* operator representation of the linear deviator operator $\mathbb P$, also
* known as the volumetric projection tensor, calculated as:
* \f{align*}{
- * \mathbb{P} &=\mathbb{I} -\frac{1}{\text{dim}} \mathbf I \otimes \mathbf I
+ * \mathbb{P} &=\mathbb{S} -\frac{1}{\text{dim}} \mathbf I \otimes \mathbf I
* \\
* \mathcal{P}_{ijkl} &= \frac 12 \left(\delta_{ik} \delta_{jl} +
* \delta_{il} \delta_{jk} \right)
deviator_tensor();
/**
- * Return the fourth-order symmetric identity tensor $\mathbb I$ which maps
+ * Return the fourth-order symmetric identity tensor $\mathbb S$ which maps
* symmetric second-order tensors, such as $\mathbf A$, to themselves.
* \f[
- * \mathbb I : \mathbf A = \mathbf A
+ * \mathbb S : \mathbf A = \mathbf A
* \f]
*
* Note that this tensor, even though it is the identity, has a somewhat funny
* example, for <tt>dim=2</tt>, the identity tensor has all zero entries
* except for
* \f[
- * \mathcal{I}_{0000} = \mathcal{I}_{1111} = 1
+ * \mathcal{S}_{0000} = \mathcal{S}_{1111} = 1
* \f]
* \f[
- * \mathcal{I}_{0101} = \mathcal{I}_{0110} = \mathcal{I}_{1001}
- * = \mathcal{I}_{1010} = \frac 12.
+ * \mathcal{S}_{0101} = \mathcal{S}_{0110} = \mathcal{S}_{1001}
+ * = \mathcal{S}_{1010} = \frac 12.
* \f]
* In index notation, we can write the general form
* \f[
- * \mathcal{I}_{ijkl} = \frac 12 \left( \delta_{ik} \delta_{jl} +
+ * \mathcal{S}_{ijkl} = \frac 12 \left( \delta_{ik} \delta_{jl} +
* \delta_{il} \delta_{jk} \right).
* \f]
* To see why this factor of $1 / 2$ is necessary, consider computing
* $\mathbf A= \mathbb I : \mathbf B$.
- * For the element $A_{01}$ we have $A_{01} = \mathcal{I}_{0100} B_{00} +
- * \mathcal{I}_{0111} B_{11} + \mathcal{I}_{0101} B_{01} +
- * \mathcal{I}_{0110} B_{10}$. On the other hand, we need
+ * For the element $A_{01}$ we have $A_{01} = \mathcal{S}_{0100} B_{00} +
+ * \mathcal{S}_{0111} B_{11} + \mathcal{S}_{0101} B_{01} +
+ * \mathcal{S}_{0110} B_{10}$. On the other hand, we need
* to have $A_{01} = B_{01}$, and symmetry implies $B_{01}=B_{10}$,
- * leading to $A_{01} = (\mathcal{I}_{0101} + \mathcal{I}_{0110}) B_{01}$, or,
- * again by symmetry, $\mathcal{I}_{0101} = \mathcal{I}_{0110} = \frac 12$.
+ * leading to $A_{01} = (\mathcal{S}_{0101} + \mathcal{S}_{0110}) B_{01}$, or,
+ * again by symmetry, $\mathcal{S}_{0101} = \mathcal{S}_{0110} = \frac 12$.
* Similar considerations hold for the three-dimensional case.
*
* This issue is also explained in the introduction to step-44.