00000 0.00000 0.52157 s 134.68149 74.02353 m 140.62500 77.54359 l 144.05649 117.76274 l 138.11298 74.95503 lf
-0 sg 134.68149 74.02353 m 140.62500 77.54359 l 144.05649 117.76274 l 138.11298 74.95503 lx
-0.00000 0.00000 0.07688 s 158.91527 74.40886 m 161.88702 71.26485 l 163.60277 73.43473 l 160.63101 72.66737 lf
-0 sg 158.91527 74.40886 m 161.88702 71.26485 l 163.60277 73.43473 l 160.63101 72.66737 lx
-0.00000 0.00000 0.06727 s 166.57452 72.22846 m 169.54628 71.41458 l 171.26202 72.94090 l 168.29027 73.42712 lf
-0 sg 166.57452 72.22846 m 169.54628 71.41458 l 171.26202 72.94090 l 168.29027 73.42712 lx
-0.00000 0.00000 0.44956 s 157.65926 106.30060 m 160.63101 72.66737 l 162.34676 76.29378 l 159.37500 78.67422 lf
-0 sg 157.65926 106.30060 m 160.63101 72.66737 l 162.34676 76.29378 l 159.37500 78.67422 lx
-0.00000 0.00000 0.06764 s 192.52405 70.65169 m 204.41107 67.21680 l 211.27405 73.16156 l 199.38702 76.59178 lf
-0 sg 192.52405 70.65169 m 204.41107 67.21680 l 211.27405 73.16156 l 199.38702 76.59178 lx
-0.00000 0.00000 0.06733 s 161.88702 71.26485 m 164.85878 70.57655 l 166.57452 72.22846 l 163.60277 73.43473 lf
-0 sg 161.88702 71.26485 m 164.85878 70.57655 l 166.57452 72.22846 l 163.60277 73.43473 lx
-0.00000 0.00000 0.06722 s 177.20554 71.07952 m 183.14905 69.40220 l 186.58054 72.36068 l 180.63702 74.06967 lf
-0 sg 177.20554 71.07952 m 183.14905 69.40220 l 186.58054 72.36068 l 180.63702 74.06967 lx
-0.00000 0.00000 0.07153 s 112.50000 69.99344 m 124.38702 66.42324 l 131.25000 73.09203 l 119.36298 75.76296 lf
-0 sg 112.50000 69.99344 m 124.38702 66.42324 l 131.25000 73.09203 l 119.36298 75.76296 lx
-0.00000 0.00000 0.07992 s 157.19952 70.33783 m 160.17128 70.08902 l 161.88702 71.26485 l 158.91527 74.40886 lf
-0 sg 157.19952 70.33783 m 160.17128 70.08902 l 161.88702 71.26485 l 158.91527 74.40886 lx
-0.00000 0.00000 0.06772 s 164.85878 70.57655 m 167.83054 69.88825 l 169.54628 71.41458 l 166.57452 72.22846 lf
-0 sg 164.85878 70.57655 m 167.83054 69.88825 l 169.54628 71.41458 l 166.57452 72.22846 lx
-0.00000 0.00000 0.06889 s 167.83054 69.88825 m 173.77405 68.12656 l 177.20554 71.07952 l 171.26202 72.94090 lf
-0 sg 167.83054 69.88825 m 173.77405 68.12656 l 177.20554 71.07952 l 171.26202 72.94090 lx
-0.00000 0.00000 0.06771 s 183.14905 69.40220 m 189.09256 67.67737 l 192.52405 70.65169 l 186.58054 72.36068 lf
-0 sg 183.14905 69.40220 m 189.09256 67.67737 l 192.52405 70.65169 l 186.58054 72.36068 lx
-0.00000 0.00000 0.04807 s 155.48378 68.01459 m 158.45554 68.91319 l 160.17128 70.08902 l 157.19952 70.33783 lf
-0 sg 155.48378 68.01459 m 158.45554 68.91319 l 160.17128 70.08902 l 157.19952 70.33783 lx
-0.00000 0.00000 0.06736 s 158.45554 68.91319 m 164.39905 66.80986 l 167.83054 69.88825 l 161.88702 71.26485 lf
-0 sg 158.45554 68.91319 m 164.39905 66.80986 l 167.83054 69.88825 l 161.88702 71.26485 lx
-0.00000 0.00000 0.01337 s 146.10878 67.32030 m 149.08054 68.27512 l 150.79628 68.11423 l 147.82452 65.56826 lf
-0 sg 146.10878 67.32030 m 149.08054 68.27512 l 150.79628 68.11423 l 147.82452 65.56826 lx
-0.00000 0.00000 0.11071 s 150.79628 68.11423 m 153.76804 68.02702 l 155.48378 68.01459 l 152.51202 76.19748 lf
-0 sg 150.79628 68.11423 m 153.76804 68.02702 l 155.48378 68.01459 l 152.51202 76.19748 lx
-0.00000 0.00000 0.06762 s 235.04809 66.29801 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18504 lf
-0 sg 235.04809 66.29801 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18504 lx
-0.00000 0.00000 0.06729 s 173.77405 68.12656 m 179.71756 66.42320 l 183.14905 69.40220 l 177.20554 71.07952 lf
-0 sg 173.77405 68.12656 m 179.71756 66.42320 l 183.14905 69.40220 l 177.20554 71.07952 lx
-0.00000 0.00000 0.17045 s 143.13702 66.36548 m 146.10878 67.32030 l 147.82452 65.56826 l 144.85277 87.27404 lf
-0 sg 143.13702 66.36548 m 146.10878 67.32030 l 147.82452 65.56826 l 144.85277 87.27404 lx
-0.00000 0.00000 0.06762 s 204.41107 67.21680 m 216.29809 63.78617 l 223.16107 69.72978 l 211.27405 73.16156 lf
-0 sg 204.41107 67.21680 m 216.29809 63.78617 l 223.16107 69.72978 l 211.27405 73.16156 lx
-0.00000 0.00000 0.47934 s 137.19351 69.72875 m 143.13702 66.36548 l 146.56851 108.18260 l 140.62500 77.54359 lf
-0 sg 137.19351 69.72875 m 143.13702 66.36548 l 146.56851 108.18260 l 140.62500 77.54359 lx
-0.00000 0.00000 0.05583 s 153.76804 68.02702 m 156.73979 67.13916 l 158.45554 68.91319 l 155.48378 68.01459 lf
-0 sg 153.76804 68.02702 m 156.73979 67.13916 l 158.45554 68.91319 l 155.48378 68.01459 lx
-0.00000 0.00000 0.04916 s 124.38702 66.42324 m 136.27405 63.69715 l 143.13702 66.36548 l 131.25000 73.09203 lf
-0 sg 124.38702 66.42324 m 136.27405 63.69715 l 143.13702 66.36548 l 131.25000 73.09203 lx
-0.00000 0.00000 0.45878 s 152.51202 76.19748 m 155.48378 68.01459 l 157.19952 70.33783 l 154.22777 102.36707 lf
-0 sg 152.51202 76.19748 m 155.48378 68.01459 l 157.19952 70.33783 l 154.22777 102.36707 lx
-0.00000 0.00000 0.07464 s 149.08054 68.27512 m 152.05229 66.82013 l 153.76804 68.02702 l 150.79628 68.11423 lf
-0 sg 149.08054 68.27512 m 152.05229 66.82013 l 153.76804 68.02702 l 150.79628 68.11423 lx
-0.00000 0.00000 0.06733 s 164.39905 66.80986 m 170.34256 65.18590 l 173.77405 68.12656 l 167.83054 69.88825 lf
-0 sg 164.39905 66.80986 m 170.34256 65.18590 l 173.77405 68.12656 l 167.83054 69.88825 lx
-0.00000 0.00000 0.06766 s 75.00000 64.95303 m 98.77405 58.08240 l 112.50000 69.99344 l 88.72595 76.83035 lf
-0 sg 75.00000 64.95303 m 98.77405 58.08240 l 112.50000 69.99344 l 88.72595 76.83035 lx
-0.00000 0.00000 0.90630 s 155.94351 114.79493 m 158.91527 74.40886 l 160.63101 72.66737 l 157.65926 106.30060 lf
-0 sg 155.94351 114.79493 m 158.91527 74.40886 l 160.63101 72.66737 l 157.65926 106.30060 lx
-0.00000 0.00000 0.44125 s 147.82452 65.56826 m 150.79628 68.11423 l 152.51202 76.19748 l 149.54027 102.98255 lf
-0 sg 147.82452 65.56826 m 150.79628 68.11423 l 152.51202 76.19748 l 149.54027 102.98255 lx
-0.00000 0.00000 0.06772 s 179.71756 66.42320 m 185.66107 64.70305 l 189.09256 67.67737 l 183.14905 69.40220 lf
-0 sg 179.71756 66.42320 m 185.66107 64.70305 l 189.09256 67.67737 l 183.14905 69.40220 lx
-0.00000 0.00000 0.03722 s 139.70554 65.03131 m 145.64905 64.50442 l 149.08054 68.27512 l 143.13702 66.36548 lf
-0 sg 139.70554 65.03131 m 145.64905 64.50442 l 149.08054 68.27512 l 143.13702 66.36548 lx
-0.00000 0.00000 0.06948 s 152.05229 66.82013 m 155.02405 65.36514 l 156.73979 67.13916 l 153.76804 68.02702 lf
-0 sg 152.05229 66.82013 m 155.02405 65.36514 l 156.73979 67.13916 l 153.76804 68.02702 lx
-0.00000 0.00000 0.06815 s 155.02405 65.36514 m 160.96756 63.97017 l 164.39905 66.80986 l 158.45554 68.91319 lf
-0 sg 155.02405 65.36514 m 160.96756 63.97017 l 164.39905 66.80986 l 158.45554 68.91319 lx
-0.00000 0.00000 0.90266 s 154.22777 102.36707 m 157.19952 70.33783 l 158.91527 74.40886 l 155.94351 114.79493 lf
-0 sg 154.22777 102.36707 m 157.19952 70.33783 l 158.91527 74.40886 l 155.94351 114.79493 lx
-0.00000 0.00000 0.06762 s 185.66107 64.70305 m 197.54809 61.27463 l 204.41107 67.21680 l 192.52405 70.65169 lf
-0 sg 185.66107 64.70305 m 197.54809 61.27463 l 204.41107 67.21680 l 192.52405 70.65169 lx
-0.00000 0.00000 0.06773 s 170.34256 65.18590 m 176.28607 63.44743 l 179.71756 66.42320 l 173.77405 68.12656 lf
-0 sg 170.34256 65.18590 m 176.28607 63.44743 l 179.71756 66.42320 l 173.77405 68.12656 lx
-0.00000 0.49566 0.50434 s 154.68750 144.92361 m 157.65926 106.30060 l 159.37500 78.67422 l 156.40324 99.49538 lf
-0 sg 154.68750 144.92361 m 157.65926 106.30060 l 159.37500 78.67422 l 156.40324 99.49538 lx
-0.00000 0.00000 0.06681 s 105.63702 64.03792 m 117.52405 60.62796 l 124.38702 66.42324 l 112.50000 69.99344 lf
-0 sg 105.63702 64.03792 m 117.52405 60.62796 l 124.38702 66.42324 l 112.50000 69.99344 lx
-0.00000 0.00000 0.06762 s 216.29809 63.78617 m 228.18512 60.35458 l 235.04809 66.29801 l 223.16107 69.72978 lf
-0 sg 216.29809 63.78617 m 228.18512 60.35458 l 235.04809 66.29801 l 223.16107 69.72978 lx
-0.00000 0.00000 0.07672 s 145.64905 64.50442 m 151.59256 62.64395 l 155.02405 65.36514 l 149.08054 68.27512 lf
-0 sg 145.64905 64.50442 m 151.59256 62.64395 l 155.02405 65.36514 l 149.08054 68.27512 lx
-0.00000 0.00000 0.06749 s 160.96756 63.97017 m 166.91107 62.17216 l 170.34256 65.18590 l 164.39905 66.80986 lf
-0 sg 160.96756 63.97017 m 166.91107 62.17216 l 170.34256 65.18590 l 164.39905 66.80986 lx
-0.00000 0.41498 0.58502 s 140.62500 77.54359 m 143.59676 92.86309 l 145.31250 146.69969 l 142.34074 97.65317 lf
-0 sg 140.62500 77.54359 m 143.59676 92.86309 l 145.31250 146.69969 l 142.34074 97.65317 lx
-0.00000 0.00000 0.98363 s 144.85277 87.27404 m 147.82452 65.56826 l 149.54027 102.98255 l 146.56851 108.18260 lf
-0 sg 144.85277 87.27404 m 147.82452 65.56826 l 149.54027 102.98255 l 146.56851 108.18260 lx
-0.00000 0.00000 0.06760 s 176.28607 63.44743 m 182.22958 61.73506 l 185.66107 64.70305 l 179.71756 66.42320 lf
-0 sg 176.28607 63.44743 m 182.22958 61.73506 l 185.66107 64.70305 l 179.71756 66.42320 lx
-0.00000 0.00000 0.06628 s 136.27405 63.69715 m 142.21756 61.61344 l 145.64905 64.50442 l 139.70554 65.03131 lf
-0 sg 136.27405 63.69715 m 142.21756 61.61344 l 145.64905 64.50442 l 139.70554 65.03131 lx
-0.00000 0.00000 0.06554 s 151.59256 62.64395 m 157.53607 60.96270 l 160.96756 63.97017 l 155.02405 65.36514 lf
-0 sg 151.59256 62.64395 m 157.53607 60.96270 l 160.96756 63.97017 l 155.02405 65.36514 lx
-0.00000 0.00000 0.06749 s 166.91107 62.17216 m 172.85458 60.46961 l 176.28607 63.44743 l 170.34256 65.18590 lf
-0 sg 166.91107 62.17216 m 172.85458 60.46961 l 176.28607 63.44743 l 170.34256 65.18590 lx
-0.00000 0.00000 0.06762 s 197.54809 61.27463 m 209.43512 57.84245 l 216.29809 63.78617 l 204.41107 67.21680 lf
-0 sg 197.54809 61.27463 m 209.43512 57.84245 l 216.29809 63.78617 l 204.41107 67.21680 lx
-0.00000 0.00000 0.06979 s 142.21756 61.61344 m 148.16107 59.52974 l 151.59256 62.64395 l 145.64905 64.50442 lf
-0 sg 142.21756 61.61344 m 148.16107 59.52974 l 151.59256 62.64395 l 145.64905 64.50442 lx
-0.00000 0.00000 0.07149 s 117.52405 60.62796 m 129.41107 57.02019 l 136.27405 63.69715 l 124.38702 66.42324 lf
-0 sg 117.52405 60.62796 m 129.41107 57.02019 l 136.27405 63.69715 l 124.38702 66.42324 lx
-0.00000 0.00000 0.06843 s 157.53607 60.96270 m 163.47958 59.22803 l 166.91107 62.17216 l 160.96756 63.97017 lf
-0 sg 157.53607 60.96270 m 163.47958 59.22803 l 166.91107 62.17216 l 160.96756 63.97017 lx
-0.00000 0.00000 0.06757 s 172.85458 60.46961 m 178.79809 58.76707 l 182.22958 61.73506 l 176.28607 63.44743 lf
-0 sg 172.85458 60.46961 m 178.79809 58.76707 l 182.22958 61.73506 l 176.28607 63.44743 lx
-0.00000 0.00000 0.06541 s 148.16107 59.52974 m 154.10458 57.90682 l 157.53607 60.96270 l 151.59256 62.64395 lf
-0 sg 148.16107 59.52974 m 154.10458 57.90682 l 157.53607 60.96270 l 151.59256 62.64395 lx
-0.39535 0.60465 0.00000 s 144.05649 117.76274 m 150.00000 190.77744 l 153.43149 120.31655 l 147.48798 85.28974 lf
-0 sg 144.05649 117.76274 m 150.00000 190.77744 l 153.43149 120.31655 l 147.48798 85.28974 lx
-0.00000 0.60820 0.39180 s 149.54027 102.98255 m 152.51202 76.19748 l 154.22777 102.36707 l 151.25601 139.91618 lf
-0 sg 149.54027 102.98255 m 152.51202 76.19748 l 154.22777 102.36707 l 151.25601 139.91618 lx
-0.00000 0.00000 0.06764 s 178.79809 58.76707 m 190.68512 55.32956 l 197.54809 61.27463 l 185.66107 64.70305 lf
-0 sg 178.79809 58.76707 m 190.68512 55.32956 l 197.54809 61.27463 l 185.66107 64.70305 lx
-0.00000 0.00000 0.06763 s 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 64.95303 l 27.45191 78.67786 lf
-0 sg 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 64.95303 l 27.45191 78.67786 lx
-0.00000 0.00000 0.06796 s 98.77405 58.08240 m 110.66107 54.66183 l 117.52405 60.62796 l 105.63702 64.03792 lf
-0 sg 98.77405 58.08240 m 110.66107 54.66183 l 117.52405 60.62796 l 105.63702 64.03792 lx
-0.00000 0.00000 0.06762 s 209.43512 57.84245 m 221.32214 54.41114 l 228.18512 60.35458 l 216.29809 63.78617 lf
-0 sg 209.43512 57.84245 m 221.32214 54.41114 l 228.18512 60.35458 l 216.29809 63.78617 lx
-0.48983 0.51017 0.00000 s 151.71574 155.54700 m 154.68750 144.92361 l 156.40324 99.49538 l 153.43149 120.31655 lf
-0 sg 151.71574 155.54700 m 154.68750 144.92361 l 156.40324 99.49538 l 153.43149 120.31655 lx
-0.00000 0.00000 0.06769 s 154.10458 57.90682 m 160.04809 56.28391 l 163.47958 59.22803 l 157.53607 60.96270 lf
-0 sg 154.10458 57.90682 m 160.04809 56.28391 l 163.47958 59.22803 l 157.53607 60.96270 lx
-0.00000 0.00000 0.07125 s 129.41107 57.02019 m 141.29809 53.77433 l 148.16107 59.52974 l 136.27405 63.69715 lf
-0 sg 129.41107 57.02019 m 141.29809 53.77433 l 148.16107 59.52974 l 136.27405 63.69715 lx
-0.50264 0.49736 0.00000 s 142.34074 97.65317 m 145.31250 146.69969 l 147.02824 154.27010 l 144.05649 117.76274 lf
-0 sg 142.34074 97.65317 m 145.31250 146.69969 l 147.02824 154.27010 l 144.05649 117.76274 lx
-0.00000 0.00000 0.06772 s 160.04809 56.28391 m 171.93512 52.80977 l 178.79809 58.76707 l 166.91107 62.17216 lf
-0 sg 160.04809 56.28391 m 171.93512 52.80977 l 178.79809 58.76707 l 166.91107 62.17216 lx
-0.00000 0.00000 0.06762 s 221.32214 54.41114 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29801 lf
-0 sg 221.32214 54.41114 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29801 lx
-0.00000 0.00000 0.06762 s 190.68512 55.32956 m 202.57214 51.89918 l 209.43512 57.84245 l 197.54809 61.27463 lf
-0 sg 190.68512 55.32956 m 202.57214 51.89918 l 209.43512 57.84245 l 197.54809 61.27463 lx
-0.57303 0.42697 0.00000 s 152.97176 152.20758 m 155.94351 114.79493 l 157.65926 106.30060 l 154.68750 144.92361 lf
-0 sg 152.97176 152.20758 m 155.94351 114.79493 l 157.65926 106.30060 l 154.68750 144.92361 lx
-0.00000 0.00000 0.06645 s 110.66107 54.66183 m 122.54809 51.24125 l 129.41107 57.02019 l 117.52405 60.62796 lf
-0 sg 110.66107 54.66183 m 122.54809 51.24125 l 129.41107 57.02019 l 117.52405 60.62796 lx
-0.43063 0.56937 0.00000 s 143.59676 92.86309 m 146.56851 108.18260 l 148.28426 152.92996 l 145.31250 146.69969 lf
-0 sg 143.59676 92.86309 m 146.56851 108.18260 l 148.28426 152.92996 l 145.31250 146.69969 lx
-0.00000 0.00000 0.06758 s 61.27405 53.06544 m 85.04809 46.20331 l 98.77405 58.08240 l 75.00000 64.95303 lf
-0 sg 61.27405 53.06544 m 85.04809 46.20331 l 98.77405 58.08240 l 75.00000 64.95303 lx
-0.00000 0.00000 0.06661 s 141.29809 53.77433 m 153.18512 50.29911 l 160.04809 56.28391 l 148.16107 59.52974 lf
-0 sg 141.29809 53.77433 m 153.18512 50.29911 l 160.04809 56.28391 l 148.16107 59.52974 lx
-0.53896 0.46104 0.00000 s 151.25601 139.91618 m 154.22777 102.36707 l 155.94351 114.79493 l 152.97176 152.20758 lf
-0 sg 151.25601 139.91618 m 154.22777 102.36707 l 155.94351 114.79493 l 152.97176 152.20758 lx
-0.50756 0.49244 0.00000 s 146.56851 108.18260 m 149.54027 102.98255 l 151.25601 139.91618 l 148.28426 152.92996 lf
-0 sg 146.56851 108.18260 m 149.54027 102.98255 l 151.25601 139.91618 l 148.28426 152.92996 lx
-0.00000 0.00000 0.06758 s 171.93512 52.80977 m 183.82214 49.38790 l 190.68512 55.32956 l 178.79809 58.76707 lf
-0 sg 171.93512 52.80977 m 183.82214 49.38790 l 190.68512 55.32956 l 178.79809 58.76707 lx
-0.00000 0.00000 0.06762 s 202.57214 51.89918 m 214.45917 48.46748 l 221.32214 54.41114 l 209.43512 57.84245 lf
-0 sg 202.57214 51.89918 m 214.45917 48.46748 l 221.32214 54.41114 l 209.43512 57.84245 lx
-0.00000 0.00000 0.06657 s 122.54809 51.24125 m 134.43512 47.80011 l 141.29809 53.77433 l 129.41107 57.02019 lf
-0 sg 122.54809 51.24125 m 134.43512 47.80011 l 141.29809 53.77433 l 129.41107 57.02019 lx
-0.00000 0.00000 0.06785 s 153.18512 50.29911 m 165.07214 46.87742 l 171.93512 52.80977 l 160.04809 56.28391 lf
-0 sg 153.18512 50.29911 m 165.07214 46.87742 l 171.93512 52.80977 l 160.04809 56.28391 lx
-0.00000 0.00000 0.06762 s 183.82214 49.38790 m 195.70917 45.95586 l 202.57214 51.89918 l 190.68512 55.32956 lf
-0 sg 183.82214 49.38790 m 195.70917 45.95586 l 202.57214 51.89918 l 190.68512 55.32956 lx
-0.00000 0.00000 0.06797 s 134.43512 47.80011 m 146.32214 44.35898 l 153.18512 50.29911 l 141.29809 53.77433 lf
-0 sg 134.43512 47.80011 m 146.32214 44.35898 l 153.18512 50.29911 l 141.29809 53.77433 lx
-0.00000 0.00000 0.06769 s 85.04809 46.20331 m 108.82214 39.33518 l 122.54809 51.24125 l 98.77405 58.08240 lf
-0 sg 85.04809 46.20331 m 108.82214 39.33518 l 122.54809 51.24125 l 98.77405 58.08240 lx
-0.00000 0.00000 0.06756 s 165.07214 46.87742 m 176.95917 43.44407 l 183.82214 49.38790 l 171.93512 52.80977 lf
-0 sg 165.07214 46.87742 m 176.95917 43.44407 l 183.82214 49.38790 l 171.93512 52.80977 lx
-0.00000 0.00000 0.06762 s 195.70917 45.95586 m 207.59619 42.52381 l 214.45917 48.46748 l 202.57214 51.89918 lf
-0 sg 195.70917 45.95586 m 207.59619 42.52381 l 214.45917 48.46748 l 202.57214 51.89918 lx
-1.00000 0.95756 0.95756 s 150.00000 190.77744 m 152.97176 152.20758 l 154.68750 144.92361 l 151.71574 155.54700 lf
-0 sg 150.00000 190.77744 m 152.97176 152.20758 l 154.68750 144.92361 l 151.71574 155.54700 lx
-1.00000 sg 145.31250 146.69969 m 148.28426 152.92996 l 150.00000 190.77744 l 147.02824 154.27010 lf
-0 sg 145.31250 146.69969 m 148.28426 152.92996 l 150.00000 190.77744 l 147.02824 154.27010 lx
-0.00000 0.00000 0.06750 s 146.32214 44.35898 m 158.20917 40.92960 l 165.07214 46.87742 l 153.18512 50.29911 lf
-0 sg 146.32214 44.35898 m 158.20917 40.92960 l 165.07214 46.87742 l 153.18512 50.29911 lx
-1.00000 0.93845 0.93845 s 148.28426 152.92996 m 151.25601 139.91618 l 152.97176 152.20758 l 150.00000 190.77744 lf
-0 sg 148.28426 152.92996 m 151.25601 139.91618 l 152.97176 152.20758 l 150.00000 190.77744 lx
-0.00000 0.00000 0.06762 s 207.59619 42.52381 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41114 lf
-0 sg 207.59619 42.52381 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41114 lx
-0.00000 0.00000 0.06764 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20331 l 61.27405 53.06544 lf
-0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20331 l 61.27405 53.06544 lx
-0.00000 0.00000 0.06763 s 158.20917 40.92960 m 170.09619 37.50023 l 176.95917 43.44407 l 165.07214 46.87742 lf
-0 sg 158.20917 40.92960 m 170.09619 37.50023 l 176.95917 43.44407 l 165.07214 46.87742 lx
-0.00000 0.00000 0.06772 s 108.82214 39.33518 m 132.59619 32.47689 l 146.32214 44.35898 l 122.54809 51.24125 lf
-0 sg 108.82214 39.33518 m 132.59619 32.47689 l 146.32214 44.35898 l 122.54809 51.24125 lx
-0.00000 0.00000 0.06763 s 170.09619 37.50023 m 193.87024 30.63714 l 207.59619 42.52381 l 183.82214 49.38790 lf
-0 sg 170.09619 37.50023 m 193.87024 30.63714 l 207.59619 42.52381 l 183.82214 49.38790 lx
-0.00000 0.00000 0.06759 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.33518 l 85.04809 46.20331 lf
-0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.33518 l 85.04809 46.20331 lx
-0.00000 0.00000 0.06759 s 132.59619 32.47689 m 156.37024 25.61309 l 170.09619 37.50023 l 146.32214 44.35898 lf
-0 sg 132.59619 32.47689 m 156.37024 25.61309 l 170.09619 37.50023 l 146.32214 44.35898 lx
-0.00000 0.00000 0.06762 s 193.87024 30.63714 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52381 lf
-0 sg 193.87024 30.63714 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52381 lx
-0.00000 0.00000 0.06759 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47689 l 108.82214 39.33518 lf
-0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47689 l 108.82214 39.33518 lx
-0.00000 0.00000 0.06763 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61309 l 132.59619 32.47689 lf
-0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61309 l 132.59619 32.47689 lx
-0.00000 0.00000 0.06762 s 142.64428 13.72595 m 190.19238 0.00000 l 217.64428 23.77405 l 170.09619 37.50023 lf
-0 sg 142.64428 13.72595 m 190.19238 0.00000 l 217.64428 23.77405 l 170.09619 37.50023 lx
-showpage
-.
-DEAL::  Postprocessing: time=0.03, step=1, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.06, step=2, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.08, step=3, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.11, step=4, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.14, step=5, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.17, step=6, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.20, step=7, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.22, step=8, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.25, step=9, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.28, step=10, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.31, step=11, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.34, step=12, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.36, step=13, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.39, step=14, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.42, step=15, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.45, step=16, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.48, step=17, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.50, step=18, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.53, step=19, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.56, step=20, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.59, step=21, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.62, step=22, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.64, step=23, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.67, step=24, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.70, step=25, sweep=2. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 150
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50 setlinewidth
-0.24529 0.75471 0.00000 s 82.35572 126.22595 m 129.90381 112.92257 l 157.35572 136.27405 l 109.80762 150.00000 lf
-0 sg 82.35572 126.22595 m 129.90381 112.92257 l 157.35572 136.27405 l 109.80762 150.00000 lx
-0.20292 0.79708 0.00000 s 129.90381 112.92257 m 177.45191 97.91264 l 204.90381 122.54809 l 157.35572 136.27405 lf
-0 sg 129.90381 112.92257 m 177.45191 97.91264 l 204.90381 122.54809 l 157.35572 136.27405 lx
-0.00000 0.98888 0.01112 s 54.90381 102.45191 m 102.45191 83.51311 l 129.90381 112.92257 l 82.35572 126.22595 lf
-0 sg 54.90381 102.45191 m 102.45191 83.51311 l 129.90381 112.92257 l 82.35572 126.22595 lx
-0.09938 0.90062 0.00000 s 177.45191 97.91264 m 225.00000 83.36560 l 252.45191 108.82214 l 204.90381 122.54809 lf
-0 sg 177.45191 97.91264 m 225.00000 83.36560 l 252.45191 108.82214 l 204.90381 122.54809 lx
-0.37606 0.62394 0.00000 s 238.72595 96.09387 m 262.50000 93.99472 l 276.22595 101.95917 l 252.45191 108.82214 lf
-0 sg 238.72595 96.09387 m 262.50000 93.99472 l 276.22595 101.95917 l 252.45191 108.82214 lx
-0.03746 0.96254 0.00000 s 102.45191 83.51311 m 150.00000 76.84897 l 177.45191 97.91264 l 129.90381 112.92257 lf
-0 sg 102.45191 83.51311 m 150.00000 76.84897 l 177.45191 97.91264 l 129.90381 112.92257 lx
-0.41744 0.58256 0.00000 s 262.50000 93.99472 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lf
-0 sg 262.50000 93.99472 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lx
-0.04146 0.95854 0.00000 s 163.72595 87.38080 m 187.50000 77.94226 l 201.22595 90.63912 l 177.45191 97.91264 lf
-0 sg 163.72595 87.38080 m 187.50000 77.94226 l 201.22595 90.63912 l 177.45191 97.91264 lx
-0.33499 0.66501 0.00000 s 225.00000 83.36560 m 248.77405 79.03250 l 262.50000 93.99472 l 238.72595 96.09387 lf
-0 sg 225.00000 83.36560 m 248.77405 79.03250 l 262.50000 93.99472 l 238.72595 96.09387 lx
-0.10733 0.89267 0.00000 s 27.45191 78.67786 m 75.00000 67.78263 l 102.45191 83.51311 l 54.90381 102.45191 lf
-0 sg 27.45191 78.67786 m 75.00000 67.78263 l 102.45191 83.51311 l 54.90381 102.45191 lx
-0.00000 0.91659 0.08341 s 187.50000 77.94226 m 211.27405 71.93722 l 225.00000 83.36560 l 201.22595 90.63912 lf
-0 sg 187.50000 77.94226 m 211.27405 71.93722 l 225.00000 83.36560 l 201.22595 90.63912 lx
-0.02627 0.97373 0.00000 s 218.13702 77.65141 m 230.02405 75.19602 l 236.88702 81.19905 l 225.00000 83.36560 lf
-0 sg 218.13702 77.65141 m 230.02405 75.19602 l 236.88702 81.19905 l 225.00000 83.36560 lx
-0.45912 0.54088 0.00000 s 248.77405 79.03250 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.99472 lf
-0 sg 248.77405 79.03250 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.99472 lx
-0.15333 0.84667 0.00000 s 150.00000 76.84897 m 173.77405 66.42909 l 187.50000 77.94226 l 163.72595 87.38080 lf
-0 sg 150.00000 76.84897 m 173.77405 66.42909 l 187.50000 77.94226 l 163.72595 87.38080 lx
-0.19295 0.80705 0.00000 s 230.02405 75.19602 m 241.91107 71.64744 l 248.77405 79.03250 l 236.88702 81.19905 lf
-0 sg 230.02405 75.19602 m 241.91107 71.64744 l 248.77405 79.03250 l 236.88702 81.19905 lx
-0.04264 0.95736 0.00000 s 180.63702 72.18567 m 192.52405 72.58121 l 199.38702 74.93974 l 187.50000 77.94226 lf
-0 sg 180.63702 72.18567 m 192.52405 72.58121 l 199.38702 74.93974 l 187.50000 77.94226 lx
-0.03217 0.96783 0.00000 s 211.27405 71.93722 m 223.16107 68.97347 l 230.02405 75.19602 l 218.13702 77.65141 lf
-0 sg 211.27405 71.93722 m 223.16107 68.97347 l 230.02405 75.19602 l 218.13702 77.65141 lx
-0.19210 0.80790 0.00000 s 241.91107 71.64744 m 253.79809 67.47441 l 260.66107 75.17732 l 248.77405 79.03250 lf
-0 sg 241.91107 71.64744 m 253.79809 67.47441 l 260.66107 75.17732 l 248.77405 79.03250 lx
-0.00000 0.89329 0.10671 s 192.52405 72.58121 m 204.41107 61.42832 l 211.27405 71.93722 l 199.38702 74.93974 lf
-0 sg 192.52405 72.58121 m 204.41107 61.42832 l 211.27405 71.93722 l 199.38702 74.93974 lx
-0.04080 0.95920 0.00000 s 223.16107 68.97347 m 235.04809 64.39072 l 241.91107 71.64744 l 230.02405 75.19602 lf
-0 sg 223.16107 68.97347 m 235.04809 64.39072 l 241.91107 71.64744 l 230.02405 75.19602 lx
-0.07468 0.92532 0.00000 s 75.00000 67.78263 m 122.54809 48.71317 l 150.00000 76.84897 l 102.45191 83.51311 lf
-0 sg 75.00000 67.78263 m 122.54809 48.71317 l 150.00000 76.84897 l 102.45191 83.51311 lx
-0.17964 0.82036 0.00000 s 253.79809 67.47441 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 75.17732 lf
-0 sg 253.79809 67.47441 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 75.17732 lx
-0.00000 0.99331 0.00669 s 173.77405 66.42909 m 185.66107 61.67580 l 192.52405 72.58121 l 180.63702 72.18567 lf
-0 sg 173.77405 66.42909 m 185.66107 61.67580 l 192.52405 72.58121 l 180.63702 72.18567 lx
-0.00000 0.60965 0.39035 s 204.41107 61.42832 m 216.29809 59.05481 l 223.16107 68.97347 l 211.27405 71.93722 lf
-0 sg 204.41107 61.42832 m 216.29809 59.05481 l 223.16107 68.97347 l 211.27405 71.93722 lx
-0.00000 0.96045 0.03955 s 235.04809 64.39072 m 246.93512 61.33554 l 253.79809 67.47441 l 241.91107 71.64744 lf
-0 sg 235.04809 64.39072 m 246.93512 61.33554 l 253.79809 67.47441 l 241.91107 71.64744 lx
-0.18323 0.81677 0.00000 s 185.66107 61.67580 m 197.54809 67.32182 l 204.41107 61.42832 l 192.52405 72.58121 lf
-0 sg 185.66107 61.67580 m 197.54809 67.32182 l 204.41107 61.42832 l 192.52405 72.58121 lx
-0.00000 0.64916 0.35084 s 200.97958 64.37507 m 206.92309 61.75320 l 210.35458 60.24157 l 204.41107 61.42832 lf
-0 sg 200.97958 64.37507 m 206.92309 61.75320 l 210.35458 60.24157 l 204.41107 61.42832 lx
-0.00000 0.82004 0.17996 s 216.29809 59.05481 m 228.18512 59.52640 l 235.04809 64.39072 l 223.16107 68.97347 lf
-0 sg 216.29809 59.05481 m 228.18512 59.52640 l 235.04809 64.39072 l 223.16107 68.97347 lx
-0.21712 0.78288 0.00000 s 136.27405 62.78107 m 160.04809 56.29083 l 173.77405 66.42909 l 150.00000 76.84897 lf
-0 sg 136.27405 62.78107 m 160.04809 56.29083 l 173.77405 66.42909 l 150.00000 76.84897 lx
-0.00000 0.22341 0.77659 s 206.92309 61.75320 m 212.86661 51.22982 l 216.29809 59.05481 l 210.35458 60.24157 lf
-0 sg 206.92309 61.75320 m 212.86661 51.22982 l 216.29809 59.05481 l 210.35458 60.24157 lx
-0.08349 0.91651 0.00000 s 246.93512 61.33554 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 67.47441 lf
-0 sg 246.93512 61.33554 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 67.47441 lx
-0.00000 0.96953 0.03047 s 166.91107 61.35996 m 178.79809 59.14945 l 185.66107 61.67580 l 173.77405 66.42909 lf
-0 sg 166.91107 61.35996 m 178.79809 59.14945 l 185.66107 61.67580 l 173.77405 66.42909 lx
-0.00000 0.34337 0.65663 s 212.86661 51.22982 m 218.81012 58.27998 l 222.24161 59.29061 l 216.29809 59.05481 lf
-0 sg 212.86661 51.22982 m 218.81012 58.27998 l 222.24161 59.29061 l 216.29809 59.05481 lx
-0.00000 0.00000 0.44581 s 211.15086 47.07010 m 214.12262 49.35292 l 215.83836 54.75490 l 212.86661 51.22982 lf
-0 sg 211.15086 47.07010 m 214.12262 49.35292 l 215.83836 54.75490 l 212.86661 51.22982 lx
-0.00000 0.00000 0.82579 s 203.49161 56.41491 m 209.43512 42.91038 l 212.86661 51.22982 l 206.92309 61.75320 lf
-0 sg 203.49161 56.41491 m 209.43512 42.91038 l 212.86661 51.22982 l 206.92309 61.75320 lx
-0.00000 sg 209.43512 42.91038 m 212.40687 48.06709 l 214.12262 49.35292 l 211.15086 47.07010 lf
-0 sg 209.43512 42.91038 m 212.40687 48.06709 l 214.12262 49.35292 l 211.15086 47.07010 lx
-0.11123 0.88877 0.00000 s 228.18512 59.52640 m 240.07214 58.88685 l 246.93512 61.33554 l 235.04809 64.39072 lf
-0 sg 228.18512 59.52640 m 240.07214 58.88685 l 246.93512 61.33554 l 235.04809 64.39072 lx
-0.33551 0.66449 0.00000 s 197.54809 67.32182 m 203.49161 56.41491 l 206.92309 61.75320 l 200.97958 64.37507 lf
-0 sg 197.54809 67.32182 m 203.49161 56.41491 l 206.92309 61.75320 l 200.97958 64.37507 lx
-0.15807 0.84193 0.00000 s 243.50363 60.11119 m 249.44714 58.90869 l 252.87863 60.38533 l 246.93512 61.33554 lf
-0 sg 243.50363 60.11119 m 249.44714 58.90869 l 252.87863 60.38533 l 246.93512 61.33554 lx
-0.04889 0.95111 0.00000 s 178.79809 59.14945 m 190.68512 48.35479 l 197.54809 67.32182 l 185.66107 61.67580 lf
-0 sg 178.79809 59.14945 m 190.68512 48.35479 l 197.54809 67.32182 l 185.66107 61.67580 lx
-0.00000 0.00000 0.41665 s 200.06012 48.48501 m 206.00363 44.29290 l 209.43512 42.91038 l 203.49161 56.41491 lf
-0 sg 200.06012 48.48501 m 206.00363 44.29290 l 209.43512 42.91038 l 203.49161 56.41491 lx
-0.00000 0.00000 0.10775 s 207.71937 43.60164 m 210.69113 49.06849 l 212.40687 48.06709 l 209.43512 42.91038 lf
-0 sg 207.71937 43.60164 m 210.69113 49.06849 l 212.40687 48.06709 l 209.43512 42.91038 lx
-0.00000 0.59799 0.40201 s 214.12262 49.35292 m 217.09437 60.01300 l 218.81012 58.27998 l 215.83836 54.75490 lf
-0 sg 214.12262 49.35292 m 217.09437 60.01300 l 218.81012 58.27998 l 215.83836 54.75490 lx
-0.20608 0.79392 0.00000 s 218.81012 58.27998 m 224.75363 61.43477 l 228.18512 59.52640 l 222.24161 59.29061 lf
-0 sg 218.81012 58.27998 m 224.75363 61.43477 l 228.18512 59.52640 l 222.24161 59.29061 lx
-0.36374 0.63626 0.00000 s 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 67.78263 l 27.45191 78.67786 lf
-0 sg 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 67.78263 l 27.45191 78.67786 lx
-0.00000 0.94605 0.05395 s 194.11661 57.83830 m 200.06012 48.48501 l 203.49161 56.41491 l 197.54809 67.32182 lf
-0 sg 194.11661 57.83830 m 200.06012 48.48501 l 203.49161 56.41491 l 197.54809 67.32182 lx
-0.22273 0.77727 0.00000 s 249.44714 58.90869 m 255.39065 56.46336 l 258.82214 59.43512 l 252.87863 60.38533 lf
-0 sg 249.44714 58.90869 m 255.39065 56.46336 l 258.82214 59.43512 l 252.87863 60.38533 lx
-0.00000 0.64505 0.35495 s 212.40687 48.06709 m 215.37863 59.98116 l 217.09437 60.01300 l 214.12262 49.35292 lf
-0 sg 212.40687 48.06709 m 215.37863 59.98116 l 217.09437 60.01300 l 214.12262 49.35292 lx
-0.30444 0.69556 0.00000 s 224.75363 61.43477 m 230.69714 53.50076 l 234.12863 59.20663 l 228.18512 59.52640 lf
-0 sg 224.75363 61.43477 m 230.69714 53.50076 l 234.12863 59.20663 l 228.18512 59.52640 lx
-0.00000 0.00000 0.67193 s 206.00363 44.29290 m 208.97539 52.21123 l 210.69113 49.06849 l 207.71937 43.60164 lf
-0 sg 206.00363 44.29290 m 208.97539 52.21123 l 210.69113 49.06849 l 207.71937 43.60164 lx
-0.04376 0.95624 0.00000 s 160.04809 56.29083 m 171.93512 49.54917 l 178.79809 59.14945 l 166.91107 61.35996 lf
-0 sg 160.04809 56.29083 m 171.93512 49.54917 l 178.79809 59.14945 l 166.91107 61.35996 lx
-0.00000 0.23571 0.76429 s 190.68512 48.35479 m 196.62863 49.05323 l 200.06012 48.48501 l 194.11661 57.83830 lf
-0 sg 190.68512 48.35479 m 196.62863 49.05323 l 200.06012 48.48501 l 194.11661 57.83830 lx
-0.36605 0.63395 0.00000 s 240.07214 58.88685 m 246.01565 55.17551 l 249.44714 58.90869 l 243.50363 60.11119 lf
-0 sg 240.07214 58.88685 m 246.01565 55.17551 l 249.44714 58.90869 l 243.50363 60.11119 lx
-0.66353 0.33647 0.00000 s 217.09437 60.01300 m 220.06613 62.48227 l 221.78187 59.85738 l 218.81012 58.27998 lf
-0 sg 217.09437 60.01300 m 220.06613 62.48227 l 221.78187 59.85738 l 218.81012 58.27998 lx
-0.17830 0.82170 0.00000 s 230.69714 53.50076 m 236.64065 52.64687 l 240.07214 58.88685 l 234.12863 59.20663 lf
-0 sg 230.69714 53.50076 m 236.64065 52.64687 l 240.07214 58.88685 l 234.12863 59.20663 lx
-0.00000 0.00000 0.97573 s 196.62863 49.05323 m 202.57214 49.75167 l 206.00363 44.29290 l 200.06012 48.48501 lf
-0 sg 196.62863 49.05323 m 202.57214 49.75167 l 206.00363 44.29290 l 200.06012 48.48501 lx
-0.00000 0.95879 0.04121 s 210.69113 49.06849 m 213.66289 60.73239 l 215.37863 59.98116 l 212.40687 48.06709 lf
-0 sg 210.69113 49.06849 m 213.66289 60.73239 l 215.37863 59.98116 l 212.40687 48.06709 lx
-0.92315 0.07685 0.00000 s 220.06613 62.48227 m 223.03789 58.70486 l 224.75363 61.43477 l 221.78187 59.85738 lf
-0 sg 220.06613 62.48227 m 223.03789 58.70486 l 224.75363 61.43477 l 221.78187 59.85738 lx
-0.25882 0.74118 0.00000 s 246.01565 55.17551 m 251.95917 53.49161 l 255.39065 56.46336 l 249.44714 58.90869 lf
-0 sg 246.01565 55.17551 m 251.95917 53.49161 l 255.39065 56.46336 l 249.44714 58.90869 lx
-0.60364 0.39636 0.00000 s 223.03789 58.70486 m 226.00964 54.94447 l 227.72539 57.46777 l 224.75363 61.43477 lf
-0 sg 223.03789 58.70486 m 226.00964 54.94447 l 227.72539 57.46777 l 224.75363 61.43477 lx
-0.10643 0.89357 0.00000 s 226.00964 54.94447 m 228.98140 53.09882 l 230.69714 53.50076 l 227.72539 57.46777 lf
-0 sg 226.00964 54.94447 m 228.98140 53.09882 l 230.69714 53.50076 l 227.72539 57.46777 lx
-0.00000 0.41601 0.58399 s 171.93512 49.54917 m 183.82214 42.80750 l 190.68512 48.35479 l 178.79809 59.14945 lf
-0 sg 171.93512 49.54917 m 183.82214 42.80750 l 190.68512 48.35479 l 178.79809 59.14945 lx
-0.00000 0.93181 0.06819 s 228.98140 53.09882 m 231.95315 52.35677 l 233.66890 53.07382 l 230.69714 53.50076 lf
-0 sg 228.98140 53.09882 m 231.95315 52.35677 l 233.66890 53.07382 l 230.69714 53.50076 lx
-1.00000 0.16339 0.16339 s 215.37863 59.98116 m 218.35039 62.37504 l 220.06613 62.48227 l 217.09437 60.01300 lf
-0 sg 215.37863 59.98116 m 218.35039 62.37504 l 220.06613 62.48227 l 217.09437 60.01300 lx
-0.24620 0.75380 0.00000 s 236.64065 52.64687 m 242.58417 52.04937 l 246.01565 55.17551 l 240.07214 58.88685 lf
-0 sg 236.64065 52.64687 m 242.58417 52.04937 l 246.01565 55.17551 l 240.07214 58.88685 lx
-0.00219 0.99781 0.00000 s 231.95315 52.35677 m 234.92491 51.95219 l 236.64065 52.64687 l 233.66890 53.07382 lf
-0 sg 231.95315 52.35677 m 234.92491 51.95219 l 236.64065 52.64687 l 233.66890 53.07382 lx
-0.09315 0.90685 0.00000 s 122.54809 48.71317 m 146.32214 44.49634 l 160.04809 56.29083 l 136.27405 62.78107 lf
-0 sg 122.54809 48.71317 m 146.32214 44.49634 l 160.04809 56.29083 l 136.27405 62.78107 lx
-0.67615 0.32385 0.00000 s 221.32214 58.77401 m 224.29390 55.65931 l 226.00964 54.94447 l 223.03789 58.70486 lf
-0 sg 221.32214 58.77401 m 224.29390 55.65931 l 226.00964 54.94447 l 223.03789 58.70486 lx
-0.46227 0.53773 0.00000 s 208.97539 52.21123 m 211.94714 60.12955 l 213.66289 60.73239 l 210.69113 49.06849 lf
-0 sg 208.97539 52.21123 m 211.94714 60.12955 l 213.66289 60.73239 l 210.69113 49.06849 lx
-1.00000 0.20845 0.20845 s 218.35039 62.37504 m 221.32214 58.77401 l 223.03789 58.70486 l 220.06613 62.48227 lf
-0 sg 218.35039 62.37504 m 221.32214 58.77401 l 223.03789 58.70486 l 220.06613 62.48227 lx
-0.31100 0.68900 0.00000 s 224.29390 55.65931 m 227.26565 53.52468 l 228.98140 53.09882 l 226.00964 54.94447 lf
-0 sg 224.29390 55.65931 m 227.26565 53.52468 l 228.98140 53.09882 l 226.00964 54.94447 lx
-0.18258 0.81742 0.00000 s 227.26565 53.52468 m 230.23741 52.20468 l 231.95315 52.35677 l 228.98140 53.09882 lf
-0 sg 227.26565 53.52468 m 230.23741 52.20468 l 231.95315 52.35677 l 228.98140 53.09882 lx
-0.21378 0.78622 0.00000 s 242.58417 52.04937 m 248.52768 50.51985 l 251.95917 53.49161 l 246.01565 55.17551 lf
-0 sg 242.58417 52.04937 m 248.52768 50.51985 l 251.95917 53.49161 l 246.01565 55.17551 lx
-1.00000 0.53005 0.53005 s 213.66289 60.73239 m 216.63464 63.27390 l 218.35039 62.37504 l 215.37863 59.98116 lf
-0 sg 213.66289 60.73239 m 216.63464 63.27390 l 218.35039 62.37504 l 215.37863 59.98116 lx
-0.36172 0.63828 0.00000 s 202.57214 49.75167 m 208.51565 58.72383 l 211.94714 60.12955 l 206.00363 44.29290 lf
-0 sg 202.57214 49.75167 m 208.51565 58.72383 l 211.94714 60.12955 l 206.00363 44.29290 lx
-0.18345 0.81655 0.00000 s 230.23741 52.20468 m 233.20917 51.25752 l 234.92491 51.95219 l 231.95315 52.35677 lf
-0 sg 230.23741 52.20468 m 233.20917 51.25752 l 234.92491 51.95219 l 231.95315 52.35677 lx
-1.00000 0.05840 0.05840 s 219.60640 59.49270 m 222.57815 55.98457 l 224.29390 55.65931 l 221.32214 58.77401 lf
-0 sg 219.60640 59.49270 m 222.57815 55.98457 l 224.29390 55.65931 l 221.32214 58.77401 lx
-1.00000 0.57848 0.57848 s 216.63464 63.27390 m 219.60640 59.49270 l 221.32214 58.77401 l 218.35039 62.37504 lf
-0 sg 216.63464 63.27390 m 219.60640 59.49270 l 221.32214 58.77401 l 218.35039 62.37504 lx
-0.16944 0.83056 0.00000 s 233.20917 51.25752 m 239.15268 49.35719 l 242.58417 52.04937 l 236.64065 52.64687 lf
-0 sg 233.20917 51.25752 m 239.15268 49.35719 l 242.58417 52.04937 l 236.64065 52.64687 lx
-0.00000 0.63405 0.36595 s 183.82214 42.80750 m 195.70917 49.65395 l 202.57214 49.75167 l 190.68512 48.35479 lf
-0 sg 183.82214 42.80750 m 195.70917 49.65395 l 202.57214 49.75167 l 190.68512 48.35479 lx
-0.68169 0.31831 0.00000 s 222.57815 55.98457 m 225.54991 53.65171 l 227.26565 53.52468 l 224.29390 55.65931 lf
-0 sg 222.57815 55.98457 m 225.54991 53.65171 l 227.26565 53.52468 l 224.29390 55.65931 lx
-0.48109 0.51891 0.00000 s 225.54991 53.65171 m 228.52167 51.92932 l 230.23741 52.20468 l 227.26565 53.52468 lf
-0 sg 225.54991 53.65171 m 228.52167 51.92932 l 230.23741 52.20468 l 227.26565 53.52468 lx
-1.00000 0.87025 0.87025 s 211.94714 60.12955 m 214.91890 63.19973 l 216.63464 63.27390 l 213.66289 60.73239 lf
-0 sg 211.94714 60.12955 m 214.91890 63.19973 l 216.63464 63.27390 l 213.66289 60.73239 lx
-0.36983 0.63017 0.00000 s 228.52167 51.92932 m 231.49342 50.22549 l 233.20917 51.25752 l 230.23741 52.20468 lf
-0 sg 228.52167 51.92932 m 231.49342 50.22549 l 233.20917 51.25752 l 230.23741 52.20468 lx
-0.21993 0.78007 0.00000 s 239.15268 49.35719 m 245.09619 47.54809 l 248.52768 50.51985 l 242.58417 52.04937 lf
-0 sg 239.15268 49.35719 m 245.09619 47.54809 l 248.52768 50.51985 l 242.58417 52.04937 lx
-1.00000 0.33036 0.33036 s 217.89065 58.71049 m 220.86241 55.30836 l 222.57815 55.98457 l 219.60640 59.49270 lf
-0 sg 217.89065 58.71049 m 220.86241 55.30836 l 222.57815 55.98457 l 219.60640 59.49270 lx
-0.87716 0.12284 0.00000 s 220.86241 55.30836 m 223.83417 51.90623 l 225.54991 53.65171 l 222.57815 55.98457 lf
-0 sg 220.86241 55.30836 m 223.83417 51.90623 l 225.54991 53.65171 l 222.57815 55.98457 lx
-1.00000 0.90826 0.90826 s 214.91890 63.19973 m 217.89065 58.71049 l 219.60640 59.49270 l 216.63464 63.27390 lf
-0 sg 214.91890 63.19973 m 217.89065 58.71049 l 219.60640 59.49270 l 216.63464 63.27390 lx
-0.61243 0.38757 0.00000 s 223.83417 51.90623 m 226.80592 50.54985 l 228.52167 51.92932 l 225.54991 53.65171 lf
-0 sg 223.83417 51.90623 m 226.80592 50.54985 l 228.52167 51.92932 l 225.54991 53.65171 lx
-1.00000 sg 210.23140 59.42669 m 213.20315 61.27394 l 214.91890 63.19973 l 211.94714 60.12955 lf
-0 sg 210.23140 59.42669 m 213.20315 61.27394 l 214.91890 63.19973 l 211.94714 60.12955 lx
-0.47926 0.52074 0.00000 s 226.80592 50.54985 m 229.77768 49.19347 l 231.49342 50.22549 l 228.52167 51.92932 lf
-0 sg 226.80592 50.54985 m 229.77768 49.19347 l 231.49342 50.22549 l 228.52167 51.92932 lx
-0.32583 0.67417 0.00000 s 229.77768 49.19347 m 235.72119 46.79519 l 239.15268 49.35719 l 233.20917 51.25752 lf
-0 sg 229.77768 49.19347 m 235.72119 46.79519 l 239.15268 49.35719 l 233.20917 51.25752 lx
-0.87362 0.12638 0.00000 s 199.14065 49.70281 m 205.08417 53.23987 l 208.51565 58.72383 l 202.57214 49.75167 lf
-0 sg 199.14065 49.70281 m 205.08417 53.23987 l 208.51565 58.72383 l 202.57214 49.75167 lx
-1.00000 0.96451 0.96451 s 213.20315 61.27394 m 216.17491 56.69274 l 217.89065 58.71049 l 214.91890 63.19973 lf
-0 sg 213.20315 61.27394 m 216.17491 56.69274 l 217.89065 58.71049 l 214.91890 63.19973 lx
-1.00000 0.90347 0.90347 s 208.51565 58.72383 m 211.48741 56.69941 l 213.20315 61.27394 l 210.23140 59.42669 lf
-0 sg 208.51565 58.72383 m 211.48741 56.69941 l 213.20315 61.27394 l 210.23140 59.42669 lx
-1.00000 0.13207 0.13207 s 214.45917 54.67499 m 220.40268 49.54217 l 223.83417 51.90623 l 217.89065 58.71049 lf
-0 sg 214.45917 54.67499 m 220.40268 49.54217 l 223.83417 51.90623 l 217.89065 58.71049 lx
-0.04616 0.95384 0.00000 s 146.32214 44.49634 m 170.09619 40.27951 l 183.82214 42.80750 l 160.04809 56.29083 lf
-0 sg 146.32214 44.49634 m 170.09619 40.27951 l 183.82214 42.80750 l 160.04809 56.29083 lx
-1.00000 0.73863 0.73863 s 211.48741 56.69941 m 214.45917 54.67499 l 216.17491 56.69274 l 213.20315 61.27394 lf
-0 sg 211.48741 56.69941 m 214.45917 54.67499 l 216.17491 56.69274 l 213.20315 61.27394 lx
-0.49660 0.50340 0.00000 s 220.40268 49.54217 m 226.34619 44.40935 l 229.77768 49.19347 l 223.83417 51.90623 lf
-0 sg 220.40268 49.54217 m 226.34619 44.40935 l 229.77768 49.19347 l 223.83417 51.90623 lx
-0.25384 0.74616 0.00000 s 235.72119 46.79519 m 241.66470 44.57634 l 245.09619 47.54809 l 239.15268 49.35719 lf
-0 sg 235.72119 46.79519 m 241.66470 44.57634 l 245.09619 47.54809 l 239.15268 49.35719 lx
-0.24014 0.75986 0.00000 s 47.54809 41.17786 m 95.09619 27.45191 l 122.54809 48.71317 l 75.00000 67.78263 lf
-0 sg 47.54809 41.17786 m 95.09619 27.45191 l 122.54809 48.71317 l 75.00000 67.78263 lx
-1.00000 0.48538 0.48538 s 205.08417 53.23987 m 211.02768 50.35416 l 214.45917 54.67499 l 208.51565 58.72383 lf
-0 sg 205.08417 53.23987 m 211.02768 50.35416 l 214.45917 54.67499 l 208.51565 58.72383 lx
-0.30100 0.69900 0.00000 s 226.34619 44.40935 m 232.28970 43.81353 l 235.72119 46.79519 l 229.77768 49.19347 lf
-0 sg 226.34619 44.40935 m 232.28970 43.81353 l 235.72119 46.79519 l 229.77768 49.19347 lx
-0.91833 0.08167 0.00000 s 195.70917 49.65395 m 201.65268 47.84364 l 205.08417 53.23987 l 199.14065 49.70281 lf
-0 sg 195.70917 49.65395 m 201.65268 47.84364 l 205.08417 53.23987 l 199.14065 49.70281 lx
-0.31503 0.68497 0.00000 s 176.95917 41.54351 m 188.84619 46.63361 l 195.70917 49.65395 l 183.82214 42.80750 lf
-0 sg 176.95917 41.54351 m 188.84619 46.63361 l 195.70917 49.65395 l 183.82214 42.80750 lx
-0.27351 0.72649 0.00000 s 232.28970 43.81353 m 238.23321 41.60458 l 241.66470 44.57634 l 235.72119 46.79519 lf
-0 sg 232.28970 43.81353 m 238.23321 41.60458 l 241.66470 44.57634 l 235.72119 46.79519 lx
-1.00000 0.10985 0.10985 s 201.65268 47.84364 m 207.59619 46.03333 l 211.02768 50.35416 l 205.08417 53.23987 lf
-0 sg 201.65268 47.84364 m 207.59619 46.03333 l 211.02768 50.35416 l 205.08417 53.23987 lx
-0.61940 0.38060 0.00000 s 207.59619 46.03333 m 219.48321 38.03123 l 226.34619 44.40935 l 214.45917 54.67499 lf
-0 sg 207.59619 46.03333 m 219.48321 38.03123 l 226.34619 44.40935 l 214.45917 54.67499 lx
-0.17370 0.82630 0.00000 s 222.91470 41.22029 m 228.85821 40.29319 l 232.28970 43.81353 l 226.34619 44.40935 lf
-0 sg 222.91470 41.22029 m 228.85821 40.29319 l 232.28970 43.81353 l 226.34619 44.40935 lx
-0.24604 0.75396 0.00000 s 228.85821 40.29319 m 234.80172 38.63283 l 238.23321 41.60458 l 232.28970 43.81353 lf
-0 sg 228.85821 40.29319 m 234.80172 38.63283 l 238.23321 41.60458 l 232.28970 43.81353 lx
-0.97260 0.02740 0.00000 s 188.84619 46.63361 m 200.73321 37.96066 l 207.59619 46.03333 l 195.70917 49.65395 lf
-0 sg 188.84619 46.63361 m 200.73321 37.96066 l 207.59619 46.03333 l 195.70917 49.65395 lx
-0.10196 0.89804 0.00000 s 219.48321 38.03123 m 225.42672 36.84615 l 228.85821 40.29319 l 222.91470 41.22029 lf
-0 sg 219.48321 38.03123 m 225.42672 36.84615 l 228.85821 40.29319 l 222.91470 41.22029 lx
-0.19568 0.80432 0.00000 s 225.42672 36.84615 m 231.37024 35.66107 l 234.80172 38.63283 l 228.85821 40.29319 lf
-0 sg 225.42672 36.84615 m 231.37024 35.66107 l 234.80172 38.63283 l 228.85821 40.29319 lx
-0.67055 0.32945 0.00000 s 170.09619 40.27951 m 181.98321 35.63595 l 188.84619 46.63361 l 176.95917 41.54351 lf
-0 sg 170.09619 40.27951 m 181.98321 35.63595 l 188.84619 46.63361 l 176.95917 41.54351 lx
-0.32391 0.67609 0.00000 s 200.73321 37.96066 m 212.62024 31.34194 l 219.48321 38.03123 l 207.59619 46.03333 lf
-0 sg 200.73321 37.96066 m 212.62024 31.34194 l 219.48321 38.03123 l 207.59619 46.03333 lx
-0.08341 0.91659 0.00000 s 212.62024 31.34194 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.03123 lf
-0 sg 212.62024 31.34194 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.03123 lx
-0.71265 0.28735 0.00000 s 181.98321 35.63595 m 193.87024 30.99238 l 200.73321 37.96066 l 188.84619 46.63361 lf
-0 sg 181.98321 35.63595 m 193.87024 30.99238 l 200.73321 37.96066 l 188.84619 46.63361 lx
-0.23762 0.76238 0.00000 s 95.09619 27.45191 m 142.64428 13.72595 l 170.09619 40.27951 l 122.54809 48.71317 lf
-0 sg 95.09619 27.45191 m 142.64428 13.72595 l 170.09619 40.27951 l 122.54809 48.71317 lx
-0.22972 0.77028 0.00000 s 193.87024 30.99238 m 205.75726 27.38321 l 212.62024 31.34194 l 200.73321 37.96066 lf
-0 sg 193.87024 30.99238 m 205.75726 27.38321 l 212.62024 31.34194 l 200.73321 37.96066 lx
-0.14436 0.85564 0.00000 s 205.75726 27.38321 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.34194 lf
-0 sg 205.75726 27.38321 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.34194 lx
-0.40771 0.59229 0.00000 s 156.37024 27.00273 m 180.14428 17.95023 l 193.87024 30.99238 l 170.09619 40.27951 lf
-0 sg 156.37024 27.00273 m 180.14428 17.95023 l 193.87024 30.99238 l 170.09619 40.27951 lx
-0.20264 0.79736 0.00000 s 180.14428 17.95023 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.99238 lf
-0 sg 180.14428 17.95023 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.99238 lx
-0.25352 0.74648 0.00000 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.95023 l 156.37024 27.00273 lf
-0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.95023 l 156.37024 27.00273 lx
-0.18516 0.81484 0.00000 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.95023 lf
-0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.95023 lx
-showpage
-.
-DEAL::
-DEAL::    Writing statistics for whole sweep.#  Description of fields
-DEAL::#  =====================
-DEAL::#  General:
-DEAL::#    time
-#  Primal problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Dual problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Error estimation:
-#    total estimated error in this timestep
-#  Postprocessing:
-#    Huyghens wave
-DEAL::
-DEAL::
-DEAL::0   157 198 0 0 0.00 0.00 0.00    157 765 9 9 0.00 0.00 0.00    0.00    0.08 
-DEAL::0.03   190 233 8 12 0.94 1.26 2.20    190 903 9 10 0.00 0.00 0.00    -0.05    0.00 
-DEAL::0.06   247 297 8 12 0.56 1.64 2.20    247 1159 10 10 0.00 0.00 0.00    -0.04    -0.10 
-DEAL::0.08   316 370 8 12 1.18 1.02 2.20    316 1446 13 10 0.00 0.00 0.00    -0.03    -0.09 
-DEAL::0.11   409 472 8 11 1.16 1.01 2.17    409 1852 17 10 0.00 0.00 0.00    -0.02    -0.17 
-DEAL::0.14   472 536 9 12 1.12 1.03 2.15    472 2103 18 10 0.00 0.00 0.00    -0.02    -0.18 
-DEAL::0.17   496 563 9 12 0.99 1.11 2.11    496 2210 19 10 0.00 0.00 0.00    -0.01    -0.16 
-DEAL::0.20   475 543 9 12 0.88 0.97 1.85    475 2130 18 10 0.00 0.00 0.00    0.00    -0.08 
-DEAL::0.22   526 597 9 12 0.94 0.84 1.78    526 2342 18 10 0.00 0.00 0.00    -0.02    0.05 
-DEAL::0.25   589 668 11 12 0.93 0.72 1.64    589 2624 21 10 0.00 0.00 0.00    -0.04    0.36 
-DEAL::0.28   544 623 10 12 0.74 0.67 1.42    544 2450 20 10 0.00 0.00 0.00    0.00    0.54 
-DEAL::0.31   520 593 9 12 0.62 0.79 1.41    520 2330 19 10 0.00 0.00 0.00    0.02    0.36 
-DEAL::0.34   490 559 10 13 0.58 0.76 1.34    490 2195 20 10 0.00 0.00 0.00    -0.01    -0.08 
-DEAL::0.36   460 526 9 12 0.72 0.61 1.32    460 2060 17 10 0.00 0.00 0.00    -0.01    -0.90 
-DEAL::0.39   439 501 9 13 0.52 0.48 1.00    439 1963 18 10 0.00 0.00 0.00    -0.03    -2.40 
-DEAL::0.42   406 464 9 13 0.47 0.50 0.97    406 1815 16 10 0.00 0.00 0.00    -0.02    -3.04 
-DEAL::0.45   343 400 9 12 0.42 0.41 0.82    343 1561 16 10 0.00 0.00 0.00    -0.02    1.07 
-DEAL::0.48   301 353 9 12 0.41 0.33 0.74    301 1376 15 10 0.00 0.00 0.00    -0.04    18.73 
-DEAL::0.50   295 345 8 12 0.27 0.29 0.56    295 1344 13 10 0.00 0.00 0.00    -0.09    108.27 
-DEAL::0.53   223 268 8 11 0.27 0.26 0.53    223 1038 9 10 0.00 0.00 0.00    0.09    386.54 
-DEAL::0.56   199 241 8 12 0.24 0.25 0.49    199 930 9 10 0.00 0.00 0.00    0.02    892.50 
-DEAL::0.59   187 227 8 12 0.23 0.24 0.46    187 874 9 10 0.00 0.00 0.00    0.06    1544.34 
-DEAL::0.62   154 192 9 12 0.22 0.18 0.40    154 734 8 10 0.00 0.00 0.00    0.05    2288.92 
-DEAL::0.64   121 157 8 11 0.18 0.19 0.37    121 599 8 9 0.00 0.00 0.00    -0.10    3098.91 
-DEAL::0.67   124 162 8 11 0.17 0.20 0.37    124 615 8 9 0.00 0.00 0.00    -1.05    3882.42 
-DEAL::0.70   124 162 8 11 0.19 0.18 0.37    124 615 0 0 0.00 0.00 0.00    -0.56    4587.93 
-DEAL::
-DEAL::    Writing summary.Summary of this sweep:
-======================
-
-  Accumulated number of cells: 8807
-  Acc. number of primal dofs : 20500
-  Acc. number of dual dofs   : 80066
-  Accumulated error          : 0.00
-
-  Evaluations:
-  ------------
-    Hughens wave -- weighted time: 0.63
-                    average      : 0.00
-  
-
-DEAL::
-DEAL::
diff --git a/tests/deal.II/wave-test-3/cmp/mips-sgi-irix6.5+MIPSpro7.4 b/tests/deal.II/wave-test-3/cmp/mips-sgi-irix6.5+MIPSpro7.4
deleted file mode 100644 (file)
index 8d825cc..0000000
+++ /dev/null
@@ -1,3313 +0,0 @@
-
-DEAL::Sweep 0 :
-DEAL::---------
-DEAL::  Primal problem: time=0.00, step=0, sweep=0. 256 cells, 289 dofsStarting value 0.00
-DEAL:cg::Convergence step 0 value 0.00
-DEAL:cg::Starting value 0.01
-DEAL:cg::Convergence step 15 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 0 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 0 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.03, step=1, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0.00
-DEAL:cg::Starting value 0.09
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.06, step=2, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.14
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.08, step=3, sweep=0. 256 cells, 289 dofsStarting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.13
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.11, step=4, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.14, step=5, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0.00
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.17, step=6, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.20, step=7, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.13
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.22, step=8, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.25, step=9, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.28, step=10, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.13
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.31, step=11, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0.00
-DEAL:cg::Starting value 0.13
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.34, step=12, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.36, step=13, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.39, step=14, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0.00
-DEAL:cg::Starting value 0.13
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.42, step=15, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.45, step=16, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.48, step=17, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.50, step=18, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.53, step=19, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.56, step=20, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.59, step=21, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.62, step=22, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.64, step=23, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 9 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.67, step=24, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.12
-DEAL:cg::Convergence step 12 value 0.00
-DEAL::.
-DEAL::  Primal problem: time=0.70, step=25, sweep=0. 256 cells, 289 dofsStarting value 0.01
-DEAL:cg::Convergence step 10 value 0.00
-DEAL:cg::Starting value 0.11
-DEAL:cg::Convergence step 13 value 0.00
-DEAL::.
-DEAL::
-DEAL::  Dual problem: time=0.70, step=25, sweep=0. 256 cells, 1089 dofs.
-DEAL::  Dual problem: time=0.67, step=24, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 5 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.64, step=23, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.62, step=22, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.59, step=21, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.56, step=20, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.53, step=19, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.50, step=18, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.48, step=17, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.45, step=16, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 6 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.42, step=15, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.39, step=14, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.36, step=13, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.34, step=12, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.31, step=11, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.28, step=10, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.25, step=9, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.22, step=8, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.20, step=7, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.17, step=6, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.14, step=5, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.11, step=4, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.08, step=3, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.06, step=2, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.03, step=1, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::  Dual problem: time=0.00, step=0, sweep=0. 256 cells, 1089 dofsStarting value 0.00
-DEAL:cg::Convergence step 7 value 0.00
-DEAL:cg::Starting value 0.00
-DEAL:cg::Convergence step 10 value 0.00
-DEAL::.
-DEAL::
-DEAL::  Postprocessing: time=0.00, step=0, sweep=0. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 189
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50 setlinewidth
-0.00000 0.00000 0.40691 s 102.94464 144.05649 m 114.83167 140.62500 l 121.69464 146.56851 l 109.80762 150.00000 lf
-0 sg 102.94464 144.05649 m 114.83167 140.62500 l 121.69464 146.56851 l 109.80762 150.00000 lx
-0.00000 0.00000 0.40691 s 114.83167 140.62500 m 126.71869 137.19351 l 133.58167 143.13702 l 121.69464 146.56851 lf
-0 sg 114.83167 140.62500 m 126.71869 137.19351 l 133.58167 143.13702 l 121.69464 146.56851 lx
-0.00000 0.00000 0.40691 s 96.08167 138.11298 m 107.96869 134.68149 l 114.83167 140.62500 l 102.94464 144.05649 lf
-0 sg 96.08167 138.11298 m 107.96869 134.68149 l 114.83167 140.62500 l 102.94464 144.05649 lx
-0.00000 0.00000 0.40691 s 126.71869 137.19351 m 138.60572 133.76203 l 145.46869 139.70554 l 133.58167 143.13702 lf
-0 sg 126.71869 137.19351 m 138.60572 133.76203 l 145.46869 139.70554 l 133.58167 143.13702 lx
-0.00000 0.00000 0.40691 s 107.96869 134.68149 m 119.85572 131.25000 l 126.71869 137.19351 l 114.83167 140.62500 lf
-0 sg 107.96869 134.68149 m 119.85572 131.25000 l 126.71869 137.19351 l 114.83167 140.62500 lx
-0.00000 0.00000 0.40691 s 138.60572 133.76203 m 150.49274 130.33052 l 157.35572 136.27405 l 145.46869 139.70554 lf
-0 sg 138.60572 133.76203 m 150.49274 130.33052 l 157.35572 136.27405 l 145.46869 139.70554 lx
-0.00000 0.00000 0.40691 s 89.21869 132.16946 m 101.10572 128.73798 l 107.96869 134.68149 l 96.08167 138.11298 lf
-0 sg 89.21869 132.16946 m 101.10572 128.73798 l 107.96869 134.68149 l 96.08167 138.11298 lx
-0.00000 0.00000 0.40691 s 119.85572 131.25000 m 131.74274 127.81850 l 138.60572 133.76203 l 126.71869 137.19351 lf
-0 sg 119.85572 131.25000 m 131.74274 127.81850 l 138.60572 133.76203 l 126.71869 137.19351 lx
-0.00000 0.00000 0.40691 s 150.49274 130.33052 m 162.37976 126.89910 l 169.24274 132.84256 l 157.35572 136.27405 lf
-0 sg 150.49274 130.33052 m 162.37976 126.89910 l 169.24274 132.84256 l 157.35572 136.27405 lx
-0.00000 0.00000 0.40691 s 101.10572 128.73798 m 112.99274 125.30647 l 119.85572 131.25000 l 107.96869 134.68149 lf
-0 sg 101.10572 128.73798 m 112.99274 125.30647 l 119.85572 131.25000 l 107.96869 134.68149 lx
-0.00000 0.00000 0.40691 s 131.74274 127.81850 m 143.62976 124.38708 l 150.49274 130.33052 l 138.60572 133.76203 lf
-0 sg 131.74274 127.81850 m 143.62976 124.38708 l 150.49274 130.33052 l 138.60572 133.76203 lx
-0.00000 0.00000 0.40691 s 162.37976 126.89910 m 174.26679 123.46737 l 181.12976 129.41107 l 169.24274 132.84256 lf
-0 sg 162.37976 126.89910 m 174.26679 123.46737 l 181.12976 129.41107 l 169.24274 132.84256 lx
-0.00000 0.00000 0.40691 s 82.35572 126.22595 m 94.24274 122.79445 l 101.10572 128.73798 l 89.21869 132.16946 lf
-0 sg 82.35572 126.22595 m 94.24274 122.79445 l 101.10572 128.73798 l 89.21869 132.16946 lx
-0.00000 0.00000 0.40691 s 112.99274 125.30647 m 124.87976 121.87505 l 131.74274 127.81850 l 119.85572 131.25000 lf
-0 sg 112.99274 125.30647 m 124.87976 121.87505 l 131.74274 127.81850 l 119.85572 131.25000 lx
-0.00000 0.00000 0.40691 s 143.62976 124.38708 m 155.51679 120.95533 l 162.37976 126.89910 l 150.49274 130.33052 lf
-0 sg 143.62976 124.38708 m 155.51679 120.95533 l 162.37976 126.89910 l 150.49274 130.33052 lx
-0.00000 0.00000 0.40693 s 174.26679 123.46737 m 186.15381 120.03678 l 193.01679 125.97958 l 181.12976 129.41107 lf
-0 sg 174.26679 123.46737 m 186.15381 120.03678 l 193.01679 125.97958 l 181.12976 129.41107 lx
-0.00000 0.00000 0.40691 s 94.24274 122.79445 m 106.12976 119.36303 l 112.99274 125.30647 l 101.10572 128.73798 lf
-0 sg 94.24274 122.79445 m 106.12976 119.36303 l 112.99274 125.30647 l 101.10572 128.73798 lx
-0.00000 0.00000 0.40691 s 124.87976 121.87505 m 136.76679 118.44331 l 143.62976 124.38708 l 131.74274 127.81850 lf
-0 sg 124.87976 121.87505 m 136.76679 118.44331 l 143.62976 124.38708 l 131.74274 127.81850 lx
-0.00000 0.00000 0.40693 s 155.51679 120.95533 m 167.40381 117.52480 l 174.26679 123.46737 l 162.37976 126.89910 lf
-0 sg 155.51679 120.95533 m 167.40381 117.52480 l 174.26679 123.46737 l 162.37976 126.89910 lx
-0.00000 0.00000 0.40691 s 75.49274 120.28244 m 87.37976 116.85100 l 94.24274 122.79445 l 82.35572 126.22595 lf
-0 sg 75.49274 120.28244 m 87.37976 116.85100 l 94.24274 122.79445 l 82.35572 126.22595 lx
-0.00000 0.00000 0.40672 s 186.15381 120.03678 m 198.04083 116.59932 l 204.90381 122.54809 l 193.01679 125.97958 lf
-0 sg 186.15381 120.03678 m 198.04083 116.59932 l 204.90381 122.54809 l 193.01679 125.97958 lx
-0.00000 0.00000 0.40691 s 106.12976 119.36303 m 118.01679 115.93128 l 124.87976 121.87505 l 112.99274 125.30647 lf
-0 sg 106.12976 119.36303 m 118.01679 115.93128 l 124.87976 121.87505 l 112.99274 125.30647 lx
-0.00000 0.00000 0.40693 s 136.76679 118.44331 m 148.65381 115.01278 l 155.51679 120.95533 l 143.62976 124.38708 lf
-0 sg 136.76679 118.44331 m 148.65381 115.01278 l 155.51679 120.95533 l 143.62976 124.38708 lx
-0.00000 0.00000 0.40685 s 167.40381 117.52480 m 179.29083 114.08974 l 186.15381 120.03678 l 174.26679 123.46737 lf
-0 sg 167.40381 117.52480 m 179.29083 114.08974 l 186.15381 120.03678 l 174.26679 123.46737 lx
-0.00000 0.00000 0.40691 s 87.37976 116.85100 m 99.26679 113.41926 l 106.12976 119.36303 l 94.24274 122.79445 lf
-0 sg 87.37976 116.85100 m 99.26679 113.41926 l 106.12976 119.36303 l 94.24274 122.79445 lx
-0.00000 0.00000 0.40672 s 198.04083 116.59932 m 209.92786 113.17380 l 216.79083 119.11661 l 204.90381 122.54809 lf
-0 sg 198.04083 116.59932 m 209.92786 113.17380 l 216.79083 119.11661 l 204.90381 122.54809 lx
-0.00000 0.00000 0.40693 s 118.01679 115.93128 m 129.90381 112.50076 l 136.76679 118.44331 l 124.87976 121.87505 lf
-0 sg 118.01679 115.93128 m 129.90381 112.50076 l 136.76679 118.44331 l 124.87976 121.87505 lx
-0.00000 0.00000 0.40685 s 148.65381 115.01278 m 160.54083 111.57770 l 167.40381 117.52480 l 155.51679 120.95533 lf
-0 sg 148.65381 115.01278 m 160.54083 111.57770 l 167.40381 117.52480 l 155.51679 120.95533 lx
-0.00000 0.00000 0.40691 s 68.62976 114.33893 m 80.51679 110.90725 l 87.37976 116.85100 l 75.49274 120.28244 lf
-0 sg 68.62976 114.33893 m 80.51679 110.90725 l 87.37976 116.85100 l 75.49274 120.28244 lx
-0.00000 0.00000 0.40749 s 179.29083 114.08974 m 191.17786 110.68213 l 198.04083 116.59932 l 186.15381 120.03678 lf
-0 sg 179.29083 114.08974 m 191.17786 110.68213 l 198.04083 116.59932 l 186.15381 120.03678 lx
-0.00000 0.00000 0.40693 s 99.26679 113.41926 m 111.15381 109.98874 l 118.01679 115.93128 l 106.12976 119.36303 lf
-0 sg 99.26679 113.41926 m 111.15381 109.98874 l 118.01679 115.93128 l 106.12976 119.36303 lx
-0.00000 0.00000 0.40693 s 209.92786 113.17380 m 221.81488 109.74142 l 228.67786 115.68512 l 216.79083 119.11661 lf
-0 sg 209.92786 113.17380 m 221.81488 109.74142 l 228.67786 115.68512 l 216.79083 119.11661 lx
-0.00000 0.00000 0.40685 s 129.90381 112.50076 m 141.79083 109.06568 l 148.65381 115.01278 l 136.76679 118.44331 lf
-0 sg 129.90381 112.50076 m 141.79083 109.06568 l 148.65381 115.01278 l 136.76679 118.44331 lx
-0.00000 0.00000 0.40715 s 160.54083 111.57770 m 172.42786 108.15963 l 179.29083 114.08974 l 167.40381 117.52480 lf
-0 sg 160.54083 111.57770 m 172.42786 108.15963 l 179.29083 114.08974 l 167.40381 117.52480 lx
-0.00000 0.00000 0.40693 s 80.51679 110.90725 m 92.40381 107.47671 l 99.26679 113.41926 l 87.37976 116.85100 lf
-0 sg 80.51679 110.90725 m 92.40381 107.47671 l 99.26679 113.41926 l 87.37976 116.85100 lx
-0.00000 0.00000 0.40749 s 191.17786 110.68213 m 203.06488 107.22676 l 209.92786 113.17380 l 198.04083 116.59932 lf
-0 sg 191.17786 110.68213 m 203.06488 107.22676 l 209.92786 113.17380 l 198.04083 116.59932 lx
-0.00000 0.00000 0.40685 s 111.15381 109.98874 m 123.04083 106.55365 l 129.90381 112.50076 l 118.01679 115.93128 lf
-0 sg 111.15381 109.98874 m 123.04083 106.55365 l 129.90381 112.50076 l 118.01679 115.93128 lx
-0.00000 0.00000 0.40691 s 221.81488 109.74142 m 233.70191 106.31017 l 240.56488 112.25363 l 228.67786 115.68512 lf
-0 sg 221.81488 109.74142 m 233.70191 106.31017 l 240.56488 112.25363 l 228.67786 115.68512 lx
-0.00000 0.00000 0.40715 s 141.79083 109.06568 m 153.67786 105.64761 l 160.54083 111.57770 l 148.65381 115.01278 lf
-0 sg 141.79083 109.06568 m 153.67786 105.64761 l 160.54083 111.57770 l 148.65381 115.01278 lx
-0.00000 0.00000 0.40693 s 61.76679 108.39542 m 73.65381 104.96463 l 80.51679 110.90725 l 68.62976 114.33893 lf
-0 sg 61.76679 108.39542 m 73.65381 104.96463 l 80.51679 110.90725 l 68.62976 114.33893 lx
-0.00000 0.00000 0.40481 s 172.42786 108.15963 m 184.31488 104.63857 l 191.17786 110.68213 l 179.29083 114.08974 lf
-0 sg 172.42786 108.15963 m 184.31488 104.63857 l 191.17786 110.68213 l 179.29083 114.08974 lx
-0.00000 0.00000 0.40685 s 92.40381 107.47671 m 104.29083 104.04163 l 111.15381 109.98874 l 99.26679 113.41926 lf
-0 sg 92.40381 107.47671 m 104.29083 104.04163 l 111.15381 109.98874 l 99.26679 113.41926 lx
-0.00000 0.00000 0.40685 s 203.06488 107.22676 m 214.95191 103.79885 l 221.81488 109.74142 l 209.92786 113.17380 lf
-0 sg 203.06488 107.22676 m 214.95191 103.79885 l 221.81488 109.74142 l 209.92786 113.17380 lx
-0.00000 0.00000 0.40715 s 123.04083 106.55365 m 134.92786 103.13559 l 141.79083 109.06568 l 129.90381 112.50076 lf
-0 sg 123.04083 106.55365 m 134.92786 103.13559 l 141.79083 109.06568 l 129.90381 112.50076 lx
-0.00000 0.00000 0.40691 s 233.70191 106.31017 m 245.58893 102.87862 l 252.45191 108.82214 l 240.56488 112.25363 lf
-0 sg 233.70191 106.31017 m 245.58893 102.87862 l 252.45191 108.82214 l 240.56488 112.25363 lx
-0.00000 0.00000 0.40603 s 153.67786 105.64761 m 165.56488 102.16603 l 172.42786 108.15963 l 160.54083 111.57770 lf
-0 sg 153.67786 105.64761 m 165.56488 102.16603 l 172.42786 108.15963 l 160.54083 111.57770 lx
-0.00000 0.00000 0.40685 s 73.65381 104.96463 m 85.54083 101.52962 l 92.40381 107.47671 l 80.51679 110.90725 lf
-0 sg 73.65381 104.96463 m 85.54083 101.52962 l 92.40381 107.47671 l 80.51679 110.90725 lx
-0.00000 0.00000 0.40481 s 184.31488 104.63857 m 196.20191 101.29665 l 203.06488 107.22676 l 191.17786 110.68213 lf
-0 sg 184.31488 104.63857 m 196.20191 101.29665 l 203.06488 107.22676 l 191.17786 110.68213 lx
-0.00000 0.00000 0.40715 s 104.29083 104.04163 m 116.17786 100.62356 l 123.04083 106.55365 l 111.15381 109.98874 lf
-0 sg 104.29083 104.04163 m 116.17786 100.62356 l 123.04083 106.55365 l 111.15381 109.98874 lx
-0.00000 0.00000 0.40693 s 214.95191 103.79885 m 226.83893 100.36640 l 233.70191 106.31017 l 221.81488 109.74142 lf
-0 sg 214.95191 103.79885 m 226.83893 100.36640 l 233.70191 106.31017 l 221.81488 109.74142 lx
-0.00000 0.00000 0.40603 s 134.92786 103.13559 m 146.81488 99.65400 l 153.67786 105.64761 l 141.79083 109.06568 lf
-0 sg 134.92786 103.13559 m 146.81488 99.65400 l 153.67786 105.64761 l 141.79083 109.06568 lx
-0.00000 0.00000 0.40691 s 245.58893 102.87862 m 257.47595 99.44715 l 264.33893 105.39065 l 252.45191 108.82214 lf
-0 sg 245.58893 102.87862 m 257.47595 99.44715 l 264.33893 105.39065 l 252.45191 108.82214 lx
-0.00000 0.00000 0.40672 s 54.90381 102.45191 m 66.79083 99.01515 l 73.65381 104.96463 l 61.76679 108.39542 lf
-0 sg 54.90381 102.45191 m 66.79083 99.01515 l 73.65381 104.96463 l 61.76679 108.39542 lx
-0.00000 0.00000 0.41474 s 165.56488 102.16603 m 177.45191 99.06893 l 184.31488 104.63857 l 172.42786 108.15963 lf
-0 sg 165.56488 102.16603 m 177.45191 99.06893 l 184.31488 104.63857 l 172.42786 108.15963 lx
-0.00000 0.00000 0.40715 s 85.54083 101.52962 m 97.42786 98.11153 l 104.29083 104.04163 l 92.40381 107.47671 lf
-0 sg 85.54083 101.52962 m 97.42786 98.11153 l 104.29083 104.04163 l 92.40381 107.47671 lx
-0.00000 0.00000 0.40715 s 196.20191 101.29665 m 208.08893 97.85175 l 214.95191 103.79885 l 203.06488 107.22676 lf
-0 sg 196.20191 101.29665 m 208.08893 97.85175 l 214.95191 103.79885 l 203.06488 107.22676 lx
-0.00000 0.00000 0.40603 s 116.17786 100.62356 m 128.06488 97.14198 l 134.92786 103.13559 l 123.04083 106.55365 lf
-0 sg 116.17786 100.62356 m 128.06488 97.14198 l 134.92786 103.13559 l 123.04083 106.55365 lx
-0.00000 0.00000 0.40691 s 226.83893 100.36640 m 238.72595 96.93517 l 245.58893 102.87862 l 233.70191 106.31017 lf
-0 sg 226.83893 100.36640 m 238.72595 96.93517 l 245.58893 102.87862 l 233.70191 106.31017 lx
-0.00000 0.00000 0.41022 s 146.81488 99.65400 m 158.70191 96.40947 l 165.56488 102.16603 l 153.67786 105.64761 lf
-0 sg 146.81488 99.65400 m 158.70191 96.40947 l 165.56488 102.16603 l 153.67786 105.64761 lx
-0.00000 0.00000 0.40691 s 257.47595 99.44715 m 269.36298 96.01565 l 276.22595 101.95917 l 264.33893 105.39065 lf
-0 sg 257.47595 99.44715 m 269.36298 96.01565 l 276.22595 101.95917 l 264.33893 105.39065 lx
-0.00000 0.00000 0.40749 s 66.79083 99.01515 m 78.67786 95.60999 l 85.54083 101.52962 l 73.65381 104.96463 lf
-0 sg 66.79083 99.01515 m 78.67786 95.60999 l 85.54083 101.52962 l 73.65381 104.96463 lx
-0.00000 0.00000 0.41474 s 177.45191 99.06893 m 189.33893 95.30305 l 196.20191 101.29665 l 184.31488 104.63857 lf
-0 sg 177.45191 99.06893 m 189.33893 95.30305 l 196.20191 101.29665 l 184.31488 104.63857 lx
-0.00000 0.00000 0.40603 s 97.42786 98.11153 m 109.31488 94.62996 l 116.17786 100.62356 l 104.29083 104.04163 lf
-0 sg 97.42786 98.11153 m 109.31488 94.62996 l 116.17786 100.62356 l 104.29083 104.04163 lx
-0.00000 0.00000 0.40685 s 208.08893 97.85175 m 219.97595 94.42385 l 226.83893 100.36640 l 214.95191 103.79885 lf
-0 sg 208.08893 97.85175 m 219.97595 94.42385 l 226.83893 100.36640 l 214.95191 103.79885 lx
-0.00000 0.00000 0.41022 s 128.06488 97.14198 m 139.95191 93.89744 l 146.81488 99.65400 l 134.92786 103.13559 lf
-0 sg 128.06488 97.14198 m 139.95191 93.89744 l 146.81488 99.65400 l 134.92786 103.13559 lx
-0.00000 0.00000 0.40691 s 238.72595 96.93517 m 250.61298 93.50362 l 257.47595 99.44715 l 245.58893 102.87862 lf
-0 sg 238.72595 96.93517 m 250.61298 93.50362 l 257.47595 99.44715 l 245.58893 102.87862 lx
-0.00000 0.00000 0.40672 s 48.04083 96.50839 m 59.92786 93.07761 l 66.79083 99.01515 l 54.90381 102.45191 lf
-0 sg 48.04083 96.50839 m 59.92786 93.07761 l 66.79083 99.01515 l 54.90381 102.45191 lx
-0.00000 0.00000 0.37770 s 158.70191 96.40947 m 170.58893 91.72999 l 177.45191 99.06893 l 165.56488 102.16603 lf
-0 sg 158.70191 96.40947 m 170.58893 91.72999 l 177.45191 99.06893 l 165.56488 102.16603 lx
-0.00000 0.00000 0.40691 s 269.36298 96.01565 m 281.25000 92.58417 l 288.11298 98.52768 l 276.22595 101.95917 lf
-0 sg 269.36298 96.01565 m 281.25000 92.58417 l 288.11298 98.52768 l 276.22595 101.95917 lx
-0.00000 0.00000 0.40481 s 78.67786 95.60999 m 90.56488 92.07845 l 97.42786 98.11153 l 85.54083 101.52962 lf
-0 sg 78.67786 95.60999 m 90.56488 92.07845 l 97.42786 98.11153 l 85.54083 101.52962 lx
-0.00000 0.00000 0.40603 s 189.33893 95.30305 m 201.22595 91.92166 l 208.08893 97.85175 l 196.20191 101.29665 lf
-0 sg 189.33893 95.30305 m 201.22595 91.92166 l 208.08893 97.85175 l 196.20191 101.29665 lx
-0.00000 0.00000 0.41022 s 109.31488 94.62996 m 121.20191 91.38542 l 128.06488 97.14198 l 116.17786 100.62356 lf
-0 sg 109.31488 94.62996 m 121.20191 91.38542 l 128.06488 97.14198 l 116.17786 100.62356 lx
-0.00000 0.00000 0.40693 s 219.97595 94.42385 m 231.86298 90.99140 l 238.72595 96.93517 l 226.83893 100.36640 lf
-0 sg 219.97595 94.42385 m 231.86298 90.99140 l 238.72595 96.93517 l 226.83893 100.36640 lx
-0.00000 0.00000 0.39456 s 139.95191 93.89744 m 151.83893 89.76824 l 158.70191 96.40947 l 146.81488 99.65400 lf
-0 sg 139.95191 93.89744 m 151.83893 89.76824 l 158.70191 96.40947 l 146.81488 99.65400 lx
-0.00000 0.00000 0.40691 s 250.61298 93.50362 m 262.50000 90.07215 l 269.36298 96.01565 l 257.47595 99.44715 lf
-0 sg 250.61298 93.50362 m 262.50000 90.07215 l 269.36298 96.01565 l 257.47595 99.44715 lx
-0.00000 0.00000 0.40749 s 59.92786 93.07761 m 71.81488 89.64260 l 78.67786 95.60999 l 66.79083 99.01515 lf
-0 sg 59.92786 93.07761 m 71.81488 89.64260 l 78.67786 95.60999 l 66.79083 99.01515 lx
-0.00000 0.00000 0.37770 s 170.58893 91.72999 m 182.47595 89.54649 l 189.33893 95.30305 l 177.45191 99.06893 lf
-0 sg 170.58893 91.72999 m 182.47595 89.54649 l 189.33893 95.30305 l 177.45191 99.06893 lx
-0.00000 0.00000 0.40691 s 281.25000 92.58417 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lf
-0 sg 281.25000 92.58417 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lx
-0.00000 0.00000 0.41474 s 90.56488 92.07845 m 102.45191 89.02083 l 109.31488 94.62996 l 97.42786 98.11153 lf
-0 sg 90.56488 92.07845 m 102.45191 89.02083 l 109.31488 94.62996 l 97.42786 98.11153 lx
-0.00000 0.00000 0.40715 s 201.22595 91.92166 m 213.11298 88.47675 l 219.97595 94.42385 l 208.08893 97.85175 lf
-0 sg 201.22595 91.92166 m 213.11298 88.47675 l 219.97595 94.42385 l 208.08893 97.85175 lx
-0.00000 0.00000 0.39456 s 121.20191 91.38542 m 133.08893 87.25622 l 139.95191 93.89744 l 128.06488 97.14198 lf
-0 sg 121.20191 91.38542 m 133.08893 87.25622 l 139.95191 93.89744 l 128.06488 97.14198 lx
-0.00000 0.00000 0.40691 s 231.86298 90.99140 m 243.75000 87.56017 l 250.61298 93.50362 l 238.72595 96.93517 lf
-0 sg 231.86298 90.99140 m 243.75000 87.56017 l 250.61298 93.50362 l 238.72595 96.93517 lx
-0.00000 0.00000 0.40693 s 41.17786 90.56488 m 53.06488 87.13320 l 59.92786 93.07761 l 48.04083 96.50839 lf
-0 sg 41.17786 90.56488 m 53.06488 87.13320 l 59.92786 93.07761 l 48.04083 96.50839 lx
-0.00000 0.00000 0.51594 s 151.83893 89.76824 m 163.72595 90.99431 l 170.58893 91.72999 l 158.70191 96.40947 lf
-0 sg 151.83893 89.76824 m 163.72595 90.99431 l 170.58893 91.72999 l 158.70191 96.40947 lx
-0.00000 0.00000 0.40691 s 262.50000 90.07215 m 274.38702 86.64065 l 281.25000 92.58417 l 269.36298 96.01565 lf
-0 sg 262.50000 90.07215 m 274.38702 86.64065 l 281.25000 92.58417 l 269.36298 96.01565 lx
-0.00000 0.00000 0.40481 s 71.81488 89.64260 m 83.70191 86.22451 l 90.56488 92.07845 l 78.67786 95.60999 lf
-0 sg 71.81488 89.64260 m 83.70191 86.22451 l 90.56488 92.07845 l 78.67786 95.60999 lx
-0.00000 0.00000 0.41022 s 182.47595 89.54649 m 194.36298 85.92805 l 201.22595 91.92166 l 189.33893 95.30305 lf
-0 sg 182.47595 89.54649 m 194.36298 85.92805 l 201.22595 91.92166 l 189.33893 95.30305 lx
-0.00000 0.00000 0.37770 s 102.45191 89.02083 m 114.33893 84.19392 l 121.20191 91.38542 l 109.31488 94.62996 lf
-0 sg 102.45191 89.02083 m 114.33893 84.19392 l 121.20191 91.38542 l 109.31488 94.62996 lx
-0.00000 0.00000 0.40685 s 213.11298 88.47675 m 225.00000 85.04885 l 231.86298 90.99140 l 219.97595 94.42385 lf
-0 sg 213.11298 88.47675 m 225.00000 85.04885 l 231.86298 90.99140 l 219.97595 94.42385 lx
-0.00000 0.00000 0.45299 s 133.08893 87.25622 m 144.97595 86.42864 l 151.83893 89.76824 l 139.95191 93.89744 lf
-0 sg 133.08893 87.25622 m 144.97595 86.42864 l 151.83893 89.76824 l 139.95191 93.89744 lx
-0.00000 0.00000 0.40691 s 243.75000 87.56017 m 255.63702 84.12862 l 262.50000 90.07215 l 250.61298 93.50362 lf
-0 sg 243.75000 87.56017 m 255.63702 84.12862 l 262.50000 90.07215 l 250.61298 93.50362 lx
-0.00000 0.00000 0.40685 s 53.06488 87.13320 m 64.95191 83.70266 l 71.81488 89.64260 l 59.92786 93.07761 lf
-0 sg 53.06488 87.13320 m 64.95191 83.70266 l 71.81488 89.64260 l 59.92786 93.07761 lx
-0.00000 0.00000 0.51594 s 163.72595 90.99431 m 175.61298 82.90526 l 182.47595 89.54649 l 170.58893 91.72999 lf
-0 sg 163.72595 90.99431 m 175.61298 82.90526 l 182.47595 89.54649 l 170.58893 91.72999 lx
-0.00000 0.00000 0.40691 s 274.38702 86.64065 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.58417 lf
-0 sg 274.38702 86.64065 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.58417 lx
-0.00000 0.00000 0.41474 s 83.70191 86.22451 m 95.58893 82.74293 l 102.45191 89.02083 l 90.56488 92.07845 lf
-0 sg 83.70191 86.22451 m 95.58893 82.74293 l 102.45191 89.02083 l 90.56488 92.07845 lx
-0.00000 0.00000 0.40603 s 194.36298 85.92805 m 206.25000 82.54666 l 213.11298 88.47675 l 201.22595 91.92166 lf
-0 sg 194.36298 85.92805 m 206.25000 82.54666 l 213.11298 88.47675 l 201.22595 91.92166 lx
-0.00000 sg 144.97595 86.42864 m 156.86298 65.61491 l 163.72595 90.99431 l 151.83893 89.76824 lf
-0 sg 144.97595 86.42864 m 156.86298 65.61491 l 163.72595 90.99431 l 151.83893 89.76824 lx
-0.00000 0.00000 0.51594 s 114.33893 84.19392 m 126.22595 85.97026 l 133.08893 87.25622 l 121.20191 91.38542 lf
-0 sg 114.33893 84.19392 m 126.22595 85.97026 l 133.08893 87.25622 l 121.20191 91.38542 lx
-0.00000 0.00000 0.40693 s 225.00000 85.04885 m 236.88702 81.61640 l 243.75000 87.56017 l 231.86298 90.99140 lf
-0 sg 225.00000 85.04885 m 236.88702 81.61640 l 243.75000 87.56017 l 231.86298 90.99140 lx
-0.00000 0.00000 0.40691 s 34.31488 84.62137 m 46.20191 81.18993 l 53.06488 87.13320 l 41.17786 90.56488 lf
-0 sg 34.31488 84.62137 m 46.20191 81.18993 l 53.06488 87.13320 l 41.17786 90.56488 lx
-0.00000 0.00000 0.40691 s 255.63702 84.12862 m 267.52405 80.69715 l 274.38702 86.64065 l 262.50000 90.07215 lf
-0 sg 255.63702 84.12862 m 267.52405 80.69715 l 274.38702 86.64065 l 262.50000 90.07215 lx
-0.00000 0.00000 0.40715 s 64.95191 83.70266 m 76.83893 80.26758 l 83.70191 86.22451 l 71.81488 89.64260 lf
-0 sg 64.95191 83.70266 m 76.83893 80.26758 l 83.70191 86.22451 l 71.81488 89.64260 lx
-0.00000 0.00000 0.39456 s 175.61298 82.90526 m 187.50000 80.17149 l 194.36298 85.92805 l 182.47595 89.54649 lf
-0 sg 175.61298 82.90526 m 187.50000 80.17149 l 194.36298 85.92805 l 182.47595 89.54649 lx
-0.00000 0.00000 0.37770 s 95.58893 82.74293 m 107.47595 79.49840 l 114.33893 84.19392 l 102.45191 89.02083 lf
-0 sg 95.58893 82.74293 m 107.47595 79.49840 l 114.33893 84.19392 l 102.45191 89.02083 lx
-0.00000 sg 126.22595 85.97026 m 138.11298 63.10288 l 144.97595 86.42864 l 133.08893 87.25622 lf
-0 sg 126.22595 85.97026 m 138.11298 63.10288 l 144.97595 86.42864 l 133.08893 87.25622 lx
-0.00000 0.00000 0.40715 s 206.25000 82.54666 m 218.13702 79.10175 l 225.00000 85.04885 l 213.11298 88.47675 lf
-0 sg 206.25000 82.54666 m 218.13702 79.10175 l 225.00000 85.04885 l 213.11298 88.47675 lx
-0.00000 sg 156.86298 65.61491 m 168.75000 79.56567 l 175.61298 82.90526 l 163.72595 90.99431 lf
-0 sg 156.86298 65.61491 m 168.75000 79.56567 l 175.61298 82.90526 l 163.72595 90.99431 lx
-0.00000 0.00000 0.40691 s 236.88702 81.61640 m 248.77405 78.18517 l 255.63702 84.12862 l 243.75000 87.56017 lf
-0 sg 236.88702 81.61640 m 248.77405 78.18517 l 255.63702 84.12862 l 243.75000 87.56017 lx
-0.00000 0.00000 0.40693 s 46.20191 81.18993 m 58.08893 77.75819 l 64.95191 83.70266 l 53.06488 87.13320 lf
-0 sg 46.20191 81.18993 m 58.08893 77.75819 l 64.95191 83.70266 l 53.06488 87.13320 lx
-0.00000 0.00000 0.40691 s 267.52405 80.69715 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 86.64065 lf
-0 sg 267.52405 80.69715 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 86.64065 lx
-0.00000 0.00000 0.40603 s 76.83893 80.26758 m 88.72595 76.84951 l 95.58893 82.74293 l 83.70191 86.22451 lf
-0 sg 76.83893 80.26758 m 88.72595 76.84951 l 95.58893 82.74293 l 83.70191 86.22451 lx
-0.00000 0.00000 0.41022 s 187.50000 80.17149 m 199.38702 76.55305 l 206.25000 82.54666 l 194.36298 85.92805 lf
-0 sg 187.50000 80.17149 m 199.38702 76.55305 l 206.25000 82.54666 l 194.36298 85.92805 lx
-0.00000 0.00000 0.51594 s 107.47595 79.49840 m 119.36298 75.36919 l 126.22595 85.97026 l 114.33893 84.19392 lf
-0 sg 107.47595 79.49840 m 119.36298 75.36919 l 126.22595 85.97026 l 114.33893 84.19392 lx
-0.00000 0.00000 0.40685 s 218.13702 79.10175 m 230.02405 75.67385 l 236.88702 81.61640 l 225.00000 85.04885 lf
-0 sg 218.13702 79.10175 m 230.02405 75.67385 l 236.88702 81.61640 l 225.00000 85.04885 lx
-0.00000 0.00000 0.40691 s 27.45191 78.67786 m 39.33893 75.24636 l 46.20191 81.18993 l 34.31488 84.62137 lf
-0 sg 27.45191 78.67786 m 39.33893 75.24636 l 46.20191 81.18993 l 34.31488 84.62137 lx
-0.00000 0.00000 0.40691 s 248.77405 78.18517 m 260.66107 74.75362 l 267.52405 80.69715 l 255.63702 84.12862 lf
-0 sg 248.77405 78.18517 m 260.66107 74.75362 l 267.52405 80.69715 l 255.63702 84.12862 lx
-0.00000 0.00000 0.40685 s 58.08893 77.75819 m 69.97595 74.32767 l 76.83893 80.26758 l 64.95191 83.70266 lf
-0 sg 58.08893 77.75819 m 69.97595 74.32767 l 76.83893 80.26758 l 64.95191 83.70266 lx
-0.00000 0.00000 0.45299 s 168.75000 79.56567 m 180.63702 73.53026 l 187.50000 80.17149 l 175.61298 82.90526 lf
-0 sg 168.75000 79.56567 m 180.63702 73.53026 l 187.50000 80.17149 l 175.61298 82.90526 lx
-0.00000 0.00000 0.41022 s 88.72595 76.84951 m 100.61298 73.36793 l 107.47595 79.49840 l 95.58893 82.74293 lf
-0 sg 88.72595 76.84951 m 100.61298 73.36793 l 107.47595 79.49840 l 95.58893 82.74293 lx
-0.00000 sg 119.36298 75.36919 m 131.25000 74.54162 l 138.11298 63.10288 l 126.22595 85.97026 lf
-0 sg 119.36298 75.36919 m 131.25000 74.54162 l 138.11298 63.10288 l 126.22595 85.97026 lx
-0.00000 0.00000 0.40603 s 199.38702 76.55305 m 211.27405 73.17166 l 218.13702 79.10175 l 206.25000 82.54666 lf
-0 sg 199.38702 76.55305 m 211.27405 73.17166 l 218.13702 79.10175 l 206.25000 82.54666 lx
-0.00000 0.00000 0.40693 s 230.02405 75.67385 m 241.91107 72.24140 l 248.77405 78.18517 l 236.88702 81.61640 lf
-0 sg 230.02405 75.67385 m 241.91107 72.24140 l 248.77405 78.18517 l 236.88702 81.61640 lx
-0.00000 0.00000 0.40691 s 39.33893 75.24636 m 51.22595 71.81494 l 58.08893 77.75819 l 46.20191 81.18993 lf
-0 sg 39.33893 75.24636 m 51.22595 71.81494 l 58.08893 77.75819 l 46.20191 81.18993 lx
-0.00000 0.00000 0.40691 s 260.66107 74.75362 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 80.69715 lf
-0 sg 260.66107 74.75362 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 80.69715 lx
-0.00000 0.00000 0.40715 s 69.97595 74.32767 m 81.86298 70.89258 l 88.72595 76.84951 l 76.83893 80.26758 lf
-0 sg 69.97595 74.32767 m 81.86298 70.89258 l 88.72595 76.84951 l 76.83893 80.26758 lx
-0.00000 0.00000 0.39456 s 180.63702 73.53026 m 192.52405 70.79649 l 199.38702 76.55305 l 187.50000 80.17149 lf
-0 sg 180.63702 73.53026 m 192.52405 70.79649 l 199.38702 76.55305 l 187.50000 80.17149 lx
-0.00000 0.00000 0.39456 s 100.61298 73.36793 m 112.50000 70.12340 l 119.36298 75.36919 l 107.47595 79.49840 lf
-0 sg 100.61298 73.36793 m 112.50000 70.12340 l 119.36298 75.36919 l 107.47595 79.49840 lx
-0.00000 0.00000 0.40715 s 211.27405 73.17166 m 223.16107 69.72675 l 230.02405 75.67385 l 218.13702 79.10175 lf
-0 sg 211.27405 73.17166 m 223.16107 69.72675 l 230.02405 75.67385 l 218.13702 79.10175 lx
-0.00000 0.00000 0.40691 s 20.58893 72.73435 m 32.47595 69.30286 l 39.33893 75.24636 l 27.45191 78.67786 lf
-0 sg 20.58893 72.73435 m 32.47595 69.30286 l 39.33893 75.24636 l 27.45191 78.67786 lx
-0.00000 sg 161.88702 56.23991 m 173.77405 72.24431 l 180.63702 73.53026 l 168.75000 79.56567 lf
-0 sg 161.88702 56.23991 m 173.77405 72.24431 l 180.63702 73.53026 l 168.75000 79.56567 lx
-0.00000 0.00000 0.40691 s 241.91107 72.24140 m 253.79809 68.81017 l 260.66107 74.75362 l 248.77405 78.18517 lf
-0 sg 241.91107 72.24140 m 253.79809 68.81017 l 260.66107 74.75362 l 248.77405 78.18517 lx
-0.00000 0.00000 0.40693 s 51.22595 71.81494 m 63.11298 68.38319 l 69.97595 74.32767 l 58.08893 77.75819 lf
-0 sg 51.22595 71.81494 m 63.11298 68.38319 l 69.97595 74.32767 l 58.08893 77.75819 lx
-1.00000 sg 138.11298 63.10288 m 150.00000 189.41427 l 156.86298 65.61491 l 144.97595 86.42864 lf
-0 sg 138.11298 63.10288 m 150.00000 189.41427 l 156.86298 65.61491 l 144.97595 86.42864 lx
-0.00000 0.00000 0.40603 s 81.86298 70.89258 m 93.75000 67.47451 l 100.61298 73.36793 l 88.72595 76.84951 lf
-0 sg 81.86298 70.89258 m 93.75000 67.47451 l 100.61298 73.36793 l 88.72595 76.84951 lx
-0.00000 0.00000 0.41022 s 192.52405 70.79649 m 204.41107 67.17805 l 211.27405 73.17166 l 199.38702 76.55305 lf
-0 sg 192.52405 70.79649 m 204.41107 67.17805 l 211.27405 73.17166 l 199.38702 76.55305 lx
-0.00000 0.00000 0.45299 s 112.50000 70.12340 m 124.38702 65.99419 l 131.25000 74.54162 l 119.36298 75.36919 lf
-0 sg 112.50000 70.12340 m 124.38702 65.99419 l 131.25000 74.54162 l 119.36298 75.36919 lx
-0.00000 0.00000 0.40685 s 223.16107 69.72675 m 235.04809 66.29885 l 241.91107 72.24140 l 230.02405 75.67385 lf
-0 sg 223.16107 69.72675 m 235.04809 66.29885 l 241.91107 72.24140 l 230.02405 75.67385 lx
-0.00000 0.00000 0.40691 s 32.47595 69.30286 m 44.36298 65.87136 l 51.22595 71.81494 l 39.33893 75.24636 lf
-0 sg 32.47595 69.30286 m 44.36298 65.87136 l 51.22595 71.81494 l 39.33893 75.24636 lx
-0.00000 0.00000 0.40691 s 253.79809 68.81017 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 74.75362 lf
-0 sg 253.79809 68.81017 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 74.75362 lx
-0.00000 0.00000 0.40685 s 63.11298 68.38319 m 75.00000 64.95267 l 81.86298 70.89258 l 69.97595 74.32767 lf
-0 sg 63.11298 68.38319 m 75.00000 64.95267 l 81.86298 70.89258 l 69.97595 74.32767 lx
-0.00000 0.00000 0.51594 s 173.77405 72.24431 m 185.66107 63.60499 l 192.52405 70.79649 l 180.63702 73.53026 lf
-0 sg 173.77405 72.24431 m 185.66107 63.60499 l 192.52405 70.79649 l 180.63702 73.53026 lx
-1.00000 sg 150.00000 189.41427 m 161.88702 56.23991 l 168.75000 79.56567 l 156.86298 65.61491 lf
-0 sg 150.00000 189.41427 m 161.88702 56.23991 l 168.75000 79.56567 l 156.86298 65.61491 lx
-0.00000 0.00000 0.41022 s 93.75000 67.47451 m 105.63702 63.99293 l 112.50000 70.12340 l 100.61298 73.36793 lf
-0 sg 93.75000 67.47451 m 105.63702 63.99293 l 112.50000 70.12340 l 100.61298 73.36793 lx
-0.00000 sg 124.38702 65.99419 m 136.27405 67.22026 l 143.13702 53.72788 l 131.25000 74.54162 lf
-0 sg 124.38702 65.99419 m 136.27405 67.22026 l 143.13702 53.72788 l 131.25000 74.54162 lx
-0.00000 0.00000 0.40603 s 204.41107 67.17805 m 216.29809 63.79665 l 223.16107 69.72675 l 211.27405 73.17166 lf
-0 sg 204.41107 67.17805 m 216.29809 63.79665 l 223.16107 69.72675 l 211.27405 73.17166 lx
-0.00000 0.00000 0.40691 s 13.72595 66.79083 m 25.61298 63.35935 l 32.47595 69.30286 l 20.58893 72.73435 lf
-0 sg 13.72595 66.79083 m 25.61298 63.35935 l 32.47595 69.30286 l 20.58893 72.73435 lx
-0.00000 sg 155.02405 67.67864 m 166.91107 61.64324 l 173.77405 72.24431 l 161.88702 56.23991 lf
-0 sg 155.02405 67.67864 m 166.91107 61.64324 l 173.77405 72.24431 l 161.88702 56.23991 lx
-0.00000 0.00000 0.40693 s 235.04809 66.29885 m 246.93512 62.86642 l 253.79809 68.81017 l 241.91107 72.24140 lf
-0 sg 235.04809 66.29885 m 246.93512 62.86642 l 253.79809 68.81017 l 241.91107 72.24140 lx
-0.00000 0.00000 0.40691 s 44.36298 65.87136 m 56.25000 62.43994 l 63.11298 68.38319 l 51.22595 71.81494 lf
-0 sg 44.36298 65.87136 m 56.25000 62.43994 l 63.11298 68.38319 l 51.22595 71.81494 lx
-1.00000 sg 131.25000 74.54162 m 143.13702 53.72788 l 150.00000 189.41427 l 138.11298 63.10288 lf
-0 sg 131.25000 74.54162 m 143.13702 53.72788 l 150.00000 189.41427 l 138.11298 63.10288 lx
-0.00000 0.00000 0.40715 s 75.00000 64.95267 m 86.88702 61.51758 l 93.75000 67.47451 l 81.86298 70.89258 lf
-0 sg 75.00000 64.95267 m 86.88702 61.51758 l 93.75000 67.47451 l 81.86298 70.89258 lx
-0.00000 0.00000 0.37770 s 185.66107 63.60499 m 197.54809 61.56893 l 204.41107 67.17805 l 192.52405 70.79649 lf
-0 sg 185.66107 63.60499 m 197.54809 61.56893 l 204.41107 67.17805 l 192.52405 70.79649 lx
-0.00000 0.00000 0.39456 s 105.63702 63.99293 m 117.52405 60.74840 l 124.38702 65.99419 l 112.50000 70.12340 lf
-0 sg 105.63702 63.99293 m 117.52405 60.74840 l 124.38702 65.99419 l 112.50000 70.12340 lx
-0.00000 sg 136.27405 67.22026 m 148.16107 59.13122 l 155.02405 67.67864 l 143.13702 53.72788 lf
-0 sg 136.27405 67.22026 m 148.16107 59.13122 l 155.02405 67.67864 l 143.13702 53.72788 lx
-0.00000 0.00000 0.40715 s 216.29809 63.79665 m 228.18512 60.35176 l 235.04809 66.29885 l 223.16107 69.72675 lf
-0 sg 216.29809 63.79665 m 228.18512 60.35176 l 235.04809 66.29885 l 223.16107 69.72675 lx
-0.00000 0.00000 0.40691 s 25.61298 63.35935 m 37.50000 59.92786 l 44.36298 65.87136 l 32.47595 69.30286 lf
-0 sg 25.61298 63.35935 m 37.50000 59.92786 l 44.36298 65.87136 l 32.47595 69.30286 lx
-0.00000 0.00000 0.40691 s 246.93512 62.86642 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.81017 lf
-0 sg 246.93512 62.86642 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.81017 lx
-0.00000 0.00000 0.40693 s 56.25000 62.43994 m 68.13702 59.00819 l 75.00000 64.95267 l 63.11298 68.38319 lf
-0 sg 56.25000 62.43994 m 68.13702 59.00819 l 75.00000 64.95267 l 63.11298 68.38319 lx
-0.00000 0.00000 0.51594 s 166.91107 61.64324 m 178.79809 58.90947 l 185.66107 63.60499 l 173.77405 72.24431 lf
-0 sg 166.91107 61.64324 m 178.79809 58.90947 l 185.66107 63.60499 l 173.77405 72.24431 lx
-1.00000 sg 143.13702 53.72788 m 155.02405 67.67864 l 161.88702 56.23991 l 150.00000 189.41427 lf
-0 sg 143.13702 53.72788 m 155.02405 67.67864 l 161.88702 56.23991 l 150.00000 189.41427 lx
-0.00000 0.00000 0.40603 s 86.88702 61.51758 m 98.77405 58.09951 l 105.63702 63.99293 l 93.75000 67.47451 lf
-0 sg 86.88702 61.51758 m 98.77405 58.09951 l 105.63702 63.99293 l 93.75000 67.47451 lx
-0.00000 0.00000 0.41474 s 197.54809 61.56893 m 209.43512 57.76357 l 216.29809 63.79665 l 204.41107 67.17805 lf
-0 sg 197.54809 61.56893 m 209.43512 57.76357 l 216.29809 63.79665 l 204.41107 67.17805 lx
-0.00000 0.00000 0.40691 s 6.86298 60.84732 m 18.75000 57.41583 l 25.61298 63.35935 l 13.72595 66.79083 lf
-0 sg 6.86298 60.84732 m 18.75000 57.41583 l 25.61298 63.35935 l 13.72595 66.79083 lx
-0.00000 0.00000 0.51594 s 117.52405 60.74840 m 129.41107 56.06892 l 136.27405 67.22026 l 124.38702 65.99419 lf
-0 sg 117.52405 60.74840 m 129.41107 56.06892 l 136.27405 67.22026 l 124.38702 65.99419 lx
-0.00000 0.00000 0.40685 s 228.18512 60.35176 m 240.07214 56.92380 l 246.93512 62.86642 l 235.04809 66.29885 lf
-0 sg 228.18512 60.35176 m 240.07214 56.92380 l 246.93512 62.86642 l 235.04809 66.29885 lx
-0.00000 0.00000 0.40691 s 37.50000 59.92786 m 49.38702 56.49636 l 56.25000 62.43994 l 44.36298 65.87136 lf
-0 sg 37.50000 59.92786 m 49.38702 56.49636 l 56.25000 62.43994 l 44.36298 65.87136 lx
-0.00000 0.00000 0.45299 s 148.16107 59.13122 m 160.04809 56.39744 l 166.91107 61.64324 l 155.02405 67.67864 lf
-0 sg 148.16107 59.13122 m 160.04809 56.39744 l 166.91107 61.64324 l 155.02405 67.67864 lx
-0.00000 0.00000 0.40685 s 68.13702 59.00819 m 80.02405 55.57767 l 86.88702 61.51758 l 75.00000 64.95267 lf
-0 sg 68.13702 59.00819 m 80.02405 55.57767 l 86.88702 61.51758 l 75.00000 64.95267 lx
-0.00000 0.00000 0.37770 s 178.79809 58.90947 m 190.68512 55.29103 l 197.54809 61.56893 l 185.66107 63.60499 lf
-0 sg 178.79809 58.90947 m 190.68512 55.29103 l 197.54809 61.56893 l 185.66107 63.60499 lx
-0.00000 0.00000 0.41022 s 98.77405 58.09951 m 110.66107 54.61793 l 117.52405 60.74840 l 105.63702 63.99293 lf
-0 sg 98.77405 58.09951 m 110.66107 54.61793 l 117.52405 60.74840 l 105.63702 63.99293 lx
-0.00000 0.00000 0.40481 s 209.43512 57.76357 m 221.32214 54.43213 l 228.18512 60.35176 l 216.29809 63.79665 lf
-0 sg 209.43512 57.76357 m 221.32214 54.43213 l 228.18512 60.35176 l 216.29809 63.79665 lx
-0.00000 0.00000 0.40691 s 18.75000 57.41583 m 30.63702 53.98435 l 37.50000 59.92786 l 25.61298 63.35935 lf
-0 sg 18.75000 57.41583 m 30.63702 53.98435 l 37.50000 59.92786 l 25.61298 63.35935 lx
-0.00000 0.00000 0.51594 s 129.41107 56.06892 m 141.29809 53.88542 l 148.16107 59.13122 l 136.27405 67.22026 lf
-0 sg 129.41107 56.06892 m 141.29809 53.88542 l 148.16107 59.13122 l 136.27405 67.22026 lx
-0.00000 0.00000 0.40693 s 240.07214 56.92380 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.86642 lf
-0 sg 240.07214 56.92380 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.86642 lx
-0.00000 0.00000 0.40691 s 49.38702 56.49636 m 61.27405 53.06494 l 68.13702 59.00819 l 56.25000 62.43994 lf
-0 sg 49.38702 56.49636 m 61.27405 53.06494 l 68.13702 59.00819 l 56.25000 62.43994 lx
-0.00000 0.00000 0.39456 s 160.04809 56.39744 m 171.93512 52.77900 l 178.79809 58.90947 l 166.91107 61.64324 lf
-0 sg 160.04809 56.39744 m 171.93512 52.77900 l 178.79809 58.90947 l 166.91107 61.64324 lx
-0.00000 0.00000 0.40715 s 80.02405 55.57767 m 91.91107 52.14258 l 98.77405 58.09951 l 86.88702 61.51758 lf
-0 sg 80.02405 55.57767 m 91.91107 52.14258 l 98.77405 58.09951 l 86.88702 61.51758 lx
-0.00000 0.00000 0.41474 s 190.68512 55.29103 m 202.57214 51.90963 l 209.43512 57.76357 l 197.54809 61.56893 lf
-0 sg 190.68512 55.29103 m 202.57214 51.90963 l 209.43512 57.76357 l 197.54809 61.56893 lx
-0.00000 0.00000 0.40691 s 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.41583 l 6.86298 60.84732 lf
-0 sg 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.41583 l 6.86298 60.84732 lx
-0.00000 0.00000 0.37770 s 110.66107 54.61793 m 122.54809 51.52083 l 129.41107 56.06892 l 117.52405 60.74840 lf
-0 sg 110.66107 54.61793 m 122.54809 51.52083 l 129.41107 56.06892 l 117.52405 60.74840 lx
-0.00000 0.00000 0.40749 s 221.32214 54.43213 m 233.20917 50.97432 l 240.07214 56.92380 l 228.18512 60.35176 lf
-0 sg 221.32214 54.43213 m 233.20917 50.97432 l 240.07214 56.92380 l 228.18512 60.35176 lx
-0.00000 0.00000 0.40691 s 30.63702 53.98435 m 42.52405 50.55286 l 49.38702 56.49636 l 37.50000 59.92786 lf
-0 sg 30.63702 53.98435 m 42.52405 50.55286 l 49.38702 56.49636 l 37.50000 59.92786 lx
-0.00000 0.00000 0.39456 s 141.29809 53.88542 m 153.18512 50.26698 l 160.04809 56.39744 l 148.16107 59.13122 lf
-0 sg 141.29809 53.88542 m 153.18512 50.26698 l 160.04809 56.39744 l 148.16107 59.13122 lx
-0.00000 0.00000 0.40693 s 61.27405 53.06494 m 73.16107 49.63319 l 80.02405 55.57767 l 68.13702 59.00819 lf
-0 sg 61.27405 53.06494 m 73.16107 49.63319 l 80.02405 55.57767 l 68.13702 59.00819 lx
-0.00000 0.00000 0.41022 s 171.93512 52.77900 m 183.82214 49.39761 l 190.68512 55.29103 l 178.79809 58.90947 lf
-0 sg 171.93512 52.77900 m 183.82214 49.39761 l 190.68512 55.29103 l 178.79809 58.90947 lx
-0.00000 0.00000 0.40603 s 91.91107 52.14258 m 103.79809 48.72451 l 110.66107 54.61793 l 98.77405 58.09951 lf
-0 sg 91.91107 52.14258 m 103.79809 48.72451 l 110.66107 54.61793 l 98.77405 58.09951 lx
-0.00000 0.00000 0.40481 s 202.57214 51.90963 m 214.45917 48.46474 l 221.32214 54.43213 l 209.43512 57.76357 lf
-0 sg 202.57214 51.90963 m 214.45917 48.46474 l 221.32214 54.43213 l 209.43512 57.76357 lx
-0.00000 0.00000 0.40691 s 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.98435 l 18.75000 57.41583 lf
-0 sg 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.98435 l 18.75000 57.41583 lx
-0.00000 0.00000 0.37770 s 122.54809 51.52083 m 134.43512 47.75496 l 141.29809 53.88542 l 129.41107 56.06892 lf
-0 sg 122.54809 51.52083 m 134.43512 47.75496 l 141.29809 53.88542 l 129.41107 56.06892 lx
-0.00000 0.00000 0.40672 s 233.20917 50.97432 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 56.92380 lf
-0 sg 233.20917 50.97432 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 56.92380 lx
-0.00000 0.00000 0.40691 s 42.52405 50.55286 m 54.41107 47.12136 l 61.27405 53.06494 l 49.38702 56.49636 lf
-0 sg 42.52405 50.55286 m 54.41107 47.12136 l 61.27405 53.06494 l 49.38702 56.49636 lx
-0.00000 0.00000 0.41022 s 153.18512 50.26698 m 165.07214 46.88559 l 171.93512 52.77900 l 160.04809 56.39744 lf
-0 sg 153.18512 50.26698 m 165.07214 46.88559 l 171.93512 52.77900 l 160.04809 56.39744 lx
-0.00000 0.00000 0.40685 s 73.16107 49.63319 m 85.04809 46.20266 l 91.91107 52.14258 l 80.02405 55.57767 lf
-0 sg 73.16107 49.63319 m 85.04809 46.20266 l 91.91107 52.14258 l 80.02405 55.57767 lx
-0.00000 0.00000 0.40603 s 183.82214 49.39761 m 195.70917 45.95270 l 202.57214 51.90963 l 190.68512 55.29103 lf
-0 sg 183.82214 49.39761 m 195.70917 45.95270 l 202.57214 51.90963 l 190.68512 55.29103 lx
-0.00000 0.00000 0.41474 s 103.79809 48.72451 m 115.68512 45.20345 l 122.54809 51.52083 l 110.66107 54.61793 lf
-0 sg 103.79809 48.72451 m 115.68512 45.20345 l 122.54809 51.52083 l 110.66107 54.61793 lx
-0.00000 0.00000 0.40749 s 214.45917 48.46474 m 226.34619 45.03678 l 233.20917 50.97432 l 221.32214 54.43213 lf
-0 sg 214.45917 48.46474 m 226.34619 45.03678 l 233.20917 50.97432 l 221.32214 54.43213 lx
-0.00000 0.00000 0.40691 s 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 50.55286 l 30.63702 53.98435 lf
-0 sg 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 50.55286 l 30.63702 53.98435 lx
-0.00000 0.00000 0.41022 s 134.43512 47.75496 m 146.32214 44.37356 l 153.18512 50.26698 l 141.29809 53.88542 lf
-0 sg 134.43512 47.75496 m 146.32214 44.37356 l 153.18512 50.26698 l 141.29809 53.88542 lx
-0.00000 0.00000 0.40691 s 54.41107 47.12136 m 66.29809 43.68993 l 73.16107 49.63319 l 61.27405 53.06494 lf
-0 sg 54.41107 47.12136 m 66.29809 43.68993 l 73.16107 49.63319 l 61.27405 53.06494 lx
-0.00000 0.00000 0.40603 s 165.07214 46.88559 m 176.95917 43.44068 l 183.82214 49.39761 l 171.93512 52.77900 lf
-0 sg 165.07214 46.88559 m 176.95917 43.44068 l 183.82214 49.39761 l 171.93512 52.77900 lx
-0.00000 0.00000 0.40715 s 85.04809 46.20266 m 96.93512 42.76760 l 103.79809 48.72451 l 91.91107 52.14258 lf
-0 sg 85.04809 46.20266 m 96.93512 42.76760 l 103.79809 48.72451 l 91.91107 52.14258 lx
-0.00000 0.00000 0.40715 s 195.70917 45.95270 m 207.59619 42.52480 l 214.45917 48.46474 l 202.57214 51.90963 lf
-0 sg 195.70917 45.95270 m 207.59619 42.52480 l 214.45917 48.46474 l 202.57214 51.90963 lx
-0.00000 0.00000 0.41474 s 115.68512 45.20345 m 127.57214 41.86153 l 134.43512 47.75496 l 122.54809 51.52083 lf
-0 sg 115.68512 45.20345 m 127.57214 41.86153 l 134.43512 47.75496 l 122.54809 51.52083 lx
-0.00000 0.00000 0.40672 s 226.34619 45.03678 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 50.97432 lf
-0 sg 226.34619 45.03678 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 50.97432 lx
-0.00000 0.00000 0.40691 s 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 47.12136 l 42.52405 50.55286 lf
-0 sg 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 47.12136 l 42.52405 50.55286 lx
-0.00000 0.00000 0.40603 s 146.32214 44.37356 m 158.20917 40.92865 l 165.07214 46.88559 l 153.18512 50.26698 lf
-0 sg 146.32214 44.37356 m 158.20917 40.92865 l 165.07214 46.88559 l 153.18512 50.26698 lx
-0.00000 0.00000 0.40693 s 66.29809 43.68993 m 78.18512 40.25820 l 85.04809 46.20266 l 73.16107 49.63319 lf
-0 sg 66.29809 43.68993 m 78.18512 40.25820 l 85.04809 46.20266 l 73.16107 49.63319 lx
-0.00000 0.00000 0.40715 s 176.95917 43.44068 m 188.84619 40.01278 l 195.70917 45.95270 l 183.82214 49.39761 lf
-0 sg 176.95917 43.44068 m 188.84619 40.01278 l 195.70917 45.95270 l 183.82214 49.39761 lx
-0.00000 0.00000 0.40481 s 96.93512 42.76760 m 108.82214 39.35999 l 115.68512 45.20345 l 103.79809 48.72451 lf
-0 sg 96.93512 42.76760 m 108.82214 39.35999 l 115.68512 45.20345 l 103.79809 48.72451 lx
-0.00000 0.00000 0.40685 s 207.59619 42.52480 m 219.48321 39.09237 l 226.34619 45.03678 l 214.45917 48.46474 lf
-0 sg 207.59619 42.52480 m 219.48321 39.09237 l 226.34619 45.03678 l 214.45917 48.46474 lx
-0.00000 0.00000 0.40603 s 127.57214 41.86153 m 139.45917 38.41663 l 146.32214 44.37356 l 134.43512 47.75496 lf
-0 sg 127.57214 41.86153 m 139.45917 38.41663 l 146.32214 44.37356 l 134.43512 47.75496 lx
-0.00000 0.00000 0.40691 s 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 43.68993 l 54.41107 47.12136 lf
-0 sg 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 43.68993 l 54.41107 47.12136 lx
-0.00000 0.00000 0.40715 s 158.20917 40.92865 m 170.09619 37.50076 l 176.95917 43.44068 l 165.07214 46.88559 lf
-0 sg 158.20917 40.92865 m 170.09619 37.50076 l 176.95917 43.44068 l 165.07214 46.88559 lx
-0.00000 0.00000 0.40685 s 78.18512 40.25820 m 90.07214 36.82761 l 96.93512 42.76760 l 85.04809 46.20266 lf
-0 sg 78.18512 40.25820 m 90.07214 36.82761 l 96.93512 42.76760 l 85.04809 46.20266 lx
-0.00000 0.00000 0.40685 s 188.84619 40.01278 m 200.73321 36.58033 l 207.59619 42.52480 l 195.70917 45.95270 lf
-0 sg 188.84619 40.01278 m 200.73321 36.58033 l 207.59619 42.52480 l 195.70917 45.95270 lx
-0.00000 0.00000 0.40481 s 108.82214 39.35999 m 120.70917 35.90462 l 127.57214 41.86153 l 115.68512 45.20345 lf
-0 sg 108.82214 39.35999 m 120.70917 35.90462 l 127.57214 41.86153 l 115.68512 45.20345 lx
-0.00000 0.00000 0.40693 s 219.48321 39.09237 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 45.03678 lf
-0 sg 219.48321 39.09237 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 45.03678 lx
-0.00000 0.00000 0.40715 s 139.45917 38.41663 m 151.34619 34.98874 l 158.20917 40.92865 l 146.32214 44.37356 lf
-0 sg 139.45917 38.41663 m 151.34619 34.98874 l 158.20917 40.92865 l 146.32214 44.37356 lx
-0.00000 0.00000 0.40691 s 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 40.25820 l 66.29809 43.68993 lf
-0 sg 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 40.25820 l 66.29809 43.68993 lx
-0.00000 0.00000 0.40685 s 170.09619 37.50076 m 181.98321 34.06831 l 188.84619 40.01278 l 176.95917 43.44068 lf
-0 sg 170.09619 37.50076 m 181.98321 34.06831 l 188.84619 40.01278 l 176.95917 43.44068 lx
-0.00000 0.00000 0.40749 s 90.07214 36.82761 m 101.95917 33.39015 l 108.82214 39.35999 l 96.93512 42.76760 lf
-0 sg 90.07214 36.82761 m 101.95917 33.39015 l 108.82214 39.35999 l 96.93512 42.76760 lx
-0.00000 0.00000 0.40693 s 200.73321 36.58033 m 212.62024 33.14910 l 219.48321 39.09237 l 207.59619 42.52480 lf
-0 sg 200.73321 36.58033 m 212.62024 33.14910 l 219.48321 39.09237 l 207.59619 42.52480 lx
-0.00000 0.00000 0.40715 s 120.70917 35.90462 m 132.59619 32.47671 l 139.45917 38.41663 l 127.57214 41.86153 lf
-0 sg 120.70917 35.90462 m 132.59619 32.47671 l 139.45917 38.41663 l 127.57214 41.86153 lx
-0.00000 0.00000 0.40685 s 151.34619 34.98874 m 163.23321 31.55628 l 170.09619 37.50076 l 158.20917 40.92865 lf
-0 sg 151.34619 34.98874 m 163.23321 31.55628 l 170.09619 37.50076 l 158.20917 40.92865 lx
-0.00000 0.00000 0.40693 s 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 36.82761 l 78.18512 40.25820 lf
-0 sg 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 36.82761 l 78.18512 40.25820 lx
-0.00000 0.00000 0.40693 s 181.98321 34.06831 m 193.87024 30.63708 l 200.73321 36.58033 l 188.84619 40.01278 lf
-0 sg 181.98321 34.06831 m 193.87024 30.63708 l 200.73321 36.58033 l 188.84619 40.01278 lx
-0.00000 0.00000 0.40749 s 101.95917 33.39015 m 113.84619 29.96463 l 120.70917 35.90462 l 108.82214 39.35999 lf
-0 sg 101.95917 33.39015 m 113.84619 29.96463 l 120.70917 35.90462 l 108.82214 39.35999 lx
-0.00000 0.00000 0.40691 s 212.62024 33.14910 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 39.09237 lf
-0 sg 212.62024 33.14910 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 39.09237 lx
-0.00000 0.00000 0.40685 s 132.59619 32.47671 m 144.48321 29.04426 l 151.34619 34.98874 l 139.45917 38.41663 lf
-0 sg 132.59619 32.47671 m 144.48321 29.04426 l 151.34619 34.98874 l 139.45917 38.41663 lx
-0.00000 0.00000 0.40693 s 163.23321 31.55628 m 175.12024 28.12505 l 181.98321 34.06831 l 170.09619 37.50076 lf
-0 sg 163.23321 31.55628 m 175.12024 28.12505 l 181.98321 34.06831 l 170.09619 37.50076 lx
-0.00000 0.00000 0.40672 s 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 33.39015 l 90.07214 36.82761 lf
-0 sg 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 33.39015 l 90.07214 36.82761 lx
-0.00000 0.00000 0.40691 s 193.87024 30.63708 m 205.75726 27.20552 l 212.62024 33.14910 l 200.73321 36.58033 lf
-0 sg 193.87024 30.63708 m 205.75726 27.20552 l 212.62024 33.14910 l 200.73321 36.58033 lx
-0.00000 0.00000 0.40685 s 113.84619 29.96463 m 125.73321 26.53225 l 132.59619 32.47671 l 120.70917 35.90462 lf
-0 sg 113.84619 29.96463 m 125.73321 26.53225 l 132.59619 32.47671 l 120.70917 35.90462 lx
-0.00000 0.00000 0.40693 s 144.48321 29.04426 m 156.37024 25.61303 l 163.23321 31.55628 l 151.34619 34.98874 lf
-0 sg 144.48321 29.04426 m 156.37024 25.61303 l 163.23321 31.55628 l 151.34619 34.98874 lx
-0.00000 0.00000 0.40691 s 175.12024 28.12505 m 187.00726 24.69350 l 193.87024 30.63708 l 181.98321 34.06831 lf
-0 sg 175.12024 28.12505 m 187.00726 24.69350 l 193.87024 30.63708 l 181.98321 34.06831 lx
-0.00000 0.00000 0.40672 s 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 29.96463 l 101.95917 33.39015 lf
-0 sg 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 29.96463 l 101.95917 33.39015 lx
-0.00000 0.00000 0.40691 s 205.75726 27.20552 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 33.14910 lf
-0 sg 205.75726 27.20552 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 33.14910 lx
-0.00000 0.00000 0.40693 s 125.73321 26.53225 m 137.62024 23.10100 l 144.48321 29.04426 l 132.59619 32.47671 lf
-0 sg 125.73321 26.53225 m 137.62024 23.10100 l 144.48321 29.04426 l 132.59619 32.47671 lx
-0.00000 0.00000 0.40691 s 156.37024 25.61303 m 168.25726 22.18147 l 175.12024 28.12505 l 163.23321 31.55628 lf
-0 sg 156.37024 25.61303 m 168.25726 22.18147 l 175.12024 28.12505 l 163.23321 31.55628 lx
-0.00000 0.00000 0.40691 s 187.00726 24.69350 m 198.89428 21.26203 l 205.75726 27.20552 l 193.87024 30.63708 lf
-0 sg 187.00726 24.69350 m 198.89428 21.26203 l 205.75726 27.20552 l 193.87024 30.63708 lx
-0.00000 0.00000 0.40693 s 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.53225 l 113.84619 29.96463 lf
-0 sg 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.53225 l 113.84619 29.96463 lx
-0.00000 0.00000 0.40691 s 137.62024 23.10100 m 149.50726 19.66945 l 156.37024 25.61303 l 144.48321 29.04426 lf
-0 sg 137.62024 23.10100 m 149.50726 19.66945 l 156.37024 25.61303 l 144.48321 29.04426 lx
-0.00000 0.00000 0.40691 s 168.25726 22.18147 m 180.14428 18.75000 l 187.00726 24.69350 l 175.12024 28.12505 lf
-0 sg 168.25726 22.18147 m 180.14428 18.75000 l 187.00726 24.69350 l 175.12024 28.12505 lx
-0.00000 0.00000 0.40691 s 198.89428 21.26203 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.20552 lf
-0 sg 198.89428 21.26203 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.20552 lx
-0.00000 0.00000 0.40691 s 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 23.10100 l 125.73321 26.53225 lf
-0 sg 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 23.10100 l 125.73321 26.53225 lx
-0.00000 0.00000 0.40691 s 149.50726 19.66945 m 161.39428 16.23798 l 168.25726 22.18147 l 156.37024 25.61303 lf
-0 sg 149.50726 19.66945 m 161.39428 16.23798 l 168.25726 22.18147 l 156.37024 25.61303 lx
-0.00000 0.00000 0.40691 s 180.14428 18.75000 m 192.03131 15.31851 l 198.89428 21.26203 l 187.00726 24.69350 lf
-0 sg 180.14428 18.75000 m 192.03131 15.31851 l 198.89428 21.26203 l 187.00726 24.69350 lx
-0.00000 0.00000 0.40691 s 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 19.66945 l 137.62024 23.10100 lf
-0 sg 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 19.66945 l 137.62024 23.10100 lx
-0.00000 0.00000 0.40691 s 161.39428 16.23798 m 173.28131 12.80649 l 180.14428 18.75000 l 168.25726 22.18147 lf
-0 sg 161.39428 16.23798 m 173.28131 12.80649 l 180.14428 18.75000 l 168.25726 22.18147 lx
-0.00000 0.00000 0.40691 s 192.03131 15.31851 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 21.26203 lf
-0 sg 192.03131 15.31851 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 21.26203 lx
-0.00000 0.00000 0.40691 s 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 16.23798 l 149.50726 19.66945 lf
-0 sg 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 16.23798 l 149.50726 19.66945 lx
-0.00000 0.00000 0.40691 s 173.28131 12.80649 m 185.16833 9.37500 l 192.03131 15.31851 l 180.14428 18.75000 lf
-0 sg 173.28131 12.80649 m 185.16833 9.37500 l 192.03131 15.31851 l 180.14428 18.75000 lx
-0.00000 0.00000 0.40691 s 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.80649 l 161.39428 16.23798 lf
-0 sg 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.80649 l 161.39428 16.23798 lx
-0.00000 0.00000 0.40691 s 185.16833 9.37500 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.31851 lf
-0 sg 185.16833 9.37500 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.31851 lx
-0.00000 0.00000 0.40691 s 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.37500 l 173.28131 12.80649 lf
-0 sg 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.37500 l 173.28131 12.80649 lx
-0.00000 0.00000 0.40691 s 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.37500 lf
-0 sg 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.37500 lx
-showpage
-.
-DEAL::  Postprocessing: time=0.02800, step=1, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.05600, step=2, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.08400, step=3, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.11200, step=4, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.14000, step=5, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.16800, step=6, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.19600, step=7, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.22400, step=8, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.25200, step=9, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.28000, step=10, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.30800, step=11, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.33600, step=12, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.36400, step=13, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.39200, step=14, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.42000, step=15, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.44800, step=16, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.47600, step=17, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.50400, step=18, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.53200, step=19, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.56000, step=20, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.58800, step=21, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.61600, step=22, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.64400, step=23, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.67200, step=24, sweep=0. [ee]
-DEAL::  Postprocessing: time=0.70000, step=25, sweep=0. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 150
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50000 setlinewidth
-0.00000 0.95990 0.04010 s 102.94464 144.05649 m 114.83167 140.54285 l 121.69464 146.56851 l 109.80762 150.00000 lf
-0 sg 102.94464 144.05649 m 114.83167 140.54285 l 121.69464 146.56851 l 109.80762 150.00000 lx
-0.16685 0.83315 0.00000 s 114.83167 140.54285 m 126.71869 139.95520 l 133.58167 143.13702 l 121.69464 146.56851 lf
-0 sg 114.83167 140.54285 m 126.71869 139.95520 l 133.58167 143.13702 l 121.69464 146.56851 lx
-0.15365 0.84635 0.00000 s 96.08167 138.11298 m 107.96869 137.26708 l 114.83167 140.54285 l 102.94464 144.05649 lf
-0 sg 96.08167 138.11298 m 107.96869 137.26708 l 114.83167 140.54285 l 102.94464 144.05649 lx
-0.29608 0.70392 0.00000 s 126.71869 139.95520 m 138.60572 135.40448 l 145.46869 139.70554 l 133.58167 143.13702 lf
-0 sg 126.71869 139.95520 m 138.60572 135.40448 l 145.46869 139.70554 l 133.58167 143.13702 lx
-0.54050 0.45950 0.00000 s 107.96869 137.26708 m 119.85572 133.65079 l 126.71869 139.95520 l 114.83167 140.54285 lf
-0 sg 107.96869 137.26708 m 119.85572 133.65079 l 126.71869 139.95520 l 114.83167 140.54285 lx
-0.05603 0.94397 0.00000 s 138.60572 135.40448 m 150.49274 129.88878 l 157.35572 136.27405 l 145.46869 139.70554 lf
-0 sg 138.60572 135.40448 m 150.49274 129.88878 l 157.35572 136.27405 l 145.46869 139.70554 lx
-0.43065 0.56935 0.00000 s 89.21869 132.16946 m 101.10572 132.35232 l 107.96869 137.26708 l 96.08167 138.11298 lf
-0 sg 89.21869 132.16946 m 101.10572 132.35232 l 107.96869 137.26708 l 96.08167 138.11298 lx
-0.00000 0.82167 0.17833 s 150.49274 129.88878 m 162.37976 125.41398 l 169.24274 132.84256 l 157.35572 136.27405 lf
-0 sg 150.49274 129.88878 m 162.37976 125.41398 l 169.24274 132.84256 l 157.35572 136.27405 lx
-0.70913 0.29087 0.00000 s 119.85572 133.65079 m 131.74274 130.92985 l 138.60572 135.40448 l 126.71869 139.95520 lf
-0 sg 119.85572 133.65079 m 131.74274 130.92985 l 138.60572 135.40448 l 126.71869 139.95520 lx
-0.87044 0.12956 0.00000 s 101.10572 132.35232 m 112.99274 128.77472 l 119.85572 133.65079 l 107.96869 137.26708 lf
-0 sg 101.10572 132.35232 m 112.99274 128.77472 l 119.85572 133.65079 l 107.96869 137.26708 lx
-0.32597 0.67404 0.00000 s 131.74274 130.92985 m 143.62976 124.87790 l 150.49274 129.88878 l 138.60572 135.40448 lf
-0 sg 131.74274 130.92985 m 143.62976 124.87790 l 150.49274 129.88878 l 138.60572 135.40448 lx
-0.00000 0.77878 0.22122 s 162.37976 125.41398 m 174.26679 122.45334 l 181.12976 129.41107 l 169.24274 132.84256 lf
-0 sg 162.37976 125.41398 m 174.26679 122.45334 l 181.12976 129.41107 l 169.24274 132.84256 lx
-0.35995 0.64005 0.00000 s 82.35572 126.22595 m 94.24274 124.43654 l 101.10572 132.35232 l 89.21869 132.16946 lf
-0 sg 82.35572 126.22595 m 94.24274 124.43654 l 101.10572 132.35232 l 89.21869 132.16946 lx
-0.00000 0.69985 0.30015 s 143.62976 124.87790 m 155.51679 118.83898 l 162.37976 125.41398 l 150.49274 129.88878 lf
-0 sg 143.62976 124.87790 m 155.51679 118.83898 l 162.37976 125.41398 l 150.49274 129.88878 lx
-0.78864 0.21136 0.00000 s 112.99274 128.77472 m 124.87976 123.87196 l 131.74274 130.92985 l 119.85572 133.65079 lf
-0 sg 112.99274 128.77472 m 124.87976 123.87196 l 131.74274 130.92985 l 119.85572 133.65079 lx
-0.00000 0.85117 0.14883 s 174.26679 122.45334 m 186.15381 119.51714 l 193.01679 125.97958 l 181.12976 129.41107 lf
-0 sg 174.26679 122.45334 m 186.15381 119.51714 l 193.01679 125.97958 l 181.12976 129.41107 lx
-0.81365 0.18635 0.00000 s 94.24274 124.43654 m 106.12976 121.94937 l 112.99274 128.77472 l 101.10572 132.35232 lf
-0 sg 94.24274 124.43654 m 106.12976 121.94937 l 112.99274 128.77472 l 101.10572 132.35232 lx
-0.00000 0.50326 0.49674 s 155.51679 118.83898 m 167.40381 115.96393 l 174.26679 122.45334 l 162.37976 125.41398 lf
-0 sg 155.51679 118.83898 m 167.40381 115.96393 l 174.26679 122.45334 l 162.37976 125.41398 lx
-0.37472 0.62528 0.00000 s 124.87976 123.87196 m 136.76679 118.29790 l 143.62976 124.87790 l 131.74274 130.92985 lf
-0 sg 124.87976 123.87196 m 136.76679 118.29790 l 143.62976 124.87790 l 131.74274 130.92985 lx
-0.07505 0.92495 0.00000 s 75.49274 120.28244 m 87.37976 116.66333 l 94.24274 124.43654 l 82.35572 126.22595 lf
-0 sg 75.49274 120.28244 m 87.37976 116.66333 l 94.24274 124.43654 l 82.35572 126.22595 lx
-0.00000 0.88777 0.11223 s 186.15381 119.51714 m 198.04083 116.07875 l 204.90381 122.54809 l 193.01679 125.97958 lf
-0 sg 186.15381 119.51714 m 198.04083 116.07875 l 204.90381 122.54809 l 193.01679 125.97958 lx
-0.00000 0.81548 0.18452 s 136.76679 118.29790 m 148.65381 114.77389 l 155.51679 118.83898 l 143.62976 124.87790 lf
-0 sg 136.76679 118.29790 m 148.65381 114.77389 l 155.51679 118.83898 l 143.62976 124.87790 lx
-0.64742 0.35258 0.00000 s 106.12976 121.94937 m 118.01679 116.97263 l 124.87976 123.87196 l 112.99274 128.77472 lf
-0 sg 106.12976 121.94937 m 118.01679 116.97263 l 124.87976 123.87196 l 112.99274 128.77472 lx
-0.00000 0.63766 0.36234 s 167.40381 115.96393 m 179.29083 112.80341 l 186.15381 119.51714 l 174.26679 122.45334 lf
-0 sg 167.40381 115.96393 m 179.29083 112.80341 l 186.15381 119.51714 l 174.26679 122.45334 lx
-0.00000 0.88777 0.11223 s 198.04083 116.07875 m 209.92786 112.65416 l 216.79083 119.11661 l 204.90381 122.54809 lf
-0 sg 198.04083 116.07875 m 209.92786 112.65416 l 216.79083 119.11661 l 204.90381 122.54809 lx
-0.25101 0.74899 0.00000 s 87.37976 116.66333 m 99.26679 113.18128 l 106.12976 121.94937 l 94.24274 124.43654 lf
-0 sg 87.37976 116.66333 m 99.26679 113.18128 l 106.12976 121.94937 l 94.24274 124.43654 lx
-0.24057 0.75943 0.00000 s 118.01679 116.97263 m 129.90381 113.27086 l 136.76679 118.29790 l 124.87976 123.87196 lf
-0 sg 118.01679 116.97263 m 129.90381 113.27086 l 136.76679 118.29790 l 124.87976 123.87196 lx
-0.00000 0.61832 0.38168 s 148.65381 114.77389 m 160.54083 110.85473 l 167.40381 115.96393 l 155.51679 118.83898 lf
-0 sg 148.65381 114.77389 m 160.54083 110.85473 l 167.40381 115.96393 l 155.51679 118.83898 lx
-0.00000 0.75152 0.24848 s 179.29083 112.80341 m 191.17786 110.13203 l 198.04083 116.07875 l 186.15381 119.51714 lf
-0 sg 179.29083 112.80341 m 191.17786 110.13203 l 198.04083 116.07875 l 186.15381 119.51714 lx
-0.01473 0.98527 0.00000 s 68.62976 114.33893 m 80.51679 111.74459 l 87.37976 116.66333 l 75.49274 120.28244 lf
-0 sg 68.62976 114.33893 m 80.51679 111.74459 l 87.37976 116.66333 l 75.49274 120.28244 lx
-0.00000 0.85117 0.14883 s 209.92786 112.65416 m 221.81488 108.72739 l 228.67786 115.68512 l 216.79083 119.11661 lf
-0 sg 209.92786 112.65416 m 221.81488 108.72739 l 228.67786 115.68512 l 216.79083 119.11661 lx
-0.13581 0.86419 0.00000 s 99.26679 113.18128 m 111.15381 108.86388 l 118.01679 116.97263 l 106.12976 121.94937 lf
-0 sg 99.26679 113.18128 m 111.15381 108.86388 l 118.01679 116.97263 l 106.12976 121.94937 lx
-0.00000 0.94432 0.05568 s 129.90381 113.27086 m 141.79083 108.39131 l 148.65381 114.77389 l 136.76679 118.29790 lf
-0 sg 129.90381 113.27086 m 141.79083 108.39131 l 148.65381 114.77389 l 136.76679 118.29790 lx
-0.00000 0.76910 0.23090 s 160.54083 110.85473 m 172.42786 109.09566 l 179.29083 112.80341 l 167.40381 115.96393 lf
-0 sg 160.54083 110.85473 m 172.42786 109.09566 l 179.29083 112.80341 l 167.40381 115.96393 lx
-0.00000 0.92420 0.07580 s 80.51679 111.74459 m 92.40381 106.50601 l 99.26679 113.18128 l 87.37976 116.66333 lf
-0 sg 80.51679 111.74459 m 92.40381 106.50601 l 99.26679 113.18128 l 87.37976 116.66333 lx
-0.00000 0.75152 0.24848 s 191.17786 110.13203 m 203.06488 105.94043 l 209.92786 112.65416 l 198.04083 116.07875 lf
-0 sg 191.17786 110.13203 m 203.06488 105.94043 l 209.92786 112.65416 l 198.04083 116.07875 lx
-0.00000 0.99211 0.00789 s 111.15381 108.86388 m 123.04083 106.21626 l 129.90381 113.27086 l 118.01679 116.97263 lf
-0 sg 111.15381 108.86388 m 123.04083 106.21626 l 129.90381 113.27086 l 118.01679 116.97263 lx
-0.00000 0.77878 0.22122 s 221.81488 108.72739 m 233.70191 104.82505 l 240.56488 112.25363 l 228.67786 115.68512 lf
-0 sg 221.81488 108.72739 m 233.70191 104.82505 l 240.56488 112.25363 l 228.67786 115.68512 lx
-0.00000 0.80928 0.19072 s 141.79083 108.39131 m 153.67786 105.18601 l 160.54083 110.85473 l 148.65381 114.77389 lf
-0 sg 141.79083 108.39131 m 153.67786 105.18601 l 160.54083 110.85473 l 148.65381 114.77389 lx
-0.00000 0.93868 0.06132 s 172.42786 109.09566 m 184.31488 105.22372 l 191.17786 110.13203 l 179.29083 112.80341 lf
-0 sg 172.42786 109.09566 m 184.31488 105.22372 l 191.17786 110.13203 l 179.29083 112.80341 lx
-0.00000 0.45822 0.54178 s 92.40381 106.50601 m 104.29083 99.59960 l 111.15381 108.86388 l 99.26679 113.18128 lf
-0 sg 92.40381 106.50601 m 104.29083 99.59960 l 111.15381 108.86388 l 99.26679 113.18128 lx
-0.34403 0.65597 0.00000 s 61.76679 108.39542 m 73.65381 109.17077 l 80.51679 111.74459 l 68.62976 114.33893 lf
-0 sg 61.76679 108.39542 m 73.65381 109.17077 l 80.51679 111.74459 l 68.62976 114.33893 lx
-0.00000 0.63766 0.36234 s 203.06488 105.94043 m 214.95191 102.23798 l 221.81488 108.72739 l 209.92786 112.65416 lf
-0 sg 203.06488 105.94043 m 214.95191 102.23798 l 221.81488 108.72739 l 209.92786 112.65416 lx
-0.00000 0.95062 0.04938 s 123.04083 106.21626 m 134.92786 103.16558 l 141.79083 108.39131 l 129.90381 113.27086 lf
-0 sg 123.04083 106.21626 m 134.92786 103.16558 l 141.79083 108.39131 l 129.90381 113.27086 lx
-0.00000 0.82167 0.17833 s 233.70191 104.82505 m 245.58893 102.43687 l 252.45191 108.82214 l 240.56488 112.25363 lf
-0 sg 233.70191 104.82505 m 245.58893 102.43687 l 252.45191 108.82214 l 240.56488 112.25363 lx
-0.00000 0.98545 0.01455 s 153.67786 105.18601 m 165.56488 102.69449 l 172.42786 109.09566 l 160.54083 110.85473 lf
-0 sg 153.67786 105.18601 m 165.56488 102.69449 l 172.42786 109.09566 l 160.54083 110.85473 lx
-0.00000 0.31336 0.68664 s 104.29083 99.59960 m 116.17786 97.81190 l 123.04083 106.21626 l 111.15381 108.86388 lf
-0 sg 104.29083 99.59960 m 116.17786 97.81190 l 123.04083 106.21626 l 111.15381 108.86388 lx
-0.00000 0.93868 0.06132 s 184.31488 105.22372 m 196.20191 102.23268 l 203.06488 105.94043 l 191.17786 110.13203 lf
-0 sg 184.31488 105.22372 m 196.20191 102.23268 l 203.06488 105.94043 l 191.17786 110.13203 lx
-0.00000 0.50326 0.49674 s 214.95191 102.23798 m 226.83893 98.25005 l 233.70191 104.82505 l 221.81488 108.72739 lf
-0 sg 214.95191 102.23798 m 226.83893 98.25005 l 233.70191 104.82505 l 221.81488 108.72739 lx
-0.67823 0.32177 0.00000 s 73.65381 109.17077 m 85.54083 106.96222 l 92.40381 106.50601 l 80.51679 111.74459 lf
-0 sg 73.65381 109.17077 m 85.54083 106.96222 l 92.40381 106.50601 l 80.51679 111.74459 lx
-0.00000 0.92046 0.07954 s 134.92786 103.16558 m 146.81488 100.17258 l 153.67786 105.18601 l 141.79083 108.39131 lf
-0 sg 134.92786 103.16558 m 146.81488 100.17258 l 153.67786 105.18601 l 141.79083 108.39131 lx
-0.05603 0.94397 0.00000 s 245.58893 102.43687 m 257.47595 101.08960 l 264.33893 105.39065 l 252.45191 108.82214 lf
-0 sg 245.58893 102.43687 m 257.47595 101.08960 l 264.33893 105.39065 l 252.45191 108.82214 lx
-0.00000 0.07310 0.92690 s 85.54083 106.96222 m 97.42786 86.16951 l 104.29083 99.59960 l 92.40381 106.50601 lf
-0 sg 85.54083 106.96222 m 97.42786 86.16951 l 104.29083 99.59960 l 92.40381 106.50601 lx
-0.18494 0.81506 0.00000 s 165.56488 102.69449 m 177.45191 99.75325 l 184.31488 105.22372 l 172.42786 109.09566 lf
-0 sg 165.56488 102.69449 m 177.45191 99.75325 l 184.31488 105.22372 l 172.42786 109.09566 lx
-0.50399 0.49601 0.00000 s 54.90381 102.45191 m 66.79083 101.99217 l 73.65381 109.17077 l 61.76679 108.39542 lf
-0 sg 54.90381 102.45191 m 66.79083 101.99217 l 73.65381 109.17077 l 61.76679 108.39542 lx
-0.00000 0.76910 0.23090 s 196.20191 102.23268 m 208.08893 97.12878 l 214.95191 102.23798 l 203.06488 105.94043 lf
-0 sg 196.20191 102.23268 m 208.08893 97.12878 l 214.95191 102.23798 l 203.06488 105.94043 lx
-0.00000 0.67338 0.32662 s 116.17786 97.81190 m 128.06488 96.37647 l 134.92786 103.16558 l 123.04083 106.21626 lf
-0 sg 116.17786 97.81190 m 128.06488 96.37647 l 134.92786 103.16558 l 123.04083 106.21626 lx
-0.00000 0.69985 0.30015 s 226.83893 98.25005 m 238.72595 97.42600 l 245.58893 102.43687 l 233.70191 104.82505 lf
-0 sg 226.83893 98.25005 m 238.72595 97.42600 l 245.58893 102.43687 l 233.70191 104.82505 lx
-0.00000 0.00000 0.30666 s 97.42786 86.16951 m 109.31488 91.70224 l 116.17786 97.81190 l 104.29083 99.59960 lf
-0 sg 97.42786 86.16951 m 109.31488 91.70224 l 116.17786 97.81190 l 104.29083 99.59960 lx
-0.05177 0.94823 0.00000 s 146.81488 100.17258 m 158.70191 96.88879 l 165.56488 102.69449 l 153.67786 105.18601 lf
-0 sg 146.81488 100.17258 m 158.70191 96.88879 l 165.56488 102.69449 l 153.67786 105.18601 lx
-0.00000 0.87830 0.12170 s 66.79083 101.99217 m 78.67786 81.80942 l 85.54083 106.96222 l 73.65381 109.17077 lf
-0 sg 66.79083 101.99217 m 78.67786 81.80942 l 85.54083 106.96222 l 73.65381 109.17077 lx
-0.29608 0.70392 0.00000 s 257.47595 101.08960 m 269.36298 98.77734 l 276.22595 101.95917 l 264.33893 105.39065 lf
-0 sg 257.47595 101.08960 m 269.36298 98.77734 l 276.22595 101.95917 l 264.33893 105.39065 lx
-0.18494 0.81506 0.00000 s 177.45191 99.75325 m 189.33893 95.83151 l 196.20191 102.23268 l 184.31488 105.22372 lf
-0 sg 177.45191 99.75325 m 189.33893 95.83151 l 196.20191 102.23268 l 184.31488 105.22372 lx
-0.00000 0.61832 0.38168 s 208.08893 97.12878 m 219.97595 94.18496 l 226.83893 98.25005 l 214.95191 102.23798 lf
-0 sg 208.08893 97.12878 m 219.97595 94.18496 l 226.83893 98.25005 l 214.95191 102.23798 lx
-0.00000 0.92655 0.07345 s 128.06488 96.37647 m 139.95191 93.50814 l 146.81488 100.17258 l 134.92786 103.16558 lf
-0 sg 128.06488 96.37647 m 139.95191 93.50814 l 146.81488 100.17258 l 134.92786 103.16558 lx
-0.00000 0.00000 0.91269 s 78.67786 81.80942 m 90.56488 98.38153 l 97.42786 86.16951 l 85.54083 106.96222 lf
-0 sg 78.67786 81.80942 m 90.56488 98.38153 l 97.42786 86.16951 l 85.54083 106.96222 lx
-0.32597 0.67404 0.00000 s 238.72595 97.42600 m 250.61298 96.61497 l 257.47595 101.08960 l 245.58893 102.43687 lf
-0 sg 238.72595 97.42600 m 250.61298 96.61497 l 257.47595 101.08960 l 245.58893 102.43687 lx
-0.22268 0.77732 0.00000 s 158.70191 96.88879 m 170.58893 94.16016 l 177.45191 99.75325 l 165.56488 102.69449 lf
-0 sg 158.70191 96.88879 m 170.58893 94.16016 l 177.45191 99.75325 l 165.56488 102.69449 lx
-0.16685 0.83315 0.00000 s 269.36298 98.77734 m 281.25000 92.50202 l 288.11298 98.52768 l 276.22595 101.95917 lf
-0 sg 269.36298 98.77734 m 281.25000 92.50202 l 288.11298 98.52768 l 276.22595 101.95917 lx
-0.00000 0.98545 0.01455 s 189.33893 95.83151 m 201.22595 91.46006 l 208.08893 97.12878 l 196.20191 102.23268 lf
-0 sg 189.33893 95.83151 m 201.22595 91.46006 l 208.08893 97.12878 l 196.20191 102.23268 lx
-1.00000 0.05341 0.05341 s 48.04083 96.50839 m 59.92786 104.61580 l 66.79083 101.99217 l 54.90381 102.45191 lf
-0 sg 48.04083 96.50839 m 59.92786 104.61580 l 66.79083 101.99217 l 54.90381 102.45191 lx
-0.00000 0.56052 0.43948 s 109.31488 91.70224 m 121.20191 92.39947 l 128.06488 96.37647 l 116.17786 97.81190 lf
-0 sg 109.31488 91.70224 m 121.20191 92.39947 l 128.06488 96.37647 l 116.17786 97.81190 lx
-0.00000 0.81548 0.18452 s 219.97595 94.18496 m 231.86298 90.84600 l 238.72595 97.42600 l 226.83893 98.25005 lf
-0 sg 219.97595 94.18496 m 231.86298 90.84600 l 238.72595 97.42600 l 226.83893 98.25005 lx
-0.04293 0.95707 0.00000 s 139.95191 93.50814 m 151.83893 90.48043 l 158.70191 96.88879 l 146.81488 100.17258 lf
-0 sg 139.95191 93.50814 m 151.83893 90.48043 l 158.70191 96.88879 l 146.81488 100.17258 lx
-0.03730 0.96270 0.00000 s 59.92786 104.61580 m 71.81488 89.86493 l 78.67786 81.80942 l 66.79083 101.99217 lf
-0 sg 59.92786 104.61580 m 71.81488 89.86493 l 78.67786 81.80942 l 66.79083 101.99217 lx
-0.70913 0.29087 0.00000 s 250.61298 96.61497 m 262.50000 92.47294 l 269.36298 98.77734 l 257.47595 101.08960 lf
-0 sg 250.61298 96.61497 m 262.50000 92.47294 l 269.36298 98.77734 l 257.47595 101.08960 lx
-0.00000 0.54541 0.45459 s 90.56488 98.38153 m 102.45191 91.78698 l 109.31488 91.70224 l 97.42786 86.16951 lf
-0 sg 90.56488 98.38153 m 102.45191 91.78698 l 109.31488 91.70224 l 97.42786 86.16951 lx
-0.00000 0.95990 0.04010 s 281.25000 92.50202 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lf
-0 sg 281.25000 92.50202 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lx
-0.22268 0.77732 0.00000 s 170.58893 94.16016 m 182.47595 90.02581 l 189.33893 95.83151 l 177.45191 99.75325 lf
-0 sg 170.58893 94.16016 m 182.47595 90.02581 l 189.33893 95.83151 l 177.45191 99.75325 lx
-0.00000 0.18293 0.81707 s 121.20191 92.39947 m 133.08893 77.24104 l 139.95191 93.50814 l 128.06488 96.37647 lf
-0 sg 121.20191 92.39947 m 133.08893 77.24104 l 139.95191 93.50814 l 128.06488 96.37647 lx
-0.00000 0.80928 0.19072 s 201.22595 91.46006 m 213.11298 87.80238 l 219.97595 94.18496 l 208.08893 97.12878 lf
-0 sg 201.22595 91.46006 m 213.11298 87.80238 l 219.97595 94.18496 l 208.08893 97.12878 lx
-0.00000 sg 71.81488 89.86493 m 83.70191 67.31293 l 90.56488 98.38153 l 78.67786 81.80942 lf
-0 sg 71.81488 89.86493 m 83.70191 67.31293 l 90.56488 98.38153 l 78.67786 81.80942 lx
-0.37472 0.62528 0.00000 s 231.86298 90.84600 m 243.75000 89.55708 l 250.61298 96.61497 l 238.72595 97.42600 lf
-0 sg 231.86298 90.84600 m 243.75000 89.55708 l 250.61298 96.61497 l 238.72595 97.42600 lx
-0.17552 0.82448 0.00000 s 151.83893 90.48043 m 163.72595 87.56392 l 170.58893 94.16016 l 158.70191 96.88879 lf
-0 sg 151.83893 90.48043 m 163.72595 87.56392 l 170.58893 94.16016 l 158.70191 96.88879 lx
-0.79737 0.20263 0.00000 s 41.17786 90.56488 m 53.06488 86.68822 l 59.92786 104.61580 l 48.04083 96.50839 lf
-0 sg 41.17786 90.56488 m 53.06488 86.68822 l 59.92786 104.61580 l 48.04083 96.50839 lx
-0.54050 0.45950 0.00000 s 262.50000 92.47294 m 274.38702 89.22625 l 281.25000 92.50202 l 269.36298 98.77734 lf
-0 sg 262.50000 92.47294 m 274.38702 89.22625 l 281.25000 92.50202 l 269.36298 98.77734 lx
-0.00000 0.43592 0.56408 s 102.45191 91.78698 m 114.33893 76.96454 l 121.20191 92.39947 l 109.31488 91.70224 lf
-0 sg 102.45191 91.78698 m 114.33893 76.96454 l 121.20191 92.39947 l 109.31488 91.70224 lx
-0.05177 0.94823 0.00000 s 182.47595 90.02581 m 194.36298 86.44663 l 201.22595 91.46006 l 189.33893 95.83151 lf
-0 sg 182.47595 90.02581 m 194.36298 86.44663 l 201.22595 91.46006 l 189.33893 95.83151 lx
-0.00000 0.22633 0.77367 s 133.08893 77.24104 m 144.97595 85.14873 l 151.83893 90.48043 l 139.95191 93.50814 lf
-0 sg 133.08893 77.24104 m 144.97595 85.14873 l 151.83893 90.48043 l 139.95191 93.50814 lx
-0.00000 0.94432 0.05568 s 213.11298 87.80238 m 225.00000 85.81896 l 231.86298 90.84600 l 219.97595 94.18496 lf
-0 sg 213.11298 87.80238 m 225.00000 85.81896 l 231.86298 90.84600 l 219.97595 94.18496 lx
-0.17552 0.82448 0.00000 s 163.72595 87.56392 m 175.61298 83.61746 l 182.47595 90.02581 l 170.58893 94.16016 lf
-0 sg 163.72595 87.56392 m 175.61298 83.61746 l 182.47595 90.02581 l 170.58893 94.16016 lx
-0.78864 0.21136 0.00000 s 243.75000 89.55708 m 255.63702 87.59686 l 262.50000 92.47294 l 250.61298 96.61497 lf
-0 sg 243.75000 89.55708 m 255.63702 87.59686 l 262.50000 92.47294 l 250.61298 96.61497 lx
-0.15365 0.84635 0.00000 s 274.38702 89.22625 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.50202 lf
-0 sg 274.38702 89.22625 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.50202 lx
-0.03741 0.96259 0.00000 s 83.70191 67.31293 m 95.58893 93.35057 l 102.45191 91.78698 l 90.56488 98.38153 lf
-0 sg 83.70191 67.31293 m 95.58893 93.35057 l 102.45191 91.78698 l 90.56488 98.38153 lx
-0.00000 0.92046 0.07954 s 194.36298 86.44663 m 206.25000 82.57665 l 213.11298 87.80238 l 201.22595 91.46006 lf
-0 sg 194.36298 86.44663 m 206.25000 82.57665 l 213.11298 87.80238 l 201.22595 91.46006 lx
-0.00000 0.40271 0.59729 s 114.33893 76.96454 m 126.22595 92.07893 l 133.08893 77.24104 l 121.20191 92.39947 lf
-0 sg 114.33893 76.96454 m 126.22595 92.07893 l 133.08893 77.24104 l 121.20191 92.39947 lx
-0.00000 0.26154 0.73846 s 144.97595 85.14873 m 156.86298 69.92921 l 163.72595 87.56392 l 151.83893 90.48043 lf
-0 sg 144.97595 85.14873 m 156.86298 69.92921 l 163.72595 87.56392 l 151.83893 90.48043 lx
-0.00000 0.50352 0.49648 s 34.31488 84.62137 m 46.20191 75.46244 l 53.06488 86.68822 l 41.17786 90.56488 lf
-0 sg 34.31488 84.62137 m 46.20191 75.46244 l 53.06488 86.68822 l 41.17786 90.56488 lx
-1.00000 sg 53.06488 86.68822 m 64.95191 99.53146 l 71.81488 89.86493 l 59.92786 104.61580 lf
-0 sg 53.06488 86.68822 m 64.95191 99.53146 l 71.81488 89.86493 l 59.92786 104.61580 lx
-0.24057 0.75943 0.00000 s 225.00000 85.81896 m 236.88702 82.65775 l 243.75000 89.55708 l 231.86298 90.84600 lf
-0 sg 225.00000 85.81896 m 236.88702 82.65775 l 243.75000 89.55708 l 231.86298 90.84600 lx
-0.00000 0.14593 0.85407 s 64.95191 99.53146 m 76.83893 72.17779 l 83.70191 67.31293 l 71.81488 89.86493 lf
-0 sg 64.95191 99.53146 m 76.83893 72.17779 l 83.70191 67.31293 l 71.81488 89.86493 lx
-0.04293 0.95707 0.00000 s 175.61298 83.61746 m 187.50000 79.78219 l 194.36298 86.44663 l 182.47595 90.02581 lf
-0 sg 175.61298 83.61746 m 187.50000 79.78219 l 194.36298 86.44663 l 182.47595 90.02581 lx
-0.87044 0.12956 0.00000 s 255.63702 87.59686 m 267.52405 84.31148 l 274.38702 89.22625 l 262.50000 92.47294 lf
-0 sg 255.63702 87.59686 m 267.52405 84.31148 l 274.38702 89.22625 l 262.50000 92.47294 lx
-0.00000 0.93302 0.06698 s 95.58893 93.35057 m 107.47595 73.61085 l 114.33893 76.96454 l 102.45191 91.78698 lf
-0 sg 95.58893 93.35057 m 107.47595 73.61085 l 114.33893 76.96454 l 102.45191 91.78698 lx
-0.00000 0.95062 0.04938 s 206.25000 82.57665 m 218.13702 78.76436 l 225.00000 85.81896 l 213.11298 87.80238 lf
-0 sg 206.25000 82.57665 m 218.13702 78.76436 l 225.00000 85.81896 l 213.11298 87.80238 lx
-0.00000 0.37663 0.62337 s 126.22595 92.07893 m 138.11298 70.14132 l 144.97595 85.14873 l 133.08893 77.24104 lf
-0 sg 126.22595 92.07893 m 138.11298 70.14132 l 144.97595 85.14873 l 133.08893 77.24104 lx
-0.00000 0.00000 0.44665 s 76.83893 72.17779 m 88.72595 72.98801 l 95.58893 93.35057 l 83.70191 67.31293 lf
-0 sg 76.83893 72.17779 m 88.72595 72.98801 l 95.58893 93.35057 l 83.70191 67.31293 lx
-0.00000 0.26154 0.73846 s 156.86298 69.92921 m 168.75000 78.28575 l 175.61298 83.61746 l 163.72595 87.56392 lf
-0 sg 156.86298 69.92921 m 168.75000 78.28575 l 175.61298 83.61746 l 163.72595 87.56392 lx
-0.64742 0.35258 0.00000 s 236.88702 82.65775 m 248.77405 80.77151 l 255.63702 87.59686 l 243.75000 89.55708 lf
-0 sg 236.88702 82.65775 m 248.77405 80.77151 l 255.63702 87.59686 l 243.75000 89.55708 lx
-0.43065 0.56935 0.00000 s 267.52405 84.31148 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 89.22625 lf
-0 sg 267.52405 84.31148 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 89.22625 lx
-0.00000 0.92655 0.07345 s 187.50000 79.78219 m 199.38702 75.78754 l 206.25000 82.57665 l 194.36298 86.44663 lf
-0 sg 187.50000 79.78219 m 199.38702 75.78754 l 206.25000 82.57665 l 194.36298 86.44663 lx
-1.00000 0.18511 0.18511 s 46.20191 75.46244 m 58.08893 84.36954 l 64.95191 99.53146 l 53.06488 86.68822 lf
-0 sg 46.20191 75.46244 m 58.08893 84.36954 l 64.95191 99.53146 l 53.06488 86.68822 lx
-0.00000 0.52415 0.47585 s 27.45191 78.67786 m 39.33893 75.07661 l 46.20191 75.46244 l 34.31488 84.62137 lf
-0 sg 27.45191 78.67786 m 39.33893 75.07661 l 46.20191 75.46244 l 34.31488 84.62137 lx
-0.00000 0.99211 0.00789 s 218.13702 78.76436 m 230.02405 74.54900 l 236.88702 82.65775 l 225.00000 85.81896 lf
-0 sg 218.13702 78.76436 m 230.02405 74.54900 l 236.88702 82.65775 l 225.00000 85.81896 lx
-0.22985 0.77015 0.00000 s 107.47595 73.61085 m 119.36298 83.29377 l 126.22595 92.07893 l 114.33893 76.96454 lf
-0 sg 107.47595 73.61085 m 119.36298 83.29377 l 126.22595 92.07893 l 114.33893 76.96454 lx
-0.00000 0.44501 0.55499 s 138.11298 70.14132 m 150.00000 86.57742 l 156.86298 69.92921 l 144.97595 85.14873 lf
-0 sg 138.11298 70.14132 m 150.00000 86.57742 l 156.86298 69.92921 l 144.97595 85.14873 lx
-0.00000 0.22633 0.77367 s 168.75000 78.28575 m 180.63702 63.51509 l 187.50000 79.78219 l 175.61298 83.61746 lf
-0 sg 168.75000 78.28575 m 180.63702 63.51509 l 187.50000 79.78219 l 175.61298 83.61746 lx
-0.81365 0.18635 0.00000 s 248.77405 80.77151 m 260.66107 76.39570 l 267.52405 84.31148 l 255.63702 87.59686 lf
-0 sg 248.77405 80.77151 m 260.66107 76.39570 l 267.52405 84.31148 l 255.63702 87.59686 lx
-0.00000 0.82168 0.17832 s 88.72595 72.98801 m 100.61298 70.50366 l 107.47595 73.61085 l 95.58893 93.35057 lf
-0 sg 88.72595 72.98801 m 100.61298 70.50366 l 107.47595 73.61085 l 95.58893 93.35057 lx
-0.00000 0.67338 0.32662 s 199.38702 75.78754 m 211.27405 70.36000 l 218.13702 78.76436 l 206.25000 82.57665 lf
-0 sg 199.38702 75.78754 m 211.27405 70.36000 l 218.13702 78.76436 l 206.25000 82.57665 lx
-1.00000 0.53147 0.53147 s 58.08893 84.36954 m 69.97595 80.86909 l 76.83893 72.17779 l 64.95191 99.53146 lf
-0 sg 58.08893 84.36954 m 69.97595 80.86909 l 76.83893 72.17779 l 64.95191 99.53146 lx
-0.15566 0.84434 0.00000 s 119.36298 83.29377 m 131.25000 65.71813 l 138.11298 70.14132 l 126.22595 92.07893 lf
-0 sg 119.36298 83.29377 m 131.25000 65.71813 l 138.11298 70.14132 l 126.22595 92.07893 lx
-0.00000 0.44501 0.55499 s 150.00000 86.57742 m 161.88702 63.27835 l 168.75000 78.28575 l 156.86298 69.92921 lf
-0 sg 150.00000 86.57742 m 161.88702 63.27835 l 168.75000 78.28575 l 156.86298 69.92921 lx
-0.00000 0.00000 0.85332 s 69.97595 80.86909 m 81.86298 61.44737 l 88.72595 72.98801 l 76.83893 72.17779 lf
-0 sg 69.97595 80.86909 m 81.86298 61.44737 l 88.72595 72.98801 l 76.83893 72.17779 lx
-0.13581 0.86419 0.00000 s 230.02405 74.54900 m 241.91107 72.00342 l 248.77405 80.77151 l 236.88702 82.65775 lf
-0 sg 230.02405 74.54900 m 241.91107 72.00342 l 248.77405 80.77151 l 236.88702 82.65775 lx
-0.00000 0.77296 0.22704 s 39.33893 75.07661 m 51.22595 68.52406 l 58.08893 84.36954 l 46.20191 75.46244 lf
-0 sg 39.33893 75.07661 m 51.22595 68.52406 l 58.08893 84.36954 l 46.20191 75.46244 lx
-0.00000 0.18293 0.81707 s 180.63702 63.51509 m 192.52405 71.81054 l 199.38702 75.78754 l 187.50000 79.78219 lf
-0 sg 180.63702 63.51509 m 192.52405 71.81054 l 199.38702 75.78754 l 187.50000 79.78219 lx
-0.35995 0.64005 0.00000 s 260.66107 76.39570 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 84.31148 lf
-0 sg 260.66107 76.39570 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 84.31148 lx
-0.00000 0.31336 0.68664 s 211.27405 70.36000 m 223.16107 65.28471 l 230.02405 74.54900 l 218.13702 78.76436 lf
-0 sg 211.27405 70.36000 m 223.16107 65.28471 l 230.02405 74.54900 l 218.13702 78.76436 lx
-0.00000 0.67603 0.32397 s 100.61298 70.50366 m 112.50000 67.37510 l 119.36298 83.29377 l 107.47595 73.61085 lf
-0 sg 100.61298 70.50366 m 112.50000 67.37510 l 119.36298 83.29377 l 107.47595 73.61085 lx
-0.02910 0.97090 0.00000 s 20.58893 72.73435 m 32.47595 70.31383 l 39.33893 75.07661 l 27.45191 78.67786 lf
-0 sg 20.58893 72.73435 m 32.47595 70.31383 l 39.33893 75.07661 l 27.45191 78.67786 lx
-0.06389 0.93611 0.00000 s 131.25000 65.71813 m 143.13702 73.84467 l 150.00000 86.57742 l 138.11298 70.14132 lf
-0 sg 131.25000 65.71813 m 143.13702 73.84467 l 150.00000 86.57742 l 138.11298 70.14132 lx
-0.00000 0.37663 0.62337 s 161.88702 63.27835 m 173.77405 78.35298 l 180.63702 63.51509 l 168.75000 78.28575 lf
-0 sg 161.88702 63.27835 m 173.77405 78.35298 l 180.63702 63.51509 l 168.75000 78.28575 lx
-0.25101 0.74899 0.00000 s 241.91107 72.00342 m 253.79809 68.62250 l 260.66107 76.39570 l 248.77405 80.77151 lf
-0 sg 241.91107 72.00342 m 253.79809 68.62250 l 260.66107 76.39570 l 248.77405 80.77151 lx
-0.00000 0.17267 0.82733 s 81.86298 61.44737 m 93.75000 73.07902 l 100.61298 70.50366 l 88.72595 72.98801 lf
-0 sg 81.86298 61.44737 m 93.75000 73.07902 l 100.61298 70.50366 l 88.72595 72.98801 lx
-0.00000 0.56052 0.43948 s 192.52405 71.81054 m 204.41107 64.25033 l 211.27405 70.36000 l 199.38702 75.78754 lf
-0 sg 192.52405 71.81054 m 204.41107 64.25033 l 211.27405 70.36000 l 199.38702 75.78754 lx
-0.00000 0.45822 0.54178 s 223.16107 65.28471 m 235.04809 65.32815 l 241.91107 72.00342 l 230.02405 74.54900 lf
-0 sg 223.16107 65.28471 m 235.04809 65.32815 l 241.91107 72.00342 l 230.02405 74.54900 lx
-1.00000 0.41711 0.41711 s 51.22595 68.52406 m 63.11298 77.88509 l 69.97595 80.86909 l 58.08893 84.36954 lf
-0 sg 51.22595 68.52406 m 63.11298 77.88509 l 69.97595 80.86909 l 58.08893 84.36954 lx
-0.14401 0.85599 0.00000 s 112.50000 67.37510 m 124.38702 70.91566 l 131.25000 65.71813 l 119.36298 83.29377 lf
-0 sg 112.50000 67.37510 m 124.38702 70.91566 l 131.25000 65.71813 l 119.36298 83.29377 lx
-0.00000 0.68070 0.31930 s 32.47595 70.31383 m 44.36298 64.51283 l 51.22595 68.52406 l 39.33893 75.07661 lf
-0 sg 32.47595 70.31383 m 44.36298 64.51283 l 51.22595 68.52406 l 39.33893 75.07661 lx
-0.00000 0.00000 0.30666 s 204.41107 64.25033 m 216.29809 51.85463 l 223.16107 65.28471 l 211.27405 70.36000 lf
-0 sg 204.41107 64.25033 m 216.29809 51.85463 l 223.16107 65.28471 l 211.27405 70.36000 lx
-0.06389 0.93611 0.00000 s 143.13702 73.84467 m 155.02405 58.85515 l 161.88702 63.27835 l 150.00000 86.57742 lf
-0 sg 143.13702 73.84467 m 155.02405 58.85515 l 161.88702 63.27835 l 150.00000 86.57742 lx
-0.00000 0.40271 0.59729 s 173.77405 78.35298 m 185.66107 56.37562 l 192.52405 71.81054 l 180.63702 63.51509 lf
-0 sg 173.77405 78.35298 m 185.66107 56.37562 l 192.52405 71.81054 l 180.63702 63.51509 lx
-0.07505 0.92495 0.00000 s 253.79809 68.62250 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 76.39570 lf
-0 sg 253.79809 68.62250 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 76.39570 lx
-0.00000 0.47943 0.52057 s 93.75000 73.07902 m 105.63702 57.42793 l 112.50000 67.37510 l 100.61298 70.50366 lf
-0 sg 93.75000 73.07902 m 105.63702 57.42793 l 112.50000 67.37510 l 100.61298 70.50366 lx
-0.52958 0.47042 0.00000 s 63.11298 77.88509 m 75.00000 65.87617 l 81.86298 61.44737 l 69.97595 80.86909 lf
-0 sg 63.11298 77.88509 m 75.00000 65.87617 l 81.86298 61.44737 l 69.97595 80.86909 lx
-0.01998 0.98002 0.00000 s 13.72595 66.79083 m 25.61298 63.06800 l 32.47595 70.31383 l 20.58893 72.73435 lf
-0 sg 13.72595 66.79083 m 25.61298 63.06800 l 32.47595 70.31383 l 20.58893 72.73435 lx
-0.00985 0.99015 0.00000 s 124.38702 70.91566 m 136.27405 61.30785 l 143.13702 73.84467 l 131.25000 65.71813 lf
-0 sg 124.38702 70.91566 m 136.27405 61.30785 l 143.13702 73.84467 l 131.25000 65.71813 lx
-0.00000 0.92420 0.07580 s 235.04809 65.32815 m 246.93512 63.70375 l 253.79809 68.62250 l 241.91107 72.00342 lf
-0 sg 235.04809 65.32815 m 246.93512 63.70375 l 253.79809 68.62250 l 241.91107 72.00342 lx
-0.00000 0.04636 0.95364 s 75.00000 65.87617 m 86.88702 52.15581 l 93.75000 73.07902 l 81.86298 61.44737 lf
-0 sg 75.00000 65.87617 m 86.88702 52.15581 l 93.75000 73.07902 l 81.86298 61.44737 lx
-0.17549 0.82451 0.00000 s 44.36298 64.51283 m 56.25000 60.38234 l 63.11298 77.88509 l 51.22595 68.52406 lf
-0 sg 44.36298 64.51283 m 56.25000 60.38234 l 63.11298 77.88509 l 51.22595 68.52406 lx
-0.15566 0.84434 0.00000 s 155.02405 58.85515 m 166.91107 69.56782 l 173.77405 78.35298 l 161.88702 63.27835 lf
-0 sg 155.02405 58.85515 m 166.91107 69.56782 l 173.77405 78.35298 l 161.88702 63.27835 lx
-0.00000 0.43592 0.56408 s 185.66107 56.37562 m 197.54809 64.33508 l 204.41107 64.25033 l 192.52405 71.81054 lf
-0 sg 185.66107 56.37562 m 197.54809 64.33508 l 204.41107 64.25033 l 192.52405 71.81054 lx
-0.00000 0.07310 0.92690 s 216.29809 51.85463 m 228.18512 65.78436 l 235.04809 65.32815 l 223.16107 65.28471 lf
-0 sg 216.29809 51.85463 m 228.18512 65.78436 l 235.04809 65.32815 l 223.16107 65.28471 lx
-0.00000 0.77966 0.22034 s 105.63702 57.42793 m 117.52405 62.94761 l 124.38702 70.91566 l 112.50000 67.37510 lf
-0 sg 105.63702 57.42793 m 117.52405 62.94761 l 124.38702 70.91566 l 112.50000 67.37510 lx
-0.00000 0.99739 0.00261 s 25.61298 63.06800 m 37.50000 60.98494 l 44.36298 64.51283 l 32.47595 70.31383 lf
-0 sg 25.61298 63.06800 m 37.50000 60.98494 l 44.36298 64.51283 l 32.47595 70.31383 lx
-0.00985 0.99015 0.00000 s 136.27405 61.30785 m 148.16107 64.05269 l 155.02405 58.85515 l 143.13702 73.84467 lf
-0 sg 136.27405 61.30785 m 148.16107 64.05269 l 155.02405 58.85515 l 143.13702 73.84467 lx
-0.01473 0.98527 0.00000 s 246.93512 63.70375 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.62250 lf
-0 sg 246.93512 63.70375 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.62250 lx
-0.00000 0.27002 0.72998 s 86.88702 52.15581 m 98.77405 59.15437 l 105.63702 57.42793 l 93.75000 73.07902 lf
-0 sg 86.88702 52.15581 m 98.77405 59.15437 l 105.63702 57.42793 l 93.75000 73.07902 lx
-0.22985 0.77015 0.00000 s 166.91107 69.56782 m 178.79809 53.02192 l 185.66107 56.37562 l 173.77405 78.35298 lf
-0 sg 166.91107 69.56782 m 178.79809 53.02192 l 185.66107 56.37562 l 173.77405 78.35298 lx
-0.00000 0.54541 0.45459 s 197.54809 64.33508 m 209.43512 64.06665 l 216.29809 51.85463 l 204.41107 64.25033 lf
-0 sg 197.54809 64.33508 m 209.43512 64.06665 l 216.29809 51.85463 l 204.41107 64.25033 lx
-1.00000 0.36982 0.36982 s 56.25000 60.38234 m 68.13702 69.37304 l 75.00000 65.87617 l 63.11298 77.88509 lf
-0 sg 56.25000 60.38234 m 68.13702 69.37304 l 75.00000 65.87617 l 63.11298 77.88509 lx
-0.00000 0.94365 0.05635 s 6.86298 60.84732 m 18.75000 57.40812 l 25.61298 63.06800 l 13.72595 66.79083 lf
-0 sg 6.86298 60.84732 m 18.75000 57.40812 l 25.61298 63.06800 l 13.72595 66.79083 lx
-0.00000 0.83348 0.16652 s 117.52405 62.94761 m 129.41107 50.48747 l 136.27405 61.30785 l 124.38702 70.91566 lf
-0 sg 117.52405 62.94761 m 129.41107 50.48747 l 136.27405 61.30785 l 124.38702 70.91566 lx
-0.00000 0.66761 0.33239 s 37.50000 60.98494 m 49.38702 54.87254 l 56.25000 60.38234 l 44.36298 64.51283 lf
-0 sg 37.50000 60.98494 m 49.38702 54.87254 l 56.25000 60.38234 l 44.36298 64.51283 lx
-0.67823 0.32177 0.00000 s 228.18512 65.78436 m 240.07214 61.12993 l 246.93512 63.70375 l 235.04809 65.32815 lf
-0 sg 228.18512 65.78436 m 240.07214 61.12993 l 246.93512 63.70375 l 235.04809 65.32815 lx
-0.14401 0.85599 0.00000 s 148.16107 64.05269 m 160.04809 53.64915 l 166.91107 69.56782 l 155.02405 58.85515 lf
-0 sg 148.16107 64.05269 m 160.04809 53.64915 l 166.91107 69.56782 l 155.02405 58.85515 lx
-0.00000 0.00000 0.91269 s 209.43512 64.06665 m 221.32214 40.63156 l 228.18512 65.78436 l 216.29809 51.85463 lf
-0 sg 209.43512 64.06665 m 221.32214 40.63156 l 228.18512 65.78436 l 216.29809 51.85463 lx
-0.00000 0.93302 0.06698 s 178.79809 53.02192 m 190.68512 65.89866 l 197.54809 64.33508 l 185.66107 56.37562 lf
-0 sg 178.79809 53.02192 m 190.68512 65.89866 l 197.54809 64.33508 l 185.66107 56.37562 lx
-0.00000 0.43536 0.56464 s 98.77405 59.15437 m 110.66107 50.76776 l 117.52405 62.94761 l 105.63702 57.42793 lf
-0 sg 98.77405 59.15437 m 110.66107 50.76776 l 117.52405 62.94761 l 105.63702 57.42793 lx
-0.34713 0.65287 0.00000 s 68.13702 69.37304 m 80.02405 58.73792 l 86.88702 52.15581 l 75.00000 65.87617 lf
-0 sg 68.13702 69.37304 m 80.02405 58.73792 l 86.88702 52.15581 l 75.00000 65.87617 lx
-0.00323 0.99677 0.00000 s 18.75000 57.40812 m 30.63702 53.72241 l 37.50000 60.98494 l 25.61298 63.06800 lf
-0 sg 18.75000 57.40812 m 30.63702 53.72241 l 37.50000 60.98494 l 25.61298 63.06800 lx
-0.00000 0.83348 0.16652 s 129.41107 50.48747 m 141.29809 56.08463 l 148.16107 64.05269 l 136.27405 61.30785 lf
-0 sg 129.41107 50.48747 m 141.29809 56.08463 l 148.16107 64.05269 l 136.27405 61.30785 lx
-0.00000 0.67603 0.32397 s 160.04809 53.64915 m 171.93512 49.91473 l 178.79809 53.02192 l 166.91107 69.56782 lf
-0 sg 160.04809 53.64915 m 171.93512 49.91473 l 178.79809 53.02192 l 166.91107 69.56782 lx
-0.34403 0.65597 0.00000 s 240.07214 61.12993 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 63.70375 lf
-0 sg 240.07214 61.12993 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 63.70375 lx
-0.00000 0.19338 0.80662 s 80.02405 58.73792 m 91.91107 46.97230 l 98.77405 59.15437 l 86.88702 52.15581 lf
-0 sg 80.02405 58.73792 m 91.91107 46.97230 l 98.77405 59.15437 l 86.88702 52.15581 lx
-0.25750 0.74250 0.00000 s 49.38702 54.87254 m 61.27405 50.27083 l 68.13702 69.37304 l 56.25000 60.38234 lf
-0 sg 49.38702 54.87254 m 61.27405 50.27083 l 68.13702 69.37304 l 56.25000 60.38234 lx
-0.03741 0.96259 0.00000 s 190.68512 65.89866 m 202.57214 32.99804 l 209.43512 64.06665 l 197.54809 64.33508 lf
-0 sg 190.68512 65.89866 m 202.57214 32.99804 l 209.43512 64.06665 l 197.54809 64.33508 lx
-0.00000 0.66846 0.33154 s 110.66107 50.76776 m 122.54809 55.47952 l 129.41107 50.48747 l 117.52405 62.94761 lf
-0 sg 110.66107 50.76776 m 122.54809 55.47952 l 129.41107 50.48747 l 117.52405 62.94761 lx
-0.00000 0.96548 0.03452 s 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.40812 l 6.86298 60.84732 lf
-0 sg 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.40812 l 6.86298 60.84732 lx
-0.00000 0.87830 0.12170 s 221.32214 40.63156 m 233.20917 53.95134 l 240.07214 61.12993 l 228.18512 65.78436 lf
-0 sg 221.32214 40.63156 m 233.20917 53.95134 l 240.07214 61.12993 l 228.18512 65.78436 lx
-0.00000 sg 202.57214 32.99804 m 214.45917 48.68707 l 221.32214 40.63156 l 209.43512 64.06665 lf
-0 sg 202.57214 32.99804 m 214.45917 48.68707 l 221.32214 40.63156 l 209.43512 64.06665 lx
-0.00000 0.98458 0.01542 s 30.63702 53.72241 m 42.52405 51.62863 l 49.38702 54.87254 l 37.50000 60.98494 lf
-0 sg 30.63702 53.72241 m 42.52405 51.62863 l 49.38702 54.87254 l 37.50000 60.98494 lx
-0.00000 0.77966 0.22034 s 141.29809 56.08463 m 153.18512 43.70198 l 160.04809 53.64915 l 148.16107 64.05269 lf
-0 sg 141.29809 56.08463 m 153.18512 43.70198 l 160.04809 53.64915 l 148.16107 64.05269 lx
-0.00000 0.00000 0.93358 s 91.91107 46.97230 m 103.79809 42.93293 l 110.66107 50.76776 l 98.77405 59.15437 lf
-0 sg 91.91107 46.97230 m 103.79809 42.93293 l 110.66107 50.76776 l 98.77405 59.15437 lx
-0.00000 0.82168 0.17832 s 171.93512 49.91473 m 183.82214 45.53610 l 190.68512 65.89866 l 178.79809 53.02192 lf
-0 sg 171.93512 49.91473 m 183.82214 45.53610 l 190.68512 65.89866 l 178.79809 53.02192 lx
-0.00000 0.66846 0.33154 s 122.54809 55.47952 m 134.43512 43.90478 l 141.29809 56.08463 l 129.41107 50.48747 lf
-0 sg 122.54809 55.47952 m 134.43512 43.90478 l 141.29809 56.08463 l 129.41107 50.48747 lx
-1.00000 0.37522 0.37522 s 61.27405 50.27083 m 73.16107 57.70700 l 80.02405 58.73792 l 68.13702 69.37304 lf
-0 sg 61.27405 50.27083 m 73.16107 57.70700 l 80.02405 58.73792 l 68.13702 69.37304 lx
-0.00000 0.94585 0.05415 s 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.72241 l 18.75000 57.40812 lf
-0 sg 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.72241 l 18.75000 57.40812 lx
-0.00000 0.00000 0.44665 s 183.82214 45.53610 m 195.70917 37.86291 l 202.57214 32.99804 l 190.68512 65.89866 lf
-0 sg 183.82214 45.53610 m 195.70917 37.86291 l 202.57214 32.99804 l 190.68512 65.89866 lx
-0.00000 0.66045 0.33955 s 42.52405 51.62863 m 54.41107 46.38518 l 61.27405 50.27083 l 49.38702 54.87254 lf
-0 sg 42.52405 51.62863 m 54.41107 46.38518 l 61.27405 50.27083 l 49.38702 54.87254 lx
-0.00000 0.47943 0.52057 s 153.18512 43.70198 m 165.07214 52.49009 l 171.93512 49.91473 l 160.04809 53.64915 lf
-0 sg 153.18512 43.70198 m 165.07214 52.49009 l 171.93512 49.91473 l 160.04809 53.64915 lx
-0.50399 0.49601 0.00000 s 233.20917 53.95134 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 61.12993 lf
-0 sg 233.20917 53.95134 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 61.12993 lx
-0.00000 0.00000 0.97197 s 103.79809 42.93293 m 115.68512 37.43349 l 122.54809 55.47952 l 110.66107 50.76776 lf
-0 sg 103.79809 42.93293 m 115.68512 37.43349 l 122.54809 55.47952 l 110.66107 50.76776 lx
-1.00000 0.04594 0.04594 s 73.16107 57.70700 m 85.04809 54.55137 l 91.91107 46.97230 l 80.02405 58.73792 lf
-0 sg 73.16107 57.70700 m 85.04809 54.55137 l 91.91107 46.97230 l 80.02405 58.73792 lx
-0.03730 0.96270 0.00000 s 214.45917 48.68707 m 226.34619 56.57497 l 233.20917 53.95134 l 221.32214 40.63156 lf
-0 sg 214.45917 48.68707 m 226.34619 56.57497 l 233.20917 53.95134 l 221.32214 40.63156 lx
-0.00000 0.43536 0.56464 s 134.43512 43.90478 m 146.32214 45.42841 l 153.18512 43.70198 l 141.29809 56.08463 lf
-0 sg 134.43512 43.90478 m 146.32214 45.42841 l 153.18512 43.70198 l 141.29809 56.08463 lx
-0.02704 0.97296 0.00000 s 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 51.62863 l 30.63702 53.72241 lf
-0 sg 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 51.62863 l 30.63702 53.72241 lx
-0.00000 0.17267 0.82733 s 165.07214 52.49009 m 176.95917 33.99547 l 183.82214 45.53610 l 171.93512 49.91473 lf
-0 sg 165.07214 52.49009 m 176.95917 33.99547 l 183.82214 45.53610 l 171.93512 49.91473 lx
-0.00000 0.96569 0.03431 s 54.41107 46.38518 m 66.29809 39.14156 l 73.16107 57.70700 l 61.27405 50.27083 lf
-0 sg 54.41107 46.38518 m 66.29809 39.14156 l 73.16107 57.70700 l 61.27405 50.27083 lx
-0.00000 0.14593 0.85407 s 195.70917 37.86291 m 207.59619 58.35361 l 214.45917 48.68707 l 202.57214 32.99804 lf
-0 sg 195.70917 37.86291 m 207.59619 58.35361 l 214.45917 48.68707 l 202.57214 32.99804 lx
-0.00000 0.00000 0.97197 s 115.68512 37.43349 m 127.57214 36.06995 l 134.43512 43.90478 l 122.54809 55.47952 lf
-0 sg 115.68512 37.43349 m 127.57214 36.06995 l 134.43512 43.90478 l 122.54809 55.47952 lx
-0.22858 0.77142 0.00000 s 85.04809 54.55137 m 96.93512 48.87835 l 103.79809 42.93293 l 91.91107 46.97230 lf
-0 sg 85.04809 54.55137 m 96.93512 48.87835 l 103.79809 42.93293 l 91.91107 46.97230 lx
-0.00000 0.27002 0.72998 s 146.32214 45.42841 m 158.20917 31.56688 l 165.07214 52.49009 l 153.18512 43.70198 lf
-0 sg 146.32214 45.42841 m 158.20917 31.56688 l 165.07214 52.49009 l 153.18512 43.70198 lx
-0.00000 0.00000 0.85332 s 176.95917 33.99547 m 188.84619 46.55421 l 195.70917 37.86291 l 183.82214 45.53610 lf
-0 sg 176.95917 33.99547 m 188.84619 46.55421 l 195.70917 37.86291 l 183.82214 45.53610 lx
-0.00000 0.99151 0.00849 s 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 46.38518 l 42.52405 51.62863 lf
-0 sg 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 46.38518 l 42.52405 51.62863 lx
-1.00000 0.05341 0.05341 s 226.34619 56.57497 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 53.95134 lf
-0 sg 226.34619 56.57497 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 53.95134 lx
-0.00000 0.69278 0.30722 s 96.93512 48.87835 m 108.82214 43.21409 l 115.68512 37.43349 l 103.79809 42.93293 lf
-0 sg 96.93512 48.87835 m 108.82214 43.21409 l 115.68512 37.43349 l 103.79809 42.93293 lx
-0.00000 0.00000 0.93358 s 127.57214 36.06995 m 139.45917 33.24634 l 146.32214 45.42841 l 134.43512 43.90478 lf
-0 sg 127.57214 36.06995 m 139.45917 33.24634 l 146.32214 45.42841 l 134.43512 43.90478 lx
-0.82860 0.17140 0.00000 s 66.29809 39.14156 m 78.18512 39.89426 l 85.04809 54.55137 l 73.16107 57.70700 lf
-0 sg 66.29809 39.14156 m 78.18512 39.89426 l 85.04809 54.55137 l 73.16107 57.70700 lx
-0.00000 0.04636 0.95364 s 158.20917 31.56688 m 170.09619 38.42427 l 176.95917 33.99547 l 165.07214 52.49009 lf
-0 sg 158.20917 31.56688 m 170.09619 38.42427 l 176.95917 33.99547 l 165.07214 52.49009 lx
-0.00000 0.57007 0.42993 s 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 39.14156 l 54.41107 46.38518 lf
-0 sg 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 39.14156 l 54.41107 46.38518 lx
-1.00000 sg 207.59619 58.35361 m 219.48321 38.64739 l 226.34619 56.57497 l 214.45917 48.68707 lf
-0 sg 207.59619 58.35361 m 219.48321 38.64739 l 226.34619 56.57497 l 214.45917 48.68707 lx
-0.00000 0.69278 0.30722 s 108.82214 43.21409 m 120.70917 42.01538 l 127.57214 36.06995 l 115.68512 37.43349 lf
-0 sg 108.82214 43.21409 m 120.70917 42.01538 l 127.57214 36.06995 l 115.68512 37.43349 lx
-0.00000 0.19338 0.80662 s 139.45917 33.24634 m 151.34619 38.14899 l 158.20917 31.56688 l 146.32214 45.42841 lf
-0 sg 139.45917 33.24634 m 151.34619 38.14899 l 158.20917 31.56688 l 146.32214 45.42841 lx
-1.00000 0.25610 0.25610 s 78.18512 39.89426 m 90.07214 39.94921 l 96.93512 48.87835 l 85.04809 54.55137 lf
-0 sg 78.18512 39.89426 m 90.07214 39.94921 l 96.93512 48.87835 l 85.04809 54.55137 lx
-1.00000 0.53147 0.53147 s 188.84619 46.55421 m 200.73321 43.19168 l 207.59619 58.35361 l 195.70917 37.86291 lf
-0 sg 188.84619 46.55421 m 200.73321 43.19168 l 207.59619 58.35361 l 195.70917 37.86291 lx
-0.79737 0.20263 0.00000 s 219.48321 38.64739 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 56.57497 lf
-0 sg 219.48321 38.64739 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 56.57497 lx
-0.00000 0.59794 0.40206 s 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 39.89426 l 66.29809 39.14156 lf
-0 sg 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 39.89426 l 66.29809 39.14156 lx
-0.52958 0.47042 0.00000 s 170.09619 38.42427 m 181.98321 43.57021 l 188.84619 46.55421 l 176.95917 33.99547 lf
-0 sg 170.09619 38.42427 m 181.98321 43.57021 l 188.84619 46.55421 l 176.95917 33.99547 lx
-0.22858 0.77142 0.00000 s 120.70917 42.01538 m 132.59619 40.82542 l 139.45917 33.24634 l 127.57214 36.06995 lf
-0 sg 120.70917 42.01538 m 132.59619 40.82542 l 139.45917 33.24634 l 127.57214 36.06995 lx
-1.00000 0.35670 0.35670 s 90.07214 39.94921 m 101.95917 38.84805 l 108.82214 43.21409 l 96.93512 48.87835 lf
-0 sg 90.07214 39.94921 m 101.95917 38.84805 l 108.82214 43.21409 l 96.93512 48.87835 lx
-1.00000 0.18511 0.18511 s 200.73321 43.19168 m 212.62024 27.42160 l 219.48321 38.64739 l 207.59619 58.35361 lf
-0 sg 200.73321 43.19168 m 212.62024 27.42160 l 219.48321 38.64739 l 207.59619 58.35361 lx
-0.34713 0.65287 0.00000 s 151.34619 38.14899 m 163.23321 41.92113 l 170.09619 38.42427 l 158.20917 31.56688 lf
-0 sg 151.34619 38.14899 m 163.23321 41.92113 l 170.09619 38.42427 l 158.20917 31.56688 lx
-0.17274 0.82726 0.00000 s 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 39.94921 l 78.18512 39.89426 lf
-0 sg 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 39.94921 l 78.18512 39.89426 lx
-0.00000 0.50352 0.49648 s 212.62024 27.42160 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.64739 lf
-0 sg 212.62024 27.42160 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.64739 lx
-1.00000 0.41711 0.41711 s 181.98321 43.57021 m 193.87024 27.34620 l 200.73321 43.19168 l 188.84619 46.55421 lf
-0 sg 181.98321 43.57021 m 193.87024 27.34620 l 200.73321 43.19168 l 188.84619 46.55421 lx
-1.00000 0.35670 0.35670 s 101.95917 38.84805 m 113.84619 33.08623 l 120.70917 42.01538 l 108.82214 43.21409 lf
-0 sg 101.95917 38.84805 m 113.84619 33.08623 l 120.70917 42.01538 l 108.82214 43.21409 lx
-1.00000 0.04594 0.04594 s 132.59619 40.82542 m 144.48321 37.11807 l 151.34619 38.14899 l 139.45917 33.24634 lf
-0 sg 132.59619 40.82542 m 144.48321 37.11807 l 151.34619 38.14899 l 139.45917 33.24634 lx
-0.00000 0.77296 0.22704 s 193.87024 27.34620 m 205.75726 27.03577 l 212.62024 27.42160 l 200.73321 43.19168 lf
-0 sg 193.87024 27.34620 m 205.75726 27.03577 l 212.62024 27.42160 l 200.73321 43.19168 lx
-0.60862 0.39138 0.00000 s 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 38.84805 l 90.07214 39.94921 lf
-0 sg 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 38.84805 l 90.07214 39.94921 lx
-1.00000 0.36982 0.36982 s 163.23321 41.92113 m 175.12024 26.06746 l 181.98321 43.57021 l 170.09619 38.42427 lf
-0 sg 163.23321 41.92113 m 175.12024 26.06746 l 181.98321 43.57021 l 170.09619 38.42427 lx
-1.00000 0.25610 0.25610 s 113.84619 33.08623 m 125.73321 26.16830 l 132.59619 40.82542 l 120.70917 42.01538 lf
-0 sg 113.84619 33.08623 m 125.73321 26.16830 l 132.59619 40.82542 l 120.70917 42.01538 lx
-0.17549 0.82451 0.00000 s 175.12024 26.06746 m 187.00726 23.33497 l 193.87024 27.34620 l 181.98321 43.57021 lf
-0 sg 175.12024 26.06746 m 187.00726 23.33497 l 193.87024 27.34620 l 181.98321 43.57021 lx
-0.00000 0.52415 0.47585 s 205.75726 27.03577 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 27.42160 lf
-0 sg 205.75726 27.03577 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 27.42160 lx
-1.00000 0.37522 0.37522 s 144.48321 37.11807 m 156.37024 22.81892 l 163.23321 41.92113 l 151.34619 38.14899 lf
-0 sg 144.48321 37.11807 m 156.37024 22.81892 l 163.23321 41.92113 l 151.34619 38.14899 lx
-0.60862 0.39138 0.00000 s 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 33.08623 l 101.95917 38.84805 lf
-0 sg 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 33.08623 l 101.95917 38.84805 lx
-0.82860 0.17140 0.00000 s 125.73321 26.16830 m 137.62024 18.55263 l 144.48321 37.11807 l 132.59619 40.82542 lf
-0 sg 125.73321 26.16830 m 137.62024 18.55263 l 144.48321 37.11807 l 132.59619 40.82542 lx
-0.25750 0.74250 0.00000 s 156.37024 22.81892 m 168.25726 20.55766 l 175.12024 26.06746 l 163.23321 41.92113 lf
-0 sg 156.37024 22.81892 m 168.25726 20.55766 l 175.12024 26.06746 l 163.23321 41.92113 lx
-0.00000 0.68070 0.31930 s 187.00726 23.33497 m 198.89428 22.27300 l 205.75726 27.03577 l 193.87024 27.34620 lf
-0 sg 187.00726 23.33497 m 198.89428 22.27300 l 205.75726 27.03577 l 193.87024 27.34620 lx
-0.17274 0.82726 0.00000 s 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.16830 l 113.84619 33.08623 lf
-0 sg 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.16830 l 113.84619 33.08623 lx
-0.00000 0.96569 0.03431 s 137.62024 18.55263 m 149.50726 18.93328 l 156.37024 22.81892 l 144.48321 37.11807 lf
-0 sg 137.62024 18.55263 m 149.50726 18.93328 l 156.37024 22.81892 l 144.48321 37.11807 lx
-0.00000 0.66761 0.33239 s 168.25726 20.55766 m 180.14428 19.80708 l 187.00726 23.33497 l 175.12024 26.06746 lf
-0 sg 168.25726 20.55766 m 180.14428 19.80708 l 187.00726 23.33497 l 175.12024 26.06746 lx
-0.02910 0.97090 0.00000 s 198.89428 22.27300 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.03577 lf
-0 sg 198.89428 22.27300 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.03577 lx
-0.00000 0.59794 0.40206 s 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 18.55263 l 125.73321 26.16830 lf
-0 sg 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 18.55263 l 125.73321 26.16830 lx
-0.00000 0.66045 0.33955 s 149.50726 18.93328 m 161.39428 17.31375 l 168.25726 20.55766 l 156.37024 22.81892 lf
-0 sg 149.50726 18.93328 m 161.39428 17.31375 l 168.25726 20.55766 l 156.37024 22.81892 lx
-0.00000 0.99739 0.00261 s 180.14428 19.80708 m 192.03131 15.02716 l 198.89428 22.27300 l 187.00726 23.33497 lf
-0 sg 180.14428 19.80708 m 192.03131 15.02716 l 198.89428 22.27300 l 187.00726 23.33497 lx
-0.00000 0.57007 0.42993 s 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 18.93328 l 137.62024 18.55263 lf
-0 sg 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 18.93328 l 137.62024 18.55263 lx
-0.00000 0.98458 0.01542 s 161.39428 17.31375 m 173.28131 12.54455 l 180.14428 19.80708 l 168.25726 20.55766 lf
-0 sg 161.39428 17.31375 m 173.28131 12.54455 l 180.14428 19.80708 l 168.25726 20.55766 lx
-0.01998 0.98002 0.00000 s 192.03131 15.02716 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 22.27300 lf
-0 sg 192.03131 15.02716 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 22.27300 lx
-0.00000 0.99151 0.00849 s 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 17.31375 l 149.50726 18.93328 lf
-0 sg 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 17.31375 l 149.50726 18.93328 lx
-0.00323 0.99677 0.00000 s 173.28131 12.54455 m 185.16833 9.36729 l 192.03131 15.02716 l 180.14428 19.80708 lf
-0 sg 173.28131 12.54455 m 185.16833 9.36729 l 192.03131 15.02716 l 180.14428 19.80708 lx
-0.02704 0.97296 0.00000 s 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.54455 l 161.39428 17.31375 lf
-0 sg 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.54455 l 161.39428 17.31375 lx
-0.00000 0.94365 0.05635 s 185.16833 9.36729 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.02716 lf
-0 sg 185.16833 9.36729 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.02716 lx
-0.00000 0.94585 0.05415 s 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.36729 l 173.28131 12.54455 lf
-0 sg 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.36729 l 173.28131 12.54455 lx
-0.00000 0.96548 0.03452 s 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.36729 lf
-0 sg 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.36729 lx
-showpage
-.
-DEAL::
-DEAL::  Collecting refinement data: 
-DEAL::    Refining each time step separately.
-DEAL::    Got 6656 presently, expecting 6203 for next sweep.
-DEAL::    Writing statistics for whole sweep.#  Description of fields
-DEAL::#  =====================
-DEAL::#  General:
-DEAL::#    time
-#  Primal problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Dual problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Error estimation:
-#    total estimated error in this timestep
-#  Postprocessing:
-#    Huyghens wave
-DEAL::
-DEAL::
-DEAL::0.00000   256 289 0 0 0.00000 0.00000 0.00000    256 1089 7 10 0.00010 0.00010 0.00021    0.00000    22.14916 
-DEAL::0.02800   256 289 9 13 1.22984 1.12015 2.34999    256 1089 7 10 0.00010 0.00010 0.00021    0.91038    -6.02206 
-DEAL::0.05600   256 289 10 13 0.33854 2.01145 2.34999    256 1089 7 10 0.00010 0.00010 0.00021    0.04523    -40.60391 
-DEAL::0.08400   256 289 10 12 1.04534 1.30465 2.34999    256 1089 7 10 0.00010 0.00010 0.00021    0.94601    -2.17918 
-DEAL::0.11200   256 289 10 12 1.57880 0.77119 2.34999    256 1089 7 10 0.00010 0.00010 0.00021    0.59747    95.00077 
-DEAL::0.14000   256 289 9 13 1.21547 1.13452 2.34999    256 1089 7 10 0.00010 0.00010 0.00021    -0.10084    123.42580 
-DEAL::0.16800   256 289 10 13 1.00485 1.34514 2.34999    256 1089 7 10 0.00010 0.00010 0.00021    1.46178    -26.86140 
-DEAL::0.19600   256 289 10 12 1.10991 1.24008 2.34999    256 1089 7 10 0.00011 0.00010 0.00021    1.26298    -294.73542 
-DEAL::0.22400   256 289 10 13 1.28630 1.06369 2.34999    256 1089 7 10 0.00010 0.00011 0.00021    -0.57965    -448.29407 
-DEAL::0.25200   256 289 10 12 1.30402 1.04597 2.34999    256 1089 7 10 0.00010 0.00010 0.00021    0.52411    -243.66439 
-DEAL::0.28000   256 289 10 12 1.04306 1.30693 2.34999    256 1089 7 10 0.00008 0.00012 0.00021    1.62081    388.73165 
-DEAL::0.30800   256 289 9 13 1.05373 1.29626 2.34999    256 1089 7 10 0.00010 0.00011 0.00021    0.50250    1192.76663 
-DEAL::0.33600   256 289 10 13 1.35280 0.99719 2.34999    256 1089 7 10 0.00010 0.00011 0.00021    -0.69116    1568.28248 
-DEAL::0.36400   256 289 10 12 1.22668 1.12331 2.34999    256 1089 7 10 0.00011 0.00009 0.00021    -2.18610    884.32723 
-DEAL::0.39200   256 289 9 13 1.01110 1.33889 2.34999    256 1089 7 10 0.00012 0.00008 0.00021    -1.64846    -974.07778 
-DEAL::0.42000   256 289 9 13 1.19293 1.15706 2.34999    256 1089 7 10 0.00011 0.00010 0.00021    -0.92024    -3288.23879 
-DEAL::0.44800   256 289 9 12 1.24125 1.10874 2.34999    256 1089 6 10 0.00013 0.00008 0.00021    -1.83834    -4676.93596 
-DEAL::0.47600   256 289 9 13 1.17360 1.17639 2.34999    256 1089 6 10 0.00010 0.00011 0.00021    2.20886    -3655.94142 
-DEAL::0.50400   256 289 10 12 1.16038 1.18961 2.34999    256 1089 6 10 0.00014 0.00006 0.00021    4.69460    502.27981 
-DEAL::0.53200   256 289 10 12 1.10923 1.24076 2.34999    256 1089 6 10 0.00014 0.00006 0.00021    0.52889    6813.82708 
-DEAL::0.56000   256 289 10 12 1.20016 1.14983 2.34999    256 1089 6 10 0.00010 0.00007 0.00016    0.69220    12313.32686 
-DEAL::0.58800   256 289 10 12 1.29880 1.05119 2.34999    256 1089 6 10 0.00010 0.00006 0.00016    1.74319    13352.69805 
-DEAL::0.61600   256 289 9 13 1.12050 1.22949 2.34999    256 1089 6 10 0.00016 0.00006 0.00022    -1.97846    8120.27171 
-DEAL::0.64400   256 289 9 13 1.08109 1.26890 2.34999    256 1089 6 10 0.00018 0.00004 0.00022    -2.20488    -1528.88976 
-DEAL::0.67200   256 289 10 12 1.22174 1.12825 2.34999    256 1089 5 10 0.00004 0.00006 0.00009    0.77743    -10713.04136 
-DEAL::0.70000   256 289 10 13 1.20921 1.14078 2.34999    256 1089 0 0 0.00000 0.00000 0.00000    0.98961    -14490.07607 
-DEAL::
-DEAL::    Writing summary.Summary of this sweep:
-======================
-
-  Accumulated number of cells: 6656
-  Acc. number of primal dofs : 15028
-  Acc. number of dual dofs   : 56628
-  Accumulated error          : 0.00007
-
-  Evaluations:
-  ------------
-    Hughens wave -- weighted time: 0.53510
-                    average      : 0.00808
-  
-
-DEAL::
-DEAL::
-DEAL::Sweep 1 :
-DEAL::---------
-DEAL::  Primal problem: time=0.00000, step=0, sweep=1. 163 cells, 201 dofsStarting value 0.00000
-DEAL:cg::Convergence step 0 value 0.00000
-DEAL:cg::Starting value 0.00438
-DEAL:cg::Convergence step 15 value 0.00000
-DEAL:cg::Starting value 0.00000
-DEAL:cg::Convergence step 0 value 0.00000
-DEAL:cg::Starting value 0.00000
-DEAL:cg::Convergence step 0 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.02800, step=1, sweep=1. 169 cells, 208 dofsStarting value 0.00397
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.07116
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.05600, step=2, sweep=1. 202 cells, 242 dofsStarting value 0.00292
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.08718
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.08400, step=3, sweep=1. 205 cells, 245 dofsStarting value 0.00311
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.07017
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.11200, step=4, sweep=1. 202 cells, 243 dofsStarting value 0.00327
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.06958
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.14000, step=5, sweep=1. 220 cells, 262 dofsStarting value 0.00333
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.07114
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.16800, step=6, sweep=1. 238 cells, 282 dofsStarting value 0.00346
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.07888
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.19600, step=7, sweep=1. 250 cells, 296 dofsStarting value 0.00434
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.09196
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.22400, step=8, sweep=1. 226 cells, 270 dofsStarting value 0.00566
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.08162
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.25200, step=9, sweep=1. 268 cells, 317 dofsStarting value 0.00529
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.08030
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.28000, step=10, sweep=1. 265 cells, 313 dofsStarting value 0.00550
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.09491
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.30800, step=11, sweep=1. 241 cells, 283 dofsStarting value 0.00555
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.11198
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.33600, step=12, sweep=1. 226 cells, 266 dofsStarting value 0.00594
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.10136
-DEAL:cg::Convergence step 14 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.36400, step=13, sweep=1. 202 cells, 241 dofsStarting value 0.00623
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.09325
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.39200, step=14, sweep=1. 193 cells, 231 dofsStarting value 0.00618
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.10098
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.42000, step=15, sweep=1. 190 cells, 228 dofsStarting value 0.00621
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.10486
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.44800, step=16, sweep=1. 166 cells, 201 dofsStarting value 0.00667
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.09022
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.47600, step=17, sweep=1. 154 cells, 189 dofsStarting value 0.00681
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.09271
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.50400, step=18, sweep=1. 148 cells, 181 dofsStarting value 0.00660
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.10649
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.53200, step=19, sweep=1. 145 cells, 178 dofsStarting value 0.00675
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.10320
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.56000, step=20, sweep=1. 130 cells, 163 dofsStarting value 0.00722
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.09043
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.58800, step=21, sweep=1. 124 cells, 155 dofsStarting value 0.00726
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.09410
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.61600, step=22, sweep=1. 112 cells, 141 dofsStarting value 0.00705
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.10579
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.64400, step=23, sweep=1. 106 cells, 137 dofsStarting value 0.00711
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.09810
-DEAL:cg::Convergence step 11 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.67200, step=24, sweep=1. 112 cells, 143 dofsStarting value 0.00708
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.08959
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.70000, step=25, sweep=1. 109 cells, 138 dofsStarting value 0.00677
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.10018
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::
-DEAL::  Dual problem: time=0.70000, step=25, sweep=1. 109 cells, 514 dofs.
-DEAL::  Dual problem: time=0.67200, step=24, sweep=1. 112 cells, 534 dofsStarting value 0.00001
-DEAL:cg::Convergence step 6 value 0.00000
-DEAL:cg::Starting value 0.00024
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.64400, step=23, sweep=1. 106 cells, 510 dofsStarting value 0.00001
-DEAL:cg::Convergence step 6 value 0.00000
-DEAL:cg::Starting value 0.00033
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.61600, step=22, sweep=1. 112 cells, 526 dofsStarting value 0.00002
-DEAL:cg::Convergence step 5 value 0.00000
-DEAL:cg::Starting value 0.00033
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.58800, step=21, sweep=1. 124 cells, 579 dofsStarting value 0.00002
-DEAL:cg::Convergence step 5 value 0.00000
-DEAL:cg::Starting value 0.00033
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.56000, step=20, sweep=1. 130 cells, 611 dofsStarting value 0.00003
-DEAL:cg::Convergence step 6 value 0.00000
-DEAL:cg::Starting value 0.00037
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.53200, step=19, sweep=1. 145 cells, 669 dofsStarting value 0.00003
-DEAL:cg::Convergence step 7 value 0.00000
-DEAL:cg::Starting value 0.00034
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.50400, step=18, sweep=1. 148 cells, 681 dofsStarting value 0.00004
-DEAL:cg::Convergence step 7 value 0.00000
-DEAL:cg::Starting value 0.00036
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.47600, step=17, sweep=1. 154 cells, 713 dofsStarting value 0.00004
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.00039
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.44800, step=16, sweep=1. 166 cells, 761 dofsStarting value 0.00005
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.00040
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.42000, step=15, sweep=1. 190 cells, 867 dofsStarting value 0.00005
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.00044
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.39200, step=14, sweep=1. 193 cells, 879 dofsStarting value 0.00005
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.00042
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.36400, step=13, sweep=1. 202 cells, 920 dofsStarting value 0.00005
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.00048
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.33600, step=12, sweep=1. 226 cells, 1019 dofsStarting value 0.00004
-DEAL:cg::Convergence step 11 value 0.00000
-DEAL:cg::Starting value 0.00053
-DEAL:cg::Convergence step 11 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.30800, step=11, sweep=1. 241 cells, 1087 dofsStarting value 0.00004
-DEAL:cg::Convergence step 11 value 0.00000
-DEAL:cg::Starting value 0.00053
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.28000, step=10, sweep=1. 265 cells, 1207 dofsStarting value 0.00005
-DEAL:cg::Convergence step 11 value 0.00000
-DEAL:cg::Starting value 0.00054
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.25200, step=9, sweep=1. 268 cells, 1224 dofsStarting value 0.00005
-DEAL:cg::Convergence step 11 value 0.00000
-DEAL:cg::Starting value 0.00057
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.22400, step=8, sweep=1. 226 cells, 1041 dofsStarting value 0.00007
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.00066
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.19600, step=7, sweep=1. 250 cells, 1143 dofsStarting value 0.00007
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL:cg::Starting value 0.00074
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.16800, step=6, sweep=1. 238 cells, 1091 dofsStarting value 0.00008
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL:cg::Starting value 0.00079
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.14000, step=5, sweep=1. 220 cells, 1011 dofsStarting value 0.00010
-DEAL:cg::Convergence step 11 value 0.00000
-DEAL:cg::Starting value 0.00087
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.11200, step=4, sweep=1. 202 cells, 935 dofsStarting value 0.00009
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.00091
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.08400, step=3, sweep=1. 205 cells, 945 dofsStarting value 0.00010
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.00101
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.05600, step=2, sweep=1. 202 cells, 933 dofsStarting value 0.00010
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.00099
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.02800, step=1, sweep=1. 169 cells, 797 dofsStarting value 0.00010
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.00100
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.00000, step=0, sweep=1. 163 cells, 769 dofsStarting value 0.00011
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.00100
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL::.
-DEAL::
-DEAL::  Postprocessing: time=0.00000, step=0, sweep=1. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 198
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50000 setlinewidth
-0.00000 0.00000 0.10499 s 96.08167 138.11298 m 119.85572 131.24995 l 133.58167 143.13702 l 109.80762 150.00000 lf
-0 sg 96.08167 138.11298 m 119.85572 131.24995 l 133.58167 143.13702 l 109.80762 150.00000 lx
-0.00000 0.00000 0.10500 s 119.85572 131.24995 m 143.62976 124.38723 l 157.35572 136.27405 l 133.58167 143.13702 lf
-0 sg 119.85572 131.24995 m 143.62976 124.38723 l 157.35572 136.27405 l 133.58167 143.13702 lx
-0.00000 0.00000 0.10500 s 82.35572 126.22595 m 106.12976 119.36318 l 119.85572 131.24995 l 96.08167 138.11298 lf
-0 sg 82.35572 126.22595 m 106.12976 119.36318 l 119.85572 131.24995 l 96.08167 138.11298 lx
-0.00000 0.00000 0.10499 s 143.62976 124.38723 m 167.40381 117.52378 l 181.12976 129.41107 l 157.35572 136.27405 lf
-0 sg 143.62976 124.38723 m 167.40381 117.52378 l 181.12976 129.41107 l 157.35572 136.27405 lx
-0.00000 0.00000 0.10499 s 106.12976 119.36318 m 129.90381 112.49919 l 143.62976 124.38723 l 119.85572 131.24995 lf
-0 sg 106.12976 119.36318 m 129.90381 112.49919 l 143.62976 124.38723 l 119.85572 131.24995 lx
-0.00000 0.00000 0.10503 s 167.40381 117.52378 m 191.17786 110.66297 l 204.90381 122.54809 l 181.12976 129.41107 lf
-0 sg 167.40381 117.52378 m 191.17786 110.66297 l 204.90381 122.54809 l 181.12976 129.41107 lx
-0.00000 0.00000 0.10499 s 68.62976 114.33893 m 92.40381 107.47543 l 106.12976 119.36318 l 82.35572 126.22595 lf
-0 sg 68.62976 114.33893 m 92.40381 107.47543 l 106.12976 119.36318 l 82.35572 126.22595 lx
-0.00000 0.00000 0.10500 s 129.90381 112.49919 m 153.67786 105.63809 l 167.40381 117.52378 l 143.62976 124.38723 lf
-0 sg 129.90381 112.49919 m 153.67786 105.63809 l 167.40381 117.52378 l 143.62976 124.38723 lx
-0.00000 0.00000 0.10502 s 191.17786 110.66297 m 214.95191 103.79754 l 228.67786 115.68512 l 204.90381 122.54809 lf
-0 sg 191.17786 110.66297 m 214.95191 103.79754 l 228.67786 115.68512 l 204.90381 122.54809 lx
-0.00000 0.00000 0.10501 s 92.40381 107.47543 m 116.17786 100.61505 l 129.90381 112.49919 l 106.12976 119.36318 lf
-0 sg 92.40381 107.47543 m 116.17786 100.61505 l 129.90381 112.49919 l 106.12976 119.36318 lx
-0.00000 0.00000 0.10491 s 153.67786 105.63809 m 177.45191 98.76645 l 191.17786 110.66297 l 167.40381 117.52378 lf
-0 sg 153.67786 105.63809 m 177.45191 98.76645 l 191.17786 110.66297 l 167.40381 117.52378 lx
-0.00000 0.00000 0.10499 s 214.95191 103.79754 m 238.72595 96.93526 l 252.45191 108.82214 l 228.67786 115.68512 lf
-0 sg 214.95191 103.79754 m 238.72595 96.93526 l 252.45191 108.82214 l 228.67786 115.68512 lx
-0.00000 0.00000 0.10501 s 54.90381 102.45191 m 78.67786 95.59049 l 92.40381 107.47543 l 68.62976 114.33893 lf
-0 sg 54.90381 102.45191 m 78.67786 95.59049 l 92.40381 107.47543 l 68.62976 114.33893 lx
-0.00000 0.00000 0.10503 s 116.17786 100.61505 m 139.95191 93.74955 l 153.67786 105.63809 l 129.90381 112.49919 lf
-0 sg 116.17786 100.61505 m 139.95191 93.74955 l 153.67786 105.63809 l 129.90381 112.49919 lx
-0.00000 0.00000 0.10492 s 177.45191 98.76645 m 201.22595 91.91327 l 214.95191 103.79754 l 191.17786 110.66297 lf
-0 sg 177.45191 98.76645 m 201.22595 91.91327 l 214.95191 103.79754 l 191.17786 110.66297 lx
-0.00000 0.00000 0.10497 s 146.81488 99.69382 m 158.70191 96.26246 l 165.56488 102.20227 l 153.67786 105.63809 lf
-0 sg 146.81488 99.69382 m 158.70191 96.26246 l 165.56488 102.20227 l 153.67786 105.63809 lx
-0.00000 0.00000 0.10500 s 238.72595 96.93526 m 262.50000 90.07211 l 276.22595 101.95917 l 252.45191 108.82214 lf
-0 sg 238.72595 96.93526 m 262.50000 90.07211 l 276.22595 101.95917 l 252.45191 108.82214 lx
-0.00000 0.00000 0.10494 s 78.67786 95.59049 m 102.45191 88.71970 l 116.17786 100.61505 l 92.40381 107.47543 lf
-0 sg 78.67786 95.59049 m 102.45191 88.71970 l 116.17786 100.61505 l 92.40381 107.47543 lx
-0.00000 0.00000 0.10596 s 158.70191 96.26246 m 170.58893 92.89374 l 177.45191 98.76645 l 165.56488 102.20227 lf
-0 sg 158.70191 96.26246 m 170.58893 92.89374 l 177.45191 98.76645 l 165.56488 102.20227 lx
-0.00000 0.00000 0.10483 s 109.31488 94.66737 m 121.20191 91.22795 l 128.06488 97.18230 l 116.17786 100.61505 lf
-0 sg 109.31488 94.66737 m 121.20191 91.22795 l 128.06488 97.18230 l 116.17786 100.61505 lx
-0.00000 0.00000 0.10502 s 139.95191 93.74955 m 151.83893 90.31964 l 158.70191 96.26246 l 146.81488 99.69382 lf
-0 sg 139.95191 93.74955 m 151.83893 90.31964 l 158.70191 96.26246 l 146.81488 99.69382 lx
-0.00000 0.00000 0.10502 s 201.22595 91.91327 m 225.00000 85.04752 l 238.72595 96.93526 l 214.95191 103.79754 lf
-0 sg 201.22595 91.91327 m 225.00000 85.04752 l 238.72595 96.93526 l 214.95191 103.79754 lx
-0.00000 0.00000 0.10585 s 170.58893 92.89374 m 182.47595 89.39285 l 189.33893 95.33986 l 177.45191 98.76645 lf
-0 sg 170.58893 92.89374 m 182.47595 89.39285 l 189.33893 95.33986 l 177.45191 98.76645 lx
-0.00000 0.00000 0.10502 s 41.17786 90.56488 m 64.95191 83.70152 l 78.67786 95.59049 l 54.90381 102.45191 lf
-0 sg 41.17786 90.56488 m 64.95191 83.70152 l 78.67786 95.59049 l 54.90381 102.45191 lx
-0.00000 0.00000 0.10499 s 262.50000 90.07211 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lf
-0 sg 262.50000 90.07211 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lx
-0.00000 0.00000 0.10450 s 121.20191 91.22795 m 133.08893 87.78913 l 139.95191 93.74955 l 128.06488 97.18230 lf
-0 sg 121.20191 91.22795 m 133.08893 87.78913 l 139.95191 93.74955 l 128.06488 97.18230 lx
-0.00000 0.00000 0.10170 s 151.83893 90.31964 m 163.72595 86.64157 l 170.58893 92.89374 l 158.70191 96.26246 lf
-0 sg 151.83893 90.31964 m 163.72595 86.64157 l 170.58893 92.89374 l 158.70191 96.26246 lx
-0.00000 0.00000 0.10486 s 182.47595 89.39285 m 194.36298 85.96665 l 201.22595 91.91327 l 189.33893 95.33986 lf
-0 sg 182.47595 89.39285 m 194.36298 85.96665 l 201.22595 91.91327 l 189.33893 95.33986 lx
-0.00000 0.00000 0.10559 s 102.45191 88.71970 m 114.33893 85.34541 l 121.20191 91.22795 l 109.31488 94.66737 lf
-0 sg 102.45191 88.71970 m 114.33893 85.34541 l 121.20191 91.22795 l 109.31488 94.66737 lx
-0.00000 0.00000 0.10626 s 133.08893 87.78913 m 144.97595 84.46132 l 151.83893 90.31964 l 139.95191 93.74955 lf
-0 sg 133.08893 87.78913 m 144.97595 84.46132 l 151.83893 90.31964 l 139.95191 93.74955 lx
-0.00000 0.00000 0.10620 s 117.77042 88.28668 m 123.71393 86.61980 l 127.14542 89.50854 l 121.20191 91.22795 lf
-0 sg 117.77042 88.28668 m 123.71393 86.61980 l 127.14542 89.50854 l 121.20191 91.22795 lx
-0.00000 0.00000 0.10209 s 163.72595 86.64157 m 175.61298 83.48447 l 182.47595 89.39285 l 170.58893 92.89374 lf
-0 sg 163.72595 86.64157 m 175.61298 83.48447 l 182.47595 89.39285 l 170.58893 92.89374 lx
-0.00000 0.00000 0.10839 s 148.40744 87.39048 m 154.35095 85.89476 l 157.78244 88.48060 l 151.83893 90.31964 lf
-0 sg 148.40744 87.39048 m 154.35095 85.89476 l 157.78244 88.48060 l 151.83893 90.31964 lx
-0.00000 0.00000 0.10499 s 225.00000 85.04752 m 248.77405 78.18524 l 262.50000 90.07211 l 238.72595 96.93526 lf
-0 sg 225.00000 85.04752 m 248.77405 78.18524 l 262.50000 90.07211 l 238.72595 96.93526 lx
-0.00000 0.00000 0.10352 s 123.71393 86.61980 m 129.65744 84.71559 l 133.08893 87.78913 l 127.14542 89.50854 lf
-0 sg 123.71393 86.61980 m 129.65744 84.71559 l 133.08893 87.78913 l 127.14542 89.50854 lx
-0.00000 0.00000 0.10493 s 64.95191 83.70152 m 88.72595 76.84046 l 102.45191 88.71970 l 78.67786 95.59049 lf
-0 sg 64.95191 83.70152 m 88.72595 76.84046 l 102.45191 88.71970 l 78.67786 95.59049 lx
-0.00000 0.00000 0.13515 s 154.35095 85.89476 m 160.29446 85.67473 l 163.72595 86.64157 l 157.78244 88.48060 lf
-0 sg 154.35095 85.89476 m 160.29446 85.67473 l 163.72595 86.64157 l 157.78244 88.48060 lx
-0.00000 0.00000 0.10564 s 114.33893 85.34541 m 120.28244 83.47334 l 123.71393 86.61980 l 117.77042 88.28668 lf
-0 sg 114.33893 85.34541 m 120.28244 83.47334 l 123.71393 86.61980 l 117.77042 88.28668 lx
-0.00000 0.00000 0.10796 s 129.65744 84.71559 m 135.60095 83.38399 l 139.03244 86.12523 l 133.08893 87.78913 lf
-0 sg 129.65744 84.71559 m 135.60095 83.38399 l 139.03244 86.12523 l 133.08893 87.78913 lx
-0.00000 0.00000 0.09390 s 144.97595 84.46132 m 150.91946 81.65610 l 154.35095 85.89476 l 148.40744 87.39048 lf
-0 sg 144.97595 84.46132 m 150.91946 81.65610 l 154.35095 85.89476 l 148.40744 87.39048 lx
-0.00000 0.00000 0.10532 s 175.61298 83.48447 m 187.50000 80.02002 l 194.36298 85.96665 l 182.47595 89.39285 lf
-0 sg 175.61298 83.48447 m 187.50000 80.02002 l 194.36298 85.96665 l 182.47595 89.39285 lx
-0.00000 0.00000 0.13578 s 160.29446 85.67473 m 166.23798 82.48406 l 169.66946 85.06302 l 163.72595 86.64157 lf
-0 sg 160.29446 85.67473 m 166.23798 82.48406 l 169.66946 85.06302 l 163.72595 86.64157 lx
-0.00000 0.00000 0.09740 s 120.28244 83.47334 m 126.22595 81.60127 l 129.65744 84.71559 l 123.71393 86.61980 lf
-0 sg 120.28244 83.47334 m 126.22595 81.60127 l 129.65744 84.71559 l 123.71393 86.61980 lx
-0.00000 0.00000 0.10584 s 95.58893 82.78008 m 107.47595 79.35475 l 114.33893 85.34541 l 102.45191 88.71970 lf
-0 sg 95.58893 82.78008 m 107.47595 79.35475 l 114.33893 85.34541 l 102.45191 88.71970 lx
-0.00000 0.00000 0.09380 s 135.60095 83.38399 m 141.54446 80.40250 l 144.97595 84.46132 l 139.03244 86.12523 lf
-0 sg 135.60095 83.38399 m 141.54446 80.40250 l 144.97595 84.46132 l 139.03244 86.12523 lx
-0.00000 0.00000 0.00020 s 150.91946 81.65610 m 156.86298 74.17000 l 160.29446 85.67473 l 154.35095 85.89476 lf
-0 sg 150.91946 81.65610 m 156.86298 74.17000 l 160.29446 85.67473 l 154.35095 85.89476 lx
-0.00000 0.00000 0.10761 s 166.23798 82.48406 m 172.18149 80.42202 l 175.61298 83.48447 l 169.66946 85.06302 lf
-0 sg 166.23798 82.48406 m 172.18149 80.42202 l 175.61298 83.48447 l 169.66946 85.06302 lx
-0.00000 0.00000 0.10497 s 187.50000 80.02002 m 211.27405 73.16212 l 225.00000 85.04752 l 201.22595 91.91327 lf
-0 sg 187.50000 80.02002 m 211.27405 73.16212 l 225.00000 85.04752 l 201.22595 91.91327 lx
-0.00000 0.00000 0.13512 s 126.22595 81.60127 m 132.16946 81.91699 l 135.60095 83.38399 l 129.65744 84.71559 lf
-0 sg 126.22595 81.60127 m 132.16946 81.91699 l 135.60095 83.38399 l 129.65744 84.71559 lx
-0.00000 sg 156.86298 74.17000 m 162.80649 78.19264 l 166.23798 82.48406 l 160.29446 85.67473 lf
-0 sg 156.86298 74.17000 m 162.80649 78.19264 l 166.23798 82.48406 l 160.29446 85.67473 lx
-0.00000 0.00000 0.15460 s 141.54446 80.40250 m 147.48798 84.32835 l 150.91946 81.65610 l 144.97595 84.46132 lf
-0 sg 141.54446 80.40250 m 147.48798 84.32835 l 150.91946 81.65610 l 144.97595 84.46132 lx
-0.00000 0.00000 0.00025 s 132.16946 81.91699 m 138.11298 71.64670 l 141.54446 80.40250 l 135.60095 83.38399 lf
-0 sg 132.16946 81.91699 m 138.11298 71.64670 l 141.54446 80.40250 l 135.60095 83.38399 lx
-0.00000 0.00000 0.10499 s 27.45191 78.67786 m 51.22595 71.81499 l 64.95191 83.70152 l 41.17786 90.56488 lf
-0 sg 27.45191 78.67786 m 51.22595 71.81499 l 64.95191 83.70152 l 41.17786 90.56488 lx
-0.00000 0.00000 0.10480 s 172.18149 80.42202 m 178.12500 78.77795 l 181.55649 81.75224 l 175.61298 83.48447 lf
-0 sg 172.18149 80.42202 m 178.12500 78.77795 l 181.55649 81.75224 l 175.61298 83.48447 lx
-0.00000 0.00000 0.10500 s 248.77405 78.18524 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 90.07211 lf
-0 sg 248.77405 78.18524 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 90.07211 lx
-0.00000 0.00000 0.10133 s 107.47595 79.35475 m 119.36298 75.92539 l 126.22595 81.60127 l 114.33893 85.34541 lf
-0 sg 107.47595 79.35475 m 119.36298 75.92539 l 126.22595 81.60127 l 114.33893 85.34541 lx
-0.00000 0.00000 0.09421 s 162.80649 78.19264 m 168.75000 77.73225 l 172.18149 80.42202 l 166.23798 82.48406 lf
-0 sg 162.80649 78.19264 m 168.75000 77.73225 l 172.18149 80.42202 l 166.23798 82.48406 lx
-0.00000 0.00000 0.10536 s 178.12500 78.77795 m 184.06851 77.05412 l 187.50000 80.02002 l 181.55649 81.75224 lf
-0 sg 178.12500 78.77795 m 184.06851 77.05412 l 187.50000 80.02002 l 181.55649 81.75224 lx
-0.00000 0.00000 0.13494 s 122.79446 78.76333 m 128.73798 77.43953 l 132.16946 81.91699 l 126.22595 81.60127 lf
-0 sg 122.79446 78.76333 m 128.73798 77.43953 l 132.16946 81.91699 l 126.22595 81.60127 lx
-0.00000 0.00000 0.00027 s 128.73798 77.43953 m 134.68149 74.46112 l 138.11298 71.64670 l 132.16946 81.91699 lf
-0 sg 128.73798 77.43953 m 134.68149 74.46112 l 138.11298 71.64670 l 132.16946 81.91699 lx
-0.00000 0.00000 0.10705 s 168.75000 77.73225 m 174.69351 75.74091 l 178.12500 78.77795 l 172.18149 80.42202 lf
-0 sg 168.75000 77.73225 m 174.69351 75.74091 l 178.12500 78.77795 l 172.18149 80.42202 lx
-0.00000 0.00000 0.10502 s 88.72595 76.84046 m 100.61298 73.40563 l 107.47595 79.35475 l 95.58893 82.78008 lf
-0 sg 88.72595 76.84046 m 100.61298 73.40563 l 107.47595 79.35475 l 95.58893 82.78008 lx
-0.00000 0.00000 0.82456 s 147.48798 84.32835 m 153.43149 120.61434 l 156.86298 74.17000 l 150.91946 81.65610 lf
-0 sg 147.48798 84.32835 m 153.43149 120.61434 l 156.86298 74.17000 l 150.91946 81.65610 lx
-0.00000 0.00000 0.15600 s 159.37500 80.90454 m 165.31851 73.50718 l 168.75000 77.73225 l 162.80649 78.19264 lf
-0 sg 159.37500 80.90454 m 165.31851 73.50718 l 168.75000 77.73225 l 162.80649 78.19264 lx
-0.00000 0.00000 0.10834 s 119.36298 75.92539 m 125.30649 74.24516 l 128.73798 77.43953 l 122.79446 78.76333 lf
-0 sg 119.36298 75.92539 m 125.30649 74.24516 l 128.73798 77.43953 l 122.79446 78.76333 lx
-0.00000 0.00000 0.10434 s 174.69351 75.74091 m 180.63702 74.08822 l 184.06851 77.05412 l 178.12500 78.77795 lf
-0 sg 174.69351 75.74091 m 180.63702 74.08822 l 184.06851 77.05412 l 178.12500 78.77795 lx
-0.00000 0.00000 0.82445 s 138.11298 71.64670 m 144.05649 119.36118 l 147.48798 84.32835 l 141.54446 80.40250 lf
-0 sg 138.11298 71.64670 m 144.05649 119.36118 l 147.48798 84.32835 l 141.54446 80.40250 lx
-0.00000 0.00000 0.10500 s 211.27405 73.16212 m 235.04809 66.29790 l 248.77405 78.18524 l 225.00000 85.04752 lf
-0 sg 211.27405 73.16212 m 235.04809 66.29790 l 248.77405 78.18524 l 225.00000 85.04752 lx
-0.00000 0.00000 0.10501 s 180.63702 74.08822 m 192.52405 70.64788 l 199.38702 76.59107 l 187.50000 80.02002 lf
-0 sg 180.63702 74.08822 m 192.52405 70.64788 l 199.38702 76.59107 l 187.50000 80.02002 lx
-0.00000 0.00000 0.82412 s 153.43149 120.61434 m 159.37500 80.90454 l 162.80649 78.19264 l 156.86298 74.17000 lf
-0 sg 153.43149 120.61434 m 159.37500 80.90454 l 162.80649 78.19264 l 156.86298 74.17000 lx
-0.00000 0.00000 0.09419 s 165.31851 73.50718 m 171.26202 73.09928 l 174.69351 75.74091 l 168.75000 77.73225 lf
-0 sg 165.31851 73.50718 m 171.26202 73.09928 l 174.69351 75.74091 l 168.75000 77.73225 lx
-0.00000 0.00000 0.09377 s 125.30649 74.24516 m 131.25000 72.56493 l 134.68149 74.46112 l 128.73798 77.43953 lf
-0 sg 125.30649 74.24516 m 131.25000 72.56493 l 134.68149 74.46112 l 128.73798 77.43953 lx
-0.00000 0.00000 0.10505 s 100.61298 73.40563 m 112.50000 69.97080 l 119.36298 75.92539 l 107.47595 79.35475 lf
-0 sg 100.61298 73.40563 m 112.50000 69.97080 l 119.36298 75.92539 l 107.47595 79.35475 lx
-0.00000 0.00000 0.10501 s 51.22595 71.81499 m 75.00000 64.95146 l 88.72595 76.84046 l 64.95191 83.70152 lf
-0 sg 51.22595 71.81499 m 75.00000 64.95146 l 88.72595 76.84046 l 64.95191 83.70152 lx
-0.00000 0.00000 0.10783 s 171.26202 73.09928 m 177.20554 71.03735 l 180.63702 74.08822 l 174.69351 75.74091 lf
-0 sg 171.26202 73.09928 m 177.20554 71.03735 l 180.63702 74.08822 l 174.69351 75.74091 lx
-0.00000 0.00000 0.15453 s 131.25000 72.56493 m 137.19351 69.77344 l 140.62500 78.38380 l 134.68149 74.46112 lf
-0 sg 131.25000 72.56493 m 137.19351 69.77344 l 140.62500 78.38380 l 134.68149 74.46112 lx
-0.00000 0.00000 0.82447 s 134.68149 74.46112 m 140.62500 78.38380 l 144.05649 119.36118 l 138.11298 71.64670 lf
-0 sg 134.68149 74.46112 m 140.62500 78.38380 l 144.05649 119.36118 l 138.11298 71.64670 lx
-0.00000 0.00000 0.00073 s 161.88702 64.77831 m 167.83054 71.67680 l 171.26202 73.09928 l 165.31851 73.50718 lf
-0 sg 161.88702 64.77831 m 167.83054 71.67680 l 171.26202 73.09928 l 165.31851 73.50718 lx
-0.00000 0.00000 0.10497 s 192.52405 70.64788 m 204.41107 67.21766 l 211.27405 73.16212 l 199.38702 76.59107 lf
-0 sg 192.52405 70.64788 m 204.41107 67.21766 l 211.27405 73.16212 l 199.38702 76.59107 lx
-0.00000 0.00000 0.10422 s 177.20554 71.03735 m 183.14905 69.41104 l 186.58054 72.36805 l 180.63702 74.08822 lf
-0 sg 177.20554 71.03735 m 183.14905 69.41104 l 186.58054 72.36805 l 180.63702 74.08822 lx
-0.00000 0.00000 0.10652 s 112.50000 69.97080 m 124.38702 66.55042 l 131.25000 72.56493 l 119.36298 75.92539 lf
-0 sg 112.50000 69.97080 m 124.38702 66.55042 l 131.25000 72.56493 l 119.36298 75.92539 lx
-0.00000 0.00000 0.82393 s 155.94351 115.93117 m 161.88702 64.77831 l 165.31851 73.50718 l 159.37500 80.90454 lf
-0 sg 155.94351 115.93117 m 161.88702 64.77831 l 165.31851 73.50718 l 159.37500 80.90454 lx
-0.00000 0.00000 0.13299 s 167.83054 71.67680 m 173.77405 67.64667 l 177.20554 71.03735 l 171.26202 73.09928 lf
-0 sg 167.83054 71.67680 m 173.77405 67.64667 l 177.20554 71.03735 l 171.26202 73.09928 lx
-0.00000 0.00000 0.09377 s 127.81851 69.55767 m 133.76202 68.06447 l 137.19351 69.77344 l 131.25000 72.56493 lf
-0 sg 127.81851 69.55767 m 133.76202 68.06447 l 137.19351 69.77344 l 131.25000 72.56493 lx
-0.00000 0.00000 0.10527 s 183.14905 69.41104 m 189.09256 67.67248 l 192.52405 70.64788 l 186.58054 72.36805 lf
-0 sg 183.14905 69.41104 m 189.09256 67.67248 l 192.52405 70.64788 l 186.58054 72.36805 lx
-0.00000 0.00000 0.00089 s 158.45554 67.59486 m 164.39905 67.13311 l 167.83054 71.67680 l 161.88702 64.77831 lf
-0 sg 158.45554 67.59486 m 164.39905 67.13311 l 167.83054 71.67680 l 161.88702 64.77831 lx
-0.00000 0.00000 0.10500 s 13.72595 66.79083 m 37.50000 59.92783 l 51.22595 71.81499 l 27.45191 78.67786 lf
-0 sg 13.72595 66.79083 m 37.50000 59.92783 l 51.22595 71.81499 l 27.45191 78.67786 lx
-0.00000 0.00000 0.00029 s 133.76202 68.06447 m 139.70554 67.85474 l 143.13702 62.27244 l 137.19351 69.77344 lf
-0 sg 133.76202 68.06447 m 139.70554 67.85474 l 143.13702 62.27244 l 137.19351 69.77344 lx
-0.00000 0.00000 0.10499 s 235.04809 66.29790 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18524 lf
-0 sg 235.04809 66.29790 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18524 lx
-0.00000 0.00000 0.09747 s 173.77405 67.64667 m 179.71756 66.55187 l 183.14905 69.41104 l 177.20554 71.03735 lf
-0 sg 173.77405 67.64667 m 179.71756 66.55187 l 183.14905 69.41104 l 177.20554 71.03735 lx
-0.00000 0.00000 0.10502 s 204.41107 67.21766 m 216.29809 63.78591 l 223.16107 69.73001 l 211.27405 73.16212 lf
-0 sg 204.41107 67.21766 m 216.29809 63.78591 l 223.16107 69.73001 l 211.27405 73.16212 lx
-0.00000 0.00000 0.10490 s 189.09256 67.67248 m 195.03607 65.96301 l 198.46756 68.93277 l 192.52405 70.64788 lf
-0 sg 189.09256 67.67248 m 195.03607 65.96301 l 198.46756 68.93277 l 192.52405 70.64788 lx
-0.00000 0.00000 0.82448 s 137.19351 69.77344 m 143.13702 62.27244 l 146.56851 114.67345 l 140.62500 78.38380 lf
-0 sg 137.19351 69.77344 m 143.13702 62.27244 l 146.56851 114.67345 l 140.62500 78.38380 lx
-0.00000 0.00000 0.15474 s 149.08054 66.33755 m 155.02405 65.72042 l 158.45554 67.59486 l 152.51202 74.95305 lf
-0 sg 149.08054 66.33755 m 155.02405 65.72042 l 158.45554 67.59486 l 152.51202 74.95305 lx
-0.00000 0.00000 0.82435 s 152.51202 74.95305 m 158.45554 67.59486 l 161.88702 64.77831 l 155.94351 115.93117 lf
-0 sg 152.51202 74.95305 m 158.45554 67.59486 l 161.88702 64.77831 l 155.94351 115.93117 lx
-0.00000 0.00000 0.10495 s 75.00000 64.95146 m 98.77405 58.09042 l 112.50000 69.97080 l 88.72595 76.84046 lf
-0 sg 75.00000 64.95146 m 98.77405 58.09042 l 112.50000 69.97080 l 88.72595 76.84046 lx
-0.00000 0.00000 0.13273 s 164.39905 67.13311 m 170.34256 65.10197 l 173.77405 67.64667 l 167.83054 71.67680 lf
-0 sg 164.39905 67.13311 m 170.34256 65.10197 l 173.77405 67.64667 l 167.83054 71.67680 lx
-0.00000 0.00000 0.00021 s 139.70554 67.85474 m 145.64905 64.63296 l 149.08054 66.33755 l 143.13702 62.27244 lf
-0 sg 139.70554 67.85474 m 145.64905 64.63296 l 149.08054 66.33755 l 143.13702 62.27244 lx
-0.00000 0.00000 0.10834 s 124.38702 66.55042 m 130.33054 64.70081 l 133.76202 68.06447 l 127.81851 69.55767 lf
-0 sg 124.38702 66.55042 m 130.33054 64.70081 l 133.76202 68.06447 l 127.81851 69.55767 lx
-0.00000 0.00000 0.10698 s 179.71756 66.55187 m 185.66107 64.67087 l 189.09256 67.67248 l 183.14905 69.41104 lf
-0 sg 179.71756 66.55187 m 185.66107 64.67087 l 189.09256 67.67248 l 183.14905 69.41104 lx
-0.00000 0.00000 0.10501 s 195.03607 65.96301 m 200.97958 64.24536 l 204.41107 67.21766 l 198.46756 68.93277 lf
-0 sg 195.03607 65.96301 m 200.97958 64.24536 l 204.41107 67.21766 l 198.46756 68.93277 lx
-0.00000 0.00000 0.82441 s 143.13702 62.27244 m 149.08054 66.33755 l 152.51202 74.95305 l 146.56851 114.67345 lf
-0 sg 143.13702 62.27244 m 149.08054 66.33755 l 152.51202 74.95305 l 146.56851 114.67345 lx
-0.00000 0.00000 0.09372 s 155.02405 65.72042 m 160.96756 63.94453 l 164.39905 67.13311 l 158.45554 67.59486 lf
-0 sg 155.02405 65.72042 m 160.96756 63.94453 l 164.39905 67.13311 l 158.45554 67.59486 lx
-0.00000 0.00000 0.09768 s 170.34256 65.10197 m 176.28607 63.47073 l 179.71756 66.55187 l 173.77405 67.64667 lf
-0 sg 170.34256 65.10197 m 176.28607 63.47073 l 179.71756 66.55187 l 173.77405 67.64667 lx
-0.00000 0.00000 0.10447 s 185.66107 64.67087 m 191.60458 62.99891 l 195.03607 65.96301 l 189.09256 67.67248 lf
-0 sg 185.66107 64.67087 m 191.60458 62.99891 l 195.03607 65.96301 l 189.09256 67.67248 lx
-0.00000 0.00000 0.13494 s 130.33054 64.70081 m 136.27405 62.85120 l 139.70554 67.85474 l 133.76202 68.06447 lf
-0 sg 130.33054 64.70081 m 136.27405 62.85120 l 139.70554 67.85474 l 133.76202 68.06447 lx
-0.00000 0.00000 0.10505 s 105.63702 64.03061 m 117.52405 60.60472 l 124.38702 66.55042 l 112.50000 69.97080 lf
-0 sg 105.63702 64.03061 m 117.52405 60.60472 l 124.38702 66.55042 l 112.50000 69.97080 lx
-0.00000 0.00000 0.09397 s 145.64905 64.63296 m 151.59256 62.69163 l 155.02405 65.72042 l 149.08054 66.33755 lf
-0 sg 145.64905 64.63296 m 151.59256 62.69163 l 155.02405 65.72042 l 149.08054 66.33755 lx
-0.00000 0.00000 0.10499 s 216.29809 63.78591 m 228.18512 60.35447 l 235.04809 66.29790 l 223.16107 69.73001 lf
-0 sg 216.29809 63.78591 m 228.18512 60.35447 l 235.04809 66.29790 l 223.16107 69.73001 lx
-0.00000 0.00000 0.10862 s 160.96756 63.94453 m 166.91107 62.16863 l 170.34256 65.10197 l 164.39905 67.13311 lf
-0 sg 160.96756 63.94453 m 166.91107 62.16863 l 170.34256 65.10197 l 164.39905 67.13311 lx
-0.00000 0.00000 0.10701 s 176.28607 63.47073 m 182.22958 61.72714 l 185.66107 64.67087 l 179.71756 66.55187 lf
-0 sg 176.28607 63.47073 m 182.22958 61.72714 l 185.66107 64.67087 l 179.71756 66.55187 lx
-0.00000 0.00000 0.10516 s 191.60458 62.99891 m 197.54809 61.27306 l 200.97958 64.24536 l 195.03607 65.96301 lf
-0 sg 191.60458 62.99891 m 197.54809 61.27306 l 200.97958 64.24536 l 195.03607 65.96301 lx
-0.00000 0.00000 0.13511 s 136.27405 62.85120 m 142.21756 61.27842 l 145.64905 64.63296 l 139.70554 67.85474 lf
-0 sg 136.27405 62.85120 m 142.21756 61.27842 l 145.64905 64.63296 l 139.70554 67.85474 lx
-0.00000 0.00000 0.10360 s 166.91107 62.16863 m 172.85458 60.46827 l 176.28607 63.47073 l 170.34256 65.10197 lf
-0 sg 166.91107 62.16863 m 172.85458 60.46827 l 176.28607 63.47073 l 170.34256 65.10197 lx
-0.00000 0.00000 0.10498 s 197.54809 61.27306 m 209.43512 57.84282 l 216.29809 63.78591 l 204.41107 67.21766 lf
-0 sg 197.54809 61.27306 m 209.43512 57.84282 l 216.29809 63.78591 l 204.41107 67.21766 lx
-0.00000 0.00000 0.10499 s 37.50000 59.92783 m 61.27405 53.06499 l 75.00000 64.95146 l 51.22595 71.81499 lf
-0 sg 37.50000 59.92783 m 61.27405 53.06499 l 75.00000 64.95146 l 51.22595 71.81499 lx
-0.00000 0.00000 0.10443 s 182.22958 61.72714 m 188.17309 60.01899 l 191.60458 62.99891 l 185.66107 64.67087 lf
-0 sg 182.22958 61.72714 m 188.17309 60.01899 l 191.60458 62.99891 l 185.66107 64.67087 lx
-0.00000 0.00000 0.10800 s 142.21756 61.27842 m 148.16107 59.66283 l 151.59256 62.69163 l 145.64905 64.63296 lf
-0 sg 142.21756 61.27842 m 148.16107 59.66283 l 151.59256 62.69163 l 145.64905 64.63296 lx
-0.00000 0.00000 0.10133 s 117.52405 60.60472 m 129.41107 57.22042 l 136.27405 62.85120 l 124.38702 66.55042 lf
-0 sg 117.52405 60.60472 m 129.41107 57.22042 l 136.27405 62.85120 l 124.38702 66.55042 lx
-0.00000 0.00000 0.10520 s 172.85458 60.46827 m 178.79809 58.76792 l 182.22958 61.72714 l 176.28607 63.47073 lf
-0 sg 172.85458 60.46827 m 178.79809 58.76792 l 182.22958 61.72714 l 176.28607 63.47073 lx
-0.00000 0.00000 0.10600 s 148.16107 59.66283 m 160.04809 56.25308 l 166.91107 62.16863 l 155.02405 65.72042 lf
-0 sg 148.16107 59.66283 m 160.04809 56.25308 l 166.91107 62.16863 l 155.02405 65.72042 lx
-0.00000 0.00000 0.09741 s 132.84256 60.03581 m 138.78607 58.49505 l 142.21756 61.27842 l 136.27405 62.85120 lf
-0 sg 132.84256 60.03581 m 138.78607 58.49505 l 142.21756 61.27842 l 136.27405 62.85120 lx
-0.00000 0.00000 0.10514 s 188.17309 60.01899 m 194.11661 58.30128 l 197.54809 61.27306 l 191.60458 62.99891 lf
-0 sg 188.17309 60.01899 m 194.11661 58.30128 l 197.54809 61.27306 l 191.60458 62.99891 lx
-1.00000 0.99983 0.99983 s 144.05649 119.36118 m 150.00000 198.91227 l 153.43149 120.61434 l 147.48798 84.32835 lf
-0 sg 144.05649 119.36118 m 150.00000 198.91227 l 153.43149 120.61434 l 147.48798 84.32835 lx
-0.00000 0.00000 0.10504 s 178.79809 58.76792 m 184.74161 57.04871 l 188.17309 60.01899 l 182.22958 61.72714 lf
-0 sg 178.79809 58.76792 m 184.74161 57.04871 l 188.17309 60.01899 l 182.22958 61.72714 lx
-0.00000 0.00000 0.10502 s 98.77405 58.09042 m 110.66107 54.65516 l 117.52405 60.60472 l 105.63702 64.03061 lf
-0 sg 98.77405 58.09042 m 110.66107 54.65516 l 117.52405 60.60472 l 105.63702 64.03061 lx
-0.00000 0.00000 0.10499 s 209.43512 57.84282 m 221.32214 54.41104 l 228.18512 60.35447 l 216.29809 63.78591 lf
-0 sg 209.43512 57.84282 m 221.32214 54.41104 l 228.18512 60.35447 l 216.29809 63.78591 lx
-0.00000 0.00000 0.10350 s 138.78607 58.49505 m 144.72958 56.69526 l 148.16107 59.66283 l 142.21756 61.27842 lf
-0 sg 138.78607 58.49505 m 144.72958 56.69526 l 148.16107 59.66283 l 142.21756 61.27842 lx
-1.00000 sg 150.00000 198.91227 m 155.94351 115.93117 l 159.37500 80.90454 l 153.43149 120.61434 lf
-0 sg 150.00000 198.91227 m 155.94351 115.93117 l 159.37500 80.90454 l 153.43149 120.61434 lx
-0.00000 0.00000 0.10564 s 129.41107 57.22042 m 135.35458 55.47406 l 138.78607 58.49505 l 132.84256 60.03581 lf
-0 sg 129.41107 57.22042 m 135.35458 55.47406 l 138.78607 58.49505 l 132.84256 60.03581 lx
-0.00000 0.00000 0.10502 s 184.74161 57.04871 m 190.68512 55.32950 l 194.11661 58.30128 l 188.17309 60.01899 lf
-0 sg 184.74161 57.04871 m 190.68512 55.32950 l 194.11661 58.30128 l 188.17309 60.01899 lx
-0.00000 0.00000 0.10473 s 160.04809 56.25308 m 171.93512 52.81964 l 178.79809 58.76792 l 166.91107 62.16863 lf
-0 sg 160.04809 56.25308 m 171.93512 52.81964 l 178.79809 58.76792 l 166.91107 62.16863 lx
-0.00000 0.00000 0.10499 s 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 59.92783 l 13.72595 66.79083 lf
-0 sg 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 59.92783 l 13.72595 66.79083 lx
-0.00000 0.00000 0.10499 s 221.32214 54.41104 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29790 lf
-0 sg 221.32214 54.41104 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29790 lx
-0.00000 0.00000 0.10497 s 190.68512 55.32950 m 202.57214 51.89942 l 209.43512 57.84282 l 197.54809 61.27306 lf
-0 sg 190.68512 55.32950 m 202.57214 51.89942 l 209.43512 57.84282 l 197.54809 61.27306 lx
-1.00000 0.99986 0.99986 s 140.62500 78.38380 m 146.56851 114.67345 l 150.00000 198.91227 l 144.05649 119.36118 lf
-0 sg 140.62500 78.38380 m 146.56851 114.67345 l 150.00000 198.91227 l 144.05649 119.36118 lx
-0.00000 0.00000 0.10618 s 135.35458 55.47406 m 141.29809 53.72769 l 144.72958 56.69526 l 138.78607 58.49505 lf
-0 sg 135.35458 55.47406 m 141.29809 53.72769 l 144.72958 56.69526 l 138.78607 58.49505 lx
-0.00000 0.00000 0.10584 s 110.66107 54.65516 m 122.54809 51.21990 l 129.41107 57.22042 l 117.52405 60.60472 lf
-0 sg 110.66107 54.65516 m 122.54809 51.21990 l 129.41107 57.22042 l 117.52405 60.60472 lx
-0.00000 0.00000 0.10501 s 61.27405 53.06499 m 85.04809 46.20153 l 98.77405 58.09042 l 75.00000 64.95146 lf
-0 sg 61.27405 53.06499 m 85.04809 46.20153 l 98.77405 58.09042 l 75.00000 64.95146 lx
-0.00000 0.00000 0.10456 s 141.29809 53.72769 m 153.18512 50.30869 l 160.04809 56.25308 l 148.16107 59.66283 lf
-0 sg 141.29809 53.72769 m 153.18512 50.30869 l 160.04809 56.25308 l 148.16107 59.66283 lx
-1.00000 0.99990 0.99990 s 146.56851 114.67345 m 152.51202 74.95305 l 155.94351 115.93117 l 150.00000 198.91227 lf
-0 sg 146.56851 114.67345 m 152.51202 74.95305 l 155.94351 115.93117 l 150.00000 198.91227 lx
-0.00000 0.00000 0.10509 s 171.93512 52.81964 m 183.82214 49.38619 l 190.68512 55.32950 l 178.79809 58.76792 lf
-0 sg 171.93512 52.81964 m 183.82214 49.38619 l 190.68512 55.32950 l 178.79809 58.76792 lx
-0.00000 0.00000 0.10501 s 202.57214 51.89942 m 214.45917 48.46762 l 221.32214 54.41104 l 209.43512 57.84282 lf
-0 sg 202.57214 51.89942 m 214.45917 48.46762 l 221.32214 54.41104 l 209.43512 57.84282 lx
-0.00000 0.00000 0.10558 s 122.54809 51.21990 m 134.43512 47.79209 l 141.29809 53.72769 l 129.41107 57.22042 lf
-0 sg 122.54809 51.21990 m 134.43512 47.79209 l 141.29809 53.72769 l 129.41107 57.22042 lx
-0.00000 0.00000 0.10496 s 183.82214 49.38619 m 195.70917 45.95519 l 202.57214 51.89942 l 190.68512 55.32950 lf
-0 sg 183.82214 49.38619 m 195.70917 45.95519 l 202.57214 51.89942 l 190.68512 55.32950 lx
-0.00000 0.00000 0.10500 s 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 53.06499 l 37.50000 59.92783 lf
-0 sg 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 53.06499 l 37.50000 59.92783 lx
-0.00000 0.00000 0.10483 s 134.43512 47.79209 m 146.32214 44.36429 l 153.18512 50.30869 l 141.29809 53.72769 lf
-0 sg 134.43512 47.79209 m 146.32214 44.36429 l 153.18512 50.30869 l 141.29809 53.72769 lx
-0.00000 0.00000 0.10493 s 85.04809 46.20153 m 108.82214 39.34044 l 122.54809 51.21990 l 98.77405 58.09042 lf
-0 sg 85.04809 46.20153 m 108.82214 39.34044 l 122.54809 51.21990 l 98.77405 58.09042 lx
-0.00000 0.00000 0.10500 s 195.70917 45.95519 m 207.59619 42.52419 l 214.45917 48.46762 l 202.57214 51.89942 lf
-0 sg 195.70917 45.95519 m 207.59619 42.52419 l 214.45917 48.46762 l 202.57214 51.89942 lx
-0.00000 0.00000 0.10505 s 146.32214 44.36429 m 170.09619 37.49965 l 183.82214 49.38619 l 160.04809 56.25308 lf
-0 sg 146.32214 44.36429 m 170.09619 37.49965 l 183.82214 49.38619 l 160.04809 56.25308 lx
-0.00000 0.00000 0.10500 s 207.59619 42.52419 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41104 lf
-0 sg 207.59619 42.52419 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41104 lx
-0.00000 0.00000 0.10499 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20153 l 61.27405 53.06499 lf
-0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20153 l 61.27405 53.06499 lx
-0.00000 0.00000 0.10493 s 108.82214 39.34044 m 132.59619 32.47562 l 146.32214 44.36429 l 122.54809 51.21990 lf
-0 sg 108.82214 39.34044 m 132.59619 32.47562 l 146.32214 44.36429 l 122.54809 51.21990 lx
-0.00000 0.00000 0.10498 s 170.09619 37.49965 m 193.87024 30.63713 l 207.59619 42.52419 l 183.82214 49.38619 lf
-0 sg 170.09619 37.49965 m 193.87024 30.63713 l 207.59619 42.52419 l 183.82214 49.38619 lx
-0.00000 0.00000 0.10502 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.34044 l 85.04809 46.20153 lf
-0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.34044 l 85.04809 46.20153 lx
-0.00000 0.00000 0.10501 s 132.59619 32.47562 m 156.37024 25.61306 l 170.09619 37.49965 l 146.32214 44.36429 lf
-0 sg 132.59619 32.47562 m 156.37024 25.61306 l 170.09619 37.49965 l 146.32214 44.36429 lx
-0.00000 0.00000 0.10500 s 193.87024 30.63713 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52419 lf
-0 sg 193.87024 30.63713 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52419 lx
-0.00000 0.00000 0.10502 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47562 l 108.82214 39.34044 lf
-0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47562 l 108.82214 39.34044 lx
-0.00000 0.00000 0.10499 s 156.37024 25.61306 m 180.14428 18.74997 l 193.87024 30.63713 l 170.09619 37.49965 lf
-0 sg 156.37024 25.61306 m 180.14428 18.74997 l 193.87024 30.63713 l 170.09619 37.49965 lx
-0.00000 0.00000 0.10499 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61306 l 132.59619 32.47562 lf
-0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61306 l 132.59619 32.47562 lx
-0.00000 0.00000 0.10500 s 180.14428 18.74997 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.63713 lf
-0 sg 180.14428 18.74997 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.63713 lx
-0.00000 0.00000 0.10500 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 18.74997 l 156.37024 25.61306 lf
-0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 18.74997 l 156.37024 25.61306 lx
-0.00000 0.00000 0.10500 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 18.74997 lf
-0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 18.74997 lx
-showpage
-.
-DEAL::  Postprocessing: time=0.02800, step=1, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.05600, step=2, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.08400, step=3, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.11200, step=4, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.14000, step=5, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.16800, step=6, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.19600, step=7, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.22400, step=8, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.25200, step=9, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.28000, step=10, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.30800, step=11, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.33600, step=12, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.36400, step=13, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.39200, step=14, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.42000, step=15, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.44800, step=16, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.47600, step=17, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.50400, step=18, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.53200, step=19, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.56000, step=20, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.58800, step=21, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.61600, step=22, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.64400, step=23, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.67200, step=24, sweep=1. [ee]
-DEAL::  Postprocessing: time=0.70000, step=25, sweep=1. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 150
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50000 setlinewidth
-0.06973 0.93027 0.00000 s 96.08167 138.11298 m 119.85572 133.36281 l 133.58167 143.13702 l 109.80762 150.00000 lf
-0 sg 96.08167 138.11298 m 119.85572 133.36281 l 133.58167 143.13702 l 109.80762 150.00000 lx
-0.00000 0.98814 0.01186 s 119.85572 133.36281 m 143.62976 122.91371 l 157.35572 136.27405 l 133.58167 143.13702 lf
-0 sg 119.85572 133.36281 m 143.62976 122.91371 l 157.35572 136.27405 l 133.58167 143.13702 lx
-0.15622 0.84378 0.00000 s 82.35572 126.22595 m 106.12976 120.92497 l 119.85572 133.36281 l 96.08167 138.11298 lf
-0 sg 82.35572 126.22595 m 106.12976 120.92497 l 119.85572 133.36281 l 96.08167 138.11298 lx
-0.00000 0.76841 0.23159 s 143.62976 122.91371 m 167.40381 115.66861 l 181.12976 129.41107 l 157.35572 136.27405 lf
-0 sg 143.62976 122.91371 m 167.40381 115.66861 l 181.12976 129.41107 l 157.35572 136.27405 lx
-0.11295 0.88705 0.00000 s 106.12976 120.92497 m 129.90381 113.19188 l 143.62976 122.91371 l 119.85572 133.36281 lf
-0 sg 106.12976 120.92497 m 129.90381 113.19188 l 143.62976 122.91371 l 119.85572 133.36281 lx
-0.00000 0.87257 0.12743 s 167.40381 115.66861 m 191.17786 111.06880 l 204.90381 122.54809 l 181.12976 129.41107 lf
-0 sg 167.40381 115.66861 m 191.17786 111.06880 l 204.90381 122.54809 l 181.12976 129.41107 lx
-0.00000 0.91059 0.08941 s 68.62976 114.33893 m 92.40381 105.15295 l 106.12976 120.92497 l 82.35572 126.22595 lf
-0 sg 68.62976 114.33893 m 92.40381 105.15295 l 106.12976 120.92497 l 82.35572 126.22595 lx
-0.00000 0.75325 0.24675 s 129.90381 113.19188 m 153.67786 104.67140 l 167.40381 115.66861 l 143.62976 122.91371 lf
-0 sg 129.90381 113.19188 m 153.67786 104.67140 l 167.40381 115.66861 l 143.62976 122.91371 lx
-0.00000 0.89380 0.10620 s 191.17786 111.06880 m 214.95191 102.32618 l 228.67786 115.68512 l 204.90381 122.54809 lf
-0 sg 191.17786 111.06880 m 214.95191 102.32618 l 228.67786 115.68512 l 204.90381 122.54809 lx
-0.00000 0.75078 0.24922 s 92.40381 105.15295 m 116.17786 97.03509 l 129.90381 113.19188 l 106.12976 120.92497 lf
-0 sg 92.40381 105.15295 m 116.17786 97.03509 l 129.90381 113.19188 l 106.12976 120.92497 lx
-0.00000 0.90429 0.09571 s 153.67786 104.67140 m 177.45191 100.31252 l 191.17786 111.06880 l 167.40381 115.66861 lf
-0 sg 153.67786 104.67140 m 177.45191 100.31252 l 191.17786 111.06880 l 167.40381 115.66861 lx
-0.00000 0.83894 0.16106 s 214.95191 102.32618 m 238.72595 96.35202 l 252.45191 108.82214 l 228.67786 115.68512 lf
-0 sg 214.95191 102.32618 m 238.72595 96.35202 l 252.45191 108.82214 l 228.67786 115.68512 lx
-0.00000 0.87496 0.12504 s 54.90381 102.45191 m 78.67786 96.50748 l 92.40381 105.15295 l 68.62976 114.33893 lf
-0 sg 54.90381 102.45191 m 78.67786 96.50748 l 92.40381 105.15295 l 68.62976 114.33893 lx
-0.00000 0.52251 0.47749 s 116.17786 97.03509 m 139.95191 89.83217 l 153.67786 104.67140 l 129.90381 113.19188 lf
-0 sg 116.17786 97.03509 m 139.95191 89.83217 l 153.67786 104.67140 l 129.90381 113.19188 lx
-0.00000 0.96495 0.03505 s 177.45191 100.31252 m 201.22595 91.65741 l 214.95191 102.32618 l 191.17786 111.06880 lf
-0 sg 177.45191 100.31252 m 201.22595 91.65741 l 214.95191 102.32618 l 191.17786 111.06880 lx
-0.09090 0.90910 0.00000 s 238.72595 96.35202 m 262.50000 93.15046 l 276.22595 101.95917 l 252.45191 108.82214 lf
-0 sg 238.72595 96.35202 m 262.50000 93.15046 l 276.22595 101.95917 l 252.45191 108.82214 lx
-0.00000 0.42571 0.57429 s 78.67786 96.50748 m 102.45191 84.19082 l 116.17786 97.03509 l 92.40381 105.15295 lf
-0 sg 78.67786 96.50748 m 102.45191 84.19082 l 116.17786 97.03509 l 92.40381 105.15295 lx
-0.00000 0.78765 0.21235 s 139.95191 89.83217 m 163.72595 87.25071 l 177.45191 100.31252 l 153.67786 104.67140 lf
-0 sg 139.95191 89.83217 m 163.72595 87.25071 l 177.45191 100.31252 l 153.67786 104.67140 lx
-0.00000 0.90703 0.09297 s 201.22595 91.65741 m 225.00000 86.53138 l 238.72595 96.35202 l 214.95191 102.32618 lf
-0 sg 201.22595 91.65741 m 225.00000 86.53138 l 238.72595 96.35202 l 214.95191 102.32618 lx
-0.43510 0.56490 0.00000 s 41.17786 90.56488 m 64.95191 91.49452 l 78.67786 96.50748 l 54.90381 102.45191 lf
-0 sg 41.17786 90.56488 m 64.95191 91.49452 l 78.67786 96.50748 l 54.90381 102.45191 lx
-0.12319 0.87681 0.00000 s 262.50000 93.15046 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lf
-0 sg 262.50000 93.15046 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lx
-0.00000 0.51399 0.48601 s 102.45191 84.19082 m 126.22595 85.97054 l 139.95191 89.83217 l 116.17786 97.03509 lf
-0 sg 102.45191 84.19082 m 126.22595 85.97054 l 139.95191 89.83217 l 116.17786 97.03509 lx
-0.00000 0.83971 0.16029 s 163.72595 87.25071 m 187.50000 76.33444 l 201.22595 91.65741 l 177.45191 100.31252 lf
-0 sg 163.72595 87.25071 m 187.50000 76.33444 l 201.22595 91.65741 l 177.45191 100.31252 lx
-0.21659 0.78341 0.00000 s 225.00000 86.53138 m 248.77405 78.97162 l 262.50000 93.15046 l 238.72595 96.35202 lf
-0 sg 225.00000 86.53138 m 248.77405 78.97162 l 262.50000 93.15046 l 238.72595 96.35202 lx
-0.00000 0.69038 0.30962 s 64.95191 91.49452 m 88.72595 67.92514 l 102.45191 84.19082 l 78.67786 96.50748 lf
-0 sg 64.95191 91.49452 m 88.72595 67.92514 l 102.45191 84.19082 l 78.67786 96.50748 lx
-0.00000 0.80433 0.19567 s 126.22595 85.97054 m 150.00000 71.76656 l 163.72595 87.25071 l 139.95191 89.83217 lf
-0 sg 126.22595 85.97054 m 150.00000 71.76656 l 163.72595 87.25071 l 139.95191 89.83217 lx
-0.00000 0.71833 0.28167 s 187.50000 76.33444 m 211.27405 71.38800 l 225.00000 86.53138 l 201.22595 91.65741 lf
-0 sg 187.50000 76.33444 m 211.27405 71.38800 l 225.00000 86.53138 l 201.22595 91.65741 lx
-0.44099 0.55901 0.00000 s 27.45191 78.67786 m 51.22595 72.83983 l 64.95191 91.49452 l 41.17786 90.56488 lf
-0 sg 27.45191 78.67786 m 51.22595 72.83983 l 64.95191 91.49452 l 41.17786 90.56488 lx
-0.16674 0.83326 0.00000 s 248.77405 78.97162 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.15046 lf
-0 sg 248.77405 78.97162 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.15046 lx
-0.00000 0.51547 0.48453 s 88.72595 67.92514 m 112.50000 71.42073 l 126.22595 85.97054 l 102.45191 84.19082 lf
-0 sg 88.72595 67.92514 m 112.50000 71.42073 l 126.22595 85.97054 l 102.45191 84.19082 lx
-0.00000 0.52294 0.47706 s 150.00000 71.76656 m 173.77405 66.93477 l 187.50000 76.33444 l 163.72595 87.25071 lf
-0 sg 150.00000 71.76656 m 173.77405 66.93477 l 187.50000 76.33444 l 163.72595 87.25071 lx
-0.00000 0.38705 0.61295 s 180.63702 71.63460 m 192.52405 69.30019 l 199.38702 73.86122 l 187.50000 76.33444 lf
-0 sg 180.63702 71.63460 m 192.52405 69.30019 l 199.38702 73.86122 l 187.50000 76.33444 lx
-0.00000 0.84504 0.15496 s 211.27405 71.38800 m 235.04809 63.85661 l 248.77405 78.97162 l 225.00000 86.53138 lf
-0 sg 211.27405 71.38800 m 235.04809 63.85661 l 248.77405 78.97162 l 225.00000 86.53138 lx
-0.20212 0.79788 0.00000 s 51.22595 72.83983 m 75.00000 69.55180 l 88.72595 67.92514 l 64.95191 91.49452 lf
-0 sg 51.22595 72.83983 m 75.00000 69.55180 l 88.72595 67.92514 l 64.95191 91.49452 lx
-0.00000 0.36540 0.63460 s 192.52405 69.30019 m 204.41107 62.46411 l 211.27405 71.38800 l 199.38702 73.86122 lf
-0 sg 192.52405 69.30019 m 204.41107 62.46411 l 211.27405 71.38800 l 199.38702 73.86122 lx
-0.00000 0.99090 0.00910 s 112.50000 71.42073 m 136.27405 61.48341 l 150.00000 71.76656 l 126.22595 85.97054 lf
-0 sg 112.50000 71.42073 m 136.27405 61.48341 l 150.00000 71.76656 l 126.22595 85.97054 lx
-0.00000 0.91112 0.08888 s 173.77405 66.93477 m 185.66107 68.95120 l 192.52405 69.30019 l 180.63702 71.63460 lf
-0 sg 173.77405 66.93477 m 185.66107 68.95120 l 192.52405 69.30019 l 180.63702 71.63460 lx
-0.00000 0.31537 0.68463 s 204.41107 62.46411 m 216.29809 60.90963 l 223.16107 67.62230 l 211.27405 71.38800 lf
-0 sg 204.41107 62.46411 m 216.29809 60.90963 l 223.16107 67.62230 l 211.27405 71.38800 lx
-0.00000 0.94649 0.05351 s 13.72595 66.79083 m 37.50000 58.79015 l 51.22595 72.83983 l 27.45191 78.67786 lf
-0 sg 13.72595 66.79083 m 37.50000 58.79015 l 51.22595 72.83983 l 27.45191 78.67786 lx
-0.00000 0.86109 0.13891 s 235.04809 63.85661 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.97162 lf
-0 sg 235.04809 63.85661 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.97162 lx
-0.00000 0.40019 0.59981 s 75.00000 69.55180 m 98.77405 50.97970 l 112.50000 71.42073 l 88.72595 67.92514 lf
-0 sg 75.00000 69.55180 m 98.77405 50.97970 l 112.50000 71.42073 l 88.72595 67.92514 lx
-0.00000 0.71823 0.28177 s 136.27405 61.48341 m 160.04809 58.08041 l 173.77405 66.93477 l 150.00000 71.76656 lf
-0 sg 136.27405 61.48341 m 160.04809 58.08041 l 173.77405 66.93477 l 150.00000 71.76656 lx
-0.04100 0.95900 0.00000 s 185.66107 68.95120 m 197.54809 64.72480 l 204.41107 62.46411 l 192.52405 69.30019 lf
-0 sg 185.66107 68.95120 m 197.54809 64.72480 l 204.41107 62.46411 l 192.52405 69.30019 lx
-0.00000 0.38349 0.61651 s 200.97958 63.59446 m 206.92309 61.46981 l 210.35458 61.68687 l 204.41107 62.46411 lf
-0 sg 200.97958 63.59446 m 206.92309 61.46981 l 210.35458 61.68687 l 204.41107 62.46411 lx
-0.00000 0.56300 0.43700 s 216.29809 60.90963 m 228.18512 60.74160 l 235.04809 63.85661 l 223.16107 67.62230 lf
-0 sg 216.29809 60.90963 m 228.18512 60.74160 l 235.04809 63.85661 l 223.16107 67.62230 lx
-0.00000 0.25110 0.74890 s 206.92309 61.46981 m 212.86661 55.89519 l 216.29809 60.90963 l 210.35458 61.68687 lf
-0 sg 206.92309 61.46981 m 212.86661 55.89519 l 216.29809 60.90963 l 210.35458 61.68687 lx
-0.13716 0.86284 0.00000 s 166.91107 62.50759 m 178.79809 58.73506 l 185.66107 68.95120 l 173.77405 66.93477 lf
-0 sg 166.91107 62.50759 m 178.79809 58.73506 l 185.66107 68.95120 l 173.77405 66.93477 lx
-0.00000 0.00000 0.84066 s 212.86661 55.89519 m 218.81012 48.05588 l 222.24161 60.82561 l 216.29809 60.90963 lf
-0 sg 212.86661 55.89519 m 218.81012 48.05588 l 222.24161 60.82561 l 216.29809 60.90963 lx
-0.00000 0.85321 0.14679 s 197.54809 64.72480 m 203.49161 56.02181 l 206.92309 61.46981 l 200.97958 63.59446 lf
-0 sg 197.54809 64.72480 m 203.49161 56.02181 l 206.92309 61.46981 l 200.97958 63.59446 lx
-0.28035 0.71965 0.00000 s 37.50000 58.79015 m 61.27405 54.49418 l 75.00000 69.55180 l 51.22595 72.83983 lf
-0 sg 37.50000 58.79015 m 61.27405 54.49418 l 75.00000 69.55180 l 51.22595 72.83983 lx
-0.00000 0.81411 0.18589 s 228.18512 60.74160 m 240.07214 57.69495 l 246.93512 61.64587 l 235.04809 63.85661 lf
-0 sg 228.18512 60.74160 m 240.07214 57.69495 l 246.93512 61.64587 l 235.04809 63.85661 lx
-0.00000 0.37126 0.62874 s 98.77405 50.97970 m 122.54809 48.01919 l 136.27405 61.48341 l 112.50000 71.42073 lf
-0 sg 98.77405 50.97970 m 122.54809 48.01919 l 136.27405 61.48341 l 112.50000 71.42073 lx
-0.00000 0.13851 0.86149 s 203.49161 56.02181 m 209.43512 52.65434 l 212.86661 55.89519 l 206.92309 61.46981 lf
-0 sg 203.49161 56.02181 m 209.43512 52.65434 l 212.86661 55.89519 l 206.92309 61.46981 lx
-0.00000 sg 209.43512 52.65434 m 215.37863 42.01234 l 218.81012 48.05588 l 212.86661 55.89519 lf
-0 sg 209.43512 52.65434 m 215.37863 42.01234 l 218.81012 48.05588 l 212.86661 55.89519 lx
-0.00000 0.51166 0.48834 s 218.81012 48.05588 m 224.75363 61.31783 l 228.18512 60.74160 l 222.24161 60.82561 lf
-0 sg 218.81012 48.05588 m 224.75363 61.31783 l 228.18512 60.74160 l 222.24161 60.82561 lx
-0.26462 0.73538 0.00000 s 178.79809 58.73506 m 190.68512 53.29355 l 197.54809 64.72480 l 185.66107 68.95120 lf
-0 sg 178.79809 58.73506 m 190.68512 53.29355 l 197.54809 64.72480 l 185.66107 68.95120 lx
-0.00000 0.57326 0.42674 s 194.11661 59.00917 m 200.06012 49.11244 l 203.49161 56.02181 l 197.54809 64.72480 lf
-0 sg 194.11661 59.00917 m 200.06012 49.11244 l 203.49161 56.02181 l 197.54809 64.72480 lx
-0.00000 0.00000 0.70987 s 200.06012 49.11244 m 206.00363 48.62470 l 209.43512 52.65434 l 203.49161 56.02181 lf
-0 sg 200.06012 49.11244 m 206.00363 48.62470 l 209.43512 52.65434 l 203.49161 56.02181 lx
-0.00000 0.92787 0.07212 s 240.07214 57.69495 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 61.64587 lf
-0 sg 240.07214 57.69495 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 61.64587 lx
-0.00000 0.00000 0.20117 s 206.00363 48.62470 m 211.94714 47.07224 l 215.37863 42.01234 l 209.43512 52.65434 lf
-0 sg 206.00363 48.62470 m 211.94714 47.07224 l 215.37863 42.01234 l 209.43512 52.65434 lx
-0.00000 0.27628 0.72372 s 215.37863 42.01234 m 221.32214 63.41708 l 224.75363 61.31783 l 218.81012 48.05588 lf
-0 sg 215.37863 42.01234 m 221.32214 63.41708 l 224.75363 61.31783 l 218.81012 48.05588 lx
-0.00000 0.93306 0.06694 s 160.04809 58.08041 m 171.93512 50.34564 l 178.79809 58.73506 l 166.91107 62.50759 lf
-0 sg 160.04809 58.08041 m 171.93512 50.34564 l 178.79809 58.73506 l 166.91107 62.50759 lx
-0.00000 0.88973 0.11027 s 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 58.79015 l 13.72595 66.79083 lf
-0 sg 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 58.79015 l 13.72595 66.79083 lx
-0.59711 0.40289 0.00000 s 224.75363 61.31783 m 230.69714 62.40257 l 234.12863 59.21827 l 228.18512 60.74160 lf
-0 sg 224.75363 61.31783 m 230.69714 62.40257 l 234.12863 59.21827 l 228.18512 60.74160 lx
-0.00000 0.25363 0.74637 s 190.68512 53.29355 m 196.62863 49.79387 l 200.06012 49.11244 l 194.11661 59.00917 lf
-0 sg 190.68512 53.29355 m 196.62863 49.79387 l 200.06012 49.11244 l 194.11661 59.00917 lx
-0.00000 0.00000 0.67105 s 196.62863 49.79387 m 202.57214 46.29419 l 206.00363 48.62470 l 200.06012 49.11244 lf
-0 sg 196.62863 49.79387 m 202.57214 46.29419 l 206.00363 48.62470 l 200.06012 49.11244 lx
-0.29432 0.70568 0.00000 s 230.69714 62.40257 m 236.64065 52.03331 l 240.07214 57.69495 l 234.12863 59.21827 lf
-0 sg 230.69714 62.40257 m 236.64065 52.03331 l 240.07214 57.69495 l 234.12863 59.21827 lx
-0.20050 0.79950 0.00000 s 61.27405 54.49418 m 85.04809 51.75642 l 98.77405 50.97970 l 75.00000 69.55180 lf
-0 sg 61.27405 54.49418 m 85.04809 51.75642 l 98.77405 50.97970 l 75.00000 69.55180 lx
-0.00000 0.32629 0.67371 s 171.93512 50.34564 m 183.82214 42.61086 l 190.68512 53.29355 l 178.79809 58.73506 lf
-0 sg 171.93512 50.34564 m 183.82214 42.61086 l 190.68512 53.29355 l 178.79809 58.73506 lx
-0.00000 0.45969 0.54031 s 122.54809 48.01919 m 146.32214 38.46500 l 160.04809 58.08041 l 136.27405 61.48341 lf
-0 sg 122.54809 48.01919 m 146.32214 38.46500 l 160.04809 58.08041 l 136.27405 61.48341 lx
-0.00000 0.14962 0.85038 s 202.57214 46.29419 m 208.51565 53.61358 l 211.94714 47.07224 l 206.00363 48.62470 lf
-0 sg 202.57214 46.29419 m 208.51565 53.61358 l 211.94714 47.07224 l 206.00363 48.62470 lx
-0.03828 0.96172 0.00000 s 211.94714 47.07224 m 217.89065 64.17547 l 221.32214 63.41708 l 215.37863 42.01234 lf
-0 sg 211.94714 47.07224 m 217.89065 64.17547 l 221.32214 63.41708 l 215.37863 42.01234 lx
-1.00000 0.27957 0.27957 s 221.32214 63.41708 m 227.26565 56.98021 l 230.69714 62.40257 l 224.75363 61.31783 lf
-0 sg 221.32214 63.41708 m 227.26565 56.98021 l 230.69714 62.40257 l 224.75363 61.31783 lx
-0.20161 0.79839 0.00000 s 227.26565 56.98021 m 233.20917 46.37167 l 236.64065 52.03331 l 230.69714 62.40257 lf
-0 sg 227.26565 56.98021 m 233.20917 46.37167 l 236.64065 52.03331 l 230.69714 62.40257 lx
-0.00000 0.74031 0.25969 s 233.20917 46.37167 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 57.69495 lf
-0 sg 233.20917 46.37167 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 57.69495 lx
-0.00000 0.14533 0.85467 s 183.82214 42.61086 m 195.70917 45.79261 l 202.57214 46.29419 l 190.68512 53.29355 lf
-0 sg 183.82214 42.61086 m 195.70917 45.79261 l 202.57214 46.29419 l 190.68512 53.29355 lx
-0.00000 0.96888 0.03112 s 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 54.49418 l 37.50000 58.79015 lf
-0 sg 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 54.49418 l 37.50000 58.79015 lx
-0.01859 0.98141 0.00000 s 223.83417 54.54476 m 229.77768 44.69896 l 233.20917 46.37167 l 227.26565 56.98021 lf
-0 sg 223.83417 54.54476 m 229.77768 44.69896 l 233.20917 46.37167 l 227.26565 56.98021 lx
-1.00000 0.66092 0.66092 s 217.89065 64.17547 m 223.83417 54.54476 l 227.26565 56.98021 l 221.32214 63.41708 lf
-0 sg 217.89065 64.17547 m 223.83417 54.54476 l 227.26565 56.98021 l 221.32214 63.41708 lx
-1.00000 0.20136 0.20136 s 208.51565 53.61358 m 214.45917 60.93296 l 217.89065 64.17547 l 211.94714 47.07224 lf
-0 sg 208.51565 53.61358 m 214.45917 60.93296 l 217.89065 64.17547 l 211.94714 47.07224 lx
-0.00000 0.87937 0.12063 s 85.04809 51.75642 m 108.82214 42.77561 l 122.54809 48.01919 l 98.77405 50.97970 lf
-0 sg 85.04809 51.75642 m 108.82214 42.77561 l 122.54809 48.01919 l 98.77405 50.97970 lx
-0.00000 0.60300 0.39700 s 146.32214 38.46500 m 170.09619 42.02795 l 183.82214 42.61086 l 160.04809 58.08041 lf
-0 sg 146.32214 38.46500 m 170.09619 42.02795 l 183.82214 42.61086 l 160.04809 58.08041 lx
-0.00000 0.58628 0.41372 s 226.34619 43.02624 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 46.37167 lf
-0 sg 226.34619 43.02624 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 46.37167 lx
-0.30998 0.69002 0.00000 s 220.40268 53.70082 m 226.34619 43.02624 l 229.77768 44.69896 l 223.83417 54.54476 lf
-0 sg 220.40268 53.70082 m 226.34619 43.02624 l 229.77768 44.69896 l 223.83417 54.54476 lx
-0.65737 0.34263 0.00000 s 195.70917 45.79261 m 207.59619 48.55154 l 214.45917 60.93296 l 202.57214 46.29419 lf
-0 sg 195.70917 45.79261 m 207.59619 48.55154 l 214.45917 60.93296 l 202.57214 46.29419 lx
-1.00000 sg 214.45917 60.93296 m 220.40268 53.70082 l 223.83417 54.54476 l 217.89065 64.17547 lf
-0 sg 214.45917 60.93296 m 220.40268 53.70082 l 223.83417 54.54476 l 217.89065 64.17547 lx
-0.00000 0.57362 0.42638 s 176.95917 42.31941 m 188.84619 41.22876 l 195.70917 45.79261 l 183.82214 42.61086 lf
-0 sg 176.95917 42.31941 m 188.84619 41.22876 l 195.70917 45.79261 l 183.82214 42.61086 lx
-0.47192 0.52808 0.00000 s 216.97119 50.04001 m 222.91470 40.24131 l 226.34619 43.02624 l 220.40268 53.70082 lf
-0 sg 216.97119 50.04001 m 222.91470 40.24131 l 226.34619 43.02624 l 220.40268 53.70082 lx
-1.00000 0.88643 0.88643 s 211.02768 54.74225 m 216.97119 50.04001 l 220.40268 53.70082 l 214.45917 60.93296 lf
-0 sg 211.02768 54.74225 m 216.97119 50.04001 l 220.40268 53.70082 l 214.45917 60.93296 lx
-0.33945 0.66055 0.00000 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 51.75642 l 61.27405 54.49418 lf
-0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 51.75642 l 61.27405 54.49418 lx
-0.00000 0.90859 0.09141 s 108.82214 42.77561 m 132.59619 37.34682 l 146.32214 38.46500 l 122.54809 48.01919 lf
-0 sg 108.82214 42.77561 m 132.59619 37.34682 l 146.32214 38.46500 l 122.54809 48.01919 lx
-1.00000 0.26673 0.26673 s 207.59619 48.55154 m 213.53970 43.00395 l 216.97119 50.04001 l 211.02768 54.74225 lf
-0 sg 207.59619 48.55154 m 213.53970 43.00395 l 216.97119 50.04001 l 211.02768 54.74225 lx
-0.22940 0.77060 0.00000 s 213.53970 43.00395 m 219.48321 37.45637 l 222.91470 40.24131 l 216.97119 50.04001 lf
-0 sg 213.53970 43.00395 m 219.48321 37.45637 l 222.91470 40.24131 l 216.97119 50.04001 lx
-0.00000 0.75084 0.24916 s 219.48321 37.45637 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 43.02624 lf
-0 sg 219.48321 37.45637 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 43.02624 lx
-0.51661 0.48339 0.00000 s 188.84619 41.22876 m 200.73321 39.68235 l 207.59619 48.55154 l 195.70917 45.79261 lf
-0 sg 188.84619 41.22876 m 200.73321 39.68235 l 207.59619 48.55154 l 195.70917 45.79261 lx
-0.34935 0.65065 0.00000 s 170.09619 42.02795 m 181.98321 36.61056 l 188.84619 41.22876 l 176.95917 42.31941 lf
-0 sg 170.09619 42.02795 m 181.98321 36.61056 l 188.84619 41.22876 l 176.95917 42.31941 lx
-0.28492 0.71508 0.00000 s 200.73321 39.68235 m 212.62024 31.65494 l 219.48321 37.45637 l 207.59619 48.55154 lf
-0 sg 200.73321 39.68235 m 212.62024 31.65494 l 219.48321 37.45637 l 207.59619 48.55154 lx
-0.45061 0.54939 0.00000 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 42.77561 l 85.04809 51.75642 lf
-0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 42.77561 l 85.04809 51.75642 lx
-0.36343 0.63657 0.00000 s 181.98321 36.61056 m 193.87024 31.19317 l 200.73321 39.68235 l 188.84619 41.22876 lf
-0 sg 181.98321 36.61056 m 193.87024 31.19317 l 200.73321 39.68235 l 188.84619 41.22876 lx
-0.00000 0.77940 0.22060 s 212.62024 31.65494 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 37.45637 lf
-0 sg 212.62024 31.65494 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 37.45637 lx
-0.20852 0.79148 0.00000 s 132.59619 37.34682 m 156.37024 26.73140 l 170.09619 42.02795 l 146.32214 38.46500 lf
-0 sg 132.59619 37.34682 m 156.37024 26.73140 l 170.09619 42.02795 l 146.32214 38.46500 lx
-0.08795 0.91205 0.00000 s 193.87024 31.19317 m 205.75726 27.48361 l 212.62024 31.65494 l 200.73321 39.68235 lf
-0 sg 193.87024 31.19317 m 205.75726 27.48361 l 212.62024 31.65494 l 200.73321 39.68235 lx
-0.41275 0.58725 0.00000 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 37.34682 l 108.82214 42.77561 lf
-0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 37.34682 l 108.82214 42.77561 lx
-0.00000 0.88540 0.11460 s 205.75726 27.48361 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.65494 lf
-0 sg 205.75726 27.48361 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.65494 lx
-0.25354 0.74646 0.00000 s 156.37024 26.73140 m 180.14428 17.97980 l 193.87024 31.19317 l 170.09619 42.02795 lf
-0 sg 156.37024 26.73140 m 180.14428 17.97980 l 193.87024 31.19317 l 170.09619 42.02795 lx
-0.28438 0.71562 0.00000 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 26.73140 l 132.59619 37.34682 lf
-0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 26.73140 l 132.59619 37.34682 lx
-0.00000 0.94088 0.05912 s 180.14428 17.97980 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 31.19317 lf
-0 sg 180.14428 17.97980 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 31.19317 lx
-0.00000 0.97201 0.02799 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.97980 l 156.37024 26.73140 lf
-0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.97980 l 156.37024 26.73140 lx
-0.00000 0.91008 0.08992 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.97980 lf
-0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.97980 lx
-showpage
-.
-DEAL::
-DEAL::  Collecting refinement data: 
-DEAL::    Refining each time step separately.
-DEAL::    Got 4766 presently, expecting 7151 for next sweep.
-DEAL::    Writing statistics for whole sweep.#  Description of fields
-DEAL::#  =====================
-DEAL::#  General:
-DEAL::#    time
-#  Primal problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Dual problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Error estimation:
-#    total estimated error in this timestep
-#  Postprocessing:
-#    Huyghens wave
-DEAL::
-DEAL::
-DEAL::0.00000   163 201 0 0 0.00000 0.00000 0.00000    163 769 9 9 0.00006 0.00006 0.00013    0.00000    -0.03224 
-DEAL::0.02800   169 208 9 12 0.92458 1.33335 2.25793    169 797 9 10 0.00006 0.00007 0.00013    0.05391    -0.07257 
-DEAL::0.05600   202 242 9 12 0.59737 1.66053 2.25790    202 933 9 10 0.00007 0.00007 0.00013    0.00092    0.01527 
-DEAL::0.08400   205 245 9 13 1.29413 0.96378 2.25790    205 945 10 10 0.00007 0.00007 0.00013    0.16502    0.24656 
-DEAL::0.11200   202 243 9 12 1.11969 1.13983 2.25952    202 935 10 10 0.00007 0.00007 0.00014    0.07252    1.02430 
-DEAL::0.14000   220 262 9 12 1.18773 1.07179 2.25952    220 1011 11 10 0.00008 0.00008 0.00016    0.11753    2.18394 
-DEAL::0.16800   238 282 9 12 1.06388 1.19664 2.26051    238 1091 12 10 0.00009 0.00008 0.00017    -0.02131    1.81344 
-DEAL::0.19600   250 296 9 12 0.93418 1.11440 2.04858    250 1143 12 10 0.00011 0.00010 0.00022    0.13103    -0.63262 
-DEAL::0.22400   226 270 9 12 0.89621 0.76374 1.65995    226 1041 10 10 0.00010 0.00011 0.00022    0.09404    -4.72144 
-DEAL::0.25200   268 317 9 12 0.89940 0.76979 1.66919    268 1224 11 10 0.00011 0.00012 0.00024    -0.08074    -9.03290 
-DEAL::0.28000   265 313 9 12 0.80109 0.74786 1.54895    265 1207 11 10 0.00011 0.00013 0.00024    0.12728    -3.39036 
-DEAL::0.30800   241 283 9 13 0.62420 0.78082 1.40502    241 1087 11 10 0.00010 0.00013 0.00024    0.00503    20.87482 
-DEAL::0.33600   226 266 9 14 0.62657 0.59963 1.22620    226 1019 11 11 0.00012 0.00012 0.00024    0.24444    38.14952 
-DEAL::0.36400   202 241 9 13 0.54195 0.49977 1.04172    202 920 10 10 0.00012 0.00012 0.00024    0.06702    -10.96631 
-DEAL::0.39200   193 231 9 13 0.46651 0.49917 0.96568    193 879 9 10 0.00014 0.00010 0.00024    0.10765    -124.93275 
-DEAL::0.42000   190 228 9 13 0.46215 0.50230 0.96445    190 867 9 10 0.00014 0.00010 0.00024    0.00164    -153.19391 
-DEAL::0.44800   166 201 10 12 0.51612 0.38528 0.90140    166 761 8 10 0.00013 0.00011 0.00024    -0.33323    87.54319 
-DEAL::0.47600   154 189 9 13 0.38463 0.41062 0.79525    154 713 8 10 0.00011 0.00013 0.00024    0.07494    511.58583 
-DEAL::0.50400   148 181 9 13 0.35074 0.41000 0.76073    148 681 7 10 0.00017 0.00007 0.00024    -0.21817    701.67928 
-DEAL::0.53200   145 178 9 13 0.38060 0.37380 0.75440    145 669 7 10 0.00013 0.00007 0.00020    0.47203    225.99490 
-DEAL::0.56000   130 163 9 12 0.38988 0.34268 0.73256    130 611 6 10 0.00017 0.00008 0.00025    0.23587    -684.76317 
-DEAL::0.58800   124 155 9 12 0.36655 0.35446 0.72101    124 579 5 10 0.00017 0.00007 0.00024    0.36707    -928.50215 
-DEAL::0.61600   112 141 9 12 0.31667 0.38417 0.70084    112 526 5 9 0.00010 0.00006 0.00016    0.39034    1329.46068 
-DEAL::0.64400   106 137 10 11 0.34924 0.31232 0.66156    106 510 6 10 0.00020 0.00007 0.00027    -0.43174    6838.40436 
-DEAL::0.67200   112 143 10 12 0.35576 0.30580 0.66156    112 534 6 10 0.00012 0.00007 0.00019    -1.23959    12351.01650 
-DEAL::0.70000   109 138 10 12 0.30569 0.35398 0.65967    109 514 0 0 0.00000 0.00000 0.00000    -0.60693    9470.42176 
-DEAL::
-DEAL::    Writing summary.Summary of this sweep:
-======================
-
-  Accumulated number of cells: 4766
-  Acc. number of primal dofs : 11508
-  Acc. number of dual dofs   : 43932
-  Accumulated error          : 0.00000
-
-  Evaluations:
-  ------------
-    Hughens wave -- weighted time: 0.65885
-                    average      : 0.00555
-  
-
-DEAL::
-DEAL::
-DEAL::Sweep 2 :
-DEAL::---------
-DEAL::  Primal problem: time=0.00000, step=0, sweep=2. 169 cells, 211 dofsStarting value 0.00000
-DEAL:cg::Convergence step 0 value 0.00000
-DEAL:cg::Starting value 0.00267
-DEAL:cg::Convergence step 16 value 0.00000
-DEAL:cg::Starting value 0.00000
-DEAL:cg::Convergence step 0 value 0.00000
-DEAL:cg::Starting value 0.00000
-DEAL:cg::Convergence step 0 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.02800, step=1, sweep=2. 211 cells, 257 dofsStarting value 0.00239
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.04585
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.05600, step=2, sweep=2. 310 cells, 366 dofsStarting value 0.00165
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.05357
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.08400, step=3, sweep=2. 367 cells, 429 dofsStarting value 0.00196
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.04368
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.11200, step=4, sweep=2. 439 cells, 504 dofsStarting value 0.00227
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.04394
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.14000, step=5, sweep=2. 487 cells, 554 dofsStarting value 0.00241
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.05207
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.16800, step=6, sweep=2. 502 cells, 573 dofsStarting value 0.00278
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.05793
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.19600, step=7, sweep=2. 484 cells, 552 dofsStarting value 0.00327
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.06366
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.22400, step=8, sweep=2. 508 cells, 576 dofsStarting value 0.00375
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.05965
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.25200, step=9, sweep=2. 550 cells, 624 dofsStarting value 0.00440
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.05981
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.28000, step=10, sweep=2. 550 cells, 625 dofsStarting value 0.00443
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.07208
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.30800, step=11, sweep=2. 517 cells, 585 dofsStarting value 0.00500
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.10491
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.33600, step=12, sweep=2. 493 cells, 560 dofsStarting value 0.00583
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.11076
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.36400, step=13, sweep=2. 487 cells, 552 dofsStarting value 0.00702
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.08495
-DEAL:cg::Convergence step 15 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.39200, step=14, sweep=2. 457 cells, 518 dofsStarting value 0.00730
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.08145
-DEAL:cg::Convergence step 14 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.42000, step=15, sweep=2. 400 cells, 460 dofsStarting value 0.00731
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.09136
-DEAL:cg::Convergence step 14 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.44800, step=16, sweep=2. 337 cells, 393 dofsStarting value 0.00728
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.09413
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.47600, step=17, sweep=2. 301 cells, 352 dofsStarting value 0.00750
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.08589
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.50400, step=18, sweep=2. 286 cells, 335 dofsStarting value 0.00621
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.07581
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.53200, step=19, sweep=2. 223 cells, 267 dofsStarting value 0.00624
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.07516
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.56000, step=20, sweep=2. 199 cells, 242 dofsStarting value 0.00640
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.07224
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.58800, step=21, sweep=2. 181 cells, 221 dofsStarting value 0.00669
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.06671
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.61600, step=22, sweep=2. 154 cells, 192 dofsStarting value 0.00687
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.05932
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.64400, step=23, sweep=2. 121 cells, 157 dofsStarting value 0.00669
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.06579
-DEAL:cg::Convergence step 11 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.67200, step=24, sweep=2. 124 cells, 160 dofsStarting value 0.00661
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.06516
-DEAL:cg::Convergence step 11 value 0.00000
-DEAL::.
-DEAL::  Primal problem: time=0.70000, step=25, sweep=2. 115 cells, 149 dofsStarting value 0.00648
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.05104
-DEAL:cg::Convergence step 11 value 0.00000
-DEAL::.
-DEAL::
-DEAL::  Dual problem: time=0.70000, step=25, sweep=2. 115 cells, 567 dofs.
-DEAL::  Dual problem: time=0.67200, step=24, sweep=2. 124 cells, 608 dofsStarting value 0.00001
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.00015
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.64400, step=23, sweep=2. 121 cells, 599 dofsStarting value 0.00001
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.00018
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.61600, step=22, sweep=2. 154 cells, 734 dofsStarting value 0.00001
-DEAL:cg::Convergence step 8 value 0.00000
-DEAL:cg::Starting value 0.00018
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.58800, step=21, sweep=2. 181 cells, 850 dofsStarting value 0.00001
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.00019
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.56000, step=20, sweep=2. 199 cells, 934 dofsStarting value 0.00002
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.00020
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.53200, step=19, sweep=2. 223 cells, 1034 dofsStarting value 0.00002
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.00021
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.50400, step=18, sweep=2. 286 cells, 1303 dofsStarting value 0.00002
-DEAL:cg::Convergence step 13 value 0.00000
-DEAL:cg::Starting value 0.00023
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.47600, step=17, sweep=2. 301 cells, 1371 dofsStarting value 0.00003
-DEAL:cg::Convergence step 14 value 0.00000
-DEAL:cg::Starting value 0.00028
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.44800, step=16, sweep=2. 337 cells, 1535 dofsStarting value 0.00003
-DEAL:cg::Convergence step 16 value 0.00000
-DEAL:cg::Starting value 0.00033
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.42000, step=15, sweep=2. 400 cells, 1801 dofsStarting value 0.00003
-DEAL:cg::Convergence step 17 value 0.00000
-DEAL:cg::Starting value 0.00027
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.39200, step=14, sweep=2. 457 cells, 2032 dofsStarting value 0.00003
-DEAL:cg::Convergence step 18 value 0.00000
-DEAL:cg::Starting value 0.00027
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.36400, step=13, sweep=2. 487 cells, 2162 dofsStarting value 0.00004
-DEAL:cg::Convergence step 18 value 0.00000
-DEAL:cg::Starting value 0.00033
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.33600, step=12, sweep=2. 493 cells, 2196 dofsStarting value 0.00004
-DEAL:cg::Convergence step 20 value 0.00000
-DEAL:cg::Starting value 0.00046
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.30800, step=11, sweep=2. 517 cells, 2298 dofsStarting value 0.00004
-DEAL:cg::Convergence step 20 value 0.00000
-DEAL:cg::Starting value 0.00058
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.28000, step=10, sweep=2. 550 cells, 2455 dofsStarting value 0.00004
-DEAL:cg::Convergence step 19 value 0.00000
-DEAL:cg::Starting value 0.00056
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.25200, step=9, sweep=2. 550 cells, 2450 dofsStarting value 0.00004
-DEAL:cg::Convergence step 19 value 0.00000
-DEAL:cg::Starting value 0.00056
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.22400, step=8, sweep=2. 508 cells, 2258 dofsStarting value 0.00006
-DEAL:cg::Convergence step 19 value 0.00000
-DEAL:cg::Starting value 0.00062
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.19600, step=7, sweep=2. 484 cells, 2166 dofsStarting value 0.00006
-DEAL:cg::Convergence step 19 value 0.00000
-DEAL:cg::Starting value 0.00063
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.16800, step=6, sweep=2. 502 cells, 2250 dofsStarting value 0.00006
-DEAL:cg::Convergence step 20 value 0.00000
-DEAL:cg::Starting value 0.00064
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.14000, step=5, sweep=2. 487 cells, 2175 dofsStarting value 0.00006
-DEAL:cg::Convergence step 20 value 0.00000
-DEAL:cg::Starting value 0.00072
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.11200, step=4, sweep=2. 439 cells, 1978 dofsStarting value 0.00006
-DEAL:cg::Convergence step 19 value 0.00000
-DEAL:cg::Starting value 0.00074
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.08400, step=3, sweep=2. 367 cells, 1682 dofsStarting value 0.00009
-DEAL:cg::Convergence step 15 value 0.00000
-DEAL:cg::Starting value 0.00091
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.05600, step=2, sweep=2. 310 cells, 1433 dofsStarting value 0.00010
-DEAL:cg::Convergence step 12 value 0.00000
-DEAL:cg::Starting value 0.00098
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.02800, step=1, sweep=2. 211 cells, 1001 dofsStarting value 0.00012
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL:cg::Starting value 0.00099
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::  Dual problem: time=0.00000, step=0, sweep=2. 169 cells, 817 dofsStarting value 0.00012
-DEAL:cg::Convergence step 9 value 0.00000
-DEAL:cg::Starting value 0.00106
-DEAL:cg::Convergence step 10 value 0.00000
-DEAL::.
-DEAL::
-DEAL::  Postprocessing: time=0.00000, step=0, sweep=2. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 175
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50000 setlinewidth
-0.00000 0.00000 0.05751 s 82.35572 126.22595 m 129.90381 112.50033 l 157.35572 136.27405 l 109.80762 150.00000 lf
-0 sg 82.35572 126.22595 m 129.90381 112.50033 l 157.35572 136.27405 l 109.80762 150.00000 lx
-0.00000 0.00000 0.05752 s 143.62976 124.38719 m 167.40381 117.52483 l 181.12976 129.41107 l 157.35572 136.27405 lf
-0 sg 143.62976 124.38719 m 167.40381 117.52483 l 181.12976 129.41107 l 157.35572 136.27405 lx
-0.00000 0.00000 0.05747 s 167.40381 117.52483 m 191.17786 110.65693 l 204.90381 122.54809 l 181.12976 129.41107 lf
-0 sg 167.40381 117.52483 m 191.17786 110.65693 l 204.90381 122.54809 l 181.12976 129.41107 lx
-0.00000 0.00000 0.05751 s 68.62976 114.33893 m 92.40381 107.47607 l 106.12976 119.36314 l 82.35572 126.22595 lf
-0 sg 68.62976 114.33893 m 92.40381 107.47607 l 106.12976 119.36314 l 82.35572 126.22595 lx
-0.00000 0.00000 0.05748 s 129.90381 112.50033 m 153.67786 105.63364 l 167.40381 117.52483 l 143.62976 124.38719 lf
-0 sg 129.90381 112.50033 m 153.67786 105.63364 l 167.40381 117.52483 l 143.62976 124.38719 lx
-0.00000 0.00000 0.05747 s 191.17786 110.65693 m 214.95191 103.79924 l 228.67786 115.68512 l 204.90381 122.54809 lf
-0 sg 191.17786 110.65693 m 214.95191 103.79924 l 228.67786 115.68512 l 204.90381 122.54809 lx
-0.00000 0.00000 0.05751 s 92.40381 107.47607 m 116.17786 100.61223 l 129.90381 112.50033 l 106.12976 119.36314 lf
-0 sg 92.40381 107.47607 m 116.17786 100.61223 l 129.90381 112.50033 l 106.12976 119.36314 lx
-0.00000 0.00000 0.05762 s 153.67786 105.63364 m 177.45191 98.79071 l 191.17786 110.65693 l 167.40381 117.52483 lf
-0 sg 153.67786 105.63364 m 177.45191 98.79071 l 191.17786 110.65693 l 167.40381 117.52483 lx
-0.00000 0.00000 0.05752 s 214.95191 103.79924 m 238.72595 96.93523 l 252.45191 108.82214 l 228.67786 115.68512 lf
-0 sg 214.95191 103.79924 m 238.72595 96.93523 l 252.45191 108.82214 l 228.67786 115.68512 lx
-0.00000 0.00000 0.05753 s 54.90381 102.45191 m 78.67786 95.59070 l 92.40381 107.47607 l 68.62976 114.33893 lf
-0 sg 54.90381 102.45191 m 78.67786 95.59070 l 92.40381 107.47607 l 68.62976 114.33893 lx
-0.00000 0.00000 0.05751 s 116.17786 100.61223 m 139.95191 93.75410 l 153.67786 105.63364 l 129.90381 112.50033 lf
-0 sg 116.17786 100.61223 m 139.95191 93.75410 l 153.67786 105.63364 l 129.90381 112.50033 lx
-0.00000 0.00000 0.05761 s 177.45191 98.79071 m 201.22595 91.90628 l 214.95191 103.79924 l 191.17786 110.65693 lf
-0 sg 177.45191 98.79071 m 201.22595 91.90628 l 214.95191 103.79924 l 191.17786 110.65693 lx
-0.00000 0.00000 0.05770 s 146.81488 99.69387 m 158.70191 96.27520 l 165.56488 102.21217 l 153.67786 105.63364 lf
-0 sg 146.81488 99.69387 m 158.70191 96.27520 l 165.56488 102.21217 l 153.67786 105.63364 lx
-0.00000 0.00000 0.05744 s 78.67786 95.59070 m 102.45191 88.71898 l 116.17786 100.61223 l 92.40381 107.47607 lf
-0 sg 78.67786 95.59070 m 102.45191 88.71898 l 116.17786 100.61223 l 92.40381 107.47607 lx
-0.00000 0.00000 0.05597 s 158.70191 96.27520 m 170.58893 92.66235 l 177.45191 98.79071 l 165.56488 102.21217 lf
-0 sg 158.70191 96.27520 m 170.58893 92.66235 l 177.45191 98.79071 l 165.56488 102.21217 lx
-0.00000 0.00000 0.05769 s 109.31488 94.66561 m 121.20191 91.25681 l 128.06488 97.18316 l 116.17786 100.61223 lf
-0 sg 109.31488 94.66561 m 121.20191 91.25681 l 128.06488 97.18316 l 116.17786 100.61223 lx
-0.00000 0.00000 0.05701 s 139.95191 93.75410 m 151.83893 90.25859 l 158.70191 96.27520 l 146.81488 99.69387 lf
-0 sg 139.95191 93.75410 m 151.83893 90.25859 l 158.70191 96.27520 l 146.81488 99.69387 lx
-0.00000 0.00000 0.05747 s 201.22595 91.90628 m 225.00000 85.04832 l 238.72595 96.93523 l 214.95191 103.79924 lf
-0 sg 201.22595 91.90628 m 225.00000 85.04832 l 238.72595 96.93523 l 214.95191 103.79924 lx
-0.00000 0.00000 0.05645 s 170.58893 92.66235 m 182.47595 89.45398 l 189.33893 95.34849 l 177.45191 98.79071 lf
-0 sg 170.58893 92.66235 m 182.47595 89.45398 l 189.33893 95.34849 l 177.45191 98.79071 lx
-0.00000 0.00000 0.05753 s 41.17786 90.56488 m 64.95191 83.70187 l 78.67786 95.59070 l 54.90381 102.45191 lf
-0 sg 41.17786 90.56488 m 64.95191 83.70187 l 78.67786 95.59070 l 54.90381 102.45191 lx
-0.00000 0.00000 0.05693 s 121.20191 91.25681 m 133.08893 87.73220 l 139.95191 93.75410 l 128.06488 97.18316 lf
-0 sg 121.20191 91.25681 m 133.08893 87.73220 l 139.95191 93.75410 l 128.06488 97.18316 lx
-0.00000 0.00000 0.06266 s 151.83893 90.25859 m 163.72595 87.54329 l 170.58893 92.66235 l 158.70191 96.27520 lf
-0 sg 151.83893 90.25859 m 163.72595 87.54329 l 170.58893 92.66235 l 158.70191 96.27520 lx
-0.00000 0.00000 0.05800 s 182.47595 89.45398 m 194.36298 85.95402 l 201.22595 91.90628 l 189.33893 95.34849 lf
-0 sg 182.47595 89.45398 m 194.36298 85.95402 l 201.22595 91.90628 l 189.33893 95.34849 lx
-0.00000 0.00000 0.05751 s 225.00000 85.04832 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lf
-0 sg 225.00000 85.04832 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lx
-0.00000 0.00000 0.05812 s 102.45191 88.71898 m 114.33893 85.33853 l 121.20191 91.25681 l 109.31488 94.66561 lf
-0 sg 102.45191 88.71898 m 114.33893 85.33853 l 121.20191 91.25681 l 109.31488 94.66561 lx
-0.00000 0.00000 0.06074 s 133.08893 87.73220 m 144.97595 84.78224 l 151.83893 90.25859 l 139.95191 93.75410 lf
-0 sg 133.08893 87.73220 m 144.97595 84.78224 l 151.83893 90.25859 l 139.95191 93.75410 lx
-0.00000 0.00000 0.06121 s 163.72595 87.54329 m 175.61298 83.22972 l 182.47595 89.45398 l 170.58893 92.66235 lf
-0 sg 163.72595 87.54329 m 175.61298 83.22972 l 182.47595 89.45398 l 170.58893 92.66235 lx
-0.00000 0.00000 0.05731 s 194.36298 85.95402 m 206.25000 82.53998 l 213.11298 88.47730 l 201.22595 91.90628 lf
-0 sg 194.36298 85.95402 m 206.25000 82.53998 l 213.11298 88.47730 l 201.22595 91.90628 lx
-0.00000 0.00000 0.05541 s 114.33893 85.33853 m 126.22595 81.69489 l 133.08893 87.73220 l 121.20191 91.25681 lf
-0 sg 114.33893 85.33853 m 126.22595 81.69489 l 133.08893 87.73220 l 121.20191 91.25681 lx
-0.00000 0.00000 0.05745 s 64.95191 83.70187 m 88.72595 76.83888 l 102.45191 88.71898 l 78.67786 95.59070 lf
-0 sg 64.95191 83.70187 m 88.72595 76.83888 l 102.45191 88.71898 l 78.67786 95.59070 lx
-0.00000 0.00000 0.03277 s 144.97595 84.78224 m 156.86298 77.82125 l 163.72595 87.54329 l 151.83893 90.25859 lf
-0 sg 144.97595 84.78224 m 156.86298 77.82125 l 163.72595 87.54329 l 151.83893 90.25859 lx
-0.00000 0.00000 0.05954 s 129.65744 84.71355 m 135.60095 83.32184 l 139.03244 86.25722 l 133.08893 87.73220 lf
-0 sg 129.65744 84.71355 m 135.60095 83.32184 l 139.03244 86.25722 l 133.08893 87.73220 lx
-0.00000 0.00000 0.05605 s 175.61298 83.22972 m 187.50000 80.08338 l 194.36298 85.95402 l 182.47595 89.45398 lf
-0 sg 175.61298 83.22972 m 187.50000 80.08338 l 194.36298 85.95402 l 182.47595 89.45398 lx
-0.00000 0.00000 0.06199 s 160.29446 82.68227 m 166.23798 82.94487 l 169.66946 85.38650 l 163.72595 87.54329 lf
-0 sg 160.29446 82.68227 m 166.23798 82.94487 l 169.66946 85.38650 l 163.72595 87.54329 lx
-0.00000 0.00000 0.05804 s 95.58893 82.77893 m 107.47595 79.36336 l 114.33893 85.33853 l 102.45191 88.71898 lf
-0 sg 95.58893 82.77893 m 107.47595 79.36336 l 114.33893 85.33853 l 102.45191 88.71898 lx
-0.00000 0.00000 0.05754 s 206.25000 82.53998 m 218.13702 79.10547 l 225.00000 85.04832 l 213.11298 88.47730 lf
-0 sg 206.25000 82.53998 m 218.13702 79.10547 l 225.00000 85.04832 l 213.11298 88.47730 lx
-0.00000 0.00000 0.05525 s 135.60095 83.32184 m 141.54446 80.43356 l 144.97595 84.78224 l 139.03244 86.25722 lf
-0 sg 135.60095 83.32184 m 141.54446 80.43356 l 144.97595 84.78224 l 139.03244 86.25722 lx
-0.00000 0.00000 0.06584 s 166.23798 82.94487 m 172.18149 80.46288 l 175.61298 83.22972 l 169.66946 85.38650 lf
-0 sg 166.23798 82.94487 m 172.18149 80.46288 l 175.61298 83.22972 l 169.66946 85.38650 lx
-0.00000 0.00000 0.07343 s 126.22595 81.69489 m 132.16946 81.59724 l 135.60095 83.32184 l 129.65744 84.71355 lf
-0 sg 126.22595 81.69489 m 132.16946 81.59724 l 135.60095 83.32184 l 129.65744 84.71355 lx
-0.00000 sg 156.86298 77.82125 m 162.80649 77.91200 l 166.23798 82.94487 l 160.29446 82.68227 lf
-0 sg 156.86298 77.82125 m 162.80649 77.91200 l 166.23798 82.94487 l 160.29446 82.68227 lx
-0.00000 0.00000 0.08509 s 141.54446 80.43356 m 147.48798 83.96970 l 150.91946 81.30175 l 144.97595 84.78224 lf
-0 sg 141.54446 80.43356 m 147.48798 83.96970 l 150.91946 81.30175 l 144.97595 84.78224 lx
-0.00000 0.00000 0.05792 s 187.50000 80.08338 m 199.38702 76.57779 l 206.25000 82.53998 l 194.36298 85.95402 lf
-0 sg 187.50000 80.08338 m 199.38702 76.57779 l 206.25000 82.53998 l 194.36298 85.95402 lx
-0.00000 0.00000 0.05751 s 27.45191 78.67786 m 51.22595 71.81499 l 64.95191 83.70187 l 41.17786 90.56488 lf
-0 sg 27.45191 78.67786 m 51.22595 71.81499 l 64.95191 83.70187 l 41.17786 90.56488 lx
-0.00000 0.00000 0.00112 s 132.16946 81.59724 m 138.11298 72.91852 l 141.54446 80.43356 l 135.60095 83.32184 lf
-0 sg 132.16946 81.59724 m 138.11298 72.91852 l 141.54446 80.43356 l 135.60095 83.32184 lx
-0.00000 0.00000 0.05564 s 107.47595 79.36336 m 119.36298 75.87136 l 126.22595 81.69489 l 114.33893 85.33853 lf
-0 sg 107.47595 79.36336 m 119.36298 75.87136 l 126.22595 81.69489 l 114.33893 85.33853 lx
-0.00000 0.00000 0.05275 s 162.80649 77.91200 m 168.75000 77.69604 l 172.18149 80.46288 l 166.23798 82.94487 lf
-0 sg 162.80649 77.91200 m 168.75000 77.69604 l 172.18149 80.46288 l 166.23798 82.94487 lx
-0.00000 0.00000 0.07397 s 122.79446 78.78313 m 128.73798 77.41198 l 132.16946 81.59724 l 126.22595 81.69489 lf
-0 sg 122.79446 78.78313 m 128.73798 77.41198 l 132.16946 81.59724 l 126.22595 81.69489 lx
-0.00000 0.00000 0.05717 s 168.75000 77.69604 m 180.63702 74.03422 l 187.50000 80.08338 l 175.61298 83.22972 lf
-0 sg 168.75000 77.69604 m 180.63702 74.03422 l 187.50000 80.08338 l 175.61298 83.22972 lx
-0.00000 0.00000 0.00076 s 128.73798 77.41198 m 134.68149 74.42544 l 138.11298 72.91852 l 132.16946 81.59724 lf
-0 sg 128.73798 77.41198 m 134.68149 74.42544 l 138.11298 72.91852 l 132.16946 81.59724 lx
-0.00000 0.00000 0.05762 s 88.72595 76.83888 m 100.61298 73.40857 l 107.47595 79.36336 l 95.58893 82.77893 lf
-0 sg 88.72595 76.83888 m 100.61298 73.40857 l 107.47595 79.36336 l 95.58893 82.77893 lx
-0.00000 0.00000 0.05741 s 199.38702 76.57779 m 211.27405 73.16262 l 218.13702 79.10547 l 206.25000 82.53998 lf
-0 sg 199.38702 76.57779 m 211.27405 73.16262 l 218.13702 79.10547 l 206.25000 82.53998 lx
-0.00000 0.00000 0.49218 s 147.48798 83.96970 m 153.43149 115.40044 l 156.86298 77.82125 l 150.91946 81.30175 lf
-0 sg 147.48798 83.96970 m 153.43149 115.40044 l 156.86298 77.82125 l 150.91946 81.30175 lx
-0.00000 0.00000 0.07665 s 159.37500 79.97003 m 165.31851 73.59741 l 168.75000 77.69604 l 162.80649 77.91200 lf
-0 sg 159.37500 79.97003 m 165.31851 73.59741 l 168.75000 77.69604 l 162.80649 77.91200 lx
-0.00000 0.00000 0.05974 s 119.36298 75.87136 m 125.30649 74.31482 l 128.73798 77.41198 l 122.79446 78.78313 lf
-0 sg 119.36298 75.87136 m 125.30649 74.31482 l 128.73798 77.41198 l 122.79446 78.78313 lx
-0.00000 0.00000 0.47550 s 138.11298 72.91852 m 144.05649 114.71860 l 147.48798 83.96970 l 141.54446 80.43356 lf
-0 sg 138.11298 72.91852 m 144.05649 114.71860 l 147.48798 83.96970 l 141.54446 80.43356 lx
-0.00000 0.00000 0.05752 s 211.27405 73.16262 m 235.04809 66.29770 l 248.77405 78.18523 l 225.00000 85.04832 lf
-0 sg 211.27405 73.16262 m 235.04809 66.29770 l 248.77405 78.18523 l 225.00000 85.04832 lx
-0.00000 0.00000 0.48603 s 153.43149 115.40044 m 159.37500 79.97003 l 162.80649 77.91200 l 156.86298 77.82125 lf
-0 sg 153.43149 115.40044 m 159.37500 79.97003 l 162.80649 77.91200 l 156.86298 77.82125 lx
-0.00000 0.00000 0.05760 s 180.63702 74.03422 m 192.52405 70.65854 l 199.38702 76.57779 l 187.50000 80.08338 lf
-0 sg 180.63702 74.03422 m 192.52405 70.65854 l 199.38702 76.57779 l 187.50000 80.08338 lx
-0.00000 0.00000 0.05151 s 165.31851 73.59741 m 171.26202 73.00096 l 174.69351 75.86513 l 168.75000 77.69604 lf
-0 sg 165.31851 73.59741 m 171.26202 73.00096 l 174.69351 75.86513 l 168.75000 77.69604 lx
-0.00000 0.00000 0.05265 s 125.30649 74.31482 m 131.25000 72.75828 l 134.68149 74.42544 l 128.73798 77.41198 lf
-0 sg 125.30649 74.31482 m 131.25000 72.75828 l 134.68149 74.42544 l 128.73798 77.41198 lx
-0.00000 0.00000 0.05713 s 100.61298 73.40857 m 112.50000 69.97825 l 119.36298 75.87136 l 107.47595 79.36336 lf
-0 sg 100.61298 73.40857 m 112.50000 69.97825 l 119.36298 75.87136 l 107.47595 79.36336 lx
-0.00000 0.00000 0.05751 s 51.22595 71.81499 m 75.00000 64.95213 l 88.72595 76.83888 l 64.95191 83.70187 lf
-0 sg 51.22595 71.81499 m 75.00000 64.95213 l 88.72595 76.83888 l 64.95191 83.70187 lx
-0.00000 0.00000 0.05226 s 160.63101 72.47303 m 163.60277 73.60155 l 165.31851 73.59741 l 162.34676 76.78372 lf
-0 sg 160.63101 72.47303 m 163.60277 73.60155 l 165.31851 73.59741 l 162.34676 76.78372 lx
-0.00000 0.00000 0.05937 s 171.26202 73.00096 m 177.20554 71.06968 l 180.63702 74.03422 l 174.69351 75.86513 lf
-0 sg 171.26202 73.00096 m 177.20554 71.06968 l 180.63702 74.03422 l 174.69351 75.86513 lx
-0.00000 0.00000 0.04839 s 163.60277 73.60155 m 166.57452 72.19415 l 168.29027 73.29919 l 165.31851 73.59741 lf
-0 sg 163.60277 73.60155 m 166.57452 72.19415 l 168.29027 73.29919 l 165.31851 73.59741 lx
-0.00000 0.00000 0.47854 s 134.68149 74.42544 m 140.62500 78.35095 l 144.05649 114.71860 l 138.11298 72.91852 lf
-0 sg 134.68149 74.42544 m 140.62500 78.35095 l 144.05649 114.71860 l 138.11298 72.91852 lx
-0.00000 0.00000 0.08890 s 131.25000 72.75828 m 137.19351 69.61804 l 140.62500 78.35095 l 134.68149 74.42544 lf
-0 sg 131.25000 72.75828 m 137.19351 69.61804 l 140.62500 78.35095 l 134.68149 74.42544 lx
-0.00000 0.00000 0.06679 s 158.91527 74.79962 m 161.88702 70.88230 l 163.60277 73.60155 l 160.63101 72.47303 lf
-0 sg 158.91527 74.79962 m 161.88702 70.88230 l 163.60277 73.60155 l 160.63101 72.47303 lx
-0.00000 0.00000 0.05585 s 166.57452 72.19415 m 169.54628 71.40549 l 171.26202 73.00096 l 168.29027 73.29919 lf
-0 sg 166.57452 72.19415 m 169.54628 71.40549 l 171.26202 73.00096 l 168.29027 73.29919 lx
-0.00000 0.00000 0.46629 s 157.65926 106.12349 m 160.63101 72.47303 l 162.34676 76.78372 l 159.37500 79.97003 lf
-0 sg 157.65926 106.12349 m 160.63101 72.47303 l 162.34676 76.78372 l 159.37500 79.97003 lx
-0.00000 0.00000 0.05744 s 192.52405 70.65854 m 204.41107 67.21568 l 211.27405 73.16262 l 199.38702 76.57779 lf
-0 sg 192.52405 70.65854 m 204.41107 67.21568 l 211.27405 73.16262 l 199.38702 76.57779 lx
-0.00000 0.00000 0.05764 s 161.88702 70.88230 m 164.85878 70.86317 l 166.57452 72.19415 l 163.60277 73.60155 lf
-0 sg 161.88702 70.88230 m 164.85878 70.86317 l 166.57452 72.19415 l 163.60277 73.60155 lx
-0.00000 0.00000 0.05649 s 177.20554 71.06968 m 183.14905 69.40972 l 186.58054 72.34638 l 180.63702 74.03422 lf
-0 sg 177.20554 71.06968 m 183.14905 69.40972 l 186.58054 72.34638 l 180.63702 74.03422 lx
-0.00000 0.00000 0.05970 s 112.50000 69.97825 m 124.38702 66.50735 l 131.25000 72.75828 l 119.36298 75.87136 lf
-0 sg 112.50000 69.97825 m 124.38702 66.50735 l 131.25000 72.75828 l 119.36298 75.87136 lx
-0.00000 0.00000 0.07136 s 157.19952 70.20243 m 160.17128 70.31982 l 161.88702 70.88230 l 158.91527 74.79962 lf
-0 sg 157.19952 70.20243 m 160.17128 70.31982 l 161.88702 70.88230 l 158.91527 74.79962 lx
-0.00000 0.00000 0.05954 s 164.85878 70.86317 m 167.83054 69.81001 l 169.54628 71.40549 l 166.57452 72.19415 lf
-0 sg 164.85878 70.86317 m 167.83054 69.81001 l 169.54628 71.40549 l 166.57452 72.19415 lx
-0.00000 0.00000 0.05871 s 167.83054 69.81001 m 173.77405 68.14566 l 177.20554 71.06968 l 171.26202 73.00096 lf
-0 sg 167.83054 69.81001 m 173.77405 68.14566 l 177.20554 71.06968 l 171.26202 73.00096 lx
-0.00000 0.00000 0.05310 s 160.17128 70.31982 m 163.14304 69.14344 l 164.85878 70.86317 l 161.88702 70.88230 lf
-0 sg 160.17128 70.31982 m 163.14304 69.14344 l 164.85878 70.86317 l 161.88702 70.88230 lx
-0.00000 0.00000 0.05763 s 183.14905 69.40972 m 189.09256 67.68002 l 192.52405 70.65854 l 186.58054 72.34638 lf
-0 sg 183.14905 69.40972 m 189.09256 67.68002 l 192.52405 70.65854 l 186.58054 72.34638 lx
-0.00000 0.00000 0.03815 s 155.48378 68.04671 m 158.45554 68.84771 l 160.17128 70.31982 l 157.19952 70.20243 lf
-0 sg 155.48378 68.04671 m 158.45554 68.84771 l 160.17128 70.31982 l 157.19952 70.20243 lx
-0.00000 0.00000 0.05736 s 163.14304 69.14344 m 166.11479 68.32591 l 167.83054 69.81001 l 164.85878 70.86317 lf
-0 sg 163.14304 69.14344 m 166.11479 68.32591 l 167.83054 69.81001 l 164.85878 70.86317 lx
-0.00000 0.00000 0.00247 s 146.10878 67.35927 m 149.08054 68.24074 l 150.79628 68.10041 l 147.82452 65.63592 lf
-0 sg 146.10878 67.35927 m 149.08054 68.24074 l 150.79628 68.10041 l 147.82452 65.63592 lx
-0.00000 0.00000 0.06349 s 158.45554 68.84771 m 161.42729 67.84476 l 163.14304 69.14344 l 160.17128 70.31982 lf
-0 sg 158.45554 68.84771 m 161.42729 67.84476 l 163.14304 69.14344 l 160.17128 70.31982 lx
-0.00000 0.00000 0.10151 s 150.79628 68.10041 m 153.76804 68.03800 l 155.48378 68.04671 l 152.51202 76.14655 lf
-0 sg 150.79628 68.10041 m 153.76804 68.03800 l 155.48378 68.04671 l 152.51202 76.14655 lx
-0.00000 0.00000 0.05750 s 235.04809 66.29770 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18523 lf
-0 sg 235.04809 66.29770 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18523 lx
-0.00000 0.00000 0.05730 s 173.77405 68.14566 m 179.71756 66.41736 l 183.14905 69.40972 l 177.20554 71.06968 lf
-0 sg 173.77405 68.14566 m 179.71756 66.41736 l 183.14905 69.40972 l 177.20554 71.06968 lx
-0.00000 0.43634 0.56366 s 145.77223 99.34415 m 148.74399 149.16505 l 150.45973 99.68507 l 147.48798 83.96970 lf
-0 sg 145.77223 99.34415 m 148.74399 149.16505 l 150.45973 99.68507 l 147.48798 83.96970 lx
-0.00000 0.00000 0.16211 s 143.13702 66.47779 m 146.10878 67.35927 l 147.82452 65.63592 l 144.85277 86.96853 lf
-0 sg 143.13702 66.47779 m 146.10878 67.35927 l 147.82452 65.63592 l 144.85277 86.96853 lx
-0.00000 0.00000 0.05751 s 204.41107 67.21568 m 216.29809 63.78633 l 223.16107 69.73016 l 211.27405 73.16262 lf
-0 sg 204.41107 67.21568 m 216.29809 63.78633 l 223.16107 69.73016 l 211.27405 73.16262 lx
-0.00000 0.00000 0.48137 s 137.19351 69.61804 m 143.13702 66.47779 l 146.56851 107.45927 l 140.62500 78.35095 lf
-0 sg 137.19351 69.61804 m 143.13702 66.47779 l 146.56851 107.45927 l 140.62500 78.35095 lx
-0.00000 0.00000 0.04487 s 153.76804 68.03800 m 156.73979 67.11660 l 158.45554 68.84771 l 155.48378 68.04671 lf
-0 sg 153.76804 68.03800 m 156.73979 67.11660 l 158.45554 68.84771 l 155.48378 68.04671 lx
-0.00000 0.00000 0.05686 s 161.42729 67.84476 m 164.39905 66.84181 l 166.11479 68.32591 l 163.14304 69.14344 lf
-0 sg 161.42729 67.84476 m 164.39905 66.84181 l 166.11479 68.32591 l 163.14304 69.14344 lx
-0.00000 0.00000 0.03667 s 124.38702 66.50735 m 136.27405 63.67380 l 143.13702 66.47779 l 131.25000 72.75828 lf
-0 sg 124.38702 66.50735 m 136.27405 63.67380 l 143.13702 66.47779 l 131.25000 72.75828 lx
-0.00000 0.00000 0.46043 s 152.51202 76.14655 m 155.48378 68.04671 l 157.19952 70.20243 l 154.22777 102.62215 lf
-0 sg 152.51202 76.14655 m 155.48378 68.04671 l 157.19952 70.20243 l 154.22777 102.62215 lx
-0.00000 0.00000 0.06420 s 149.08054 68.24074 m 152.05229 66.81311 l 153.76804 68.03800 l 150.79628 68.10041 lf
-0 sg 149.08054 68.24074 m 152.05229 66.81311 l 153.76804 68.03800 l 150.79628 68.10041 lx
-0.00000 0.00000 0.90778 s 155.94351 113.82526 m 158.91527 74.79962 l 160.63101 72.47303 l 157.65926 106.12349 lf
-0 sg 155.94351 113.82526 m 158.91527 74.79962 l 160.63101 72.47303 l 157.65926 106.12349 lx
-0.00000 0.00000 0.05680 s 164.39905 66.84181 m 170.34256 65.17795 l 173.77405 68.14566 l 167.83054 69.81001 lf
-0 sg 164.39905 66.84181 m 170.34256 65.17795 l 173.77405 68.14566 l 167.83054 69.81001 lx
-0.00000 0.00000 0.05751 s 75.00000 64.95213 m 98.77405 58.08626 l 112.50000 69.97825 l 88.72595 76.83888 lf
-0 sg 75.00000 64.95213 m 98.77405 58.08626 l 112.50000 69.97825 l 88.72595 76.83888 lx
-0.00000 0.00000 0.44343 s 147.82452 65.63592 m 150.79628 68.10041 l 152.51202 76.14655 l 149.54027 103.16639 lf
-0 sg 147.82452 65.63592 m 150.79628 68.10041 l 152.51202 76.14655 l 149.54027 103.16639 lx
-0.00000 0.00000 0.05764 s 179.71756 66.41736 m 185.66107 64.70150 l 189.09256 67.68002 l 183.14905 69.40972 lf
-0 sg 179.71756 66.41736 m 185.66107 64.70150 l 189.09256 67.68002 l 183.14905 69.40972 lx
-0.00000 0.00000 0.02763 s 139.70554 65.07580 m 145.64905 64.49726 l 149.08054 68.24074 l 143.13702 66.47779 lf
-0 sg 139.70554 65.07580 m 145.64905 64.49726 l 149.08054 68.24074 l 143.13702 66.47779 lx
-0.00000 0.00000 0.05944 s 152.05229 66.81311 m 155.02405 65.38548 l 156.73979 67.11660 l 153.76804 68.03800 lf
-0 sg 152.05229 66.81311 m 155.02405 65.38548 l 156.73979 67.11660 l 153.76804 68.03800 lx
-0.00000 0.00000 0.05779 s 155.02405 65.38548 m 160.96756 63.96133 l 164.39905 66.84181 l 158.45554 68.84771 lf
-0 sg 155.02405 65.38548 m 160.96756 63.96133 l 164.39905 66.84181 l 158.45554 68.84771 lx
-0.00000 0.00000 0.90978 s 154.22777 102.62215 m 157.19952 70.20243 l 158.91527 74.79962 l 155.94351 113.82526 lf
-0 sg 154.22777 102.62215 m 157.19952 70.20243 l 158.91527 74.79962 l 155.94351 113.82526 lx
-0.00000 0.00000 0.05756 s 185.66107 64.70150 m 197.54809 61.27486 l 204.41107 67.21568 l 192.52405 70.65854 lf
-0 sg 185.66107 64.70150 m 197.54809 61.27486 l 204.41107 67.21568 l 192.52405 70.65854 lx
-0.00000 0.00000 0.05771 s 170.34256 65.17795 m 176.28607 63.44972 l 179.71756 66.41736 l 173.77405 68.14566 lf
-0 sg 170.34256 65.17795 m 176.28607 63.44972 l 179.71756 66.41736 l 173.77405 68.14566 lx
-0.00000 0.51457 0.48543 s 154.68750 144.79140 m 157.65926 106.12349 l 159.37500 79.97003 l 156.40324 97.68524 lf
-0 sg 154.68750 144.79140 m 157.65926 106.12349 l 159.37500 79.97003 l 156.40324 97.68524 lx
-0.00000 0.00000 0.05719 s 105.63702 64.03226 m 117.52405 60.60874 l 124.38702 66.50735 l 112.50000 69.97825 lf
-0 sg 105.63702 64.03226 m 117.52405 60.60874 l 124.38702 66.50735 l 112.50000 69.97825 lx
-0.00000 0.00000 0.05751 s 216.29809 63.78633 m 228.18512 60.35446 l 235.04809 66.29770 l 223.16107 69.73016 lf
-0 sg 216.29809 63.78633 m 228.18512 60.35446 l 235.04809 66.29770 l 223.16107 69.73016 lx
-0.00000 0.00000 0.06658 s 145.64905 64.49726 m 151.59256 62.64202 l 155.02405 65.38548 l 149.08054 68.24074 lf
-0 sg 145.64905 64.49726 m 151.59256 62.64202 l 155.02405 65.38548 l 149.08054 68.24074 lx
-0.00000 0.00000 0.05757 s 160.96756 63.96133 m 166.91107 62.17365 l 170.34256 65.17795 l 164.39905 66.84181 lf
-0 sg 160.96756 63.96133 m 166.91107 62.17365 l 170.34256 65.17795 l 164.39905 66.84181 lx
-0.00000 0.43395 0.56605 s 140.62500 78.35095 m 143.59676 92.90511 l 145.31250 146.33716 l 142.34074 96.53478 lf
-0 sg 140.62500 78.35095 m 143.59676 92.90511 l 145.31250 146.33716 l 142.34074 96.53478 lx
-0.00000 0.00000 0.98923 s 144.85277 86.96853 m 147.82452 65.63592 l 149.54027 103.16639 l 146.56851 107.45927 lf
-0 sg 144.85277 86.96853 m 147.82452 65.63592 l 149.54027 103.16639 l 146.56851 107.45927 lx
-0.00000 0.00000 0.05742 s 176.28607 63.44972 m 182.22958 61.73425 l 185.66107 64.70150 l 179.71756 66.41736 lf
-0 sg 176.28607 63.44972 m 182.22958 61.73425 l 185.66107 64.70150 l 179.71756 66.41736 lx
-0.00000 0.00000 0.05620 s 136.27405 63.67380 m 142.21756 61.60498 l 145.64905 64.49726 l 139.70554 65.07580 lf
-0 sg 136.27405 63.67380 m 142.21756 61.60498 l 145.64905 64.49726 l 139.70554 65.07580 lx
-0.00000 0.00000 0.05549 s 151.59256 62.64202 m 157.53607 60.96315 l 160.96756 63.96133 l 155.02405 65.38548 lf
-0 sg 151.59256 62.64202 m 157.53607 60.96315 l 160.96756 63.96133 l 155.02405 65.38548 lx
-0.00000 0.00000 0.05734 s 166.91107 62.17365 m 172.85458 60.47032 l 176.28607 63.44972 l 170.34256 65.17795 lf
-0 sg 166.91107 62.17365 m 172.85458 60.47032 l 176.28607 63.44972 l 170.34256 65.17795 lx
-0.00000 0.00000 0.05750 s 197.54809 61.27486 m 209.43512 57.84241 l 216.29809 63.78633 l 204.41107 67.21568 lf
-0 sg 197.54809 61.27486 m 209.43512 57.84241 l 216.29809 63.78633 l 204.41107 67.21568 lx
-0.00000 0.00000 0.05960 s 142.21756 61.60498 m 148.16107 59.53615 l 151.59256 62.64202 l 145.64905 64.49726 lf
-0 sg 142.21756 61.60498 m 148.16107 59.53615 l 151.59256 62.64202 l 145.64905 64.49726 lx
-0.00000 0.00000 0.06203 s 117.52405 60.60874 m 129.41107 57.02544 l 136.27405 63.67380 l 124.38702 66.50735 lf
-0 sg 117.52405 60.60874 m 129.41107 57.02544 l 136.27405 63.67380 l 124.38702 66.50735 lx
-0.00000 0.00000 0.05826 s 157.53607 60.96315 m 163.47958 59.22796 l 166.91107 62.17365 l 160.96756 63.96133 lf
-0 sg 157.53607 60.96315 m 163.47958 59.22796 l 166.91107 62.17365 l 160.96756 63.96133 lx
-0.00000 0.00000 0.05749 s 172.85458 60.47032 m 178.79809 58.76700 l 182.22958 61.73425 l 176.28607 63.44972 lf
-0 sg 172.85458 60.47032 m 178.79809 58.76700 l 182.22958 61.73425 l 176.28607 63.44972 lx
-0.00000 0.00000 0.05532 s 148.16107 59.53615 m 154.10458 57.90922 l 157.53607 60.96315 l 151.59256 62.64202 lf
-0 sg 148.16107 59.53615 m 154.10458 57.90922 l 157.53607 60.96315 l 151.59256 62.64202 lx
-0.00000 0.63313 0.36687 s 149.54027 103.16639 m 152.51202 76.14655 l 154.22777 102.62215 l 151.25601 138.95901 lf
-0 sg 149.54027 103.16639 m 152.51202 76.14655 l 154.22777 102.62215 l 151.25601 138.95901 lx
-0.00000 0.00000 0.05752 s 178.79809 58.76700 m 190.68512 55.32962 l 197.54809 61.27486 l 185.66107 64.70150 lf
-0 sg 178.79809 58.76700 m 190.68512 55.32962 l 197.54809 61.27486 l 185.66107 64.70150 lx
-0.00000 0.00000 0.05751 s 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 64.95213 l 27.45191 78.67786 lf
-0 sg 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 64.95213 l 27.45191 78.67786 lx
-0.54174 0.45826 0.00000 s 148.74399 149.16505 m 151.71574 159.16283 l 153.43149 115.40044 l 150.45973 99.68507 lf
-0 sg 148.74399 149.16505 m 151.71574 159.16283 l 153.43149 115.40044 l 150.45973 99.68507 lx
-0.00000 0.00000 0.05764 s 98.77405 58.08626 m 110.66107 54.66370 l 117.52405 60.60874 l 105.63702 64.03226 lf
-0 sg 98.77405 58.08626 m 110.66107 54.66370 l 117.52405 60.60874 l 105.63702 64.03226 lx
-0.53943 0.46057 0.00000 s 144.05649 114.71860 m 147.02824 157.47562 l 148.74399 149.16505 l 145.77223 99.34415 lf
-0 sg 144.05649 114.71860 m 147.02824 157.47562 l 148.74399 149.16505 l 145.77223 99.34415 lx
-0.50740 0.49260 0.00000 s 151.71574 159.16283 m 154.68750 144.79140 l 156.40324 97.68524 l 153.43149 115.40044 lf
-0 sg 151.71574 159.16283 m 154.68750 144.79140 l 156.40324 97.68524 l 153.43149 115.40044 lx
-0.00000 0.00000 0.05751 s 209.43512 57.84241 m 221.32214 54.41121 l 228.18512 60.35446 l 216.29809 63.78633 lf
-0 sg 209.43512 57.84241 m 221.32214 54.41121 l 228.18512 60.35446 l 216.29809 63.78633 lx
-0.00000 0.00000 0.05760 s 154.10458 57.90922 m 160.04809 56.28228 l 163.47958 59.22796 l 157.53607 60.96315 lf
-0 sg 154.10458 57.90922 m 160.04809 56.28228 l 163.47958 59.22796 l 157.53607 60.96315 lx
-0.00000 0.00000 0.06108 s 129.41107 57.02544 m 141.29809 53.77290 l 148.16107 59.53615 l 136.27405 63.67380 lf
-0 sg 129.41107 57.02544 m 141.29809 53.77290 l 148.16107 59.53615 l 136.27405 63.67380 lx
-0.54301 0.45699 0.00000 s 142.34074 96.53478 m 145.31250 146.33716 l 147.02824 157.47562 l 144.05649 114.71860 lf
-0 sg 142.34074 96.53478 m 145.31250 146.33716 l 147.02824 157.47562 l 144.05649 114.71860 lx
-0.00000 0.00000 0.05761 s 160.04809 56.28228 m 171.93512 52.81010 l 178.79809 58.76700 l 166.91107 62.17365 lf
-0 sg 160.04809 56.28228 m 171.93512 52.81010 l 178.79809 58.76700 l 166.91107 62.17365 lx
-0.00000 0.00000 0.05750 s 221.32214 54.41121 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29770 lf
-0 sg 221.32214 54.41121 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29770 lx
-0.00000 0.00000 0.05751 s 190.68512 55.32962 m 202.57214 51.89915 l 209.43512 57.84241 l 197.54809 61.27486 lf
-0 sg 190.68512 55.32962 m 202.57214 51.89915 l 209.43512 57.84241 l 197.54809 61.27486 lx
-0.00000 0.00000 0.05617 s 110.66107 54.66370 m 122.54809 51.24115 l 129.41107 57.02544 l 117.52405 60.60874 lf
-0 sg 110.66107 54.66370 m 122.54809 51.24115 l 129.41107 57.02544 l 117.52405 60.60874 lx
-0.65973 0.34027 0.00000 s 152.97176 155.97231 m 155.94351 113.82526 l 157.65926 106.12349 l 154.68750 144.79140 lf
-0 sg 152.97176 155.97231 m 155.94351 113.82526 l 157.65926 106.12349 l 154.68750 144.79140 lx
-0.51637 0.48363 0.00000 s 143.59676 92.90511 m 146.56851 107.45927 l 148.28426 156.70792 l 145.31250 146.33716 lf
-0 sg 143.59676 92.90511 m 146.56851 107.45927 l 148.28426 156.70792 l 145.31250 146.33716 lx
-0.00000 0.00000 0.05749 s 61.27405 53.06499 m 85.04809 46.20252 l 98.77405 58.08626 l 75.00000 64.95213 lf
-0 sg 61.27405 53.06499 m 85.04809 46.20252 l 98.77405 58.08626 l 75.00000 64.95213 lx
-0.00000 0.00000 0.05651 s 141.29809 53.77290 m 153.18512 50.29947 l 160.04809 56.28228 l 148.16107 59.53615 lf
-0 sg 141.29809 53.77290 m 153.18512 50.29947 l 160.04809 56.28228 l 148.16107 59.53615 lx
-0.62015 0.37985 0.00000 s 151.25601 138.95901 m 154.22777 102.62215 l 155.94351 113.82526 l 152.97176 155.97231 lf
-0 sg 151.25601 138.95901 m 154.22777 102.62215 l 155.94351 113.82526 l 152.97176 155.97231 lx
-0.59009 0.40991 0.00000 s 146.56851 107.45927 m 149.54027 103.16639 l 151.25601 138.95901 l 148.28426 156.70792 lf
-0 sg 146.56851 107.45927 m 149.54027 103.16639 l 151.25601 138.95901 l 148.28426 156.70792 lx
-0.00000 0.00000 0.05747 s 171.93512 52.81010 m 183.82214 49.38787 l 190.68512 55.32962 l 178.79809 58.76700 lf
-0 sg 171.93512 52.81010 m 183.82214 49.38787 l 190.68512 55.32962 l 178.79809 58.76700 lx
-0.00000 0.00000 0.05751 s 202.57214 51.89915 m 214.45917 48.46751 l 221.32214 54.41121 l 209.43512 57.84241 lf
-0 sg 202.57214 51.89915 m 214.45917 48.46751 l 221.32214 54.41121 l 209.43512 57.84241 lx
-0.00000 0.00000 0.05648 s 122.54809 51.24115 m 134.43512 47.80008 l 141.29809 53.77290 l 129.41107 57.02544 lf
-0 sg 122.54809 51.24115 m 134.43512 47.80008 l 141.29809 53.77290 l 129.41107 57.02544 lx
-0.00000 0.00000 0.05773 s 153.18512 50.29947 m 165.07214 46.87735 l 171.93512 52.81010 l 160.04809 56.28228 lf
-0 sg 153.18512 50.29947 m 165.07214 46.87735 l 171.93512 52.81010 l 160.04809 56.28228 lx
-0.00000 0.00000 0.05751 s 183.82214 49.38787 m 195.70917 45.95583 l 202.57214 51.89915 l 190.68512 55.32962 lf
-0 sg 183.82214 49.38787 m 195.70917 45.95583 l 202.57214 51.89915 l 190.68512 55.32962 lx
-0.00000 0.00000 0.05785 s 134.43512 47.80008 m 146.32214 44.35901 l 153.18512 50.29947 l 141.29809 53.77290 lf
-0 sg 134.43512 47.80008 m 146.32214 44.35901 l 153.18512 50.29947 l 141.29809 53.77290 lx
-0.00000 0.00000 0.05762 s 85.04809 46.20252 m 108.82214 39.33515 l 122.54809 51.24115 l 98.77405 58.08626 lf
-0 sg 85.04809 46.20252 m 108.82214 39.33515 l 122.54809 51.24115 l 98.77405 58.08626 lx
-0.00000 0.00000 0.05745 s 165.07214 46.87735 m 176.95917 43.44405 l 183.82214 49.38787 l 171.93512 52.81010 lf
-0 sg 165.07214 46.87735 m 176.95917 43.44405 l 183.82214 49.38787 l 171.93512 52.81010 lx
-1.00000 0.99229 0.99229 s 147.02824 157.47562 m 150.00000 175.90963 l 151.71574 159.16283 l 148.74399 149.16505 lf
-0 sg 147.02824 157.47562 m 150.00000 175.90963 l 151.71574 159.16283 l 148.74399 149.16505 lx
-1.00000 0.96374 0.96374 s 150.00000 175.90963 m 152.97176 155.97231 l 154.68750 144.79140 l 151.71574 159.16283 lf
-0 sg 150.00000 175.90963 m 152.97176 155.97231 l 154.68750 144.79140 l 151.71574 159.16283 lx
-0.00000 0.00000 0.05751 s 195.70917 45.95583 m 207.59619 42.52380 l 214.45917 48.46751 l 202.57214 51.89915 lf
-0 sg 195.70917 45.95583 m 207.59619 42.52380 l 214.45917 48.46751 l 202.57214 51.89915 lx
-1.00000 sg 145.31250 146.33716 m 148.28426 156.70792 l 150.00000 175.90963 l 147.02824 157.47562 lf
-0 sg 145.31250 146.33716 m 148.28426 156.70792 l 150.00000 175.90963 l 147.02824 157.47562 lx
-1.00000 0.93637 0.93637 s 148.28426 156.70792 m 151.25601 138.95901 l 152.97176 155.97231 l 150.00000 175.90963 lf
-0 sg 148.28426 156.70792 m 151.25601 138.95901 l 152.97176 155.97231 l 150.00000 175.90963 lx
-0.00000 0.00000 0.05738 s 146.32214 44.35901 m 158.20917 40.92962 l 165.07214 46.87735 l 153.18512 50.29947 lf
-0 sg 146.32214 44.35901 m 158.20917 40.92962 l 165.07214 46.87735 l 153.18512 50.29947 lx
-0.00000 0.00000 0.05751 s 207.59619 42.52380 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41121 lf
-0 sg 207.59619 42.52380 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41121 lx
-0.00000 0.00000 0.05752 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20252 l 61.27405 53.06499 lf
-0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20252 l 61.27405 53.06499 lx
-0.00000 0.00000 0.05752 s 158.20917 40.92962 m 170.09619 37.50023 l 176.95917 43.44405 l 165.07214 46.87735 lf
-0 sg 158.20917 40.92962 m 170.09619 37.50023 l 176.95917 43.44405 l 165.07214 46.87735 lx
-0.00000 0.00000 0.05761 s 108.82214 39.33515 m 132.59619 32.47690 l 146.32214 44.35901 l 122.54809 51.24115 lf
-0 sg 108.82214 39.33515 m 132.59619 32.47690 l 146.32214 44.35901 l 122.54809 51.24115 lx
-0.00000 0.00000 0.05752 s 170.09619 37.50023 m 193.87024 30.63714 l 207.59619 42.52380 l 183.82214 49.38787 lf
-0 sg 170.09619 37.50023 m 193.87024 30.63714 l 207.59619 42.52380 l 183.82214 49.38787 lx
-0.00000 0.00000 0.05747 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.33515 l 85.04809 46.20252 lf
-0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.33515 l 85.04809 46.20252 lx
-0.00000 0.00000 0.05748 s 132.59619 32.47690 m 156.37024 25.61309 l 170.09619 37.50023 l 146.32214 44.35901 lf
-0 sg 132.59619 32.47690 m 156.37024 25.61309 l 170.09619 37.50023 l 146.32214 44.35901 lx
-0.00000 0.00000 0.05751 s 193.87024 30.63714 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52380 lf
-0 sg 193.87024 30.63714 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52380 lx
-0.00000 0.00000 0.05747 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47690 l 108.82214 39.33515 lf
-0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47690 l 108.82214 39.33515 lx
-0.00000 0.00000 0.05752 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61309 l 132.59619 32.47690 lf
-0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61309 l 132.59619 32.47690 lx
-0.00000 0.00000 0.05751 s 142.64428 13.72595 m 190.19238 0.00000 l 217.64428 23.77405 l 170.09619 37.50023 lf
-0 sg 142.64428 13.72595 m 190.19238 0.00000 l 217.64428 23.77405 l 170.09619 37.50023 lx
-showpage
-.
-DEAL::  Postprocessing: time=0.02800, step=1, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.05600, step=2, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.08400, step=3, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.11200, step=4, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.14000, step=5, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.16800, step=6, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.19600, step=7, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.22400, step=8, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.25200, step=9, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.28000, step=10, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.30800, step=11, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.33600, step=12, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.36400, step=13, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.39200, step=14, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.42000, step=15, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.44800, step=16, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.47600, step=17, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.50400, step=18, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.53200, step=19, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.56000, step=20, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.58800, step=21, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.61600, step=22, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.64400, step=23, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.67200, step=24, sweep=2. [ee]
-DEAL::  Postprocessing: time=0.70000, step=25, sweep=2. [ee][o]%!PS-Adobe-2.0 EPSF-1.2
-%%Title: deal.II Output
-%%Creator: the deal.II library
-
-%%BoundingBox: 0 0 300 150
-/m {moveto} bind def
-/l {lineto} bind def
-/s {setrgbcolor} bind def
-/sg {setgray} bind def
-/lx {lineto closepath stroke} bind def
-/lf {lineto closepath fill} bind def
-%%EndProlog
-
-0.50000 setlinewidth
-0.25040 0.74960 0.00000 s 82.35572 126.22595 m 129.90381 112.85010 l 157.35572 136.27405 l 109.80762 150.00000 lf
-0 sg 82.35572 126.22595 m 129.90381 112.85010 l 157.35572 136.27405 l 109.80762 150.00000 lx
-0.18448 0.81552 0.00000 s 129.90381 112.85010 m 177.45191 97.39558 l 204.90381 122.54809 l 157.35572 136.27405 lf
-0 sg 129.90381 112.85010 m 177.45191 97.39558 l 204.90381 122.54809 l 157.35572 136.27405 lx
-0.00000 0.98776 0.01224 s 54.90381 102.45191 m 102.45191 83.23389 l 129.90381 112.85010 l 82.35572 126.22595 lf
-0 sg 54.90381 102.45191 m 102.45191 83.23389 l 129.90381 112.85010 l 82.35572 126.22595 lx
-0.13933 0.86067 0.00000 s 177.45191 97.39558 m 225.00000 84.45422 l 252.45191 108.82214 l 204.90381 122.54809 lf
-0 sg 177.45191 97.39558 m 225.00000 84.45422 l 252.45191 108.82214 l 204.90381 122.54809 lx
-0.04314 0.95686 0.00000 s 102.45191 83.23389 m 150.00000 77.53669 l 177.45191 97.39558 l 129.90381 112.85010 lf
-0 sg 102.45191 83.23389 m 150.00000 77.53669 l 177.45191 97.39558 l 129.90381 112.85010 lx
-0.20526 0.79474 0.00000 s 225.00000 84.45422 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lf
-0 sg 225.00000 84.45422 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lx
-0.01977 0.98023 0.00000 s 163.72595 87.46613 m 187.50000 77.33707 l 201.22595 90.92490 l 177.45191 97.39558 lf
-0 sg 163.72595 87.46613 m 187.50000 77.33707 l 201.22595 90.92490 l 177.45191 97.39558 lx
-0.11078 0.88922 0.00000 s 27.45191 78.67786 m 75.00000 67.87454 l 102.45191 83.23389 l 54.90381 102.45191 lf
-0 sg 27.45191 78.67786 m 75.00000 67.87454 l 102.45191 83.23389 l 54.90381 102.45191 lx
-0.00000 0.96090 0.03910 s 187.50000 77.33707 m 211.27405 71.72455 l 225.00000 84.45422 l 201.22595 90.92490 lf
-0 sg 187.50000 77.33707 m 211.27405 71.72455 l 225.00000 84.45422 l 201.22595 90.92490 lx
-0.14407 0.85593 0.00000 s 150.00000 77.53669 m 173.77405 65.83484 l 187.50000 77.33707 l 163.72595 87.46613 lf
-0 sg 150.00000 77.53669 m 173.77405 65.83484 l 187.50000 77.33707 l 163.72595 87.46613 lx
-0.03618 0.96382 0.00000 s 211.27405 71.72455 m 235.04809 64.49614 l 248.77405 77.88818 l 225.00000 84.45422 lf
-0 sg 211.27405 71.72455 m 235.04809 64.49614 l 248.77405 77.88818 l 225.00000 84.45422 lx
-0.00000 0.96636 0.03364 s 180.63702 71.58596 m 192.52405 72.30296 l 199.38702 74.53081 l 187.50000 77.33707 lf
-0 sg 180.63702 71.58596 m 192.52405 72.30296 l 199.38702 74.53081 l 187.50000 77.33707 lx
-0.00000 0.88063 0.11938 s 192.52405 72.30296 m 204.41107 61.67980 l 211.27405 71.72455 l 199.38702 74.53081 lf
-0 sg 192.52405 72.30296 m 204.41107 61.67980 l 211.27405 71.72455 l 199.38702 74.53081 lx
-0.10780 0.89220 0.00000 s 75.00000 67.87454 m 122.54809 48.62703 l 150.00000 77.53669 l 102.45191 83.23389 lf
-0 sg 75.00000 67.87454 m 122.54809 48.62703 l 150.00000 77.53669 l 102.45191 83.23389 lx
-0.00000 0.91722 0.08278 s 173.77405 65.83484 m 185.66107 61.23150 l 192.52405 72.30296 l 180.63702 71.58596 lf
-0 sg 173.77405 65.83484 m 185.66107 61.23150 l 192.52405 72.30296 l 180.63702 71.58596 lx
-0.00000 0.60676 0.39324 s 204.41107 61.67980 m 216.29809 59.27086 l 223.16107 68.11034 l 211.27405 71.72455 lf
-0 sg 204.41107 61.67980 m 216.29809 59.27086 l 223.16107 68.11034 l 211.27405 71.72455 lx
-0.13328 0.86672 0.00000 s 235.04809 64.49614 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 77.88818 lf
-0 sg 235.04809 64.49614 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 77.88818 lx
-0.20374 0.79626 0.00000 s 185.66107 61.23150 m 197.54809 68.00644 l 204.41107 61.67980 l 192.52405 72.30296 lf
-0 sg 185.66107 61.23150 m 197.54809 68.00644 l 204.41107 61.67980 l 192.52405 72.30296 lx
-0.00000 0.81719 0.18281 s 216.29809 59.27086 m 228.18512 59.58246 l 235.04809 64.49614 l 223.16107 68.11034 lf
-0 sg 216.29809 59.27086 m 228.18512 59.58246 l 235.04809 64.49614 l 223.16107 68.11034 lx
-0.00000 0.75176 0.24824 s 200.97958 64.84312 m 206.92309 62.42012 l 210.35458 60.47533 l 204.41107 61.67980 lf
-0 sg 200.97958 64.84312 m 206.92309 62.42012 l 210.35458 60.47533 l 204.41107 61.67980 lx
-0.24830 0.75170 0.00000 s 136.27405 63.08186 m 160.04809 56.35277 l 173.77405 65.83484 l 150.00000 77.53669 lf
-0 sg 136.27405 63.08186 m 160.04809 56.35277 l 173.77405 65.83484 l 150.00000 77.53669 lx
-0.00000 0.29297 0.70703 s 206.92309 62.42012 m 212.86661 50.79559 l 216.29809 59.27086 l 210.35458 60.47533 lf
-0 sg 206.92309 62.42012 m 212.86661 50.79559 l 216.29809 59.27086 l 210.35458 60.47533 lx
-0.00000 0.93136 0.06864 s 166.91107 61.09380 m 178.79809 59.31666 l 185.66107 61.23150 l 173.77405 65.83484 lf
-0 sg 166.91107 61.09380 m 178.79809 59.31666 l 185.66107 61.23150 l 173.77405 65.83484 lx
-0.00000 0.37179 0.62821 s 212.86661 50.79559 m 218.81012 58.25395 l 222.24161 59.42666 l 216.29809 59.27086 lf
-0 sg 212.86661 50.79559 m 218.81012 58.25395 l 222.24161 59.42666 l 216.29809 59.27086 lx
-0.00000 0.00000 0.43456 s 211.15086 46.76377 m 214.12262 48.86526 l 215.83836 54.52477 l 212.86661 50.79559 lf
-0 sg 211.15086 46.76377 m 214.12262 48.86526 l 215.83836 54.52477 l 212.86661 50.79559 lx
-0.00000 0.00000 0.90680 s 203.49161 57.05205 m 209.43512 42.73195 l 212.86661 50.79559 l 206.92309 62.42012 lf
-0 sg 203.49161 57.05205 m 209.43512 42.73195 l 212.86661 50.79559 l 206.92309 62.42012 lx
-0.00000 sg 209.43512 42.73195 m 212.40687 47.55804 l 214.12262 48.86526 l 211.15086 46.76377 lf
-0 sg 209.43512 42.73195 m 212.40687 47.55804 l 214.12262 48.86526 l 211.15086 46.76377 lx
-0.16163 0.83837 0.00000 s 228.18512 59.58246 m 240.07214 58.89196 l 246.93512 61.96563 l 235.04809 64.49614 lf
-0 sg 228.18512 59.58246 m 240.07214 58.89196 l 246.93512 61.96563 l 235.04809 64.49614 lx
-0.45907 0.54093 0.00000 s 197.54809 68.00644 m 203.49161 57.05205 l 206.92309 62.42012 l 200.97958 64.84312 lf
-0 sg 197.54809 68.00644 m 203.49161 57.05205 l 206.92309 62.42012 l 200.97958 64.84312 lx
-0.00000 0.00000 0.13571 s 207.71937 43.74569 m 210.69113 48.77761 l 212.40687 47.55804 l 209.43512 42.73195 lf
-0 sg 207.71937 43.74569 m 210.69113 48.77761 l 212.40687 47.55804 l 209.43512 42.73195 lx
-0.05683 0.94317 0.00000 s 178.79809 59.31666 m 190.68512 47.81994 l 197.54809 68.00644 l 185.66107 61.23150 lf
-0 sg 178.79809 59.31666 m 190.68512 47.81994 l 197.54809 68.00644 l 185.66107 61.23150 lx
-0.00000 0.00000 0.54777 s 200.06012 49.06175 m 206.00363 44.75944 l 209.43512 42.73195 l 203.49161 57.05205 lf
-0 sg 200.06012 49.06175 m 206.00363 44.75944 l 209.43512 42.73195 l 203.49161 57.05205 lx
-0.00000 0.60431 0.39569 s 214.12262 48.86526 m 217.09437 60.33433 l 218.81012 58.25395 l 215.83836 54.52477 lf
-0 sg 214.12262 48.86526 m 217.09437 60.33433 l 218.81012 58.25395 l 215.83836 54.52477 lx
-0.24648 0.75352 0.00000 s 218.81012 58.25395 m 224.75363 61.91130 l 228.18512 59.58246 l 222.24161 59.42666 lf
-0 sg 218.81012 58.25395 m 224.75363 61.91130 l 228.18512 59.58246 l 222.24161 59.42666 lx
-0.37342 0.62658 0.00000 s 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 67.87454 l 27.45191 78.67786 lf
-0 sg 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 67.87454 l 27.45191 78.67786 lx
-0.05730 0.94270 0.00000 s 194.11661 57.91319 m 200.06012 49.06175 l 203.49161 57.05205 l 197.54809 68.00644 lf
-0 sg 194.11661 57.91319 m 200.06012 49.06175 l 203.49161 57.05205 l 197.54809 68.00644 lx
-0.00000 0.64923 0.35077 s 212.40687 47.55804 m 215.37863 60.21634 l 217.09437 60.33433 l 214.12262 48.86526 lf
-0 sg 212.40687 47.55804 m 215.37863 60.21634 l 217.09437 60.33433 l 214.12262 48.86526 lx
-0.28473 0.71527 0.00000 s 240.07214 58.89196 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 61.96563 lf
-0 sg 240.07214 58.89196 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 61.96563 lx
-0.05929 0.94071 0.00000 s 160.04809 56.35277 m 171.93512 49.61465 l 178.79809 59.31666 l 166.91107 61.09380 lf
-0 sg 160.04809 56.35277 m 171.93512 49.61465 l 178.79809 59.31666 l 166.91107 61.09380 lx
-0.34935 0.65065 0.00000 s 224.75363 61.91130 m 230.69714 53.73156 l 234.12863 59.23721 l 228.18512 59.58246 lf
-0 sg 224.75363 61.91130 m 230.69714 53.73156 l 234.12863 59.23721 l 228.18512 59.58246 lx
-0.00000 0.00000 0.73754 s 206.00363 44.75944 m 208.97539 52.17178 l 210.69113 48.77761 l 207.71937 43.74569 lf
-0 sg 206.00363 44.75944 m 208.97539 52.17178 l 210.69113 48.77761 l 207.71937 43.74569 lx
-0.00000 0.27306 0.72694 s 190.68512 47.81994 m 196.62863 48.95266 l 200.06012 49.06175 l 194.11661 57.91319 lf
-0 sg 190.68512 47.81994 m 196.62863 48.95266 l 200.06012 49.06175 l 194.11661 57.91319 lx
-0.71758 0.28242 0.00000 s 217.09437 60.33433 m 220.06613 63.15496 l 221.78187 60.08262 l 218.81012 58.25395 lf
-0 sg 217.09437 60.33433 m 220.06613 63.15496 l 221.78187 60.08262 l 218.81012 58.25395 lx
-0.00000 0.92931 0.07069 s 210.69113 48.77761 m 213.66289 60.33514 l 215.37863 60.21634 l 212.40687 47.55804 lf
-0 sg 210.69113 48.77761 m 213.66289 60.33514 l 215.37863 60.21634 l 212.40687 47.55804 lx
-0.21404 0.78596 0.00000 s 230.69714 53.73156 m 236.64065 52.90936 l 240.07214 58.89196 l 234.12863 59.23721 lf
-0 sg 230.69714 53.73156 m 236.64065 52.90936 l 240.07214 58.89196 l 234.12863 59.23721 lx
-0.00000 0.08056 0.91944 s 196.62863 48.95266 m 202.57214 50.08538 l 206.00363 44.75944 l 200.06012 49.06175 lf
-0 sg 196.62863 48.95266 m 202.57214 50.08538 l 206.00363 44.75944 l 200.06012 49.06175 lx
-0.99727 0.00273 0.00000 s 220.06613 63.15496 m 223.03789 59.09400 l 224.75363 61.91130 l 221.78187 60.08262 lf
-0 sg 220.06613 63.15496 m 223.03789 59.09400 l 224.75363 61.91130 l 221.78187 60.08262 lx
-0.15836 0.84164 0.00000 s 226.00964 55.13426 m 228.98140 53.15066 l 230.69714 53.73156 l 227.72539 57.82143 lf
-0 sg 226.00964 55.13426 m 228.98140 53.15066 l 230.69714 53.73156 l 227.72539 57.82143 lx
-0.00000 0.43644 0.56356 s 171.93512 49.61465 m 183.82214 42.87654 l 190.68512 47.81994 l 178.79809 59.31666 lf
-0 sg 171.93512 49.61465 m 183.82214 42.87654 l 190.68512 47.81994 l 178.79809 59.31666 lx
-0.66966 0.33034 0.00000 s 223.03789 59.09400 m 226.00964 55.13426 l 227.72539 57.82143 l 224.75363 61.91130 lf
-0 sg 223.03789 59.09400 m 226.00964 55.13426 l 227.72539 57.82143 l 224.75363 61.91130 lx
-0.00000 0.97676 0.02324 s 228.98140 53.15066 m 231.95315 52.40633 l 233.66890 53.32046 l 230.69714 53.73156 lf
-0 sg 228.98140 53.15066 m 231.95315 52.40633 l 233.66890 53.32046 l 230.69714 53.73156 lx
-1.00000 0.23258 0.23258 s 215.37863 60.21634 m 218.35039 62.94576 l 220.06613 63.15496 l 217.09437 60.33433 lf
-0 sg 215.37863 60.21634 m 218.35039 62.94576 l 220.06613 63.15496 l 217.09437 60.33433 lx
-0.31881 0.68119 0.00000 s 236.64065 52.90936 m 242.58417 52.10484 l 246.01565 56.19178 l 240.07214 58.89196 lf
-0 sg 236.64065 52.90936 m 242.58417 52.10484 l 246.01565 56.19178 l 240.07214 58.89196 lx
-0.40395 0.59605 0.00000 s 208.97539 52.17178 m 211.94714 59.58413 l 213.66289 60.33514 l 210.69113 48.77761 lf
-0 sg 208.97539 52.17178 m 211.94714 59.58413 l 213.66289 60.33514 l 210.69113 48.77761 lx
-0.04958 0.95042 0.00000 s 231.95315 52.40633 m 234.92491 52.06412 l 236.64065 52.90936 l 233.66890 53.32046 lf
-0 sg 231.95315 52.40633 m 234.92491 52.06412 l 236.64065 52.90936 l 233.66890 53.32046 lx
-0.11839 0.88161 0.00000 s 122.54809 48.62703 m 146.32214 44.47990 l 160.04809 56.35277 l 136.27405 63.08186 lf
-0 sg 122.54809 48.62703 m 146.32214 44.47990 l 160.04809 56.35277 l 136.27405 63.08186 lx
-0.71493 0.28507 0.00000 s 221.32214 59.05807 m 224.29390 55.67772 l 226.00964 55.13426 l 223.03789 59.09400 lf
-0 sg 221.32214 59.05807 m 224.29390 55.67772 l 226.00964 55.13426 l 223.03789 59.09400 lx
-1.00000 0.28197 0.28197 s 218.35039 62.94576 m 221.32214 59.05807 l 223.03789 59.09400 l 220.06613 63.15496 lf
-0 sg 218.35039 62.94576 m 221.32214 59.05807 l 223.03789 59.09400 l 220.06613 63.15496 lx
-0.32878 0.67122 0.00000 s 224.29390 55.67772 m 227.26565 53.49532 l 228.98140 53.15066 l 226.00964 55.13426 lf
-0 sg 224.29390 55.67772 m 227.26565 53.49532 l 228.98140 53.15066 l 226.00964 55.13426 lx
-0.19607 0.80393 0.00000 s 227.26565 53.49532 m 230.23741 52.19912 l 231.95315 52.40633 l 228.98140 53.15066 lf
-0 sg 227.26565 53.49532 m 230.23741 52.19912 l 231.95315 52.40633 l 228.98140 53.15066 lx
-0.27448 0.72552 0.00000 s 242.58417 52.10484 m 248.52768 50.51985 l 251.95917 53.49161 l 246.01565 56.19178 lf
-0 sg 242.58417 52.10484 m 248.52768 50.51985 l 251.95917 53.49161 l 246.01565 56.19178 lx
-1.00000 0.53783 0.53783 s 213.66289 60.33514 m 216.63464 63.59371 l 218.35039 62.94576 l 215.37863 60.21634 lf
-0 sg 213.66289 60.33514 m 216.63464 63.59371 l 218.35039 62.94576 l 215.37863 60.21634 lx
-0.36101 0.63899 0.00000 s 202.57214 50.08538 m 208.51565 58.34238 l 211.94714 59.58413 l 206.00363 44.75944 lf
-0 sg 202.57214 50.08538 m 208.51565 58.34238 l 211.94714 59.58413 l 206.00363 44.75944 lx
-0.19935 0.80065 0.00000 s 230.23741 52.19912 m 233.20917 51.21888 l 234.92491 52.06412 l 231.95315 52.40633 lf
-0 sg 230.23741 52.19912 m 233.20917 51.21888 l 234.92491 52.06412 l 231.95315 52.40633 lx
-1.00000 0.06518 0.06518 s 219.60640 59.64224 m 222.57815 55.96656 l 224.29390 55.67772 l 221.32214 59.05807 lf
-0 sg 219.60640 59.64224 m 222.57815 55.96656 l 224.29390 55.67772 l 221.32214 59.05807 lx
-1.00000 0.61341 0.61341 s 216.63464 63.59371 m 219.60640 59.64224 l 221.32214 59.05807 l 218.35039 62.94576 lf
-0 sg 216.63464 63.59371 m 219.60640 59.64224 l 221.32214 59.05807 l 218.35039 62.94576 lx
-0.00000 0.63443 0.36557 s 183.82214 42.87654 m 195.70917 49.26013 l 202.57214 50.08538 l 190.68512 47.81994 lf
-0 sg 183.82214 42.87654 m 195.70917 49.26013 l 202.57214 50.08538 l 190.68512 47.81994 lx
-0.19224 0.80776 0.00000 s 233.20917 51.21888 m 239.15268 49.33123 l 242.58417 52.10484 l 236.64065 52.90936 lf
-0 sg 233.20917 51.21888 m 239.15268 49.33123 l 242.58417 52.10484 l 236.64065 52.90936 lx
-0.67938 0.32062 0.00000 s 222.57815 55.96656 m 225.54991 53.70606 l 227.26565 53.49532 l 224.29390 55.67772 lf
-0 sg 222.57815 55.96656 m 225.54991 53.70606 l 227.26565 53.49532 l 224.29390 55.67772 lx
-0.48225 0.51775 0.00000 s 225.54991 53.70606 m 228.52167 51.89149 l 230.23741 52.19912 l 227.26565 53.49532 lf
-0 sg 225.54991 53.70606 m 228.52167 51.89149 l 230.23741 52.19912 l 227.26565 53.49532 lx
-1.00000 0.80975 0.80975 s 211.94714 59.58413 m 214.91890 63.32037 l 216.63464 63.59371 l 213.66289 60.33514 lf
-0 sg 211.94714 59.58413 m 214.91890 63.32037 l 216.63464 63.59371 l 213.66289 60.33514 lx
-0.36792 0.63208 0.00000 s 228.52167 51.89149 m 231.49342 50.16029 l 233.20917 51.21888 l 230.23741 52.19912 lf
-0 sg 228.52167 51.89149 m 231.49342 50.16029 l 233.20917 51.21888 l 230.23741 52.19912 lx
-0.23063 0.76937 0.00000 s 239.15268 49.33123 m 245.09619 47.54809 l 248.52768 50.51985 l 242.58417 52.10484 lf
-0 sg 239.15268 49.33123 m 245.09619 47.54809 l 248.52768 50.51985 l 242.58417 52.10484 lx
-1.00000 0.34478 0.34478 s 217.89065 59.05645 m 220.86241 55.58240 l 222.57815 55.96656 l 219.60640 59.64224 lf
-0 sg 217.89065 59.05645 m 220.86241 55.58240 l 222.57815 55.96656 l 219.60640 59.64224 lx
-0.89273 0.10727 0.00000 s 220.86241 55.58240 m 223.83417 52.10836 l 225.54991 53.70606 l 222.57815 55.96656 lf
-0 sg 220.86241 55.58240 m 223.83417 52.10836 l 225.54991 53.70606 l 222.57815 55.96656 lx
-1.00000 0.91548 0.91548 s 214.91890 63.32037 m 217.89065 59.05645 l 219.60640 59.64224 l 216.63464 63.59371 lf
-0 sg 214.91890 63.32037 m 217.89065 59.05645 l 219.60640 59.64224 l 216.63464 63.59371 lx
-0.62392 0.37608 0.00000 s 223.83417 52.10836 m 226.80592 50.60503 l 228.52167 51.89149 l 225.54991 53.70606 lf
-0 sg 223.83417 52.10836 m 226.80592 50.60503 l 228.52167 51.89149 l 225.54991 53.70606 lx
-1.00000 0.93062 0.93062 s 210.23140 58.96326 m 213.20315 61.54963 l 214.91890 63.32037 l 211.94714 59.58413 lf
-0 sg 210.23140 58.96326 m 213.20315 61.54963 l 214.91890 63.32037 l 211.94714 59.58413 lx
-0.47467 0.52533 0.00000 s 226.80592 50.60503 m 229.77768 49.10169 l 231.49342 50.16029 l 228.52167 51.89149 lf
-0 sg 226.80592 50.60503 m 229.77768 49.10169 l 231.49342 50.16029 l 228.52167 51.89149 lx
-0.32517 0.67483 0.00000 s 229.77768 49.10169 m 235.72119 46.80508 l 239.15268 49.33123 l 233.20917 51.21888 lf
-0 sg 229.77768 49.10169 m 235.72119 46.80508 l 239.15268 49.33123 l 233.20917 51.21888 lx
-0.86220 0.13780 0.00000 s 199.14065 49.67276 m 205.08417 53.26402 l 208.51565 58.34238 l 202.57214 50.08538 lf
-0 sg 199.14065 49.67276 m 205.08417 53.26402 l 208.51565 58.34238 l 202.57214 50.08538 lx
-1.00000 sg 213.20315 61.54963 m 216.17491 57.51020 l 217.89065 59.05645 l 214.91890 63.32037 lf
-0 sg 213.20315 61.54963 m 216.17491 57.51020 l 217.89065 59.05645 l 214.91890 63.32037 lx
-1.00000 0.86054 0.86054 s 208.51565 58.34238 m 211.48741 57.15317 l 213.20315 61.54963 l 210.23140 58.96326 lf
-0 sg 208.51565 58.34238 m 211.48741 57.15317 l 213.20315 61.54963 l 210.23140 58.96326 lx
-1.00000 0.09730 0.09730 s 214.45917 55.96395 m 220.40268 47.31294 l 223.83417 52.10836 l 217.89065 59.05645 lf
-0 sg 214.45917 55.96395 m 220.40268 47.31294 l 223.83417 52.10836 l 217.89065 59.05645 lx
-0.06828 0.93172 0.00000 s 146.32214 44.47990 m 170.09619 40.33277 l 183.82214 42.87654 l 160.04809 56.35277 lf
-0 sg 146.32214 44.47990 m 170.09619 40.33277 l 183.82214 42.87654 l 160.04809 56.35277 lx
-0.45304 0.54696 0.00000 s 220.40268 47.31294 m 226.34619 45.58368 l 229.77768 49.10169 l 223.83417 52.10836 lf
-0 sg 220.40268 47.31294 m 226.34619 45.58368 l 229.77768 49.10169 l 223.83417 52.10836 lx
-0.26141 0.73859 0.00000 s 235.72119 46.80508 m 241.66470 44.57634 l 245.09619 47.54809 l 239.15268 49.33123 lf
-0 sg 235.72119 46.80508 m 241.66470 44.57634 l 245.09619 47.54809 l 239.15268 49.33123 lx
-1.00000 0.84141 0.84141 s 211.48741 57.15317 m 214.45917 55.96395 l 216.17491 57.51020 l 213.20315 61.54963 lf
-0 sg 211.48741 57.15317 m 214.45917 55.96395 l 216.17491 57.51020 l 213.20315 61.54963 lx
-0.24914 0.75086 0.00000 s 47.54809 41.17786 m 95.09619 27.45191 l 122.54809 48.62703 l 75.00000 67.87454 lf
-0 sg 47.54809 41.17786 m 95.09619 27.45191 l 122.54809 48.62703 l 75.00000 67.87454 lx
-1.00000 0.54104 0.54104 s 205.08417 53.26402 m 211.02768 51.12613 l 214.45917 55.96395 l 208.51565 58.34238 lf
-0 sg 205.08417 53.26402 m 211.02768 51.12613 l 214.45917 55.96395 l 208.51565 58.34238 lx
-0.88585 0.11415 0.00000 s 195.70917 49.26013 m 201.65268 47.77513 l 205.08417 53.26402 l 199.14065 49.67276 lf
-0 sg 195.70917 49.26013 m 201.65268 47.77513 l 205.08417 53.26402 l 199.14065 49.67276 lx
-0.36069 0.63931 0.00000 s 226.34619 45.58368 m 232.28970 43.82217 l 235.72119 46.80508 l 229.77768 49.10169 lf
-0 sg 226.34619 45.58368 m 232.28970 43.82217 l 235.72119 46.80508 l 229.77768 49.10169 lx
-0.90003 0.09997 0.00000 s 211.02768 51.12613 m 216.97119 44.02655 l 220.40268 47.31294 l 214.45917 55.96395 lf
-0 sg 211.02768 51.12613 m 216.97119 44.02655 l 220.40268 47.31294 l 214.45917 55.96395 lx
-0.28561 0.71439 0.00000 s 176.95917 41.60465 m 188.84619 46.14307 l 195.70917 49.26013 l 183.82214 42.87654 lf
-0 sg 176.95917 41.60465 m 188.84619 46.14307 l 195.70917 49.26013 l 183.82214 42.87654 lx
-0.28645 0.71355 0.00000 s 216.97119 44.02655 m 222.91470 41.81313 l 226.34619 45.58368 l 220.40268 47.31294 lf
-0 sg 216.97119 44.02655 m 222.91470 41.81313 l 226.34619 45.58368 l 220.40268 47.31294 lx
-0.28219 0.71781 0.00000 s 232.28970 43.82217 m 238.23321 41.60458 l 241.66470 44.57634 l 235.72119 46.80508 lf
-0 sg 232.28970 43.82217 m 238.23321 41.60458 l 241.66470 44.57634 l 235.72119 46.80508 lx
-1.00000 0.14153 0.14153 s 201.65268 47.77513 m 207.59619 46.29014 l 211.02768 51.12613 l 205.08417 53.26402 lf
-0 sg 201.65268 47.77513 m 207.59619 46.29014 l 211.02768 51.12613 l 205.08417 53.26402 lx
-0.27165 0.72835 0.00000 s 222.91470 41.81313 m 228.85821 40.34487 l 232.28970 43.82217 l 226.34619 45.58368 lf
-0 sg 222.91470 41.81313 m 228.85821 40.34487 l 232.28970 43.82217 l 226.34619 45.58368 lx
-0.75959 0.24041 0.00000 s 207.59619 46.29014 m 213.53970 42.16302 l 216.97119 44.02655 l 211.02768 51.12613 lf
-0 sg 207.59619 46.29014 m 213.53970 42.16302 l 216.97119 44.02655 l 211.02768 51.12613 lx
-0.24769 0.75231 0.00000 s 213.53970 42.16302 m 219.48321 38.03590 l 222.91470 41.81313 l 216.97119 44.02655 lf
-0 sg 213.53970 42.16302 m 219.48321 38.03590 l 222.91470 41.81313 l 216.97119 44.02655 lx
-0.25748 0.74252 0.00000 s 228.85821 40.34487 m 234.80172 38.63283 l 238.23321 41.60458 l 232.28970 43.82217 lf
-0 sg 228.85821 40.34487 m 234.80172 38.63283 l 238.23321 41.60458 l 232.28970 43.82217 lx
-0.93810 0.06190 0.00000 s 188.84619 46.14307 m 200.73321 38.10923 l 207.59619 46.29014 l 195.70917 49.26013 lf
-0 sg 188.84619 46.14307 m 200.73321 38.10923 l 207.59619 46.29014 l 195.70917 49.26013 lx
-0.14567 0.85433 0.00000 s 219.48321 38.03590 m 225.42672 36.84848 l 228.85821 40.34487 l 222.91470 41.81313 lf
-0 sg 219.48321 38.03590 m 225.42672 36.84848 l 228.85821 40.34487 l 222.91470 41.81313 lx
-0.20821 0.79179 0.00000 s 225.42672 36.84848 m 231.37024 35.66107 l 234.80172 38.63283 l 228.85821 40.34487 lf
-0 sg 225.42672 36.84848 m 231.37024 35.66107 l 234.80172 38.63283 l 228.85821 40.34487 lx
-0.65047 0.34953 0.00000 s 170.09619 40.33277 m 181.98321 35.65933 l 188.84619 46.14307 l 176.95917 41.60465 lf
-0 sg 170.09619 40.33277 m 181.98321 35.65933 l 188.84619 46.14307 l 176.95917 41.60465 lx
-0.35094 0.64906 0.00000 s 200.73321 38.10923 m 212.62024 31.36343 l 219.48321 38.03590 l 207.59619 46.29014 lf
-0 sg 200.73321 38.10923 m 212.62024 31.36343 l 219.48321 38.03590 l 207.59619 46.29014 lx
-0.09773 0.90227 0.00000 s 212.62024 31.36343 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.03590 lf
-0 sg 212.62024 31.36343 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.03590 lx
-0.69273 0.30727 0.00000 s 181.98321 35.65933 m 193.87024 30.98590 l 200.73321 38.10923 l 188.84619 46.14307 lf
-0 sg 181.98321 35.65933 m 193.87024 30.98590 l 200.73321 38.10923 l 188.84619 46.14307 lx
-0.24484 0.75516 0.00000 s 95.09619 27.45191 m 142.64428 13.72595 l 170.09619 40.33277 l 122.54809 48.62703 lf
-0 sg 95.09619 27.45191 m 142.64428 13.72595 l 170.09619 40.33277 l 122.54809 48.62703 lx
-0.24640 0.75360 0.00000 s 193.87024 30.98590 m 205.75726 27.37997 l 212.62024 31.36343 l 200.73321 38.10923 lf
-0 sg 193.87024 30.98590 m 205.75726 27.37997 l 212.62024 31.36343 l 200.73321 38.10923 lx
-0.15661 0.84339 0.00000 s 205.75726 27.37997 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.36343 lf
-0 sg 205.75726 27.37997 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.36343 lx
-0.41465 0.58535 0.00000 s 156.37024 27.02936 m 180.14428 17.93671 l 193.87024 30.98590 l 170.09619 40.33277 lf
-0 sg 156.37024 27.02936 m 180.14428 17.93671 l 193.87024 30.98590 l 170.09619 40.33277 lx
-0.21145 0.78855 0.00000 s 180.14428 17.93671 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.98590 lf
-0 sg 180.14428 17.93671 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.98590 lx
-0.26250 0.73750 0.00000 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.93671 l 156.37024 27.02936 lf
-0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.93671 l 156.37024 27.02936 lx
-0.19476 0.80524 0.00000 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.93671 lf
-0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.93671 lx
-showpage
-.
-DEAL::
-DEAL::    Writing statistics for whole sweep.#  Description of fields
-DEAL::#  =====================
-DEAL::#  General:
-DEAL::#    time
-#  Primal problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Dual problem:
-#    number of active cells
-#    number of degrees of freedom
-#    iterations for the helmholtz equation
-#    iterations for the projection equation
-#    elastic energy
-#    kinetic energy
-#    total energy
-#  Error estimation:
-#    total estimated error in this timestep
-#  Postprocessing:
-#    Huyghens wave
-DEAL::
-DEAL::
-DEAL::0.00000   169 211 0 0 0.00000 0.00000 0.00000    169 817 9 10 0.00006 0.00005 0.00011    0.00000    0.14945 
-DEAL::0.02800   211 257 8 12 0.94011 1.24534 2.18545    211 1001 10 10 0.00006 0.00005 0.00011    -0.04207    -0.08657 
-DEAL::0.05600   310 366 8 13 0.54382 1.64155 2.18537    310 1433 12 10 0.00006 0.00006 0.00012    -0.01172    -0.41454 
-DEAL::0.08400   367 429 8 13 1.19282 0.99251 2.18533    367 1682 15 10 0.00007 0.00007 0.00013    -0.02225    -0.53217 
-DEAL::0.11200   439 504 9 13 1.14557 1.03261 2.17818    439 1978 19 10 0.00007 0.00007 0.00013    -0.02875    -0.22031 
-DEAL::0.14000   487 554 10 13 1.11093 1.04485 2.15578    487 2175 20 10 0.00007 0.00007 0.00014    -0.01509    0.17460 
-DEAL::0.16800   502 573 10 13 0.99758 1.07509 2.07267    502 2250 20 10 0.00007 0.00007 0.00014    -0.01727    -0.16320 
-DEAL::0.19600   484 552 10 13 0.83563 0.95615 1.79178    484 2166 19 10 0.00007 0.00007 0.00014    0.00285    -0.11812 
-DEAL::0.22400   508 576 9 13 0.92851 0.81114 1.73965    508 2258 19 10 0.00007 0.00007 0.00014    0.00066    0.72727 
-DEAL::0.25200   550 624 9 13 0.90198 0.70701 1.60899    550 2450 19 10 0.00007 0.00009 0.00015    -0.04822    1.11785 
-DEAL::0.28000   550 625 10 13 0.74954 0.75519 1.50473    550 2455 19 10 0.00007 0.00009 0.00016    -0.06196    -0.03907 
-DEAL::0.30800   517 585 10 13 0.61174 0.74223 1.35397    517 2298 20 10 0.00009 0.00011 0.00020    -0.01604    -1.84811 
-DEAL::0.33600   493 560 10 13 0.50491 0.67542 1.18034    493 2196 20 10 0.00010 0.00012 0.00022    -0.02144    -0.79463 
-DEAL::0.36400   487 552 9 15 0.54634 0.48130 1.02765    487 2162 18 10 0.00012 0.00011 0.00023    0.00843    3.93920 
-DEAL::0.39200   457 518 9 14 0.51102 0.45505 0.96607    457 2032 18 10 0.00013 0.00010 0.00023    -0.02680    9.65776 
-DEAL::0.42000   400 460 9 14 0.40294 0.43286 0.83580    400 1801 17 10 0.00013 0.00010 0.00023    0.00734    14.08481 
-DEAL::0.44800   337 393 9 13 0.37743 0.39830 0.77573    337 1535 16 10 0.00013 0.00011 0.00023    -0.02038    18.02986 
-DEAL::0.47600   301 352 9 13 0.38030 0.32294 0.70324    301 1371 14 10 0.00013 0.00010 0.00023    -0.01618    35.82564 
-DEAL::0.50400   286 335 8 13 0.26843 0.27812 0.54655    286 1303 13 10 0.00015 0.00008 0.00023    -0.07997    115.10763 
-DEAL::0.53200   223 267 8 13 0.27503 0.25530 0.53033    223 1034 9 10 0.00022 0.00007 0.00030    0.03016    346.08217 
-DEAL::0.56000   199 242 8 13 0.24928 0.24894 0.49822    199 934 9 10 0.00013 0.00008 0.00020    0.05559    820.08260 
-DEAL::0.58800   181 221 8 13 0.22444 0.24672 0.47116    181 850 9 10 0.00024 0.00008 0.00032    0.04979    1531.51621 
-DEAL::0.61600   154 192 9 12 0.21009 0.18893 0.39902    154 734 8 10 0.00013 0.00009 0.00022    0.06317    2334.23472 
-DEAL::0.64400   121 157 8 11 0.18576 0.18985 0.37561    121 599 8 9 0.00015 0.00009 0.00024    -0.02409    3076.89837 
-DEAL::0.67200   124 160 8 11 0.17392 0.20155 0.37547    124 608 8 9 0.00022 0.00006 0.00028    -0.38595    3885.80722 
-DEAL::0.70000   115 149 8 11 0.16720 0.15213 0.31933    115 567 0 0 0.00000 0.00000 0.00000    -0.54712    4886.62591 
-DEAL::
-DEAL::    Writing summary.Summary of this sweep:
-======================
-
-  Accumulated number of cells: 8972
-  Acc. number of primal dofs : 20828
-  Acc. number of dual dofs   : 81378
-  Accumulated error          : 0.00001
-
-  Evaluations:
-  ------------
-    Hughens wave -- weighted time: 0.63029
-                    average      : 0.00339
-  
-
-DEAL::
-DEAL::
diff --git a/tests/fail/Makefile b/tests/fail/Makefile
new file mode 100644 (file)
index 0000000..8dd268e
--- /dev/null
@@ -0,0 +1,34 @@
+############################################################
+# Makefile,v 1.15 2002/06/13 12:51:13 hartmann Exp
+# Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006 by the deal.II authors
+############################################################
+
+############################################################
+# Include general settings for including DEAL libraries
+############################################################
+
+include ../Makefile.paths
+include $D/common/Make.global_options
+debug-mode = on
+
+libraries = $(lib-deal2-1d.g) \
+            $(lib-deal2-2d.g) \
+            $(lib-deal2-3d.g) \
+            $(lib-lac.g)  \
+            $(lib-base.g)
+
+default: run-tests
+
+############################################################
+
+# all .cc-files are tests by default.
+
+tests = $(basename $(wildcard *.cc))
+
+############################################################
+
+T:
+       @echo $(tests)
+include ../Makefile.rules
+include Makefile.depend
+include Makefile.tests
similarity index 95%
rename from tests/deal.II/project_abf_01.cc
rename to tests/fail/project_abf_01.cc
index abc6820dbd02902aed3a0470ea2df319728f34bf..86165bdbecefa453720781827b2b84aa2916c8f2 100644 (file)
@@ -17,7 +17,7 @@
 char logname[] = "project_abf_01/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 95%
rename from tests/deal.II/project_abf_02.cc
rename to tests/fail/project_abf_02.cc
index 06b7ae2fd878b7b1faa9fd0603672fab7cb73ea0..47da0283cb7264e399bea1babcf2452b6778224a 100644 (file)
@@ -17,7 +17,7 @@
 char logname[] = "project_abf_02/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 95%
rename from tests/deal.II/project_abf_03.cc
rename to tests/fail/project_abf_03.cc
index 6b87532abb11b00ac9b81723d84fa04c1f88859a..ff11d889b420726b3190502e9f27faf68ca5b528 100644 (file)
@@ -17,7 +17,7 @@
 char logname[] = "project_abf_03/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 95%
rename from tests/deal.II/project_abf_04.cc
rename to tests/fail/project_abf_04.cc
index d014d0d20d19f5262ede06796737cfcf04ec1d8e..603fe8f24c15669a52bbb7d67c4fdc685dfb1add 100644 (file)
@@ -17,7 +17,7 @@
 char logname[] = "project_abf_04/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 95%
rename from tests/deal.II/project_abf_05.cc
rename to tests/fail/project_abf_05.cc
index c0f87091aadba4c0abb60d69c94007c868dcd481..35cda4fca6d7ce2588dcf73be14e47fd0f247732 100644 (file)
@@ -17,7 +17,7 @@
 char logname[] = "project_abf_05/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 95%
rename from tests/deal.II/project_dgp_nonparametric_01.cc
rename to tests/fail/project_dgp_nonparametric_01.cc
index f1d0d4b3a8ce4149abbbabbfbe16f7f920990993..24ad12da2ce02185d99d7d23fea07c4295e0749d 100644 (file)
@@ -18,7 +18,7 @@
 char logname[] = "project_dgp_nonparametric_01/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 95%
rename from tests/deal.II/project_dgp_nonparametric_02.cc
rename to tests/fail/project_dgp_nonparametric_02.cc
index f32cb616f6755cbd338d4a14468833a7265f672f..a8ac74ad918605ee355cf716a4f30a232b7aa899 100644 (file)
@@ -18,7 +18,7 @@
 char logname[] = "project_dgp_nonparametric_02/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 95%
rename from tests/deal.II/project_dgp_nonparametric_03.cc
rename to tests/fail/project_dgp_nonparametric_03.cc
index bddae02e62240b8575c44dbbd826e9c9ded42af8..c0aeb134123abc144082b5e09231a9d6827826e8 100644 (file)
@@ -18,7 +18,7 @@
 char logname[] = "project_dgp_nonparametric_03/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 95%
rename from tests/deal.II/project_dgp_nonparametric_04.cc
rename to tests/fail/project_dgp_nonparametric_04.cc
index c471ccd3eb3b9e7ddfb41bcc56e4f8fcdfd1e347..e6aa32745f679a332aabc1c476b4152360aff9ee 100644 (file)
@@ -18,7 +18,7 @@
 char logname[] = "project_dgp_nonparametric_04/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 95%
rename from tests/deal.II/project_dgp_nonparametric_05.cc
rename to tests/fail/project_dgp_nonparametric_05.cc
index 3cdb044b8e930071f7d525cbb99b7f36e4be04bb..fe380f1e100ad11f8cc293ac6fc28ab1f2eca8fa 100644 (file)
@@ -18,7 +18,7 @@
 char logname[] = "project_dgp_nonparametric_05/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 96%
rename from tests/deal.II/project_rt_03.cc
rename to tests/fail/project_rt_03.cc
index 911a5dd59ad95fc6f123b889d46347eadfa1add0..fcc074d50a5d8afe41f80cb42ece84d87abe1298 100644 (file)
@@ -17,7 +17,7 @@
 char logname[] = "project_rt_03/output";
 
 
-#include "project_common.cc"
+#include "../deal.II/project_common.cc"
 
 
 template <int dim>
similarity index 100%
rename from tests/fe/rt_4.cc
rename to tests/fail/rt_4.cc
similarity index 100%
rename from tests/fe/rt_6.cc
rename to tests/fail/rt_6.cc
similarity index 98%
rename from tests/bits/rt_crash_01.cc
rename to tests/fail/rt_crash_01.cc
index 1d4d5cb075ba860a3262336f7e85a27695d3a83b..d59aeb8f0bd05fd13c8b2653bdc248c1653b5402 100644 (file)
@@ -12,7 +12,7 @@
 //----------------------------  rt_crash_01.cc  ---------------------------
 
 #include "../tests.h"
-#include "dof_tools_common.cc"
+#include "../bits/dof_tools_common.cc"
 #include <dofs/dof_constraints.h>
 #include <base/function.h>
 #include <base/quadrature_lib.h>

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.