]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Move things local to each program into a local namespace.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 9 Sep 2011 03:17:50 +0000 (03:17 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 9 Sep 2011 03:17:50 +0000 (03:17 +0000)
git-svn-id: https://svn.dealii.org/trunk@24291 0785d39b-7218-0410-832d-ea1e28bc413d

15 files changed:
deal.II/examples/step-15/step-15.cc
deal.II/examples/step-16/step-16.cc
deal.II/examples/step-17/step-17.cc
deal.II/examples/step-18/step-18.cc
deal.II/examples/step-19/step-19.cc
deal.II/examples/step-20/step-20.cc
deal.II/examples/step-21/step-21.cc
deal.II/examples/step-22/step-22.cc
deal.II/examples/step-23/step-23.cc
deal.II/examples/step-24/step-24.cc
deal.II/examples/step-25/step-25.cc
deal.II/examples/step-26/step-26.cc
deal.II/examples/step-27/step-27.cc
deal.II/examples/step-28/step-28.cc
deal.II/examples/step-29/step-29.cc

index e002c4a8c12339b9e28c0ef0dda86e6592c61f5d..13237fe33323a917583bb38ce322977bf31e366c 100644 (file)
@@ -3,7 +3,7 @@
 
 /*    $Id$       */
 /*                                                                */
-/*    Copyright (C) 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2010 by the deal.II authors                   */
+/*    Copyright (C) 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011 by the deal.II authors                   */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 
                                 // The last step is as in all
                                 // previous programs:
-using namespace dealii;
-
-                                 // The first thing we have here is a helper
-                                 // function that computes an even power $|v|^n$
-                                 // of a vector $v$, by evaluating
-                                 // $(v\cdot v)^{n/2}$. We need this in the
-                                 // computations below where we do not want to
-                                 // dwell on the fact that the gradient of the
-                                 // solution is actually a scalar in the 1d
-                                 // situation we consider in this program (in
-                                 // 1d, the gradient is a vector with a single
-                                 // element, which is easily extracted). Small
-                                 // tricks like this make it significantly
-                                 // simpler to later extend a program so that
-                                 // it also runs in higher space dimensions.
-                                 //
-                                 // While the implementation of the function
-                                 // is obvious, note the assertion at the
-                                 // beginning of the function body, which
-                                 // makes sure that the exponent is indeed an
-                                 // even number (here, we use that <code>n/2</code> is
-                                 // computed in integer arithmetic, i.e. any
-                                 // remainder of the division is
-                                 // lost). <code>ExcMessage</code> is a pre-defined
-                                 // exception class that takes a string
-                                 // argument explaining what goes wrong. It is
-                                 // a simpler way to declare exceptions than
-                                 // the ones shown in step-9 and step-13/14
-                                 // where we explicitly declared exception
-                                 // classes. However, by using a generic
-                                 // exception class, we lose the ability to
-                                 // attach additional information at run-time
-                                 // to the exception message, such as the
-                                 // value of the variable <code>n</code>. By following
-                                 // the way explained in above example
-                                 // programs, adding this feature is simple,
-                                 // though.
-template <int dim>
-inline
-double gradient_power (const Tensor<1,dim> &v,
-                       const unsigned int n)
+namespace Step15
 {
-  Assert ((n/2)*2 == n, ExcMessage ("Value of 'n' must be even"));
-  double p = 1;
-  for (unsigned int k=0; k<n; k+=2)
-    p *= (v*v);
-  return p;
-}
-
-
+  using namespace dealii;
+
+                                  // The first thing we have here is a helper
+                                  // function that computes an even power $|v|^n$
+                                  // of a vector $v$, by evaluating
+                                  // $(v\cdot v)^{n/2}$. We need this in the
+                                  // computations below where we do not want to
+                                  // dwell on the fact that the gradient of the
+                                  // solution is actually a scalar in the 1d
+                                  // situation we consider in this program (in
+                                  // 1d, the gradient is a vector with a single
+                                  // element, which is easily extracted). Small
+                                  // tricks like this make it significantly
+                                  // simpler to later extend a program so that
+                                  // it also runs in higher space dimensions.
+                                  //
+                                  // While the implementation of the function
+                                  // is obvious, note the assertion at the
+                                  // beginning of the function body, which
+                                  // makes sure that the exponent is indeed an
+                                  // even number (here, we use that <code>n/2</code> is
+                                  // computed in integer arithmetic, i.e. any
+                                  // remainder of the division is
+                                  // lost). <code>ExcMessage</code> is a pre-defined
+                                  // exception class that takes a string
+                                  // argument explaining what goes wrong. It is
+                                  // a simpler way to declare exceptions than
+                                  // the ones shown in step-9 and step-13/14
+                                  // where we explicitly declared exception
+                                  // classes. However, by using a generic
+                                  // exception class, we lose the ability to
+                                  // attach additional information at run-time
+                                  // to the exception message, such as the
+                                  // value of the variable <code>n</code>. By following
+                                  // the way explained in above example
+                                  // programs, adding this feature is simple,
+                                  // though.
+  template <int dim>
+  inline
+  double gradient_power (const Tensor<1,dim> &v,
+                        const unsigned int n)
+  {
+    Assert ((n/2)*2 == n, ExcMessage ("Value of 'n' must be even"));
+    double p = 1;
+    for (unsigned int k=0; k<n; k+=2)
+      p *= (v*v);
+    return p;
+  }
 
-                                 // Secondly, we declare a class that defines
-                                 // our initial values for the nonlinear
-                                 // iteration. It is a function object,
-                                 // i.e. it has a member operator that returns
-                                 // for a given point the value of the
-                                 // function. The value we return is a random
-                                 // perturbation of the $x^{1/3}$ function
-                                 // which we know is the optimal solution in a
-                                 // larger function space. To make things a
-                                 // little simpler on the optimizer, we return
-                                 // zero if the proposed random value is
-                                 // negative.
-                                 //
-                                 // Note that this class works strictly only
-                                 // for 1d. If the program is to be extended
-                                 // to higher space dimensions, so has to be
-                                 // this class.
-class InitializationValues : public Function<1>
-{
-  public:
-    InitializationValues () : Function<1>() {}
-
-    virtual double value (const Point<1>     &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
-                                 // So here comes the function that implements
-                                 // the function object. The <code>base</code> value is
-                                 // $x^{1/3}$, while <code>random</code> is a random
-                                 // number between -1 and 1 (note that
-                                 // <code>rand()</code> returns a random integer value
-                                 // between zero and <code>RAND_MAX</code>; to convert
-                                 // it to a floating point value between 0 and
-                                 // 2, we have to divide by <code>RAND_MAX</code> and
-                                 // multiply by two -- note that the first
-                                 // multiplication has to happen in floating
-                                 // point arithmetic, so that the division is
-                                 // done in non-truncating floating point mode
-                                 // as well; the final step is then to shift
-                                 // the interval [0,2] to [-1,1]).
-                                 //
-                                 // In a second step, we add the base value
-                                 // and a random value in [-0.1,0.1] together
-                                 // and return it, unless it is less than
-                                 // zero, in which case we take zero.
-double InitializationValues::value (const Point<1> &p,
-                                    const unsigned int) const
-{
-  const double base = std::pow(p(0), 1./3.);
-  const double random = 2.*rand()/RAND_MAX-1;
-  return std::max (base+.1*random, 0.);
-}
 
 
+                                  // Secondly, we declare a class that defines
+                                  // our initial values for the nonlinear
+                                  // iteration. It is a function object,
+                                  // i.e. it has a member operator that returns
+                                  // for a given point the value of the
+                                  // function. The value we return is a random
+                                  // perturbation of the $x^{1/3}$ function
+                                  // which we know is the optimal solution in a
+                                  // larger function space. To make things a
+                                  // little simpler on the optimizer, we return
+                                  // zero if the proposed random value is
+                                  // negative.
+                                  //
+                                  // Note that this class works strictly only
+                                  // for 1d. If the program is to be extended
+                                  // to higher space dimensions, so has to be
+                                  // this class.
+  class InitializationValues : public Function<1>
+  {
+    public:
+      InitializationValues () : Function<1>() {}
+
+      virtual double value (const Point<1>     &p,
+                           const unsigned int  component = 0) const;
+  };
+
+
+
+                                  // So here comes the function that implements
+                                  // the function object. The <code>base</code> value is
+                                  // $x^{1/3}$, while <code>random</code> is a random
+                                  // number between -1 and 1 (note that
+                                  // <code>rand()</code> returns a random integer value
+                                  // between zero and <code>RAND_MAX</code>; to convert
+                                  // it to a floating point value between 0 and
+                                  // 2, we have to divide by <code>RAND_MAX</code> and
+                                  // multiply by two -- note that the first
+                                  // multiplication has to happen in floating
+                                  // point arithmetic, so that the division is
+                                  // done in non-truncating floating point mode
+                                  // as well; the final step is then to shift
+                                  // the interval [0,2] to [-1,1]).
+                                  //
+                                  // In a second step, we add the base value
+                                  // and a random value in [-0.1,0.1] together
+                                  // and return it, unless it is less than
+                                  // zero, in which case we take zero.
+  double InitializationValues::value (const Point<1> &p,
+                                     const unsigned int) const
+  {
+    const double base = std::pow(p(0), 1./3.);
+    const double random = 2.*rand()/RAND_MAX-1;
+    return std::max (base+.1*random, 0.);
+  }
 
-                                 // Next is the declaration of the main
-                                 // class. As in most of the previous example
-                                 // programs, the public interface of the
-                                 // class consists only of a constructor and a
-                                 // <code>run</code> function that does the actual
-                                 // work. The constructor takes an additional
-                                 // argument that indicates the number of the
-                                 // run we are presently performing. This
-                                 // value is only used at the very end when we
-                                 // generate graphical output with a filename
-                                 // that matches this number.
-                                 //
-                                 // The private section of the class has the
-                                 // usual assortment of functions setting up
-                                 // the computations, doing one nonlinear
-                                 // step, refineming the mesh, doing a line
-                                 // search for step length computations,
-                                 // etc. The <code>energy</code> function computes the
-                                 // value of the optimization functional on an
-                                 // arbitrary finite element function with
-                                 // nodal values given on the <code>DoFHandler</code>
-                                 // given as an argument. Since it does not
-                                 // depend on the state of this object, we
-                                 // declare this function as <code>static</code>.
-                                 //
-                                 // The member variables of this class are
-                                 // what we have seen before, and the
-                                 // variables that characterize the linear
-                                 // system to be solved in the next nonlinear
-                                 // step, as well as the present approximation
-                                 // of the solution.
-template <int dim>
-class MinimizationProblem
-{
-  public:
-    MinimizationProblem  (const unsigned int run_number);
-    void run ();
-
-  private:
-    void initialize_solution ();
-    void setup_system_on_mesh ();
-    void assemble_step ();
-    double line_search (const Vector<double> & update) const;
-    void do_step ();
-    void output_results () const;
-    void refine_grid ();
-
-    static double energy (const DoFHandler<dim> &dof_handler,
-                          const Vector<double>  &function);
-
-
-    const unsigned int run_number;
-
-    Triangulation<dim>   triangulation;
-
-    FE_Q<dim>            fe;
-    DoFHandler<dim>      dof_handler;
-
-    ConstraintMatrix     hanging_node_constraints;
-
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> matrix;
-
-    Vector<double>       present_solution;
-    Vector<double>       residual;
-};
-
-
-
-                                 // The constructor of this class is actually
-                                 // somewhat boring:
-template <int dim>
-MinimizationProblem<dim>::MinimizationProblem (const unsigned int run_number)
-                :
-                run_number (run_number),
-                fe (1),
-               dof_handler (triangulation)
-{}
-
-
-                                 // Then, here is the function that
-                                 // initializes the solution before the first
-                                 // non-linear iteration, by setting the
-                                 // initial values to the random function
-                                 // described above and making sure that the
-                                 // boundary values are set correctly. We will
-                                 // then only seek updates to this function
-                                 // with zero boundary values, so that the
-                                 // boundary values are always correct.
-                                 //
-                                 // Note how we have specialized this function
-                                 // to 1d only. We do this since the second
-                                 // part of the function, where we deal with
-                                 // boundary values, is only correct if we are
-                                 // in 1d. Not generating a general template
-                                 // for this function prevents the compiler
-                                 // from erroneously compiling this function
-                                 // for other space dimensions, then.
-template <>
-void MinimizationProblem<1>::initialize_solution ()
-{
-                                   // The first part is to assign the correct
-                                   // size to the vector, and use library
-                                   // function that takes a function object,
-                                   // and interpolates the given vector living
-                                   // on a <code>DoFHandler</code> to this function
-                                   // object:
-  present_solution.reinit (dof_handler.n_dofs());
-  VectorTools::interpolate (dof_handler,
-                            InitializationValues(),
-                            present_solution);
-
-                                   // Then we still have to make sure that we
-                                   // get the boundary values right. This
-                                   // could have been done inside the
-                                   // <code>InitializationValues</code> class, but it
-                                   // is instructive to see how it can also be
-                                   // done, in particular since it is so
-                                   // simple in 1d. First, start out with an
-                                   // arbitrary cell on level 0, i.e. the
-                                   // coarse mesh:
-  DoFHandler<1>::cell_iterator cell;
-  cell = dof_handler.begin(0);
-                                   // Then move as far to the left as
-                                   // possible. Note that while in two or more
-                                   // space dimensions, there is is no
-                                   // guarantee as to the coordinate
-                                   // directions of a given face number of a
-                                   // cell, in 1d the zeroth face (and
-                                   // neighbor) is always the one to the left,
-                                   // and the first one the one to the
-                                   // right. Similarly, the zeroth child is
-                                   // the left one, the first child is the
-                                   // right one.
-  while (cell->at_boundary(0) == false)
-    cell = cell->neighbor(0);
-                                   // Now that we are at the leftmost coarse
-                                   // grid cell, go recursively through its
-                                   // left children until we find a terminal
-                                   // one:
-  while (cell->has_children() == true)
-    cell = cell->child(0);
-                                   // Then set the value of the solution
-                                   // corresponding to the zeroth degree of
-                                   // freedom and the zeroth vertex of the
-                                   // cell to zero. Note that the zeroth
-                                   // vertex is the left one, and that zero is
-                                   // the only valid second argument to the
-                                   // call to <code>vertex_dof_index</code>, since we
-                                   // have a scalar finite element; thus,
-                                   // there is only a single component.
-  present_solution(cell->vertex_dof_index(0,0)) = 0;
-
-                                   // Now do all the same with the right
-                                   // boundary value, and set it to one:
-  cell = dof_handler.begin(0);
-  while (cell->at_boundary(1) == false)
-    cell = cell->neighbor(1);
-  while (cell->has_children())
-    cell = cell->child(1);
-  present_solution(cell->vertex_dof_index(1,0)) = 1;
-}
 
 
-                                 // The function that prepares the member
-                                 // variables of this class for assembling the
-                                 // linear system in each nonlinear step is
-                                 // also not very interesting. This has all
-                                 // been shown before in previous example
-                                 // programs. Note, however, that all this
-                                 // works in 1d just as in any other space
-                                 // dimension, and would not require any
-                                 // changes if we were to use the program in
-                                 // another space dimension.
-                                 //
-                                 // Note that this function is only called
-                                 // when the mesh has been changed (or before
-                                 // the first nonlinear step). It only
-                                 // initializes the variables to their right
-                                 // sizes, but since these sizes don't change
-                                 // as long as we don't change the mesh, we
-                                 // can use them for more than just one
-                                 // nonlinear iteration without reinitializing
-                                 // them.
-template <int dim>
-void MinimizationProblem<dim>::setup_system_on_mesh ()
-{
-  hanging_node_constraints.clear ();
-  DoFTools::make_hanging_node_constraints (dof_handler,
-                                          hanging_node_constraints);
-  hanging_node_constraints.close ();
+                                  // Next is the declaration of the main
+                                  // class. As in most of the previous example
+                                  // programs, the public interface of the
+                                  // class consists only of a constructor and a
+                                  // <code>run</code> function that does the actual
+                                  // work. The constructor takes an additional
+                                  // argument that indicates the number of the
+                                  // run we are presently performing. This
+                                  // value is only used at the very end when we
+                                  // generate graphical output with a filename
+                                  // that matches this number.
+                                  //
+                                  // The private section of the class has the
+                                  // usual assortment of functions setting up
+                                  // the computations, doing one nonlinear
+                                  // step, refineming the mesh, doing a line
+                                  // search for step length computations,
+                                  // etc. The <code>energy</code> function computes the
+                                  // value of the optimization functional on an
+                                  // arbitrary finite element function with
+                                  // nodal values given on the <code>DoFHandler</code>
+                                  // given as an argument. Since it does not
+                                  // depend on the state of this object, we
+                                  // declare this function as <code>static</code>.
+                                  //
+                                  // The member variables of this class are
+                                  // what we have seen before, and the
+                                  // variables that characterize the linear
+                                  // system to be solved in the next nonlinear
+                                  // step, as well as the present approximation
+                                  // of the solution.
+  template <int dim>
+  class MinimizationProblem
+  {
+    public:
+      MinimizationProblem  (const unsigned int run_number);
+      void run ();
+
+    private:
+      void initialize_solution ();
+      void setup_system_on_mesh ();
+      void assemble_step ();
+      double line_search (const Vector<double> & update) const;
+      void do_step ();
+      void output_results () const;
+      void refine_grid ();
+
+      static double energy (const DoFHandler<dim> &dof_handler,
+                           const Vector<double>  &function);
+
+
+      const unsigned int run_number;
+
+      Triangulation<dim>   triangulation;
+
+      FE_Q<dim>            fe;
+      DoFHandler<dim>      dof_handler;
+
+      ConstraintMatrix     hanging_node_constraints;
+
+      SparsityPattern      sparsity_pattern;
+      SparseMatrix<double> matrix;
+
+      Vector<double>       present_solution;
+      Vector<double>       residual;
+  };
+
+
+
+                                  // The constructor of this class is actually
+                                  // somewhat boring:
+  template <int dim>
+  MinimizationProblem<dim>::MinimizationProblem (const unsigned int run_number)
+                 :
+                 run_number (run_number),
+                 fe (1),
+                 dof_handler (triangulation)
+  {}
+
+
+                                  // Then, here is the function that
+                                  // initializes the solution before the first
+                                  // non-linear iteration, by setting the
+                                  // initial values to the random function
+                                  // described above and making sure that the
+                                  // boundary values are set correctly. We will
+                                  // then only seek updates to this function
+                                  // with zero boundary values, so that the
+                                  // boundary values are always correct.
+                                  //
+                                  // Note how we have specialized this function
+                                  // to 1d only. We do this since the second
+                                  // part of the function, where we deal with
+                                  // boundary values, is only correct if we are
+                                  // in 1d. Not generating a general template
+                                  // for this function prevents the compiler
+                                  // from erroneously compiling this function
+                                  // for other space dimensions, then.
+  template <>
+  void MinimizationProblem<1>::initialize_solution ()
+  {
+                                    // The first part is to assign the correct
+                                    // size to the vector, and use library
+                                    // function that takes a function object,
+                                    // and interpolates the given vector living
+                                    // on a <code>DoFHandler</code> to this function
+                                    // object:
+    present_solution.reinit (dof_handler.n_dofs());
+    VectorTools::interpolate (dof_handler,
+                             InitializationValues(),
+                             present_solution);
+
+                                    // Then we still have to make sure that we
+                                    // get the boundary values right. This
+                                    // could have been done inside the
+                                    // <code>InitializationValues</code> class, but it
+                                    // is instructive to see how it can also be
+                                    // done, in particular since it is so
+                                    // simple in 1d. First, start out with an
+                                    // arbitrary cell on level 0, i.e. the
+                                    // coarse mesh:
+    DoFHandler<1>::cell_iterator cell;
+    cell = dof_handler.begin(0);
+                                    // Then move as far to the left as
+                                    // possible. Note that while in two or more
+                                    // space dimensions, there is is no
+                                    // guarantee as to the coordinate
+                                    // directions of a given face number of a
+                                    // cell, in 1d the zeroth face (and
+                                    // neighbor) is always the one to the left,
+                                    // and the first one the one to the
+                                    // right. Similarly, the zeroth child is
+                                    // the left one, the first child is the
+                                    // right one.
+    while (cell->at_boundary(0) == false)
+      cell = cell->neighbor(0);
+                                    // Now that we are at the leftmost coarse
+                                    // grid cell, go recursively through its
+                                    // left children until we find a terminal
+                                    // one:
+    while (cell->has_children() == true)
+      cell = cell->child(0);
+                                    // Then set the value of the solution
+                                    // corresponding to the zeroth degree of
+                                    // freedom and the zeroth vertex of the
+                                    // cell to zero. Note that the zeroth
+                                    // vertex is the left one, and that zero is
+                                    // the only valid second argument to the
+                                    // call to <code>vertex_dof_index</code>, since we
+                                    // have a scalar finite element; thus,
+                                    // there is only a single component.
+    present_solution(cell->vertex_dof_index(0,0)) = 0;
+
+                                    // Now do all the same with the right
+                                    // boundary value, and set it to one:
+    cell = dof_handler.begin(0);
+    while (cell->at_boundary(1) == false)
+      cell = cell->neighbor(1);
+    while (cell->has_children())
+      cell = cell->child(1);
+    present_solution(cell->vertex_dof_index(1,0)) = 1;
+  }
 
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
 
-  hanging_node_constraints.condense (sparsity_pattern);
+                                  // The function that prepares the member
+                                  // variables of this class for assembling the
+                                  // linear system in each nonlinear step is
+                                  // also not very interesting. This has all
+                                  // been shown before in previous example
+                                  // programs. Note, however, that all this
+                                  // works in 1d just as in any other space
+                                  // dimension, and would not require any
+                                  // changes if we were to use the program in
+                                  // another space dimension.
+                                  //
+                                  // Note that this function is only called
+                                  // when the mesh has been changed (or before
+                                  // the first nonlinear step). It only
+                                  // initializes the variables to their right
+                                  // sizes, but since these sizes don't change
+                                  // as long as we don't change the mesh, we
+                                  // can use them for more than just one
+                                  // nonlinear iteration without reinitializing
+                                  // them.
+  template <int dim>
+  void MinimizationProblem<dim>::setup_system_on_mesh ()
+  {
+    hanging_node_constraints.clear ();
+    DoFTools::make_hanging_node_constraints (dof_handler,
+                                            hanging_node_constraints);
+    hanging_node_constraints.close ();
 
-  sparsity_pattern.compress();
-}
+    sparsity_pattern.reinit (dof_handler.n_dofs(),
+                            dof_handler.n_dofs(),
+                            dof_handler.max_couplings_between_dofs());
+    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
 
+    hanging_node_constraints.condense (sparsity_pattern);
 
+    sparsity_pattern.compress();
+  }
 
-                                 // Next is the function that assembles the
-                                 // linear system. The first part,
-                                 // initializing various local variables is
-                                 // what we have been doing previously
-                                 // already.
-template <int dim>
-void MinimizationProblem<dim>::assemble_step ()
-{
-                                   // The first two lines of the function
-                                   // clear the matrix and right hand side
-                                   // values of their prior content, which
-                                   // could possibly still be there from the
-                                   // previous nonlinear step.
-  matrix.reinit (sparsity_pattern);
-  residual.reinit (dof_handler.n_dofs());
-
-                                   // Then we initialize a <code>FEValues</code> object
-                                   // with a 4-point Gauss quadrature
-                                   // formula. This object will be used to
-                                   // compute the values and gradients of the
-                                   // shape functions at the quadrature
-                                   // points, which we need to assemble the
-                                   // matrix and right hand side of the
-                                   // nonlinear step as outlined in the
-                                   // introduction to this example program. In
-                                   // order to compute values and gradients,
-                                   // we need to pass the <code>update_values</code>
-                                   // and <code>update_gradients</code> flags to the
-                                   // constructor, and the
-                                   // <code>update_JxW_values</code> flag for the
-                                   // Jacobian times the weight at a
-                                   // quadrature point. In addition, we need
-                                   // to have the coordinate values of each
-                                   // quadrature point in real space for the
-                                   // $x-u^3$ terms; to get these from the
-                                   // <code>FEValues</code> object, we need to pass it
-                                   // the <code>update_quadrature_points</code> flag.
-                                   //
-                                   // It is a simple calculation to figure out
-                                   // that for linear elements, the integrals
-                                   // in the right hand side semilinear form
-                                   // is a polynomial of sixth order. Thus,
-                                   // the appropriate quadrature formula is
-                                   // the one we have chosen here.
-  QGauss<dim>  quadrature_formula(4);
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                          update_values   | update_gradients |
-                           update_quadrature_points | update_JxW_values);
-
-                                   // Next, here are the usual two convenience
-                                   // variables, followed by declarations for
-                                   // the local contributions to matrix and
-                                   // right hand side, as well as an array to
-                                   // hold the indices of the local degrees of
-                                   // freedom on each cell:
-  const unsigned int dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int n_q_points    = quadrature_formula.size();
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-                                   // The next two variables are needed since
-                                   // the problem we consider is nonlinear,
-                                   // and thus the right hand side depends on
-                                   // the previous solution (in a Newton
-                                   // method, for example, the left hand side
-                                   // matrix would also depend on the previous
-                                   // solution, but as explained in the
-                                   // introduction, we only use a simple
-                                   // gradient-type method in which the matrix
-                                   // is a scaled Laplace-type matrix). In
-                                   // order to compute the values of the
-                                   // integrand for the right hand side, we
-                                   // therefore need to have the values and
-                                   // gradients of the previous solution at
-                                   // the quadrature points. We will get them
-                                   // from the <code>FEValues</code> object above, and
-                                   // will put them into the following two
-                                   // variables:
-  std::vector<double>         local_solution_values (n_q_points);
-  std::vector<Tensor<1,dim> > local_solution_grads (n_q_points);
-
-                                   // Now, here comes the main loop over all
-                                   // the cells of the mesh:
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-                                       // First, clear the objects that hold
-                                       // the local matrix and right hand side
-                                       // contributions for this cell:
-      cell_matrix = 0;
-      cell_rhs = 0;
-
-                                       // Then initialize the values and
-                                       // gradients of the shape functions at
-                                       // the quadrature points of this cell:
-      fe_values.reinit (cell);
-
-                                       // And get the values and gradients of
-                                       // the previous solution at the
-                                       // quadrature points. To get them, we
-                                       // don't actually have to do much,
-                                       // except for giving the <code>FEValues</code>
-                                       // object the global node vector from
-                                       // which to compute this data, and a
-                                       // reference to the objects into which
-                                       // to put them. After the calls, the
-                                       // <code>local_solution_values</code> and
-                                       // <code>local_solution_values</code> variables
-                                       // will contain values and gradients
-                                       // for each of the quadrature points on
-                                       // this cell.
-      fe_values.get_function_values (present_solution,
-                                     local_solution_values);
-      fe_values.get_function_grads (present_solution,
-                                    local_solution_grads);
-
-                                       // Then loop over all quadrature
-                                       // points:
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-        {
-                                           // Have convenience variables for
-                                           // the values and gradient of the
-                                           // solution at the present
-                                           // quadrature point, as well as the
-                                           // location in real space of this
-                                           // quadrature point, and of the
-                                           // expression $x-u^3$, since it
-                                           // appears so often:
-          const double u = local_solution_values[q_point],
-                       x = fe_values.quadrature_point(q_point)(0);
-          const double x_minus_u3 = (x-std::pow(u,3));
-          const Tensor<1,dim> u_prime = local_solution_grads[q_point];
-
-                                           // Then do the double loop over all
-                                           // shape functions to compute the
-                                           // local contribution to the
-                                           // matrix. The terms are simple
-                                           // equivalents of the formula
-                                           // stated in the introduction. Note
-                                           // how we extract the size of an
-                                           // element from the iterator to the
-                                           // present cell:
-          for (unsigned int i=0; i<dofs_per_cell; ++i)
-            for (unsigned int j=0; j<dofs_per_cell; ++j)
-              cell_matrix(i,j)
-                += (fe_values.shape_grad(i,q_point) *
-                    fe_values.shape_grad(j,q_point) *
-                    cell->diameter() *
-                    cell->diameter()
-                    +
-                    fe_values.shape_value(i,q_point) *
-                    fe_values.shape_value(j,q_point)) *
-                fe_values.JxW(q_point);
-
-                                           // And here comes the loop over all
-                                           // local degrees of freedom to form
-                                           // the right hand side. The formula
-                                           // looks a little convoluted, but
-                                           // is again a simple image of what
-                                           // was given in the introduction:
-          for (unsigned int i=0; i<dofs_per_cell; ++i)
-            cell_rhs(i) += -((6. * x_minus_u3 *
-                              gradient_power (u_prime, 4) *
-                              fe_values.shape_value(i,q_point)
-                              *
-                              (x_minus_u3 *
-                               (u_prime *
-                                fe_values.shape_grad(i,q_point))
-                               -
-                               (u_prime*u_prime) * u * u *
-                               fe_values.shape_value(i,q_point))
-                              )
-                             *
-                             fe_values.JxW(q_point));
-        }
 
-                                       // After summing up all the
-                                       // contributions, we have to transfer
-                                       // them to the global objects. This is
-                                       // done in the same way as always
-                                       // before:
-      cell->get_dof_indices (local_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           matrix.add (local_dof_indices[i],
-                              local_dof_indices[j],
-                              cell_matrix(i,j));
-
-         residual(local_dof_indices[i]) += cell_rhs(i);
-       }
-    }
 
-                                   // Now that we have all the local
-                                   // contributions summed up, we have to
-                                   // eliminate hanging node constraints and
-                                   // boundary values. Hanging nodes are
-                                   // simple:
-  hanging_node_constraints.condense (matrix);
-  hanging_node_constraints.condense (residual);
-
-                                   // %Boundary values are, too, but with a
-                                   // twist this time: in all previous example
-                                   // programs, we have used that by default
-                                   // (i.e. unless something else is set), all
-                                   // boundaries have indicator zero. To
-                                   // figure out what boundary indicator a
-                                   // face of a cell had, the library
-                                   // functions would query an iterator
-                                   // designating this face, which would in
-                                   // turn pluck out this value from some of
-                                   // the data structures in the
-                                   // library. Unfortunately, in 1d cells have
-                                   // no faces: these would only be points,
-                                   // and we don't associated anything in the
-                                   // library with points except for their
-                                   // coordinates. Thus there are no face
-                                   // iterators, and no way to figure out
-                                   // which boundary indicator it may have. On
-                                   // the other hand, in 1d, there can only be
-                                   // two boundaries anyway for a connected
-                                   // domain: the left end point and the right
-                                   // end point. And in contrast to the case
-                                   // in higher dimensions, where the
-                                   // (changeable) default is zero for all
-                                   // boundary parts, in 1d the convention is
-                                   // that the left boundary point has
-                                   // indicator zero, while the right boundary
-                                   // point has indicator one. Since there are
-                                   // no face iterators, it is also not
-                                   // possible to change this, but you will
-                                   // hardly ever have to. So in order to
-                                   // assign zero boundary values on both
-                                   // sides, in 1d we not only need to
-                                   // evaluate boundary values for indicator
-                                   // zero, but also for indicator one. If
-                                   // this program is ever going to be run in
-                                   // higher dimensions, then we should only
-                                   // evaluate for indicator zero, which is
-                                   // why we have placed the <code>if</code> statement
-                                   // in front of the second function call.
-                                   //
-                                   // Note that we need zero boundary
-                                   // conditions on both ends, since the space
-                                   // in which search for the solution has
-                                   // fixed boundary conditions zero and one,
-                                   // and we have set the initial values to
-                                   // already satisfy them. Thus, the updates
-                                   // computed in each nonlinear step must
-                                   // have zero boundary values.
-  std::map<unsigned int,double> boundary_values;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           ZeroFunction<dim>(),
-                                           boundary_values);
-  if (dim == 1)
+                                  // Next is the function that assembles the
+                                  // linear system. The first part,
+                                  // initializing various local variables is
+                                  // what we have been doing previously
+                                  // already.
+  template <int dim>
+  void MinimizationProblem<dim>::assemble_step ()
+  {
+                                    // The first two lines of the function
+                                    // clear the matrix and right hand side
+                                    // values of their prior content, which
+                                    // could possibly still be there from the
+                                    // previous nonlinear step.
+    matrix.reinit (sparsity_pattern);
+    residual.reinit (dof_handler.n_dofs());
+
+                                    // Then we initialize a <code>FEValues</code> object
+                                    // with a 4-point Gauss quadrature
+                                    // formula. This object will be used to
+                                    // compute the values and gradients of the
+                                    // shape functions at the quadrature
+                                    // points, which we need to assemble the
+                                    // matrix and right hand side of the
+                                    // nonlinear step as outlined in the
+                                    // introduction to this example program. In
+                                    // order to compute values and gradients,
+                                    // we need to pass the <code>update_values</code>
+                                    // and <code>update_gradients</code> flags to the
+                                    // constructor, and the
+                                    // <code>update_JxW_values</code> flag for the
+                                    // Jacobian times the weight at a
+                                    // quadrature point. In addition, we need
+                                    // to have the coordinate values of each
+                                    // quadrature point in real space for the
+                                    // $x-u^3$ terms; to get these from the
+                                    // <code>FEValues</code> object, we need to pass it
+                                    // the <code>update_quadrature_points</code> flag.
+                                    //
+                                    // It is a simple calculation to figure out
+                                    // that for linear elements, the integrals
+                                    // in the right hand side semilinear form
+                                    // is a polynomial of sixth order. Thus,
+                                    // the appropriate quadrature formula is
+                                    // the one we have chosen here.
+    QGauss<dim>  quadrature_formula(4);
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values   | update_gradients |
+                            update_quadrature_points | update_JxW_values);
+
+                                    // Next, here are the usual two convenience
+                                    // variables, followed by declarations for
+                                    // the local contributions to matrix and
+                                    // right hand side, as well as an array to
+                                    // hold the indices of the local degrees of
+                                    // freedom on each cell:
+    const unsigned int dofs_per_cell = fe.dofs_per_cell;
+    const unsigned int n_q_points    = quadrature_formula.size();
+
+    FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>       cell_rhs (dofs_per_cell);
+
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+                                    // The next two variables are needed since
+                                    // the problem we consider is nonlinear,
+                                    // and thus the right hand side depends on
+                                    // the previous solution (in a Newton
+                                    // method, for example, the left hand side
+                                    // matrix would also depend on the previous
+                                    // solution, but as explained in the
+                                    // introduction, we only use a simple
+                                    // gradient-type method in which the matrix
+                                    // is a scaled Laplace-type matrix). In
+                                    // order to compute the values of the
+                                    // integrand for the right hand side, we
+                                    // therefore need to have the values and
+                                    // gradients of the previous solution at
+                                    // the quadrature points. We will get them
+                                    // from the <code>FEValues</code> object above, and
+                                    // will put them into the following two
+                                    // variables:
+    std::vector<double>         local_solution_values (n_q_points);
+    std::vector<Tensor<1,dim> > local_solution_grads (n_q_points);
+
+                                    // Now, here comes the main loop over all
+                                    // the cells of the mesh:
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+                                        // First, clear the objects that hold
+                                        // the local matrix and right hand side
+                                        // contributions for this cell:
+       cell_matrix = 0;
+       cell_rhs = 0;
+
+                                        // Then initialize the values and
+                                        // gradients of the shape functions at
+                                        // the quadrature points of this cell:
+       fe_values.reinit (cell);
+
+                                        // And get the values and gradients of
+                                        // the previous solution at the
+                                        // quadrature points. To get them, we
+                                        // don't actually have to do much,
+                                        // except for giving the <code>FEValues</code>
+                                        // object the global node vector from
+                                        // which to compute this data, and a
+                                        // reference to the objects into which
+                                        // to put them. After the calls, the
+                                        // <code>local_solution_values</code> and
+                                        // <code>local_solution_values</code> variables
+                                        // will contain values and gradients
+                                        // for each of the quadrature points on
+                                        // this cell.
+       fe_values.get_function_values (present_solution,
+                                      local_solution_values);
+       fe_values.get_function_grads (present_solution,
+                                     local_solution_grads);
+
+                                        // Then loop over all quadrature
+                                        // points:
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+         {
+                                            // Have convenience variables for
+                                            // the values and gradient of the
+                                            // solution at the present
+                                            // quadrature point, as well as the
+                                            // location in real space of this
+                                            // quadrature point, and of the
+                                            // expression $x-u^3$, since it
+                                            // appears so often:
+           const double u = local_solution_values[q_point],
+                        x = fe_values.quadrature_point(q_point)(0);
+           const double x_minus_u3 = (x-std::pow(u,3));
+           const Tensor<1,dim> u_prime = local_solution_grads[q_point];
+
+                                            // Then do the double loop over all
+                                            // shape functions to compute the
+                                            // local contribution to the
+                                            // matrix. The terms are simple
+                                            // equivalents of the formula
+                                            // stated in the introduction. Note
+                                            // how we extract the size of an
+                                            // element from the iterator to the
+                                            // present cell:
+           for (unsigned int i=0; i<dofs_per_cell; ++i)
+             for (unsigned int j=0; j<dofs_per_cell; ++j)
+               cell_matrix(i,j)
+                 += (fe_values.shape_grad(i,q_point) *
+                     fe_values.shape_grad(j,q_point) *
+                     cell->diameter() *
+                     cell->diameter()
+                     +
+                     fe_values.shape_value(i,q_point) *
+                     fe_values.shape_value(j,q_point)) *
+                 fe_values.JxW(q_point);
+
+                                            // And here comes the loop over all
+                                            // local degrees of freedom to form
+                                            // the right hand side. The formula
+                                            // looks a little convoluted, but
+                                            // is again a simple image of what
+                                            // was given in the introduction:
+           for (unsigned int i=0; i<dofs_per_cell; ++i)
+             cell_rhs(i) += -((6. * x_minus_u3 *
+                               gradient_power (u_prime, 4) *
+                               fe_values.shape_value(i,q_point)
+                               *
+                               (x_minus_u3 *
+                                (u_prime *
+                                 fe_values.shape_grad(i,q_point))
+                                -
+                                (u_prime*u_prime) * u * u *
+                                fe_values.shape_value(i,q_point))
+                              )
+                              *
+                              fe_values.JxW(q_point));
+         }
+
+                                        // After summing up all the
+                                        // contributions, we have to transfer
+                                        // them to the global objects. This is
+                                        // done in the same way as always
+                                        // before:
+       cell->get_dof_indices (local_dof_indices);
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         {
+           for (unsigned int j=0; j<dofs_per_cell; ++j)
+             matrix.add (local_dof_indices[i],
+                         local_dof_indices[j],
+                         cell_matrix(i,j));
+
+           residual(local_dof_indices[i]) += cell_rhs(i);
+         }
+      }
+
+                                    // Now that we have all the local
+                                    // contributions summed up, we have to
+                                    // eliminate hanging node constraints and
+                                    // boundary values. Hanging nodes are
+                                    // simple:
+    hanging_node_constraints.condense (matrix);
+    hanging_node_constraints.condense (residual);
+
+                                    // %Boundary values are, too, but with a
+                                    // twist this time: in all previous example
+                                    // programs, we have used that by default
+                                    // (i.e. unless something else is set), all
+                                    // boundaries have indicator zero. To
+                                    // figure out what boundary indicator a
+                                    // face of a cell had, the library
+                                    // functions would query an iterator
+                                    // designating this face, which would in
+                                    // turn pluck out this value from some of
+                                    // the data structures in the
+                                    // library. Unfortunately, in 1d cells have
+                                    // no faces: these would only be points,
+                                    // and we don't associated anything in the
+                                    // library with points except for their
+                                    // coordinates. Thus there are no face
+                                    // iterators, and no way to figure out
+                                    // which boundary indicator it may have. On
+                                    // the other hand, in 1d, there can only be
+                                    // two boundaries anyway for a connected
+                                    // domain: the left end point and the right
+                                    // end point. And in contrast to the case
+                                    // in higher dimensions, where the
+                                    // (changeable) default is zero for all
+                                    // boundary parts, in 1d the convention is
+                                    // that the left boundary point has
+                                    // indicator zero, while the right boundary
+                                    // point has indicator one. Since there are
+                                    // no face iterators, it is also not
+                                    // possible to change this, but you will
+                                    // hardly ever have to. So in order to
+                                    // assign zero boundary values on both
+                                    // sides, in 1d we not only need to
+                                    // evaluate boundary values for indicator
+                                    // zero, but also for indicator one. If
+                                    // this program is ever going to be run in
+                                    // higher dimensions, then we should only
+                                    // evaluate for indicator zero, which is
+                                    // why we have placed the <code>if</code> statement
+                                    // in front of the second function call.
+                                    //
+                                    // Note that we need zero boundary
+                                    // conditions on both ends, since the space
+                                    // in which search for the solution has
+                                    // fixed boundary conditions zero and one,
+                                    // and we have set the initial values to
+                                    // already satisfy them. Thus, the updates
+                                    // computed in each nonlinear step must
+                                    // have zero boundary values.
+    std::map<unsigned int,double> boundary_values;
     VectorTools::interpolate_boundary_values (dof_handler,
-                                              1,
-                                              ZeroFunction<dim>(),
-                                              boundary_values);
-  Vector<double> dummy (residual.size());
-  MatrixTools::apply_boundary_values (boundary_values,
-                                     matrix,
-                                     dummy,
-                                     residual);
-}
-
-
-                                 // Once we have a search (update) direction,
-                                 // we need to figure out how far to go in
-                                 // this direction. This is what line search
-                                 // is good for, and this function does
-                                 // exactly this: compute and return the
-                                 // length of the update step.
-                                 //
-                                 // Since we already know the direction, we
-                                 // only have to solve the one-dimensional
-                                 // problem of minimizing the energy along
-                                 // this direction. Note, however, that in
-                                 // general we do not have the gradient of the
-                                 // energy functional in this direction, so we
-                                 // have to approximate it (and the second
-                                 // derivatives) using finite differences.
-                                 //
-                                 // In most applications, it is sufficient to
-                                 // find an approximate minimizer of this
-                                 // one-dimensional problem, or even just a
-                                 // point that may not be a minimizer but
-                                 // instead just satisfies a few conditions
-                                 // like those of Armijo and Goldstein. The
-                                 // rational for this is generally that
-                                 // evaluating the objective function too
-                                 // often is too expensive. However, here, we
-                                 // are a little more lenient, since the
-                                 // overall run-time is dominated by inverting
-                                 // the system matrix in each nonlinear
-                                 // step. Thus, we will do this minimization
-                                 // by using a fixed number of five Newton
-                                 // steps in this one-dimensional problem, and
-                                 // using a bisection algorithm as a substep
-                                 // in it.
-                                 //
-                                 // As is quite common in step length
-                                 // procedures, this function contains a fair
-                                 // number of heuristics and strategies that
-                                 // might not be obvious at first. Step length
-                                 // determination is notorious for its
-                                 // complications, and this implementation is
-                                 // not an exception. Note that if one tries
-                                 // to omit the special-casing, then one
-                                 // oftentimes encounters situations where the
-                                 // found step length is really not very good.
-template <int dim>
-double
-MinimizationProblem<dim>::line_search (const Vector<double> &update) const
-{
-                                   // Start out with a zero step length:
-  double alpha = 0.;
-  Vector<double> tmp (present_solution.size());
-
-                                   // Then do at most five Newton steps:
-  for (unsigned int step=0; step<5; ++step)
-    {
-                                       // At the present location, which is
-                                       // <code>present_solution+alpha*update</code>,
-                                       // evaluate the energy
-      tmp = present_solution;
-      tmp.add (alpha, update);
-      const double f_a = energy (dof_handler, tmp);
-
-                                       // Then determine a finite difference
-                                       // step length <code>dalpha</code>, and also
-                                       // evaluate the energy functional at
-                                       // positions <code>alpha+dalpha</code> and
-                                       // <code>alpha-dalpha</code> along the search
-                                       // direction:
-      const double dalpha = (alpha != 0 ? alpha/100 : 0.01);
-
-      tmp = present_solution;
-      tmp.add (alpha+dalpha, update);
-      const double f_a_plus = energy (dof_handler, tmp);
-
-      tmp = present_solution;
-      tmp.add (alpha-dalpha, update);
-      const double f_a_minus = energy (dof_handler, tmp);
-
-                                       // From these three data points, we can
-                                       // compute a finite difference
-                                       // approximation of the first and
-                                       // second derivatives:
-      const double f_a_prime       = (f_a_plus-f_a_minus) / (2*dalpha);
-      const double f_a_doubleprime = ((f_a_plus-2*f_a+f_a_minus) /
-                                      (dalpha*dalpha));
-
-                                       // If the gradient is (relative to the
-                                       // energy value) too small, then this
-                                       // means that we have found a minimum
-                                       // of the energy functional along the
-                                       // search direction. In this case,
-                                       // abort here and return the found step
-                                       // length value:
-      if (std::fabs(f_a_prime) < 1e-7*std::fabs(f_a))
-        break;
-
-                                       // Alternatively, also abort if the
-                                       // curvature is too small, because we
-                                       // can't compute a Newton step
-                                       // then. This is somewhat
-                                       // unsatisfactory, since we are not at
-                                       // a minimum, and can certainly be
-                                       // improved. There are a number of
-                                       // other strategies for this case,
-                                       // which we leave for interested
-                                       // readers:
-      if (std::fabs(f_a_doubleprime) < 1e-7*std::fabs(f_a_prime))
-        break;
-
-                                       // Then compute the Newton step as the
-                                       // negative of the inverse Hessian
-                                       // applied to the gradient.
-      double step_length = -f_a_prime / f_a_doubleprime;
-
-                                       // And do a number of correcting steps:
-                                       // if the energy at the predicted new
-                                       // position would be larger than at the
-                                       // present position, then halve the
-                                       // step length and try again. If this
-                                       // does not help after three such
-                                       // cycles, then simply give up and use
-                                       // the value we have.
-      for (unsigned int i=0; i<3; ++i)
-        {
-          tmp = present_solution;
-          tmp.add (alpha+step_length, update);
-          const double e = energy (dof_handler, tmp);
-
-          if (e >= f_a)
-            step_length /= 2;
-          else
-            break;
-        }
-
-                                       // After all this, update alpha and go
-                                       // on to the next Newton step.
-      alpha += step_length;
-    }
-
-                                   // Finally, return with the computed step length.
-  return alpha;
-}
-
+                                             0,
+                                             ZeroFunction<dim>(),
+                                             boundary_values);
+    if (dim == 1)
+      VectorTools::interpolate_boundary_values (dof_handler,
+                                               1,
+                                               ZeroFunction<dim>(),
+                                               boundary_values);
+    Vector<double> dummy (residual.size());
+    MatrixTools::apply_boundary_values (boundary_values,
+                                       matrix,
+                                       dummy,
+                                       residual);
+  }
 
 
-                                 // The next function is again a rather boring
-                                 // one: it does one nonlinear step, by
-                                 // calling the function that assembles the
-                                 // linear system, then solving it, computing
-                                 // a step length, and finally updating the
-                                 // solution vector. This should all be mostly
-                                 // self-explanatory, given that we have shown
-                                 // the solution of a linear system before.
-template <int dim>
-void MinimizationProblem<dim>::do_step ()
-{
-  assemble_step ();
-
-  Vector<double> update (present_solution.size());
+                                  // Once we have a search (update) direction,
+                                  // we need to figure out how far to go in
+                                  // this direction. This is what line search
+                                  // is good for, and this function does
+                                  // exactly this: compute and return the
+                                  // length of the update step.
+                                  //
+                                  // Since we already know the direction, we
+                                  // only have to solve the one-dimensional
+                                  // problem of minimizing the energy along
+                                  // this direction. Note, however, that in
+                                  // general we do not have the gradient of the
+                                  // energy functional in this direction, so we
+                                  // have to approximate it (and the second
+                                  // derivatives) using finite differences.
+                                  //
+                                  // In most applications, it is sufficient to
+                                  // find an approximate minimizer of this
+                                  // one-dimensional problem, or even just a
+                                  // point that may not be a minimizer but
+                                  // instead just satisfies a few conditions
+                                  // like those of Armijo and Goldstein. The
+                                  // rational for this is generally that
+                                  // evaluating the objective function too
+                                  // often is too expensive. However, here, we
+                                  // are a little more lenient, since the
+                                  // overall run-time is dominated by inverting
+                                  // the system matrix in each nonlinear
+                                  // step. Thus, we will do this minimization
+                                  // by using a fixed number of five Newton
+                                  // steps in this one-dimensional problem, and
+                                  // using a bisection algorithm as a substep
+                                  // in it.
+                                  //
+                                  // As is quite common in step length
+                                  // procedures, this function contains a fair
+                                  // number of heuristics and strategies that
+                                  // might not be obvious at first. Step length
+                                  // determination is notorious for its
+                                  // complications, and this implementation is
+                                  // not an exception. Note that if one tries
+                                  // to omit the special-casing, then one
+                                  // oftentimes encounters situations where the
+                                  // found step length is really not very good.
+  template <int dim>
+  double
+  MinimizationProblem<dim>::line_search (const Vector<double> &update) const
   {
-    SolverControl           solver_control (residual.size(),
-                                            1e-2*residual.l2_norm());
-    SolverCG<>              solver (solver_control);
-
-    PreconditionSSOR<> preconditioner;
-    preconditioner.initialize(matrix);
-
-    solver.solve (matrix, update, residual,
-                  preconditioner);
-    hanging_node_constraints.distribute (update);
+                                    // Start out with a zero step length:
+    double alpha = 0.;
+    Vector<double> tmp (present_solution.size());
+
+                                    // Then do at most five Newton steps:
+    for (unsigned int step=0; step<5; ++step)
+      {
+                                        // At the present location, which is
+                                        // <code>present_solution+alpha*update</code>,
+                                        // evaluate the energy
+       tmp = present_solution;
+       tmp.add (alpha, update);
+       const double f_a = energy (dof_handler, tmp);
+
+                                        // Then determine a finite difference
+                                        // step length <code>dalpha</code>, and also
+                                        // evaluate the energy functional at
+                                        // positions <code>alpha+dalpha</code> and
+                                        // <code>alpha-dalpha</code> along the search
+                                        // direction:
+       const double dalpha = (alpha != 0 ? alpha/100 : 0.01);
+
+       tmp = present_solution;
+       tmp.add (alpha+dalpha, update);
+       const double f_a_plus = energy (dof_handler, tmp);
+
+       tmp = present_solution;
+       tmp.add (alpha-dalpha, update);
+       const double f_a_minus = energy (dof_handler, tmp);
+
+                                        // From these three data points, we can
+                                        // compute a finite difference
+                                        // approximation of the first and
+                                        // second derivatives:
+       const double f_a_prime       = (f_a_plus-f_a_minus) / (2*dalpha);
+       const double f_a_doubleprime = ((f_a_plus-2*f_a+f_a_minus) /
+                                       (dalpha*dalpha));
+
+                                        // If the gradient is (relative to the
+                                        // energy value) too small, then this
+                                        // means that we have found a minimum
+                                        // of the energy functional along the
+                                        // search direction. In this case,
+                                        // abort here and return the found step
+                                        // length value:
+       if (std::fabs(f_a_prime) < 1e-7*std::fabs(f_a))
+         break;
+
+                                        // Alternatively, also abort if the
+                                        // curvature is too small, because we
+                                        // can't compute a Newton step
+                                        // then. This is somewhat
+                                        // unsatisfactory, since we are not at
+                                        // a minimum, and can certainly be
+                                        // improved. There are a number of
+                                        // other strategies for this case,
+                                        // which we leave for interested
+                                        // readers:
+       if (std::fabs(f_a_doubleprime) < 1e-7*std::fabs(f_a_prime))
+         break;
+
+                                        // Then compute the Newton step as the
+                                        // negative of the inverse Hessian
+                                        // applied to the gradient.
+       double step_length = -f_a_prime / f_a_doubleprime;
+
+                                        // And do a number of correcting steps:
+                                        // if the energy at the predicted new
+                                        // position would be larger than at the
+                                        // present position, then halve the
+                                        // step length and try again. If this
+                                        // does not help after three such
+                                        // cycles, then simply give up and use
+                                        // the value we have.
+       for (unsigned int i=0; i<3; ++i)
+         {
+           tmp = present_solution;
+           tmp.add (alpha+step_length, update);
+           const double e = energy (dof_handler, tmp);
+
+           if (e >= f_a)
+             step_length /= 2;
+           else
+             break;
+         }
+
+                                        // After all this, update alpha and go
+                                        // on to the next Newton step.
+       alpha += step_length;
+      }
+
+                                    // Finally, return with the computed step length.
+    return alpha;
   }
 
-  const double step_length = line_search (update);
-  present_solution.add (step_length, update);
-}
 
 
+                                  // The next function is again a rather boring
+                                  // one: it does one nonlinear step, by
+                                  // calling the function that assembles the
+                                  // linear system, then solving it, computing
+                                  // a step length, and finally updating the
+                                  // solution vector. This should all be mostly
+                                  // self-explanatory, given that we have shown
+                                  // the solution of a linear system before.
+  template <int dim>
+  void MinimizationProblem<dim>::do_step ()
+  {
+    assemble_step ();
 
-                                 // The same holds for the function that
-                                 // outputs the solution in gnuplot format
-                                 // into a file with a name that includes the
-                                 // number of the run we are presently
-                                 // performing.
-template <int dim>
-void
-MinimizationProblem<dim>::output_results () const
-{
-  DataOut<dim> data_out;
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (present_solution, "solution");
-  data_out.build_patches ();
-
-  std::ostringstream filename;
-  filename << "solution-"
-           << run_number
-           << ".gnuplot"
-           << std::ends;
-
-  std::ofstream out (filename.str().c_str());
-  data_out.write_gnuplot (out);
-}
+    Vector<double> update (present_solution.size());
+    {
+      SolverControl           solver_control (residual.size(),
+                                             1e-2*residual.l2_norm());
+      SolverCG<>              solver (solver_control);
 
+      PreconditionSSOR<> preconditioner;
+      preconditioner.initialize(matrix);
 
+      solver.solve (matrix, update, residual,
+                   preconditioner);
+      hanging_node_constraints.distribute (update);
+    }
 
-                                 // The function to compute error indicator
-                                 // and refine the mesh accordingly is a
-                                 // little more interesting. In particular, it
-                                 // shows some more of the techniques usually
-                                 // used in 1d applications. First, note that
-                                 // this again is a specialization that only
-                                 // works in 1d. However, to make later
-                                 // extension to higher space dimensions
-                                 // simpler, we define a constant integer
-                                 // <code>dim</code> at the beginning of the function;
-                                 // by using this constant as template
-                                 // argument in all places, we are actually
-                                 // able to write most of the code as if it
-                                 // were dimension independent, thus
-                                 // minimizing the amount of later changes.
-template <>
-void MinimizationProblem<1>::refine_grid ()
-{
-  const unsigned int dim = 1;
-
-  Vector<float> error_indicators (triangulation.n_active_cells());
-
-                                   // Then define the quadrature formula, and
-                                   // what values we will want to extract from
-                                   // the solution. Here, we use the two-point
-                                   // trapezoidal rule, i.e. we evaluate the
-                                   // residual only at the end points of the
-                                   // cells. Incidentally, this also makes
-                                   // evaluating the jump terms between cells
-                                   // simpler. Note that for the error
-                                   // indicators, we not only need values and
-                                   // gradients of the solution, but also its
-                                   // second derivatives, as well as the
-                                   // physical location of quadrature points.
-  QTrapez<dim> quadrature;
-  FEValues<dim> fe_values (fe, quadrature,
-                           update_values   | update_gradients |
-                           update_hessians |
-                           update_quadrature_points | update_JxW_values);
-
-                                   // The error indicator formula presented in
-                                   // the introduction requires us to compute
-                                   // jumps of the solution and gradient
-                                   // across cell boundaries. Since the
-                                   // solution itself is continuous, we only
-                                   // need to evaluate the gradient on the
-                                   // neighbor cells. To avoid some of the
-                                   // work needed to reinitialize a
-                                   // <code>FEValues</code> object on a cell, we define
-                                   // another such object here that we will
-                                   // only use for the neighbor cells. The
-                                   // data we need from the side of the
-                                   // present cell is provided by above
-                                   // object.
-  FEValues<dim> neighbor_fe_values (fe, quadrature,
-                                    update_gradients);
-
-                                   // Then, as before, we need objects holding
-                                   // values and derivatives of the solution
-                                   // at quadrature points. Here, we also need
-                                   // second derivatives, which is simple,
-                                   // however:
-  std::vector<double> local_values (quadrature.size());
-  std::vector<Tensor<1,dim> > local_gradients (quadrature.size());
-  std::vector<Tensor<2,dim> > local_2nd_derivs (quadrature.size());
-
-                                   // With all this, we can start the loop
-                                   // over all cells. Since we need to write
-                                   // the result for each cell into
-                                   // consecutive elements of a vector, we
-                                   // also keep a running index <code>cell_index</code>
-                                   // that we increase with each cell treated.
-  DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active (),
-    endc = dof_handler.end ();
-  for (unsigned int cell_index = 0; cell!=endc; ++cell, ++cell_index)
-    {
-                                       // After initializing the <code>FEValues</code>
-                                       // object on each cell, use it to
-                                       // evaluate solution and first and
-                                       // second derivatives of it at the
-                                       // quadrature points:
-      fe_values.reinit (cell);
-      fe_values.get_function_values (present_solution, local_values);
-      fe_values.get_function_grads (present_solution, local_gradients);
-      fe_values.get_function_2nd_derivatives (present_solution, local_2nd_derivs);
-
-                                       // Given the formula in the
-                                       // introduction, the computation of the
-                                       // cell residuals should actually be
-                                       // relatively obvious. The result,
-                                       // multiplied by the appropriate power
-                                       // of the cell's size is then written
-                                       // into the vector of error indicators.
-                                       //
-                                       // Note that in the following
-                                       // computations, we have already made
-                                       // use of the fact that we are in 1d,
-                                       // since we extract the gradient as a
-                                       // scalar value.
-      double cell_residual_norm = 0;
-      for (unsigned int q=0; q<quadrature.size(); ++q)
-        {
-          const double x             = fe_values.quadrature_point(q)[0];
-          const double u             = local_values[q];
-          const double u_prime       = local_gradients[q][0];
-          const double u_doubleprime = local_2nd_derivs[q][0][0];
-          const double local_residual_value
-            = ((x-u*u*u) * std::pow(u_prime, 4) *
-               (u*u*u_prime*u_prime
-                +
-                5*(x-u*u*u)*u_doubleprime
-                +
-                2*u_prime*(1-3*u*u*u_prime)));
-
-          cell_residual_norm += (local_residual_value * local_residual_value *
-                                 fe_values.JxW(q));
-        }
-      error_indicators(cell_index) = cell_residual_norm *
-                                     cell->diameter() * cell->diameter();
-
-                                       // The next step is to evaluate the
-                                       // jump terms. To make computations
-                                       // somewhat simpler (and to free up the
-                                       // <code>local_*</code> variables for use on
-                                       // neighboring elements), we define
-                                       // some convenience variables for the
-                                       // positions of the left and right cell
-                                       // boundary point, as well as the
-                                       // values and gradients at these
-                                       // points.
-                                       //
-                                       // To be cautious, we don't blindly
-                                       // trust that the trapezoidal rule has
-                                       // its evaluation points as the left
-                                       // and right end point of the cell (it
-                                       // could in principle have them in the
-                                       // reverse order, i.e. the zeroth point
-                                       // is at x=1, and the first one at
-                                       // x=0), and use an assertion to
-                                       // actually check for this. If this
-                                       // would not be the case, an exception
-                                       // of the (predefined) class
-                                       // <code>ExcInternalError</code> would be
-                                       // thrown. Of course, this does not
-                                       // happen in this program, but it shows
-                                       // a way of defensive coding: if you
-                                       // are not sure of an assumption, guard
-                                       // it by a test. This also guards us
-                                       // against possible future changes in
-                                       // the library: the quadrature classes
-                                       // do not promise any particular order
-                                       // of their quadrature points, so the
-                                       // <code>QTrapez</code> class could in principle
-                                       // change the order of its two
-                                       // evaluation points. In that case,
-                                       // your code would tell you that
-                                       // something changed, rather than
-                                       // computing a wrong result when you
-                                       // upgrade to a new version of the
-                                       // library. (The point made here is
-                                       // theoretical: we are not going to
-                                       // change the order of evaluation
-                                       // points; the intent is simply how to
-                                       // add some defensive touches to a
-                                       // program that make sure that it
-                                       // really does what it is hoped to do.)
-                                       //
-                                       // Given that we are now sure that
-                                       // <code>x_left</code> and <code>x_right</code>,
-                                       // extracted from the zeroth and first
-                                       // quadrature point, are indeed the
-                                       // left and right vertex of the cell,
-                                       // we can also be sure that the values
-                                       // we extract for <code>u_left</code> et al. are
-                                       // the ones we expect them to be, since
-                                       // the order of these values must of
-                                       // course match the order of the
-                                       // quadrature points.
-      const double x_left  = fe_values.quadrature_point(0)[0];
-      const double x_right = fe_values.quadrature_point(1)[0];
-
-      Assert (x_left  == cell->vertex(0)[0], ExcInternalError());
-      Assert (x_right == cell->vertex(1)[0], ExcInternalError());
-
-      const double u_left  = local_values[0];
-      const double u_right = local_values[1];
-
-      const double u_prime_left  = local_gradients[0][0];
-      const double u_prime_right = local_gradients[1][0];
-
-                                       // Next, we have to check whether this
-                                       // cell has a left neighbor:
-      if (cell->at_boundary(0) == false)
-        {
-                                           // If so, find its left
-                                           // neighbor. We do so by asking for
-                                           // the cell that is immediately
-                                           // adjacent to the left (the zeroth
-                                           // neighbor in 1d). However, this
-                                           // may be a cell that in itself has
-                                           // children, so to get to the
-                                           // active left neighbor, we have to
-                                           // recursively check whether that
-                                           // cell has children, and if so
-                                           // take its right child, since that
-                                           // is adjacent to the left of the
-                                           // present cell. Note that unless
-                                           // you are in 1d, there is no safe
-                                           // way to assume that the first
-                                           // child of the zeroth neighbor is
-                                           // indeed adjacent to the present
-                                           // cell. Rather, more than one of
-                                           // the children of a neighbor may
-                                           // be adjacent to the present
-                                           // cell. Also note that in two or
-                                           // higher space dimensions, a
-                                           // neighbor of an active cell may
-                                           // only be at most once refined,
-                                           // since we have the rule that
-                                           // there can only be one hanging
-                                           // node per face. This rule does
-                                           // not exist in 1d: neighboring
-                                           // cells may have totally
-                                           // independent refinement
-                                           // levels. Thus, we really need the
-                                           // <code>while</code> loop, not only an
-                                           // <code>if</code> clause.
-          DoFHandler<dim>::cell_iterator left_neighbor = cell->neighbor(0);
-          while (left_neighbor->has_children())
-            left_neighbor = left_neighbor->child(1);
-
-                                           // With the so-found neighbor,
-                                           // initialize the second
-                                           // <code>FEValues</code> object to it,
-                                           // extract the gradients of the
-                                           // solution there, and from this
-                                           // get the gradient at the
-                                           // interface (this is the first
-                                           // element of <code>local_gradients</code>,
-                                           // since the right end point of the
-                                           // neighbor cell has index 1) as a
-                                           // scalar value (this is the zeroth
-                                           // component of
-                                           // <code>local_gradients[1]</code>.
-          neighbor_fe_values.reinit (left_neighbor);
-          neighbor_fe_values.get_function_grads (present_solution, local_gradients);
-
-          const double neighbor_u_prime_left = local_gradients[1][0];
-
-                                           // Then compute the jump, and add a
-                                           // suitable multiple to the error
-                                           // indicator for this cell:
-          const double left_jump = std::pow(x_left-std::pow(u_left,3), 2) *
-                                   (std::pow(neighbor_u_prime_left,5) -
-                                    std::pow(u_prime_left,5));
-          error_indicators(cell_index) += left_jump * left_jump *
-                                          cell->diameter();
-        }
+    const double step_length = line_search (update);
+    present_solution.add (step_length, update);
+  }
 
-                                       // Once we have done the left neighbor,
-                                       // we can play exactly the same game
-                                       // with the right neighbor:
-      if (cell->at_boundary(1) == false)
-        {
-          DoFHandler<dim>::cell_iterator right_neighbor = cell->neighbor(1);
-          while (right_neighbor->has_children())
-            right_neighbor = right_neighbor->child(0);
 
-          neighbor_fe_values.reinit (right_neighbor);
-          neighbor_fe_values.get_function_grads (present_solution, local_gradients);
 
-          const double neighbor_u_prime_right = local_gradients[0][0];
+                                  // The same holds for the function that
+                                  // outputs the solution in gnuplot format
+                                  // into a file with a name that includes the
+                                  // number of the run we are presently
+                                  // performing.
+  template <int dim>
+  void
+  MinimizationProblem<dim>::output_results () const
+  {
+    DataOut<dim> data_out;
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (present_solution, "solution");
+    data_out.build_patches ();
+
+    std::ostringstream filename;
+    filename << "solution-"
+            << run_number
+            << ".gnuplot"
+            << std::ends;
+
+    std::ofstream out (filename.str().c_str());
+    data_out.write_gnuplot (out);
+  }
 
-          const double right_jump = std::pow(x_right-std::pow(u_right,3), 2) *
-                                   (std::pow(neighbor_u_prime_right,5) -
-                                    std::pow(u_prime_right,5));
-          error_indicators(cell_index) += right_jump * right_jump *
-                                          cell->diameter();
-        }
-    }
 
-                                   // Now we have all the refinement
-                                   // indicators computed, and want to refine
-                                   // the grid. In contrast to previous
-                                   // examples, however, we would like to
-                                   // transfer the solution vector from the
-                                   // old to the new grid. This is what the
-                                   // <code>SolutionTransfer</code> class is good for,
-                                   // but it requires some preliminary
-                                   // work. First, we need to tag the cells
-                                   // that we want to refine or coarsen, as
-                                   // usual:
-  GridRefinement::refine_and_coarsen_fixed_number (triangulation,
-                                                  error_indicators,
-                                                  0.3, 0.03);
-                                   // Then, however, we need an additional
-                                   // step: if, for example, you flag a cell
-                                   // that is once more refined than its
-                                   // neighbor, and that neighbor is not
-                                   // flagged for refinement, we would end up
-                                   // with a jump of two refinement levels
-                                   // across a cell interface. In 1d, this
-                                   // would in general be allowed, but not in
-                                   // higher space dimensions, and some mesh
-                                   // smoothing algorithms in 1d may also
-                                   // disallow this. To avoid these
-                                   // situations, the library will silently
-                                   // also have to refine the neighbor cell
-                                   // once. It does so by calling the
-                                   // <code>Triangulation::prepare_coarsening_and_refinement</code>
-                                   // function before actually doing the
-                                   // refinement and coarsening. This function
-                                   // flags a set of additional cells for
-                                   // refinement or coarsening, to enforce
-                                   // rules like the one-hanging-node
-                                   // rule. The cells that are flagged for
-                                   // refinement and coarsening after calling
-                                   // this function are exactly the ones that
-                                   // will actually be refined or
-                                   // coarsened. Since the
-                                   // <code>SolutionTransfer</code> class needs this
-                                   // information in order to store the data
-                                   // from the old mesh and transfer to the
-                                   // new one.
-  triangulation.prepare_coarsening_and_refinement();
-
-                                   // With this out of the way, we initialize
-                                   // a <code>SolutionTransfer</code> object with the
-                                   // present <code>DoFHandler</code> and attach the
-                                   // solution vector to it:
-  SolutionTransfer<dim> solution_transfer(dof_handler);
-  solution_transfer.prepare_for_coarsening_and_refinement (present_solution);
-
-                                   // Then we do the actual refinement, and
-                                   // distribute degrees of freedom on the new
-                                   // mesh:
-  triangulation.execute_coarsening_and_refinement ();
-  dof_handler.distribute_dofs (fe);
-
-                                   // Finally, we retrieve the old solution
-                                   // interpolated to the new mesh. Since the
-                                   // <code>SolutionTransfer</code> function does not
-                                   // actually store the values of the old
-                                   // solution, but rather indices, we need to
-                                   // preserve the old solution vector until
-                                   // we have gotten the new interpolated
-                                   // values. Thus, we have the new values
-                                   // written into a temporary vector, and
-                                   // only afterwards write them into the
-                                   // solution vector object:
-  Vector<double> tmp (dof_handler.n_dofs());
-  solution_transfer.interpolate (present_solution, tmp);
-  present_solution = tmp;
-
-                                   // Here is some final thing, that is
-                                   // actually unnecessary in 1d, but
-                                   // necessary for higher space dimensions,
-                                   // so we show it anyway: the result of what
-                                   // the <code>SolutionTransfer</code> class provides
-                                   // is a vector that is interpolated from
-                                   // the old to the new mesh. Unfortunately,
-                                   // it does not necessarily have the right
-                                   // values at constrained (hanging) nodes,
-                                   // so we have to fix this up to make the
-                                   // solution conforming again. The simplest
-                                   // way to do this is this:
-  hanging_node_constraints.clear ();
-  DoFTools::make_hanging_node_constraints (dof_handler,
-                                          hanging_node_constraints);
-  hanging_node_constraints.close ();
-  hanging_node_constraints.distribute (present_solution);
-                                   // This is wasteful, since we create a
-                                   // <code>ConstraintMatrix</code> object that will be
-                                   // recreated again in the next call to
-                                   // <code>setup_system_on_mesh</code> immediately
-                                   // afterwards. A more efficient
-                                   // implementation would make sure that it
-                                   // is created only once. We don't care so
-                                   // much here, since in 1d there are no
-                                   // constraints, so all of these operations
-                                   // are really cheap, but we do not
-                                   // recommend this as general programming
-                                   // strategy.
-}
 
+                                  // The function to compute error indicator
+                                  // and refine the mesh accordingly is a
+                                  // little more interesting. In particular, it
+                                  // shows some more of the techniques usually
+                                  // used in 1d applications. First, note that
+                                  // this again is a specialization that only
+                                  // works in 1d. However, to make later
+                                  // extension to higher space dimensions
+                                  // simpler, we define a constant integer
+                                  // <code>dim</code> at the beginning of the function;
+                                  // by using this constant as template
+                                  // argument in all places, we are actually
+                                  // able to write most of the code as if it
+                                  // were dimension independent, thus
+                                  // minimizing the amount of later changes.
+  template <>
+  void MinimizationProblem<1>::refine_grid ()
+  {
+    const unsigned int dim = 1;
+
+    Vector<float> error_indicators (triangulation.n_active_cells());
+
+                                    // Then define the quadrature formula, and
+                                    // what values we will want to extract from
+                                    // the solution. Here, we use the two-point
+                                    // trapezoidal rule, i.e. we evaluate the
+                                    // residual only at the end points of the
+                                    // cells. Incidentally, this also makes
+                                    // evaluating the jump terms between cells
+                                    // simpler. Note that for the error
+                                    // indicators, we not only need values and
+                                    // gradients of the solution, but also its
+                                    // second derivatives, as well as the
+                                    // physical location of quadrature points.
+    QTrapez<dim> quadrature;
+    FEValues<dim> fe_values (fe, quadrature,
+                            update_values   | update_gradients |
+                            update_hessians |
+                            update_quadrature_points | update_JxW_values);
+
+                                    // The error indicator formula presented in
+                                    // the introduction requires us to compute
+                                    // jumps of the solution and gradient
+                                    // across cell boundaries. Since the
+                                    // solution itself is continuous, we only
+                                    // need to evaluate the gradient on the
+                                    // neighbor cells. To avoid some of the
+                                    // work needed to reinitialize a
+                                    // <code>FEValues</code> object on a cell, we define
+                                    // another such object here that we will
+                                    // only use for the neighbor cells. The
+                                    // data we need from the side of the
+                                    // present cell is provided by above
+                                    // object.
+    FEValues<dim> neighbor_fe_values (fe, quadrature,
+                                     update_gradients);
+
+                                    // Then, as before, we need objects holding
+                                    // values and derivatives of the solution
+                                    // at quadrature points. Here, we also need
+                                    // second derivatives, which is simple,
+                                    // however:
+    std::vector<double> local_values (quadrature.size());
+    std::vector<Tensor<1,dim> > local_gradients (quadrature.size());
+    std::vector<Tensor<2,dim> > local_2nd_derivs (quadrature.size());
+
+                                    // With all this, we can start the loop
+                                    // over all cells. Since we need to write
+                                    // the result for each cell into
+                                    // consecutive elements of a vector, we
+                                    // also keep a running index <code>cell_index</code>
+                                    // that we increase with each cell treated.
+    DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active (),
+      endc = dof_handler.end ();
+    for (unsigned int cell_index = 0; cell!=endc; ++cell, ++cell_index)
+      {
+                                        // After initializing the <code>FEValues</code>
+                                        // object on each cell, use it to
+                                        // evaluate solution and first and
+                                        // second derivatives of it at the
+                                        // quadrature points:
+       fe_values.reinit (cell);
+       fe_values.get_function_values (present_solution, local_values);
+       fe_values.get_function_grads (present_solution, local_gradients);
+       fe_values.get_function_2nd_derivatives (present_solution, local_2nd_derivs);
+
+                                        // Given the formula in the
+                                        // introduction, the computation of the
+                                        // cell residuals should actually be
+                                        // relatively obvious. The result,
+                                        // multiplied by the appropriate power
+                                        // of the cell's size is then written
+                                        // into the vector of error indicators.
+                                        //
+                                        // Note that in the following
+                                        // computations, we have already made
+                                        // use of the fact that we are in 1d,
+                                        // since we extract the gradient as a
+                                        // scalar value.
+       double cell_residual_norm = 0;
+       for (unsigned int q=0; q<quadrature.size(); ++q)
+         {
+           const double x             = fe_values.quadrature_point(q)[0];
+           const double u             = local_values[q];
+           const double u_prime       = local_gradients[q][0];
+           const double u_doubleprime = local_2nd_derivs[q][0][0];
+           const double local_residual_value
+             = ((x-u*u*u) * std::pow(u_prime, 4) *
+                (u*u*u_prime*u_prime
+                 +
+                 5*(x-u*u*u)*u_doubleprime
+                 +
+                 2*u_prime*(1-3*u*u*u_prime)));
+
+           cell_residual_norm += (local_residual_value * local_residual_value *
+                                  fe_values.JxW(q));
+         }
+       error_indicators(cell_index) = cell_residual_norm *
+                                      cell->diameter() * cell->diameter();
+
+                                        // The next step is to evaluate the
+                                        // jump terms. To make computations
+                                        // somewhat simpler (and to free up the
+                                        // <code>local_*</code> variables for use on
+                                        // neighboring elements), we define
+                                        // some convenience variables for the
+                                        // positions of the left and right cell
+                                        // boundary point, as well as the
+                                        // values and gradients at these
+                                        // points.
+                                        //
+                                        // To be cautious, we don't blindly
+                                        // trust that the trapezoidal rule has
+                                        // its evaluation points as the left
+                                        // and right end point of the cell (it
+                                        // could in principle have them in the
+                                        // reverse order, i.e. the zeroth point
+                                        // is at x=1, and the first one at
+                                        // x=0), and use an assertion to
+                                        // actually check for this. If this
+                                        // would not be the case, an exception
+                                        // of the (predefined) class
+                                        // <code>ExcInternalError</code> would be
+                                        // thrown. Of course, this does not
+                                        // happen in this program, but it shows
+                                        // a way of defensive coding: if you
+                                        // are not sure of an assumption, guard
+                                        // it by a test. This also guards us
+                                        // against possible future changes in
+                                        // the library: the quadrature classes
+                                        // do not promise any particular order
+                                        // of their quadrature points, so the
+                                        // <code>QTrapez</code> class could in principle
+                                        // change the order of its two
+                                        // evaluation points. In that case,
+                                        // your code would tell you that
+                                        // something changed, rather than
+                                        // computing a wrong result when you
+                                        // upgrade to a new version of the
+                                        // library. (The point made here is
+                                        // theoretical: we are not going to
+                                        // change the order of evaluation
+                                        // points; the intent is simply how to
+                                        // add some defensive touches to a
+                                        // program that make sure that it
+                                        // really does what it is hoped to do.)
+                                        //
+                                        // Given that we are now sure that
+                                        // <code>x_left</code> and <code>x_right</code>,
+                                        // extracted from the zeroth and first
+                                        // quadrature point, are indeed the
+                                        // left and right vertex of the cell,
+                                        // we can also be sure that the values
+                                        // we extract for <code>u_left</code> et al. are
+                                        // the ones we expect them to be, since
+                                        // the order of these values must of
+                                        // course match the order of the
+                                        // quadrature points.
+       const double x_left  = fe_values.quadrature_point(0)[0];
+       const double x_right = fe_values.quadrature_point(1)[0];
+
+       Assert (x_left  == cell->vertex(0)[0], ExcInternalError());
+       Assert (x_right == cell->vertex(1)[0], ExcInternalError());
+
+       const double u_left  = local_values[0];
+       const double u_right = local_values[1];
+
+       const double u_prime_left  = local_gradients[0][0];
+       const double u_prime_right = local_gradients[1][0];
+
+                                        // Next, we have to check whether this
+                                        // cell has a left neighbor:
+       if (cell->at_boundary(0) == false)
+         {
+                                            // If so, find its left
+                                            // neighbor. We do so by asking for
+                                            // the cell that is immediately
+                                            // adjacent to the left (the zeroth
+                                            // neighbor in 1d). However, this
+                                            // may be a cell that in itself has
+                                            // children, so to get to the
+                                            // active left neighbor, we have to
+                                            // recursively check whether that
+                                            // cell has children, and if so
+                                            // take its right child, since that
+                                            // is adjacent to the left of the
+                                            // present cell. Note that unless
+                                            // you are in 1d, there is no safe
+                                            // way to assume that the first
+                                            // child of the zeroth neighbor is
+                                            // indeed adjacent to the present
+                                            // cell. Rather, more than one of
+                                            // the children of a neighbor may
+                                            // be adjacent to the present
+                                            // cell. Also note that in two or
+                                            // higher space dimensions, a
+                                            // neighbor of an active cell may
+                                            // only be at most once refined,
+                                            // since we have the rule that
+                                            // there can only be one hanging
+                                            // node per face. This rule does
+                                            // not exist in 1d: neighboring
+                                            // cells may have totally
+                                            // independent refinement
+                                            // levels. Thus, we really need the
+                                            // <code>while</code> loop, not only an
+                                            // <code>if</code> clause.
+           DoFHandler<dim>::cell_iterator left_neighbor = cell->neighbor(0);
+           while (left_neighbor->has_children())
+             left_neighbor = left_neighbor->child(1);
+
+                                            // With the so-found neighbor,
+                                            // initialize the second
+                                            // <code>FEValues</code> object to it,
+                                            // extract the gradients of the
+                                            // solution there, and from this
+                                            // get the gradient at the
+                                            // interface (this is the first
+                                            // element of <code>local_gradients</code>,
+                                            // since the right end point of the
+                                            // neighbor cell has index 1) as a
+                                            // scalar value (this is the zeroth
+                                            // component of
+                                            // <code>local_gradients[1]</code>.
+           neighbor_fe_values.reinit (left_neighbor);
+           neighbor_fe_values.get_function_grads (present_solution, local_gradients);
+
+           const double neighbor_u_prime_left = local_gradients[1][0];
+
+                                            // Then compute the jump, and add a
+                                            // suitable multiple to the error
+                                            // indicator for this cell:
+           const double left_jump = std::pow(x_left-std::pow(u_left,3), 2) *
+                                    (std::pow(neighbor_u_prime_left,5) -
+                                     std::pow(u_prime_left,5));
+           error_indicators(cell_index) += left_jump * left_jump *
+                                           cell->diameter();
+         }
+
+                                        // Once we have done the left neighbor,
+                                        // we can play exactly the same game
+                                        // with the right neighbor:
+       if (cell->at_boundary(1) == false)
+         {
+           DoFHandler<dim>::cell_iterator right_neighbor = cell->neighbor(1);
+           while (right_neighbor->has_children())
+             right_neighbor = right_neighbor->child(0);
+
+           neighbor_fe_values.reinit (right_neighbor);
+           neighbor_fe_values.get_function_grads (present_solution, local_gradients);
+
+           const double neighbor_u_prime_right = local_gradients[0][0];
+
+           const double right_jump = std::pow(x_right-std::pow(u_right,3), 2) *
+                                     (std::pow(neighbor_u_prime_right,5) -
+                                      std::pow(u_prime_right,5));
+           error_indicators(cell_index) += right_jump * right_jump *
+                                           cell->diameter();
+         }
+      }
+
+                                    // Now we have all the refinement
+                                    // indicators computed, and want to refine
+                                    // the grid. In contrast to previous
+                                    // examples, however, we would like to
+                                    // transfer the solution vector from the
+                                    // old to the new grid. This is what the
+                                    // <code>SolutionTransfer</code> class is good for,
+                                    // but it requires some preliminary
+                                    // work. First, we need to tag the cells
+                                    // that we want to refine or coarsen, as
+                                    // usual:
+    GridRefinement::refine_and_coarsen_fixed_number (triangulation,
+                                                    error_indicators,
+                                                    0.3, 0.03);
+                                    // Then, however, we need an additional
+                                    // step: if, for example, you flag a cell
+                                    // that is once more refined than its
+                                    // neighbor, and that neighbor is not
+                                    // flagged for refinement, we would end up
+                                    // with a jump of two refinement levels
+                                    // across a cell interface. In 1d, this
+                                    // would in general be allowed, but not in
+                                    // higher space dimensions, and some mesh
+                                    // smoothing algorithms in 1d may also
+                                    // disallow this. To avoid these
+                                    // situations, the library will silently
+                                    // also have to refine the neighbor cell
+                                    // once. It does so by calling the
+                                    // <code>Triangulation::prepare_coarsening_and_refinement</code>
+                                    // function before actually doing the
+                                    // refinement and coarsening. This function
+                                    // flags a set of additional cells for
+                                    // refinement or coarsening, to enforce
+                                    // rules like the one-hanging-node
+                                    // rule. The cells that are flagged for
+                                    // refinement and coarsening after calling
+                                    // this function are exactly the ones that
+                                    // will actually be refined or
+                                    // coarsened. Since the
+                                    // <code>SolutionTransfer</code> class needs this
+                                    // information in order to store the data
+                                    // from the old mesh and transfer to the
+                                    // new one.
+    triangulation.prepare_coarsening_and_refinement();
+
+                                    // With this out of the way, we initialize
+                                    // a <code>SolutionTransfer</code> object with the
+                                    // present <code>DoFHandler</code> and attach the
+                                    // solution vector to it:
+    SolutionTransfer<dim> solution_transfer(dof_handler);
+    solution_transfer.prepare_for_coarsening_and_refinement (present_solution);
+
+                                    // Then we do the actual refinement, and
+                                    // distribute degrees of freedom on the new
+                                    // mesh:
+    triangulation.execute_coarsening_and_refinement ();
+    dof_handler.distribute_dofs (fe);
+
+                                    // Finally, we retrieve the old solution
+                                    // interpolated to the new mesh. Since the
+                                    // <code>SolutionTransfer</code> function does not
+                                    // actually store the values of the old
+                                    // solution, but rather indices, we need to
+                                    // preserve the old solution vector until
+                                    // we have gotten the new interpolated
+                                    // values. Thus, we have the new values
+                                    // written into a temporary vector, and
+                                    // only afterwards write them into the
+                                    // solution vector object:
+    Vector<double> tmp (dof_handler.n_dofs());
+    solution_transfer.interpolate (present_solution, tmp);
+    present_solution = tmp;
+
+                                    // Here is some final thing, that is
+                                    // actually unnecessary in 1d, but
+                                    // necessary for higher space dimensions,
+                                    // so we show it anyway: the result of what
+                                    // the <code>SolutionTransfer</code> class provides
+                                    // is a vector that is interpolated from
+                                    // the old to the new mesh. Unfortunately,
+                                    // it does not necessarily have the right
+                                    // values at constrained (hanging) nodes,
+                                    // so we have to fix this up to make the
+                                    // solution conforming again. The simplest
+                                    // way to do this is this:
+    hanging_node_constraints.clear ();
+    DoFTools::make_hanging_node_constraints (dof_handler,
+                                            hanging_node_constraints);
+    hanging_node_constraints.close ();
+    hanging_node_constraints.distribute (present_solution);
+                                    // This is wasteful, since we create a
+                                    // <code>ConstraintMatrix</code> object that will be
+                                    // recreated again in the next call to
+                                    // <code>setup_system_on_mesh</code> immediately
+                                    // afterwards. A more efficient
+                                    // implementation would make sure that it
+                                    // is created only once. We don't care so
+                                    // much here, since in 1d there are no
+                                    // constraints, so all of these operations
+                                    // are really cheap, but we do not
+                                    // recommend this as general programming
+                                    // strategy.
+  }
 
 
-                                 // Before going over to the framework
-                                 // functions, we still need to look at the
-                                 // implementation of the function that
-                                 // computes the energy of a nodal vector in
-                                 // the functional considered in this example
-                                 // program. Its idea is simple: take a nodal
-                                 // vector and the <code>DoFHandler</code> object it is
-                                 // living on, then loop over all cells and
-                                 // add up the local contributions to the
-                                 // energy:
-template <int dim>
-double
-MinimizationProblem<dim>::energy (const DoFHandler<dim> &dof_handler,
-                                  const Vector<double>  &function)
-{
-                                   // First define the quadrature formula and
-                                   // a <code>FEValues</code> object with which to
-                                   // compute the values of the input function
-                                   // at the quadrature points. Note again
-                                   // that the integrand is a polynomial of
-                                   // degree six, so a 4-point Gauss formula
-                                   // is appropriate:
-  QGauss<dim>  quadrature_formula(4);
-  FEValues<dim> fe_values (dof_handler.get_fe(), quadrature_formula,
-                          update_values   | update_gradients |
-                           update_quadrature_points | update_JxW_values);
-
-  const unsigned int   n_q_points    = quadrature_formula.size();
-
-                                   // Then, just as when we integrated the
-                                   // linear system, we need two variables
-                                   // that will hold the values and gradients
-                                   // of the given function at the quadrature
-                                   // points:
-  std::vector<double>         local_solution_values (n_q_points);
-  std::vector<Tensor<1,dim> > local_solution_grads (n_q_points);
-
-                                   // With this, define an energy variable,
-                                   // and loop over all the cells:
-  double energy = 0.;
-
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-                                       // On each cell, initialize the
-                                       // <code>FEValues</code> object, and extract
-                                       // values and gradients of the given
-                                       // function:
-      fe_values.reinit (cell);
-      fe_values.get_function_values (function,
-                                     local_solution_values);
-      fe_values.get_function_grads (function,
-                                    local_solution_grads);
-
-                                       // Then loop over all quadrature points
-                                       // on this cell, and add up the
-                                       // contribution of each to the global
-                                       // energy:
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-        energy += (std::pow (fe_values.quadrature_point(q_point)(0)
-                             -
-                             std::pow (local_solution_values[q_point], 3),
-                             2) *
-                   gradient_power (local_solution_grads[q_point], 6) *
-                   fe_values.JxW (q_point));
-    }
 
-                                   // Once we have done this, return the
-                                   // integrated value.
-  return energy;
-}
+                                  // Before going over to the framework
+                                  // functions, we still need to look at the
+                                  // implementation of the function that
+                                  // computes the energy of a nodal vector in
+                                  // the functional considered in this example
+                                  // program. Its idea is simple: take a nodal
+                                  // vector and the <code>DoFHandler</code> object it is
+                                  // living on, then loop over all cells and
+                                  // add up the local contributions to the
+                                  // energy:
+  template <int dim>
+  double
+  MinimizationProblem<dim>::energy (const DoFHandler<dim> &dof_handler,
+                                   const Vector<double>  &function)
+  {
+                                    // First define the quadrature formula and
+                                    // a <code>FEValues</code> object with which to
+                                    // compute the values of the input function
+                                    // at the quadrature points. Note again
+                                    // that the integrand is a polynomial of
+                                    // degree six, so a 4-point Gauss formula
+                                    // is appropriate:
+    QGauss<dim>  quadrature_formula(4);
+    FEValues<dim> fe_values (dof_handler.get_fe(), quadrature_formula,
+                            update_values   | update_gradients |
+                            update_quadrature_points | update_JxW_values);
+
+    const unsigned int   n_q_points    = quadrature_formula.size();
+
+                                    // Then, just as when we integrated the
+                                    // linear system, we need two variables
+                                    // that will hold the values and gradients
+                                    // of the given function at the quadrature
+                                    // points:
+    std::vector<double>         local_solution_values (n_q_points);
+    std::vector<Tensor<1,dim> > local_solution_grads (n_q_points);
+
+                                    // With this, define an energy variable,
+                                    // and loop over all the cells:
+    double energy = 0.;
+
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+                                        // On each cell, initialize the
+                                        // <code>FEValues</code> object, and extract
+                                        // values and gradients of the given
+                                        // function:
+       fe_values.reinit (cell);
+       fe_values.get_function_values (function,
+                                      local_solution_values);
+       fe_values.get_function_grads (function,
+                                     local_solution_grads);
+
+                                        // Then loop over all quadrature points
+                                        // on this cell, and add up the
+                                        // contribution of each to the global
+                                        // energy:
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+         energy += (std::pow (fe_values.quadrature_point(q_point)(0)
+                              -
+                              std::pow (local_solution_values[q_point], 3),
+                              2) *
+                    gradient_power (local_solution_grads[q_point], 6) *
+                    fe_values.JxW (q_point));
+      }
+
+                                    // Once we have done this, return the
+                                    // integrated value.
+    return energy;
+  }
 
 
-                                 // So here is the driver function,
-                                 // <code>run()</code>. It generate a coarse mesh,
-                                 // refines it a couple of times, and
-                                 // initializes the starting values. It then
-                                 // goes into a loop in which we first set up
-                                 // the member variables for the new mesh, and
-                                 // then do a fixed number of five gradient
-                                 // steps. If after this the energy has not
-                                 // significantly decreased compares to the
-                                 // last time we checked, we assume that we
-                                 // have converged and exit, otherwise we
-                                 // refine the mesh and start over. Once we
-                                 // have determined that the computations have
-                                 // converged somewhere, we output the
-                                 // results.
-template <int dim>
-void MinimizationProblem<dim>::run ()
-{
-  GridGenerator::hyper_cube (triangulation, 0., 1.);
-  triangulation.refine_global (4);
-  dof_handler.distribute_dofs (fe);
-  initialize_solution ();
+                                  // So here is the driver function,
+                                  // <code>run()</code>. It generate a coarse mesh,
+                                  // refines it a couple of times, and
+                                  // initializes the starting values. It then
+                                  // goes into a loop in which we first set up
+                                  // the member variables for the new mesh, and
+                                  // then do a fixed number of five gradient
+                                  // steps. If after this the energy has not
+                                  // significantly decreased compares to the
+                                  // last time we checked, we assume that we
+                                  // have converged and exit, otherwise we
+                                  // refine the mesh and start over. Once we
+                                  // have determined that the computations have
+                                  // converged somewhere, we output the
+                                  // results.
+  template <int dim>
+  void MinimizationProblem<dim>::run ()
+  {
+    GridGenerator::hyper_cube (triangulation, 0., 1.);
+    triangulation.refine_global (4);
+    dof_handler.distribute_dofs (fe);
+    initialize_solution ();
 
-  double last_energy = energy (dof_handler, present_solution);
+    double last_energy = energy (dof_handler, present_solution);
 
-  while (true)
-    {
-      setup_system_on_mesh ();
+    while (true)
+      {
+       setup_system_on_mesh ();
 
-      for (unsigned int iteration=0; iteration<5; ++iteration)
-        do_step ();
+       for (unsigned int iteration=0; iteration<5; ++iteration)
+         do_step ();
 
-      const double this_energy = energy (dof_handler, present_solution);
-      std::cout << "   Energy: " << this_energy << std::endl;
+       const double this_energy = energy (dof_handler, present_solution);
+       std::cout << "   Energy: " << this_energy << std::endl;
 
-      if ((last_energy-this_energy) < 1e-5*last_energy)
-        break;
+       if ((last_energy-this_energy) < 1e-5*last_energy)
+         break;
 
-      last_energy = this_energy;
+       last_energy = this_energy;
 
-      refine_grid ();
-    }
+       refine_grid ();
+      }
 
-  output_results ();
+    output_results ();
 
-  std::cout << std::endl;
+    std::cout << std::endl;
+  }
 }
 
 
@@ -1371,6 +1374,9 @@ int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step15;
+
       deallog.depth_console (0);
 
       const unsigned int n_realizations = 10;
index 817ff6c6c5234de30d246301c1479e0c0df47529..f4510f780a5e0a17389bf02a8828865e3ec948bc 100644 (file)
@@ -5,7 +5,7 @@
 
 /*    $Id$       */
 /*                                                                */
-/*    Copyright (C) 2003, 2004, 2006, 2007, 2008, 2009, 2010 by the deal.II authors                   */
+/*    Copyright (C) 2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011 by the deal.II authors                   */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 
                                 // The last step is as in all
                                 // previous programs:
-using namespace dealii;
-
-
-                                 // @sect3{The <code>LaplaceProblem</code> class template}
-
-                                // This main class is basically the same
-                                // class as in step-6. As far as member
-                                // functions is concerned, the only addition
-                                // is the <code>assemble_multigrid</code>
-                                // function that assembles the matrices that
-                                // correspond to the discrete operators on
-                                // intermediate levels:
-template <int dim>
-class LaplaceProblem
+namespace Step16
 {
-  public:
-    LaplaceProblem (const unsigned int deg);
-    void run ();
-
-  private:
-    void setup_system ();
-    void assemble_system ();
-    void assemble_multigrid ();
-    void solve ();
-    void refine_grid ();
-    void output_results (const unsigned int cycle) const;
-
-    Triangulation<dim>   triangulation;
-    FE_Q<dim>            fe;
-    MGDoFHandler<dim>    mg_dof_handler;
-
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
-
-                                    // We need an additional object for the
-                                     // hanging nodes constraints. They are
-                                     // handed to the transfer object in the
-                                     // multigrid. Since we call a compress
-                                     // inside the multigrid these constraints
-                                     // are not allowed to be inhomogeneous so
-                                     // we store them in different ConstraintMatrix
-                                     // objects.
-    ConstraintMatrix     hanging_node_constraints;
-    ConstraintMatrix     constraints;
-
-    Vector<double>       solution;
-    Vector<double>       system_rhs;
-
-    const unsigned int degree;
-
-                                    // The following four objects are the
-                                    // only additional member variables,
-                                    // compared to step-6. They first three
-                                     // represent the
-                                    // operators that act on individual
-                                    // levels of the multilevel hierarchy,
-                                    // rather than on the finest mesh as do
-                                    // the objects above while the last object
-                                     // stores information about the boundary
-                                     // indices on each level and information
-                                     // about indices lying on a refinement
-                                     // edge between two different refinement
-                                     // levels.
-                                    //
-                                    // To facilitate having objects on each
-                                    // level of a multilevel hierarchy,
-                                    // deal.II has the MGLevelObject class
-                                    // template that provides storage for
-                                    // objects on each level. What we need
-                                    // here are matrices on each level, which
-                                    // implies that we also need sparsity
-                                    // patterns on each level. As outlined in
-                                    // the @ref mg_paper, the operators
-                                    // (matrices) that we need are actually
-                                    // twofold: one on the interior of each
-                                    // level, and one at the interface
-                                    // between each level and that part of
-                                    // the domain where the mesh is
-                                    // coarser. In fact, we will need the
-                                    // latter in two versions: for the
-                                    // direction from coarse to fine mesh and
-                                    // from fine to coarse. Fortunately,
-                                    // however, we here have a self-adjoint
-                                    // problem for which one of these is the
-                                    // transpose of the other, and so we only
-                                    // have to build one; we choose the one
-                                    // from coarse to fine.
-    MGLevelObject<SparsityPattern>       mg_sparsity_patterns;
-    MGLevelObject<SparseMatrix<double> > mg_matrices;
-    MGLevelObject<SparseMatrix<double> > mg_interface_matrices;
-    MGConstrainedDoFs                    mg_constrained_dofs;
-};
-
-
-
-                                 // @sect3{Nonconstant coefficients}
-
-                                // The implementation of nonconstant
-                                // coefficients is copied verbatim
-                                // from step-5 and step-6:
-
-template <int dim>
-class Coefficient : public Function<dim>
-{
-  public:
-    Coefficient () : Function<dim>() {}
-
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-
-    virtual void value_list (const std::vector<Point<dim> > &points,
-                            std::vector<double>            &values,
-                            const unsigned int              component = 0) const;
-};
-
-
-
-template <int dim>
-double Coefficient<dim>::value (const Point<dim> &p,
-                               const unsigned int) const
-{
-  if (p.square() < 0.5*0.5)
-    return 20;
-  else
-    return 1;
-}
+  using namespace dealii;
+
+
+                                  // @sect3{The <code>LaplaceProblem</code> class template}
+
+                                  // This main class is basically the same
+                                  // class as in step-6. As far as member
+                                  // functions is concerned, the only addition
+                                  // is the <code>assemble_multigrid</code>
+                                  // function that assembles the matrices that
+                                  // correspond to the discrete operators on
+                                  // intermediate levels:
+  template <int dim>
+  class LaplaceProblem
+  {
+    public:
+      LaplaceProblem (const unsigned int deg);
+      void run ();
+
+    private:
+      void setup_system ();
+      void assemble_system ();
+      void assemble_multigrid ();
+      void solve ();
+      void refine_grid ();
+      void output_results (const unsigned int cycle) const;
+
+      Triangulation<dim>   triangulation;
+      FE_Q<dim>            fe;
+      MGDoFHandler<dim>    mg_dof_handler;
+
+      SparsityPattern      sparsity_pattern;
+      SparseMatrix<double> system_matrix;
+
+                                      // We need an additional object for the
+                                      // hanging nodes constraints. They are
+                                      // handed to the transfer object in the
+                                      // multigrid. Since we call a compress
+                                      // inside the multigrid these constraints
+                                      // are not allowed to be inhomogeneous so
+                                      // we store them in different ConstraintMatrix
+                                      // objects.
+      ConstraintMatrix     hanging_node_constraints;
+      ConstraintMatrix     constraints;
+
+      Vector<double>       solution;
+      Vector<double>       system_rhs;
+
+      const unsigned int degree;
+
+                                      // The following four objects are the
+                                      // only additional member variables,
+                                      // compared to step-6. They first three
+                                      // represent the
+                                      // operators that act on individual
+                                      // levels of the multilevel hierarchy,
+                                      // rather than on the finest mesh as do
+                                      // the objects above while the last object
+                                      // stores information about the boundary
+                                      // indices on each level and information
+                                      // about indices lying on a refinement
+                                      // edge between two different refinement
+                                      // levels.
+                                      //
+                                      // To facilitate having objects on each
+                                      // level of a multilevel hierarchy,
+                                      // deal.II has the MGLevelObject class
+                                      // template that provides storage for
+                                      // objects on each level. What we need
+                                      // here are matrices on each level, which
+                                      // implies that we also need sparsity
+                                      // patterns on each level. As outlined in
+                                      // the @ref mg_paper, the operators
+                                      // (matrices) that we need are actually
+                                      // twofold: one on the interior of each
+                                      // level, and one at the interface
+                                      // between each level and that part of
+                                      // the domain where the mesh is
+                                      // coarser. In fact, we will need the
+                                      // latter in two versions: for the
+                                      // direction from coarse to fine mesh and
+                                      // from fine to coarse. Fortunately,
+                                      // however, we here have a self-adjoint
+                                      // problem for which one of these is the
+                                      // transpose of the other, and so we only
+                                      // have to build one; we choose the one
+                                      // from coarse to fine.
+      MGLevelObject<SparsityPattern>       mg_sparsity_patterns;
+      MGLevelObject<SparseMatrix<double> > mg_matrices;
+      MGLevelObject<SparseMatrix<double> > mg_interface_matrices;
+      MGConstrainedDoFs                    mg_constrained_dofs;
+  };
+
+
+
+                                  // @sect3{Nonconstant coefficients}
+
+                                  // The implementation of nonconstant
+                                  // coefficients is copied verbatim
+                                  // from step-5 and step-6:
+
+  template <int dim>
+  class Coefficient : public Function<dim>
+  {
+    public:
+      Coefficient () : Function<dim>() {}
+
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+
+      virtual void value_list (const std::vector<Point<dim> > &points,
+                              std::vector<double>            &values,
+                              const unsigned int              component = 0) const;
+  };
+
+
+
+  template <int dim>
+  double Coefficient<dim>::value (const Point<dim> &p,
+                                 const unsigned int) const
+  {
+    if (p.square() < 0.5*0.5)
+      return 20;
+    else
+      return 1;
+  }
 
 
 
-template <int dim>
-void Coefficient<dim>::value_list (const std::vector<Point<dim> > &points,
-                                  std::vector<double>            &values,
-                                  const unsigned int              component) const
-{
-  const unsigned int n_points = points.size();
+  template <int dim>
+  void Coefficient<dim>::value_list (const std::vector<Point<dim> > &points,
+                                    std::vector<double>            &values,
+                                    const unsigned int              component) const
+  {
+    const unsigned int n_points = points.size();
 
-  Assert (values.size() == n_points,
-         ExcDimensionMismatch (values.size(), n_points));
+    Assert (values.size() == n_points,
+           ExcDimensionMismatch (values.size(), n_points));
 
-  Assert (component == 0,
-         ExcIndexRange (component, 0, 1));
+    Assert (component == 0,
+           ExcIndexRange (component, 0, 1));
 
-  for (unsigned int i=0; i<n_points; ++i)
-    values[i] = Coefficient<dim>::value (points[i]);
-}
+    for (unsigned int i=0; i<n_points; ++i)
+      values[i] = Coefficient<dim>::value (points[i]);
+  }
 
 
-                                 // @sect3{The <code>LaplaceProblem</code> class implementation}
+                                  // @sect3{The <code>LaplaceProblem</code> class implementation}
 
-                                 // @sect4{LaplaceProblem::LaplaceProblem}
+                                  // @sect4{LaplaceProblem::LaplaceProblem}
 
-                                // The constructor is left mostly
-                                // unchanged. We take the polynomial degree
-                                // of the finite elements to be used as a
-                                // constructor argument and store it in a
-                                // member variable.
-                                //
-                                // By convention, all adaptively refined
-                                // triangulations in deal.II never change by
-                                // more than one level across a face between
-                                // cells. For our multigrid algorithms,
-                                // however, we need a slightly stricter
-                                // guarantee, namely that the mesh also does
-                                // not change by more than refinement level
-                                // across vertices that might connect two
-                                // cells. In other words, we must prevent the
-                                // following situation:
-                                //
-                                // @image html limit_level_difference_at_vertices.png ""
-                                //
-                                // This is achieved by passing the
-                                // Triangulation::limit_level_difference_at_vertices
-                                // flag to the constructor of the
-                                // triangulation class.
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem (const unsigned int degree)
-               :
-               triangulation (Triangulation<dim>::
-                              limit_level_difference_at_vertices),
-               fe (degree),
-               mg_dof_handler (triangulation),
-               degree(degree)
-{}
-
-
-
-                                 // @sect4{LaplaceProblem::setup_system}
-
-                                // The following function extends what the
-                                // corresponding one in step-6 did. The top
-                                // part, apart from the additional output,
-                                // does the same:
-template <int dim>
-void LaplaceProblem<dim>::setup_system ()
-{
-  mg_dof_handler.distribute_dofs (fe);
-
-                                  // Here we output not only the
-                                  // degrees of freedom on the finest
-                                  // level, but also in the
-                                  // multilevel structure
-  deallog << "Number of degrees of freedom: "
-         << mg_dof_handler.n_dofs();
-
-  for (unsigned int l=0;l<triangulation.n_levels();++l)
-    deallog << "   " << 'L' << l << ": "
-           << mg_dof_handler.n_dofs(l);
-  deallog  << std::endl;
-
-  sparsity_pattern.reinit (mg_dof_handler.n_dofs(),
-                          mg_dof_handler.n_dofs(),
-                          mg_dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (mg_dof_handler, sparsity_pattern);
-
-  solution.reinit (mg_dof_handler.n_dofs());
-  system_rhs.reinit (mg_dof_handler.n_dofs());
-
-                                  // But it starts to be a wee bit different
-                                  // here, although this still doesn't have
-                                  // anything to do with multigrid
-                                  // methods. step-6 took care of boundary
-                                  // values and hanging nodes in a separate
-                                  // step after assembling the global matrix
-                                  // from local contributions. This works,
-                                  // but the same can be done in a slightly
-                                  // simpler way if we already take care of
-                                  // these constraints at the time of copying
+                                  // The constructor is left mostly
+                                  // unchanged. We take the polynomial degree
+                                  // of the finite elements to be used as a
+                                  // constructor argument and store it in a
+                                  // member variable.
+                                  //
+                                  // By convention, all adaptively refined
+                                  // triangulations in deal.II never change by
+                                  // more than one level across a face between
+                                  // cells. For our multigrid algorithms,
+                                  // however, we need a slightly stricter
+                                  // guarantee, namely that the mesh also does
+                                  // not change by more than refinement level
+                                  // across vertices that might connect two
+                                  // cells. In other words, we must prevent the
+                                  // following situation:
+                                  //
+                                  // @image html limit_level_difference_at_vertices.png ""
+                                  //
+                                  // This is achieved by passing the
+                                  // Triangulation::limit_level_difference_at_vertices
+                                  // flag to the constructor of the
+                                  // triangulation class.
+  template <int dim>
+  LaplaceProblem<dim>::LaplaceProblem (const unsigned int degree)
+                 :
+                 triangulation (Triangulation<dim>::
+                                limit_level_difference_at_vertices),
+                 fe (degree),
+                 mg_dof_handler (triangulation),
+                 degree(degree)
+  {}
+
+
+
+                                  // @sect4{LaplaceProblem::setup_system}
+
+                                  // The following function extends what the
+                                  // corresponding one in step-6 did. The top
+                                  // part, apart from the additional output,
+                                  // does the same:
+  template <int dim>
+  void LaplaceProblem<dim>::setup_system ()
+  {
+    mg_dof_handler.distribute_dofs (fe);
+
+                                    // Here we output not only the
+                                    // degrees of freedom on the finest
+                                    // level, but also in the
+                                    // multilevel structure
+    deallog << "Number of degrees of freedom: "
+           << mg_dof_handler.n_dofs();
+
+    for (unsigned int l=0;l<triangulation.n_levels();++l)
+      deallog << "   " << 'L' << l << ": "
+             << mg_dof_handler.n_dofs(l);
+    deallog  << std::endl;
+
+    sparsity_pattern.reinit (mg_dof_handler.n_dofs(),
+                            mg_dof_handler.n_dofs(),
+                            mg_dof_handler.max_couplings_between_dofs());
+    DoFTools::make_sparsity_pattern (mg_dof_handler, sparsity_pattern);
+
+    solution.reinit (mg_dof_handler.n_dofs());
+    system_rhs.reinit (mg_dof_handler.n_dofs());
+
+                                    // But it starts to be a wee bit different
+                                    // here, although this still doesn't have
+                                    // anything to do with multigrid
+                                    // methods. step-6 took care of boundary
+                                    // values and hanging nodes in a separate
+                                    // step after assembling the global matrix
+                                    // from local contributions. This works,
+                                    // but the same can be done in a slightly
+                                    // simpler way if we already take care of
+                                    // these constraints at the time of copying
+                                    // local contributions into the global
+                                    // matrix. To this end, we here do not just
+                                    // compute the constraints do to hanging
+                                    // nodes, but also due to zero boundary
+                                    // conditions. We will
+                                    // use this set of constraints later on to
+                                    // help us copy local contributions
+                                    // correctly into the global linear system
+                                    // right away, without the need for a later
+                                    // clean-up stage:
+    constraints.clear ();
+    hanging_node_constraints.clear ();
+    DoFTools::make_hanging_node_constraints (mg_dof_handler, hanging_node_constraints);
+    DoFTools::make_hanging_node_constraints (mg_dof_handler, constraints);
+
+    typename FunctionMap<dim>::type      dirichlet_boundary;
+    ZeroFunction<dim>                    homogeneous_dirichlet_bc (1);
+    dirichlet_boundary[0] = &homogeneous_dirichlet_bc;
+    VectorTools::interpolate_boundary_values (static_cast<const DoFHandler<dim>&>(mg_dof_handler),
+                                             dirichlet_boundary,
+                                             constraints);
+    constraints.close ();
+    hanging_node_constraints.close ();
+    constraints.condense (sparsity_pattern);
+    sparsity_pattern.compress();
+    system_matrix.reinit (sparsity_pattern);
+
+                                    // The multigrid constraints have to be
+                                    // initialized. They need to know about
+                                    // the boundary values as well, so we
+                                    // pass the <code>dirichlet_boundary</code>
+                                    // here as well.
+    mg_constrained_dofs.clear();
+    mg_constrained_dofs.initialize(mg_dof_handler, dirichlet_boundary);
+
+
+                                    // Now for the things that concern the
+                                    // multigrid data structures. First, we
+                                    // resize the multi-level objects to hold
+                                    // matrices and sparsity patterns for every
+                                    // level. The coarse level is zero (this is
+                                    // mandatory right now but may change in a
+                                    // future revision). Note that these
+                                    // functions take a complete, inclusive
+                                    // range here (not a starting index and
+                                    // size), so the finest level is
+                                    // <code>n_levels-1</code>.  We first have
+                                    // to resize the container holding the
+                                    // SparseMatrix classes, since they have to
+                                    // release their SparsityPattern before the
+                                    // can be destroyed upon resizing.
+    const unsigned int n_levels = triangulation.n_levels();
+
+    mg_interface_matrices.resize(0, n_levels-1);
+    mg_interface_matrices.clear ();
+    mg_matrices.resize(0, n_levels-1);
+    mg_matrices.clear ();
+    mg_sparsity_patterns.resize(0, n_levels-1);
+
+                                    // Now, we have to provide a matrix on each
+                                    // level. To this end, we first use the
+                                    // MGTools::make_sparsity_pattern function
+                                    // to first generate a preliminary
+                                    // compressed sparsity pattern on each
+                                    // level (see the @ref Sparsity module for
+                                    // more information on this topic) and then
+                                    // copy it over to the one we really
+                                    // want. The next step is to initialize
+                                    // both kinds of level matrices with these
+                                    // sparsity patterns.
+                                    //
+                                    // It may be worth pointing out that the
+                                    // interface matrices only have entries for
+                                    // degrees of freedom that sit at or next
+                                    // to the interface between coarser and
+                                    // finer levels of the mesh. They are
+                                    // therefore even sparser than the matrices
+                                    // on the individual levels of our
+                                    // multigrid hierarchy. If we were more
+                                    // concerned about memory usage (and
+                                    // possibly the speed with which we can
+                                    // multiply with these matrices), we should
+                                    // use separate and different sparsity
+                                    // patterns for these two kinds of
+                                    // matrices.
+    for (unsigned int level=0; level<n_levels; ++level)
+      {
+       CompressedSparsityPattern csp;
+       csp.reinit(mg_dof_handler.n_dofs(level),
+                  mg_dof_handler.n_dofs(level));
+       MGTools::make_sparsity_pattern(mg_dof_handler, csp, level);
+
+       mg_sparsity_patterns[level].copy_from (csp);
+
+       mg_matrices[level].reinit(mg_sparsity_patterns[level]);
+       mg_interface_matrices[level].reinit(mg_sparsity_patterns[level]);
+      }
+  }
+
+
+                                  // @sect4{LaplaceProblem::assemble_system}
+
+                                  // The following function assembles the
+                                  // linear system on the finesh level of the
+                                  // mesh. It is almost exactly the same as in
+                                  // step-6, with the exception that we don't
+                                  // eliminate hanging nodes and boundary
+                                  // values after assembling, but while copying
                                   // local contributions into the global
-                                  // matrix. To this end, we here do not just
-                                  // compute the constraints do to hanging
-                                  // nodes, but also due to zero boundary
-                                  // conditions. We will
-                                  // use this set of constraints later on to
-                                  // help us copy local contributions
-                                  // correctly into the global linear system
-                                  // right away, without the need for a later
-                                  // clean-up stage:
-  constraints.clear ();
-  hanging_node_constraints.clear ();
-  DoFTools::make_hanging_node_constraints (mg_dof_handler, hanging_node_constraints);
-  DoFTools::make_hanging_node_constraints (mg_dof_handler, constraints);
-
-  typename FunctionMap<dim>::type      dirichlet_boundary;
-  ZeroFunction<dim>                    homogeneous_dirichlet_bc (1);
-  dirichlet_boundary[0] = &homogeneous_dirichlet_bc;
-  VectorTools::interpolate_boundary_values (static_cast<const DoFHandler<dim>&>(mg_dof_handler),
-                                           dirichlet_boundary,
-                                           constraints);
-  constraints.close ();
-  hanging_node_constraints.close ();
-  constraints.condense (sparsity_pattern);
-  sparsity_pattern.compress();
-  system_matrix.reinit (sparsity_pattern);
-
-                                  // The multigrid constraints have to be
-                                   // initialized. They need to know about
-                                   // the boundary values as well, so we
-                                   // pass the <code>dirichlet_boundary</code>
-                                   // here as well.
-  mg_constrained_dofs.clear();
-  mg_constrained_dofs.initialize(mg_dof_handler, dirichlet_boundary);
-
-
-                                  // Now for the things that concern the
-                                  // multigrid data structures. First, we
-                                  // resize the multi-level objects to hold
-                                  // matrices and sparsity patterns for every
-                                  // level. The coarse level is zero (this is
-                                  // mandatory right now but may change in a
-                                  // future revision). Note that these
-                                  // functions take a complete, inclusive
-                                  // range here (not a starting index and
-                                  // size), so the finest level is
-                                  // <code>n_levels-1</code>.  We first have
-                                  // to resize the container holding the
-                                  // SparseMatrix classes, since they have to
-                                  // release their SparsityPattern before the
-                                  // can be destroyed upon resizing.
-  const unsigned int n_levels = triangulation.n_levels();
-
-  mg_interface_matrices.resize(0, n_levels-1);
-  mg_interface_matrices.clear ();
-  mg_matrices.resize(0, n_levels-1);
-  mg_matrices.clear ();
-  mg_sparsity_patterns.resize(0, n_levels-1);
-
-                                  // Now, we have to provide a matrix on each
-                                  // level. To this end, we first use the
-                                  // MGTools::make_sparsity_pattern function
-                                  // to first generate a preliminary
-                                  // compressed sparsity pattern on each
-                                  // level (see the @ref Sparsity module for
-                                  // more information on this topic) and then
-                                  // copy it over to the one we really
-                                  // want. The next step is to initialize
-                                  // both kinds of level matrices with these
-                                  // sparsity patterns.
+                                  // matrix. This is not only simpler but also
+                                  // more efficient for large problems.
                                   //
-                                  // It may be worth pointing out that the
-                                  // interface matrices only have entries for
-                                  // degrees of freedom that sit at or next
-                                  // to the interface between coarser and
-                                  // finer levels of the mesh. They are
-                                  // therefore even sparser than the matrices
-                                  // on the individual levels of our
-                                  // multigrid hierarchy. If we were more
-                                  // concerned about memory usage (and
-                                  // possibly the speed with which we can
-                                  // multiply with these matrices), we should
-                                  // use separate and different sparsity
-                                  // patterns for these two kinds of
-                                  // matrices.
-  for (unsigned int level=0; level<n_levels; ++level)
-    {
-      CompressedSparsityPattern csp;
-      csp.reinit(mg_dof_handler.n_dofs(level),
-                mg_dof_handler.n_dofs(level));
-      MGTools::make_sparsity_pattern(mg_dof_handler, csp, level);
-
-      mg_sparsity_patterns[level].copy_from (csp);
-
-      mg_matrices[level].reinit(mg_sparsity_patterns[level]);
-      mg_interface_matrices[level].reinit(mg_sparsity_patterns[level]);
-    }
-}
-
-
-                                 // @sect4{LaplaceProblem::assemble_system}
-
-                                // The following function assembles the
-                                // linear system on the finesh level of the
-                                // mesh. It is almost exactly the same as in
-                                // step-6, with the exception that we don't
-                                // eliminate hanging nodes and boundary
-                                // values after assembling, but while copying
-                                // local contributions into the global
-                                // matrix. This is not only simpler but also
-                                // more efficient for large problems.
-                                //
-                                // This latter trick is something that only
-                                // found its way into deal.II over time and
-                                // wasn't used in the initial version of this
-                                // tutorial program. There is, however, a
-                                // discussion of this function in the
-                                // introduction of step-27.
-template <int dim>
-void LaplaceProblem<dim>::assemble_system ()
-{
-  const QGauss<dim>  quadrature_formula(degree+1);
-
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                          update_values    |  update_gradients |
-                          update_quadrature_points  |  update_JxW_values);
-
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.size();
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-  const Coefficient<dim> coefficient;
-  std::vector<double>    coefficient_values (n_q_points);
-
-  typename MGDoFHandler<dim>::active_cell_iterator
-    cell = mg_dof_handler.begin_active(),
-    endc = mg_dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      cell_matrix = 0;
-      cell_rhs = 0;
-
-      fe_values.reinit (cell);
-
-      coefficient.value_list (fe_values.get_quadrature_points(),
-                             coefficient_values);
-
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         {
+                                  // This latter trick is something that only
+                                  // found its way into deal.II over time and
+                                  // wasn't used in the initial version of this
+                                  // tutorial program. There is, however, a
+                                  // discussion of this function in the
+                                  // introduction of step-27.
+  template <int dim>
+  void LaplaceProblem<dim>::assemble_system ()
+  {
+    const QGauss<dim>  quadrature_formula(degree+1);
+
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values    |  update_gradients |
+                            update_quadrature_points  |  update_JxW_values);
+
+    const unsigned int   dofs_per_cell = fe.dofs_per_cell;
+    const unsigned int   n_q_points    = quadrature_formula.size();
+
+    FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>       cell_rhs (dofs_per_cell);
+
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+    const Coefficient<dim> coefficient;
+    std::vector<double>    coefficient_values (n_q_points);
+
+    typename MGDoFHandler<dim>::active_cell_iterator
+      cell = mg_dof_handler.begin_active(),
+      endc = mg_dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       cell_matrix = 0;
+       cell_rhs = 0;
+
+       fe_values.reinit (cell);
+
+       coefficient.value_list (fe_values.get_quadrature_points(),
+                               coefficient_values);
+
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           {
+             for (unsigned int j=0; j<dofs_per_cell; ++j)
+               cell_matrix(i,j) += (coefficient_values[q_point] *
+                                    fe_values.shape_grad(i,q_point) *
+                                    fe_values.shape_grad(j,q_point) *
+                                    fe_values.JxW(q_point));
+
+             cell_rhs(i) += (fe_values.shape_value(i,q_point) *
+                             1.0 *
+                             fe_values.JxW(q_point));
+           }
+
+       cell->get_dof_indices (local_dof_indices);
+       constraints.distribute_local_to_global (cell_matrix, cell_rhs,
+                                               local_dof_indices,
+                                               system_matrix, system_rhs);
+      }
+  }
+
+
+                                  // @sect4{LaplaceProblem::assemble_multigrid}
+
+                                  // The next function is the one that builds
+                                  // the linear operators (matrices) that
+                                  // define the multigrid method on each level
+                                  // of the mesh. The integration core is the
+                                  // same as above, but the loop below will go
+                                  // over all existing cells instead of just
+                                  // the active ones, and the results must be
+                                  // entered into the correct matrix. Note also
+                                  // that since we only do multi-level
+                                  // preconditioning, no right-hand side needs
+                                  // to be assembled here.
+                                  //
+                                  // Before we go there, however, we have to
+                                  // take care of a significant amount of book
+                                  // keeping:
+  template <int dim>
+  void LaplaceProblem<dim>::assemble_multigrid ()
+  {
+    QGauss<dim>  quadrature_formula(1+degree);
+
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values   | update_gradients |
+                            update_quadrature_points | update_JxW_values);
+
+    const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
+    const unsigned int   n_q_points      = quadrature_formula.size();
+
+    FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
+
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+    const Coefficient<dim> coefficient;
+    std::vector<double>    coefficient_values (n_q_points);
+
+                                    // Next a few things that are specific to
+                                    // building the multigrid data structures
+                                    // (since we only need them in the current
+                                    // function, rather than also elsewhere, we
+                                    // build them here instead of the
+                                    // <code>setup_system</code>
+                                    // function). Some of the following may be
+                                    // a bit obscure if you're not familiar
+                                    // with the algorithm actually implemented
+                                    // in deal.II to support multilevel
+                                    // algorithms on adaptive meshes; if some
+                                    // of the things below seem strange, take a
+                                    // look at the @ref mg_paper.
+                                    //
+                                    // Our first job is to identify those
+                                    // degrees of freedom on each level that
+                                    // are located on interfaces between
+                                    // adaptively refined levels, and those
+                                    // that lie on the interface but also on
+                                    // the exterior boundary of the domain. As
+                                    // in many other parts of the library, we
+                                    // do this by using boolean masks,
+                                    // i.e. vectors of booleans each element of
+                                    // which indicates whether the
+                                    // corresponding degree of freedom index is
+                                    // an interface DoF or not. The <code>MGConstraints</code>
+                                    // already computed the information for us
+                                    // when we called initialize in <code>setup_system()</code>.
+    std::vector<std::vector<bool> > interface_dofs
+      = mg_constrained_dofs.get_refinement_edge_indices ();
+    std::vector<std::vector<bool> > boundary_interface_dofs
+      = mg_constrained_dofs.get_refinement_edge_boundary_indices ();
+
+                                    // The indices just identified will later
+                                    // be used to decide where the assembled value
+                                    // has to be added into on each level.
+                                    // On the other hand,
+                                    // we also have to impose zero boundary
+                                    // conditions on the external boundary of
+                                    // each level. But this the <code>MGConstraints</code>
+                                    // knows it. So we simply ask for them by calling
+                                    // <code>get_boundary_indices ()</code>.
+                                    // The third step is to construct
+                                    // constraints on all those degrees of
+                                    // freedom: their value should be zero
+                                    // after each application of the level
+                                    // operators. To this end, we construct
+                                    // ConstraintMatrix objects for each level,
+                                    // and add to each of these constraints for
+                                    // each degree of freedom. Due to the way
+                                    // the ConstraintMatrix stores its data,
+                                    // the function to add a constraint on a
+                                    // single degree of freedom and force it to
+                                    // be zero is called
+                                    // Constraintmatrix::add_line(); doing so
+                                    // for several degrees of freedom at once
+                                    // can be done using
+                                    // Constraintmatrix::add_lines():
+    std::vector<ConstraintMatrix> boundary_constraints (triangulation.n_levels());
+    std::vector<ConstraintMatrix> boundary_interface_constraints (triangulation.n_levels());
+    for (unsigned int level=0; level<triangulation.n_levels(); ++level)
+      {
+       boundary_constraints[level].add_lines (interface_dofs[level]);
+       boundary_constraints[level].add_lines (mg_constrained_dofs.get_boundary_indices()[level]);
+       boundary_constraints[level].close ();
+
+       boundary_interface_constraints[level]
+         .add_lines (boundary_interface_dofs[level]);
+       boundary_interface_constraints[level].close ();
+      }
+
+                                    // Now that we're done with most of our
+                                    // preliminaries, let's start the
+                                    // integration loop. It looks mostly like
+                                    // the loop in
+                                    // <code>assemble_system</code>, with two
+                                    // exceptions: (i) we don't need a right
+                                    // hand side, and more significantly (ii) we
+                                    // don't just loop over all active cells,
+                                    // but in fact all cells, active or
+                                    // not. Consequently, the correct iterator
+                                    // to use is MGDoFHandler::cell_iterator
+                                    // rather than
+                                    // MGDoFHandler::active_cell_iterator. Let's
+                                    // go about it:
+    typename MGDoFHandler<dim>::cell_iterator cell = mg_dof_handler.begin(),
+                                             endc = mg_dof_handler.end();
+
+    for (; cell!=endc; ++cell)
+      {
+       cell_matrix = 0;
+       fe_values.reinit (cell);
+
+       coefficient.value_list (fe_values.get_quadrature_points(),
+                               coefficient_values);
+
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
            for (unsigned int j=0; j<dofs_per_cell; ++j)
              cell_matrix(i,j) += (coefficient_values[q_point] *
                                   fe_values.shape_grad(i,q_point) *
                                   fe_values.shape_grad(j,q_point) *
                                   fe_values.JxW(q_point));
 
-           cell_rhs(i) += (fe_values.shape_value(i,q_point) *
-                           1.0 *
-                           fe_values.JxW(q_point));
-         }
-
-      cell->get_dof_indices (local_dof_indices);
-      constraints.distribute_local_to_global (cell_matrix, cell_rhs,
-                                             local_dof_indices,
-                                             system_matrix, system_rhs);
-    }
-}
-
-
-                                 // @sect4{LaplaceProblem::assemble_multigrid}
-
-                                // The next function is the one that builds
-                                // the linear operators (matrices) that
-                                // define the multigrid method on each level
-                                // of the mesh. The integration core is the
-                                // same as above, but the loop below will go
-                                // over all existing cells instead of just
-                                // the active ones, and the results must be
-                                // entered into the correct matrix. Note also
-                                // that since we only do multi-level
-                                // preconditioning, no right-hand side needs
-                                // to be assembled here.
-                                //
-                                // Before we go there, however, we have to
-                                // take care of a significant amount of book
-                                // keeping:
-template <int dim>
-void LaplaceProblem<dim>::assemble_multigrid ()
-{
-  QGauss<dim>  quadrature_formula(1+degree);
-
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                          update_values   | update_gradients |
-                          update_quadrature_points | update_JxW_values);
-
-  const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
-  const unsigned int   n_q_points      = quadrature_formula.size();
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-  const Coefficient<dim> coefficient;
-  std::vector<double>    coefficient_values (n_q_points);
-
-                                  // Next a few things that are specific to
-                                  // building the multigrid data structures
-                                  // (since we only need them in the current
-                                  // function, rather than also elsewhere, we
-                                  // build them here instead of the
-                                  // <code>setup_system</code>
-                                  // function). Some of the following may be
-                                  // a bit obscure if you're not familiar
-                                  // with the algorithm actually implemented
-                                  // in deal.II to support multilevel
-                                  // algorithms on adaptive meshes; if some
-                                  // of the things below seem strange, take a
-                                  // look at the @ref mg_paper.
-                                  //
-                                  // Our first job is to identify those
-                                  // degrees of freedom on each level that
-                                  // are located on interfaces between
-                                  // adaptively refined levels, and those
-                                  // that lie on the interface but also on
-                                  // the exterior boundary of the domain. As
-                                  // in many other parts of the library, we
-                                  // do this by using boolean masks,
-                                  // i.e. vectors of booleans each element of
-                                  // which indicates whether the
-                                  // corresponding degree of freedom index is
-                                  // an interface DoF or not. The <code>MGConstraints</code>
-                                   // already computed the information for us
-                                   // when we called initialize in <code>setup_system()</code>.
-  std::vector<std::vector<bool> > interface_dofs
-    = mg_constrained_dofs.get_refinement_edge_indices ();
-  std::vector<std::vector<bool> > boundary_interface_dofs
-    = mg_constrained_dofs.get_refinement_edge_boundary_indices ();
-
-                                  // The indices just identified will later
-                                  // be used to decide where the assembled value
-                                   // has to be added into on each level.
-                                   // On the other hand,
-                                  // we also have to impose zero boundary
-                                  // conditions on the external boundary of
-                                  // each level. But this the <code>MGConstraints</code>
-                                   // knows it. So we simply ask for them by calling
-                                   // <code>get_boundary_indices ()</code>.
-                                  // The third step is to construct
-                                  // constraints on all those degrees of
-                                  // freedom: their value should be zero
-                                  // after each application of the level
-                                  // operators. To this end, we construct
-                                  // ConstraintMatrix objects for each level,
-                                  // and add to each of these constraints for
-                                  // each degree of freedom. Due to the way
-                                  // the ConstraintMatrix stores its data,
-                                  // the function to add a constraint on a
-                                  // single degree of freedom and force it to
-                                  // be zero is called
-                                  // Constraintmatrix::add_line(); doing so
-                                  // for several degrees of freedom at once
-                                  // can be done using
-                                  // Constraintmatrix::add_lines():
-  std::vector<ConstraintMatrix> boundary_constraints (triangulation.n_levels());
-  std::vector<ConstraintMatrix> boundary_interface_constraints (triangulation.n_levels());
-  for (unsigned int level=0; level<triangulation.n_levels(); ++level)
-    {
-      boundary_constraints[level].add_lines (interface_dofs[level]);
-      boundary_constraints[level].add_lines (mg_constrained_dofs.get_boundary_indices()[level]);
-      boundary_constraints[level].close ();
-
-      boundary_interface_constraints[level]
-       .add_lines (boundary_interface_dofs[level]);
-      boundary_interface_constraints[level].close ();
-    }
-
-                                  // Now that we're done with most of our
-                                  // preliminaries, let's start the
-                                  // integration loop. It looks mostly like
-                                  // the loop in
-                                  // <code>assemble_system</code>, with two
-                                  // exceptions: (i) we don't need a right
-                                  // hand side, and more significantly (ii) we
-                                  // don't just loop over all active cells,
-                                  // but in fact all cells, active or
-                                  // not. Consequently, the correct iterator
-                                  // to use is MGDoFHandler::cell_iterator
-                                  // rather than
-                                  // MGDoFHandler::active_cell_iterator. Let's
-                                  // go about it:
-  typename MGDoFHandler<dim>::cell_iterator cell = mg_dof_handler.begin(),
-                                           endc = mg_dof_handler.end();
-
-  for (; cell!=endc; ++cell)
-    {
-      cell_matrix = 0;
-      fe_values.reinit (cell);
-
-      coefficient.value_list (fe_values.get_quadrature_points(),
-                             coefficient_values);
-
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+                                        // The rest of the assembly is again
+                                        // slightly different. This starts with
+                                        // a gotcha that is easily forgotten:
+                                        // The indices of global degrees of
+                                        // freedom we want here are the ones
+                                        // for current level, not for the
+                                        // global matrix. We therefore need the
+                                        // function
+                                        // MGDoFAccessorLLget_mg_dof_indices,
+                                        // not MGDoFAccessor::get_dof_indices
+                                        // as used in the assembly of the
+                                        // global system:
+       cell->get_mg_dof_indices (local_dof_indices);
+
+                                        // Next, we need to copy local
+                                        // contributions into the level
+                                        // objects. We can do this in the same
+                                        // way as in the global assembly, using
+                                        // a constraint object that takes care
+                                        // of constrained degrees (which here
+                                        // are only boundary nodes, as the
+                                        // individual levels have no hanging
+                                        // node constraints). Note that the
+                                        // <code>boundary_constraints</code>
+                                        // object makes sure that the level
+                                        // matrices contains no contributions
+                                        // from degrees of freedom at the
+                                        // interface between cells of different
+                                        // refinement level.
+       boundary_constraints[cell->level()]
+         .distribute_local_to_global (cell_matrix,
+                                      local_dof_indices,
+                                      mg_matrices[cell->level()]);
+
+                                        // The next step is again slightly more
+                                        // obscure (but explained in the @ref
+                                        // mg_paper): We need the remainder of
+                                        // the operator that we just copied
+                                        // into the <code>mg_matrices</code>
+                                        // object, namely the part on the
+                                        // interface between cells at the
+                                        // current level and cells one level
+                                        // coarser. This matrix exists in two
+                                        // directions: for interior DoFs (index
+                                        // $i$) of the current level to those
+                                        // sitting on the interface (index
+                                        // $j$), and the other way around. Of
+                                        // course, since we have a symmetric
+                                        // operator, one of these matrices is
+                                        // the transpose of the other.
+                                        //
+                                        // The way we assemble these matrices
+                                        // is as follows: since the are formed
+                                        // from parts of the local
+                                        // contributions, we first delete all
+                                        // those parts of the local
+                                        // contributions that we are not
+                                        // interested in, namely all those
+                                        // elements of the local matrix for
+                                        // which not $i$ is an interface DoF
+                                        // and $j$ is not. The result is one of
+                                        // the two matrices that we are
+                                        // interested in, and we then copy it
+                                        // into the
+                                        // <code>mg_interface_matrices</code>
+                                        // object. The
+                                        // <code>boundary_interface_constraints</code>
+                                        // object at the same time makes sure
+                                        // that we delete contributions from
+                                        // all degrees of freedom that are not
+                                        // only on the interface but also on
+                                        // the external boundary of the domain.
+                                        //
+                                        // The last part to remember is how to
+                                        // get the other matrix. Since it is
+                                        // only the transpose, we will later
+                                        // (in the <code>solve()</code>
+                                        // function) be able to just pass the
+                                        // transpose matrix where necessary.
        for (unsigned int i=0; i<dofs_per_cell; ++i)
          for (unsigned int j=0; j<dofs_per_cell; ++j)
-           cell_matrix(i,j) += (coefficient_values[q_point] *
-                                fe_values.shape_grad(i,q_point) *
-                                fe_values.shape_grad(j,q_point) *
-                                fe_values.JxW(q_point));
-
-                                      // The rest of the assembly is again
-                                      // slightly different. This starts with
-                                      // a gotcha that is easily forgotten:
-                                      // The indices of global degrees of
-                                      // freedom we want here are the ones
-                                      // for current level, not for the
-                                      // global matrix. We therefore need the
-                                      // function
-                                      // MGDoFAccessorLLget_mg_dof_indices,
-                                      // not MGDoFAccessor::get_dof_indices
-                                      // as used in the assembly of the
-                                      // global system:
-      cell->get_mg_dof_indices (local_dof_indices);
-
-                                      // Next, we need to copy local
-                                      // contributions into the level
-                                      // objects. We can do this in the same
-                                      // way as in the global assembly, using
-                                      // a constraint object that takes care
-                                      // of constrained degrees (which here
-                                      // are only boundary nodes, as the
-                                      // individual levels have no hanging
-                                      // node constraints). Note that the
-                                      // <code>boundary_constraints</code>
-                                      // object makes sure that the level
-                                      // matrices contains no contributions
-                                      // from degrees of freedom at the
-                                      // interface between cells of different
-                                      // refinement level.
-      boundary_constraints[cell->level()]
-       .distribute_local_to_global (cell_matrix,
-                                    local_dof_indices,
-                                    mg_matrices[cell->level()]);
-
-                                      // The next step is again slightly more
-                                      // obscure (but explained in the @ref
-                                      // mg_paper): We need the remainder of
-                                      // the operator that we just copied
-                                      // into the <code>mg_matrices</code>
-                                      // object, namely the part on the
-                                      // interface between cells at the
-                                      // current level and cells one level
-                                      // coarser. This matrix exists in two
-                                      // directions: for interior DoFs (index
-                                      // $i$) of the current level to those
-                                      // sitting on the interface (index
-                                      // $j$), and the other way around. Of
-                                      // course, since we have a symmetric
-                                      // operator, one of these matrices is
-                                      // the transpose of the other.
-                                      //
-                                      // The way we assemble these matrices
-                                      // is as follows: since the are formed
-                                      // from parts of the local
-                                      // contributions, we first delete all
-                                      // those parts of the local
-                                      // contributions that we are not
-                                      // interested in, namely all those
-                                      // elements of the local matrix for
-                                      // which not $i$ is an interface DoF
-                                      // and $j$ is not. The result is one of
-                                      // the two matrices that we are
-                                      // interested in, and we then copy it
-                                      // into the
-                                      // <code>mg_interface_matrices</code>
-                                      // object. The
-                                      // <code>boundary_interface_constraints</code>
-                                      // object at the same time makes sure
-                                      // that we delete contributions from
-                                      // all degrees of freedom that are not
-                                      // only on the interface but also on
-                                      // the external boundary of the domain.
-                                      //
-                                      // The last part to remember is how to
-                                      // get the other matrix. Since it is
-                                      // only the transpose, we will later
-                                      // (in the <code>solve()</code>
-                                      // function) be able to just pass the
-                                      // transpose matrix where necessary.
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-         if( !(interface_dofs[cell->level()][local_dof_indices[i]]==true &&
-               interface_dofs[cell->level()][local_dof_indices[j]]==false))
-           cell_matrix(i,j) = 0;
-
-      boundary_interface_constraints[cell->level()]
-       .distribute_local_to_global (cell_matrix,
-                                    local_dof_indices,
-                                    mg_interface_matrices[cell->level()]);
-    }
-}
+           if( !(interface_dofs[cell->level()][local_dof_indices[i]]==true &&
+                 interface_dofs[cell->level()][local_dof_indices[j]]==false))
+             cell_matrix(i,j) = 0;
 
+       boundary_interface_constraints[cell->level()]
+         .distribute_local_to_global (cell_matrix,
+                                      local_dof_indices,
+                                      mg_interface_matrices[cell->level()]);
+      }
+  }
 
 
-                                 // @sect4{LaplaceProblem::solve}
 
-                                // This is the other function that is
-                                // significantly different in support of the
-                                // multigrid solver (or, in fact, the
-                                // preconditioner for which we use the
-                                // multigrid method).
-                                //
-                                // Let us start out by setting up two of the
-                                // components of multilevel methods: transfer
-                                // operators between levels, and a solver on
-                                // the coarsest level. In finite element
-                                // methods, the transfer operators are
-                                // derived from the finite element function
-                                // spaces involved and can often be computed
-                                // in a generic way independent of the
-                                // problem under consideration. In that case,
-                                // we can use the MGTransferPrebuilt class
-                                // that, given the constraints on the global
-                                // level and an MGDoFHandler object computes
-                                // the matrices corresponding to these
-                                // transfer operators.
-                                //
-                                // The second part of the following lines
-                                // deals with the coarse grid solver. Since
-                                // our coarse grid is very coarse indeed, we
-                                // decide for a direct solver (a Householder
-                                // decomposition of the coarsest level
-                                // matrix), even if its implementation is not
-                                // particularly sophisticated. If our coarse
-                                // mesh had many more cells than the five we
-                                // have here, something better suited would
-                                // obviously be necessary here.
-template <int dim>
-void LaplaceProblem<dim>::solve ()
-{
+                                  // @sect4{LaplaceProblem::solve}
 
-                                // Create the object that deals with the transfer
-                                 // between different refinement levels. We need to
-                                 // pass it the hanging node constraints.
-  MGTransferPrebuilt<Vector<double> > mg_transfer(hanging_node_constraints, mg_constrained_dofs);
-                                // Now the prolongation matrix has to be built.
-                                 // This matrix needs to take the boundary values on
-                                 // each level into account and needs to know about
-                                 // the indices at the refinement egdes. The
-                                 // <code>MGConstraints</code> knows about that so
-                                 // pass it as an argument.
-  mg_transfer.build_matrices(mg_dof_handler);
-
-  FullMatrix<double> coarse_matrix;
-  coarse_matrix.copy_from (mg_matrices[0]);
-  MGCoarseGridHouseholder<> coarse_grid_solver;
-  coarse_grid_solver.initialize (coarse_matrix);
-
-                                  // The next component of a multilevel
-                                  // solver or preconditioner is that we need
-                                  // a smoother on each level. A common
-                                  // choice for this is to use the
-                                  // application of a relaxation method (such
-                                  // as the SOR, Jacobi or Richardson method)
-                                  // or a small number of iterations of a
-                                  // solver method (such as CG or GMRES). The
-                                  // MGSmootherRelaxation and
-                                  // MGSmootherPrecondition classes provide
-                                  // support for these two kinds of
-                                  // smoothers. Here, we opt for the
-                                  // application of a single SOR
-                                  // iteration. To this end, we define an
-                                  // appropriate <code>typedef</code> and
-                                  // then setup a smoother object.
-                                  //
-                                  // Since this smoother needs temporary
-                                  // vectors to store intermediate results,
-                                  // we need to provide a VectorMemory
-                                  // object. Since these vectors will be
-                                  // reused over and over, the
-                                  // GrowingVectorMemory is more time
-                                  // efficient than the PrimitiveVectorMemory
-                                  // class in the current case.
+                                  // This is the other function that is
+                                  // significantly different in support of the
+                                  // multigrid solver (or, in fact, the
+                                  // preconditioner for which we use the
+                                  // multigrid method).
                                   //
-                                  // The last step is to initialize the
-                                  // smoother object with our level matrices
-                                  // and to set some smoothing parameters.
-                                  // The <code>initialize()</code> function
-                                  // can optionally take additional arguments
-                                  // that will be passed to the smoother
-                                  // object on each level. In the current
-                                  // case for the SOR smoother, this could,
-                                  // for example, include a relaxation
-                                  // parameter. However, we here leave these
-                                  // at their default values. The call to
-                                  // <code>set_steps()</code> indicates that
-                                  // we will use two pre- and two
-                                  // post-smoothing steps on each level; to
-                                  // use a variable number of smoother steps
-                                  // on different levels, more options can be
-                                  // set in the constructor call to the
-                                  // <code>mg_smoother</code> object.
+                                  // Let us start out by setting up two of the
+                                  // components of multilevel methods: transfer
+                                  // operators between levels, and a solver on
+                                  // the coarsest level. In finite element
+                                  // methods, the transfer operators are
+                                  // derived from the finite element function
+                                  // spaces involved and can often be computed
+                                  // in a generic way independent of the
+                                  // problem under consideration. In that case,
+                                  // we can use the MGTransferPrebuilt class
+                                  // that, given the constraints on the global
+                                  // level and an MGDoFHandler object computes
+                                  // the matrices corresponding to these
+                                  // transfer operators.
                                   //
-                                  // The last step results from the fact that
-                                  // we use the SOR method as a smoother -
-                                  // which is not symmetric - but we use the
-                                  // conjugate gradient iteration (which
-                                  // requires a symmetric preconditioner)
-                                  // below, we need to let the multilevel
-                                  // preconditioner make sure that we get a
-                                  // symmetric operator even for nonsymmetric
-                                  // smoothers:
-  typedef PreconditionSOR<SparseMatrix<double> > Smoother;
-  GrowingVectorMemory<>   vector_memory;
-  MGSmootherRelaxation<SparseMatrix<double>, Smoother, Vector<double> >
-    mg_smoother(vector_memory);
-  mg_smoother.initialize(mg_matrices);
-  mg_smoother.set_steps(2);
-  mg_smoother.set_symmetric(true);
-
-                                  // The next preparatory step is that we
-                                  // must wrap our level and interface
-                                  // matrices in an object having the
-                                  // required multiplication functions. We
-                                  // will create two objects for the
-                                  // interface objects going from coarse to
-                                  // fine and the other way around; the
-                                  // multigrid algorithm will later use the
-                                  // transpose operator for the latter
-                                  // operation, allowing us to initialize
-                                  // both up and down versions of the
-                                  // operator with the matrices we already
-                                  // built:
-  MGMatrix<> mg_matrix(&mg_matrices);
-  MGMatrix<> mg_interface_up(&mg_interface_matrices);
-  MGMatrix<> mg_interface_down(&mg_interface_matrices);
-
-                                  // Now, we are ready to set up the
-                                  // V-cycle operator and the
-                                  // multilevel preconditioner.
-  Multigrid<Vector<double> > mg(mg_dof_handler,
-                               mg_matrix,
-                               coarse_grid_solver,
-                               mg_transfer,
-                               mg_smoother,
-                               mg_smoother);
-  mg.set_edge_matrices(mg_interface_down, mg_interface_up);
-
-  PreconditionMG<dim, Vector<double>, MGTransferPrebuilt<Vector<double> > >
-  preconditioner(mg_dof_handler, mg, mg_transfer);
-
-                                  // With all this together, we can finally
-                                  // get about solving the linear system in
-                                  // the usual way:
-  SolverControl solver_control (1000, 1e-12);
-  SolverCG<>    cg (solver_control);
-
-  solution = 0;
-
-  cg.solve (system_matrix, solution, system_rhs,
-           preconditioner);
-  constraints.distribute (solution);
-
-  std::cout << "   " << solver_control.last_step()
-           << " CG iterations needed to obtain convergence."
-           << std::endl;
-}
-
-
-
-                                 // @sect4{Postprocessing}
-
-                                // The following two functions postprocess a
-                                // solution once it is computed. In
-                                // particular, the first one refines the mesh
-                                // at the beginning of each cycle while the
-                                // second one outputs results at the end of
-                                // each such cycle. The functions are almost
-                                // unchanged from those in step-6, with the
-                                // exception of two minor differences: The
-                                // KellyErrorEstimator::estimate function
-                                // wants an argument of type DoFHandler, not
-                                // MGDoFHandler, and so we have to cast from
-                                // derived to base class; and we generate
-                                // output in VTK format, to use the more
-                                // modern visualization programs available
-                                // today compared to those that were
-                                // available when step-6 was written.
-template <int dim>
-void LaplaceProblem<dim>::refine_grid ()
-{
-  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
-  KellyErrorEstimator<dim>::estimate (static_cast<DoFHandler<dim>&>(mg_dof_handler),
-                                     QGauss<dim-1>(3),
-                                     typename FunctionMap<dim>::type(),
-                                     solution,
-                                     estimated_error_per_cell);
-  GridRefinement::refine_and_coarsen_fixed_number (triangulation,
-                                                  estimated_error_per_cell,
-                                                  0.3, 0.03);
-  triangulation.execute_coarsening_and_refinement ();
-}
-
-
-
-template <int dim>
-void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
-{
-  DataOut<dim> data_out;
-
-  data_out.attach_dof_handler (mg_dof_handler);
-  data_out.add_data_vector (solution, "solution");
-  data_out.build_patches ();
-
-  std::ostringstream filename;
-  filename << "solution-"
-          << cycle
-          << ".vtk";
-
-  std::ofstream output (filename.str().c_str());
-  data_out.write_vtk (output);
-}
-
-
-                                 // @sect4{LaplaceProblem::run}
-
-                                // Like several of the functions above, this
-                                // is almost exactly a copy of of the
-                                // corresponding function in step-6. The only
-                                // difference is the call to
-                                // <code>assemble_multigrid</code> that takes
-                                // care of forming the matrices on every
-                                // level that we need in the multigrid
-                                // method.
-template <int dim>
-void LaplaceProblem<dim>::run ()
-{
-  for (unsigned int cycle=0; cycle<8; ++cycle)
-    {
-      std::cout << "Cycle " << cycle << ':' << std::endl;
-
-      if (cycle == 0)
-       {
-         GridGenerator::hyper_ball (triangulation);
+                                  // The second part of the following lines
+                                  // deals with the coarse grid solver. Since
+                                  // our coarse grid is very coarse indeed, we
+                                  // decide for a direct solver (a Householder
+                                  // decomposition of the coarsest level
+                                  // matrix), even if its implementation is not
+                                  // particularly sophisticated. If our coarse
+                                  // mesh had many more cells than the five we
+                                  // have here, something better suited would
+                                  // obviously be necessary here.
+  template <int dim>
+  void LaplaceProblem<dim>::solve ()
+  {
+
+                                    // Create the object that deals with the transfer
+                                    // between different refinement levels. We need to
+                                    // pass it the hanging node constraints.
+    MGTransferPrebuilt<Vector<double> > mg_transfer(hanging_node_constraints, mg_constrained_dofs);
+                                    // Now the prolongation matrix has to be built.
+                                    // This matrix needs to take the boundary values on
+                                    // each level into account and needs to know about
+                                    // the indices at the refinement egdes. The
+                                    // <code>MGConstraints</code> knows about that so
+                                    // pass it as an argument.
+    mg_transfer.build_matrices(mg_dof_handler);
+
+    FullMatrix<double> coarse_matrix;
+    coarse_matrix.copy_from (mg_matrices[0]);
+    MGCoarseGridHouseholder<> coarse_grid_solver;
+    coarse_grid_solver.initialize (coarse_matrix);
+
+                                    // The next component of a multilevel
+                                    // solver or preconditioner is that we need
+                                    // a smoother on each level. A common
+                                    // choice for this is to use the
+                                    // application of a relaxation method (such
+                                    // as the SOR, Jacobi or Richardson method)
+                                    // or a small number of iterations of a
+                                    // solver method (such as CG or GMRES). The
+                                    // MGSmootherRelaxation and
+                                    // MGSmootherPrecondition classes provide
+                                    // support for these two kinds of
+                                    // smoothers. Here, we opt for the
+                                    // application of a single SOR
+                                    // iteration. To this end, we define an
+                                    // appropriate <code>typedef</code> and
+                                    // then setup a smoother object.
+                                    //
+                                    // Since this smoother needs temporary
+                                    // vectors to store intermediate results,
+                                    // we need to provide a VectorMemory
+                                    // object. Since these vectors will be
+                                    // reused over and over, the
+                                    // GrowingVectorMemory is more time
+                                    // efficient than the PrimitiveVectorMemory
+                                    // class in the current case.
+                                    //
+                                    // The last step is to initialize the
+                                    // smoother object with our level matrices
+                                    // and to set some smoothing parameters.
+                                    // The <code>initialize()</code> function
+                                    // can optionally take additional arguments
+                                    // that will be passed to the smoother
+                                    // object on each level. In the current
+                                    // case for the SOR smoother, this could,
+                                    // for example, include a relaxation
+                                    // parameter. However, we here leave these
+                                    // at their default values. The call to
+                                    // <code>set_steps()</code> indicates that
+                                    // we will use two pre- and two
+                                    // post-smoothing steps on each level; to
+                                    // use a variable number of smoother steps
+                                    // on different levels, more options can be
+                                    // set in the constructor call to the
+                                    // <code>mg_smoother</code> object.
+                                    //
+                                    // The last step results from the fact that
+                                    // we use the SOR method as a smoother -
+                                    // which is not symmetric - but we use the
+                                    // conjugate gradient iteration (which
+                                    // requires a symmetric preconditioner)
+                                    // below, we need to let the multilevel
+                                    // preconditioner make sure that we get a
+                                    // symmetric operator even for nonsymmetric
+                                    // smoothers:
+    typedef PreconditionSOR<SparseMatrix<double> > Smoother;
+    GrowingVectorMemory<>   vector_memory;
+    MGSmootherRelaxation<SparseMatrix<double>, Smoother, Vector<double> >
+      mg_smoother(vector_memory);
+    mg_smoother.initialize(mg_matrices);
+    mg_smoother.set_steps(2);
+    mg_smoother.set_symmetric(true);
+
+                                    // The next preparatory step is that we
+                                    // must wrap our level and interface
+                                    // matrices in an object having the
+                                    // required multiplication functions. We
+                                    // will create two objects for the
+                                    // interface objects going from coarse to
+                                    // fine and the other way around; the
+                                    // multigrid algorithm will later use the
+                                    // transpose operator for the latter
+                                    // operation, allowing us to initialize
+                                    // both up and down versions of the
+                                    // operator with the matrices we already
+                                    // built:
+    MGMatrix<> mg_matrix(&mg_matrices);
+    MGMatrix<> mg_interface_up(&mg_interface_matrices);
+    MGMatrix<> mg_interface_down(&mg_interface_matrices);
+
+                                    // Now, we are ready to set up the
+                                    // V-cycle operator and the
+                                    // multilevel preconditioner.
+    Multigrid<Vector<double> > mg(mg_dof_handler,
+                                 mg_matrix,
+                                 coarse_grid_solver,
+                                 mg_transfer,
+                                 mg_smoother,
+                                 mg_smoother);
+    mg.set_edge_matrices(mg_interface_down, mg_interface_up);
+
+    PreconditionMG<dim, Vector<double>, MGTransferPrebuilt<Vector<double> > >
+      preconditioner(mg_dof_handler, mg, mg_transfer);
+
+                                    // With all this together, we can finally
+                                    // get about solving the linear system in
+                                    // the usual way:
+    SolverControl solver_control (1000, 1e-12);
+    SolverCG<>    cg (solver_control);
+
+    solution = 0;
+
+    cg.solve (system_matrix, solution, system_rhs,
+             preconditioner);
+    constraints.distribute (solution);
+
+    std::cout << "   " << solver_control.last_step()
+             << " CG iterations needed to obtain convergence."
+             << std::endl;
+  }
+
+
+
+                                  // @sect4{Postprocessing}
+
+                                  // The following two functions postprocess a
+                                  // solution once it is computed. In
+                                  // particular, the first one refines the mesh
+                                  // at the beginning of each cycle while the
+                                  // second one outputs results at the end of
+                                  // each such cycle. The functions are almost
+                                  // unchanged from those in step-6, with the
+                                  // exception of two minor differences: The
+                                  // KellyErrorEstimator::estimate function
+                                  // wants an argument of type DoFHandler, not
+                                  // MGDoFHandler, and so we have to cast from
+                                  // derived to base class; and we generate
+                                  // output in VTK format, to use the more
+                                  // modern visualization programs available
+                                  // today compared to those that were
+                                  // available when step-6 was written.
+  template <int dim>
+  void LaplaceProblem<dim>::refine_grid ()
+  {
+    Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+    KellyErrorEstimator<dim>::estimate (static_cast<DoFHandler<dim>&>(mg_dof_handler),
+                                       QGauss<dim-1>(3),
+                                       typename FunctionMap<dim>::type(),
+                                       solution,
+                                       estimated_error_per_cell);
+    GridRefinement::refine_and_coarsen_fixed_number (triangulation,
+                                                    estimated_error_per_cell,
+                                                    0.3, 0.03);
+    triangulation.execute_coarsening_and_refinement ();
+  }
+
+
+
+  template <int dim>
+  void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
+  {
+    DataOut<dim> data_out;
+
+    data_out.attach_dof_handler (mg_dof_handler);
+    data_out.add_data_vector (solution, "solution");
+    data_out.build_patches ();
+
+    std::ostringstream filename;
+    filename << "solution-"
+            << cycle
+            << ".vtk";
+
+    std::ofstream output (filename.str().c_str());
+    data_out.write_vtk (output);
+  }
+
+
+                                  // @sect4{LaplaceProblem::run}
+
+                                  // Like several of the functions above, this
+                                  // is almost exactly a copy of of the
+                                  // corresponding function in step-6. The only
+                                  // difference is the call to
+                                  // <code>assemble_multigrid</code> that takes
+                                  // care of forming the matrices on every
+                                  // level that we need in the multigrid
+                                  // method.
+  template <int dim>
+  void LaplaceProblem<dim>::run ()
+  {
+    for (unsigned int cycle=0; cycle<8; ++cycle)
+      {
+       std::cout << "Cycle " << cycle << ':' << std::endl;
+
+       if (cycle == 0)
+         {
+           GridGenerator::hyper_ball (triangulation);
 
-         static const HyperBallBoundary<dim> boundary;
-         triangulation.set_boundary (0, boundary);
+           static const HyperBallBoundary<dim> boundary;
+           triangulation.set_boundary (0, boundary);
 
-         triangulation.refine_global (1);
-       }
-      else
-       refine_grid ();
+           triangulation.refine_global (1);
+         }
+       else
+         refine_grid ();
 
 
-      std::cout << "   Number of active cells:       "
-               << triangulation.n_active_cells()
-               << std::endl;
+       std::cout << "   Number of active cells:       "
+                 << triangulation.n_active_cells()
+                 << std::endl;
 
-      setup_system ();
+       setup_system ();
 
-      std::cout << "   Number of degrees of freedom: "
-               << mg_dof_handler.n_dofs()
-               << " (by level: ";
-      for (unsigned int level=0; level<triangulation.n_levels(); ++level)
-       std::cout << mg_dof_handler.n_dofs(level)
-                 << (level == triangulation.n_levels()-1
-                     ? ")" : ", ");
-      std::cout << std::endl;
+       std::cout << "   Number of degrees of freedom: "
+                 << mg_dof_handler.n_dofs()
+                 << " (by level: ";
+       for (unsigned int level=0; level<triangulation.n_levels(); ++level)
+         std::cout << mg_dof_handler.n_dofs(level)
+                   << (level == triangulation.n_levels()-1
+                       ? ")" : ", ");
+       std::cout << std::endl;
 
-      assemble_system ();
-      assemble_multigrid ();
+       assemble_system ();
+       assemble_multigrid ();
 
-      solve ();
-      output_results (cycle);
-    }
+       solve ();
+       output_results (cycle);
+      }
+  }
 }
 
 
@@ -1006,6 +1009,9 @@ int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step16;
+
       deallog.depth_console (0);
 
       LaplaceProblem<2> laplace_problem(1);
index 0a09bb1b448287a810a3681f04d891809bf5579a..191a0134d5601fc06bc94f744356a13c4a3c0396 100644 (file)
@@ -3,7 +3,7 @@
 
 /*    $Id$       */
 /*                                                                */
-/*    Copyright (C) 2000, 2004, 2005, 2006, 2007, 2008, 2009 by the deal.II authors */
+/*    Copyright (C) 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2011 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 
                                 // The last step is as in all
                                 // previous programs:
-using namespace dealii;
-
-                                 // Now, here comes the declaration of the
-                                 // main class and of various other things
-                                 // below it. As mentioned in the
-                                 // introduction, almost all of this has been
-                                 // copied verbatim from step-8, so we only
-                                 // comment on the few things that are
-                                 // different. There is one (cosmetic) change
-                                 // in that we let <code>solve</code> return a value,
-                                 // namely the number of iterations it took to
-                                 // converge, so that we can output this to
-                                 // the screen at the appropriate place. In
-                                 // addition, we introduce a stream-like
-                                 // variable <code>pcout</code>, explained below:
-template <int dim>
-class ElasticProblem 
+namespace Step17
 {
-  public:
-    ElasticProblem ();
-    ~ElasticProblem ();
-    void run ();
-    
-  private:
-    void setup_system ();
-    void assemble_system ();
-    unsigned int solve ();
-    void refine_grid ();
-    void output_results (const unsigned int cycle) const;
-
-                                     // The first variable is basically only
-                                     // for convenience: in %parallel program,
-                                     // if each process outputs status
-                                     // information, then there quickly is a
-                                     // lot of clutter. Rather, we would want
-                                     // to only have one process output
-                                     // everything once, for example the one
-                                     // with process number
-                                     // zero. <code>ConditionalOStream</code> does
-                                     // exactly this: it acts as if it were a
-                                     // stream, but only forwards to a real,
-                                     // underlying stream if a flag is set. By
-                                     // setting this condition to
-                                     // <code>this_mpi_process==0</code>, we make sure
-                                     // that output is only generated from the
-                                     // first process and that we don't get
-                                     // the same lines of output over and over
-                                     // again, once per process.
-                                     //
-                                     // With this simple trick, we make sure
-                                     // that we don't have to guard each and
-                                     // every write to <code>std::cout</code> by a
-                                     // prefixed <code>if(this_mpi_process==0)</code>.
-    ConditionalOStream pcout;
-
-                                     // The next few variables are taken
-                                     // verbatim from step-8:
-    Triangulation<dim>   triangulation;
-    DoFHandler<dim>      dof_handler;
-
-    FESystem<dim>        fe;
-
-    ConstraintMatrix     hanging_node_constraints;
-
-                                     // In step-8, this would have been the
-                                     // place where we would have declared the
-                                     // member variables for the sparsity
-                                     // pattern, the system matrix, right
-                                     // hand, and solution vector. We change
-                                     // these declarations to use %parallel
-                                     // PETSc objects instead (note that the
-                                     // fact that we use the %parallel versions
-                                     // is denoted the fact that we use the
-                                     // classes from the
-                                     // <code>PETScWrappers::MPI</code> namespace;
-                                     // sequential versions of these classes
-                                     // are in the <code>PETScWrappers</code>
-                                     // namespace, i.e. without the <code>MPI</code>
-                                     // part). Note also that we do not use a
-                                     // separate sparsity pattern, since PETSc
-                                     // manages that as part of its matrix
-                                     // data structures.
-    PETScWrappers::MPI::SparseMatrix system_matrix;
-
-    PETScWrappers::MPI::Vector       solution;
-    PETScWrappers::MPI::Vector       system_rhs;
-
-                                     // The next change is that we have to
-                                     // declare a variable that indicates the
-                                     // MPI communicator over which we are
-                                     // supposed to distribute our
-                                     // computations. Note that if this is a
-                                     // sequential job without support by MPI,
-                                     // then PETSc provides some dummy type
-                                     // for <code>MPI_Comm</code>, so we do not have to
-                                     // care here whether the job is really a
-                                     // %parallel one:
-    MPI_Comm mpi_communicator;
-    
-                                     // Then we have two variables that tell
-                                     // us where in the %parallel world we
-                                     // are. The first of the following
-                                     // variables, <code>n_mpi_processes</code> tells
-                                     // us how many MPI processes there exist
-                                     // in total, while the second one,
-                                     // <code>this_mpi_process</code>, indicates which
-                                     // is the number of the present process
-                                     // within this space of processes. The
-                                     // latter variable will have a unique
-                                     // value for each process between zero
-                                     // and (less than)
-                                     // <code>n_mpi_processes</code>. If this program
-                                     // is run on a single machine without MPI
-                                     // support, then their values are <code>1</code>
-                                     // and <code>0</code>, respectively.
-    const unsigned int n_mpi_processes;
-    const unsigned int this_mpi_process;
-};
-
-
-                                 // The following is again taken from step-8
-                                 // without change:
-template <int dim>
-class RightHandSide :  public Function<dim> 
-{
-  public:
-    RightHandSide ();
-    
-    virtual void vector_value (const Point<dim> &p,
-                              Vector<double>   &values) const;
-
-    virtual void vector_value_list (const std::vector<Point<dim> > &points,
-                                   std::vector<Vector<double> >   &value_list) const;
-};
-
-
-template <int dim>
-RightHandSide<dim>::RightHandSide () :
-               Function<dim> (dim)
-{}
-
-
-template <int dim>
-inline
-void RightHandSide<dim>::vector_value (const Point<dim> &p,
-                                      Vector<double>   &values) const 
-{
-  Assert (values.size() == dim, 
-         ExcDimensionMismatch (values.size(), dim));
-  Assert (dim >= 2, ExcInternalError());
-  
-  Point<dim> point_1, point_2;
-  point_1(0) = 0.5;
-  point_2(0) = -0.5;
-  
-  if (((p-point_1).square() < 0.2*0.2) ||
-      ((p-point_2).square() < 0.2*0.2))
-    values(0) = 1;
-  else
-    values(0) = 0;
-  
-  if (p.square() < 0.2*0.2)
-    values(1) = 1;
-  else
-    values(1) = 0;    
-}
-
-
-
-template <int dim>
-void RightHandSide<dim>::vector_value_list (const std::vector<Point<dim> > &points,
-                                           std::vector<Vector<double> >   &value_list) const 
-{
-  const unsigned int n_points = points.size();
-
-  Assert (value_list.size() == n_points, 
-         ExcDimensionMismatch (value_list.size(), n_points));
-
-  for (unsigned int p=0; p<n_points; ++p)
-    RightHandSide<dim>::vector_value (points[p],
-                                     value_list[p]);
-}
-
-
-                                 // The first step in the actual
-                                 // implementation of things is the
-                                 // constructor of the main class. Apart from
-                                 // initializing the same member variables
-                                 // that we already had in step-8, we here
-                                 // initialize the MPI communicator variable
-                                 // we shall use with the global MPI
-                                 // communicator linking all processes
-                                 // together (in more complex applications,
-                                 // one could here use a communicator object
-                                 // that only links a subset of all
-                                 // processes), and call the Utilities helper
-                                 // functions to determine the number of
-                                 // processes and where the present one fits
-                                 // into this picture. In addition, we make
-                                 // sure that output is only generated by the
-                                 // (globally) first process. As,
-                                // this_mpi_process is determined after
-                                // creation of pcout, we cannot set the
-                                // condition through the constructor, i.e. by
-                                // pcout(std::cout, this_mpi_process==0), but
-                                // set the condition separately.
-template <int dim>
-ElasticProblem<dim>::ElasticProblem ()
-                :
-                pcout (std::cout),
-               dof_handler (triangulation),
-               fe (FE_Q<dim>(1), dim),
-                mpi_communicator (MPI_COMM_WORLD),
-                n_mpi_processes (Utilities::System::get_n_mpi_processes(mpi_communicator)),
-                this_mpi_process (Utilities::System::get_this_mpi_process(mpi_communicator))
-{
-  pcout.set_condition(this_mpi_process == 0);
-}
-
-
-
-template <int dim>
-ElasticProblem<dim>::~ElasticProblem () 
-{
-  dof_handler.clear ();
-}
-
-
-                                 // The second step is the function in which
-                                 // we set up the various variables for the
-                                 // global linear system to be solved.
-template <int dim>
-void ElasticProblem<dim>::setup_system ()
-{
-                                   // Before we even start out setting up the
-                                   // system, there is one thing to do for a
-                                   // %parallel program: we need to assign
-                                   // cells to each of the processes. We do
-                                   // this by splitting (<code>partitioning</code>) the
-                                   // mesh cells into as many chunks
-                                   // (<code>subdomains</code>) as there are processes
-                                   // in this MPI job (if this is a sequential
-                                   // job, then there is only one job and all
-                                   // cells will get a zero as subdomain
-                                   // indicator). This is done using an
-                                   // interface to the METIS library that does
-                                   // this in a very efficient way, trying to
-                                   // minimize the number of nodes on the
-                                   // interfaces between subdomains. All this
-                                   // is hidden behind the following call to a
-                                   // deal.II library function:
-  GridTools::partition_triangulation (n_mpi_processes, triangulation);
-  
-                                   // As for the linear system: First, we need
-                                   // to generate an enumeration for the
-                                   // degrees of freedom in our
-                                   // problem. Further below, we will show how
-                                   // we assign each cell to one of the MPI
-                                   // processes before we even get here. What
-                                   // we then need to do is to enumerate the
-                                   // degrees of freedom in a way so that all
-                                   // degrees of freedom associated with cells
-                                   // in subdomain zero (which resides on
-                                   // process zero) come before all DoFs
-                                   // associated with cells on subdomain one,
-                                   // before those on cells on process two,
-                                   // and so on. We need this since we have to
-                                   // split the global vectors for right hand
-                                   // side and solution, as well as the matrix
-                                   // into contiguous chunks of rows that live
-                                   // on each of the processors, and we will
-                                   // want to do this in a way that requires
-                                   // minimal communication. This is done
-                                   // using the following two functions, which
-                                   // first generates an initial ordering of
-                                   // all degrees of freedom, and then re-sort
-                                   // them according to above criterion:
-  dof_handler.distribute_dofs (fe);
-  DoFRenumbering::subdomain_wise (dof_handler);
-
-                                   // While we're at it, let us also count how
-                                   // many degrees of freedom there exist on
-                                   // the present process:
-  const unsigned int n_local_dofs
-    = DoFTools::count_dofs_with_subdomain_association (dof_handler,
-                                                       this_mpi_process);  
-
-                                   // Then we initialize the system matrix,
-                                   // solution, and right hand side
-                                   // vectors. Since they all need to work in
-                                   // %parallel, we have to pass them an MPI
-                                   // communication object, as well as their
-                                   // global sizes (both dimensions are equal
-                                   // to the number of degrees of freedom),
-                                   // and also how many rows out of this
-                                   // global size are to be stored locally
-                                   // (<code>n_local_dofs</code>). In addition, PETSc
-                                   // needs to know how to partition the
-                                   // columns in the chunk of the matrix that
-                                   // is stored locally; for square matrices,
-                                   // the columns should be partitioned in the
-                                   // same way as the rows (indicated by the
-                                   // second <code>n_local_dofs</code> in the call) but
-                                   // in the case of rectangular matrices one
-                                   // has to partition the columns in the same
-                                   // way as vectors are partitioned with
-                                   // which the matrix is multiplied, while
-                                   // rows have to partitioned in the same way
-                                   // as destination vectors of matrix-vector
-                                   // multiplications:
-  system_matrix.reinit (mpi_communicator,
-                        dof_handler.n_dofs(),
-                        dof_handler.n_dofs(),
-                        n_local_dofs,
-                        n_local_dofs,
-                        dof_handler.max_couplings_between_dofs());
-
-  solution.reinit (mpi_communicator, dof_handler.n_dofs(), n_local_dofs);
-  system_rhs.reinit (mpi_communicator, dof_handler.n_dofs(), n_local_dofs);
-
-                                   // Finally, we need to initialize the
-                                   // objects denoting hanging node
-                                   // constraints for the present grid. Note
-                                   // that since PETSc handles the sparsity
-                                   // pattern internally to the matrix, there
-                                   // is no need to set up an independent
-                                   // sparsity pattern here, and to condense
-                                   // it for constraints, as we have done in
-                                   // all other example programs.
-  hanging_node_constraints.clear ();
-  DoFTools::make_hanging_node_constraints (dof_handler,
-                                          hanging_node_constraints);
-  hanging_node_constraints.close ();
-}
-
+  using namespace dealii;
+
+                                  // Now, here comes the declaration of the
+                                  // main class and of various other things
+                                  // below it. As mentioned in the
+                                  // introduction, almost all of this has been
+                                  // copied verbatim from step-8, so we only
+                                  // comment on the few things that are
+                                  // different. There is one (cosmetic) change
+                                  // in that we let <code>solve</code> return a value,
+                                  // namely the number of iterations it took to
+                                  // converge, so that we can output this to
+                                  // the screen at the appropriate place. In
+                                  // addition, we introduce a stream-like
+                                  // variable <code>pcout</code>, explained below:
+  template <int dim>
+  class ElasticProblem
+  {
+    public:
+      ElasticProblem ();
+      ~ElasticProblem ();
+      void run ();
+
+    private:
+      void setup_system ();
+      void assemble_system ();
+      unsigned int solve ();
+      void refine_grid ();
+      void output_results (const unsigned int cycle) const;
+
+                                      // The first variable is basically only
+                                      // for convenience: in %parallel program,
+                                      // if each process outputs status
+                                      // information, then there quickly is a
+                                      // lot of clutter. Rather, we would want
+                                      // to only have one process output
+                                      // everything once, for example the one
+                                      // with process number
+                                      // zero. <code>ConditionalOStream</code> does
+                                      // exactly this: it acts as if it were a
+                                      // stream, but only forwards to a real,
+                                      // underlying stream if a flag is set. By
+                                      // setting this condition to
+                                      // <code>this_mpi_process==0</code>, we make sure
+                                      // that output is only generated from the
+                                      // first process and that we don't get
+                                      // the same lines of output over and over
+                                      // again, once per process.
+                                      //
+                                      // With this simple trick, we make sure
+                                      // that we don't have to guard each and
+                                      // every write to <code>std::cout</code> by a
+                                      // prefixed <code>if(this_mpi_process==0)</code>.
+      ConditionalOStream pcout;
+
+                                      // The next few variables are taken
+                                      // verbatim from step-8:
+      Triangulation<dim>   triangulation;
+      DoFHandler<dim>      dof_handler;
+
+      FESystem<dim>        fe;
+
+      ConstraintMatrix     hanging_node_constraints;
+
+                                      // In step-8, this would have been the
+                                      // place where we would have declared the
+                                      // member variables for the sparsity
+                                      // pattern, the system matrix, right
+                                      // hand, and solution vector. We change
+                                      // these declarations to use %parallel
+                                      // PETSc objects instead (note that the
+                                      // fact that we use the %parallel versions
+                                      // is denoted the fact that we use the
+                                      // classes from the
+                                      // <code>PETScWrappers::MPI</code> namespace;
+                                      // sequential versions of these classes
+                                      // are in the <code>PETScWrappers</code>
+                                      // namespace, i.e. without the <code>MPI</code>
+                                      // part). Note also that we do not use a
+                                      // separate sparsity pattern, since PETSc
+                                      // manages that as part of its matrix
+                                      // data structures.
+      PETScWrappers::MPI::SparseMatrix system_matrix;
+
+      PETScWrappers::MPI::Vector       solution;
+      PETScWrappers::MPI::Vector       system_rhs;
+
+                                      // The next change is that we have to
+                                      // declare a variable that indicates the
+                                      // MPI communicator over which we are
+                                      // supposed to distribute our
+                                      // computations. Note that if this is a
+                                      // sequential job without support by MPI,
+                                      // then PETSc provides some dummy type
+                                      // for <code>MPI_Comm</code>, so we do not have to
+                                      // care here whether the job is really a
+                                      // %parallel one:
+      MPI_Comm mpi_communicator;
+
+                                      // Then we have two variables that tell
+                                      // us where in the %parallel world we
+                                      // are. The first of the following
+                                      // variables, <code>n_mpi_processes</code> tells
+                                      // us how many MPI processes there exist
+                                      // in total, while the second one,
+                                      // <code>this_mpi_process</code>, indicates which
+                                      // is the number of the present process
+                                      // within this space of processes. The
+                                      // latter variable will have a unique
+                                      // value for each process between zero
+                                      // and (less than)
+                                      // <code>n_mpi_processes</code>. If this program
+                                      // is run on a single machine without MPI
+                                      // support, then their values are <code>1</code>
+                                      // and <code>0</code>, respectively.
+      const unsigned int n_mpi_processes;
+      const unsigned int this_mpi_process;
+  };
+
+
+                                  // The following is again taken from step-8
+                                  // without change:
+  template <int dim>
+  class RightHandSide :  public Function<dim>
+  {
+    public:
+      RightHandSide ();
+
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &values) const;
+
+      virtual void vector_value_list (const std::vector<Point<dim> > &points,
+                                     std::vector<Vector<double> >   &value_list) const;
+  };
+
+
+  template <int dim>
+  RightHandSide<dim>::RightHandSide () :
+                 Function<dim> (dim)
+  {}
+
+
+  template <int dim>
+  inline
+  void RightHandSide<dim>::vector_value (const Point<dim> &p,
+                                        Vector<double>   &values) const
+  {
+    Assert (values.size() == dim,
+           ExcDimensionMismatch (values.size(), dim));
+    Assert (dim >= 2, ExcInternalError());
+
+    Point<dim> point_1, point_2;
+    point_1(0) = 0.5;
+    point_2(0) = -0.5;
+
+    if (((p-point_1).square() < 0.2*0.2) ||
+       ((p-point_2).square() < 0.2*0.2))
+      values(0) = 1;
+    else
+      values(0) = 0;
+
+    if (p.square() < 0.2*0.2)
+      values(1) = 1;
+    else
+      values(1) = 0;
+  }
+
+
+
+  template <int dim>
+  void RightHandSide<dim>::vector_value_list (const std::vector<Point<dim> > &points,
+                                             std::vector<Vector<double> >   &value_list) const
+  {
+    const unsigned int n_points = points.size();
+
+    Assert (value_list.size() == n_points,
+           ExcDimensionMismatch (value_list.size(), n_points));
+
+    for (unsigned int p=0; p<n_points; ++p)
+      RightHandSide<dim>::vector_value (points[p],
+                                       value_list[p]);
+  }
+
+
+                                  // The first step in the actual
+                                  // implementation of things is the
+                                  // constructor of the main class. Apart from
+                                  // initializing the same member variables
+                                  // that we already had in step-8, we here
+                                  // initialize the MPI communicator variable
+                                  // we shall use with the global MPI
+                                  // communicator linking all processes
+                                  // together (in more complex applications,
+                                  // one could here use a communicator object
+                                  // that only links a subset of all
+                                  // processes), and call the Utilities helper
+                                  // functions to determine the number of
+                                  // processes and where the present one fits
+                                  // into this picture. In addition, we make
+                                  // sure that output is only generated by the
+                                  // (globally) first process. As,
+                                  // this_mpi_process is determined after
+                                  // creation of pcout, we cannot set the
+                                  // condition through the constructor, i.e. by
+                                  // pcout(std::cout, this_mpi_process==0), but
+                                  // set the condition separately.
+  template <int dim>
+  ElasticProblem<dim>::ElasticProblem ()
+                 :
+                 pcout (std::cout),
+                 dof_handler (triangulation),
+                 fe (FE_Q<dim>(1), dim),
+                 mpi_communicator (MPI_COMM_WORLD),
+                 n_mpi_processes (Utilities::System::get_n_mpi_processes(mpi_communicator)),
+                 this_mpi_process (Utilities::System::get_this_mpi_process(mpi_communicator))
+  {
+    pcout.set_condition(this_mpi_process == 0);
+  }
+
+
+
+  template <int dim>
+  ElasticProblem<dim>::~ElasticProblem ()
+  {
+    dof_handler.clear ();
+  }
+
+
+                                  // The second step is the function in which
+                                  // we set up the various variables for the
+                                  // global linear system to be solved.
+  template <int dim>
+  void ElasticProblem<dim>::setup_system ()
+  {
+                                    // Before we even start out setting up the
+                                    // system, there is one thing to do for a
+                                    // %parallel program: we need to assign
+                                    // cells to each of the processes. We do
+                                    // this by splitting (<code>partitioning</code>) the
+                                    // mesh cells into as many chunks
+                                    // (<code>subdomains</code>) as there are processes
+                                    // in this MPI job (if this is a sequential
+                                    // job, then there is only one job and all
+                                    // cells will get a zero as subdomain
+                                    // indicator). This is done using an
+                                    // interface to the METIS library that does
+                                    // this in a very efficient way, trying to
+                                    // minimize the number of nodes on the
+                                    // interfaces between subdomains. All this
+                                    // is hidden behind the following call to a
+                                    // deal.II library function:
+    GridTools::partition_triangulation (n_mpi_processes, triangulation);
+
+                                    // As for the linear system: First, we need
+                                    // to generate an enumeration for the
+                                    // degrees of freedom in our
+                                    // problem. Further below, we will show how
+                                    // we assign each cell to one of the MPI
+                                    // processes before we even get here. What
+                                    // we then need to do is to enumerate the
+                                    // degrees of freedom in a way so that all
+                                    // degrees of freedom associated with cells
+                                    // in subdomain zero (which resides on
+                                    // process zero) come before all DoFs
+                                    // associated with cells on subdomain one,
+                                    // before those on cells on process two,
+                                    // and so on. We need this since we have to
+                                    // split the global vectors for right hand
+                                    // side and solution, as well as the matrix
+                                    // into contiguous chunks of rows that live
+                                    // on each of the processors, and we will
+                                    // want to do this in a way that requires
+                                    // minimal communication. This is done
+                                    // using the following two functions, which
+                                    // first generates an initial ordering of
+                                    // all degrees of freedom, and then re-sort
+                                    // them according to above criterion:
+    dof_handler.distribute_dofs (fe);
+    DoFRenumbering::subdomain_wise (dof_handler);
+
+                                    // While we're at it, let us also count how
+                                    // many degrees of freedom there exist on
+                                    // the present process:
+    const unsigned int n_local_dofs
+      = DoFTools::count_dofs_with_subdomain_association (dof_handler,
+                                                        this_mpi_process);
+
+                                    // Then we initialize the system matrix,
+                                    // solution, and right hand side
+                                    // vectors. Since they all need to work in
+                                    // %parallel, we have to pass them an MPI
+                                    // communication object, as well as their
+                                    // global sizes (both dimensions are equal
+                                    // to the number of degrees of freedom),
+                                    // and also how many rows out of this
+                                    // global size are to be stored locally
+                                    // (<code>n_local_dofs</code>). In addition, PETSc
+                                    // needs to know how to partition the
+                                    // columns in the chunk of the matrix that
+                                    // is stored locally; for square matrices,
+                                    // the columns should be partitioned in the
+                                    // same way as the rows (indicated by the
+                                    // second <code>n_local_dofs</code> in the call) but
+                                    // in the case of rectangular matrices one
+                                    // has to partition the columns in the same
+                                    // way as vectors are partitioned with
+                                    // which the matrix is multiplied, while
+                                    // rows have to partitioned in the same way
+                                    // as destination vectors of matrix-vector
+                                    // multiplications:
+    system_matrix.reinit (mpi_communicator,
+                         dof_handler.n_dofs(),
+                         dof_handler.n_dofs(),
+                         n_local_dofs,
+                         n_local_dofs,
+                         dof_handler.max_couplings_between_dofs());
+
+    solution.reinit (mpi_communicator, dof_handler.n_dofs(), n_local_dofs);
+    system_rhs.reinit (mpi_communicator, dof_handler.n_dofs(), n_local_dofs);
+
+                                    // Finally, we need to initialize the
+                                    // objects denoting hanging node
+                                    // constraints for the present grid. Note
+                                    // that since PETSc handles the sparsity
+                                    // pattern internally to the matrix, there
+                                    // is no need to set up an independent
+                                    // sparsity pattern here, and to condense
+                                    // it for constraints, as we have done in
+                                    // all other example programs.
+    hanging_node_constraints.clear ();
+    DoFTools::make_hanging_node_constraints (dof_handler,
+                                            hanging_node_constraints);
+    hanging_node_constraints.close ();
+  }
+
+
+                                  // The third step is to actually assemble the
+                                  // matrix and right hand side of the
+                                  // problem. There are some things worth
+                                  // mentioning before we go into
+                                  // detail. First, we will be assembling the
+                                  // system in %parallel, i.e. each process will
+                                  // be responsible for assembling on cells
+                                  // that belong to this particular
+                                  // processor. Note that the degrees of
+                                  // freedom are split in a way such that all
+                                  // DoFs in the interior of cells and between
+                                  // cells belonging to the same subdomain
+                                  // belong to the process that <code>owns</code> the
+                                  // cell. However, even then we sometimes need
+                                  // to assemble on a cell with a neighbor that
+                                  // belongs to a different process, and in
+                                  // these cases when we write the local
+                                  // contributions into the global matrix or
+                                  // right hand side vector, we actually have
+                                  // to transfer these entries to the other
+                                  // process. Fortunately, we don't have to do
+                                  // this by hand, PETSc does all this for us
+                                  // by caching these elements locally, and
+                                  // sending them to the other processes as
+                                  // necessary when we call the <code>compress()</code>
+                                  // functions on the matrix and vector at the
+                                  // end of this function.
+                                  //
+                                  // The second point is that once we
+                                  // have handed over matrix and vector
+                                  // contributions to PETSc, it is a)
+                                  // hard, and b) very inefficient to
+                                  // get them back for
+                                  // modifications. This is not only
+                                  // the fault of PETSc, it is also a
+                                  // consequence of the distributed
+                                  // nature of this program: if an
+                                  // entry resides on another
+                                  // processor, then it is necessarily
+                                  // expensive to get it. The
+                                  // consequence of this is that where
+                                  // we previously first assembled the
+                                  // matrix and right hand side as if
+                                  // there were no hanging node
+                                  // constraints and boundary values,
+                                  // and then eliminated these in a
+                                  // second step, we should now try to
+                                  // do that while still assembling the
+                                  // local systems, and before handing
+                                  // these entries over to PETSc. At
+                                  // least as far as eliminating
+                                  // hanging nodes is concerned, this
+                                  // is actually possible, though
+                                  // removing boundary nodes isn't that
+                                  // simple. deal.II provides functions
+                                  // to do this first part: instead of
+                                  // copying elements by hand into the
+                                  // global matrix, we use the
+                                  // <code>distribute_local_to_global</code>
+                                  // functions below to take care of
+                                  // hanging nodes at the same
+                                  // time. The second step, elimination
+                                  // of boundary nodes, is then done in
+                                  // exactly the same way as in all
+                                  // previous example programs.
+                                  //
+                                  // So, here is the actual implementation:
+  template <int dim>
+  void ElasticProblem<dim>::assemble_system ()
+  {
+                                    // The infrastructure to assemble linear
+                                    // systems is the same as in all the other
+                                    // programs, and in particular unchanged
+                                    // from step-8. Note that we still use the
+                                    // deal.II full matrix and vector types for
+                                    // the local systems.
+    QGauss<dim>  quadrature_formula(2);
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values   | update_gradients |
+                            update_quadrature_points | update_JxW_values);
+
+    const unsigned int   dofs_per_cell = fe.dofs_per_cell;
+    const unsigned int   n_q_points    = quadrature_formula.size();
+
+    FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>       cell_rhs (dofs_per_cell);
+
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+    std::vector<double>     lambda_values (n_q_points);
+    std::vector<double>     mu_values (n_q_points);
+
+    ConstantFunction<dim> lambda(1.), mu(1.);
+
+    RightHandSide<dim>      right_hand_side;
+    std::vector<Vector<double> > rhs_values (n_q_points,
+                                            Vector<double>(dim));
+
+
+                                    // The next thing is the loop over all
+                                    // elements. Note that we do not have to do
+                                    // all the work: our job here is only to
+                                    // assemble the system on cells that
+                                    // actually belong to this MPI process, all
+                                    // other cells will be taken care of by
+                                    // other processes. This is what the
+                                    // if-clause immediately after the for-loop
+                                    // takes care of: it queries the subdomain
+                                    // identifier of each cell, which is a
+                                    // number associated with each cell that
+                                    // tells which process handles it. In more
+                                    // generality, the subdomain id is used to
+                                    // split a domain into several parts (we do
+                                    // this above, at the beginning of
+                                    // <code>setup_system</code>), and which allows to
+                                    // identify which subdomain a cell is
+                                    // living on. In this application, we have
+                                    // each process handle exactly one
+                                    // subdomain, so we identify the terms
+                                    // <code>subdomain</code> and <code>MPI process</code> with
+                                    // each other.
+                                    //
+                                    // Apart from this, assembling the local
+                                    // system is relatively uneventful if you
+                                    // have understood how this is done in
+                                    // step-8, and only becomes interesting
+                                    // again once we start distributing it into
+                                    // the global matrix and right hand sides.
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      if (cell->subdomain_id() == this_mpi_process)
+       {
+         cell_matrix = 0;
+         cell_rhs = 0;
+
+         fe_values.reinit (cell);
+
+         lambda.value_list (fe_values.get_quadrature_points(), lambda_values);
+         mu.value_list     (fe_values.get_quadrature_points(), mu_values);
+
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           {
+             const unsigned int
+               component_i = fe.system_to_component_index(i).first;
+
+             for (unsigned int j=0; j<dofs_per_cell; ++j)
+               {
+                 const unsigned int
+                   component_j = fe.system_to_component_index(j).first;
+
+                 for (unsigned int q_point=0; q_point<n_q_points;
+                      ++q_point)
+                   {
+//TODO investigate really small values here
+                     cell_matrix(i,j)
+                       +=
+                       (
+                         (fe_values.shape_grad(i,q_point)[component_i] *
+                          fe_values.shape_grad(j,q_point)[component_j] *
+                          lambda_values[q_point])
+                         +
+                         (fe_values.shape_grad(i,q_point)[component_j] *
+                          fe_values.shape_grad(j,q_point)[component_i] *
+                          mu_values[q_point])
+                         +
+                         ((component_i == component_j) ?
+                          (fe_values.shape_grad(i,q_point) *
+                           fe_values.shape_grad(j,q_point) *
+                           mu_values[q_point])  :
+                          0)
+                        )
+                       *
+                       fe_values.JxW(q_point);
+                   }
+               }
+           }
+
+         right_hand_side.vector_value_list (fe_values.get_quadrature_points(),
+                                            rhs_values);
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           {
+             const unsigned int
+               component_i = fe.system_to_component_index(i).first;
+
+             for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+               cell_rhs(i) += fe_values.shape_value(i,q_point) *
+                              rhs_values[q_point](component_i) *
+                              fe_values.JxW(q_point);
+           }
+
+                                          // Now we have the local system, and
+                                          // need to transfer it into the
+                                          // global objects. However, as
+                                          // described in the introduction to
+                                          // this function, we want to avoid
+                                          // any operations to matrix and
+                                          // vector entries after handing them
+                                          // off to PETSc (i.e. after
+                                          // distributing to the global
+                                          // objects). Therefore, we will take
+                                          // care of hanging node constraints
+                                          // already here. This is not quite
+                                          // trivial since the rows and columns
+                                          // of constrained nodes have to be
+                                          // distributed to the rows and
+                                          // columns of those nodes to which
+                                          // they are constrained. This can't
+                                          // be done on a purely local basis
+                                          // (because the degrees of freedom to
+                                          // which hanging nodes are
+                                          // constrained may not be associated
+                                          // with the cell we are presently
+                                          // treating, and are therefore not
+                                          // represented in the local matrix
+                                          // and vector), but it can be done
+                                          // while distributing the local
+                                          // system to the global one. This is
+                                          // what the following two calls do,
+                                          // i.e. they distribute to the global
+                                          // objects and at the same time make
+                                          // sure that hanging node constraints
+                                          // are taken care of:
+         cell->get_dof_indices (local_dof_indices);
+         hanging_node_constraints
+           .distribute_local_to_global (cell_matrix,
+                                        local_dof_indices,
+                                        system_matrix);
+
+         hanging_node_constraints
+           .distribute_local_to_global (cell_rhs,
+                                        local_dof_indices,
+                                        system_rhs);
+       }
 
-                                 // The third step is to actually assemble the
-                                 // matrix and right hand side of the
-                                 // problem. There are some things worth
-                                 // mentioning before we go into
-                                 // detail. First, we will be assembling the
-                                 // system in %parallel, i.e. each process will
-                                 // be responsible for assembling on cells
-                                 // that belong to this particular
-                                 // processor. Note that the degrees of
-                                 // freedom are split in a way such that all
-                                 // DoFs in the interior of cells and between
-                                 // cells belonging to the same subdomain
-                                 // belong to the process that <code>owns</code> the
-                                 // cell. However, even then we sometimes need
-                                 // to assemble on a cell with a neighbor that
-                                 // belongs to a different process, and in
-                                 // these cases when we write the local
-                                 // contributions into the global matrix or
-                                 // right hand side vector, we actually have
-                                 // to transfer these entries to the other
-                                 // process. Fortunately, we don't have to do
-                                 // this by hand, PETSc does all this for us
-                                 // by caching these elements locally, and
-                                 // sending them to the other processes as
-                                 // necessary when we call the <code>compress()</code>
-                                 // functions on the matrix and vector at the
-                                 // end of this function.
-                                 //
-                                 // The second point is that once we
-                                 // have handed over matrix and vector
-                                 // contributions to PETSc, it is a)
-                                 // hard, and b) very inefficient to
-                                 // get them back for
-                                 // modifications. This is not only
-                                 // the fault of PETSc, it is also a
-                                 // consequence of the distributed
-                                 // nature of this program: if an
-                                 // entry resides on another
-                                 // processor, then it is necessarily
-                                 // expensive to get it. The
-                                 // consequence of this is that where
-                                 // we previously first assembled the
-                                 // matrix and right hand side as if
-                                 // there were no hanging node
-                                 // constraints and boundary values,
-                                 // and then eliminated these in a
-                                 // second step, we should now try to
-                                 // do that while still assembling the
-                                 // local systems, and before handing
-                                 // these entries over to PETSc. At
-                                 // least as far as eliminating
-                                 // hanging nodes is concerned, this
-                                 // is actually possible, though
-                                 // removing boundary nodes isn't that
-                                 // simple. deal.II provides functions
-                                 // to do this first part: instead of
-                                 // copying elements by hand into the
-                                 // global matrix, we use the
-                                 // <code>distribute_local_to_global</code>
-                                 // functions below to take care of
-                                 // hanging nodes at the same
-                                 // time. The second step, elimination
-                                 // of boundary nodes, is then done in
-                                 // exactly the same way as in all
-                                 // previous example programs.
-                                 //
-                                 // So, here is the actual implementation:
-template <int dim>
-void ElasticProblem<dim>::assemble_system () 
-{
-                                   // The infrastructure to assemble linear
-                                   // systems is the same as in all the other
-                                   // programs, and in particular unchanged
-                                   // from step-8. Note that we still use the
-                                   // deal.II full matrix and vector types for
-                                   // the local systems.
-  QGauss<dim>  quadrature_formula(2);
-  FEValues<dim> fe_values (fe, quadrature_formula, 
-                          update_values   | update_gradients |
-                           update_quadrature_points | update_JxW_values);
-
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.size();
-
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
-
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-  std::vector<double>     lambda_values (n_q_points);
-  std::vector<double>     mu_values (n_q_points);
-
-  ConstantFunction<dim> lambda(1.), mu(1.);
-
-  RightHandSide<dim>      right_hand_side;
-  std::vector<Vector<double> > rhs_values (n_q_points,
-                                          Vector<double>(dim));
-
-
-                                   // The next thing is the loop over all
-                                   // elements. Note that we do not have to do
-                                   // all the work: our job here is only to
-                                   // assemble the system on cells that
-                                   // actually belong to this MPI process, all
-                                   // other cells will be taken care of by
-                                   // other processes. This is what the
-                                   // if-clause immediately after the for-loop
-                                   // takes care of: it queries the subdomain
-                                   // identifier of each cell, which is a
-                                   // number associated with each cell that
-                                   // tells which process handles it. In more
-                                   // generality, the subdomain id is used to
-                                   // split a domain into several parts (we do
-                                   // this above, at the beginning of
-                                   // <code>setup_system</code>), and which allows to
-                                   // identify which subdomain a cell is
-                                   // living on. In this application, we have
-                                   // each process handle exactly one
-                                   // subdomain, so we identify the terms
-                                   // <code>subdomain</code> and <code>MPI process</code> with
-                                   // each other.
-                                   //
-                                   // Apart from this, assembling the local
-                                   // system is relatively uneventful if you
-                                   // have understood how this is done in
-                                   // step-8, and only becomes interesting
-                                   // again once we start distributing it into
-                                   // the global matrix and right hand sides.
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    if (cell->subdomain_id() == this_mpi_process)
+                                    // The global matrix and right hand side
+                                    // vectors have now been formed. Note that
+                                    // since we took care of this already
+                                    // above, we do not have to condense away
+                                    // hanging node constraints any more.
+                                    //
+                                    // However, we still have to apply boundary
+                                    // values, in the same way as we always do:
+    std::map<unsigned int,double> boundary_values;
+    VectorTools::interpolate_boundary_values (dof_handler,
+                                             0,
+                                             ZeroFunction<dim>(dim),
+                                             boundary_values);
+    MatrixTools::apply_boundary_values (boundary_values,
+                                       system_matrix, solution,
+                                       system_rhs, false);
+                                    // The last argument to the call just
+                                    // performed allows for some
+                                    // optimizations. It controls
+                                    // whether we should also delete the
+                                    // column corresponding to a boundary
+                                    // node, or keep it (and passing
+                                    // <code>true</code> as above means: yes, do
+                                    // eliminate the column). If we do,
+                                    // then the resulting matrix will be
+                                    // symmetric again if it was before;
+                                    // if we don't, then it won't. The
+                                    // solution of the resulting system
+                                    // should be the same, though. The
+                                    // only reason why we may want to
+                                    // make the system symmetric again is
+                                    // that we would like to use the CG
+                                    // method, which only works with
+                                    // symmetric matrices.  Experience
+                                    // tells that CG also works (and
+                                    // works almost as well) if we don't
+                                    // remove the columns associated with
+                                    // boundary nodes, which can be
+                                    // easily explained by the special
+                                    // structure of the
+                                    // non-symmetry. Since eliminating
+                                    // columns from dense matrices is not
+                                    // expensive, though, we let the
+                                    // function do it; not doing so is
+                                    // more important if the linear
+                                    // system is either non-symmetric
+                                    // anyway, or we are using the
+                                    // non-local version of this function
+                                    // (as in all the other example
+                                    // programs before) and want to save
+                                    // a few cycles during this
+                                    // operation.
+  }
+
+
+
+                                  // The fourth step is to solve the linear
+                                  // system, with its distributed matrix and
+                                  // vector objects. Fortunately, PETSc offers
+                                  // a variety of sequential and %parallel
+                                  // solvers, for which we have written
+                                  // wrappers that have almost the same
+                                  // interface as is used for the deal.II
+                                  // solvers used in all previous example
+                                  // programs.
+  template <int dim>
+  unsigned int ElasticProblem<dim>::solve ()
+  {
+                                    // First, we have to set up a convergence
+                                    // monitor, and assign it the accuracy to
+                                    // which we would like to solve the linear
+                                    // system. Next, an actual solver object
+                                    // using PETSc's CG solver which also works
+                                    // with %parallel (distributed) vectors and
+                                    // matrices. And finally a preconditioner;
+                                    // we choose to use a block Jacobi
+                                    // preconditioner which works by computing
+                                    // an incomplete LU decomposition on each
+                                    // block (i.e. the chunk of matrix that is
+                                    // stored on each MPI process). That means
+                                    // that if you run the program with only
+                                    // one process, then you will use an ILU(0)
+                                    // as a preconditioner, while if it is run
+                                    // on many processes, then we will have a
+                                    // number of blocks on the diagonal and the
+                                    // preconditioner is the ILU(0) of each of
+                                    // these blocks.
+    SolverControl           solver_control (solution.size(),
+                                           1e-8*system_rhs.l2_norm());
+    PETScWrappers::SolverCG cg (solver_control,
+                               mpi_communicator);
+
+    PETScWrappers::PreconditionBlockJacobi preconditioner(system_matrix);
+
+                                    // Then solve the system:
+    cg.solve (system_matrix, solution, system_rhs,
+             preconditioner);
+
+                                    // The next step is to distribute hanging
+                                    // node constraints. This is a little
+                                    // tricky, since to fill in the value of a
+                                    // constrained node you need access to the
+                                    // values of the nodes to which it is
+                                    // constrained (for example, for a Q1
+                                    // element in 2d, we need access to the two
+                                    // nodes on the big side of a hanging node
+                                    // face, to compute the value of the
+                                    // constrained node in the middle). Since
+                                    // PETSc (and, for that matter, the MPI
+                                    // model on which it is built) does not
+                                    // allow to query the value of another node
+                                    // in a simple way if we should need it,
+                                    // what we do here is to get a copy of the
+                                    // distributed vector where we keep all
+                                    // elements locally. This is simple, since
+                                    // the deal.II wrappers have a conversion
+                                    // constructor for the non-MPI vector
+                                    // class:
+    PETScWrappers::Vector localized_solution (solution);
+
+                                    // Then we distribute hanging node
+                                    // constraints on this local copy, i.e. we
+                                    // compute the values of all constrained
+                                    // nodes:
+    hanging_node_constraints.distribute (localized_solution);
+
+                                    // Then transfer everything back
+                                    // into the global vector. The
+                                    // following operation copies those
+                                    // elements of the localized
+                                    // solution that we store locally
+                                    // in the distributed solution, and
+                                    // does not touch the other
+                                    // ones. Since we do the same
+                                    // operation on all processors, we
+                                    // end up with a distributed vector
+                                    // that has all the constrained
+                                    // nodes fixed.
+    solution = localized_solution;
+
+                                    // After this has happened, flush the PETSc
+                                    // buffers. This may or may not be strictly
+                                    // necessary here (the PETSc documentation
+                                    // is not very verbose on these things),
+                                    // but certainly doesn't hurt either.
+    solution.compress ();
+
+                                    // Finally return the number of iterations
+                                    // it took to converge, to allow for some
+                                    // output:
+    return solver_control.last_step();
+  }
+
+
+
+                                  // Step five is to output the results we
+                                  // computed in this iteration. This is
+                                  // actually the same as done in step-8
+                                  // before, with two small differences. First,
+                                  // all processes call this function, but not
+                                  // all of them need to do the work associated
+                                  // with generating output. In fact, they
+                                  // shouldn't, since we would try to write to
+                                  // the same file multiple times at once. So
+                                  // we let only the first job do this, and all
+                                  // the other ones idle around during this
+                                  // time (or start their work for the next
+                                  // iteration, or simply yield their CPUs to
+                                  // other jobs that happen to run at the same
+                                  // time). The second thing is that we not
+                                  // only output the solution vector, but also
+                                  // a vector that indicates which subdomain
+                                  // each cell belongs to. This will make for
+                                  // some nice pictures of partitioned domains.
+                                  //
+                                  // In practice, the present implementation of
+                                  // the output function is a major bottleneck
+                                  // of this program, since generating
+                                  // graphical output is expensive and doing so
+                                  // only on one process does, of course, not
+                                  // scale if we significantly increase the
+                                  // number of processes. In effect, this
+                                  // function will consume most of the run-time
+                                  // if you go to very large numbers of
+                                  // unknowns and processes, and real
+                                  // applications should limit the number of
+                                  // times they generate output through this
+                                  // function.
+                                  //
+                                  // The solution to this is to have
+                                  // each process generate output data
+                                  // only for it's own local cells, and
+                                  // write them to separate files, one
+                                  // file per process. This would
+                                  // distribute the work of generating
+                                  // the output to all processes
+                                  // equally. In a second step,
+                                  // separate from running this
+                                  // program, we would then take all
+                                  // the output files for a given cycle
+                                  // and merge these parts into one
+                                  // single output file. This has to be
+                                  // done sequentially, but can be done
+                                  // on a different machine, and should
+                                  // be relatively cheap. However, the
+                                  // necessary functionality for this
+                                  // is not yet implemented in the
+                                  // library, and since we are too
+                                  // close to the next release, we do
+                                  // not want to do such major
+                                  // destabilizing changes any
+                                  // more. This has been fixed in the
+                                  // meantime, though, and a better way
+                                  // to do things is explained in the
+                                  // step-18 example program.
+  template <int dim>
+  void ElasticProblem<dim>::output_results (const unsigned int cycle) const
+  {
+                                    // One point to realize is that when we
+                                    // want to generate output on process zero
+                                    // only, we need to have access to all
+                                    // elements of the solution vector. So we
+                                    // need to get a local copy of the
+                                    // distributed vector, which is in fact
+                                    // simple:
+    const PETScWrappers::Vector localized_solution (solution);
+                                    // The thing to notice, however, is that
+                                    // we do this localization operation on all
+                                    // processes, not only the one that
+                                    // actually needs the data. This can't be
+                                    // avoided, however, with the communication
+                                    // model of MPI: MPI does not have a way to
+                                    // query data on another process, both
+                                    // sides have to initiate a communication
+                                    // at the same time. So even though most of
+                                    // the processes do not need the localized
+                                    // solution, we have to place the call here
+                                    // so that all processes execute it.
+                                    //
+                                    // (In reality, part of this work can in
+                                    // fact be avoided. What we do is send the
+                                    // local parts of all processes to all
+                                    // other processes. What we would really
+                                    // need to do is to initiate an operation
+                                    // on all processes where each process
+                                    // simply sends its local chunk of data to
+                                    // process zero, since this is the only one
+                                    // that actually needs it, i.e. we need
+                                    // something like a gather operation. PETSc
+                                    // can do this, but for simplicity's sake
+                                    // we don't attempt to make use of this
+                                    // here. We don't, since what we do is not
+                                    // very expensive in the grand scheme of
+                                    // things: it is one vector communication
+                                    // among all processes , which has to be
+                                    // compared to the number of communications
+                                    // we have to do when solving the linear
+                                    // system, setting up the block-ILU for the
+                                    // preconditioner, and other operations.)
+
+                                    // This being done, process zero goes ahead
+                                    // with setting up the output file as in
+                                    // step-8, and attaching the (localized)
+                                    // solution vector to the output
+                                    // object:. (The code to generate the output
+                                    // file name is stolen and slightly
+                                    // modified from step-5, since we expect
+                                    // that we can do a number of cycles
+                                    // greater than 10, which is the maximum of
+                                    // what the code in step-8 could handle.)
+    if (this_mpi_process == 0)
       {
-        cell_matrix = 0;
-        cell_rhs = 0;
-
-        fe_values.reinit (cell);
-      
-        lambda.value_list (fe_values.get_quadrature_points(), lambda_values);
-        mu.value_list     (fe_values.get_quadrature_points(), mu_values);
-
-        for (unsigned int i=0; i<dofs_per_cell; ++i)
-          {
-            const unsigned int 
-              component_i = fe.system_to_component_index(i).first;
-         
-            for (unsigned int j=0; j<dofs_per_cell; ++j) 
-              {
-                const unsigned int 
-                  component_j = fe.system_to_component_index(j).first;
-             
-                for (unsigned int q_point=0; q_point<n_q_points;
-                     ++q_point)
-                  {
-//TODO investigate really small values here                    
-                    cell_matrix(i,j) 
-                      += 
-                      (
-                        (fe_values.shape_grad(i,q_point)[component_i] *
-                         fe_values.shape_grad(j,q_point)[component_j] *
-                         lambda_values[q_point])
-                        +
-                        (fe_values.shape_grad(i,q_point)[component_j] *
-                         fe_values.shape_grad(j,q_point)[component_i] *
-                         mu_values[q_point])
-                        +
-                        ((component_i == component_j) ?
-                         (fe_values.shape_grad(i,q_point) *
-                          fe_values.shape_grad(j,q_point) *
-                          mu_values[q_point])  :
-                         0)
-                        )
-                      *
-                      fe_values.JxW(q_point);
-                  }
-              }
-          }
-
-        right_hand_side.vector_value_list (fe_values.get_quadrature_points(),
-                                           rhs_values);
-        for (unsigned int i=0; i<dofs_per_cell; ++i)
-          {
-            const unsigned int 
-              component_i = fe.system_to_component_index(i).first;
-         
-            for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-              cell_rhs(i) += fe_values.shape_value(i,q_point) *
-                             rhs_values[q_point](component_i) *
-                             fe_values.JxW(q_point);
-          }
-
-                                         // Now we have the local system, and
-                                         // need to transfer it into the
-                                         // global objects. However, as
-                                         // described in the introduction to
-                                         // this function, we want to avoid
-                                         // any operations to matrix and
-                                         // vector entries after handing them
-                                         // off to PETSc (i.e. after
-                                         // distributing to the global
-                                         // objects). Therefore, we will take
-                                         // care of hanging node constraints
-                                         // already here. This is not quite
-                                         // trivial since the rows and columns
-                                         // of constrained nodes have to be
-                                         // distributed to the rows and
-                                         // columns of those nodes to which
-                                         // they are constrained. This can't
-                                         // be done on a purely local basis
-                                         // (because the degrees of freedom to
-                                         // which hanging nodes are
-                                         // constrained may not be associated
-                                         // with the cell we are presently
-                                         // treating, and are therefore not
-                                         // represented in the local matrix
-                                         // and vector), but it can be done
-                                         // while distributing the local
-                                         // system to the global one. This is
-                                         // what the following two calls do,
-                                         // i.e. they distribute to the global
-                                         // objects and at the same time make
-                                         // sure that hanging node constraints
-                                         // are taken care of:
-        cell->get_dof_indices (local_dof_indices);
-        hanging_node_constraints
-          .distribute_local_to_global (cell_matrix,
-                                       local_dof_indices,
-                                       system_matrix);
-
-        hanging_node_constraints
-          .distribute_local_to_global (cell_rhs,
-                                       local_dof_indices,
-                                       system_rhs);
+       std::ostringstream filename;
+       filename << "solution-" << cycle << ".gmv";
+
+       std::ofstream output (filename.str().c_str());
+
+       DataOut<dim> data_out;
+       data_out.attach_dof_handler (dof_handler);
+
+       std::vector<std::string> solution_names;
+       switch (dim)
+         {
+           case 1:
+                 solution_names.push_back ("displacement");
+                 break;
+           case 2:
+                 solution_names.push_back ("x_displacement");
+                 solution_names.push_back ("y_displacement");
+                 break;
+           case 3:
+                 solution_names.push_back ("x_displacement");
+                 solution_names.push_back ("y_displacement");
+                 solution_names.push_back ("z_displacement");
+                 break;
+           default:
+                 Assert (false, ExcInternalError());
+         }
+
+       data_out.add_data_vector (localized_solution, solution_names);
+
+                                        // The only thing we do here
+                                        // additionally is that we also output
+                                        // one value per cell indicating which
+                                        // subdomain (i.e. MPI process) it
+                                        // belongs to. This requires some
+                                        // conversion work, since the data the
+                                        // library provides us with is not the
+                                        // one the output class expects, but
+                                        // this is not difficult. First, set up
+                                        // a vector of integers, one per cell,
+                                        // that is then filled by the number of
+                                        // subdomain each cell is in:
+       std::vector<unsigned int> partition_int (triangulation.n_active_cells());
+       GridTools::get_subdomain_association (triangulation, partition_int);
+
+                                        // Then convert this integer vector
+                                        // into a floating point vector just as
+                                        // the output functions want to see:
+       const Vector<double> partitioning(partition_int.begin(),
+                                         partition_int.end());
+
+                                        // And finally add this vector as well:
+       data_out.add_data_vector (partitioning, "partitioning");
+
+                                        // This all being done, generate the
+                                        // intermediate format and write it out
+                                        // in GMV output format:
+       data_out.build_patches ();
+       data_out.write_gmv (output);
       }
-
-                                   // The global matrix and right hand side
-                                   // vectors have now been formed. Note that
-                                   // since we took care of this already
-                                   // above, we do not have to condense away
-                                   // hanging node constraints any more.
-                                   //
-                                   // However, we still have to apply boundary
-                                   // values, in the same way as we always do:
-  std::map<unsigned int,double> boundary_values;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           ZeroFunction<dim>(dim),
-                                           boundary_values);
-  MatrixTools::apply_boundary_values (boundary_values,
-                                      system_matrix, solution,
-                                      system_rhs, false);
-                                   // The last argument to the call just
-                                   // performed allows for some
-                                   // optimizations. It controls
-                                   // whether we should also delete the
-                                   // column corresponding to a boundary
-                                   // node, or keep it (and passing
-                                   // <code>true</code> as above means: yes, do
-                                   // eliminate the column). If we do,
-                                   // then the resulting matrix will be
-                                   // symmetric again if it was before;
-                                   // if we don't, then it won't. The
-                                   // solution of the resulting system
-                                   // should be the same, though. The
-                                   // only reason why we may want to
-                                   // make the system symmetric again is
-                                   // that we would like to use the CG
-                                   // method, which only works with
-                                   // symmetric matrices.  Experience
-                                   // tells that CG also works (and
-                                   // works almost as well) if we don't
-                                   // remove the columns associated with
-                                   // boundary nodes, which can be
-                                   // easily explained by the special
-                                   // structure of the
-                                   // non-symmetry. Since eliminating
-                                   // columns from dense matrices is not
-                                   // expensive, though, we let the
-                                   // function do it; not doing so is
-                                   // more important if the linear
-                                   // system is either non-symmetric
-                                   // anyway, or we are using the
-                                   // non-local version of this function
-                                   // (as in all the other example
-                                   // programs before) and want to save
-                                   // a few cycles during this
-                                   // operation.
-}
-
-
-
-                                 // The fourth step is to solve the linear
-                                 // system, with its distributed matrix and
-                                 // vector objects. Fortunately, PETSc offers
-                                 // a variety of sequential and %parallel
-                                 // solvers, for which we have written
-                                 // wrappers that have almost the same
-                                 // interface as is used for the deal.II
-                                 // solvers used in all previous example
-                                 // programs.
-template <int dim>
-unsigned int ElasticProblem<dim>::solve () 
-{
-                                   // First, we have to set up a convergence
-                                   // monitor, and assign it the accuracy to
-                                   // which we would like to solve the linear
-                                   // system. Next, an actual solver object
-                                   // using PETSc's CG solver which also works
-                                   // with %parallel (distributed) vectors and
-                                   // matrices. And finally a preconditioner;
-                                   // we choose to use a block Jacobi
-                                   // preconditioner which works by computing
-                                   // an incomplete LU decomposition on each
-                                   // block (i.e. the chunk of matrix that is
-                                   // stored on each MPI process). That means
-                                   // that if you run the program with only
-                                   // one process, then you will use an ILU(0)
-                                   // as a preconditioner, while if it is run
-                                   // on many processes, then we will have a
-                                   // number of blocks on the diagonal and the
-                                   // preconditioner is the ILU(0) of each of
-                                   // these blocks.
-  SolverControl           solver_control (solution.size(), 
-                                          1e-8*system_rhs.l2_norm());
-  PETScWrappers::SolverCG cg (solver_control,
-                              mpi_communicator);
-
-  PETScWrappers::PreconditionBlockJacobi preconditioner(system_matrix);
-
-                                   // Then solve the system:
-  cg.solve (system_matrix, solution, system_rhs,
-           preconditioner);
-
-                                   // The next step is to distribute hanging
-                                   // node constraints. This is a little
-                                   // tricky, since to fill in the value of a
-                                   // constrained node you need access to the
-                                   // values of the nodes to which it is
-                                   // constrained (for example, for a Q1
-                                   // element in 2d, we need access to the two
-                                   // nodes on the big side of a hanging node
-                                   // face, to compute the value of the
-                                   // constrained node in the middle). Since
-                                   // PETSc (and, for that matter, the MPI
-                                   // model on which it is built) does not
-                                   // allow to query the value of another node
-                                   // in a simple way if we should need it,
-                                   // what we do here is to get a copy of the
-                                   // distributed vector where we keep all
-                                   // elements locally. This is simple, since
-                                   // the deal.II wrappers have a conversion
-                                   // constructor for the non-MPI vector
-                                   // class:
-  PETScWrappers::Vector localized_solution (solution);
-
-                                   // Then we distribute hanging node
-                                   // constraints on this local copy, i.e. we
-                                   // compute the values of all constrained
-                                   // nodes:
-  hanging_node_constraints.distribute (localized_solution);
-
-                                   // Then transfer everything back
-                                   // into the global vector. The
-                                   // following operation copies those
-                                   // elements of the localized
-                                   // solution that we store locally
-                                   // in the distributed solution, and
-                                   // does not touch the other
-                                   // ones. Since we do the same
-                                   // operation on all processors, we
-                                   // end up with a distributed vector
-                                   // that has all the constrained
-                                   // nodes fixed.
-  solution = localized_solution;
-
-                                   // After this has happened, flush the PETSc
-                                   // buffers. This may or may not be strictly
-                                   // necessary here (the PETSc documentation
-                                   // is not very verbose on these things),
-                                   // but certainly doesn't hurt either.
-  solution.compress ();  
-
-                                   // Finally return the number of iterations
-                                   // it took to converge, to allow for some
-                                   // output:
-  return solver_control.last_step();
-}
-
-
-
-                                 // Step five is to output the results we
-                                 // computed in this iteration. This is
-                                 // actually the same as done in step-8
-                                 // before, with two small differences. First,
-                                 // all processes call this function, but not
-                                 // all of them need to do the work associated
-                                 // with generating output. In fact, they
-                                 // shouldn't, since we would try to write to
-                                 // the same file multiple times at once. So
-                                 // we let only the first job do this, and all
-                                 // the other ones idle around during this
-                                 // time (or start their work for the next
-                                 // iteration, or simply yield their CPUs to
-                                 // other jobs that happen to run at the same
-                                 // time). The second thing is that we not
-                                 // only output the solution vector, but also
-                                 // a vector that indicates which subdomain
-                                 // each cell belongs to. This will make for
-                                 // some nice pictures of partitioned domains.
-                                 //
-                                 // In practice, the present implementation of
-                                 // the output function is a major bottleneck
-                                 // of this program, since generating
-                                 // graphical output is expensive and doing so
-                                 // only on one process does, of course, not
-                                 // scale if we significantly increase the
-                                 // number of processes. In effect, this
-                                 // function will consume most of the run-time
-                                 // if you go to very large numbers of
-                                 // unknowns and processes, and real
-                                 // applications should limit the number of
-                                 // times they generate output through this
-                                 // function.
-                                 //
-                                 // The solution to this is to have
-                                 // each process generate output data
-                                 // only for it's own local cells, and
-                                 // write them to separate files, one
-                                 // file per process. This would
-                                 // distribute the work of generating
-                                 // the output to all processes
-                                 // equally. In a second step,
-                                 // separate from running this
-                                 // program, we would then take all
-                                 // the output files for a given cycle
-                                 // and merge these parts into one
-                                 // single output file. This has to be
-                                 // done sequentially, but can be done
-                                 // on a different machine, and should
-                                 // be relatively cheap. However, the
-                                 // necessary functionality for this
-                                 // is not yet implemented in the
-                                 // library, and since we are too
-                                 // close to the next release, we do
-                                 // not want to do such major
-                                 // destabilizing changes any
-                                 // more. This has been fixed in the
-                                 // meantime, though, and a better way
-                                 // to do things is explained in the
-                                 // step-18 example program.
-template <int dim>
-void ElasticProblem<dim>::output_results (const unsigned int cycle) const
-{
-                                   // One point to realize is that when we
-                                   // want to generate output on process zero
-                                   // only, we need to have access to all
-                                   // elements of the solution vector. So we
-                                   // need to get a local copy of the
-                                   // distributed vector, which is in fact
-                                   // simple:
-  const PETScWrappers::Vector localized_solution (solution);
-                                   // The thing to notice, however, is that
-                                   // we do this localization operation on all
-                                   // processes, not only the one that
-                                   // actually needs the data. This can't be
-                                   // avoided, however, with the communication
-                                   // model of MPI: MPI does not have a way to
-                                   // query data on another process, both
-                                   // sides have to initiate a communication
-                                   // at the same time. So even though most of
-                                   // the processes do not need the localized
-                                   // solution, we have to place the call here
-                                   // so that all processes execute it.
-                                   //
-                                   // (In reality, part of this work can in
-                                   // fact be avoided. What we do is send the
-                                   // local parts of all processes to all
-                                   // other processes. What we would really
-                                   // need to do is to initiate an operation
-                                   // on all processes where each process
-                                   // simply sends its local chunk of data to
-                                   // process zero, since this is the only one
-                                   // that actually needs it, i.e. we need
-                                   // something like a gather operation. PETSc
-                                   // can do this, but for simplicity's sake
-                                   // we don't attempt to make use of this
-                                   // here. We don't, since what we do is not
-                                   // very expensive in the grand scheme of
-                                   // things: it is one vector communication
-                                   // among all processes , which has to be
-                                   // compared to the number of communications
-                                   // we have to do when solving the linear
-                                   // system, setting up the block-ILU for the
-                                   // preconditioner, and other operations.)
-
-                                   // This being done, process zero goes ahead
-                                   // with setting up the output file as in
-                                   // step-8, and attaching the (localized)
-                                   // solution vector to the output
-                                   // object:. (The code to generate the output
-                                   // file name is stolen and slightly
-                                   // modified from step-5, since we expect
-                                   // that we can do a number of cycles
-                                   // greater than 10, which is the maximum of
-                                   // what the code in step-8 could handle.)
-  if (this_mpi_process == 0)
-    {
-      std::ostringstream filename;
-      filename << "solution-" << cycle << ".gmv";
-
-      std::ofstream output (filename.str().c_str());
-
-      DataOut<dim> data_out;
-      data_out.attach_dof_handler (dof_handler);
-
-      std::vector<std::string> solution_names;
-      switch (dim)
-        {
-          case 1:
-                solution_names.push_back ("displacement");
-                break;
-          case 2:
-                solution_names.push_back ("x_displacement");       
-                solution_names.push_back ("y_displacement");
-                break;
-          case 3:
-                solution_names.push_back ("x_displacement");       
-                solution_names.push_back ("y_displacement");
-                solution_names.push_back ("z_displacement");
-                break;
-          default:
-                Assert (false, ExcInternalError());
-        }
-
-      data_out.add_data_vector (localized_solution, solution_names);
-
-                                       // The only thing we do here
-                                       // additionally is that we also output
-                                       // one value per cell indicating which
-                                       // subdomain (i.e. MPI process) it
-                                       // belongs to. This requires some
-                                       // conversion work, since the data the
-                                       // library provides us with is not the
-                                       // one the output class expects, but
-                                       // this is not difficult. First, set up
-                                       // a vector of integers, one per cell,
-                                       // that is then filled by the number of
-                                       // subdomain each cell is in:
-      std::vector<unsigned int> partition_int (triangulation.n_active_cells());
-      GridTools::get_subdomain_association (triangulation, partition_int);
-
-                                       // Then convert this integer vector
-                                       // into a floating point vector just as
-                                       // the output functions want to see:
-      const Vector<double> partitioning(partition_int.begin(),
-                                        partition_int.end());
-
-                                       // And finally add this vector as well:
-      data_out.add_data_vector (partitioning, "partitioning");
-
-                                       // This all being done, generate the
-                                       // intermediate format and write it out
-                                       // in GMV output format:
-      data_out.build_patches ();
-      data_out.write_gmv (output);
-    }
-}
-
-
-
-                                 // The sixth step is to take the solution
-                                 // just computed, and evaluate some kind of
-                                 // refinement indicator to refine the
-                                 // mesh. The problem is basically the same as
-                                 // with distributing hanging node
-                                 // constraints: in order to compute the error
-                                 // indicator, we need access to all elements
-                                 // of the solution vector. We then compute
-                                 // the indicators for the cells that belong
-                                 // to the present process, but then we need
-                                 // to distribute the refinement indicators
-                                 // into a distributed vector so that all
-                                 // processes have the values of the
-                                 // refinement indicator for all cells. But
-                                 // then, in order for each process to refine
-                                 // its copy of the mesh, they need to have
-                                 // acces to all refinement indicators
-                                 // locally, so they have to copy the global
-                                 // vector back into a local one. That's a
-                                 // little convoluted, but thinking about it
-                                 // quite straightforward nevertheless. So
-                                 // here's how we do it:
-template <int dim>
-void ElasticProblem<dim>::refine_grid ()
-{
-                                   // So, first part: get a local copy of the
-                                   // distributed solution vector. This is
-                                   // necessary since the error estimator
-                                   // needs to get at the value of neighboring
-                                   // cells even if they do not belong to the
-                                   // subdomain associated with the present
-                                   // MPI process:
-  const PETScWrappers::Vector localized_solution (solution);
-
-                                   // Second part: set up a vector of error
-                                   // indicators for all cells and let the
-                                   // Kelly class compute refinement
-                                   // indicators for all cells belonging to
-                                   // the present subdomain/process. Note that
-                                   // the last argument of the call indicates
-                                   // which subdomain we are interested
-                                   // in. The three arguments before it are
-                                   // various other default arguments that one
-                                   // usually doesn't need (and doesn't state
-                                   // values for, but rather uses the
-                                   // defaults), but which we have to state
-                                   // here explicitly since we want to modify
-                                   // the value of a following argument
-                                   // (i.e. the one indicating the subdomain):
-  Vector<float> local_error_per_cell (triangulation.n_active_cells());
-  KellyErrorEstimator<dim>::estimate (dof_handler,
-                                      QGauss<dim-1>(2),
-                                      typename FunctionMap<dim>::type(),
-                                      localized_solution,
-                                      local_error_per_cell,
-                                      std::vector<bool>(),
-                                      0,
-                                      multithread_info.n_default_threads,
-                                      this_mpi_process);
-
-                                   // Now all processes have computed error
-                                   // indicators for their own cells and
-                                   // stored them in the respective elements
-                                   // of the <code>local_error_per_cell</code>
-                                   // vector. The elements of this vector for
-                                   // cells not on the present process are
-                                   // zero. However, since all processes have
-                                   // a copy of a copy of the entire
-                                   // triangulation and need to keep these
-                                   // copies in synch, they need the values of
-                                   // refinement indicators for all cells of
-                                   // the triangulation. Thus, we need to
-                                   // distribute our results. We do this by
-                                   // creating a distributed vector where each
-                                   // process has its share, and sets the
-                                   // elements it has computed. We will then
-                                   // later generate a local sequential copy
-                                   // of this distributed vector to allow each
-                                   // process to access all elements of this
-                                   // vector.
-                                   //
-                                   // So in the first step, we need to set up
-                                   // a %parallel vector. For simplicity, every
-                                   // process will own a chunk with as many
-                                   // elements as this process owns cells, so
-                                   // that the first chunk of elements is
-                                   // stored with process zero, the next chunk
-                                   // with process one, and so on. It is
-                                   // important to remark, however, that these
-                                   // elements are not necessarily the ones we
-                                   // will write to. This is so, since the
-                                   // order in which cells are arranged,
-                                   // i.e. the order in which the elements of
-                                   // the vector correspond to cells, is not
-                                   // ordered according to the subdomain these
-                                   // cells belong to. In other words, if on
-                                   // this process we compute indicators for
-                                   // cells of a certain subdomain, we may
-                                   // write the results to more or less random
-                                   // elements if the distributed vector, that
-                                   // do not necessarily lie within the chunk
-                                   // of vector we own on the present
-                                   // process. They will subsequently have to
-                                   // be copied into another process's memory
-                                   // space then, an operation that PETSc does
-                                   // for us when we call the <code>compress</code>
-                                   // function. This inefficiency could be
-                                   // avoided with some more code, but we
-                                   // refrain from it since it is not a major
-                                   // factor in the program's total runtime.
-                                   //
-                                   // So here's how we do it: count how many
-                                   // cells belong to this process, set up a
-                                   // distributed vector with that many
-                                   // elements to be stored locally, and copy
-                                   // over the elements we computed locally,
-                                   // then compress the result. In fact, we
-                                   // really only copy the elements that are
-                                   // nonzero, so we may miss a few that we
-                                   // computed to zero, but this won't hurt
-                                   // since the original values of the vector
-                                   // is zero anyway.
-  const unsigned int n_local_cells
-    = GridTools::count_cells_with_subdomain_association (triangulation,
-                                                         this_mpi_process);
-  PETScWrappers::MPI::Vector
-    distributed_all_errors (mpi_communicator,
-                            triangulation.n_active_cells(),
-                            n_local_cells);
-  
-  for (unsigned int i=0; i<local_error_per_cell.size(); ++i)
-    if (local_error_per_cell(i) != 0)
-      distributed_all_errors(i) = local_error_per_cell(i);
-  distributed_all_errors.compress ();
-
-
-                                   // So now we have this distributed vector
-                                   // out there that contains the refinement
-                                   // indicators for all cells. To use it, we
-                                   // need to obtain a local copy...
-  const Vector<float> localized_all_errors (distributed_all_errors);
-
-                                   // ...which we can the subsequently use to
-                                   // finally refine the grid:
-  GridRefinement::refine_and_coarsen_fixed_number (triangulation,
-                                                  localized_all_errors,
-                                                  0.3, 0.03);
-  triangulation.execute_coarsening_and_refinement ();
-}
-
-
-
-                                 // Lastly, here is the driver function. It is
-                                 // almost unchanged from step-8, with the
-                                 // exception that we replace <code>std::cout</code> by
-                                 // the <code>pcout</code> stream. Apart from this, the
-                                 // only other cosmetic change is that we
-                                 // output how many degrees of freedom there
-                                 // are per process, and how many iterations
-                                 // it took for the linear solver to converge:
-template <int dim>
-void ElasticProblem<dim>::run () 
-{
-  for (unsigned int cycle=0; cycle<10; ++cycle)
-    {
-      pcout << "Cycle " << cycle << ':' << std::endl;
-
-      if (cycle == 0)
-       {
-         GridGenerator::hyper_cube (triangulation, -1, 1);
-         triangulation.refine_global (3);
-       }
-      else
-       refine_grid ();
-
-      pcout << "   Number of active cells:       "
-            << triangulation.n_active_cells()
-            << std::endl;
-
-      setup_system ();
-
-      pcout << "   Number of degrees of freedom: "
-            << dof_handler.n_dofs()
-            << " (by partition:";
-      for (unsigned int p=0; p<n_mpi_processes; ++p)
-       pcout << (p==0 ? ' ' : '+')
-              << (DoFTools::
-                  count_dofs_with_subdomain_association (dof_handler,
-                                                         p));
-      pcout << ")" << std::endl;
-      
-      assemble_system ();
-      const unsigned int n_iterations = solve ();
-  
-      pcout << "   Solver converged in " << n_iterations
-            << " iterations." << std::endl;
-      
-      output_results (cycle);
-    }
+  }
+
+
+
+                                  // The sixth step is to take the solution
+                                  // just computed, and evaluate some kind of
+                                  // refinement indicator to refine the
+                                  // mesh. The problem is basically the same as
+                                  // with distributing hanging node
+                                  // constraints: in order to compute the error
+                                  // indicator, we need access to all elements
+                                  // of the solution vector. We then compute
+                                  // the indicators for the cells that belong
+                                  // to the present process, but then we need
+                                  // to distribute the refinement indicators
+                                  // into a distributed vector so that all
+                                  // processes have the values of the
+                                  // refinement indicator for all cells. But
+                                  // then, in order for each process to refine
+                                  // its copy of the mesh, they need to have
+                                  // acces to all refinement indicators
+                                  // locally, so they have to copy the global
+                                  // vector back into a local one. That's a
+                                  // little convoluted, but thinking about it
+                                  // quite straightforward nevertheless. So
+                                  // here's how we do it:
+  template <int dim>
+  void ElasticProblem<dim>::refine_grid ()
+  {
+                                    // So, first part: get a local copy of the
+                                    // distributed solution vector. This is
+                                    // necessary since the error estimator
+                                    // needs to get at the value of neighboring
+                                    // cells even if they do not belong to the
+                                    // subdomain associated with the present
+                                    // MPI process:
+    const PETScWrappers::Vector localized_solution (solution);
+
+                                    // Second part: set up a vector of error
+                                    // indicators for all cells and let the
+                                    // Kelly class compute refinement
+                                    // indicators for all cells belonging to
+                                    // the present subdomain/process. Note that
+                                    // the last argument of the call indicates
+                                    // which subdomain we are interested
+                                    // in. The three arguments before it are
+                                    // various other default arguments that one
+                                    // usually doesn't need (and doesn't state
+                                    // values for, but rather uses the
+                                    // defaults), but which we have to state
+                                    // here explicitly since we want to modify
+                                    // the value of a following argument
+                                    // (i.e. the one indicating the subdomain):
+    Vector<float> local_error_per_cell (triangulation.n_active_cells());
+    KellyErrorEstimator<dim>::estimate (dof_handler,
+                                       QGauss<dim-1>(2),
+                                       typename FunctionMap<dim>::type(),
+                                       localized_solution,
+                                       local_error_per_cell,
+                                       std::vector<bool>(),
+                                       0,
+                                       multithread_info.n_default_threads,
+                                       this_mpi_process);
+
+                                    // Now all processes have computed error
+                                    // indicators for their own cells and
+                                    // stored them in the respective elements
+                                    // of the <code>local_error_per_cell</code>
+                                    // vector. The elements of this vector for
+                                    // cells not on the present process are
+                                    // zero. However, since all processes have
+                                    // a copy of a copy of the entire
+                                    // triangulation and need to keep these
+                                    // copies in synch, they need the values of
+                                    // refinement indicators for all cells of
+                                    // the triangulation. Thus, we need to
+                                    // distribute our results. We do this by
+                                    // creating a distributed vector where each
+                                    // process has its share, and sets the
+                                    // elements it has computed. We will then
+                                    // later generate a local sequential copy
+                                    // of this distributed vector to allow each
+                                    // process to access all elements of this
+                                    // vector.
+                                    //
+                                    // So in the first step, we need to set up
+                                    // a %parallel vector. For simplicity, every
+                                    // process will own a chunk with as many
+                                    // elements as this process owns cells, so
+                                    // that the first chunk of elements is
+                                    // stored with process zero, the next chunk
+                                    // with process one, and so on. It is
+                                    // important to remark, however, that these
+                                    // elements are not necessarily the ones we
+                                    // will write to. This is so, since the
+                                    // order in which cells are arranged,
+                                    // i.e. the order in which the elements of
+                                    // the vector correspond to cells, is not
+                                    // ordered according to the subdomain these
+                                    // cells belong to. In other words, if on
+                                    // this process we compute indicators for
+                                    // cells of a certain subdomain, we may
+                                    // write the results to more or less random
+                                    // elements if the distributed vector, that
+                                    // do not necessarily lie within the chunk
+                                    // of vector we own on the present
+                                    // process. They will subsequently have to
+                                    // be copied into another process's memory
+                                    // space then, an operation that PETSc does
+                                    // for us when we call the <code>compress</code>
+                                    // function. This inefficiency could be
+                                    // avoided with some more code, but we
+                                    // refrain from it since it is not a major
+                                    // factor in the program's total runtime.
+                                    //
+                                    // So here's how we do it: count how many
+                                    // cells belong to this process, set up a
+                                    // distributed vector with that many
+                                    // elements to be stored locally, and copy
+                                    // over the elements we computed locally,
+                                    // then compress the result. In fact, we
+                                    // really only copy the elements that are
+                                    // nonzero, so we may miss a few that we
+                                    // computed to zero, but this won't hurt
+                                    // since the original values of the vector
+                                    // is zero anyway.
+    const unsigned int n_local_cells
+      = GridTools::count_cells_with_subdomain_association (triangulation,
+                                                          this_mpi_process);
+    PETScWrappers::MPI::Vector
+      distributed_all_errors (mpi_communicator,
+                             triangulation.n_active_cells(),
+                             n_local_cells);
+
+    for (unsigned int i=0; i<local_error_per_cell.size(); ++i)
+      if (local_error_per_cell(i) != 0)
+       distributed_all_errors(i) = local_error_per_cell(i);
+    distributed_all_errors.compress ();
+
+
+                                    // So now we have this distributed vector
+                                    // out there that contains the refinement
+                                    // indicators for all cells. To use it, we
+                                    // need to obtain a local copy...
+    const Vector<float> localized_all_errors (distributed_all_errors);
+
+                                    // ...which we can the subsequently use to
+                                    // finally refine the grid:
+    GridRefinement::refine_and_coarsen_fixed_number (triangulation,
+                                                    localized_all_errors,
+                                                    0.3, 0.03);
+    triangulation.execute_coarsening_and_refinement ();
+  }
+
+
+
+                                  // Lastly, here is the driver function. It is
+                                  // almost unchanged from step-8, with the
+                                  // exception that we replace <code>std::cout</code> by
+                                  // the <code>pcout</code> stream. Apart from this, the
+                                  // only other cosmetic change is that we
+                                  // output how many degrees of freedom there
+                                  // are per process, and how many iterations
+                                  // it took for the linear solver to converge:
+  template <int dim>
+  void ElasticProblem<dim>::run ()
+  {
+    for (unsigned int cycle=0; cycle<10; ++cycle)
+      {
+       pcout << "Cycle " << cycle << ':' << std::endl;
+
+       if (cycle == 0)
+         {
+           GridGenerator::hyper_cube (triangulation, -1, 1);
+           triangulation.refine_global (3);
+         }
+       else
+         refine_grid ();
+
+       pcout << "   Number of active cells:       "
+             << triangulation.n_active_cells()
+             << std::endl;
+
+       setup_system ();
+
+       pcout << "   Number of degrees of freedom: "
+             << dof_handler.n_dofs()
+             << " (by partition:";
+       for (unsigned int p=0; p<n_mpi_processes; ++p)
+         pcout << (p==0 ? ' ' : '+')
+               << (DoFTools::
+                   count_dofs_with_subdomain_association (dof_handler,
+                                                          p));
+       pcout << ")" << std::endl;
+
+       assemble_system ();
+       const unsigned int n_iterations = solve ();
+
+       pcout << "   Solver converged in " << n_iterations
+             << " iterations." << std::endl;
+
+       output_results (cycle);
+      }
+  }
 }
 
 
@@ -1214,10 +1217,13 @@ void ElasticProblem<dim>::run ()
                                  // delegates work to the <code>run</code> function of
                                  // a master object, and only wraps everything
                                  // into some code to catch exceptions:
-int main (int argc, char **argv) 
+int main (int argc, char **argv)
 {
   try
     {
+      using namespace dealii;
+      using namespace Step17;
+
                                        // Here is the only real difference:
                                        // PETSc requires that we initialize it
                                        // at the beginning of the program, and
@@ -1245,7 +1251,7 @@ int main (int argc, char **argv)
         elastic_problem.run ();
       }
 
-      PetscFinalize();      
+      PetscFinalize();
     }
   catch (std::exception &exc)
     {
@@ -1257,10 +1263,10 @@ int main (int argc, char **argv)
                << "Aborting!" << std::endl
                << "----------------------------------------------------"
                << std::endl;
-      
+
       return 1;
     }
-  catch (...) 
+  catch (...)
     {
       std::cerr << std::endl << std::endl
                << "----------------------------------------------------"
index cad5022f30fc06127a9ab6a0652c9ed643485eae..bc6088831321f5a84d22939d43fe67466e023b5e 100644 (file)
@@ -3,7 +3,7 @@
 
 /*    $Id$       */
 /*                                                                */
-/*    Copyright (C) 2000, 2004, 2005, 2006, 2007, 2008, 2009 by the deal.II authors */
+/*    Copyright (C) 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2011 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 
                                 // The last step is as in all
                                 // previous programs:
-using namespace dealii;
-
-                                // So much for the header files. As a
-                                // matter of good practice, I have
-                                // started to put everything that
-                                // corresponds to a certain project
-                                // into a namespace of its own, named
-                                // after the problem that we are
-                                // solving:
-namespace QuasiStaticElasticity
+namespace Step18
 {
+  using namespace dealii;
 
                                   // @sect3{The <code>PointHistory</code> class}
 
@@ -116,20 +108,20 @@ namespace QuasiStaticElasticity
   };
 
 
-                                   // @sect3{The stress-strain tensor}
-
-                                   // Next, we define the linear relationship
-                                   // between the stress and the strain in
-                                   // elasticity. It is given by a tensor of
-                                   // rank 4 that is usually written in the
-                                   // form $C_{ijkl} = \mu (\delta_{ik}
-                                   // \delta_{jl} + \delta_{il} \delta_{jk}) +
-                                   // \lambda \delta_{ij} \delta_{kl}$. This
-                                   // tensor maps symmetric tensor of rank 2
-                                   // to symmetric tensors of rank 2. A
-                                   // function implementing its creation for
-                                   // given values of the Lame constants
-                                   // lambda and mu is straightforward:
+                                  // @sect3{The stress-strain tensor}
+
+                                  // Next, we define the linear relationship
+                                  // between the stress and the strain in
+                                  // elasticity. It is given by a tensor of
+                                  // rank 4 that is usually written in the
+                                  // form $C_{ijkl} = \mu (\delta_{ik}
+                                  // \delta_{jl} + \delta_{il} \delta_{jk}) +
+                                  // \lambda \delta_{ij} \delta_{kl}$. This
+                                  // tensor maps symmetric tensor of rank 2
+                                  // to symmetric tensors of rank 2. A
+                                  // function implementing its creation for
+                                  // given values of the Lame constants
+                                  // lambda and mu is straightforward:
   template <int dim>
   SymmetricTensor<4,dim>
   get_stress_strain_tensor (const double lambda, const double mu)
@@ -137,42 +129,42 @@ namespace QuasiStaticElasticity
     SymmetricTensor<4,dim> tmp;
     for (unsigned int i=0; i<dim; ++i)
       for (unsigned int j=0; j<dim; ++j)
-        for (unsigned int k=0; k<dim; ++k)
-          for (unsigned int l=0; l<dim; ++l)
-            tmp[i][j][k][l] = (((i==k) && (j==l) ? mu : 0.0) +
-                               ((i==l) && (j==k) ? mu : 0.0) +
-                               ((i==j) && (k==l) ? lambda : 0.0));
+       for (unsigned int k=0; k<dim; ++k)
+         for (unsigned int l=0; l<dim; ++l)
+           tmp[i][j][k][l] = (((i==k) && (j==l) ? mu : 0.0) +
+                              ((i==l) && (j==k) ? mu : 0.0) +
+                              ((i==j) && (k==l) ? lambda : 0.0));
     return tmp;
   }
 
-                                   // With this function, we will
-                                   // define a static member variable
-                                   // of the main class below that
-                                   // will be used throughout the
-                                   // program as the stress-strain
-                                   // tensor. Note that
-                                   // in more elaborate programs, this will
-                                   // probably be a member variable of some
-                                   // class instead, or a function that
-                                   // returns the stress-strain relationship
-                                   // depending on other input. For example in
-                                   // damage theory models, the Lame constants
-                                   // are considered a function of the prior
-                                   // stress/strain history of a
-                                   // point. Conversely, in plasticity the
-                                   // form of the stress-strain tensor is
-                                   // modified if the material has reached the
-                                   // yield stress in a certain point, and
-                                   // possibly also depending on its prior
-                                   // history.
-                                   //
-                                   // In the present program, however, we
-                                   // assume that the material is completely
-                                   // elastic and linear, and a constant
-                                   // stress-strain tensor is sufficient for
-                                   // our present purposes.
-
-  
+                                  // With this function, we will
+                                  // define a static member variable
+                                  // of the main class below that
+                                  // will be used throughout the
+                                  // program as the stress-strain
+                                  // tensor. Note that
+                                  // in more elaborate programs, this will
+                                  // probably be a member variable of some
+                                  // class instead, or a function that
+                                  // returns the stress-strain relationship
+                                  // depending on other input. For example in
+                                  // damage theory models, the Lame constants
+                                  // are considered a function of the prior
+                                  // stress/strain history of a
+                                  // point. Conversely, in plasticity the
+                                  // form of the stress-strain tensor is
+                                  // modified if the material has reached the
+                                  // yield stress in a certain point, and
+                                  // possibly also depending on its prior
+                                  // history.
+                                  //
+                                  // In the present program, however, we
+                                  // assume that the material is completely
+                                  // elastic and linear, and a constant
+                                  // stress-strain tensor is sufficient for
+                                  // our present purposes.
+
+
 
                                   // @sect3{Auxiliary functions}
 
@@ -286,9 +278,9 @@ namespace QuasiStaticElasticity
     for (unsigned int i=0; i<dim; ++i)
       for (unsigned int j=i+1; j<dim; ++j)
        tmp[i][j]
-          = (fe_values.shape_grad_component (shape_func,q_point,i)[j] +
-             fe_values.shape_grad_component (shape_func,q_point,j)[i]) / 2;
-  
+         = (fe_values.shape_grad_component (shape_func,q_point,i)[j] +
+            fe_values.shape_grad_component (shape_func,q_point,j)[i]) / 2;
+
     return tmp;
   }
 
@@ -345,47 +337,47 @@ namespace QuasiStaticElasticity
     SymmetricTensor<2,dim> strain;
     for (unsigned int i=0; i<dim; ++i)
       strain[i][i] = grad[i][i];
-    
+
     for (unsigned int i=0; i<dim; ++i)
       for (unsigned int j=i+1; j<dim; ++j)
        strain[i][j] = (grad[i][j] + grad[j][i]) / 2;
-    
+
     return strain;
   }
 
 
-                                   // Finally, below we will need a function
-                                   // that computes the rotation matrix
-                                   // induced by a displacement at a given
-                                   // point. In fact, of course, the
-                                   // displacement at a single point only has
-                                   // a direction and a magnitude, it is the
-                                   // change in direction and magnitude that
-                                   // induces rotations. In effect, the
-                                   // rotation matrix can be computed from the
-                                   // gradients of a displacement, or, more
-                                   // specifically, from the curl.
-                                   //
-                                   // The formulas by which the rotation
-                                   // matrices are determined are a little
-                                   // awkward, especially in 3d. For 2d, there
-                                   // is a simpler way, so we implement this
-                                   // function twice, once for 2d and once for
-                                   // 3d, so that we can compile and use the
-                                   // program in both space dimensions if so
-                                   // desired -- after all, deal.II is all
-                                   // about dimension independent programming
-                                   // and reuse of algorithm thoroughly tested
-                                   // with cheap computations in 2d, for the
-                                   // more expensive computations in 3d. Here
-                                   // is one case, where we have to implement
-                                   // different algorithms for 2d and 3d, but
-                                   // then can write the rest of the program
-                                   // in a way that is independent of the
-                                   // space dimension.
-                                   //
-                                   // So, without further ado to the 2d
-                                   // implementation:
+                                  // Finally, below we will need a function
+                                  // that computes the rotation matrix
+                                  // induced by a displacement at a given
+                                  // point. In fact, of course, the
+                                  // displacement at a single point only has
+                                  // a direction and a magnitude, it is the
+                                  // change in direction and magnitude that
+                                  // induces rotations. In effect, the
+                                  // rotation matrix can be computed from the
+                                  // gradients of a displacement, or, more
+                                  // specifically, from the curl.
+                                  //
+                                  // The formulas by which the rotation
+                                  // matrices are determined are a little
+                                  // awkward, especially in 3d. For 2d, there
+                                  // is a simpler way, so we implement this
+                                  // function twice, once for 2d and once for
+                                  // 3d, so that we can compile and use the
+                                  // program in both space dimensions if so
+                                  // desired -- after all, deal.II is all
+                                  // about dimension independent programming
+                                  // and reuse of algorithm thoroughly tested
+                                  // with cheap computations in 2d, for the
+                                  // more expensive computations in 3d. Here
+                                  // is one case, where we have to implement
+                                  // different algorithms for 2d and 3d, but
+                                  // then can write the rest of the program
+                                  // in a way that is independent of the
+                                  // space dimension.
+                                  //
+                                  // So, without further ado to the 2d
+                                  // implementation:
   Tensor<2,2>
   get_rotation_matrix (const std::vector<Tensor<1,2> > &grad_u)
   {
@@ -394,20 +386,20 @@ namespace QuasiStaticElasticity
                                     // gradients. Note that we are in 2d, so
                                     // the rotation is a scalar:
     const double curl = (grad_u[1][0] - grad_u[0][1]);
-    
+
                                     // From this, compute the angle of
                                     // rotation:
     const double angle = std::atan (curl);
 
-                                     // And from this, build the antisymmetric
-                                     // rotation matrix:
+                                    // And from this, build the antisymmetric
+                                    // rotation matrix:
     const double t[2][2] = {{ cos(angle), sin(angle) },
                            {-sin(angle), cos(angle) }};
     return Tensor<2,2>(t);
   }
 
 
-                                   // The 3d case is a little more contrived:
+                                  // The 3d case is a little more contrived:
   Tensor<2,3>
   get_rotation_matrix (const std::vector<Tensor<1,3> > &grad_u)
   {
@@ -415,9 +407,9 @@ namespace QuasiStaticElasticity
                                     // velocity field. This time, it is a
                                     // real vector:
     const Point<3> curl (grad_u[2][1] - grad_u[1][2],
-                         grad_u[0][2] - grad_u[2][0],
-                         grad_u[1][0] - grad_u[0][1]);
-    
+                        grad_u[0][2] - grad_u[2][0],
+                        grad_u[1][0] - grad_u[0][1]);
+
                                     // From this vector, using its magnitude,
                                     // compute the tangent of the angle of
                                     // rotation, and from it the actual
@@ -425,42 +417,42 @@ namespace QuasiStaticElasticity
     const double tan_angle = std::sqrt(curl*curl);
     const double angle = std::atan (tan_angle);
 
-                                     // Now, here's one problem: if the angle
-                                     // of rotation is too small, that means
-                                     // that there is no rotation going on
-                                     // (for example a translational
-                                     // motion). In that case, the rotation
-                                     // matrix is the identity matrix.
-                                     //
-                                     // The reason why we stress that is that
-                                     // in this case we have that
-                                     // <code>tan_angle==0</code>. Further down, we
-                                     // need to divide by that number in the
-                                     // computation of the axis of rotation,
-                                     // and we would get into trouble when
-                                     // dividing doing so. Therefore, let's
-                                     // shortcut this and simply return the
-                                     // identity matrix if the angle of
-                                     // rotation is really small:
+                                    // Now, here's one problem: if the angle
+                                    // of rotation is too small, that means
+                                    // that there is no rotation going on
+                                    // (for example a translational
+                                    // motion). In that case, the rotation
+                                    // matrix is the identity matrix.
+                                    //
+                                    // The reason why we stress that is that
+                                    // in this case we have that
+                                    // <code>tan_angle==0</code>. Further down, we
+                                    // need to divide by that number in the
+                                    // computation of the axis of rotation,
+                                    // and we would get into trouble when
+                                    // dividing doing so. Therefore, let's
+                                    // shortcut this and simply return the
+                                    // identity matrix if the angle of
+                                    // rotation is really small:
     if (angle < 1e-9)
       {
-        static const double rotation[3][3]
-          = {{ 1, 0, 0}, { 0, 1, 0 }, { 0, 0, 1 } };
-        static const Tensor<2,3> rot(rotation);
-        return rot;
+       static const double rotation[3][3]
+         = {{ 1, 0, 0}, { 0, 1, 0 }, { 0, 0, 1 } };
+       static const Tensor<2,3> rot(rotation);
+       return rot;
       }
 
-                                     // Otherwise compute the real rotation
-                                     // matrix. The algorithm for this is not
-                                     // exactly obvious, but can be found in a
-                                     // number of books, particularly on
-                                     // computer games where rotation is a
-                                     // very frequent operation. Online, you
-                                     // can find a description at
-                                     // http://www.makegames.com/3drotation/
-                                     // and (this particular form, with the
-                                     // signs as here) at
-                                     // http://www.gamedev.net/reference/articles/article1199.asp:
+                                    // Otherwise compute the real rotation
+                                    // matrix. The algorithm for this is not
+                                    // exactly obvious, but can be found in a
+                                    // number of books, particularly on
+                                    // computer games where rotation is a
+                                    // very frequent operation. Online, you
+                                    // can find a description at
+                                    // http://www.makegames.com/3drotation/
+                                    // and (this particular form, with the
+                                    // signs as here) at
+                                    // http://www.gamedev.net/reference/articles/article1199.asp:
     const double c = std::cos(angle);
     const double s = std::sin(angle);
     const double t = 1-c;
@@ -468,50 +460,50 @@ namespace QuasiStaticElasticity
     const Point<3> axis = curl/tan_angle;
     const double rotation[3][3]
       = {{ t*axis[0]*axis[0]+c,
-           t*axis[0]*axis[1]+s*axis[2],
-           t*axis[0]*axis[2]-s*axis[1]},
-         { t*axis[0]*axis[1]-s*axis[2],
-           t*axis[1]*axis[1]+c,
-           t*axis[1]*axis[2]+s*axis[0]},
-         { t*axis[0]*axis[2]+s*axis[1],
-           t*axis[1]*axis[1]-s*axis[0],
-           t*axis[2]*axis[2]+c  } };
+          t*axis[0]*axis[1]+s*axis[2],
+          t*axis[0]*axis[2]-s*axis[1]},
+        { t*axis[0]*axis[1]-s*axis[2],
+          t*axis[1]*axis[1]+c,
+          t*axis[1]*axis[2]+s*axis[0]},
+        { t*axis[0]*axis[2]+s*axis[1],
+          t*axis[1]*axis[1]-s*axis[0],
+          t*axis[2]*axis[2]+c  } };
     return Tensor<2,3>(rotation);
   }
-  
+
 
 
                                   // @sect3{The <code>TopLevel</code> class}
-  
+
                                   // This is the main class of the
                                   // program. Since the namespace already
                                   // indicates what problem we are solving,
                                   // let's call it by what it does: it
                                   // directs the flow of the program, i.e. it
                                   // is the toplevel driver.
-                                   //
-                                   // The member variables of this class are
-                                   // essentially as before, i.e. it has to
-                                   // have a triangulation, a DoF handler and
-                                   // associated objects such as constraints,
-                                   // variables that describe the linear
-                                   // system, etc. There are a good number of
-                                   // more member functions now, which we will
-                                   // explain below.
-                                   //
-                                   // The external interface of the class,
-                                   // however, is unchanged: it has a public
-                                   // constructor and desctructor, and it has
-                                   // a <code>run</code> function that initiated all
-                                   // the work.
+                                  //
+                                  // The member variables of this class are
+                                  // essentially as before, i.e. it has to
+                                  // have a triangulation, a DoF handler and
+                                  // associated objects such as constraints,
+                                  // variables that describe the linear
+                                  // system, etc. There are a good number of
+                                  // more member functions now, which we will
+                                  // explain below.
+                                  //
+                                  // The external interface of the class,
+                                  // however, is unchanged: it has a public
+                                  // constructor and desctructor, and it has
+                                  // a <code>run</code> function that initiated all
+                                  // the work.
   template <int dim>
-  class TopLevel 
+  class TopLevel
   {
     public:
       TopLevel ();
       ~TopLevel ();
       void run ();
-    
+
     private:
                                       // The private interface is more
                                       // extensive than in step-17. First, we
@@ -530,29 +522,29 @@ namespace QuasiStaticElasticity
                                       // output the solution vector on the
                                       // currect mesh:
       void create_coarse_grid ();
-    
+
       void setup_system ();
-      
+
       void assemble_system ();
-      
+
       void solve_timestep ();
 
       unsigned int solve_linear_problem ();
 
       void output_results () const;
 
-                                       // All, except for the first two, of
-                                       // these functions are called in each
-                                       // timestep. Since the first time step
-                                       // is a little special, we have
-                                       // separate functions that describe
-                                       // what has to happen in a timestep:
-                                       // one for the first, and one for all
-                                       // following timesteps:
+                                      // All, except for the first two, of
+                                      // these functions are called in each
+                                      // timestep. Since the first time step
+                                      // is a little special, we have
+                                      // separate functions that describe
+                                      // what has to happen in a timestep:
+                                      // one for the first, and one for all
+                                      // following timesteps:
       void do_initial_timestep ();
 
       void do_timestep ();
-      
+
                                       // Then we need a whole bunch of
                                       // functions that do various
                                       // things. The first one refines the
@@ -572,12 +564,12 @@ namespace QuasiStaticElasticity
                                       // each quadrature point.
       void refine_initial_grid ();
 
-                                       // At the end of each time step, we
-                                       // want to move the mesh vertices
-                                       // around according to the incremental
-                                       // displacement computed in this time
-                                       // step. This is the function in which
-                                       // this is done:
+                                      // At the end of each time step, we
+                                      // want to move the mesh vertices
+                                      // around according to the incremental
+                                      // displacement computed in this time
+                                      // step. This is the function in which
+                                      // this is done:
       void move_mesh ();
 
                                       // Next are two functions that handle
@@ -596,10 +588,10 @@ namespace QuasiStaticElasticity
                                       // timestep:
       void update_quadrature_point_history ();
 
-                                       // After the member functions, here are
-                                       // the member variables. The first ones
-                                       // have all been discussed in more
-                                       // detail in previous example programs:
+                                      // After the member functions, here are
+                                      // the member variables. The first ones
+                                      // have all been discussed in more
+                                      // detail in previous example programs:
       Triangulation<dim>   triangulation;
 
       FESystem<dim>        fe;
@@ -636,98 +628,98 @@ namespace QuasiStaticElasticity
                                       // processors).
       std::vector<PointHistory<dim> > quadrature_point_history;
 
-                                       // The way this object is accessed is
-                                       // through a <code>user pointer</code> that each
-                                       // cell, face, or edge holds: it is a
-                                       // <code>void*</code> pointer that can be used
-                                       // by application programs to associate
-                                       // arbitrary data to cells, faces, or
-                                       // edges. What the program actually
-                                       // does with this data is within its
-                                       // own responsibility, the library just
-                                       // allocates some space for these
-                                       // pointers, and application programs
-                                       // can set and read the pointers for
-                                       // each of these objects.
-    
-
-                                       // Further: we need the objects of
-                                       // linear systems to be solved,
-                                       // i.e. matrix, right hand side vector,
-                                       // and the solution vector. Since we
-                                       // anticipate solving big problems, we
-                                       // use the same types as in step-17,
-                                       // i.e. distributed %parallel matrices
-                                       // and vectors built on top of the
-                                       // PETSc library. Conveniently, they
-                                       // can also be used when running on
-                                       // only a single machine, in which case
-                                       // this machine happens to be the only
-                                       // one in our %parallel universe.
-                                       //
-                                       // However, as a difference to step-17,
-                                       // we do not store the solution vector
-                                       // -- which here is the incremental
-                                       // displacements computed in each time
-                                       // step -- in a distributed
-                                       // fashion. I.e., of course it must be
-                                       // a distributed vector when computing
-                                       // it, but immediately after that we
-                                       // make sure each processor has a
-                                       // complete copy. The reason is that we
-                                       // had already seen in step-17 that
-                                       // many functions needed a complete
-                                       // copy. While it is not hard to get
-                                       // it, this requires communication on
-                                       // the network, and is thus slow. In
-                                       // addition, these were repeatedly the
-                                       // same operations, which is certainly
-                                       // undesirable unless the gains of not
-                                       // always having to store the entire
-                                       // vector outweighs it. When writing
-                                       // this program, it turned out that we
-                                       // need a complete copy of the solution
-                                       // in so many places that it did not
-                                       // seem worthwhile to only get it when
-                                       // necessary. Instead, we opted to
-                                       // obtain the complete copy once and
-                                       // for all, and instead get rid of the
-                                       // distributed copy immediately. Thus,
-                                       // note that the declaration of
-                                       // <code>inremental_displacement</code> does not
-                                       // denote a distribute vector as would
-                                       // be indicated by the middle namespace
-                                       // <code>MPI</code>:
+                                      // The way this object is accessed is
+                                      // through a <code>user pointer</code> that each
+                                      // cell, face, or edge holds: it is a
+                                      // <code>void*</code> pointer that can be used
+                                      // by application programs to associate
+                                      // arbitrary data to cells, faces, or
+                                      // edges. What the program actually
+                                      // does with this data is within its
+                                      // own responsibility, the library just
+                                      // allocates some space for these
+                                      // pointers, and application programs
+                                      // can set and read the pointers for
+                                      // each of these objects.
+
+
+                                      // Further: we need the objects of
+                                      // linear systems to be solved,
+                                      // i.e. matrix, right hand side vector,
+                                      // and the solution vector. Since we
+                                      // anticipate solving big problems, we
+                                      // use the same types as in step-17,
+                                      // i.e. distributed %parallel matrices
+                                      // and vectors built on top of the
+                                      // PETSc library. Conveniently, they
+                                      // can also be used when running on
+                                      // only a single machine, in which case
+                                      // this machine happens to be the only
+                                      // one in our %parallel universe.
+                                      //
+                                      // However, as a difference to step-17,
+                                      // we do not store the solution vector
+                                      // -- which here is the incremental
+                                      // displacements computed in each time
+                                      // step -- in a distributed
+                                      // fashion. I.e., of course it must be
+                                      // a distributed vector when computing
+                                      // it, but immediately after that we
+                                      // make sure each processor has a
+                                      // complete copy. The reason is that we
+                                      // had already seen in step-17 that
+                                      // many functions needed a complete
+                                      // copy. While it is not hard to get
+                                      // it, this requires communication on
+                                      // the network, and is thus slow. In
+                                      // addition, these were repeatedly the
+                                      // same operations, which is certainly
+                                      // undesirable unless the gains of not
+                                      // always having to store the entire
+                                      // vector outweighs it. When writing
+                                      // this program, it turned out that we
+                                      // need a complete copy of the solution
+                                      // in so many places that it did not
+                                      // seem worthwhile to only get it when
+                                      // necessary. Instead, we opted to
+                                      // obtain the complete copy once and
+                                      // for all, and instead get rid of the
+                                      // distributed copy immediately. Thus,
+                                      // note that the declaration of
+                                      // <code>inremental_displacement</code> does not
+                                      // denote a distribute vector as would
+                                      // be indicated by the middle namespace
+                                      // <code>MPI</code>:
       PETScWrappers::MPI::SparseMatrix system_matrix;
 
       PETScWrappers::MPI::Vector       system_rhs;
 
       PETScWrappers::Vector            incremental_displacement;
 
-                                       // The next block of variables is then
-                                       // related to the time dependent nature
-                                       // of the problem: they denote the
-                                       // length of the time interval which we
-                                       // want to simulate, the present time
-                                       // and number of time step, and length
-                                       // of present timestep:
+                                      // The next block of variables is then
+                                      // related to the time dependent nature
+                                      // of the problem: they denote the
+                                      // length of the time interval which we
+                                      // want to simulate, the present time
+                                      // and number of time step, and length
+                                      // of present timestep:
       double       present_time;
       double       present_timestep;
       double       end_time;
       unsigned int timestep_no;
 
-                                       // Then a few variables that have to do
-                                       // with %parallel processing: first, a
-                                       // variable denoting the MPI
-                                       // communicator we use, and then two
-                                       // numbers telling us how many
-                                       // participating processors there are,
-                                       // and where in this world we
-                                       // are. Finally, a stream object that
-                                       // makes sure only one processor is
-                                       // actually generating output to the
-                                       // console. This is all the same as in
-                                       // step-17:
+                                      // Then a few variables that have to do
+                                      // with %parallel processing: first, a
+                                      // variable denoting the MPI
+                                      // communicator we use, and then two
+                                      // numbers telling us how many
+                                      // participating processors there are,
+                                      // and where in this world we
+                                      // are. Finally, a stream object that
+                                      // makes sure only one processor is
+                                      // actually generating output to the
+                                      // console. This is all the same as in
+                                      // step-17:
       MPI_Comm mpi_communicator;
 
       const unsigned int n_mpi_processes;
@@ -736,13 +728,13 @@ namespace QuasiStaticElasticity
 
       ConditionalOStream pcout;
 
-                                       // Here is a vector where each entry
-                                       // denotes the numbers of degrees of
-                                       // freedom that are stored on the
-                                       // processor with that particular
-                                       // number:
+                                      // Here is a vector where each entry
+                                      // denotes the numbers of degrees of
+                                      // freedom that are stored on the
+                                      // processor with that particular
+                                      // number:
       std::vector<unsigned int> local_dofs_per_process;
-    
+
                                       // Next, how many degrees of freedom
                                       // the present processor stores. This
                                       // is, of course, an abbreviation to
@@ -777,8 +769,8 @@ namespace QuasiStaticElasticity
   };
 
 
-                                   // @sect3{The <code>BodyForce</code> class}
-  
+                                  // @sect3{The <code>BodyForce</code> class}
+
                                   // Before we go on to the main
                                   // functionality of this program, we have
                                   // to define what forces will act on the
@@ -808,39 +800,39 @@ namespace QuasiStaticElasticity
                                   // in the function, and we take as the
                                   // density 7700 kg/m^3, a value commonly
                                   // assumed for steel.
-                                   //
-                                   // To be a little more general and to be
-                                   // able to do computations in 2d as well,
-                                   // we realize that the body force is always
-                                   // a function returning a <code>dim</code>
-                                   // dimensional vector. We assume that
-                                   // gravity acts along the negative
-                                   // direction of the last, i.e. <code>dim-1</code>th
-                                   // coordinate. The rest of the
-                                   // implementation of this function should
-                                   // be mostly self-explanatory given similar
-                                   // definitions in previous example
-                                   // programs. Note that the body force is
-                                   // independent of the location; to avoid
-                                   // compiler warnings about unused function
-                                   // arguments, we therefore comment out the
-                                   // name of the first argument of the
-                                   // <code>vector_value</code> function:
+                                  //
+                                  // To be a little more general and to be
+                                  // able to do computations in 2d as well,
+                                  // we realize that the body force is always
+                                  // a function returning a <code>dim</code>
+                                  // dimensional vector. We assume that
+                                  // gravity acts along the negative
+                                  // direction of the last, i.e. <code>dim-1</code>th
+                                  // coordinate. The rest of the
+                                  // implementation of this function should
+                                  // be mostly self-explanatory given similar
+                                  // definitions in previous example
+                                  // programs. Note that the body force is
+                                  // independent of the location; to avoid
+                                  // compiler warnings about unused function
+                                  // arguments, we therefore comment out the
+                                  // name of the first argument of the
+                                  // <code>vector_value</code> function:
   template <int dim>
-  class BodyForce :  public Function<dim> 
+  class BodyForce :  public Function<dim>
   {
     public:
       BodyForce ();
-    
+
       virtual
       void
       vector_value (const Point<dim> &p,
-                    Vector<double>   &values) const;
+                   Vector<double>   &values) const;
 
       virtual
       void
       vector_value_list (const std::vector<Point<dim> > &points,
-                         std::vector<Vector<double> >   &value_list) const;
+                        std::vector<Vector<double> >   &value_list) const;
   };
 
 
@@ -855,14 +847,14 @@ namespace QuasiStaticElasticity
   inline
   void
   BodyForce<dim>::vector_value (const Point<dim> &/*p*/,
-                                Vector<double>   &values) const 
+                               Vector<double>   &values) const
   {
-    Assert (values.size() == dim, 
+    Assert (values.size() == dim,
            ExcDimensionMismatch (values.size(), dim));
 
     const double g   = 9.81;
     const double rho = 7700;
-    
+
     values = 0;
     values(dim-1) = -rho * g;
   }
@@ -872,86 +864,86 @@ namespace QuasiStaticElasticity
   template <int dim>
   void
   BodyForce<dim>::vector_value_list (const std::vector<Point<dim> > &points,
-                                     std::vector<Vector<double> >   &value_list) const 
+                                    std::vector<Vector<double> >   &value_list) const
   {
     const unsigned int n_points = points.size();
 
-    Assert (value_list.size() == n_points, 
+    Assert (value_list.size() == n_points,
            ExcDimensionMismatch (value_list.size(), n_points));
 
     for (unsigned int p=0; p<n_points; ++p)
       BodyForce<dim>::vector_value (points[p],
-                                    value_list[p]);
+                                   value_list[p]);
   }
 
 
 
-                                   // @sect3{The <code>IncrementalBoundaryValue</code> class}
-
-                                   // In addition to body forces, movement can
-                                   // be induced by boundary forces and forced
-                                   // boundary displacement. The latter case
-                                   // is equivalent to forces being chosen in
-                                   // such a way that they induce certain
-                                   // displacement.
-                                   //
-                                   // For quasistatic displacement, typical
-                                   // boundary forces would be pressure on a
-                                   // body, or tangential friction against
-                                   // another body. We chose a somewhat
-                                   // simpler case here: we prescribe a
-                                   // certain movement of (parts of) the
-                                   // boundary, or at least of certain
-                                   // components of the displacement
-                                   // vector. We describe this by another
-                                   // vector-valued function that, for a given
-                                   // point on the boundary, returns the
-                                   // prescribed displacement.
-                                   //
-                                   // Since we have a time-dependent problem,
-                                   // the displacement increment of the
-                                   // boundary equals the displacement
-                                   // accumulated during the length of the
-                                   // timestep. The class therefore has to
-                                   // know both the present time and the
-                                   // length of the present time step, and can
-                                   // then approximate the incremental
-                                   // displacement as the present velocity
-                                   // times the present timestep.
-                                   //
-                                   // For the purposes of this
-                                   // program, we choose a simple form
-                                   // of boundary displacement: we
-                                   // displace the top boundary with
-                                   // constant velocity downwards. The
-                                   // rest of the boundary is either
-                                   // going to be fixed (and is then
-                                   // described using an object of
-                                   // type <code>ZeroFunction</code>) or free
-                                   // (Neumann-type, in which case
-                                   // nothing special has to be done).
-                                   // The implementation of the
-                                   // class describing the constant
-                                   // downward motion should then be
-                                   // obvious using the knowledge we
-                                   // gained through all the previous
-                                   // example programs:
+                                  // @sect3{The <code>IncrementalBoundaryValue</code> class}
+
+                                  // In addition to body forces, movement can
+                                  // be induced by boundary forces and forced
+                                  // boundary displacement. The latter case
+                                  // is equivalent to forces being chosen in
+                                  // such a way that they induce certain
+                                  // displacement.
+                                  //
+                                  // For quasistatic displacement, typical
+                                  // boundary forces would be pressure on a
+                                  // body, or tangential friction against
+                                  // another body. We chose a somewhat
+                                  // simpler case here: we prescribe a
+                                  // certain movement of (parts of) the
+                                  // boundary, or at least of certain
+                                  // components of the displacement
+                                  // vector. We describe this by another
+                                  // vector-valued function that, for a given
+                                  // point on the boundary, returns the
+                                  // prescribed displacement.
+                                  //
+                                  // Since we have a time-dependent problem,
+                                  // the displacement increment of the
+                                  // boundary equals the displacement
+                                  // accumulated during the length of the
+                                  // timestep. The class therefore has to
+                                  // know both the present time and the
+                                  // length of the present time step, and can
+                                  // then approximate the incremental
+                                  // displacement as the present velocity
+                                  // times the present timestep.
+                                  //
+                                  // For the purposes of this
+                                  // program, we choose a simple form
+                                  // of boundary displacement: we
+                                  // displace the top boundary with
+                                  // constant velocity downwards. The
+                                  // rest of the boundary is either
+                                  // going to be fixed (and is then
+                                  // described using an object of
+                                  // type <code>ZeroFunction</code>) or free
+                                  // (Neumann-type, in which case
+                                  // nothing special has to be done).
+                                  // The implementation of the
+                                  // class describing the constant
+                                  // downward motion should then be
+                                  // obvious using the knowledge we
+                                  // gained through all the previous
+                                  // example programs:
   template <int dim>
-  class IncrementalBoundaryValues :  public Function<dim> 
+  class IncrementalBoundaryValues :  public Function<dim>
   {
     public:
       IncrementalBoundaryValues (const double present_time,
-                                 const double present_timestep);
-    
+                                const double present_timestep);
+
       virtual
       void
       vector_value (const Point<dim> &p,
-                    Vector<double>   &values) const;
+                   Vector<double>   &values) const;
 
       virtual
       void
       vector_value_list (const std::vector<Point<dim> > &points,
-                         std::vector<Vector<double> >   &value_list) const;
+                        std::vector<Vector<double> >   &value_list) const;
 
     private:
       const double velocity;
@@ -963,12 +955,12 @@ namespace QuasiStaticElasticity
   template <int dim>
   IncrementalBoundaryValues<dim>::
   IncrementalBoundaryValues (const double present_time,
-                             const double present_timestep)
+                            const double present_timestep)
                  :
                  Function<dim> (dim),
                  velocity (.1),
                  present_time (present_time),
-                  present_timestep (present_timestep)
+                 present_timestep (present_timestep)
   {}
 
 
@@ -976,9 +968,9 @@ namespace QuasiStaticElasticity
   void
   IncrementalBoundaryValues<dim>::
   vector_value (const Point<dim> &/*p*/,
-                Vector<double>   &values) const 
+               Vector<double>   &values) const
   {
-    Assert (values.size() == dim, 
+    Assert (values.size() == dim,
            ExcDimensionMismatch (values.size(), dim));
 
     values = 0;
@@ -991,11 +983,11 @@ namespace QuasiStaticElasticity
   void
   IncrementalBoundaryValues<dim>::
   vector_value_list (const std::vector<Point<dim> > &points,
-                     std::vector<Vector<double> >   &value_list) const 
+                    std::vector<Vector<double> >   &value_list) const
   {
     const unsigned int n_points = points.size();
 
-    Assert (value_list.size() == n_points, 
+    Assert (value_list.size() == n_points,
            ExcDimensionMismatch (value_list.size(), n_points));
 
     for (unsigned int p=0; p<n_points; ++p)
@@ -1005,10 +997,10 @@ namespace QuasiStaticElasticity
 
 
 
-                                   // @sect3{Implementation of the <code>TopLevel</code> class}
+                                  // @sect3{Implementation of the <code>TopLevel</code> class}
 
-                                   // Now for the implementation of the main
-                                   // class. First, we initialize the
+                                  // Now for the implementation of the main
+                                  // class. First, we initialize the
                                   // stress-strain tensor, which we
                                   // have declared as a static const
                                   // variable. We chose Lame
@@ -1019,11 +1011,11 @@ namespace QuasiStaticElasticity
   TopLevel<dim>::stress_strain_tensor
   = get_stress_strain_tensor<dim> (/*lambda = */ 9.695e10,
                                   /*mu     = */ 7.617e10);
-  
 
 
-                                   // @sect4{The public interface}
-  
+
+                                  // @sect4{The public interface}
+
                                   // The next step is the definition of
                                   // constructors and descructors. There are
                                   // no surprises here: we choose linear and
@@ -1048,32 +1040,32 @@ namespace QuasiStaticElasticity
 
 
   template <int dim>
-  TopLevel<dim>::~TopLevel () 
+  TopLevel<dim>::~TopLevel ()
   {
     dof_handler.clear ();
   }
 
-  
-
-                                   // The last of the public functions is the
-                                   // one that directs all the work,
-                                   // <code>run()</code>. It initializes the variables
-                                   // that describe where in time we presently
-                                   // are, then runs the first time step, then
-                                   // loops over all the other time
-                                   // steps. Note that for simplicity we use a
-                                   // fixed time step, whereas a more
-                                   // sophisticated program would of course
-                                   // have to choose it in some more
+
+
+                                  // The last of the public functions is the
+                                  // one that directs all the work,
+                                  // <code>run()</code>. It initializes the variables
+                                  // that describe where in time we presently
+                                  // are, then runs the first time step, then
+                                  // loops over all the other time
+                                  // steps. Note that for simplicity we use a
+                                  // fixed time step, whereas a more
+                                  // sophisticated program would of course
+                                  // have to choose it in some more
                                   // reasonable way adaptively:
   template <int dim>
-  void TopLevel<dim>::run () 
+  void TopLevel<dim>::run ()
   {
     present_time = 0;
     present_timestep = 1;
     end_time = 10;
     timestep_no = 0;
-  
+
     do_initial_timestep ();
 
     while (present_time < end_time)
@@ -1081,23 +1073,23 @@ namespace QuasiStaticElasticity
   }
 
 
-                                   // @sect4{TopLevel::create_coarse_grid}
-
-                                   // The next function in the order
-                                   // in which they were declared
-                                   // above is the one that creates
-                                   // the coarse grid from which we
-                                   // start. For this example program,
-                                   // we want to compute the
-                                   // deformation of a cylinder under
-                                   // axial compression. The first
-                                   // step therefore is to generate a
-                                   // mesh for a cylinder of length 3
-                                   // and with inner and outer radii
-                                   // of 0.8 and 1,
-                                   // respectively. Fortunately, there
-                                   // is a library function for such a
-                                   // mesh.
+                                  // @sect4{TopLevel::create_coarse_grid}
+
+                                  // The next function in the order
+                                  // in which they were declared
+                                  // above is the one that creates
+                                  // the coarse grid from which we
+                                  // start. For this example program,
+                                  // we want to compute the
+                                  // deformation of a cylinder under
+                                  // axial compression. The first
+                                  // step therefore is to generate a
+                                  // mesh for a cylinder of length 3
+                                  // and with inner and outer radii
+                                  // of 0.8 and 1,
+                                  // respectively. Fortunately, there
+                                  // is a library function for such a
+                                  // mesh.
                                   //
                                   // In a second step, we have to associated
                                   // boundary conditions with the upper and
@@ -1114,7 +1106,7 @@ namespace QuasiStaticElasticity
   void TopLevel<dim>::create_coarse_grid ()
   {
     const double inner_radius = 0.8,
-                 outer_radius = 1;
+                outer_radius = 1;
     GridGenerator::cylinder_shell (triangulation,
                                   3, inner_radius, outer_radius);
     for (typename Triangulation<dim>::active_cell_iterator
@@ -1123,115 +1115,115 @@ namespace QuasiStaticElasticity
       for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
        if (cell->face(f)->at_boundary())
          {
-            const Point<dim> face_center = cell->face(f)->center();
-            
+           const Point<dim> face_center = cell->face(f)->center();
+
            if (face_center[2] == 0)
              cell->face(f)->set_boundary_indicator (0);
            else if (face_center[2] == 3)
              cell->face(f)->set_boundary_indicator (1);
            else if (std::sqrt(face_center[0]*face_center[0] +
-                               face_center[1]*face_center[1])
-                     <
-                     (inner_radius + outer_radius) / 2)
+                              face_center[1]*face_center[1])
+                    <
+                    (inner_radius + outer_radius) / 2)
              cell->face(f)->set_boundary_indicator (2);
-            else
-              cell->face(f)->set_boundary_indicator (3);
+           else
+             cell->face(f)->set_boundary_indicator (3);
          }
 
-                                     // In order to make sure that new
-                                     // vertices are placed correctly on mesh
-                                     // refinement, we have to associate
-                                     // objects describing those parts of the
-                                     // boundary that do not consist of
-                                     // straight parts. Corresponding to the
-                                     // cylinder shell generator function used
-                                     // above, there are classes that can be
-                                     // used to describe the geometry of
-                                     // cylinders. We need to use different
-                                     // objects for the inner and outer parts
-                                     // of the cylinder, with different radii;
-                                     // the second argument to the constructor
-                                     // indicates the axis around which the
-                                     // cylinder revolves -- in this case the
-                                     // z-axis. Note that the boundary objects
-                                     // need to live as long as the
-                                     // triangulation does; we can achieve
-                                     // this by making the objects static,
-                                     // which means that they live as long as
-                                     // the program runs:
+                                    // In order to make sure that new
+                                    // vertices are placed correctly on mesh
+                                    // refinement, we have to associate
+                                    // objects describing those parts of the
+                                    // boundary that do not consist of
+                                    // straight parts. Corresponding to the
+                                    // cylinder shell generator function used
+                                    // above, there are classes that can be
+                                    // used to describe the geometry of
+                                    // cylinders. We need to use different
+                                    // objects for the inner and outer parts
+                                    // of the cylinder, with different radii;
+                                    // the second argument to the constructor
+                                    // indicates the axis around which the
+                                    // cylinder revolves -- in this case the
+                                    // z-axis. Note that the boundary objects
+                                    // need to live as long as the
+                                    // triangulation does; we can achieve
+                                    // this by making the objects static,
+                                    // which means that they live as long as
+                                    // the program runs:
     static const CylinderBoundary<dim> inner_cylinder (inner_radius, 2);
     static const CylinderBoundary<dim> outer_cylinder (outer_radius, 2);
-                                     // We then attach these two objects to
-                                     // the triangulation, and make them
-                                     // correspond to boundary indicators 2
-                                     // and 3:
+                                    // We then attach these two objects to
+                                    // the triangulation, and make them
+                                    // correspond to boundary indicators 2
+                                    // and 3:
     triangulation.set_boundary (2, inner_cylinder);
     triangulation.set_boundary (3, outer_cylinder);
 
-                                     // There's one more thing we have to take
-                                     // care of (we should have done so above
-                                     // already, but for didactic reasons it
-                                     // was more appropriate to handle it
-                                     // after discussing boundary
-                                     // objects). %Boundary indicators in
-                                     // deal.II, for mostly historic reasons,
-                                     // serve a dual purpose: they describe
-                                     // the type of a boundary for other
-                                     // places in a program where different
-                                     // boundary conditions are implemented;
-                                     // and they describe which boundary
-                                     // object (as the ones associated above)
-                                     // should be queried when new boundary
-                                     // points need to be placed upon mesh
-                                     // refinement. In the prefix to this
-                                     // function, we have discussed the
-                                     // boundary condition issue, and the
-                                     // boundary geometry issue was mentioned
-                                     // just above. But there is a case where
-                                     // we have to be careful with geometry:
-                                     // what happens if a cell is refined that
-                                     // has two faces with different boundary
-                                     // indicators? For example one at the
-                                     // edges of the cylinder? In that case,
-                                     // the library wouldn't know where to put
-                                     // new points in the middle of edges (one
-                                     // of the twelve lines of a
-                                     // hexahedron). In fact, the library
-                                     // doesn't even care about the boundary
-                                     // indicator of adjacent faces when
-                                     // refining edges: it considers the
-                                     // boundary indicators associated with
-                                     // the edges themselves. So what do we
-                                     // want to happen with the edges of the
-                                     // cylinder shell: they sit on both faces
-                                     // with boundary indicators 2 or 3 (inner
-                                     // or outer shell) and 0 or 1 (for which
-                                     // no boundary objects have been
-                                     // specified, and for which the library
-                                     // therefore assumes straight
-                                     // lines). Obviously, we want these lines
-                                     // to follow the curved shells, so we
-                                     // have to assign all edges along faces
-                                     // with boundary indicators 2 or 3 these
-                                     // same boundary indicators to make sure
-                                     // they are refined using the appropriate
-                                     // geometry objects. This is easily done:
+                                    // There's one more thing we have to take
+                                    // care of (we should have done so above
+                                    // already, but for didactic reasons it
+                                    // was more appropriate to handle it
+                                    // after discussing boundary
+                                    // objects). %Boundary indicators in
+                                    // deal.II, for mostly historic reasons,
+                                    // serve a dual purpose: they describe
+                                    // the type of a boundary for other
+                                    // places in a program where different
+                                    // boundary conditions are implemented;
+                                    // and they describe which boundary
+                                    // object (as the ones associated above)
+                                    // should be queried when new boundary
+                                    // points need to be placed upon mesh
+                                    // refinement. In the prefix to this
+                                    // function, we have discussed the
+                                    // boundary condition issue, and the
+                                    // boundary geometry issue was mentioned
+                                    // just above. But there is a case where
+                                    // we have to be careful with geometry:
+                                    // what happens if a cell is refined that
+                                    // has two faces with different boundary
+                                    // indicators? For example one at the
+                                    // edges of the cylinder? In that case,
+                                    // the library wouldn't know where to put
+                                    // new points in the middle of edges (one
+                                    // of the twelve lines of a
+                                    // hexahedron). In fact, the library
+                                    // doesn't even care about the boundary
+                                    // indicator of adjacent faces when
+                                    // refining edges: it considers the
+                                    // boundary indicators associated with
+                                    // the edges themselves. So what do we
+                                    // want to happen with the edges of the
+                                    // cylinder shell: they sit on both faces
+                                    // with boundary indicators 2 or 3 (inner
+                                    // or outer shell) and 0 or 1 (for which
+                                    // no boundary objects have been
+                                    // specified, and for which the library
+                                    // therefore assumes straight
+                                    // lines). Obviously, we want these lines
+                                    // to follow the curved shells, so we
+                                    // have to assign all edges along faces
+                                    // with boundary indicators 2 or 3 these
+                                    // same boundary indicators to make sure
+                                    // they are refined using the appropriate
+                                    // geometry objects. This is easily done:
     for (typename Triangulation<dim>::active_face_iterator
           face=triangulation.begin_active_face();
         face!=triangulation.end_face(); ++face)
       if (face->at_boundary())
-        if ((face->boundary_indicator() == 2)
-            ||
-            (face->boundary_indicator() == 3))
-          for (unsigned int edge = 0; edge<GeometryInfo<dim>::lines_per_face;
-               ++edge)
-            face->line(edge)
-              ->set_boundary_indicator (face->boundary_indicator());
-
-                                     // Once all this is done, we can refine
-                                     // the mesh once globally:
+       if ((face->boundary_indicator() == 2)
+           ||
+           (face->boundary_indicator() == 3))
+         for (unsigned int edge = 0; edge<GeometryInfo<dim>::lines_per_face;
+              ++edge)
+           face->line(edge)
+             ->set_boundary_indicator (face->boundary_indicator());
+
+                                    // Once all this is done, we can refine
+                                    // the mesh once globally:
     triangulation.refine_global (1);
-    
+
 
                                     // As the final step, we need to
                                     // set up a clean state of the
@@ -1245,13 +1237,13 @@ namespace QuasiStaticElasticity
                                     // the following two function
                                     // calls:
     GridTools::partition_triangulation (n_mpi_processes, triangulation);
-    setup_quadrature_point_history ();  
+    setup_quadrature_point_history ();
   }
-  
 
 
 
-                                   // @sect4{TopLevel::setup_system}
+
+                                  // @sect4{TopLevel::setup_system}
 
                                   // The next function is the one
                                   // that sets up the data structures
@@ -1282,28 +1274,28 @@ namespace QuasiStaticElasticity
     dof_handler.distribute_dofs (fe);
     DoFRenumbering::subdomain_wise (dof_handler);
 
-                                     // The next thing is to store some
-                                     // information for later use on how many
-                                     // cells or degrees of freedom the
-                                     // present processor, or any of the
-                                     // processors has to work on. First the
-                                     // cells local to this processor...
+                                    // The next thing is to store some
+                                    // information for later use on how many
+                                    // cells or degrees of freedom the
+                                    // present processor, or any of the
+                                    // processors has to work on. First the
+                                    // cells local to this processor...
     n_local_cells
       = GridTools::count_cells_with_subdomain_association (triangulation,
                                                           this_mpi_process);
 
-                                     // ...and then a list of numbers of how
-                                     // many degrees of freedom each processor
-                                     // has to handle:
+                                    // ...and then a list of numbers of how
+                                    // many degrees of freedom each processor
+                                    // has to handle:
     local_dofs_per_process.resize (n_mpi_processes);
     for (unsigned int i=0; i<n_mpi_processes; ++i)
       local_dofs_per_process[i]
        = DoFTools::count_dofs_with_subdomain_association (dof_handler, i);
 
-                                     // Finally, make it easier to denote how
-                                     // many degrees of freedom the present
-                                     // process has to deal with, by
-                                     // introducing an abbreviation:
+                                    // Finally, make it easier to denote how
+                                    // many degrees of freedom the present
+                                    // process has to deal with, by
+                                    // introducing an abbreviation:
     n_local_dofs = local_dofs_per_process[this_mpi_process];
 
                                     // The next step is to set up constraints
@@ -1313,7 +1305,7 @@ namespace QuasiStaticElasticity
     DoFTools::make_hanging_node_constraints (dof_handler,
                                             hanging_node_constraints);
     hanging_node_constraints.close ();
-  
+
                                     // And then we have to set up the
                                     // matrix. Here we deviate from step-17,
                                     // in which we simply used PETSc's
@@ -1335,154 +1327,154 @@ namespace QuasiStaticElasticity
                                     // by almost two orders of magnitude if
                                     // we instruct PETSc which elements will
                                     // be used and which are not.
-                                     //
-                                     // To do so, we first generate the
-                                     // sparsity pattern of the matrix we are
-                                     // going to work with, and make sure that
-                                     // the condensation of hanging node
-                                     // constraints add the necessary
-                                     // additional entries in the sparsity
-                                     // pattern:
+                                    //
+                                    // To do so, we first generate the
+                                    // sparsity pattern of the matrix we are
+                                    // going to work with, and make sure that
+                                    // the condensation of hanging node
+                                    // constraints add the necessary
+                                    // additional entries in the sparsity
+                                    // pattern:
     CompressedSparsityPattern sparsity_pattern (dof_handler.n_dofs(),
                                                dof_handler.n_dofs());
     DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
     hanging_node_constraints.condense (sparsity_pattern);
-                                     // Note that we have used the
-                                     // <code>CompressedSparsityPattern</code> class
-                                     // here that was already introduced in
-                                     // step-11, rather than the
-                                     // <code>SparsityPattern</code> class that we have
-                                     // used in all other cases. The reason
-                                     // for this is that for the latter class
-                                     // to work we have to give an initial
-                                     // upper bound for the number of entries
-                                     // in each row, a task that is
-                                     // traditionally done by
-                                     // <code>DoFHandler::max_couplings_between_dofs()</code>. However,
-                                     // this function suffers from a serious
-                                     // problem: it has to compute an upper
-                                     // bound to the number of nonzero entries
-                                     // in each row, and this is a rather
-                                     // complicated task, in particular in
-                                     // 3d. In effect, while it is quite
-                                     // accurate in 2d, it often comes up with
-                                     // much too large a number in 3d, and in
-                                     // that case the <code>SparsityPattern</code>
-                                     // allocates much too much memory at
-                                     // first, often several 100 MBs. This is
-                                     // later corrected when
-                                     // <code>DoFTools::make_sparsity_pattern</code> is
-                                     // called and we realize that we don't
-                                     // need all that much memory, but at time
-                                     // it is already too late: for large
-                                     // problems, the temporary allocation of
-                                     // too much memory can lead to
-                                     // out-of-memory situations.
-                                     //
-                                     // In order to avoid this, we resort to
-                                     // the <code>CompressedSparsityPattern</code>
-                                     // class that is slower but does not
-                                     // require any up-front estimate on the
-                                     // number of nonzero entries per row. It
-                                     // therefore only ever allocates as much
-                                     // memory as it needs at any given time,
-                                     // and we can build it even for large 3d
-                                     // problems.
-                                     //
-                                     // It is also worth noting that the
-                                     // sparsity pattern we construct is
-                                     // global, i.e. comprises all degrees of
-                                     // freedom whether they will be owned by
-                                     // the processor we are on or another one
-                                     // (in case this program is run in
-                                     // %parallel via MPI). This of course is
-                                     // not optimal -- it limits the size of
-                                     // the problems we can solve, since
-                                     // storing the entire sparsity pattern
-                                     // (even if only for a short time) on
-                                     // each processor does not scale
-                                     // well. However, there are several more
-                                     // places in the program in which we do
-                                     // this, for example we always keep the
-                                     // global triangulation and DoF handler
-                                     // objects around, even if we only work
-                                     // on part of them. At present, deal.II
-                                     // does not have the necessary facilities
-                                     // to completely distribute these objects
-                                     // (a task that, indeed, is very hard to
-                                     // achieve with adaptive meshes, since
-                                     // well-balanced subdivisions of a domain
-                                     // tend to become unbalanced as the mesh
-                                     // is adaptively refined).
-                                     //
-                                     // With this data structure, we can then
-                                     // go to the PETSc sparse matrix and tell
-                                     // it to pre-allocate all the entries we
-                                     // will later want to write to:
+                                    // Note that we have used the
+                                    // <code>CompressedSparsityPattern</code> class
+                                    // here that was already introduced in
+                                    // step-11, rather than the
+                                    // <code>SparsityPattern</code> class that we have
+                                    // used in all other cases. The reason
+                                    // for this is that for the latter class
+                                    // to work we have to give an initial
+                                    // upper bound for the number of entries
+                                    // in each row, a task that is
+                                    // traditionally done by
+                                    // <code>DoFHandler::max_couplings_between_dofs()</code>. However,
+                                    // this function suffers from a serious
+                                    // problem: it has to compute an upper
+                                    // bound to the number of nonzero entries
+                                    // in each row, and this is a rather
+                                    // complicated task, in particular in
+                                    // 3d. In effect, while it is quite
+                                    // accurate in 2d, it often comes up with
+                                    // much too large a number in 3d, and in
+                                    // that case the <code>SparsityPattern</code>
+                                    // allocates much too much memory at
+                                    // first, often several 100 MBs. This is
+                                    // later corrected when
+                                    // <code>DoFTools::make_sparsity_pattern</code> is
+                                    // called and we realize that we don't
+                                    // need all that much memory, but at time
+                                    // it is already too late: for large
+                                    // problems, the temporary allocation of
+                                    // too much memory can lead to
+                                    // out-of-memory situations.
+                                    //
+                                    // In order to avoid this, we resort to
+                                    // the <code>CompressedSparsityPattern</code>
+                                    // class that is slower but does not
+                                    // require any up-front estimate on the
+                                    // number of nonzero entries per row. It
+                                    // therefore only ever allocates as much
+                                    // memory as it needs at any given time,
+                                    // and we can build it even for large 3d
+                                    // problems.
+                                    //
+                                    // It is also worth noting that the
+                                    // sparsity pattern we construct is
+                                    // global, i.e. comprises all degrees of
+                                    // freedom whether they will be owned by
+                                    // the processor we are on or another one
+                                    // (in case this program is run in
+                                    // %parallel via MPI). This of course is
+                                    // not optimal -- it limits the size of
+                                    // the problems we can solve, since
+                                    // storing the entire sparsity pattern
+                                    // (even if only for a short time) on
+                                    // each processor does not scale
+                                    // well. However, there are several more
+                                    // places in the program in which we do
+                                    // this, for example we always keep the
+                                    // global triangulation and DoF handler
+                                    // objects around, even if we only work
+                                    // on part of them. At present, deal.II
+                                    // does not have the necessary facilities
+                                    // to completely distribute these objects
+                                    // (a task that, indeed, is very hard to
+                                    // achieve with adaptive meshes, since
+                                    // well-balanced subdivisions of a domain
+                                    // tend to become unbalanced as the mesh
+                                    // is adaptively refined).
+                                    //
+                                    // With this data structure, we can then
+                                    // go to the PETSc sparse matrix and tell
+                                    // it to pre-allocate all the entries we
+                                    // will later want to write to:
     system_matrix.reinit (mpi_communicator,
                          sparsity_pattern,
                          local_dofs_per_process,
                          local_dofs_per_process,
                          this_mpi_process);
-                                     // After this point, no further explicit
-                                     // knowledge of the sparsity pattern is
-                                     // required any more and we can let the
-                                     // <code>sparsity_pattern</code> variable go out
-                                     // of scope without any problem.
-                                     
-                                     // The last task in this function
-                                     // is then only to reset the
-                                     // right hand side vector as well
-                                     // as the solution vector to its
-                                     // correct size; remember that
-                                     // the solution vector is a local
-                                     // one, unlike the right hand
-                                     // side that is a distributed
-                                     // %parallel one and therefore
-                                     // needs to know the MPI
-                                     // communicator over which it is
-                                     // supposed to transmit messages:
+                                    // After this point, no further explicit
+                                    // knowledge of the sparsity pattern is
+                                    // required any more and we can let the
+                                    // <code>sparsity_pattern</code> variable go out
+                                    // of scope without any problem.
+
+                                    // The last task in this function
+                                    // is then only to reset the
+                                    // right hand side vector as well
+                                    // as the solution vector to its
+                                    // correct size; remember that
+                                    // the solution vector is a local
+                                    // one, unlike the right hand
+                                    // side that is a distributed
+                                    // %parallel one and therefore
+                                    // needs to know the MPI
+                                    // communicator over which it is
+                                    // supposed to transmit messages:
     system_rhs.reinit (mpi_communicator, dof_handler.n_dofs(), n_local_dofs);
     incremental_displacement.reinit (dof_handler.n_dofs());
   }
 
 
 
-                                   // @sect4{TopLevel::assemble_system}
-
-                                   // Again, assembling the system
-                                   // matrix and right hand side
-                                   // follows the same structure as in
-                                   // many example programs before. In
-                                   // particular, it is mostly
-                                   // equivalent to step-17, except
-                                   // for the different right hand
-                                   // side that now only has to take
-                                   // into account internal
-                                   // stresses. In addition,
-                                   // assembling the matrix is made
-                                   // significantly more transparent
-                                   // by using the <code>SymmetricTensor</code>
-                                   // class: note the elegance of
-                                   // forming the scalar products of
-                                   // symmetric tensors of rank 2 and
-                                   // 4. The implementation is also
-                                   // more general since it is
-                                   // independent of the fact that we
-                                   // may or may not be using an
-                                   // isotropic elasticity tensor.
-                                   //
-                                   // The first part of the assembly routine
-                                   // is as always:
+                                  // @sect4{TopLevel::assemble_system}
+
+                                  // Again, assembling the system
+                                  // matrix and right hand side
+                                  // follows the same structure as in
+                                  // many example programs before. In
+                                  // particular, it is mostly
+                                  // equivalent to step-17, except
+                                  // for the different right hand
+                                  // side that now only has to take
+                                  // into account internal
+                                  // stresses. In addition,
+                                  // assembling the matrix is made
+                                  // significantly more transparent
+                                  // by using the <code>SymmetricTensor</code>
+                                  // class: note the elegance of
+                                  // forming the scalar products of
+                                  // symmetric tensors of rank 2 and
+                                  // 4. The implementation is also
+                                  // more general since it is
+                                  // independent of the fact that we
+                                  // may or may not be using an
+                                  // isotropic elasticity tensor.
+                                  //
+                                  // The first part of the assembly routine
+                                  // is as always:
   template <int dim>
-  void TopLevel<dim>::assemble_system () 
+  void TopLevel<dim>::assemble_system ()
   {
     system_rhs = 0;
     system_matrix = 0;
 
-    FEValues<dim> fe_values (fe, quadrature_formula, 
+    FEValues<dim> fe_values (fe, quadrature_formula,
                             update_values   | update_gradients |
-                             update_quadrature_points | update_JxW_values);
+                            update_quadrature_points | update_JxW_values);
 
     const unsigned int   dofs_per_cell = fe.dofs_per_cell;
     const unsigned int   n_q_points    = quadrature_formula.size();
@@ -1494,11 +1486,11 @@ namespace QuasiStaticElasticity
 
     BodyForce<dim>      body_force;
     std::vector<Vector<double> > body_force_values (n_q_points,
-                                                    Vector<double>(dim));
+                                                   Vector<double>(dim));
 
-                                     // As in step-17, we only need to loop
-                                     // over all cells that belong to the
-                                     // present processor:
+                                    // As in step-17, we only need to loop
+                                    // over all cells that belong to the
+                                    // present processor:
     typename DoFHandler<dim>::active_cell_iterator
       cell = dof_handler.begin_active(),
       endc = dof_handler.end();
@@ -1510,25 +1502,25 @@ namespace QuasiStaticElasticity
 
          fe_values.reinit (cell);
 
-                                           // Then loop over all indices i,j
-                                           // and quadrature points and
-                                           // assemble the system matrix
-                                           // contributions from this cell.
-                                           // Note how we extract the
-                                           // symmetric gradients (strains) of
-                                           // the shape functions at a given
-                                           // quadrature point from the
-                                           // <code>FEValues</code> object, and the
-                                           // elegance with which we form the
-                                           // triple contraction <code>eps_phi_i :
-                                           // C : eps_phi_j</code>; the latter
-                                           // needs to be compared to the
-                                           // clumsy computations needed in
-                                           // step-17, both in the
-                                           // introduction as well as in the
-                                           // respective place in the program:
+                                          // Then loop over all indices i,j
+                                          // and quadrature points and
+                                          // assemble the system matrix
+                                          // contributions from this cell.
+                                          // Note how we extract the
+                                          // symmetric gradients (strains) of
+                                          // the shape functions at a given
+                                          // quadrature point from the
+                                          // <code>FEValues</code> object, and the
+                                          // elegance with which we form the
+                                          // triple contraction <code>eps_phi_i :
+                                          // C : eps_phi_j</code>; the latter
+                                          // needs to be compared to the
+                                          // clumsy computations needed in
+                                          // step-17, both in the
+                                          // introduction as well as in the
+                                          // respective place in the program:
          for (unsigned int i=0; i<dofs_per_cell; ++i)
-           for (unsigned int j=0; j<dofs_per_cell; ++j) 
+           for (unsigned int j=0; j<dofs_per_cell; ++j)
              for (unsigned int q_point=0; q_point<n_q_points;
                   ++q_point)
                {
@@ -1536,55 +1528,55 @@ namespace QuasiStaticElasticity
                    eps_phi_i = get_strain (fe_values, i, q_point),
                    eps_phi_j = get_strain (fe_values, j, q_point);
 
-                 cell_matrix(i,j) 
+                 cell_matrix(i,j)
                    += (eps_phi_i * stress_strain_tensor * eps_phi_j
-                        *
-                        fe_values.JxW (q_point));
+                       *
+                       fe_values.JxW (q_point));
                }
 
 
-                                           // Then also assemble the local
-                                           // right hand side
-                                           // contributions. For this, we need
-                                           // to access the prior stress value
-                                           // in this quadrature point. To get
-                                           // it, we use the user pointer of
-                                           // this cell that points into the
-                                           // global array to the quadrature
-                                           // point data corresponding to the
-                                           // first quadrature point of the
-                                           // present cell, and then add an
-                                           // offset corresponding to the
-                                           // index of the quadrature point we
-                                           // presently consider:
-          const PointHistory<dim> *local_quadrature_points_data
-            = reinterpret_cast<PointHistory<dim>*>(cell->user_pointer());
-                                           // In addition, we need the values
-                                           // of the external body forces at
-                                           // the quadrature points on this
-                                           // cell:
-          body_force.vector_value_list (fe_values.get_quadrature_points(),
-                                        body_force_values);
-                                           // Then we can loop over all
-                                           // degrees of freedom on this cell
-                                           // and compute local contributions
-                                           // to the right hand side:
-          for (unsigned int i=0; i<dofs_per_cell; ++i)
+                                          // Then also assemble the local
+                                          // right hand side
+                                          // contributions. For this, we need
+                                          // to access the prior stress value
+                                          // in this quadrature point. To get
+                                          // it, we use the user pointer of
+                                          // this cell that points into the
+                                          // global array to the quadrature
+                                          // point data corresponding to the
+                                          // first quadrature point of the
+                                          // present cell, and then add an
+                                          // offset corresponding to the
+                                          // index of the quadrature point we
+                                          // presently consider:
+         const PointHistory<dim> *local_quadrature_points_data
+           = reinterpret_cast<PointHistory<dim>*>(cell->user_pointer());
+                                          // In addition, we need the values
+                                          // of the external body forces at
+                                          // the quadrature points on this
+                                          // cell:
+         body_force.vector_value_list (fe_values.get_quadrature_points(),
+                                       body_force_values);
+                                          // Then we can loop over all
+                                          // degrees of freedom on this cell
+                                          // and compute local contributions
+                                          // to the right hand side:
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
            {
-             const unsigned int 
+             const unsigned int
                component_i = fe.system_to_component_index(i).first;
-         
+
              for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
                {
                  const SymmetricTensor<2,dim> &old_stress
                    = local_quadrature_points_data[q_point].old_stress;
-               
+
                  cell_rhs(i) += (body_force_values[q_point](component_i) *
                                  fe_values.shape_value (i,q_point)
                                  -
-                                  old_stress *
+                                 old_stress *
                                  get_strain (fe_values,i,q_point))
-                                 *
+                                *
                                 fe_values.JxW (q_point);
                }
            }
@@ -1596,7 +1588,7 @@ namespace QuasiStaticElasticity
                                           // done exactly as in step-17:
          cell->get_dof_indices (local_dof_indices);
 
-          hanging_node_constraints
+         hanging_node_constraints
            .distribute_local_to_global (cell_matrix,
                                         local_dof_indices,
                                         system_matrix);
@@ -1627,7 +1619,7 @@ namespace QuasiStaticElasticity
                                     // vector in the form of a
                                     // temporary vector which we then
                                     // copy into the sequential one.
-    
+
                                     // We make up for this
                                     // complication by showing how
                                     // boundary values can be used
@@ -1695,46 +1687,46 @@ namespace QuasiStaticElasticity
     std::map<unsigned int,double> boundary_values;
     VectorTools::
       interpolate_boundary_values (dof_handler,
-                                   0,
-                                   ZeroFunction<dim> (dim),
-                                   boundary_values);
+                                  0,
+                                  ZeroFunction<dim> (dim),
+                                  boundary_values);
     VectorTools::
       interpolate_boundary_values (dof_handler,
-                                   1,
-                                   IncrementalBoundaryValues<dim>(present_time,
-                                                                  present_timestep),
-                                   boundary_values,
+                                  1,
+                                  IncrementalBoundaryValues<dim>(present_time,
+                                                                 present_timestep),
+                                  boundary_values,
                                   z_component);
-    
+
     PETScWrappers::MPI::Vector tmp (mpi_communicator, dof_handler.n_dofs(),
                                    n_local_dofs);
     MatrixTools::apply_boundary_values (boundary_values,
-                                        system_matrix, tmp,
-                                        system_rhs, false);
+                                       system_matrix, tmp,
+                                       system_rhs, false);
     incremental_displacement = tmp;
   }
 
 
 
-                                   // @sect4{TopLevel::solve_timestep}
+                                  // @sect4{TopLevel::solve_timestep}
 
-                                   // The next function is the one that
-                                   // controls what all has to happen within a
-                                   // timestep. The order of things should be
-                                   // relatively self-explanatory from the
-                                   // function names:
+                                  // The next function is the one that
+                                  // controls what all has to happen within a
+                                  // timestep. The order of things should be
+                                  // relatively self-explanatory from the
+                                  // function names:
   template <int dim>
   void TopLevel<dim>::solve_timestep ()
   {
     pcout << "    Assembling system..." << std::flush;
     assemble_system ();
     pcout << " norm of rhs is " << system_rhs.l2_norm()
-          << std::endl;
-      
+         << std::endl;
+
     const unsigned int n_iterations = solve_linear_problem ();
-  
+
     pcout << "    Solver converged in " << n_iterations
-          << " iterations." << std::endl;
+         << " iterations." << std::endl;
 
     pcout << "    Updating quadrature point data..." << std::flush;
     update_quadrature_point_history ();
@@ -1743,43 +1735,43 @@ namespace QuasiStaticElasticity
 
 
 
-                                   // @sect4{TopLevel::solve_linear_problem}
-
-                                   // Solving the linear system again
-                                   // works mostly as before. The only
-                                   // difference is that we want to
-                                   // only keep a complete local copy
-                                   // of the solution vector instead
-                                   // of the distributed one that we
-                                   // get as output from PETSc's
-                                   // solver routines. To this end, we
-                                   // declare a local temporary
-                                   // variable for the distributed
-                                   // vector and initialize it with
-                                   // the contents of the local
-                                   // variable (remember that the
-                                   // <code>apply_boundary_values</code>
-                                   // function called in
-                                   // <code>assemble_system</code> preset the
-                                   // values of boundary nodes in this
-                                   // vector), solve with it, and at
-                                   // the end of the function copy it
-                                   // again into the complete local
-                                   // vector that we declared as a
-                                   // member variable. Hanging node
-                                   // constraints are then distributed
-                                   // only on the local copy,
-                                   // i.e. independently of each other
-                                   // on each of the processors:
+                                  // @sect4{TopLevel::solve_linear_problem}
+
+                                  // Solving the linear system again
+                                  // works mostly as before. The only
+                                  // difference is that we want to
+                                  // only keep a complete local copy
+                                  // of the solution vector instead
+                                  // of the distributed one that we
+                                  // get as output from PETSc's
+                                  // solver routines. To this end, we
+                                  // declare a local temporary
+                                  // variable for the distributed
+                                  // vector and initialize it with
+                                  // the contents of the local
+                                  // variable (remember that the
+                                  // <code>apply_boundary_values</code>
+                                  // function called in
+                                  // <code>assemble_system</code> preset the
+                                  // values of boundary nodes in this
+                                  // vector), solve with it, and at
+                                  // the end of the function copy it
+                                  // again into the complete local
+                                  // vector that we declared as a
+                                  // member variable. Hanging node
+                                  // constraints are then distributed
+                                  // only on the local copy,
+                                  // i.e. independently of each other
+                                  // on each of the processors:
   template <int dim>
-  unsigned int TopLevel<dim>::solve_linear_problem () 
+  unsigned int TopLevel<dim>::solve_linear_problem ()
   {
     PETScWrappers::MPI::Vector
       distributed_incremental_displacement (mpi_communicator,
                                            dof_handler.n_dofs(),
                                            n_local_dofs);
     distributed_incremental_displacement = incremental_displacement;
-    
+
     SolverControl           solver_control (dof_handler.n_dofs(),
                                            1e-16*system_rhs.l2_norm());
     PETScWrappers::SolverCG cg (solver_control,
@@ -1793,7 +1785,7 @@ namespace QuasiStaticElasticity
     incremental_displacement = distributed_incremental_displacement;
 
     hanging_node_constraints.distribute (incremental_displacement);
-    
+
     return solver_control.last_step();
   }
 
@@ -1812,63 +1804,63 @@ namespace QuasiStaticElasticity
                                   // file in any of the supported
                                   // output files, as mentioned in
                                   // the introduction.
-                                   //
-                                   // The crucial part of this function is to
-                                   // give the <code>DataOut</code> class a way to only
-                                   // work on the cells that the present
-                                   // process owns. This class is already
-                                   // well-equipped for that: it has two
-                                   // virtual functions <code>first_cell</code> and
-                                   // <code>next_cell</code> that return the first cell
-                                   // to be worked on, and given one cell
-                                   // return the next cell to be worked on. By
-                                   // default, these functions return the
-                                   // first active cell (i.e. the first one
-                                   // that has no children) and the next
-                                   // active cell. What we have to do here is
-                                   // derive a class from <code>DataOut</code> that
-                                   // overloads these two functions to only
-                                   // iterate over those cells with the right
-                                   // subdomain indicator.
-                                   //
-                                   // We do this at the beginning of this
-                                   // function. The <code>first_cell</code> function
-                                   // just starts with the first active cell,
-                                   // and then iterates to the next cells
-                                   // while the cell presently under
-                                   // consideration does not yet have the
-                                   // correct subdomain id. The only thing
-                                   // that needs to be taken care of is that
-                                   // we don't try to keep iterating when we
-                                   // have hit the end iterator.
-                                   //
-                                   // The <code>next_cell</code> function could be
-                                   // implemented in a similar way. However,
-                                   // we use this occasion as a pretext to
-                                   // introduce one more thing that the
-                                   // library offers: filtered
-                                   // iterators. These are wrappers for the
-                                   // iterator classes that just skip all
-                                   // cells (or faces, lines, etc) that do not
-                                   // satisfy a certain predicate (a predicate
-                                   // in computer-lingo is a function that
-                                   // when applied to a data element either
-                                   // returns true or false). In the present
-                                   // case, the predicate is that the cell has
-                                   // to have a certain subdomain id, and the
-                                   // library already has this predicate built
-                                   // in. If the cell iterator is not the end
-                                   // iterator, what we then have to do is to
-                                   // initialize such a filtered iterator with
-                                   // the present cell and the predicate, and
-                                   // then increase the iterator exactly
-                                   // once. While the more conventional loop
-                                   // would probably not have been much
-                                   // longer, this is definitely the more
-                                   // elegant way -- and then, these example
-                                   // programs also serve the purpose of
-                                   // introducing what is available in
-                                   // deal.II.
+                                  //
+                                  // The crucial part of this function is to
+                                  // give the <code>DataOut</code> class a way to only
+                                  // work on the cells that the present
+                                  // process owns. This class is already
+                                  // well-equipped for that: it has two
+                                  // virtual functions <code>first_cell</code> and
+                                  // <code>next_cell</code> that return the first cell
+                                  // to be worked on, and given one cell
+                                  // return the next cell to be worked on. By
+                                  // default, these functions return the
+                                  // first active cell (i.e. the first one
+                                  // that has no children) and the next
+                                  // active cell. What we have to do here is
+                                  // derive a class from <code>DataOut</code> that
+                                  // overloads these two functions to only
+                                  // iterate over those cells with the right
+                                  // subdomain indicator.
+                                  //
+                                  // We do this at the beginning of this
+                                  // function. The <code>first_cell</code> function
+                                  // just starts with the first active cell,
+                                  // and then iterates to the next cells
+                                  // while the cell presently under
+                                  // consideration does not yet have the
+                                  // correct subdomain id. The only thing
+                                  // that needs to be taken care of is that
+                                  // we don't try to keep iterating when we
+                                  // have hit the end iterator.
+                                  //
+                                  // The <code>next_cell</code> function could be
+                                  // implemented in a similar way. However,
+                                  // we use this occasion as a pretext to
+                                  // introduce one more thing that the
+                                  // library offers: filtered
+                                  // iterators. These are wrappers for the
+                                  // iterator classes that just skip all
+                                  // cells (or faces, lines, etc) that do not
+                                  // satisfy a certain predicate (a predicate
+                                  // in computer-lingo is a function that
+                                  // when applied to a data element either
+                                  // returns true or false). In the present
+                                  // case, the predicate is that the cell has
+                                  // to have a certain subdomain id, and the
+                                  // library already has this predicate built
+                                  // in. If the cell iterator is not the end
+                                  // iterator, what we then have to do is to
+                                  // initialize such a filtered iterator with
+                                  // the present cell and the predicate, and
+                                  // then increase the iterator exactly
+                                  // once. While the more conventional loop
+                                  // would probably not have been much
+                                  // longer, this is definitely the more
+                                  // elegant way -- and then, these example
+                                  // programs also serve the purpose of
+                                  // introducing what is available in
+                                  // deal.II.
   template<int dim>
   class FilteredDataOut : public DataOut<dim>
   {
@@ -1877,7 +1869,7 @@ namespace QuasiStaticElasticity
                      :
                      subdomain_id (subdomain_id)
        {}
-      
+
       virtual typename DoFHandler<dim>::cell_iterator
       first_cell ()
        {
@@ -1886,10 +1878,10 @@ namespace QuasiStaticElasticity
          while ((cell != this->dofs->end()) &&
                 (cell->subdomain_id() != subdomain_id))
            ++cell;
-         
+
          return cell;
        }
-      
+
       virtual typename DoFHandler<dim>::cell_iterator
       next_cell (const typename DoFHandler<dim>::cell_iterator &old_cell)
        {
@@ -1897,7 +1889,7 @@ namespace QuasiStaticElasticity
            {
              const IteratorFilters::SubdomainEqualTo
                predicate(subdomain_id);
-             
+
              return
                ++(FilteredIterator
                   <typename DoFHandler<dim>::active_cell_iterator>
@@ -1906,35 +1898,35 @@ namespace QuasiStaticElasticity
          else
            return old_cell;
        }
-      
+
     private:
       const unsigned int subdomain_id;
   };
 
 
-  
+
   template <int dim>
   void TopLevel<dim>::output_results () const
   {
-                                     // With this newly defined class, declare
-                                     // an object that is going to generate
-                                     // the graphical output and attach the
-                                     // dof handler with it from which to get
-                                     // the solution vector:
+                                    // With this newly defined class, declare
+                                    // an object that is going to generate
+                                    // the graphical output and attach the
+                                    // dof handler with it from which to get
+                                    // the solution vector:
     FilteredDataOut<dim> data_out(this_mpi_process);
     data_out.attach_dof_handler (dof_handler);
 
-                                     // Then, just as in step-17, define the
-                                     // names of solution variables (which
-                                     // here are the displacement increments)
-                                     // and queue the solution vector for
-                                     // output. Note in the following switch
-                                     // how we make sure that if the space
-                                     // dimension should be unhandled that we
-                                     // throw an exception saying that we
-                                     // haven't implemented this case yet
-                                     // (another case of defensive
-                                     // programming):
+                                    // Then, just as in step-17, define the
+                                    // names of solution variables (which
+                                    // here are the displacement increments)
+                                    // and queue the solution vector for
+                                    // output. Note in the following switch
+                                    // how we make sure that if the space
+                                    // dimension should be unhandled that we
+                                    // throw an exception saying that we
+                                    // haven't implemented this case yet
+                                    // (another case of defensive
+                                    // programming):
     std::vector<std::string> solution_names;
     switch (dim)
       {
@@ -1958,74 +1950,74 @@ namespace QuasiStaticElasticity
                              solution_names);
 
 
-                                     // The next thing is that we wanted to
-                                     // output something like the average norm
-                                     // of the stresses that we have stored in
-                                     // each cell. This may seem complicated,
-                                     // since on the present processor we only
-                                     // store the stresses in quadrature
-                                     // points on those cells that actually
-                                     // belong to the present process. In
-                                     // other words, it seems as if we can't
-                                     // compute the average stresses for all
-                                     // cells. However, remember that our
-                                     // class derived from <code>DataOut</code> only
-                                     // iterates over those cells that
-                                     // actually do belong to the present
-                                     // processor, i.e. we don't have to
-                                     // compute anything for all the other
-                                     // cells as this information would not be
-                                     // touched. The following little loop
-                                     // does this. We enclose the entire block
-                                     // into a pair of braces to make sure
-                                     // that the iterator variables do not
-                                     // remain accidentally visible beyond the
-                                     // end of the block in which they are
-                                     // used:
+                                    // The next thing is that we wanted to
+                                    // output something like the average norm
+                                    // of the stresses that we have stored in
+                                    // each cell. This may seem complicated,
+                                    // since on the present processor we only
+                                    // store the stresses in quadrature
+                                    // points on those cells that actually
+                                    // belong to the present process. In
+                                    // other words, it seems as if we can't
+                                    // compute the average stresses for all
+                                    // cells. However, remember that our
+                                    // class derived from <code>DataOut</code> only
+                                    // iterates over those cells that
+                                    // actually do belong to the present
+                                    // processor, i.e. we don't have to
+                                    // compute anything for all the other
+                                    // cells as this information would not be
+                                    // touched. The following little loop
+                                    // does this. We enclose the entire block
+                                    // into a pair of braces to make sure
+                                    // that the iterator variables do not
+                                    // remain accidentally visible beyond the
+                                    // end of the block in which they are
+                                    // used:
     Vector<double> norm_of_stress (triangulation.n_active_cells());
     {
-                                       // Loop over all the cells...
+                                      // Loop over all the cells...
       typename Triangulation<dim>::active_cell_iterator
-        cell = triangulation.begin_active(),
-        endc = triangulation.end();
+       cell = triangulation.begin_active(),
+       endc = triangulation.end();
       for (unsigned int index=0; cell!=endc; ++cell, ++index)
-                                         // ... and pick those that are
-                                         // relevant to us:
-        if (cell->subdomain_id() == this_mpi_process)
-          {
-                                             // On these cells, add up the
-                                             // stresses over all quadrature
-                                             // points...
-            SymmetricTensor<2,dim> accumulated_stress;
-            for (unsigned int q=0;
-                 q<quadrature_formula.size();
-                 ++q)
-              accumulated_stress +=
-                reinterpret_cast<PointHistory<dim>*>(cell->user_pointer())[q]
-                .old_stress;
-
-                                             // ...then write the norm of the
-                                             // average to their destination:
-            norm_of_stress(index)
-              = (accumulated_stress /
-                 quadrature_formula.size()).norm();
-          }
-                                       // And on the cells that we are not
-                                       // interested in, set the respective
-                                       // value in the vector to a bogus value
-                                       // (norms must be positive, and a large
-                                       // negative value should catch your
-                                       // eye) in order to make sure that if
-                                       // we were somehow wrong about our
-                                       // assumption that these elements would
-                                       // not appear in the output file, that
-                                       // we would find out by looking at the
-                                       // graphical output:
-        else
-          norm_of_stress(index) = -1e+20;
+                                        // ... and pick those that are
+                                        // relevant to us:
+       if (cell->subdomain_id() == this_mpi_process)
+         {
+                                            // On these cells, add up the
+                                            // stresses over all quadrature
+                                            // points...
+           SymmetricTensor<2,dim> accumulated_stress;
+           for (unsigned int q=0;
+                q<quadrature_formula.size();
+                ++q)
+             accumulated_stress +=
+               reinterpret_cast<PointHistory<dim>*>(cell->user_pointer())[q]
+               .old_stress;
+
+                                            // ...then write the norm of the
+                                            // average to their destination:
+           norm_of_stress(index)
+             = (accumulated_stress /
+                quadrature_formula.size()).norm();
+         }
+                                      // And on the cells that we are not
+                                      // interested in, set the respective
+                                      // value in the vector to a bogus value
+                                      // (norms must be positive, and a large
+                                      // negative value should catch your
+                                      // eye) in order to make sure that if
+                                      // we were somehow wrong about our
+                                      // assumption that these elements would
+                                      // not appear in the output file, that
+                                      // we would find out by looking at the
+                                      // graphical output:
+       else
+         norm_of_stress(index) = -1e+20;
     }
-                                     // Finally attach this vector as well to
-                                     // be treated for output:
+                                    // Finally attach this vector as well to
+                                    // be treated for output:
     data_out.add_data_vector (norm_of_stress, "norm_of_stress");
 
                                     // As a last piece of data, let
@@ -2051,7 +2043,7 @@ namespace QuasiStaticElasticity
                                     // vectors:
     data_out.build_patches ();
 
-    
+
                                     // Now that we have generated the
                                     // intermediate format, let us
                                     // determine the name of the file
@@ -2131,37 +2123,37 @@ namespace QuasiStaticElasticity
     data_out.write_deal_II_intermediate (output);
   }
 
-  
-
-                                   // @sect4{TopLevel::do_initial_timestep}
-
-                                   // This and the next function handle the
-                                   // overall structure of the first and
-                                   // following timesteps, respectively. The
-                                   // first timestep is slightly more involved
-                                   // because we want to compute it multiple
-                                   // times on successively refined meshes,
-                                   // each time starting from a clean
-                                   // state. At the end of these computations,
-                                   // in which we compute the incremental
-                                   // displacements each time, we use the last
-                                   // results obtained for the incremental
-                                   // displacements to compute the resulting
-                                   // stress updates and move the mesh
-                                   // accordingly. On this new mesh, we then
-                                   // output the solution and any additional
-                                   // data we consider important.
-                                   //
-                                   // All this is interspersed by generating
-                                   // output to the console to update the
-                                   // person watching the screen on what is
-                                   // going on. As in step-17, the use of
-                                   // <code>pcout</code> instead of <code>std::cout</code> makes
-                                   // sure that only one of the parallel
-                                   // processes is actually writing to the
-                                   // console, without having to explicitly
-                                   // code an if-statement in each place where
-                                   // we generate output:
+
+
+                                  // @sect4{TopLevel::do_initial_timestep}
+
+                                  // This and the next function handle the
+                                  // overall structure of the first and
+                                  // following timesteps, respectively. The
+                                  // first timestep is slightly more involved
+                                  // because we want to compute it multiple
+                                  // times on successively refined meshes,
+                                  // each time starting from a clean
+                                  // state. At the end of these computations,
+                                  // in which we compute the incremental
+                                  // displacements each time, we use the last
+                                  // results obtained for the incremental
+                                  // displacements to compute the resulting
+                                  // stress updates and move the mesh
+                                  // accordingly. On this new mesh, we then
+                                  // output the solution and any additional
+                                  // data we consider important.
+                                  //
+                                  // All this is interspersed by generating
+                                  // output to the console to update the
+                                  // person watching the screen on what is
+                                  // going on. As in step-17, the use of
+                                  // <code>pcout</code> instead of <code>std::cout</code> makes
+                                  // sure that only one of the parallel
+                                  // processes is actually writing to the
+                                  // console, without having to explicitly
+                                  // code an if-statement in each place where
+                                  // we generate output:
   template <int dim>
   void TopLevel<dim>::do_initial_timestep ()
   {
@@ -2169,7 +2161,7 @@ namespace QuasiStaticElasticity
     ++timestep_no;
     pcout << "Timestep " << timestep_no << " at time " << present_time
          << std::endl;
-  
+
     for (unsigned int cycle=0; cycle<2; ++cycle)
       {
        pcout << "  Cycle " << cycle << ':' << std::endl;
@@ -2208,14 +2200,14 @@ namespace QuasiStaticElasticity
     pcout << std::endl;
   }
 
-  
 
-                                   // @sect4{TopLevel::do_timestep}
 
-                                   // Subsequent timesteps are simpler, and
-                                   // probably do not require any more
-                                   // documentation given the explanations for
-                                   // the previous function above:
+                                  // @sect4{TopLevel::do_timestep}
+
+                                  // Subsequent timesteps are simpler, and
+                                  // probably do not require any more
+                                  // documentation given the explanations for
+                                  // the previous function above:
   template <int dim>
   void TopLevel<dim>::do_timestep ()
   {
@@ -2229,7 +2221,7 @@ namespace QuasiStaticElasticity
        present_time = end_time;
       }
 
-  
+
     solve_timestep ();
 
     move_mesh ();
@@ -2239,8 +2231,8 @@ namespace QuasiStaticElasticity
   }
 
 
-                                   // @sect4{TopLevel::refine_initial_grid}
-                                   
+                                  // @sect4{TopLevel::refine_initial_grid}
+
                                   // The following function is called when
                                   // solving the first time step on
                                   // successively refined meshes. After each
@@ -2251,8 +2243,8 @@ namespace QuasiStaticElasticity
   template <int dim>
   void TopLevel<dim>::refine_initial_grid ()
   {
-                                     // First, let each process compute error
-                                     // indicators for the cells it owns:
+                                    // First, let each process compute error
+                                    // indicators for the cells it owns:
     Vector<float> error_per_cell (triangulation.n_active_cells());
     KellyErrorEstimator<dim>::estimate (dof_handler,
                                        QGauss<dim-1>(2),
@@ -2264,174 +2256,174 @@ namespace QuasiStaticElasticity
                                        multithread_info.n_default_threads,
                                        this_mpi_process);
 
-                                     // Then set up a global vector into which
-                                     // we merge the local indicators from
-                                     // each of the %parallel processes:
+                                    // Then set up a global vector into which
+                                    // we merge the local indicators from
+                                    // each of the %parallel processes:
     const unsigned int n_local_cells
       = GridTools::count_cells_with_subdomain_association (triangulation,
                                                           this_mpi_process);
     PETScWrappers::MPI::Vector
       distributed_error_per_cell (mpi_communicator,
-                                  triangulation.n_active_cells(),
-                                  n_local_cells);
-  
+                                 triangulation.n_active_cells(),
+                                 n_local_cells);
+
     for (unsigned int i=0; i<error_per_cell.size(); ++i)
       if (error_per_cell(i) != 0)
        distributed_error_per_cell(i) = error_per_cell(i);
     distributed_error_per_cell.compress ();
 
-                                     // Once we have that, copy it back into
-                                     // local copies on all processors and
-                                     // refine the mesh accordingly:
+                                    // Once we have that, copy it back into
+                                    // local copies on all processors and
+                                    // refine the mesh accordingly:
     error_per_cell = distributed_error_per_cell;
     GridRefinement::refine_and_coarsen_fixed_number (triangulation,
                                                     error_per_cell,
                                                     0.35, 0.03);
     triangulation.execute_coarsening_and_refinement ();
 
-                                     // Finally, set up quadrature
-                                     // point data again on the new
-                                     // mesh, and only on those cells
-                                     // that we have determined to be
-                                     // ours:
+                                    // Finally, set up quadrature
+                                    // point data again on the new
+                                    // mesh, and only on those cells
+                                    // that we have determined to be
+                                    // ours:
     GridTools::partition_triangulation (n_mpi_processes, triangulation);
     setup_quadrature_point_history ();
   }
-  
-
-
-                                   // @sect4{TopLevel::move_mesh}
-
-                                   // At the end of each time step, we move
-                                   // the nodes of the mesh according to the
-                                   // incremental displacements computed in
-                                   // this time step. To do this, we keep a
-                                   // vector of flags that indicate for each
-                                   // vertex whether we have already moved it
-                                   // around, and then loop over all cells and
-                                   // move those vertices of the cell that
-                                   // have not been moved yet. It is worth
-                                   // noting that it does not matter from
-                                   // which of the cells adjacent to a vertex
-                                   // we move this vertex: since we compute
-                                   // the displacement using a continuous
-                                   // finite element, the displacement field
-                                   // is continuous as well and we can compute
-                                   // the displacement of a given vertex from
-                                   // each of the adjacent cells. We only have
-                                   // to make sure that we move each node
-                                   // exactly once, which is why we keep the
-                                   // vector of flags.
-                                   //
-                                   // There are two noteworthy things in this
-                                   // function. First, how we get the
-                                   // displacement field at a given vertex
-                                   // using the
-                                   // <code>cell-@>vertex_dof_index(v,d)</code> function
-                                   // that returns the index of the <code>d</code>th
-                                   // degree of freedom at vertex <code>v</code> of the
-                                   // given cell. In the present case,
-                                   // displacement in the k-th coordinate
-                                   // direction corresonds to the kth
-                                   // component of the finite element. Using a
-                                   // function like this bears a certain risk,
-                                   // because it uses knowledge of the order
-                                   // of elements that we have taken together
-                                   // for this program in the <code>FESystem</code>
-                                   // element. If we decided to add an
-                                   // additional variable, for example a
-                                   // pressure variable for stabilization, and
-                                   // happened to insert it as the first
-                                   // variable of the element, then the
-                                   // computation below will start to produce
-                                   // non-sensical results. In addition, this
-                                   // computation rests on other assumptions:
-                                   // first, that the element we use has,
-                                   // indeed, degrees of freedom that are
-                                   // associated with vertices. This is indeed
-                                   // the case for the present Q1 element, as
-                                   // would be for all Qp elements of
-                                   // polynomial order <code>p</code>. However, it
-                                   // would not hold for discontinuous
-                                   // elements, or elements for mixed
-                                   // formulations. Secondly, it also rests on
-                                   // the assumption that the displacement at
-                                   // a vertex is determined solely by the
-                                   // value of the degree of freedom
-                                   // associated with this vertex; in other
-                                   // words, all shape functions corresponding
-                                   // to other degrees of freedom are zero at
-                                   // this particular vertex. Again, this is
-                                   // the case for the present element, but is
-                                   // not so for all elements that are
-                                   // presently available in deal.II. Despite
-                                   // its risks, we choose to use this way in
-                                   // order to present a way to query
-                                   // individual degrees of freedom associated
-                                   // with vertices.
-                                   //
-                                   // In this context, it is instructive to
-                                   // point out what a more general way would
-                                   // be. For general finite elements, the way
-                                   // to go would be to take a quadrature
-                                   // formula with the quadrature points in
-                                   // the vertices of a cell. The <code>QTrapez</code>
-                                   // formula for the trapezoidal rule does
-                                   // exactly this. With this quadrature
-                                   // formula, we would then initialize an
-                                   // <code>FEValues</code> object in each cell, and
-                                   // use the
-                                   // <code>FEValues::get_function_values</code>
-                                   // function to obtain the values of the
-                                   // solution function in the quadrature
-                                   // points, i.e. the vertices of the
-                                   // cell. These are the only values that we
-                                   // really need, i.e. we are not at all
-                                   // interested in the weights (or the
-                                   // <code>JxW</code> values) associated with this
-                                   // particular quadrature formula, and this
-                                   // can be specified as the last argument in
-                                   // the constructor to <code>FEValues</code>. The
-                                   // only point of minor inconvenience in
-                                   // this scheme is that we have to figure
-                                   // out which quadrature point corresponds
-                                   // to the vertex we consider at present, as
-                                   // they may or may not be ordered in the
-                                   // same order.
-                                   //
-                                   // Another point worth explaining about
-                                   // this short function is the way in which
-                                   // the triangulation class exports
-                                   // information about its vertices: through
-                                   // the <code>Triangulation::n_vertices</code>
-                                   // function, it advertises how many
-                                   // vertices there are in the
-                                   // triangulation. Not all of them are
-                                   // actually in use all the time -- some are
-                                   // left-overs from cells that have been
-                                   // coarsened previously and remain in
-                                   // existence since deal.II never changes
-                                   // the number of a vertex once it has come
-                                   // into existence, even if vertices with
-                                   // lower number go away. Secondly, the
-                                   // location returned by <code>cell-@>vertex(v)</code>
-                                   // is not only a read-only object of type
-                                   // <code>Point@<dim@></code>, but in fact a reference
-                                   // that can be written to. This allows to
-                                   // move around the nodes of a mesh with
-                                   // relative ease, but it is worth pointing
-                                   // out that it is the responsibility of an
-                                   // application program using this feature
-                                   // to make sure that the resulting cells
-                                   // are still useful, i.e. are not distorted
-                                   // so much that the cell is degenerated
-                                   // (indicated, for example, by negative
-                                   // Jacobians). Note that we do not have any
-                                   // provisions in this function to actually
-                                   // ensure this, we just have faith.
-                                   //
-                                   // After this lengthy introduction, here
-                                   // are the full 20 or so lines of code:
+
+
+
+                                  // @sect4{TopLevel::move_mesh}
+
+                                  // At the end of each time step, we move
+                                  // the nodes of the mesh according to the
+                                  // incremental displacements computed in
+                                  // this time step. To do this, we keep a
+                                  // vector of flags that indicate for each
+                                  // vertex whether we have already moved it
+                                  // around, and then loop over all cells and
+                                  // move those vertices of the cell that
+                                  // have not been moved yet. It is worth
+                                  // noting that it does not matter from
+                                  // which of the cells adjacent to a vertex
+                                  // we move this vertex: since we compute
+                                  // the displacement using a continuous
+                                  // finite element, the displacement field
+                                  // is continuous as well and we can compute
+                                  // the displacement of a given vertex from
+                                  // each of the adjacent cells. We only have
+                                  // to make sure that we move each node
+                                  // exactly once, which is why we keep the
+                                  // vector of flags.
+                                  //
+                                  // There are two noteworthy things in this
+                                  // function. First, how we get the
+                                  // displacement field at a given vertex
+                                  // using the
+                                  // <code>cell-@>vertex_dof_index(v,d)</code> function
+                                  // that returns the index of the <code>d</code>th
+                                  // degree of freedom at vertex <code>v</code> of the
+                                  // given cell. In the present case,
+                                  // displacement in the k-th coordinate
+                                  // direction corresonds to the kth
+                                  // component of the finite element. Using a
+                                  // function like this bears a certain risk,
+                                  // because it uses knowledge of the order
+                                  // of elements that we have taken together
+                                  // for this program in the <code>FESystem</code>
+                                  // element. If we decided to add an
+                                  // additional variable, for example a
+                                  // pressure variable for stabilization, and
+                                  // happened to insert it as the first
+                                  // variable of the element, then the
+                                  // computation below will start to produce
+                                  // non-sensical results. In addition, this
+                                  // computation rests on other assumptions:
+                                  // first, that the element we use has,
+                                  // indeed, degrees of freedom that are
+                                  // associated with vertices. This is indeed
+                                  // the case for the present Q1 element, as
+                                  // would be for all Qp elements of
+                                  // polynomial order <code>p</code>. However, it
+                                  // would not hold for discontinuous
+                                  // elements, or elements for mixed
+                                  // formulations. Secondly, it also rests on
+                                  // the assumption that the displacement at
+                                  // a vertex is determined solely by the
+                                  // value of the degree of freedom
+                                  // associated with this vertex; in other
+                                  // words, all shape functions corresponding
+                                  // to other degrees of freedom are zero at
+                                  // this particular vertex. Again, this is
+                                  // the case for the present element, but is
+                                  // not so for all elements that are
+                                  // presently available in deal.II. Despite
+                                  // its risks, we choose to use this way in
+                                  // order to present a way to query
+                                  // individual degrees of freedom associated
+                                  // with vertices.
+                                  //
+                                  // In this context, it is instructive to
+                                  // point out what a more general way would
+                                  // be. For general finite elements, the way
+                                  // to go would be to take a quadrature
+                                  // formula with the quadrature points in
+                                  // the vertices of a cell. The <code>QTrapez</code>
+                                  // formula for the trapezoidal rule does
+                                  // exactly this. With this quadrature
+                                  // formula, we would then initialize an
+                                  // <code>FEValues</code> object in each cell, and
+                                  // use the
+                                  // <code>FEValues::get_function_values</code>
+                                  // function to obtain the values of the
+                                  // solution function in the quadrature
+                                  // points, i.e. the vertices of the
+                                  // cell. These are the only values that we
+                                  // really need, i.e. we are not at all
+                                  // interested in the weights (or the
+                                  // <code>JxW</code> values) associated with this
+                                  // particular quadrature formula, and this
+                                  // can be specified as the last argument in
+                                  // the constructor to <code>FEValues</code>. The
+                                  // only point of minor inconvenience in
+                                  // this scheme is that we have to figure
+                                  // out which quadrature point corresponds
+                                  // to the vertex we consider at present, as
+                                  // they may or may not be ordered in the
+                                  // same order.
+                                  //
+                                  // Another point worth explaining about
+                                  // this short function is the way in which
+                                  // the triangulation class exports
+                                  // information about its vertices: through
+                                  // the <code>Triangulation::n_vertices</code>
+                                  // function, it advertises how many
+                                  // vertices there are in the
+                                  // triangulation. Not all of them are
+                                  // actually in use all the time -- some are
+                                  // left-overs from cells that have been
+                                  // coarsened previously and remain in
+                                  // existence since deal.II never changes
+                                  // the number of a vertex once it has come
+                                  // into existence, even if vertices with
+                                  // lower number go away. Secondly, the
+                                  // location returned by <code>cell-@>vertex(v)</code>
+                                  // is not only a read-only object of type
+                                  // <code>Point@<dim@></code>, but in fact a reference
+                                  // that can be written to. This allows to
+                                  // move around the nodes of a mesh with
+                                  // relative ease, but it is worth pointing
+                                  // out that it is the responsibility of an
+                                  // application program using this feature
+                                  // to make sure that the resulting cells
+                                  // are still useful, i.e. are not distorted
+                                  // so much that the cell is degenerated
+                                  // (indicated, for example, by negative
+                                  // Jacobians). Note that we do not have any
+                                  // provisions in this function to actually
+                                  // ensure this, we just have faith.
+                                  //
+                                  // After this lengthy introduction, here
+                                  // are the full 20 or so lines of code:
   template <int dim>
   void TopLevel<dim>::move_mesh ()
   {
@@ -2446,72 +2438,72 @@ namespace QuasiStaticElasticity
        if (vertex_touched[cell->vertex_index(v)] == false)
          {
            vertex_touched[cell->vertex_index(v)] = true;
-            
+
            Point<dim> vertex_displacement;
            for (unsigned int d=0; d<dim; ++d)
              vertex_displacement[d]
                = incremental_displacement(cell->vertex_dof_index(v,d));
-            
+
            cell->vertex(v) += vertex_displacement;
          }
   }
 
 
-                                   // @sect4{TopLevel::setup_quadrature_point_history}
-
-                                   // At the beginning of our computations, we
-                                   // needed to set up initial values of the
-                                   // history variables, such as the existing
-                                   // stresses in the material, that we store
-                                   // in each quadrature point. As mentioned
-                                   // above, we use the <code>user_pointer</code> for
-                                   // this that is available in each cell.
-                                   //
-                                   // To put this into larger perspective, we
-                                   // note that if we had previously available
-                                   // stresses in our model (which we assume
-                                   // do not exist for the purpose of this
-                                   // program), then we would need to
-                                   // interpolate the field of pre-existing
-                                   // stresses to the quadrature
-                                   // points. Likewise, if we were to simulate
-                                   // elasto-plastic materials with
-                                   // hardening/softening, then we would have
-                                   // to store additional history variables
-                                   // like the present yield stress of the
-                                   // accumulated plastic strains in each
-                                   // quadrature points. Pre-existing
-                                   // hardening or weakening would then be
-                                   // implemented by interpolating these
-                                   // variables in the present function as
-                                   // well.
+                                  // @sect4{TopLevel::setup_quadrature_point_history}
+
+                                  // At the beginning of our computations, we
+                                  // needed to set up initial values of the
+                                  // history variables, such as the existing
+                                  // stresses in the material, that we store
+                                  // in each quadrature point. As mentioned
+                                  // above, we use the <code>user_pointer</code> for
+                                  // this that is available in each cell.
+                                  //
+                                  // To put this into larger perspective, we
+                                  // note that if we had previously available
+                                  // stresses in our model (which we assume
+                                  // do not exist for the purpose of this
+                                  // program), then we would need to
+                                  // interpolate the field of pre-existing
+                                  // stresses to the quadrature
+                                  // points. Likewise, if we were to simulate
+                                  // elasto-plastic materials with
+                                  // hardening/softening, then we would have
+                                  // to store additional history variables
+                                  // like the present yield stress of the
+                                  // accumulated plastic strains in each
+                                  // quadrature points. Pre-existing
+                                  // hardening or weakening would then be
+                                  // implemented by interpolating these
+                                  // variables in the present function as
+                                  // well.
   template <int dim>
   void TopLevel<dim>::setup_quadrature_point_history ()
   {
-                                     // What we need to do here is to first
-                                     // count how many quadrature points are
-                                     // within the responsibility of this
-                                     // processor. This, of course, equals the
-                                     // number of cells that belong to this
-                                     // processor times the number of
-                                     // quadrature points our quadrature
-                                     // formula has on each cell.
-                                     //
-                                     // For good measure, we also set all user
-                                     // pointers of all cells, whether ours of
-                                     // not, to the null pointer. This way, if
-                                     // we ever access the user pointer of a
-                                     // cell which we should not have
-                                     // accessed, a segmentation fault will
-                                     // let us know that this should not have
-                                     // happened:
+                                    // What we need to do here is to first
+                                    // count how many quadrature points are
+                                    // within the responsibility of this
+                                    // processor. This, of course, equals the
+                                    // number of cells that belong to this
+                                    // processor times the number of
+                                    // quadrature points our quadrature
+                                    // formula has on each cell.
+                                    //
+                                    // For good measure, we also set all user
+                                    // pointers of all cells, whether ours of
+                                    // not, to the null pointer. This way, if
+                                    // we ever access the user pointer of a
+                                    // cell which we should not have
+                                    // accessed, a segmentation fault will
+                                    // let us know that this should not have
+                                    // happened:
     unsigned int our_cells = 0;
     for (typename Triangulation<dim>::active_cell_iterator
           cell = triangulation.begin_active();
         cell != triangulation.end(); ++cell)
       if (cell->subdomain_id() == this_mpi_process)
        ++our_cells;
-      
+
     triangulation.clear_user_data();
 
                                     // Next, allocate as many quadrature
@@ -2560,21 +2552,21 @@ namespace QuasiStaticElasticity
          history_index += quadrature_formula.size();
        }
 
-                                     // At the end, for good measure make sure
-                                     // that our count of elements was correct
-                                     // and that we have both used up all
-                                     // objects we allocated previously, and
-                                     // not point to any objects beyond the
-                                     // end of the vector. Such defensive
-                                     // programming strategies are always good
-                                     // checks to avoid accidental errors and
-                                     // to guard against future changes to
-                                     // this function that forget to update
-                                     // all uses of a variable at the same
-                                     // time. Recall that constructs using the
-                                     // <code>Assert</code> macro are optimized away in
-                                     // optimized mode, so do not affect the
-                                     // run time of optimized runs:
+                                    // At the end, for good measure make sure
+                                    // that our count of elements was correct
+                                    // and that we have both used up all
+                                    // objects we allocated previously, and
+                                    // not point to any objects beyond the
+                                    // end of the vector. Such defensive
+                                    // programming strategies are always good
+                                    // checks to avoid accidental errors and
+                                    // to guard against future changes to
+                                    // this function that forget to update
+                                    // all uses of a variable at the same
+                                    // time. Recall that constructs using the
+                                    // <code>Assert</code> macro are optimized away in
+                                    // optimized mode, so do not affect the
+                                    // run time of optimized runs:
     Assert (history_index == quadrature_point_history.size(),
            ExcInternalError());
   }
@@ -2582,113 +2574,113 @@ namespace QuasiStaticElasticity
 
 
 
-                                   // @sect4{TopLevel::update_quadrature_point_history}
-
-                                   // At the end of each time step, we
-                                   // should have computed an
-                                   // incremental displacement update
-                                   // so that the material in its new
-                                   // configuration accomodates for
-                                   // the difference between the
-                                   // external body and boundary
-                                   // forces applied during this time
-                                   // step minus the forces exerted
-                                   // through pre-existing internal
-                                   // stresses. In order to have the
-                                   // pre-existing stresses available
-                                   // at the next time step, we
-                                   // therefore have to update the
-                                   // pre-existing stresses with the
-                                   // stresses due to the incremental
-                                   // displacement computed during the
-                                   // present time step. Ideally, the
-                                   // resulting sum of internal
-                                   // stresses would exactly counter
-                                   // all external forces. Indeed, a
-                                   // simple experiment can make sure
-                                   // that this is so: if we choose
-                                   // boundary conditions and body
-                                   // forces to be time independent,
-                                   // then the forcing terms (the sum
-                                   // of external forces and internal
-                                   // stresses) should be exactly
-                                   // zero. If you make this
-                                   // experiment, you will realize
-                                   // from the output of the norm of
-                                   // the right hand side in each time
-                                   // step that this is almost the
-                                   // case: it is not exactly zero,
-                                   // since in the first time step the
-                                   // incremental displacement and
-                                   // stress updates were computed
-                                   // relative to the undeformed mesh,
-                                   // which was then deformed. In the
-                                   // second time step, we again
-                                   // compute displacement and stress
-                                   // updates, but this time in the
-                                   // deformed mesh -- there, the
-                                   // resulting updates are very small
-                                   // but not quite zero. This can be
-                                   // iterated, and in each such
-                                   // iteration the residual, i.e. the
-                                   // norm of the right hand side
-                                   // vector, is reduced; if one makes
-                                   // this little experiment, one
-                                   // realizes that the norm of this
-                                   // residual decays exponentially
-                                   // with the number of iterations,
-                                   // and after an initial very rapid
-                                   // decline is reduced by roughly a
-                                   // factor of about 3.5 in each
-                                   // iteration (for one testcase I
-                                   // looked at, other testcases, and
-                                   // other numbers of unknowns change
-                                   // the factor, but not the
-                                   // exponential decay).
-
-                                   // In a sense, this can then be considered
-                                   // as a quasi-timestepping scheme to
-                                   // resolve the nonlinear problem of solving
-                                   // large-deformation elasticity on a mesh
-                                   // that is moved along in a Lagrangian
-                                   // manner.
-                                   //
-                                   // Another complication is that the
-                                   // existing (old) stresses are defined on
-                                   // the old mesh, which we will move around
-                                   // after updating the stresses. If this
-                                   // mesh update involves rotations of the
-                                   // cell, then we need to also rotate the
-                                   // updated stress, since it was computed
-                                   // relative to the coordinate system of the
-                                   // old cell.
-                                   //
-                                   // Thus, what we need is the following: on
-                                   // each cell which the present processor
-                                   // owns, we need to extract the old stress
-                                   // from the data stored with each
-                                   // quadrature point, compute the stress
-                                   // update, add the two together, and then
-                                   // rotate the result together with the
-                                   // incremental rotation computed from the
-                                   // incremental displacement at the present
-                                   // quadrature point. We will detail these
-                                   // steps below:
+                                  // @sect4{TopLevel::update_quadrature_point_history}
+
+                                  // At the end of each time step, we
+                                  // should have computed an
+                                  // incremental displacement update
+                                  // so that the material in its new
+                                  // configuration accomodates for
+                                  // the difference between the
+                                  // external body and boundary
+                                  // forces applied during this time
+                                  // step minus the forces exerted
+                                  // through pre-existing internal
+                                  // stresses. In order to have the
+                                  // pre-existing stresses available
+                                  // at the next time step, we
+                                  // therefore have to update the
+                                  // pre-existing stresses with the
+                                  // stresses due to the incremental
+                                  // displacement computed during the
+                                  // present time step. Ideally, the
+                                  // resulting sum of internal
+                                  // stresses would exactly counter
+                                  // all external forces. Indeed, a
+                                  // simple experiment can make sure
+                                  // that this is so: if we choose
+                                  // boundary conditions and body
+                                  // forces to be time independent,
+                                  // then the forcing terms (the sum
+                                  // of external forces and internal
+                                  // stresses) should be exactly
+                                  // zero. If you make this
+                                  // experiment, you will realize
+                                  // from the output of the norm of
+                                  // the right hand side in each time
+                                  // step that this is almost the
+                                  // case: it is not exactly zero,
+                                  // since in the first time step the
+                                  // incremental displacement and
+                                  // stress updates were computed
+                                  // relative to the undeformed mesh,
+                                  // which was then deformed. In the
+                                  // second time step, we again
+                                  // compute displacement and stress
+                                  // updates, but this time in the
+                                  // deformed mesh -- there, the
+                                  // resulting updates are very small
+                                  // but not quite zero. This can be
+                                  // iterated, and in each such
+                                  // iteration the residual, i.e. the
+                                  // norm of the right hand side
+                                  // vector, is reduced; if one makes
+                                  // this little experiment, one
+                                  // realizes that the norm of this
+                                  // residual decays exponentially
+                                  // with the number of iterations,
+                                  // and after an initial very rapid
+                                  // decline is reduced by roughly a
+                                  // factor of about 3.5 in each
+                                  // iteration (for one testcase I
+                                  // looked at, other testcases, and
+                                  // other numbers of unknowns change
+                                  // the factor, but not the
+                                  // exponential decay).
+
+                                  // In a sense, this can then be considered
+                                  // as a quasi-timestepping scheme to
+                                  // resolve the nonlinear problem of solving
+                                  // large-deformation elasticity on a mesh
+                                  // that is moved along in a Lagrangian
+                                  // manner.
+                                  //
+                                  // Another complication is that the
+                                  // existing (old) stresses are defined on
+                                  // the old mesh, which we will move around
+                                  // after updating the stresses. If this
+                                  // mesh update involves rotations of the
+                                  // cell, then we need to also rotate the
+                                  // updated stress, since it was computed
+                                  // relative to the coordinate system of the
+                                  // old cell.
+                                  //
+                                  // Thus, what we need is the following: on
+                                  // each cell which the present processor
+                                  // owns, we need to extract the old stress
+                                  // from the data stored with each
+                                  // quadrature point, compute the stress
+                                  // update, add the two together, and then
+                                  // rotate the result together with the
+                                  // incremental rotation computed from the
+                                  // incremental displacement at the present
+                                  // quadrature point. We will detail these
+                                  // steps below:
   template <int dim>
   void TopLevel<dim>::update_quadrature_point_history ()
   {
-                                     // First, set up an <code>FEValues</code> object
-                                     // by which we will evaluate the
-                                     // incremental displacements and the
-                                     // gradients thereof at the quadrature
-                                     // points, together with a vector that
-                                     // will hold this information:
-    FEValues<dim> fe_values (fe, quadrature_formula, 
+                                    // First, set up an <code>FEValues</code> object
+                                    // by which we will evaluate the
+                                    // incremental displacements and the
+                                    // gradients thereof at the quadrature
+                                    // points, together with a vector that
+                                    // will hold this information:
+    FEValues<dim> fe_values (fe, quadrature_formula,
                             update_values | update_gradients);
     std::vector<std::vector<Tensor<1,dim> > >
       displacement_increment_grads (quadrature_formula.size(),
                                    std::vector<Tensor<1,dim> >(dim));
-  
+
                                     // Then loop over all cells and do the
                                     // job in the cells that belong to our
                                     // subdomain:
@@ -2697,27 +2689,27 @@ namespace QuasiStaticElasticity
         cell != dof_handler.end(); ++cell)
       if (cell->subdomain_id() == this_mpi_process)
        {
-                                           // Next, get a pointer to the
-                                           // quadrature point history data
-                                           // local to the present cell, and,
-                                           // as a defensive measure, make
-                                           // sure that this pointer is within
-                                           // the bounds of the global array:
+                                          // Next, get a pointer to the
+                                          // quadrature point history data
+                                          // local to the present cell, and,
+                                          // as a defensive measure, make
+                                          // sure that this pointer is within
+                                          // the bounds of the global array:
          PointHistory<dim> *local_quadrature_points_history
            = reinterpret_cast<PointHistory<dim> *>(cell->user_pointer());
          Assert (local_quadrature_points_history >=
-                  &quadrature_point_history.front(),
+                 &quadrature_point_history.front(),
                  ExcInternalError());
          Assert (local_quadrature_points_history <
-                  &quadrature_point_history.back(),
+                 &quadrature_point_history.back(),
                  ExcInternalError());
 
-                                           // Then initialize the <code>FEValues</code>
-                                           // object on the present cell, and
-                                           // extract the gradients of the
-                                           // displacement at the quadrature
-                                           // points for later computation of
-                                           // the strains
+                                          // Then initialize the <code>FEValues</code>
+                                          // object on the present cell, and
+                                          // extract the gradients of the
+                                          // displacement at the quadrature
+                                          // points for later computation of
+                                          // the strains
          fe_values.reinit (cell);
          fe_values.get_function_grads (incremental_displacement,
                                        displacement_increment_grads);
@@ -2726,49 +2718,49 @@ namespace QuasiStaticElasticity
                                           // points of this cell:
          for (unsigned int q=0; q<quadrature_formula.size(); ++q)
            {
-                                               // On each quadrature point,
-                                               // compute the strain increment
-                                               // from the gradients, and
-                                               // multiply it by the
-                                               // stress-strain tensor to get
-                                               // the stress update. Then add
-                                               // this update to the already
-                                               // existing strain at this
-                                               // point:
-              const SymmetricTensor<2,dim> new_stress
-                = (local_quadrature_points_history[q].old_stress
-                   +
-                   (stress_strain_tensor *
-                    get_strain (displacement_increment_grads[q])));
-
-                                               // Finally, we have to rotate
-                                               // the result. For this, we
-                                               // first have to compute a
-                                               // rotation matrix at the
-                                               // present quadrature point
-                                               // from the incremental
-                                               // displacements. In fact, it
-                                               // can be computed from the
-                                               // gradients, and we already
-                                               // have a function for that
-                                               // purpose:
-              const Tensor<2,dim> rotation
-                = get_rotation_matrix (displacement_increment_grads[q]);
-                                               // Note that the result, a
-                                               // rotation matrix, is in
-                                               // general an antisymmetric
-                                               // tensor of rank 2, so we must
-                                               // store it as a full tensor.
-
-                                               // With this rotation matrix,
-                                               // we can compute the rotated
-                                               // tensor by contraction from
-                                               // the left and right, after we
-                                               // expand the symmetric tensor
-                                               // <code>new_stress</code> into a full
-                                               // tensor:
-              const SymmetricTensor<2,dim> rotated_new_stress
-                = symmetrize(transpose(rotation) *
+                                              // On each quadrature point,
+                                              // compute the strain increment
+                                              // from the gradients, and
+                                              // multiply it by the
+                                              // stress-strain tensor to get
+                                              // the stress update. Then add
+                                              // this update to the already
+                                              // existing strain at this
+                                              // point:
+             const SymmetricTensor<2,dim> new_stress
+               = (local_quadrature_points_history[q].old_stress
+                  +
+                  (stress_strain_tensor *
+                   get_strain (displacement_increment_grads[q])));
+
+                                              // Finally, we have to rotate
+                                              // the result. For this, we
+                                              // first have to compute a
+                                              // rotation matrix at the
+                                              // present quadrature point
+                                              // from the incremental
+                                              // displacements. In fact, it
+                                              // can be computed from the
+                                              // gradients, and we already
+                                              // have a function for that
+                                              // purpose:
+             const Tensor<2,dim> rotation
+               = get_rotation_matrix (displacement_increment_grads[q]);
+                                              // Note that the result, a
+                                              // rotation matrix, is in
+                                              // general an antisymmetric
+                                              // tensor of rank 2, so we must
+                                              // store it as a full tensor.
+
+                                              // With this rotation matrix,
+                                              // we can compute the rotated
+                                              // tensor by contraction from
+                                              // the left and right, after we
+                                              // expand the symmetric tensor
+                                              // <code>new_stress</code> into a full
+                                              // tensor:
+             const SymmetricTensor<2,dim> rotated_new_stress
+               = symmetrize(transpose(rotation) *
                             static_cast<Tensor<2,dim> >(new_stress) *
                             rotation);
                                               // Note that while the
@@ -2800,19 +2792,19 @@ namespace QuasiStaticElasticity
                                               // result to make it
                                               // exactly symmetric.
 
-                                               // The result of all these
-                                               // operations is then written
-                                               // back into the original
-                                               // place:
-              local_quadrature_points_history[q].old_stress
-                = rotated_new_stress;
+                                              // The result of all these
+                                              // operations is then written
+                                              // back into the original
+                                              // place:
+             local_quadrature_points_history[q].old_stress
+               = rotated_new_stress;
            }
        }
   }
 
                                   // This ends the project specific
                                   // namespace
-                                  // <code>QuasiStaticElasticity</code>. The
+                                  // <code>Step18</code>. The
                                   // rest is as usual and as already
                                   // shown in step-17: A <code>main()</code>
                                   // function that initializes and
@@ -2824,20 +2816,23 @@ namespace QuasiStaticElasticity
 }
 
 
-int main (int argc, char **argv) 
+int main (int argc, char **argv)
 {
   try
     {
+      using namespace dealii;
+      using namespace Step18;
+
       PetscInitialize(&argc,&argv,0,0);
 
       {
         deallog.depth_console (0);
 
-        QuasiStaticElasticity::TopLevel<3> elastic_problem;
+        TopLevel<3> elastic_problem;
         elastic_problem.run ();
       }
 
-      PetscFinalize();      
+      PetscFinalize();
     }
   catch (std::exception &exc)
     {
@@ -2849,10 +2844,10 @@ int main (int argc, char **argv)
                << "Aborting!" << std::endl
                << "----------------------------------------------------"
                << std::endl;
-      
+
       return 1;
     }
-  catch (...) 
+  catch (...)
     {
       std::cerr << std::endl << std::endl
                << "----------------------------------------------------"
index f1663db3c0dfa60fd0578c2f4f9f325dbb2b305f..50717b36c49e415f70e201ba6b1522ffeffb5c5c 100644 (file)
@@ -3,7 +3,7 @@
 
 /*    $Id$       */
 /*                                                                */
-/*    Copyright (C) 2005, 2006 by the deal.II authors */
+/*    Copyright (C) 2005, 2006, 2011 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 #include <iostream>
 #include <fstream>
 
-                                // As mentioned in the first few
-                                // tutorial programs, all names in
-                                // deal.II are declared in a
-                                // namespace <code>dealii</code>. To
-                                // make using these function and
-                                // class names simpler, we import the
-                                // entire content of that namespace
-                                // into the global scope:
-using namespace dealii;
-
-                                 // Before we start with the actual program,
-                                 // let us declare a few global variables that
-                                 // will be used to hold the parameters this
-                                 // program is going to use. Usually, global
-                                 // variables are frowned upon for a good
-                                 // reason, but since we have such a short
-                                 // program here that does only a single
-                                 // thing, we may stray from our usual line
-                                 // and make these variables global, rather
-                                 // than passing them around to all functions
-                                 // or encapsulating them into a class.
-                                 //
-                                 // The variables we have are: first, an
-                                 // object that will hold parameters of
-                                 // operation, such as output format (unless
-                                 // given on the command line); second, the
-                                 // names of input and output files; and third,
-                                 // the format in which the output is to be
-                                 // written:
-ParameterHandler         prm;
-std::vector<std::string> input_file_names;
-std::string              output_file; 
-std::string              output_format;
-
-
-                                 // All the stuff this program does can be
-                                 // done from here on. As described in the
-                                 // introduction, what we have to do is
-                                 // declare what values the parameter file can
-                                 // have, parse the command line, read the
-                                 // input files, then write the output. We
-                                 // will do this in this order of operation,
-                                 // but before that let us declare a function
-                                 // that prints a message about how this
-                                 // program is to be used; the function first
-                                 // prints a general message, and then goes on
-                                 // to list the parameters that are allowed in
-                                 // the parameter file (the
-                                 // <code>ParameterHandler</code> class has a function
-                                 // to do exactly this; see the results
-                                 // section for what it prints):
-void
-print_usage_message ()
+                                // As mentioned in the first few tutorial
+                                // programs, all names in deal.II are
+                                // declared in a namespace
+                                // <code>dealii</code>. To make using these
+                                // function and class names simpler, we
+                                // import the entire content of that
+                                // namespace into the global scope. As done
+                                // for all previous programs already, we'll
+                                // also place everything we do here into a
+                                // namespace of its own:
+namespace Step19
 {
-  static const char* message
-    =
-    "\n"
-    "Converter from deal.II intermediate format to other graphics formats.\n"
-    "\n"
-    "Usage:\n"
-    "    ./step-19 [-p parameter_file] list_of_input_files \n"
-    "              [-x output_format] [-o output_file]\n"
-    "\n"
-    "Parameter sequences in brackets can be omitted if a parameter file is\n"
-    "specified on the command line and if it provides values for these\n"
-    "missing parameters.\n"
-    "\n"
-    "The parameter file has the following format and allows the following\n"
-    "values (you can cut and paste this and use it for your own parameter\n"
-    "file):\n"
-    "\n";
-  std::cout << message;
-
-  prm.print_parameters (std::cout, ParameterHandler::Text);
-}
-
-
-                                 // @sect4{Declaring parameters for the input file}
-
-                                 // The second function is used to declare the
-                                 // parameters this program accepts from the
-                                 // input file. While we don't actually take
-                                 // many parameters from the input file except
-                                 // for, possibly, the output file name and
-                                 // format, we nevertheless want to show how
-                                 // to work with parameter files.
-                                 //
-                                 // In short, the <code>ParameterHandler</code> class
-                                 // works as follows: one declares the entries
-                                 // of parameters that can be given in input
-                                 // files together, and later on one can read
-                                 // an input file in which these parameters
-                                 // are set to their values. If a parameter is
-                                 // not listed in the input file, the default
-                                 // value specified in the declaration of that
-                                 // parameter is used. After that, the program
-                                 // can query the values assigned to certain
-                                 // parameters from the <code>ParameterHandler</code>
-                                 // object.
-                                 //
-                                 // Declaring parameters can be done using the
-                                 // <code>ParameterHandler::declare_entry</code>
-                                 // function. It's arguments are the name of a
-                                 // parameter, a default value (given as a
-                                 // string, even if the parameter is numeric
-                                 // in nature, and thirdly an object that
-                                 // describes constraints on values that may
-                                 // be passed to this parameter. In the
-                                 // example below, we use an object of type
-                                 // <code>Patterns::Anything</code> to denote that
-                                 // there are no constraints on file names
-                                 // (this is, of course, not true -- the
-                                 // operating system does have constraints,
-                                 // but from an application standpoint, almost
-                                 // all names are valid). In other cases, one
-                                 // may, for example, use
-                                 // <code>Patterns::Integer</code> to make sure that
-                                 // only parameters are accepted that can be
-                                 // interpreted as integer values (it is also
-                                 // possible to specify bounds for integer
-                                 // values, and all values outside this range
-                                 // are rejected), <code>Patterns::Double</code> for
-                                 // floating point values, classes that make
-                                 // sure that the given parameter value is a
-                                 // comma separated list of things, etc. Take
-                                 // a look at the <code>Patterns</code> namespace to
-                                 // see what is possible.
-                                 //
-                                 // The fourth argument to <code>declare_entry</code>
-                                 // is a help string that can be printed to
-                                 // document what this parameter is meant to
-                                 // be used for and other information you may
-                                 // consider important when declaring this
-                                 // parameter. The default value of this
-                                 // fourth argument is the empty string.
-                                 //
-                                 // I always wanted to have an example program
-                                 // describing the <code>ParameterHandler</code> class,
-                                 // because it is so particularly useful. It
-                                 // would have been useful in a number of
-                                 // previous example programs (for example, in
-                                 // order to let the tolerance for linear
-                                 // solvers, or the number of refinement steps
-                                 // be determined by a run-time parameter,
-                                 // rather than hard-coding them into the
-                                 // program), but it turned out that trying to
-                                 // explain this class there would have
-                                 // overloaded them with things that would
-                                 // have distracted from the main
-                                 // purpose. However, while writing this
-                                 // program, I realized that there aren't all
-                                 // that many parameters this program can
-                                 // usefully ask for, or better, it turned
-                                 // out: declaring and querying these
-                                 // parameters was already done centralized in
-                                 // one place of the libray, namely the
-                                 // <code>DataOutInterface</code> class that handles
-                                 // exactly this -- managing parameters for
-                                 // input and output.
-                                 //
-                                 // So the second function call in this
-                                 // function is to let the
-                                 // <code>DataOutInterface</code> declare a good number
-                                 // of parameters that control everything from
-                                 // the output format to what kind of output
-                                 // should be generated if output is written
-                                 // in a specific graphical format. For
-                                 // example, when writing data in encapsulated
-                                 // postscript (EPS) format, the result is
-                                 // just a 2d projection, not data that can be
-                                 // viewed and rotated with a
-                                 // viewer. Therefore, one has to choose the
-                                 // viewing angle and a number of other
-                                 // options up front, when output is
-                                 // generated, rather than playing around with
-                                 // them later on. The call to
-                                 // <code>DataOutInterface::declare_parameters</code>
-                                 // declares entries that allow to specify
-                                 // them in the parameter input file during
-                                 // run-time. If the parameter file does not
-                                 // contain entries for them, defaults are
-                                 // taken.
-                                 //
-                                 // As a final note: <code>DataOutInterface</code> is a
-                                 // template, because it is usually used to
-                                 // write output for a specific space
-                                 // dimension. However, this program is
-                                 // supposed to be used for all dimensions at
-                                 // the same time, so we don't know at compile
-                                 // time what the right dimension is when
-                                 // specifying the template
-                                 // parameter. Fortunately, declaring
-                                 // parameters is something that is space
-                                 // dimension independent, so we can just pick
-                                 // one arbitrarily. We pick <code>1</code>, but it
-                                 // could have been any other number as well.
-void declare_parameters ()
-{
-  prm.declare_entry ("Output file", "",
-                     Patterns::Anything(),
-                     "The name of the output file to be generated");
-
-  DataOutInterface<1>::declare_parameters (prm);
-
-                                   // Since everything that this program can
-                                   // usefully request in terms of input
-                                   // parameters is already handled by now,
-                                   // let us nevertheless show how to use
-                                   // input parameters in other
-                                   // circumstances. First, parameters are
-                                   // like files in a directory tree: they can
-                                   // be in the top-level directory, but you
-                                   // can also group them into subdirectories
-                                   // to make it easier to find them or to be
-                                   // able to use the same parameter name in
-                                   // different contexts.
-                                   //
-                                   // Let us first declare a dummy parameter
-                                   // in the top-level section; we assume that
-                                   // it will denote the number of iterations,
-                                   // and that useful numbers of iterations
-                                   // that a user should be able to specify
-                                   // are in the range 1...1000, with a
-                                   // default value of 42:
-  prm.declare_entry ("Dummy iterations", "42",
-                     Patterns::Integer (1,1000),
-                     "A dummy parameter asking for an integer");
-
-                                   // Next, let us declare a sub-section (the
-                                   // equivalent to a subdirectory). When
-                                   // entered, all following parameter
-                                   // declarations will be within this
-                                   // subsection. To also visually group these
-                                   // declarations with the subsection name, I
-                                   // like to use curly braces to force my
-                                   // editor to indent everything that goes
-                                   // into this sub-section by one level of
-                                   // indentation. In this sub-section, we
-                                   // shall have two entries, one that takes a
-                                   // boolean parameter and one that takes a
-                                   // selection list of values, separated by
-                                   // the '|' character:
-  prm.enter_subsection ("Dummy subsection");
+  using namespace dealii;
+
+                                  // Before we start with the actual program,
+                                  // let us declare a few global variables that
+                                  // will be used to hold the parameters this
+                                  // program is going to use. Usually, global
+                                  // variables are frowned upon for a good
+                                  // reason, but since we have such a short
+                                  // program here that does only a single
+                                  // thing, we may stray from our usual line
+                                  // and make these variables global, rather
+                                  // than passing them around to all functions
+                                  // or encapsulating them into a class.
+                                  //
+                                  // The variables we have are: first, an
+                                  // object that will hold parameters of
+                                  // operation, such as output format (unless
+                                  // given on the command line); second, the
+                                  // names of input and output files; and third,
+                                  // the format in which the output is to be
+                                  // written:
+  ParameterHandler         prm;
+  std::vector<std::string> input_file_names;
+  std::string              output_file;
+  std::string              output_format;
+
+
+                                  // All the stuff this program does can be
+                                  // done from here on. As described in the
+                                  // introduction, what we have to do is
+                                  // declare what values the parameter file can
+                                  // have, parse the command line, read the
+                                  // input files, then write the output. We
+                                  // will do this in this order of operation,
+                                  // but before that let us declare a function
+                                  // that prints a message about how this
+                                  // program is to be used; the function first
+                                  // prints a general message, and then goes on
+                                  // to list the parameters that are allowed in
+                                  // the parameter file (the
+                                  // <code>ParameterHandler</code> class has a function
+                                  // to do exactly this; see the results
+                                  // section for what it prints):
+  void
+  print_usage_message ()
   {
-    prm.declare_entry ("Dummy generate output", "true",
-                       Patterns::Bool(),
-                       "A dummy parameter that can be fed with either "
-                       "'true' or 'false'");
-    prm.declare_entry ("Dummy color of output", "red",
-                       Patterns::Selection("red|black|blue"),
-                       "A dummy parameter that shows how one can define a "
-                       "parameter that can be assigned values from a finite "
-                       "set of values");
+    static const char* message
+      =
+      "\n"
+      "Converter from deal.II intermediate format to other graphics formats.\n"
+      "\n"
+      "Usage:\n"
+      "    ./step-19 [-p parameter_file] list_of_input_files \n"
+      "              [-x output_format] [-o output_file]\n"
+      "\n"
+      "Parameter sequences in brackets can be omitted if a parameter file is\n"
+      "specified on the command line and if it provides values for these\n"
+      "missing parameters.\n"
+      "\n"
+      "The parameter file has the following format and allows the following\n"
+      "values (you can cut and paste this and use it for your own parameter\n"
+      "file):\n"
+      "\n";
+    std::cout << message;
+
+    prm.print_parameters (std::cout, ParameterHandler::Text);
   }
-  prm.leave_subsection ();
-                                   // After this, we have left the subsection
-                                   // again. You should have gotten the idea
-                                   // by now how one can nest subsections to
-                                   // separate parameters. There are a number
-                                   // of other possible patterns describing
-                                   // possible values of parameters; in all
-                                   // cases, if you try to pass a parameter to
-                                   // the program that does not match the
-                                   // expectations of the pattern, it will
-                                   // reject the parameter file and ask you to
-                                   // fix it. After all, it does not make much
-                                   // sense if you had an entry that contained
-                                   // the entry "red" for the parameter
-                                   // "Generate output".
-}
 
-  
-                                 // @sect4{Parsing the command line}
-
-                                 // Our next task is to see what information
-                                 // has been provided on the command
-                                 // line. First, we need to be sure that there
-                                 // is at least one parameter: an input
-                                 // file. The format and the output file can
-                                 // be specified in the parameter file, but
-                                 // the list of input files can't, so at least
-                                 // one parameter needs to be there. Together
-                                 // with the name of the program (the zeroth
-                                 // parameter), <code>argc</code> must therefore be at
-                                 // least 2. If this is not the case, we print
-                                 // an error message and exit:
-void
-parse_command_line (const int     argc,
-                    char *const * argv)
-{
-  if (argc < 2)
-    {
-      print_usage_message ();
-      exit (1);
-    }
 
-                                   // Next, collect all parameters in a list
-                                   // that will be somewhat simpler to handle
-                                   // than the <code>argc</code>/<code>argv</code> mechanism. We
-                                   // omit the name of the executable at the
-                                   // zeroth index:
-  std::list<std::string> args;
-  for (int i=1; i<argc; ++i)
-    args.push_back (argv[i]);
-
-                                   // Then process all these
-                                   // parameters. If the parameter is
-                                   // <code>-p</code>, then there must be a
-                                   // parameter file following (which
-                                   // we should then read), in case of
-                                   // <code>-x</code> it is the name of an
-                                   // output format. Finally, for
-                                   // <code>-o</code> it is the name of the
-                                   // output file. In all cases, once
-                                   // we've treated a parameter, we
-                                   // remove it from the list of
-                                   // parameters:
-  while (args.size())
+                                  // @sect4{Declaring parameters for the input file}
+
+                                  // The second function is used to declare the
+                                  // parameters this program accepts from the
+                                  // input file. While we don't actually take
+                                  // many parameters from the input file except
+                                  // for, possibly, the output file name and
+                                  // format, we nevertheless want to show how
+                                  // to work with parameter files.
+                                  //
+                                  // In short, the <code>ParameterHandler</code> class
+                                  // works as follows: one declares the entries
+                                  // of parameters that can be given in input
+                                  // files together, and later on one can read
+                                  // an input file in which these parameters
+                                  // are set to their values. If a parameter is
+                                  // not listed in the input file, the default
+                                  // value specified in the declaration of that
+                                  // parameter is used. After that, the program
+                                  // can query the values assigned to certain
+                                  // parameters from the <code>ParameterHandler</code>
+                                  // object.
+                                  //
+                                  // Declaring parameters can be done using the
+                                  // <code>ParameterHandler::declare_entry</code>
+                                  // function. It's arguments are the name of a
+                                  // parameter, a default value (given as a
+                                  // string, even if the parameter is numeric
+                                  // in nature, and thirdly an object that
+                                  // describes constraints on values that may
+                                  // be passed to this parameter. In the
+                                  // example below, we use an object of type
+                                  // <code>Patterns::Anything</code> to denote that
+                                  // there are no constraints on file names
+                                  // (this is, of course, not true -- the
+                                  // operating system does have constraints,
+                                  // but from an application standpoint, almost
+                                  // all names are valid). In other cases, one
+                                  // may, for example, use
+                                  // <code>Patterns::Integer</code> to make sure that
+                                  // only parameters are accepted that can be
+                                  // interpreted as integer values (it is also
+                                  // possible to specify bounds for integer
+                                  // values, and all values outside this range
+                                  // are rejected), <code>Patterns::Double</code> for
+                                  // floating point values, classes that make
+                                  // sure that the given parameter value is a
+                                  // comma separated list of things, etc. Take
+                                  // a look at the <code>Patterns</code> namespace to
+                                  // see what is possible.
+                                  //
+                                  // The fourth argument to <code>declare_entry</code>
+                                  // is a help string that can be printed to
+                                  // document what this parameter is meant to
+                                  // be used for and other information you may
+                                  // consider important when declaring this
+                                  // parameter. The default value of this
+                                  // fourth argument is the empty string.
+                                  //
+                                  // I always wanted to have an example program
+                                  // describing the <code>ParameterHandler</code> class,
+                                  // because it is so particularly useful. It
+                                  // would have been useful in a number of
+                                  // previous example programs (for example, in
+                                  // order to let the tolerance for linear
+                                  // solvers, or the number of refinement steps
+                                  // be determined by a run-time parameter,
+                                  // rather than hard-coding them into the
+                                  // program), but it turned out that trying to
+                                  // explain this class there would have
+                                  // overloaded them with things that would
+                                  // have distracted from the main
+                                  // purpose. However, while writing this
+                                  // program, I realized that there aren't all
+                                  // that many parameters this program can
+                                  // usefully ask for, or better, it turned
+                                  // out: declaring and querying these
+                                  // parameters was already done centralized in
+                                  // one place of the libray, namely the
+                                  // <code>DataOutInterface</code> class that handles
+                                  // exactly this -- managing parameters for
+                                  // input and output.
+                                  //
+                                  // So the second function call in this
+                                  // function is to let the
+                                  // <code>DataOutInterface</code> declare a good number
+                                  // of parameters that control everything from
+                                  // the output format to what kind of output
+                                  // should be generated if output is written
+                                  // in a specific graphical format. For
+                                  // example, when writing data in encapsulated
+                                  // postscript (EPS) format, the result is
+                                  // just a 2d projection, not data that can be
+                                  // viewed and rotated with a
+                                  // viewer. Therefore, one has to choose the
+                                  // viewing angle and a number of other
+                                  // options up front, when output is
+                                  // generated, rather than playing around with
+                                  // them later on. The call to
+                                  // <code>DataOutInterface::declare_parameters</code>
+                                  // declares entries that allow to specify
+                                  // them in the parameter input file during
+                                  // run-time. If the parameter file does not
+                                  // contain entries for them, defaults are
+                                  // taken.
+                                  //
+                                  // As a final note: <code>DataOutInterface</code> is a
+                                  // template, because it is usually used to
+                                  // write output for a specific space
+                                  // dimension. However, this program is
+                                  // supposed to be used for all dimensions at
+                                  // the same time, so we don't know at compile
+                                  // time what the right dimension is when
+                                  // specifying the template
+                                  // parameter. Fortunately, declaring
+                                  // parameters is something that is space
+                                  // dimension independent, so we can just pick
+                                  // one arbitrarily. We pick <code>1</code>, but it
+                                  // could have been any other number as well.
+  void declare_parameters ()
+  {
+    prm.declare_entry ("Output file", "",
+                      Patterns::Anything(),
+                      "The name of the output file to be generated");
+
+    DataOutInterface<1>::declare_parameters (prm);
+
+                                    // Since everything that this program can
+                                    // usefully request in terms of input
+                                    // parameters is already handled by now,
+                                    // let us nevertheless show how to use
+                                    // input parameters in other
+                                    // circumstances. First, parameters are
+                                    // like files in a directory tree: they can
+                                    // be in the top-level directory, but you
+                                    // can also group them into subdirectories
+                                    // to make it easier to find them or to be
+                                    // able to use the same parameter name in
+                                    // different contexts.
+                                    //
+                                    // Let us first declare a dummy parameter
+                                    // in the top-level section; we assume that
+                                    // it will denote the number of iterations,
+                                    // and that useful numbers of iterations
+                                    // that a user should be able to specify
+                                    // are in the range 1...1000, with a
+                                    // default value of 42:
+    prm.declare_entry ("Dummy iterations", "42",
+                      Patterns::Integer (1,1000),
+                      "A dummy parameter asking for an integer");
+
+                                    // Next, let us declare a sub-section (the
+                                    // equivalent to a subdirectory). When
+                                    // entered, all following parameter
+                                    // declarations will be within this
+                                    // subsection. To also visually group these
+                                    // declarations with the subsection name, I
+                                    // like to use curly braces to force my
+                                    // editor to indent everything that goes
+                                    // into this sub-section by one level of
+                                    // indentation. In this sub-section, we
+                                    // shall have two entries, one that takes a
+                                    // boolean parameter and one that takes a
+                                    // selection list of values, separated by
+                                    // the '|' character:
+    prm.enter_subsection ("Dummy subsection");
     {
-      if (args.front() == std::string("-p"))
-        {
-          if (args.size() == 1)
-            {
-              std::cerr << "Error: flag '-p' must be followed by the "
-                        << "name of a parameter file."
-                        << std::endl;
-              print_usage_message ();
-              exit (1);
-            }
-          args.pop_front ();
-          const std::string parameter_file = args.front ();
-          args.pop_front ();
-
-                                           // Now read the input file:
-         prm.read_input (parameter_file);
-
-                                           // Both the output file name as
-                                           // well as the format can be
-                                           // specified on the command
-                                           // line. We have therefore given
-                                           // them global variables that hold
-                                           // their values, but they can also
-                                           // be set in the parameter file. We
-                                           // therefore need to extract them
-                                           // from the parameter file here,
-                                           // because they may be overridden
-                                           // by later command line
-                                           // parameters:
-         if (output_file == "")
-           output_file = prm.get ("Output file");
-
-         if (output_format == "")
-           output_format = prm.get ("Output format");
-
-                                           // Finally, let us note that if we
-                                           // were interested in the values of
-                                           // the parameters declared above in
-                                           // the dummy subsection, we would
-                                           // write something like this to
-                                           // extract the value of the boolean
-                                           // flag (the <code>prm.get</code> function
-                                           // returns the value of a parameter
-                                           // as a string, whereas the
-                                           // <code>prm.get_X</code> functions return a
-                                           // value already converted to a
-                                           // different type):
-          prm.enter_subsection ("Dummy subsection");
-          {
-            prm.get_bool ("Dummy generate output");
-          }
-          prm.leave_subsection ();
-                                           // We would assign the result to a
-                                           // variable, or course, but don't
-                                           // here in order not to generate an
-                                           // unused variable that the
-                                           // compiler might warn about.
-                                           //
-                                           // Alas, let's move on to handling
-                                           // of output formats:
-       }
-      else if (args.front() == std::string("-x"))
-        {
-          if (args.size() == 1)
-            {
-              std::cerr << "Error: flag '-x' must be followed by the "
-                        << "name of an output format."
-                        << std::endl;
-              print_usage_message ();
-              exit (1);
-            }
-          args.pop_front ();
-          output_format = args.front();
-          args.pop_front ();
-        }
-      else if (args.front() == std::string("-o"))
-        {
-          if (args.size() == 1)
-            {
-              std::cerr << "Error: flag '-o' must be followed by the "
-                        << "name of an output file."
-                        << std::endl;
-              print_usage_message ();
-              exit (1);
-            }
-          args.pop_front ();
-          output_file = args.front();
-          args.pop_front ();
-        }
-
-                                       // Otherwise, this is not a parameter
-                                       // that starts with a known minus
-                                       // sequence, and we should consider it
-                                       // to be the name of an input file. Let
-                                       // us therefore add this file to the
-                                       // list of input files:
-      else
-        {
-          input_file_names.push_back (args.front());
-          args.pop_front ();
-        }
+      prm.declare_entry ("Dummy generate output", "true",
+                        Patterns::Bool(),
+                        "A dummy parameter that can be fed with either "
+                        "'true' or 'false'");
+      prm.declare_entry ("Dummy color of output", "red",
+                        Patterns::Selection("red|black|blue"),
+                        "A dummy parameter that shows how one can define a "
+                        "parameter that can be assigned values from a finite "
+                        "set of values");
     }
+    prm.leave_subsection ();
+                                    // After this, we have left the subsection
+                                    // again. You should have gotten the idea
+                                    // by now how one can nest subsections to
+                                    // separate parameters. There are a number
+                                    // of other possible patterns describing
+                                    // possible values of parameters; in all
+                                    // cases, if you try to pass a parameter to
+                                    // the program that does not match the
+                                    // expectations of the pattern, it will
+                                    // reject the parameter file and ask you to
+                                    // fix it. After all, it does not make much
+                                    // sense if you had an entry that contained
+                                    // the entry "red" for the parameter
+                                    // "Generate output".
+  }
 
-                                   // Next check a few things and create
-                                   // errors if the checks fail. Firstly,
-                                   // there must be at least one input file
-  if (input_file_names.size() == 0)
-    {
-      std::cerr << "Error: No input file specified." << std::endl;
-      print_usage_message ();
-      exit (1);
-    }
-}
 
+                                  // @sect4{Parsing the command line}
+
+                                  // Our next task is to see what information
+                                  // has been provided on the command
+                                  // line. First, we need to be sure that there
+                                  // is at least one parameter: an input
+                                  // file. The format and the output file can
+                                  // be specified in the parameter file, but
+                                  // the list of input files can't, so at least
+                                  // one parameter needs to be there. Together
+                                  // with the name of the program (the zeroth
+                                  // parameter), <code>argc</code> must therefore be at
+                                  // least 2. If this is not the case, we print
+                                  // an error message and exit:
+  void
+  parse_command_line (const int     argc,
+                     char *const * argv)
+  {
+    if (argc < 2)
+      {
+       print_usage_message ();
+       exit (1);
+      }
+
+                                    // Next, collect all parameters in a list
+                                    // that will be somewhat simpler to handle
+                                    // than the <code>argc</code>/<code>argv</code> mechanism. We
+                                    // omit the name of the executable at the
+                                    // zeroth index:
+    std::list<std::string> args;
+    for (int i=1; i<argc; ++i)
+      args.push_back (argv[i]);
+
+                                    // Then process all these
+                                    // parameters. If the parameter is
+                                    // <code>-p</code>, then there must be a
+                                    // parameter file following (which
+                                    // we should then read), in case of
+                                    // <code>-x</code> it is the name of an
+                                    // output format. Finally, for
+                                    // <code>-o</code> it is the name of the
+                                    // output file. In all cases, once
+                                    // we've treated a parameter, we
+                                    // remove it from the list of
+                                    // parameters:
+    while (args.size())
+      {
+       if (args.front() == std::string("-p"))
+         {
+           if (args.size() == 1)
+             {
+               std::cerr << "Error: flag '-p' must be followed by the "
+                         << "name of a parameter file."
+                         << std::endl;
+               print_usage_message ();
+               exit (1);
+             }
+           args.pop_front ();
+           const std::string parameter_file = args.front ();
+           args.pop_front ();
+
+                                            // Now read the input file:
+           prm.read_input (parameter_file);
+
+                                            // Both the output file name as
+                                            // well as the format can be
+                                            // specified on the command
+                                            // line. We have therefore given
+                                            // them global variables that hold
+                                            // their values, but they can also
+                                            // be set in the parameter file. We
+                                            // therefore need to extract them
+                                            // from the parameter file here,
+                                            // because they may be overridden
+                                            // by later command line
+                                            // parameters:
+           if (output_file == "")
+             output_file = prm.get ("Output file");
+
+           if (output_format == "")
+             output_format = prm.get ("Output format");
+
+                                            // Finally, let us note that if we
+                                            // were interested in the values of
+                                            // the parameters declared above in
+                                            // the dummy subsection, we would
+                                            // write something like this to
+                                            // extract the value of the boolean
+                                            // flag (the <code>prm.get</code> function
+                                            // returns the value of a parameter
+                                            // as a string, whereas the
+                                            // <code>prm.get_X</code> functions return a
+                                            // value already converted to a
+                                            // different type):
+           prm.enter_subsection ("Dummy subsection");
+           {
+             prm.get_bool ("Dummy generate output");
+           }
+           prm.leave_subsection ();
+                                            // We would assign the result to a
+                                            // variable, or course, but don't
+                                            // here in order not to generate an
+                                            // unused variable that the
+                                            // compiler might warn about.
+                                            //
+                                            // Alas, let's move on to handling
+                                            // of output formats:
+         }
+       else if (args.front() == std::string("-x"))
+         {
+           if (args.size() == 1)
+             {
+               std::cerr << "Error: flag '-x' must be followed by the "
+                         << "name of an output format."
+                         << std::endl;
+               print_usage_message ();
+               exit (1);
+             }
+           args.pop_front ();
+           output_format = args.front();
+           args.pop_front ();
+         }
+       else if (args.front() == std::string("-o"))
+         {
+           if (args.size() == 1)
+             {
+               std::cerr << "Error: flag '-o' must be followed by the "
+                         << "name of an output file."
+                         << std::endl;
+               print_usage_message ();
+               exit (1);
+             }
+           args.pop_front ();
+           output_file = args.front();
+           args.pop_front ();
+         }
+
+                                        // Otherwise, this is not a parameter
+                                        // that starts with a known minus
+                                        // sequence, and we should consider it
+                                        // to be the name of an input file. Let
+                                        // us therefore add this file to the
+                                        // list of input files:
+       else
+         {
+           input_file_names.push_back (args.front());
+           args.pop_front ();
+         }
+      }
+
+                                    // Next check a few things and create
+                                    // errors if the checks fail. Firstly,
+                                    // there must be at least one input file
+    if (input_file_names.size() == 0)
+      {
+       std::cerr << "Error: No input file specified." << std::endl;
+       print_usage_message ();
+       exit (1);
+      }
+  }
 
-                                 // @sect4{Generating output}
-
-                                 // Now that we have all the information, we
-                                 // need to read all the input files, merge
-                                 // them, and generate a single output
-                                 // file. This, after all, was the motivation,
-                                 // borne from the necessity encountered in
-                                 // the step-18 tutorial program, to write
-                                 // this program in the first place.
-                                 //
-                                 // So what we do first is to declare an
-                                 // object into which we will merge the data
-                                 // from all the input file, and read in the
-                                 // first file through a stream. Note that
-                                 // every time we open a file, we use the
-                                 // <code>AssertThrow</code> macro to check whether the
-                                 // file is really readable -- if it isn't
-                                 // then this will trigger an exception and
-                                 // corresponding output will be generated
-                                 // from the exception handler in <code>main()</code>:
-template <int dim, int spacedim>
-void do_convert ()
-{
-  DataOutReader<dim,spacedim> merged_data;
 
-  {  
-    std::ifstream input (input_file_names[0].c_str());
-    AssertThrow (input, ExcIO());
-  
-    merged_data.read (input);
-  }
+                                  // @sect4{Generating output}
+
+                                  // Now that we have all the information, we
+                                  // need to read all the input files, merge
+                                  // them, and generate a single output
+                                  // file. This, after all, was the motivation,
+                                  // borne from the necessity encountered in
+                                  // the step-18 tutorial program, to write
+                                  // this program in the first place.
+                                  //
+                                  // So what we do first is to declare an
+                                  // object into which we will merge the data
+                                  // from all the input file, and read in the
+                                  // first file through a stream. Note that
+                                  // every time we open a file, we use the
+                                  // <code>AssertThrow</code> macro to check whether the
+                                  // file is really readable -- if it isn't
+                                  // then this will trigger an exception and
+                                  // corresponding output will be generated
+                                  // from the exception handler in <code>main()</code>:
+  template <int dim, int spacedim>
+  void do_convert ()
+  {
+    DataOutReader<dim,spacedim> merged_data;
 
-                                  // For all the other input files, we read
-                                  // their data into an intermediate object,
-                                  // and then merge that into the first
-                                  // object declared above:
-  for (unsigned int i=1; i<input_file_names.size(); ++i)
     {
-      std::ifstream input (input_file_names[i].c_str());
+      std::ifstream input (input_file_names[0].c_str());
       AssertThrow (input, ExcIO());
 
-      DataOutReader<dim,spacedim> additional_data;  
-      additional_data.read (input);
-      merged_data.merge (additional_data);
-    } 
-
-                                   // Once we have this, let us open an output
-                                   // stream, and parse what we got as the
-                                   // name of the output format into an
-                                   // identifier. Fortunately, the
-                                   // <code>DataOutBase</code> class has a function
-                                   // that does this parsing for us, i.e. it
-                                   // knows about all the presently supported
-                                   // output formats and makes sure that they
-                                   // can be specified in the parameter file
-                                   // or on the command line. Note that this
-                                   // ensures that if the library acquires the
-                                   // ability to output in other output
-                                   // formats, this program will be able to
-                                   // make use of this ability without having
-                                   // to be changed!
-  std::ofstream output_stream (output_file.c_str());
-  AssertThrow (output_stream, ExcIO());
-
-  const DataOutBase::OutputFormat format
-    = DataOutBase::parse_output_format (output_format);
-
-                                   // Finally, write the merged data to the
-                                   // output:
-  merged_data.write(output_stream, format); 
-}
+      merged_data.read (input);
+    }
 
+                                    // For all the other input files, we read
+                                    // their data into an intermediate object,
+                                    // and then merge that into the first
+                                    // object declared above:
+    for (unsigned int i=1; i<input_file_names.size(); ++i)
+      {
+       std::ifstream input (input_file_names[i].c_str());
+       AssertThrow (input, ExcIO());
+
+       DataOutReader<dim,spacedim> additional_data;
+       additional_data.read (input);
+       merged_data.merge (additional_data);
+      }
+
+                                    // Once we have this, let us open an output
+                                    // stream, and parse what we got as the
+                                    // name of the output format into an
+                                    // identifier. Fortunately, the
+                                    // <code>DataOutBase</code> class has a function
+                                    // that does this parsing for us, i.e. it
+                                    // knows about all the presently supported
+                                    // output formats and makes sure that they
+                                    // can be specified in the parameter file
+                                    // or on the command line. Note that this
+                                    // ensures that if the library acquires the
+                                    // ability to output in other output
+                                    // formats, this program will be able to
+                                    // make use of this ability without having
+                                    // to be changed!
+    std::ofstream output_stream (output_file.c_str());
+    AssertThrow (output_stream, ExcIO());
+
+    const DataOutBase::OutputFormat format
+      = DataOutBase::parse_output_format (output_format);
+
+                                    // Finally, write the merged data to the
+                                    // output:
+    merged_data.write(output_stream, format);
+  }
 
-                                 // @sect4{Dispatching output generation}
-
-                                 // The function above takes template
-                                 // parameters relating to the space dimension
-                                 // of the output, and the dimension of the
-                                 // objects to be output. (For example, when
-                                 // outputting whole cells, these two
-                                 // dimensions are the same, but the
-                                 // intermediate files may contain only data
-                                 // pertaining to the faces of cells, in which
-                                 // case the first parameter will be one less
-                                 // than the space dimension.)
-                                 //
-                                 // The problem is: at compile time, we of
-                                 // course don't know the dimensions used in
-                                 // the input files. We have to plan for all
-                                 // cases, therefore. This is a little clumsy,
-                                 // since we need to specify the dimensions
-                                 // statically at compile time, even though we
-                                 // will only know about them at run time.
-                                 //
-                                 // So here is what we do: from the first
-                                 // input file, we determine (using a function
-                                 // in <code>DataOutBase</code> that exists for this
-                                 // purpose) these dimensions. We then have a
-                                 // series of switches that dispatch,
-                                 // statically, to the <code>do_convert</code>
-                                 // functions with different template
-                                 // arguments. Not pretty, but works. Apart
-                                 // from this, the function does nothing --
-                                 // except making sure that it covered the
-                                 // dimensions for which it was called, using
-                                 // the <code>AssertThrow</code> macro at places in the
-                                 // code that shouldn't be reached:
-void convert ()
-{
-  AssertThrow (input_file_names.size() > 0,
-               ExcMessage ("No input files specified."));
-  
-  std::ifstream input(input_file_names[0].c_str());
-  AssertThrow (input, ExcIO());
-  
-  const std::pair<unsigned int, unsigned int>
-    dimensions = DataOutBase::determine_intermediate_format_dimensions (input);
-
-  switch (dimensions.first)
-    {
-      case 1:
-            switch (dimensions.second)
-              {
-                case 1:
-                      do_convert <1,1> ();
-                      return;
-                      
-                case 2:
-                      do_convert <1,2> ();
-                      return;
-              }
-            AssertThrow (false, ExcNotImplemented());
-            
-      case 2:
-            switch (dimensions.second)
-              {
-                case 2:
-                      do_convert <2,2> ();
-                      return;
-
-                case 3:
-                      do_convert <2,3> ();
-                      return;
-              }
-            AssertThrow (false, ExcNotImplemented());
-
-      case 3:
-            switch (dimensions.second)
-              {
-                case 3:
-                      do_convert <3,3> ();
-                      return;
-              }
-            AssertThrow (false, ExcNotImplemented());
-    }
-  
-  AssertThrow (false, ExcNotImplemented());
+
+                                  // @sect4{Dispatching output generation}
+
+                                  // The function above takes template
+                                  // parameters relating to the space dimension
+                                  // of the output, and the dimension of the
+                                  // objects to be output. (For example, when
+                                  // outputting whole cells, these two
+                                  // dimensions are the same, but the
+                                  // intermediate files may contain only data
+                                  // pertaining to the faces of cells, in which
+                                  // case the first parameter will be one less
+                                  // than the space dimension.)
+                                  //
+                                  // The problem is: at compile time, we of
+                                  // course don't know the dimensions used in
+                                  // the input files. We have to plan for all
+                                  // cases, therefore. This is a little clumsy,
+                                  // since we need to specify the dimensions
+                                  // statically at compile time, even though we
+                                  // will only know about them at run time.
+                                  //
+                                  // So here is what we do: from the first
+                                  // input file, we determine (using a function
+                                  // in <code>DataOutBase</code> that exists for this
+                                  // purpose) these dimensions. We then have a
+                                  // series of switches that dispatch,
+                                  // statically, to the <code>do_convert</code>
+                                  // functions with different template
+                                  // arguments. Not pretty, but works. Apart
+                                  // from this, the function does nothing --
+                                  // except making sure that it covered the
+                                  // dimensions for which it was called, using
+                                  // the <code>AssertThrow</code> macro at places in the
+                                  // code that shouldn't be reached:
+  void convert ()
+  {
+    AssertThrow (input_file_names.size() > 0,
+                ExcMessage ("No input files specified."));
+
+    std::ifstream input(input_file_names[0].c_str());
+    AssertThrow (input, ExcIO());
+
+    const std::pair<unsigned int, unsigned int>
+      dimensions = DataOutBase::determine_intermediate_format_dimensions (input);
+
+    switch (dimensions.first)
+      {
+       case 1:
+             switch (dimensions.second)
+               {
+                 case 1:
+                       do_convert <1,1> ();
+                       return;
+
+                 case 2:
+                       do_convert <1,2> ();
+                       return;
+               }
+             AssertThrow (false, ExcNotImplemented());
+
+       case 2:
+             switch (dimensions.second)
+               {
+                 case 2:
+                       do_convert <2,2> ();
+                       return;
+
+                 case 3:
+                       do_convert <2,3> ();
+                       return;
+               }
+             AssertThrow (false, ExcNotImplemented());
+
+       case 3:
+             switch (dimensions.second)
+               {
+                 case 3:
+                       do_convert <3,3> ();
+                       return;
+               }
+             AssertThrow (false, ExcNotImplemented());
+      }
+
+    AssertThrow (false, ExcNotImplemented());
+  }
 }
 
 
 
-                                 // @sect4{main()}
+                                // @sect4{main()}
 
-                                 // Finally, the main program. There is not
-                                 // much more to do than to make sure
-                                 // parameters are declared, the command line
-                                 // is parsed (which includes reading
-                                 // parameter files), and finally making sure
-                                 // the input files are read and output is
-                                 // generated. Everything else just has to do
-                                 // with handling exceptions and making sure
-                                 // that appropriate output is generated if
-                                 // one is thrown.
+                                // Finally, the main program. There is not
+                                // much more to do than to make sure
+                                // parameters are declared, the command line
+                                // is parsed (which includes reading
+                                // parameter files), and finally making sure
+                                // the input files are read and output is
+                                // generated. Everything else just has to do
+                                // with handling exceptions and making sure
+                                // that appropriate output is generated if
+                                // one is thrown.
 int main (int argc, char ** argv)
 {
   try
     {
+      using namespace Step19;
+
       declare_parameters ();
       parse_command_line (argc, argv);
 
@@ -645,27 +652,27 @@ int main (int argc, char ** argv)
   catch (std::exception &exc)
     {
       std::cerr << std::endl << std::endl
-                << "----------------------------------------------------"
-                << std::endl;
+               << "----------------------------------------------------"
+               << std::endl;
       std::cerr << "Exception on processing: " << std::endl
-                << exc.what() << std::endl
-                << "Aborting!" << std::endl
-                << "----------------------------------------------------"
-                << std::endl;
+               << exc.what() << std::endl
+               << "Aborting!" << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
+
       return 1;
     }
   catch (...)
     {
       std::cerr << std::endl << std::endl
-                << "----------------------------------------------------"
-                << std::endl;
+               << "----------------------------------------------------"
+               << std::endl;
       std::cerr << "Unknown exception!" << std::endl
-                << "Aborting!" << std::endl
-                << "----------------------------------------------------"
-                << std::endl;
+               << "Aborting!" << std::endl
+               << "----------------------------------------------------"
+               << std::endl;
       return 1;
     };
+
   return 0;
-}                                
+}
index 73646d2e33323badf260c61e5c6ba0454de2a92b..657ec43458c391ef1eb313a3c5340a17d613b911 100644 (file)
 
                                 // The last step is as in all
                                 // previous programs:
-using namespace dealii;
-
-                                 // @sect3{The <code>MixedLaplaceProblem</code> class template}
-
-                                // Again, since this is an adaptation
-                                // of step-6, the main class is
-                                // almost the same as the one in that
-                                // tutorial program. In terms of
-                                // member functions, the main
-                                // differences are that the
-                                // constructor takes the degree of
-                                // the Raviart-Thomas element as an
-                                // argument (and that there is a
-                                // corresponding member variable to
-                                // store this value) and the addition
-                                // of the <code>compute_error</code> function
-                                // in which, no surprise, we will
-                                // compute the difference between the
-                                // exact and the numerical solution
-                                // to determine convergence of our
-                                // computations:
-template <int dim>
-class MixedLaplaceProblem 
+namespace Step20
 {
-  public:
-    MixedLaplaceProblem (const unsigned int degree);
-    void run ();
-    
-  private:
-    void make_grid_and_dofs ();
-    void assemble_system ();
-    void solve ();
-    void compute_errors () const;
-    void output_results () const;
-
-    const unsigned int   degree;
-    
-    Triangulation<dim>   triangulation;
-    FESystem<dim>        fe;
-    DoFHandler<dim>      dof_handler;
-
-                                    // The second difference is that
-                                    // the sparsity pattern, the
-                                    // system matrix, and solution
-                                    // and right hand side vectors
-                                    // are now blocked. What this
-                                    // means and what one can do with
-                                    // such objects is explained in
-                                    // the introduction to this
-                                    // program as well as further
-                                    // down below when we explain the
-                                    // linear solvers and
-                                    // preconditioners for this
-                                    // problem:
-    BlockSparsityPattern      sparsity_pattern;
-    BlockSparseMatrix<double> system_matrix;
-
-    BlockVector<double>       solution;
-    BlockVector<double>       system_rhs;
-};
-
-
-                                // @sect3{Right hand side, boundary values, and exact solution}
-
-                                // Our next task is to define the
-                                // right hand side of our problem
-                                // (i.e., the scalar right hand side
-                                // for the pressure in the original
-                                // Laplace equation), boundary values
-                                // for the pressure, as well as a
-                                // function that describes both the
-                                // pressure and the velocity of the
-                                // exact solution for later
-                                // computations of the error. Note
-                                // that these functions have one,
-                                // one, and <code>dim+1</code> components,
-                                // respectively, and that we pass the
-                                // number of components down to the
-                                // <code>Function@<dim@></code> base class. For
-                                // the exact solution, we only
-                                // declare the function that actually
-                                // returns the entire solution vector
-                                // (i.e. all components of it) at
-                                // once. Here are the respective
-                                // declarations:
-template <int dim>
-class RightHandSide : public Function<dim> 
-{
-  public:
-    RightHandSide () : Function<dim>(1) {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
+  using namespace dealii;
+
+                                  // @sect3{The <code>MixedLaplaceProblem</code> class template}
+
+                                  // Again, since this is an adaptation
+                                  // of step-6, the main class is
+                                  // almost the same as the one in that
+                                  // tutorial program. In terms of
+                                  // member functions, the main
+                                  // differences are that the
+                                  // constructor takes the degree of
+                                  // the Raviart-Thomas element as an
+                                  // argument (and that there is a
+                                  // corresponding member variable to
+                                  // store this value) and the addition
+                                  // of the <code>compute_error</code> function
+                                  // in which, no surprise, we will
+                                  // compute the difference between the
+                                  // exact and the numerical solution
+                                  // to determine convergence of our
+                                  // computations:
+  template <int dim>
+  class MixedLaplaceProblem
+  {
+    public:
+      MixedLaplaceProblem (const unsigned int degree);
+      void run ();
+
+    private:
+      void make_grid_and_dofs ();
+      void assemble_system ();
+      void solve ();
+      void compute_errors () const;
+      void output_results () const;
+
+      const unsigned int   degree;
+
+      Triangulation<dim>   triangulation;
+      FESystem<dim>        fe;
+      DoFHandler<dim>      dof_handler;
+
+                                      // The second difference is that
+                                      // the sparsity pattern, the
+                                      // system matrix, and solution
+                                      // and right hand side vectors
+                                      // are now blocked. What this
+                                      // means and what one can do with
+                                      // such objects is explained in
+                                      // the introduction to this
+                                      // program as well as further
+                                      // down below when we explain the
+                                      // linear solvers and
+                                      // preconditioners for this
+                                      // problem:
+      BlockSparsityPattern      sparsity_pattern;
+      BlockSparseMatrix<double> system_matrix;
+
+      BlockVector<double>       solution;
+      BlockVector<double>       system_rhs;
+  };
+
+
+                                  // @sect3{Right hand side, boundary values, and exact solution}
+
+                                  // Our next task is to define the
+                                  // right hand side of our problem
+                                  // (i.e., the scalar right hand side
+                                  // for the pressure in the original
+                                  // Laplace equation), boundary values
+                                  // for the pressure, as well as a
+                                  // function that describes both the
+                                  // pressure and the velocity of the
+                                  // exact solution for later
+                                  // computations of the error. Note
+                                  // that these functions have one,
+                                  // one, and <code>dim+1</code> components,
+                                  // respectively, and that we pass the
+                                  // number of components down to the
+                                  // <code>Function@<dim@></code> base class. For
+                                  // the exact solution, we only
+                                  // declare the function that actually
+                                  // returns the entire solution vector
+                                  // (i.e. all components of it) at
+                                  // once. Here are the respective
+                                  // declarations:
+  template <int dim>
+  class RightHandSide : public Function<dim>
+  {
+    public:
+      RightHandSide () : Function<dim>(1) {}
 
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
-template <int dim>
-class PressureBoundaryValues : public Function<dim> 
-{
-  public:
-    PressureBoundaryValues () : Function<dim>(1) {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
 
 
-template <int dim>
-class ExactSolution : public Function<dim> 
-{
-  public:
-    ExactSolution () : Function<dim>(dim+1) {}
-    
-    virtual void vector_value (const Point<dim> &p, 
-                              Vector<double>   &value) const;
-};
-
-
-                                // And then we also have to define
-                                // these respective functions, of
-                                // course. Given our discussion in
-                                // the introduction of how the
-                                // solution should look like, the
-                                // following computations should be
-                                // straightforward:
-template <int dim>
-double RightHandSide<dim>::value (const Point<dim>  &/*p*/,
-                                 const unsigned int /*component*/) const 
-{
-  return 0;
-}
+  template <int dim>
+  class PressureBoundaryValues : public Function<dim>
+  {
+    public:
+      PressureBoundaryValues () : Function<dim>(1) {}
 
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
 
-template <int dim>
-double PressureBoundaryValues<dim>::value (const Point<dim>  &p,
-                                          const unsigned int /*component*/) const 
-{
-  const double alpha = 0.3;
-  const double beta = 1;
-  return -(alpha*p[0]*p[1]*p[1]/2 + beta*p[0] - alpha*p[0]*p[0]*p[0]/6);
-}
+  template <int dim>
+  class ExactSolution : public Function<dim>
+  {
+    public:
+      ExactSolution () : Function<dim>(dim+1) {}
+
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &value) const;
+  };
+
+
+                                  // And then we also have to define
+                                  // these respective functions, of
+                                  // course. Given our discussion in
+                                  // the introduction of how the
+                                  // solution should look like, the
+                                  // following computations should be
+                                  // straightforward:
+  template <int dim>
+  double RightHandSide<dim>::value (const Point<dim>  &/*p*/,
+                                   const unsigned int /*component*/) const
+  {
+    return 0;
+  }
 
 
 
-template <int dim>
-void
-ExactSolution<dim>::vector_value (const Point<dim> &p,
-                                 Vector<double>   &values) const 
-{
-  Assert (values.size() == dim+1,
-         ExcDimensionMismatch (values.size(), dim+1));
+  template <int dim>
+  double PressureBoundaryValues<dim>::value (const Point<dim>  &p,
+                                            const unsigned int /*component*/) const
+  {
+    const double alpha = 0.3;
+    const double beta = 1;
+    return -(alpha*p[0]*p[1]*p[1]/2 + beta*p[0] - alpha*p[0]*p[0]*p[0]/6);
+  }
 
-  const double alpha = 0.3;
-  const double beta = 1;
 
-  values(0) = alpha*p[1]*p[1]/2 + beta - alpha*p[0]*p[0]/2;
-  values(1) = alpha*p[0]*p[1];
-  values(2) = -(alpha*p[0]*p[1]*p[1]/2 + beta*p[0] - alpha*p[0]*p[0]*p[0]/6);
-}
 
+  template <int dim>
+  void
+  ExactSolution<dim>::vector_value (const Point<dim> &p,
+                                   Vector<double>   &values) const
+  {
+    Assert (values.size() == dim+1,
+           ExcDimensionMismatch (values.size(), dim+1));
 
+    const double alpha = 0.3;
+    const double beta = 1;
 
-                                // @sect3{The inverse permeability tensor}
-
-                                 // In addition to the other equation
-                                 // data, we also want to use a
-                                 // permeability tensor, or better --
-                                 // because this is all that appears
-                                 // in the weak form -- the inverse of
-                                 // the permeability tensor,
-                                 // <code>KInverse</code>. For the purpose of
-                                 // verifying the exactness of the
-                                 // solution and determining
-                                 // convergence orders, this tensor is
-                                 // more in the way than helpful. We
-                                 // will therefore simply set it to
-                                 // the identity matrix.
-                                 //
-                                 // However, a spatially varying
-                                 // permeability tensor is
-                                 // indispensable in real-life porous
-                                 // media flow simulations, and we
-                                 // would like to use the opportunity
-                                 // to demonstrate the technique to
-                                 // use tensor valued functions.
-                                 //
-                                 // Possibly unsurprising, deal.II
-                                 // also has a base class not only for
-                                 // scalar and generally vector-valued
-                                 // functions (the <code>Function</code> base
-                                 // class) but also for functions that
-                                 // return tensors of fixed dimension
-                                 // and rank, the <code>TensorFunction</code>
-                                 // template. Here, the function under
-                                 // consideration returns a dim-by-dim
-                                 // matrix, i.e. a tensor of rank 2
-                                 // and dimension <code>dim</code>. We then
-                                 // choose the template arguments of
-                                 // the base class appropriately.
-                                 //
-                                 // The interface that the
-                                 // <code>TensorFunction</code> class provides
-                                 // is essentially equivalent to the
-                                 // <code>Function</code> class. In particular,
-                                 // there exists a <code>value_list</code>
-                                 // function that takes a list of
-                                 // points at which to evaluate the
-                                 // function, and returns the values
-                                 // of the function in the second
-                                 // argument, a list of tensors:
-template <int dim>
-class KInverse : public TensorFunction<2,dim>
-{
-  public:
-    KInverse () : TensorFunction<2,dim>() {}
-    
-    virtual void value_list (const std::vector<Point<dim> > &points,
-                            std::vector<Tensor<2,dim> >    &values) const;
-};
-
-
-                                 // The implementation is less
-                                 // interesting. As in previous
-                                 // examples, we add a check to the
-                                 // beginning of the class to make
-                                 // sure that the sizes of input and
-                                 // output parameters are the same
-                                 // (see step-5 for a discussion of
-                                 // this technique). Then we loop over
-                                 // all evaluation points, and for
-                                 // each one first clear the output
-                                 // tensor and then set all its
-                                 // diagonal elements to one
-                                 // (i.e. fill the tensor with the
-                                 // identity matrix):
-template <int dim>
-void
-KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
-                           std::vector<Tensor<2,dim> >    &values) const
-{
-  Assert (points.size() == values.size(),
-         ExcDimensionMismatch (points.size(), values.size()));
+    values(0) = alpha*p[1]*p[1]/2 + beta - alpha*p[0]*p[0]/2;
+    values(1) = alpha*p[0]*p[1];
+    values(2) = -(alpha*p[0]*p[1]*p[1]/2 + beta*p[0] - alpha*p[0]*p[0]*p[0]/6);
+  }
 
-  for (unsigned int p=0; p<points.size(); ++p)
-    {
-      values[p].clear ();
 
-      for (unsigned int d=0; d<dim; ++d)
-       values[p][d][d] = 1.;
-    }
-}
 
+                                  // @sect3{The inverse permeability tensor}
+
+                                  // In addition to the other equation
+                                  // data, we also want to use a
+                                  // permeability tensor, or better --
+                                  // because this is all that appears
+                                  // in the weak form -- the inverse of
+                                  // the permeability tensor,
+                                  // <code>KInverse</code>. For the purpose of
+                                  // verifying the exactness of the
+                                  // solution and determining
+                                  // convergence orders, this tensor is
+                                  // more in the way than helpful. We
+                                  // will therefore simply set it to
+                                  // the identity matrix.
+                                  //
+                                  // However, a spatially varying
+                                  // permeability tensor is
+                                  // indispensable in real-life porous
+                                  // media flow simulations, and we
+                                  // would like to use the opportunity
+                                  // to demonstrate the technique to
+                                  // use tensor valued functions.
+                                  //
+                                  // Possibly unsurprising, deal.II
+                                  // also has a base class not only for
+                                  // scalar and generally vector-valued
+                                  // functions (the <code>Function</code> base
+                                  // class) but also for functions that
+                                  // return tensors of fixed dimension
+                                  // and rank, the <code>TensorFunction</code>
+                                  // template. Here, the function under
+                                  // consideration returns a dim-by-dim
+                                  // matrix, i.e. a tensor of rank 2
+                                  // and dimension <code>dim</code>. We then
+                                  // choose the template arguments of
+                                  // the base class appropriately.
+                                  //
+                                  // The interface that the
+                                  // <code>TensorFunction</code> class provides
+                                  // is essentially equivalent to the
+                                  // <code>Function</code> class. In particular,
+                                  // there exists a <code>value_list</code>
+                                  // function that takes a list of
+                                  // points at which to evaluate the
+                                  // function, and returns the values
+                                  // of the function in the second
+                                  // argument, a list of tensors:
+  template <int dim>
+  class KInverse : public TensorFunction<2,dim>
+  {
+    public:
+      KInverse () : TensorFunction<2,dim>() {}
+
+      virtual void value_list (const std::vector<Point<dim> > &points,
+                              std::vector<Tensor<2,dim> >    &values) const;
+  };
+
+
+                                  // The implementation is less
+                                  // interesting. As in previous
+                                  // examples, we add a check to the
+                                  // beginning of the class to make
+                                  // sure that the sizes of input and
+                                  // output parameters are the same
+                                  // (see step-5 for a discussion of
+                                  // this technique). Then we loop over
+                                  // all evaluation points, and for
+                                  // each one first clear the output
+                                  // tensor and then set all its
+                                  // diagonal elements to one
+                                  // (i.e. fill the tensor with the
+                                  // identity matrix):
+  template <int dim>
+  void
+  KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
+                            std::vector<Tensor<2,dim> >    &values) const
+  {
+    Assert (points.size() == values.size(),
+           ExcDimensionMismatch (points.size(), values.size()));
 
+    for (unsigned int p=0; p<points.size(); ++p)
+      {
+       values[p].clear ();
 
-                                 // @sect3{MixedLaplaceProblem class implementation}
-
-                                 // @sect4{MixedLaplaceProblem::MixedLaplaceProblem}
-
-                                 // In the constructor of this class,
-                                 // we first store the value that was
-                                 // passed in concerning the degree of
-                                 // the finite elements we shall use
-                                 // (a degree of zero, for example,
-                                 // means to use RT(0) and DG(0)), and
-                                 // then construct the vector valued
-                                 // element belonging to the space X_h
-                                 // described in the introduction. The
-                                 // rest of the constructor is as in
-                                 // the early tutorial programs.
-                                 //
-                                 // The only thing worth describing
-                                 // here is the constructor call of
-                                 // the <code>fe</code> variable. The
-                                 // <code>FESystem</code> class to which this
-                                 // variable belongs has a number of
-                                 // different constructors that all
-                                 // refer to binding simpler elements
-                                 // together into one larger
-                                 // element. In the present case, we
-                                 // want to couple a single RT(degree)
-                                 // element with a single DQ(degree)
-                                 // element. The constructor to
-                                 // <code>FESystem</code> that does this
-                                 // requires us to specity first the
-                                 // first base element (the
-                                 // <code>FE_RaviartThomas</code> object of
-                                 // given degree) and then the number
-                                 // of copies for this base element,
-                                 // and then similarly the kind and
-                                 // number of <code>FE_DGQ</code>
-                                 // elements. Note that the Raviart
-                                 // Thomas element already has <code>dim</code>
-                                 // vector components, so that the
-                                 // coupled element will have
-                                 // <code>dim+1</code> vector components, the
-                                 // first <code>dim</code> of which correspond
-                                 // to the velocity variable whereas the
-                                 // last one corresponds to the
-                                 // pressure.
-                                 //
-                                 // It is also worth comparing the way
-                                 // we constructed this element from
-                                 // its base elements, with the way we
-                                 // have done so in step-8: there, we
-                                 // have built it as <code>fe
-                                 // (FE_Q@<dim@>(1), dim)</code>, i.e. we
-                                 // have simply used <code>dim</code> copies of
-                                 // the <code>FE_Q(1)</code> element, one copy
-                                 // for the displacement in each
-                                 // coordinate direction.
-template <int dim>
-MixedLaplaceProblem<dim>::MixedLaplaceProblem (const unsigned int degree)
-               :
-               degree (degree),
-                fe (FE_RaviartThomas<dim>(degree), 1,
-                    FE_DGQ<dim>(degree), 1),
-               dof_handler (triangulation)
-{}
-
-
-
-                                 // @sect4{MixedLaplaceProblem::make_grid_and_dofs}
-
-                                 // This next function starts out with
-                                 // well-known functions calls that
-                                 // create and refine a mesh, and then
-                                 // associate degrees of freedom with
-                                 // it:
-template <int dim>
-void MixedLaplaceProblem<dim>::make_grid_and_dofs ()
-{
-  GridGenerator::hyper_cube (triangulation, -1, 1);
-  triangulation.refine_global (3);
-  
-  dof_handler.distribute_dofs (fe);
-
-                                   // However, then things become
-                                   // different. As mentioned in the
-                                   // introduction, we want to
-                                   // subdivide the matrix into blocks
-                                   // corresponding to the two
-                                   // different kinds of variables,
-                                   // velocity and pressure. To this end,
-                                   // we first have to make sure that
-                                   // the indices corresponding to
-                                   // velocities and pressures are not
-                                   // intermingled: First all velocity
-                                   // degrees of freedom, then all
-                                   // pressure DoFs. This way, the
-                                   // global matrix separates nicely
-                                   // into a 2x2 system. To achieve
-                                   // this, we have to renumber
-                                   // degrees of freedom base on their
-                                   // vector component, an operation
-                                   // that conveniently is already
-                                   // implemented:
-  DoFRenumbering::component_wise (dof_handler);
-
-                                   // The next thing is that we want
-                                   // to figure out the sizes of these
-                                   // blocks, so that we can allocate
-                                   // an appropriate amount of
-                                   // space. To this end, we call the
-                                   // <code>DoFTools::count_dofs_per_component</code>
-                                   // function that counts how many
-                                   // shape functions are non-zero for
-                                   // a particular vector
-                                   // component. We have <code>dim+1</code>
-                                   // vector components, and we have
-                                   // to use the knowledge that for
-                                   // Raviart-Thomas elements all
-                                   // shape functions are nonzero in
-                                   // all components. In other words,
-                                   // the number of velocity shape
-                                   // functions equals the number of
-                                   // overall shape functions that are
-                                   // nonzero in the zeroth vector
-                                   // component. On the other hand,
-                                   // the number of pressure variables
-                                   // equals the number of shape
-                                   // functions that are nonzero in
-                                   // the dim-th component. Let us
-                                   // compute these numbers and then
-                                   // create some nice output with
-                                   // that:
-  std::vector<unsigned int> dofs_per_component (dim+1);
-  DoFTools::count_dofs_per_component (dof_handler, dofs_per_component);  
-  const unsigned int n_u = dofs_per_component[0],
-                     n_p = dofs_per_component[dim];
-
-  std::cout << "Number of active cells: "
-           << triangulation.n_active_cells()
-           << std::endl
-           << "Total number of cells: "
-           << triangulation.n_cells()
-           << std::endl
-            << "Number of degrees of freedom: "
-           << dof_handler.n_dofs()
-            << " (" << n_u << '+' << n_p << ')'
-           << std::endl;
-
-                                   // The next task is to allocate a
-                                   // sparsity pattern for the matrix
-                                   // that we will create. The way
-                                   // this works is that we first
-                                   // obtain a guess for the maximal
-                                   // number of nonzero entries per
-                                   // row (this could be done more
-                                   // efficiently in this case, but we
-                                   // only want to solve relatively
-                                   // small problems for which this is
-                                   // not so important). In the second
-                                   // step, we allocate a 2x2 block
-                                   // pattern and then reinitialize
-                                   // each of the blocks to its
-                                   // correct size using the <code>n_u</code>
-                                   // and <code>n_p</code> variables defined
-                                   // above that hold the number of
-                                   // velocity and pressure
-                                   // variables. In this second step,
-                                   // we only operate on the
-                                   // individual blocks of the
-                                   // system. In the third step, we
-                                   // therefore have to instruct the
-                                   // overlying block system to update
-                                   // its knowledge about the sizes of
-                                   // the blocks it manages; this
-                                   // happens with the
-                                   // <code>sparsity_pattern.collect_sizes()</code>
-                                   // call:
-  const unsigned int
-    n_couplings = dof_handler.max_couplings_between_dofs();
-  
-  sparsity_pattern.reinit (2,2);
-  sparsity_pattern.block(0,0).reinit (n_u, n_u, n_couplings);
-  sparsity_pattern.block(1,0).reinit (n_p, n_u, n_couplings);
-  sparsity_pattern.block(0,1).reinit (n_u, n_p, n_couplings);
-  sparsity_pattern.block(1,1).reinit (n_p, n_p, n_couplings);
-  sparsity_pattern.collect_sizes();
-
-                                   // Now that the sparsity pattern
-                                   // and its blocks have the correct
-                                   // sizes, we actually need to
-                                   // construct the content of this
-                                   // pattern, and as usual compress
-                                   // it, before we also initialize a
-                                   // block matrix with this block
-                                   // sparsity pattern:
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress();
-
-  system_matrix.reinit (sparsity_pattern);
-
-                                   // Then we have to resize the
-                                   // solution and right hand side
-                                   // vectors in exactly the same way:
-  solution.reinit (2);
-  solution.block(0).reinit (n_u);
-  solution.block(1).reinit (n_p);
-  solution.collect_sizes ();
-  
-  system_rhs.reinit (2);
-  system_rhs.block(0).reinit (n_u);
-  system_rhs.block(1).reinit (n_p);
-  system_rhs.collect_sizes ();
-}
+       for (unsigned int d=0; d<dim; ++d)
+         values[p][d][d] = 1.;
+      }
+  }
 
 
-                                 // @sect4{MixedLaplaceProblem::assemble_system}
-                                 // Similarly, the function that
-                                 // assembles the linear system has
-                                 // mostly been discussed already in
-                                 // the introduction to this
-                                 // example. At its top, what happens
-                                 // are all the usual steps, with the
-                                 // addition that we do not only
-                                 // allocate quadrature and
-                                 // <code>FEValues</code> objects for the cell
-                                 // terms, but also for face
-                                 // terms. After that, we define the
-                                 // usual abbreviations for variables,
-                                 // and the allocate space for the
-                                 // local matrix and right hand side
-                                 // contributions, and the array that
-                                 // holds the global numbers of the
-                                 // degrees of freedom local to the
-                                 // present cell.
-template <int dim>
-void MixedLaplaceProblem<dim>::assemble_system () 
-{  
-  QGauss<dim>   quadrature_formula(degree+2);
-  QGauss<dim-1> face_quadrature_formula(degree+2);
-
-  FEValues<dim> fe_values (fe, quadrature_formula, 
-                          update_values    | update_gradients |
-                           update_quadrature_points  | update_JxW_values);
-  FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula, 
-                                   update_values    | update_normal_vectors |
-                                   update_quadrature_points  | update_JxW_values);
-
-  const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
-  const unsigned int   n_q_points      = quadrature_formula.size();
-  const unsigned int   n_face_q_points = face_quadrature_formula.size();
-
-  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       local_rhs (dofs_per_cell);
-
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-  
-                                   // The next step is to declare
-                                   // objects that represent the
-                                   // source term, pressure boundary
-                                   // value, and coefficient in the
-                                   // equation. In addition to these
-                                   // objects that represent
-                                   // continuous functions, we also
-                                   // need arrays to hold their values
-                                   // at the quadrature points of
-                                   // individual cells (or faces, for
-                                   // the boundary values). Note that
-                                   // in the case of the coefficient,
-                                   // the array has to be one of
-                                   // matrices.
-  const RightHandSide<dim>          right_hand_side;
-  const PressureBoundaryValues<dim> pressure_boundary_values;
-  const KInverse<dim>               k_inverse;
-  
-  std::vector<double> rhs_values (n_q_points);
-  std::vector<double> boundary_values (n_face_q_points);
-  std::vector<Tensor<2,dim> > k_inverse_values (n_q_points);
-
-                                  // Finally, we need a couple of extractors
-                                  // that we will use to get at the velocity
-                                  // and pressure components of vector-valued
-                                  // shape functions. Their function and use
-                                  // is described in detail in the @ref
-                                  // vector_valued report. Essentially, we
-                                  // will use them as subscripts on the
-                                  // FEValues objects below: the FEValues
-                                  // object describes all vector components
-                                  // of shape functions, while after
-                                  // subscription, it will only refer to the
-                                  // velocities (a set of <code>dim</code>
-                                  // components starting at component zero)
-                                  // or the pressure (a scalar component
-                                  // located at position <code>dim</code>):
-  const FEValuesExtractors::Vector velocities (0);
-  const FEValuesExtractors::Scalar pressure (dim);
-
-                                   // With all this in place, we can
-                                   // go on with the loop over all
-                                   // cells. The body of this loop has
-                                   // been discussed in the
-                                   // introduction, and will not be
-                                   // commented any further here:
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-      local_matrix = 0;
-      local_rhs = 0;
-
-      right_hand_side.value_list (fe_values.get_quadrature_points(),
-                                  rhs_values);
-      k_inverse.value_list (fe_values.get_quadrature_points(),
-                            k_inverse_values);
-      
-      for (unsigned int q=0; q<n_q_points; ++q) 
-        for (unsigned int i=0; i<dofs_per_cell; ++i)
-          {
-            const Tensor<1,dim> phi_i_u     = fe_values[velocities].value (i, q);
-            const double        div_phi_i_u = fe_values[velocities].divergence (i, q);
-            const double        phi_i_p     = fe_values[pressure].value (i, q);
-            
-            for (unsigned int j=0; j<dofs_per_cell; ++j)
-              {
-               const Tensor<1,dim> phi_j_u     = fe_values[velocities].value (j, q);
-               const double        div_phi_j_u = fe_values[velocities].divergence (j, q);
-               const double        phi_j_p     = fe_values[pressure].value (j, q);
-                
-                local_matrix(i,j) += (phi_i_u * k_inverse_values[q] * phi_j_u
-                                      - div_phi_i_u * phi_j_p
-                                      - phi_i_p * div_phi_j_u)
-                                     * fe_values.JxW(q);
-              }
-
-            local_rhs(i) += -phi_i_p *
-                            rhs_values[q] *
-                            fe_values.JxW(q);
-          }
-
-      for (unsigned int face_no=0;
-          face_no<GeometryInfo<dim>::faces_per_cell;
-          ++face_no)
-       if (cell->at_boundary(face_no))
-         {
-           fe_face_values.reinit (cell, face_no);
-           
-           pressure_boundary_values
-             .value_list (fe_face_values.get_quadrature_points(),
-                          boundary_values);
-
-           for (unsigned int q=0; q<n_face_q_points; ++q) 
-             for (unsigned int i=0; i<dofs_per_cell; ++i)
-               local_rhs(i) += -(fe_face_values[velocities].value (i, q) *
-                                 fe_face_values.normal_vector(q) *
-                                 boundary_values[q] *
-                                 fe_face_values.JxW(q));
-         }
-
-                                       // The final step in the loop
-                                       // over all cells is to
-                                       // transfer local contributions
-                                       // into the global matrix and
-                                       // right hand side vector. Note
-                                       // that we use exactly the same
-                                       // interface as in previous
-                                       // examples, although we now
-                                       // use block matrices and
-                                       // vectors instead of the
-                                       // regular ones. In other
-                                       // words, to the outside world,
-                                       // block objects have the same
-                                       // interface as matrices and
-                                       // vectors, but they
-                                       // additionally allow to access
-                                       // individual blocks.
-      cell->get_dof_indices (local_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-        for (unsigned int j=0; j<dofs_per_cell; ++j)
-          system_matrix.add (local_dof_indices[i],
-                             local_dof_indices[j],
-                             local_matrix(i,j));
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-        system_rhs(local_dof_indices[i]) += local_rhs(i);
-    }
-}
 
+                                  // @sect3{MixedLaplaceProblem class implementation}
+
+                                  // @sect4{MixedLaplaceProblem::MixedLaplaceProblem}
+
+                                  // In the constructor of this class,
+                                  // we first store the value that was
+                                  // passed in concerning the degree of
+                                  // the finite elements we shall use
+                                  // (a degree of zero, for example,
+                                  // means to use RT(0) and DG(0)), and
+                                  // then construct the vector valued
+                                  // element belonging to the space X_h
+                                  // described in the introduction. The
+                                  // rest of the constructor is as in
+                                  // the early tutorial programs.
+                                  //
+                                  // The only thing worth describing
+                                  // here is the constructor call of
+                                  // the <code>fe</code> variable. The
+                                  // <code>FESystem</code> class to which this
+                                  // variable belongs has a number of
+                                  // different constructors that all
+                                  // refer to binding simpler elements
+                                  // together into one larger
+                                  // element. In the present case, we
+                                  // want to couple a single RT(degree)
+                                  // element with a single DQ(degree)
+                                  // element. The constructor to
+                                  // <code>FESystem</code> that does this
+                                  // requires us to specity first the
+                                  // first base element (the
+                                  // <code>FE_RaviartThomas</code> object of
+                                  // given degree) and then the number
+                                  // of copies for this base element,
+                                  // and then similarly the kind and
+                                  // number of <code>FE_DGQ</code>
+                                  // elements. Note that the Raviart
+                                  // Thomas element already has <code>dim</code>
+                                  // vector components, so that the
+                                  // coupled element will have
+                                  // <code>dim+1</code> vector components, the
+                                  // first <code>dim</code> of which correspond
+                                  // to the velocity variable whereas the
+                                  // last one corresponds to the
+                                  // pressure.
+                                  //
+                                  // It is also worth comparing the way
+                                  // we constructed this element from
+                                  // its base elements, with the way we
+                                  // have done so in step-8: there, we
+                                  // have built it as <code>fe
+                                  // (FE_Q@<dim@>(1), dim)</code>, i.e. we
+                                  // have simply used <code>dim</code> copies of
+                                  // the <code>FE_Q(1)</code> element, one copy
+                                  // for the displacement in each
+                                  // coordinate direction.
+  template <int dim>
+  MixedLaplaceProblem<dim>::MixedLaplaceProblem (const unsigned int degree)
+                 :
+                 degree (degree),
+                 fe (FE_RaviartThomas<dim>(degree), 1,
+                     FE_DGQ<dim>(degree), 1),
+                 dof_handler (triangulation)
+  {}
+
+
+
+                                  // @sect4{MixedLaplaceProblem::make_grid_and_dofs}
+
+                                  // This next function starts out with
+                                  // well-known functions calls that
+                                  // create and refine a mesh, and then
+                                  // associate degrees of freedom with
+                                  // it:
+  template <int dim>
+  void MixedLaplaceProblem<dim>::make_grid_and_dofs ()
+  {
+    GridGenerator::hyper_cube (triangulation, -1, 1);
+    triangulation.refine_global (3);
+
+    dof_handler.distribute_dofs (fe);
+
+                                    // However, then things become
+                                    // different. As mentioned in the
+                                    // introduction, we want to
+                                    // subdivide the matrix into blocks
+                                    // corresponding to the two
+                                    // different kinds of variables,
+                                    // velocity and pressure. To this end,
+                                    // we first have to make sure that
+                                    // the indices corresponding to
+                                    // velocities and pressures are not
+                                    // intermingled: First all velocity
+                                    // degrees of freedom, then all
+                                    // pressure DoFs. This way, the
+                                    // global matrix separates nicely
+                                    // into a 2x2 system. To achieve
+                                    // this, we have to renumber
+                                    // degrees of freedom base on their
+                                    // vector component, an operation
+                                    // that conveniently is already
+                                    // implemented:
+    DoFRenumbering::component_wise (dof_handler);
+
+                                    // The next thing is that we want
+                                    // to figure out the sizes of these
+                                    // blocks, so that we can allocate
+                                    // an appropriate amount of
+                                    // space. To this end, we call the
+                                    // <code>DoFTools::count_dofs_per_component</code>
+                                    // function that counts how many
+                                    // shape functions are non-zero for
+                                    // a particular vector
+                                    // component. We have <code>dim+1</code>
+                                    // vector components, and we have
+                                    // to use the knowledge that for
+                                    // Raviart-Thomas elements all
+                                    // shape functions are nonzero in
+                                    // all components. In other words,
+                                    // the number of velocity shape
+                                    // functions equals the number of
+                                    // overall shape functions that are
+                                    // nonzero in the zeroth vector
+                                    // component. On the other hand,
+                                    // the number of pressure variables
+                                    // equals the number of shape
+                                    // functions that are nonzero in
+                                    // the dim-th component. Let us
+                                    // compute these numbers and then
+                                    // create some nice output with
+                                    // that:
+    std::vector<unsigned int> dofs_per_component (dim+1);
+    DoFTools::count_dofs_per_component (dof_handler, dofs_per_component);
+    const unsigned int n_u = dofs_per_component[0],
+                      n_p = dofs_per_component[dim];
+
+    std::cout << "Number of active cells: "
+             << triangulation.n_active_cells()
+             << std::endl
+             << "Total number of cells: "
+             << triangulation.n_cells()
+             << std::endl
+             << "Number of degrees of freedom: "
+             << dof_handler.n_dofs()
+             << " (" << n_u << '+' << n_p << ')'
+             << std::endl;
+
+                                    // The next task is to allocate a
+                                    // sparsity pattern for the matrix
+                                    // that we will create. The way
+                                    // this works is that we first
+                                    // obtain a guess for the maximal
+                                    // number of nonzero entries per
+                                    // row (this could be done more
+                                    // efficiently in this case, but we
+                                    // only want to solve relatively
+                                    // small problems for which this is
+                                    // not so important). In the second
+                                    // step, we allocate a 2x2 block
+                                    // pattern and then reinitialize
+                                    // each of the blocks to its
+                                    // correct size using the <code>n_u</code>
+                                    // and <code>n_p</code> variables defined
+                                    // above that hold the number of
+                                    // velocity and pressure
+                                    // variables. In this second step,
+                                    // we only operate on the
+                                    // individual blocks of the
+                                    // system. In the third step, we
+                                    // therefore have to instruct the
+                                    // overlying block system to update
+                                    // its knowledge about the sizes of
+                                    // the blocks it manages; this
+                                    // happens with the
+                                    // <code>sparsity_pattern.collect_sizes()</code>
+                                    // call:
+    const unsigned int
+      n_couplings = dof_handler.max_couplings_between_dofs();
+
+    sparsity_pattern.reinit (2,2);
+    sparsity_pattern.block(0,0).reinit (n_u, n_u, n_couplings);
+    sparsity_pattern.block(1,0).reinit (n_p, n_u, n_couplings);
+    sparsity_pattern.block(0,1).reinit (n_u, n_p, n_couplings);
+    sparsity_pattern.block(1,1).reinit (n_p, n_p, n_couplings);
+    sparsity_pattern.collect_sizes();
+
+                                    // Now that the sparsity pattern
+                                    // and its blocks have the correct
+                                    // sizes, we actually need to
+                                    // construct the content of this
+                                    // pattern, and as usual compress
+                                    // it, before we also initialize a
+                                    // block matrix with this block
+                                    // sparsity pattern:
+    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+    sparsity_pattern.compress();
+
+    system_matrix.reinit (sparsity_pattern);
+
+                                    // Then we have to resize the
+                                    // solution and right hand side
+                                    // vectors in exactly the same way:
+    solution.reinit (2);
+    solution.block(0).reinit (n_u);
+    solution.block(1).reinit (n_p);
+    solution.collect_sizes ();
+
+    system_rhs.reinit (2);
+    system_rhs.block(0).reinit (n_u);
+    system_rhs.block(1).reinit (n_p);
+    system_rhs.collect_sizes ();
+  }
 
-                                 // @sect3{Linear solvers and preconditioners}
-
-                                 // The linear solvers and
-                                 // preconditioners we use in this
-                                 // example have been discussed in
-                                 // significant detail already in the
-                                 // introduction. We will therefore
-                                 // not discuss the rationale for
-                                 // these classes here any more, but
-                                 // rather only comment on
-                                 // implementational aspects.
-
-
-                                 // @sect4{The <code>SchurComplement</code> class template}
-
-                                 // The next class is the Schur
-                                 // complement class. Its rationale
-                                 // has also been discussed in length
-                                 // in the introduction. The only
-                                 // things we would like to note is
-                                 // that the class, too, is derived
-                                 // from the <code>Subscriptor</code> class and
-                                 // that as mentioned above it stores
-                                 // pointers to the entire block
-                                 // matrix and the inverse of the mass
-                                 // matrix block using
-                                 // <code>SmartPointer</code> objects.
-                                 //
-                                 // The <code>vmult</code> function requires
-                                 // two temporary vectors that we do
-                                 // not want to re-allocate and free
-                                 // every time we call this
-                                 // function. Since here, we have full
-                                 // control over the use of these
-                                 // vectors (unlike above, where a
-                                 // class called by the <code>vmult</code>
-                                 // function required these vectors,
-                                 // not the <code>vmult</code> function
-                                 // itself), we allocate them
-                                 // directly, rather than going
-                                 // through the <code>VectorMemory</code>
-                                 // mechanism. However, again, these
-                                 // member variables do not carry any
-                                 // state between successive calls to
-                                 // the member functions of this class
-                                 // (i.e., we never care what values
-                                 // they were set to the last time a
-                                 // member function was called), we
-                                 // mark these vectors as <code>mutable</code>.
-                                 //
-                                 // The rest of the (short)
-                                 // implementation of this class is
-                                 // straightforward if you know the
-                                 // order of matrix-vector
-                                 // multiplications performed by the
-                                 // <code>vmult</code> function:
-class SchurComplement : public Subscriptor
-{
-  public:
-    SchurComplement (const BlockSparseMatrix<double> &A,
-                     const IterativeInverse<Vector<double> > &Minv);
 
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
+                                  // @sect4{MixedLaplaceProblem::assemble_system}
+                                  // Similarly, the function that
+                                  // assembles the linear system has
+                                  // mostly been discussed already in
+                                  // the introduction to this
+                                  // example. At its top, what happens
+                                  // are all the usual steps, with the
+                                  // addition that we do not only
+                                  // allocate quadrature and
+                                  // <code>FEValues</code> objects for the cell
+                                  // terms, but also for face
+                                  // terms. After that, we define the
+                                  // usual abbreviations for variables,
+                                  // and the allocate space for the
+                                  // local matrix and right hand side
+                                  // contributions, and the array that
+                                  // holds the global numbers of the
+                                  // degrees of freedom local to the
+                                  // present cell.
+  template <int dim>
+  void MixedLaplaceProblem<dim>::assemble_system ()
+  {
+    QGauss<dim>   quadrature_formula(degree+2);
+    QGauss<dim-1> face_quadrature_formula(degree+2);
+
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values    | update_gradients |
+                            update_quadrature_points  | update_JxW_values);
+    FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula,
+                                     update_values    | update_normal_vectors |
+                                     update_quadrature_points  | update_JxW_values);
+
+    const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
+    const unsigned int   n_q_points      = quadrature_formula.size();
+    const unsigned int   n_face_q_points = face_quadrature_formula.size();
+
+    FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>       local_rhs (dofs_per_cell);
+
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+                                    // The next step is to declare
+                                    // objects that represent the
+                                    // source term, pressure boundary
+                                    // value, and coefficient in the
+                                    // equation. In addition to these
+                                    // objects that represent
+                                    // continuous functions, we also
+                                    // need arrays to hold their values
+                                    // at the quadrature points of
+                                    // individual cells (or faces, for
+                                    // the boundary values). Note that
+                                    // in the case of the coefficient,
+                                    // the array has to be one of
+                                    // matrices.
+    const RightHandSide<dim>          right_hand_side;
+    const PressureBoundaryValues<dim> pressure_boundary_values;
+    const KInverse<dim>               k_inverse;
+
+    std::vector<double> rhs_values (n_q_points);
+    std::vector<double> boundary_values (n_face_q_points);
+    std::vector<Tensor<2,dim> > k_inverse_values (n_q_points);
+
+                                    // Finally, we need a couple of extractors
+                                    // that we will use to get at the velocity
+                                    // and pressure components of vector-valued
+                                    // shape functions. Their function and use
+                                    // is described in detail in the @ref
+                                    // vector_valued report. Essentially, we
+                                    // will use them as subscripts on the
+                                    // FEValues objects below: the FEValues
+                                    // object describes all vector components
+                                    // of shape functions, while after
+                                    // subscription, it will only refer to the
+                                    // velocities (a set of <code>dim</code>
+                                    // components starting at component zero)
+                                    // or the pressure (a scalar component
+                                    // located at position <code>dim</code>):
+    const FEValuesExtractors::Vector velocities (0);
+    const FEValuesExtractors::Scalar pressure (dim);
+
+                                    // With all this in place, we can
+                                    // go on with the loop over all
+                                    // cells. The body of this loop has
+                                    // been discussed in the
+                                    // introduction, and will not be
+                                    // commented any further here:
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       fe_values.reinit (cell);
+       local_matrix = 0;
+       local_rhs = 0;
+
+       right_hand_side.value_list (fe_values.get_quadrature_points(),
+                                   rhs_values);
+       k_inverse.value_list (fe_values.get_quadrature_points(),
+                             k_inverse_values);
+
+       for (unsigned int q=0; q<n_q_points; ++q)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           {
+             const Tensor<1,dim> phi_i_u     = fe_values[velocities].value (i, q);
+             const double        div_phi_i_u = fe_values[velocities].divergence (i, q);
+             const double        phi_i_p     = fe_values[pressure].value (i, q);
+
+             for (unsigned int j=0; j<dofs_per_cell; ++j)
+               {
+                 const Tensor<1,dim> phi_j_u     = fe_values[velocities].value (j, q);
+                 const double        div_phi_j_u = fe_values[velocities].divergence (j, q);
+                 const double        phi_j_p     = fe_values[pressure].value (j, q);
+
+                 local_matrix(i,j) += (phi_i_u * k_inverse_values[q] * phi_j_u
+                                       - div_phi_i_u * phi_j_p
+                                       - phi_i_p * div_phi_j_u)
+                                      * fe_values.JxW(q);
+               }
+
+             local_rhs(i) += -phi_i_p *
+                             rhs_values[q] *
+                             fe_values.JxW(q);
+           }
+
+       for (unsigned int face_no=0;
+            face_no<GeometryInfo<dim>::faces_per_cell;
+            ++face_no)
+         if (cell->at_boundary(face_no))
+           {
+             fe_face_values.reinit (cell, face_no);
+
+             pressure_boundary_values
+               .value_list (fe_face_values.get_quadrature_points(),
+                            boundary_values);
+
+             for (unsigned int q=0; q<n_face_q_points; ++q)
+               for (unsigned int i=0; i<dofs_per_cell; ++i)
+                 local_rhs(i) += -(fe_face_values[velocities].value (i, q) *
+                                   fe_face_values.normal_vector(q) *
+                                   boundary_values[q] *
+                                   fe_face_values.JxW(q));
+           }
+
+                                        // The final step in the loop
+                                        // over all cells is to
+                                        // transfer local contributions
+                                        // into the global matrix and
+                                        // right hand side vector. Note
+                                        // that we use exactly the same
+                                        // interface as in previous
+                                        // examples, although we now
+                                        // use block matrices and
+                                        // vectors instead of the
+                                        // regular ones. In other
+                                        // words, to the outside world,
+                                        // block objects have the same
+                                        // interface as matrices and
+                                        // vectors, but they
+                                        // additionally allow to access
+                                        // individual blocks.
+       cell->get_dof_indices (local_dof_indices);
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         for (unsigned int j=0; j<dofs_per_cell; ++j)
+           system_matrix.add (local_dof_indices[i],
+                              local_dof_indices[j],
+                              local_matrix(i,j));
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         system_rhs(local_dof_indices[i]) += local_rhs(i);
+      }
+  }
 
-  private:
-    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
-    const SmartPointer<const IterativeInverse<Vector<double> > > m_inverse;
-    
-    mutable Vector<double> tmp1, tmp2;
-};
 
+                                  // @sect3{Linear solvers and preconditioners}
+
+                                  // The linear solvers and
+                                  // preconditioners we use in this
+                                  // example have been discussed in
+                                  // significant detail already in the
+                                  // introduction. We will therefore
+                                  // not discuss the rationale for
+                                  // these classes here any more, but
+                                  // rather only comment on
+                                  // implementational aspects.
+
+
+                                  // @sect4{The <code>SchurComplement</code> class template}
+
+                                  // The next class is the Schur
+                                  // complement class. Its rationale
+                                  // has also been discussed in length
+                                  // in the introduction. The only
+                                  // things we would like to note is
+                                  // that the class, too, is derived
+                                  // from the <code>Subscriptor</code> class and
+                                  // that as mentioned above it stores
+                                  // pointers to the entire block
+                                  // matrix and the inverse of the mass
+                                  // matrix block using
+                                  // <code>SmartPointer</code> objects.
+                                  //
+                                  // The <code>vmult</code> function requires
+                                  // two temporary vectors that we do
+                                  // not want to re-allocate and free
+                                  // every time we call this
+                                  // function. Since here, we have full
+                                  // control over the use of these
+                                  // vectors (unlike above, where a
+                                  // class called by the <code>vmult</code>
+                                  // function required these vectors,
+                                  // not the <code>vmult</code> function
+                                  // itself), we allocate them
+                                  // directly, rather than going
+                                  // through the <code>VectorMemory</code>
+                                  // mechanism. However, again, these
+                                  // member variables do not carry any
+                                  // state between successive calls to
+                                  // the member functions of this class
+                                  // (i.e., we never care what values
+                                  // they were set to the last time a
+                                  // member function was called), we
+                                  // mark these vectors as <code>mutable</code>.
+                                  //
+                                  // The rest of the (short)
+                                  // implementation of this class is
+                                  // straightforward if you know the
+                                  // order of matrix-vector
+                                  // multiplications performed by the
+                                  // <code>vmult</code> function:
+  class SchurComplement : public Subscriptor
+  {
+    public:
+      SchurComplement (const BlockSparseMatrix<double> &A,
+                      const IterativeInverse<Vector<double> > &Minv);
 
-SchurComplement::SchurComplement (const BlockSparseMatrix<double> &A,
-                                  const IterativeInverse<Vector<double> > &Minv)
-                :
-                system_matrix (&A),
-                m_inverse (&Minv),
-                tmp1 (A.block(0,0).m()),
-                tmp2 (A.block(0,0).m())
-{}
+      void vmult (Vector<double>       &dst,
+                 const Vector<double> &src) const;
 
+    private:
+      const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
+      const SmartPointer<const IterativeInverse<Vector<double> > > m_inverse;
 
-void SchurComplement::vmult (Vector<double>       &dst,
-                             const Vector<double> &src) const
-{
-  system_matrix->block(0,1).vmult (tmp1, src);
-  m_inverse->vmult (tmp2, tmp1);
-  system_matrix->block(1,0).vmult (dst, tmp2);
-}
+      mutable Vector<double> tmp1, tmp2;
+  };
 
 
-                                 // @sect4{The <code>ApproximateSchurComplement</code> class template}
-
-                                 // The third component of our solver
-                                 // and preconditioner system is the
-                                 // class that approximates the Schur
-                                 // complement so we can form a
-                                 // an InverseIterate
-                                 // object that approximates the
-                                 // inverse of the Schur
-                                 // complement. It follows the same
-                                 // pattern as the Schur complement
-                                 // class, with the only exception
-                                 // that we do not multiply with the
-                                 // inverse mass matrix in <code>vmult</code>,
-                                 // but rather just do a single Jacobi
-                                 // step. Consequently, the class also
-                                 // does not have to store a pointer
-                                 // to an inverse mass matrix object.
-                                //
-                                // Since InverseIterate follows the
-                                // standard convention for matrices,
-                                // we need to provide a
-                                // <tt>Tvmult</tt> function here as
-                                // well.
-class ApproximateSchurComplement : public Subscriptor
-{
-  public:
-    ApproximateSchurComplement (const BlockSparseMatrix<double> &A);
+  SchurComplement::SchurComplement (const BlockSparseMatrix<double> &A,
+                                   const IterativeInverse<Vector<double> > &Minv)
+                 :
+                 system_matrix (&A),
+                 m_inverse (&Minv),
+                 tmp1 (A.block(0,0).m()),
+                 tmp2 (A.block(0,0).m())
+  {}
 
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
-    void Tvmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
 
-  private:
-    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
-    
-    mutable Vector<double> tmp1, tmp2;
-};
+  void SchurComplement::vmult (Vector<double>       &dst,
+                              const Vector<double> &src) const
+  {
+    system_matrix->block(0,1).vmult (tmp1, src);
+    m_inverse->vmult (tmp2, tmp1);
+    system_matrix->block(1,0).vmult (dst, tmp2);
+  }
 
 
-ApproximateSchurComplement::ApproximateSchurComplement (const BlockSparseMatrix<double> &A)
-                :
-                system_matrix (&A),
-                tmp1 (A.block(0,0).m()),
-                tmp2 (A.block(0,0).m())
-{}
+                                  // @sect4{The <code>ApproximateSchurComplement</code> class template}
+
+                                  // The third component of our solver
+                                  // and preconditioner system is the
+                                  // class that approximates the Schur
+                                  // complement so we can form a
+                                  // an InverseIterate
+                                  // object that approximates the
+                                  // inverse of the Schur
+                                  // complement. It follows the same
+                                  // pattern as the Schur complement
+                                  // class, with the only exception
+                                  // that we do not multiply with the
+                                  // inverse mass matrix in <code>vmult</code>,
+                                  // but rather just do a single Jacobi
+                                  // step. Consequently, the class also
+                                  // does not have to store a pointer
+                                  // to an inverse mass matrix object.
+                                  //
+                                  // Since InverseIterate follows the
+                                  // standard convention for matrices,
+                                  // we need to provide a
+                                  // <tt>Tvmult</tt> function here as
+                                  // well.
+  class ApproximateSchurComplement : public Subscriptor
+  {
+    public:
+      ApproximateSchurComplement (const BlockSparseMatrix<double> &A);
 
+      void vmult (Vector<double>       &dst,
+                 const Vector<double> &src) const;
+      void Tvmult (Vector<double>       &dst,
+                  const Vector<double> &src) const;
 
-void ApproximateSchurComplement::vmult (Vector<double>       &dst,
-                                        const Vector<double> &src) const
-{
-  system_matrix->block(0,1).vmult (tmp1, src);
-  system_matrix->block(0,0).precondition_Jacobi (tmp2, tmp1);
-  system_matrix->block(1,0).vmult (dst, tmp2);
-}
+    private:
+      const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
 
+      mutable Vector<double> tmp1, tmp2;
+  };
 
-void ApproximateSchurComplement::Tvmult (Vector<double>       &dst,
-                                        const Vector<double> &src) const
-{
-  system_matrix->block(1,0).Tvmult (dst, tmp2);
-  system_matrix->block(0,0).precondition_Jacobi (tmp2, tmp1);
-  system_matrix->block(0,1).Tvmult (tmp1, src);
-}
 
+  ApproximateSchurComplement::ApproximateSchurComplement (const BlockSparseMatrix<double> &A)
+                 :
+                 system_matrix (&A),
+                 tmp1 (A.block(0,0).m()),
+                 tmp2 (A.block(0,0).m())
+  {}
 
 
-                                 // @sect4{MixedLaplace::solve}
-
-                                 // After all these preparations, we
-                                 // can finally write the function
-                                 // that actually solves the linear
-                                 // problem. We will go through the
-                                 // two parts it has that each solve
-                                 // one of the two equations, the
-                                 // first one for the pressure
-                                 // (component 1 of the solution),
-                                 // then the velocities (component 0
-                                 // of the solution). Both parts need
-                                 // an object representing the inverse
-                                 // mass matrix and an auxiliary
-                                 // vector, and we therefore declare
-                                 // these objects at the beginning of
-                                 // this function.
-template <int dim>
-void MixedLaplaceProblem<dim>::solve () 
-{
-  PreconditionIdentity identity;
-  IterativeInverse<Vector<double> >
-    m_inverse;
-  m_inverse.initialize(system_matrix.block(0,0), identity);
-  m_inverse.solver.select("cg");
-  static ReductionControl inner_control(1000, 0., 1.e-13);
-  m_inverse.solver.set_control(inner_control);
-  
-  Vector<double> tmp (solution.block(0).size());
-
-                                   // Now on to the first
-                                   // equation. The right hand side of
-                                   // it is BM^{-1}F-G, which is what
-                                   // we compute in the first few
-                                   // lines. We then declare the
-                                   // objects representing the Schur
-                                   // complement, its approximation,
-                                   // and the inverse of the
-                                   // approximation. Finally, we
-                                   // declare a solver object and hand
-                                   // off all these matrices and
-                                   // vectors to it to compute block 1
-                                   // (the pressure) of the solution:
+  void ApproximateSchurComplement::vmult (Vector<double>       &dst,
+                                         const Vector<double> &src) const
   {
-    Vector<double> schur_rhs (solution.block(1).size());
-
-    m_inverse.vmult (tmp, system_rhs.block(0));
-    system_matrix.block(1,0).vmult (schur_rhs, tmp);
-    schur_rhs -= system_rhs.block(1);
-
-    
-    SchurComplement
-      schur_complement (system_matrix, m_inverse);
-    
-    ApproximateSchurComplement
-      approximate_schur_complement (system_matrix);
-      
-    IterativeInverse<Vector<double> >
-      preconditioner;
-    preconditioner.initialize(approximate_schur_complement, identity);
-    preconditioner.solver.select("cg");
-    preconditioner.solver.set_control(inner_control);
-
-    
-    SolverControl solver_control (solution.block(1).size(),
-                                 1e-12*schur_rhs.l2_norm());
-    SolverCG<>    cg (solver_control);
-
-    cg.solve (schur_complement, solution.block(1), schur_rhs,
-              preconditioner);
-  
-    std::cout << solver_control.last_step()
-              << " CG Schur complement iterations to obtain convergence."
-              << std::endl;
+    system_matrix->block(0,1).vmult (tmp1, src);
+    system_matrix->block(0,0).precondition_Jacobi (tmp2, tmp1);
+    system_matrix->block(1,0).vmult (dst, tmp2);
   }
 
-                                   // After we have the pressure, we
-                                   // can compute the velocity. The
-                                   // equation reads MU=-B^TP+F, and
-                                   // we solve it by first computing
-                                   // the right hand side, and then
-                                   // multiplying it with the object
-                                   // that represents the inverse of
-                                   // the mass matrix:
+
+  void ApproximateSchurComplement::Tvmult (Vector<double>       &dst,
+                                          const Vector<double> &src) const
   {
-    system_matrix.block(0,1).vmult (tmp, solution.block(1));
-    tmp *= -1;
-    tmp += system_rhs.block(0);
-    
-    m_inverse.vmult (solution.block(0), tmp);
+    system_matrix->block(1,0).Tvmult (dst, tmp2);
+    system_matrix->block(0,0).precondition_Jacobi (tmp2, tmp1);
+    system_matrix->block(0,1).Tvmult (tmp1, src);
   }
-}
 
 
-                                 // @sect3{MixedLaplaceProblem class implementation (continued)}
-
-                                 // @sect4{MixedLaplace::compute_errors}
-
-                                 // After we have dealt with the
-                                 // linear solver and preconditioners,
-                                 // we continue with the
-                                 // implementation of our main
-                                 // class. In particular, the next
-                                 // task is to compute the errors in
-                                 // our numerical solution, in both
-                                 // the pressures as well as
-                                 // velocities.
-                                 //
-                                 // To compute errors in the solution,
-                                 // we have already introduced the
-                                 // <code>VectorTools::integrate_difference</code>
-                                 // function in step-7 and
-                                 // step-11. However, there we only
-                                 // dealt with scalar solutions,
-                                 // whereas here we have a
-                                 // vector-valued solution with
-                                 // components that even denote
-                                 // different quantities and may have
-                                 // different orders of convergence
-                                 // (this isn't the case here, by
-                                 // choice of the used finite
-                                 // elements, but is frequently the
-                                 // case in mixed finite element
-                                 // applications). What we therefore
-                                 // have to do is to `mask' the
-                                 // components that we are interested
-                                 // in. This is easily done: the
-                                 // <code>VectorTools::integrate_difference</code>
-                                 // function takes as its last
-                                 // argument a pointer to a weight
-                                 // function (the parameter defaults
-                                 // to the null pointer, meaning unit
-                                 // weights). What we simply have to
-                                 // do is to pass a function object
-                                 // that equals one in the components
-                                 // we are interested in, and zero in
-                                 // the other ones. For example, to
-                                 // compute the pressure error, we
-                                 // should pass a function that
-                                 // represents the constant vector
-                                 // with a unit value in component
-                                 // <code>dim</code>, whereas for the velocity
-                                 // the constant vector should be one
-                                 // in the first <code>dim</code> components,
-                                 // and zero in the location of the
-                                 // pressure.
-                                 //
-                                 // In deal.II, the
-                                 // <code>ComponentSelectFunction</code> does
-                                 // exactly this: it wants to know how
-                                 // many vector components the
-                                 // function it is to represent should
-                                 // have (in our case this would be
-                                 // <code>dim+1</code>, for the joint
-                                 // velocity-pressure space) and which
-                                 // individual or range of components
-                                 // should be equal to one. We
-                                 // therefore define two such masks at
-                                 // the beginning of the function,
-                                 // following by an object
-                                 // representing the exact solution
-                                 // and a vector in which we will
-                                 // store the cellwise errors as
-                                 // computed by
-                                 // <code>integrate_difference</code>:
-template <int dim>
-void MixedLaplaceProblem<dim>::compute_errors () const
-{
-  const ComponentSelectFunction<dim>
-    pressure_mask (dim, dim+1);
-  const ComponentSelectFunction<dim>
-    velocity_mask(std::make_pair(0, dim), dim+1);
-
-  ExactSolution<dim> exact_solution;
-  Vector<double> cellwise_errors (triangulation.n_active_cells());
-
-                                   // As already discussed in step-7,
-                                   // we have to realize that it is
-                                   // impossible to integrate the
-                                   // errors exactly. All we can do is
-                                   // approximate this integral using
-                                   // quadrature. This actually
-                                   // presents a slight twist here: if
-                                   // we naively chose an object of
-                                   // type <code>QGauss@<dim@>(degree+1)</code>
-                                   // as one may be inclined to do
-                                   // (this is what we used for
-                                   // integrating the linear system),
-                                   // one realizes that the error is
-                                   // very small and does not follow
-                                   // the expected convergence curves
-                                   // at all. What is happening is
-                                   // that for the mixed finite
-                                   // elements used here, the Gauss
-                                   // points happen to be
-                                   // superconvergence points in which
-                                   // the pointwise error is much
-                                   // smaller (and converges with
-                                   // higher order) than anywhere
-                                   // else. These are therefore not
-                                   // particularly good points for
-                                   // ingration. To avoid this
-                                   // problem, we simply use a
-                                   // trapezoidal rule and iterate it
-                                   // <code>degree+2</code> times in each
-                                   // coordinate direction (again as
-                                   // explained in step-7):
-  QTrapez<1>     q_trapez;
-  QIterated<dim> quadrature (q_trapez, degree+2);
-
-                                   // With this, we can then let the
-                                   // library compute the errors and
-                                   // output them to the screen:
-  VectorTools::integrate_difference (dof_handler, solution, exact_solution,
-                                     cellwise_errors, quadrature,
-                                     VectorTools::L2_norm,
-                                     &pressure_mask);
-  const double p_l2_error = cellwise_errors.l2_norm();
-  
-  VectorTools::integrate_difference (dof_handler, solution, exact_solution,
-                                     cellwise_errors, quadrature,
-                                     VectorTools::L2_norm,
-                                     &velocity_mask);
-  const double u_l2_error = cellwise_errors.l2_norm();
-  
-  std::cout << "Errors: ||e_p||_L2 = " << p_l2_error
-           << ",   ||e_u||_L2 = " << u_l2_error
-           << std::endl;
-}
 
+                                  // @sect4{MixedLaplace::solve}
+
+                                  // After all these preparations, we
+                                  // can finally write the function
+                                  // that actually solves the linear
+                                  // problem. We will go through the
+                                  // two parts it has that each solve
+                                  // one of the two equations, the
+                                  // first one for the pressure
+                                  // (component 1 of the solution),
+                                  // then the velocities (component 0
+                                  // of the solution). Both parts need
+                                  // an object representing the inverse
+                                  // mass matrix and an auxiliary
+                                  // vector, and we therefore declare
+                                  // these objects at the beginning of
+                                  // this function.
+  template <int dim>
+  void MixedLaplaceProblem<dim>::solve ()
+  {
+    PreconditionIdentity identity;
+    IterativeInverse<Vector<double> >
+      m_inverse;
+    m_inverse.initialize(system_matrix.block(0,0), identity);
+    m_inverse.solver.select("cg");
+    static ReductionControl inner_control(1000, 0., 1.e-13);
+    m_inverse.solver.set_control(inner_control);
+
+    Vector<double> tmp (solution.block(0).size());
+
+                                    // Now on to the first
+                                    // equation. The right hand side of
+                                    // it is BM^{-1}F-G, which is what
+                                    // we compute in the first few
+                                    // lines. We then declare the
+                                    // objects representing the Schur
+                                    // complement, its approximation,
+                                    // and the inverse of the
+                                    // approximation. Finally, we
+                                    // declare a solver object and hand
+                                    // off all these matrices and
+                                    // vectors to it to compute block 1
+                                    // (the pressure) of the solution:
+    {
+      Vector<double> schur_rhs (solution.block(1).size());
 
-                                 // @sect4{MixedLaplace::output_results}
-
-                                 // The last interesting function is
-                                 // the one in which we generate
-                                 // graphical output. Everything here
-                                 // looks obvious and familiar. Note
-                                 // how we construct unique names for
-                                 // all the solution variables at the
-                                 // beginning, like we did in step-8
-                                 // and other programs later on. The
-                                 // only thing worth mentioning is
-                                 // that for higher order elements, in
-                                 // seems inappropriate to only show a
-                                 // single bilinear quadrilateral per
-                                 // cell in the graphical output. We
-                                 // therefore generate patches of size
-                                 // (degree+1)x(degree+1) to capture
-                                 // the full information content of
-                                 // the solution. See the step-7
-                                 // tutorial program for more
-                                 // information on this.
-                                //
-                                // Note that we output the <code>dim+1</code>
-                                // components of the solution vector as a
-                                // collection of individual scalars
-                                // here. Most visualization programs will
-                                // then only offer to visualize them
-                                // individually, rather than allowing us to
-                                // plot the flow field as a vector
-                                // field. However, as explained in the
-                                // corresponding function of step-22 or the
-                                // @ref VVOutput "Generating graphical output"
-                                // section of the @ref vector_valued module,
-                                // instructing the DataOut class to identify
-                                // components of the FESystem object as
-                                // elements of a <code>dim</code>-dimensional
-                                // vector is not actually very difficult and
-                                // will then allow us to show results as
-                                // vector plots. We skip this here for
-                                // simplicity and refer to the links above
-                                // for more information.
-template <int dim>
-void MixedLaplaceProblem<dim>::output_results () const
-{
-  std::vector<std::string> solution_names;
-  switch (dim)
+      m_inverse.vmult (tmp, system_rhs.block(0));
+      system_matrix.block(1,0).vmult (schur_rhs, tmp);
+      schur_rhs -= system_rhs.block(1);
+
+
+      SchurComplement
+       schur_complement (system_matrix, m_inverse);
+
+      ApproximateSchurComplement
+       approximate_schur_complement (system_matrix);
+
+      IterativeInverse<Vector<double> >
+       preconditioner;
+      preconditioner.initialize(approximate_schur_complement, identity);
+      preconditioner.solver.select("cg");
+      preconditioner.solver.set_control(inner_control);
+
+
+      SolverControl solver_control (solution.block(1).size(),
+                                   1e-12*schur_rhs.l2_norm());
+      SolverCG<>    cg (solver_control);
+
+      cg.solve (schur_complement, solution.block(1), schur_rhs,
+               preconditioner);
+
+      std::cout << solver_control.last_step()
+               << " CG Schur complement iterations to obtain convergence."
+               << std::endl;
+    }
+
+                                    // After we have the pressure, we
+                                    // can compute the velocity. The
+                                    // equation reads MU=-B^TP+F, and
+                                    // we solve it by first computing
+                                    // the right hand side, and then
+                                    // multiplying it with the object
+                                    // that represents the inverse of
+                                    // the mass matrix:
     {
-      case 2:
-            solution_names.push_back ("u");
-            solution_names.push_back ("v");
-            solution_names.push_back ("p");
-            break;
-            
-      case 3:
-            solution_names.push_back ("u");
-            solution_names.push_back ("v");
-            solution_names.push_back ("w");
-            solution_names.push_back ("p");
-            break;
-            
-      default:
-            Assert (false, ExcNotImplemented());
+      system_matrix.block(0,1).vmult (tmp, solution.block(1));
+      tmp *= -1;
+      tmp += system_rhs.block(0);
+
+      m_inverse.vmult (solution.block(0), tmp);
     }
-  
-  
-  DataOut<dim> data_out;
+  }
+
+
+                                  // @sect3{MixedLaplaceProblem class implementation (continued)}
+
+                                  // @sect4{MixedLaplace::compute_errors}
+
+                                  // After we have dealt with the
+                                  // linear solver and preconditioners,
+                                  // we continue with the
+                                  // implementation of our main
+                                  // class. In particular, the next
+                                  // task is to compute the errors in
+                                  // our numerical solution, in both
+                                  // the pressures as well as
+                                  // velocities.
+                                  //
+                                  // To compute errors in the solution,
+                                  // we have already introduced the
+                                  // <code>VectorTools::integrate_difference</code>
+                                  // function in step-7 and
+                                  // step-11. However, there we only
+                                  // dealt with scalar solutions,
+                                  // whereas here we have a
+                                  // vector-valued solution with
+                                  // components that even denote
+                                  // different quantities and may have
+                                  // different orders of convergence
+                                  // (this isn't the case here, by
+                                  // choice of the used finite
+                                  // elements, but is frequently the
+                                  // case in mixed finite element
+                                  // applications). What we therefore
+                                  // have to do is to `mask' the
+                                  // components that we are interested
+                                  // in. This is easily done: the
+                                  // <code>VectorTools::integrate_difference</code>
+                                  // function takes as its last
+                                  // argument a pointer to a weight
+                                  // function (the parameter defaults
+                                  // to the null pointer, meaning unit
+                                  // weights). What we simply have to
+                                  // do is to pass a function object
+                                  // that equals one in the components
+                                  // we are interested in, and zero in
+                                  // the other ones. For example, to
+                                  // compute the pressure error, we
+                                  // should pass a function that
+                                  // represents the constant vector
+                                  // with a unit value in component
+                                  // <code>dim</code>, whereas for the velocity
+                                  // the constant vector should be one
+                                  // in the first <code>dim</code> components,
+                                  // and zero in the location of the
+                                  // pressure.
+                                  //
+                                  // In deal.II, the
+                                  // <code>ComponentSelectFunction</code> does
+                                  // exactly this: it wants to know how
+                                  // many vector components the
+                                  // function it is to represent should
+                                  // have (in our case this would be
+                                  // <code>dim+1</code>, for the joint
+                                  // velocity-pressure space) and which
+                                  // individual or range of components
+                                  // should be equal to one. We
+                                  // therefore define two such masks at
+                                  // the beginning of the function,
+                                  // following by an object
+                                  // representing the exact solution
+                                  // and a vector in which we will
+                                  // store the cellwise errors as
+                                  // computed by
+                                  // <code>integrate_difference</code>:
+  template <int dim>
+  void MixedLaplaceProblem<dim>::compute_errors () const
+  {
+    const ComponentSelectFunction<dim>
+      pressure_mask (dim, dim+1);
+    const ComponentSelectFunction<dim>
+      velocity_mask(std::make_pair(0, dim), dim+1);
+
+    ExactSolution<dim> exact_solution;
+    Vector<double> cellwise_errors (triangulation.n_active_cells());
+
+                                    // As already discussed in step-7,
+                                    // we have to realize that it is
+                                    // impossible to integrate the
+                                    // errors exactly. All we can do is
+                                    // approximate this integral using
+                                    // quadrature. This actually
+                                    // presents a slight twist here: if
+                                    // we naively chose an object of
+                                    // type <code>QGauss@<dim@>(degree+1)</code>
+                                    // as one may be inclined to do
+                                    // (this is what we used for
+                                    // integrating the linear system),
+                                    // one realizes that the error is
+                                    // very small and does not follow
+                                    // the expected convergence curves
+                                    // at all. What is happening is
+                                    // that for the mixed finite
+                                    // elements used here, the Gauss
+                                    // points happen to be
+                                    // superconvergence points in which
+                                    // the pointwise error is much
+                                    // smaller (and converges with
+                                    // higher order) than anywhere
+                                    // else. These are therefore not
+                                    // particularly good points for
+                                    // ingration. To avoid this
+                                    // problem, we simply use a
+                                    // trapezoidal rule and iterate it
+                                    // <code>degree+2</code> times in each
+                                    // coordinate direction (again as
+                                    // explained in step-7):
+    QTrapez<1>     q_trapez;
+    QIterated<dim> quadrature (q_trapez, degree+2);
+
+                                    // With this, we can then let the
+                                    // library compute the errors and
+                                    // output them to the screen:
+    VectorTools::integrate_difference (dof_handler, solution, exact_solution,
+                                      cellwise_errors, quadrature,
+                                      VectorTools::L2_norm,
+                                      &pressure_mask);
+    const double p_l2_error = cellwise_errors.l2_norm();
+
+    VectorTools::integrate_difference (dof_handler, solution, exact_solution,
+                                      cellwise_errors, quadrature,
+                                      VectorTools::L2_norm,
+                                      &velocity_mask);
+    const double u_l2_error = cellwise_errors.l2_norm();
+
+    std::cout << "Errors: ||e_p||_L2 = " << p_l2_error
+             << ",   ||e_u||_L2 = " << u_l2_error
+             << std::endl;
+  }
+
 
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, solution_names);
+                                  // @sect4{MixedLaplace::output_results}
+
+                                  // The last interesting function is
+                                  // the one in which we generate
+                                  // graphical output. Everything here
+                                  // looks obvious and familiar. Note
+                                  // how we construct unique names for
+                                  // all the solution variables at the
+                                  // beginning, like we did in step-8
+                                  // and other programs later on. The
+                                  // only thing worth mentioning is
+                                  // that for higher order elements, in
+                                  // seems inappropriate to only show a
+                                  // single bilinear quadrilateral per
+                                  // cell in the graphical output. We
+                                  // therefore generate patches of size
+                                  // (degree+1)x(degree+1) to capture
+                                  // the full information content of
+                                  // the solution. See the step-7
+                                  // tutorial program for more
+                                  // information on this.
+                                  //
+                                  // Note that we output the <code>dim+1</code>
+                                  // components of the solution vector as a
+                                  // collection of individual scalars
+                                  // here. Most visualization programs will
+                                  // then only offer to visualize them
+                                  // individually, rather than allowing us to
+                                  // plot the flow field as a vector
+                                  // field. However, as explained in the
+                                  // corresponding function of step-22 or the
+                                  // @ref VVOutput "Generating graphical output"
+                                  // section of the @ref vector_valued module,
+                                  // instructing the DataOut class to identify
+                                  // components of the FESystem object as
+                                  // elements of a <code>dim</code>-dimensional
+                                  // vector is not actually very difficult and
+                                  // will then allow us to show results as
+                                  // vector plots. We skip this here for
+                                  // simplicity and refer to the links above
+                                  // for more information.
+  template <int dim>
+  void MixedLaplaceProblem<dim>::output_results () const
+  {
+    std::vector<std::string> solution_names;
+    switch (dim)
+      {
+       case 2:
+             solution_names.push_back ("u");
+             solution_names.push_back ("v");
+             solution_names.push_back ("p");
+             break;
 
-  data_out.build_patches (degree+1);
+       case 3:
+             solution_names.push_back ("u");
+             solution_names.push_back ("v");
+             solution_names.push_back ("w");
+             solution_names.push_back ("p");
+             break;
 
-  std::ofstream output ("solution.gmv");
-  data_out.write_gmv (output);
-}
+       default:
+             Assert (false, ExcNotImplemented());
+      }
 
 
+    DataOut<dim> data_out;
 
-                                 // @sect4{MixedLaplace::run}
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (solution, solution_names);
 
-                                 // This is the final function of our
-                                 // main class. It's only job is to
-                                 // call the other functions in their
-                                 // natural order:
-template <int dim>
-void MixedLaplaceProblem<dim>::run () 
-{
-  make_grid_and_dofs();
-  assemble_system ();
-  solve ();
-  compute_errors ();
-  output_results ();
+    data_out.build_patches (degree+1);
+
+    std::ofstream output ("solution.gmv");
+    data_out.write_gmv (output);
+  }
+
+
+
+                                  // @sect4{MixedLaplace::run}
+
+                                  // This is the final function of our
+                                  // main class. It's only job is to
+                                  // call the other functions in their
+                                  // natural order:
+  template <int dim>
+  void MixedLaplaceProblem<dim>::run ()
+  {
+    make_grid_and_dofs();
+    assemble_system ();
+    solve ();
+    compute_errors ();
+    output_results ();
+  }
 }
 
-    
+
                                  // @sect3{The <code>main</code> function}
 
                                 // The main function we stole from
@@ -1212,10 +1215,13 @@ void MixedLaplaceProblem<dim>::run ()
                                 // to the constructor of the mixed
                                 // laplace problem (here, we use
                                 // zero-th order elements).
-int main () 
+int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step20;
+
       deallog.depth_console (0);
 
       MixedLaplaceProblem<2> mixed_laplace_problem(0);
@@ -1231,10 +1237,10 @@ int main ()
                << "Aborting!" << std::endl
                << "----------------------------------------------------"
                << std::endl;
-      
+
       return 1;
     }
-  catch (...) 
+  catch (...)
     {
       std::cerr << std::endl << std::endl
                << "----------------------------------------------------"
index ac0357018ba38f494c8ea967da0d505e47d76781..87fdcab89aef28a46b416373dc177941c501f988 100644 (file)
 
                                  // The last step is as in all
                                  // previous programs:
-using namespace dealii;
-
-
-                                 // @sect3{The <code>TwoPhaseFlowProblem</code> class}
-
-                                 // This is the main class of the program. It
-                                 // is close to the one of step-20, but with a
-                                 // few additional functions:
-                                 //
-                                 // <ul>
-                                 //   <li><code>assemble_rhs_S</code> assembles the
-                                 //   right hand side of the saturation
-                                 //   equation. As explained in the
-                                 //   introduction, this can't be integrated
-                                 //   into <code>assemble_rhs</code> since it depends
-                                 //   on the velocity that is computed in the
-                                 //   first part of the time step.
-                                 //
-                                 //   <li><code>get_maximal_velocity</code> does as its
-                                 //   name suggests. This function is used in
-                                 //   the computation of the time step size.
-                                 //
-                                 //   <li><code>project_back_saturation</code> resets
-                                 //   all saturation degrees of freedom with
-                                 //   values less than zero to zero, and all
-                                 //   those with saturations greater than one
-                                 //   to one.
-                                 // </ul>
-                                 //
-                                 // The rest of the class should be pretty
-                                 // much obvious. The <code>viscosity</code> variable
-                                 // stores the viscosity $\mu$ that enters
-                                 // several of the formulas in the nonlinear
-                                 // equations.
-template <int dim>
-class TwoPhaseFlowProblem
+namespace Step21
 {
-  public:
-    TwoPhaseFlowProblem (const unsigned int degree);
-    void run ();
-
-  private:
-    void make_grid_and_dofs ();
-    void assemble_system ();
-    void assemble_rhs_S ();
-    double get_maximal_velocity () const;
-    void solve ();
-    void project_back_saturation ();
-    void output_results () const;
-
-    const unsigned int   degree;
-
-    Triangulation<dim>   triangulation;
-    FESystem<dim>        fe;
-    DoFHandler<dim>      dof_handler;
-
-    BlockSparsityPattern      sparsity_pattern;
-    BlockSparseMatrix<double> system_matrix;
-
-    const unsigned int n_refinement_steps;
-
-    double time_step;
-    unsigned int timestep_number;
-    double viscosity;
-
-    BlockVector<double> solution;
-    BlockVector<double> old_solution;
-    BlockVector<double> system_rhs;
-};
-
-
-                                 // @sect3{Equation data}
-
-                                 // @sect4{Pressure right hand side}
-                                 // At present, the right hand side of the
-                                 // pressure equation is simply the zero
-                                 // function. However, the rest of the program
-                                 // is fully equipped to deal with anything
-                                 // else, if this is desired:
-template <int dim>
-class PressureRightHandSide : public Function<dim>
-{
-  public:
-    PressureRightHandSide () : Function<dim>(1) {}
+  using namespace dealii;
 
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
-};
 
+                                  // @sect3{The <code>TwoPhaseFlowProblem</code> class}
 
+                                  // This is the main class of the program. It
+                                  // is close to the one of step-20, but with a
+                                  // few additional functions:
+                                  //
+                                  // <ul>
+                                  //   <li><code>assemble_rhs_S</code> assembles the
+                                  //   right hand side of the saturation
+                                  //   equation. As explained in the
+                                  //   introduction, this can't be integrated
+                                  //   into <code>assemble_rhs</code> since it depends
+                                  //   on the velocity that is computed in the
+                                  //   first part of the time step.
+                                  //
+                                  //   <li><code>get_maximal_velocity</code> does as its
+                                  //   name suggests. This function is used in
+                                  //   the computation of the time step size.
+                                  //
+                                  //   <li><code>project_back_saturation</code> resets
+                                  //   all saturation degrees of freedom with
+                                  //   values less than zero to zero, and all
+                                  //   those with saturations greater than one
+                                  //   to one.
+                                  // </ul>
+                                  //
+                                  // The rest of the class should be pretty
+                                  // much obvious. The <code>viscosity</code> variable
+                                  // stores the viscosity $\mu$ that enters
+                                  // several of the formulas in the nonlinear
+                                  // equations.
+  template <int dim>
+  class TwoPhaseFlowProblem
+  {
+    public:
+      TwoPhaseFlowProblem (const unsigned int degree);
+      void run ();
 
-template <int dim>
-double
-PressureRightHandSide<dim>::value (const Point<dim>  &/*p*/,
-                                   const unsigned int /*component*/) const
-{
-  return 0;
-}
+    private:
+      void make_grid_and_dofs ();
+      void assemble_system ();
+      void assemble_rhs_S ();
+      double get_maximal_velocity () const;
+      void solve ();
+      void project_back_saturation ();
+      void output_results () const;
 
+      const unsigned int   degree;
 
-                                 // @sect4{Pressure boundary values}
-                                 // The next are pressure boundary values. As
-                                 // mentioned in the introduction, we choose a
-                                 // linear pressure field:
-template <int dim>
-class PressureBoundaryValues : public Function<dim>
-{
-  public:
-    PressureBoundaryValues () : Function<dim>(1) {}
+      Triangulation<dim>   triangulation;
+      FESystem<dim>        fe;
+      DoFHandler<dim>      dof_handler;
 
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
-};
+      BlockSparsityPattern      sparsity_pattern;
+      BlockSparseMatrix<double> system_matrix;
 
+      const unsigned int n_refinement_steps;
 
-template <int dim>
-double
-PressureBoundaryValues<dim>::value (const Point<dim>  &p,
-                                    const unsigned int /*component*/) const
-{
-  return 1-p[0];
-}
+      double time_step;
+      unsigned int timestep_number;
+      double viscosity;
 
+      BlockVector<double> solution;
+      BlockVector<double> old_solution;
+      BlockVector<double> system_rhs;
+  };
 
-                                 // @sect4{Saturation boundary values}
 
-                                 // Then we also need boundary values on the
-                                 // inflow portions of the boundary. The
-                                 // question whether something is an inflow
-                                 // part is decided when assembling the right
-                                 // hand side, we only have to provide a
-                                 // functional description of the boundary
-                                 // values. This is as explained in the
-                                 // introduction:
-template <int dim>
-class SaturationBoundaryValues : public Function<dim>
-{
-  public:
-    SaturationBoundaryValues () : Function<dim>(1) {}
+                                  // @sect3{Equation data}
 
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
-};
+                                  // @sect4{Pressure right hand side}
+                                  // At present, the right hand side of the
+                                  // pressure equation is simply the zero
+                                  // function. However, the rest of the program
+                                  // is fully equipped to deal with anything
+                                  // else, if this is desired:
+  template <int dim>
+  class PressureRightHandSide : public Function<dim>
+  {
+    public:
+      PressureRightHandSide () : Function<dim>(1) {}
 
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
 
-template <int dim>
-double
-SaturationBoundaryValues<dim>::value (const Point<dim> &p,
-                                      const unsigned int /*component*/) const
-{
-  if (p[0] == 0)
-    return 1;
-  else
-    return 0;
-}
 
+  template <int dim>
+  double
+  PressureRightHandSide<dim>::value (const Point<dim>  &/*p*/,
+                                    const unsigned int /*component*/) const
+  {
+    return 0;
+  }
 
 
-                                 // @sect4{Initial data}
-
-                                 // Finally, we need initial data. In reality,
-                                 // we only need initial data for the
-                                 // saturation, but we are lazy, so we will
-                                 // later, before the first time step, simply
-                                 // interpolate the entire solution for the
-                                 // previous time step from a function that
-                                 // contains all vector components.
-                                 //
-                                 // We therefore simply create a function that
-                                 // returns zero in all components. We do that
-                                 // by simply forward every function to the
-                                 // ZeroFunction class. Why not use that right
-                                 // away in the places of this program where
-                                 // we presently use the <code>InitialValues</code>
-                                 // class? Because this way it is simpler to
-                                 // later go back and choose a different
-                                 // function for initial values.
-template <int dim>
-class InitialValues : public Function<dim>
-{
-  public:
-    InitialValues () : Function<dim>(dim+2) {}
+                                  // @sect4{Pressure boundary values}
+                                  // The next are pressure boundary values. As
+                                  // mentioned in the introduction, we choose a
+                                  // linear pressure field:
+  template <int dim>
+  class PressureBoundaryValues : public Function<dim>
+  {
+    public:
+      PressureBoundaryValues () : Function<dim>(1) {}
 
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
-    virtual void vector_value (const Point<dim> &p,
-                               Vector<double>   &value) const;
 
-};
+  template <int dim>
+  double
+  PressureBoundaryValues<dim>::value (const Point<dim>  &p,
+                                     const unsigned int /*component*/) const
+  {
+    return 1-p[0];
+  }
 
 
-template <int dim>
-double
-InitialValues<dim>::value (const Point<dim>  &p,
-                           const unsigned int component) const
-{
-  return ZeroFunction<dim>(dim+2).value (p, component);
-}
+                                  // @sect4{Saturation boundary values}
 
+                                  // Then we also need boundary values on the
+                                  // inflow portions of the boundary. The
+                                  // question whether something is an inflow
+                                  // part is decided when assembling the right
+                                  // hand side, we only have to provide a
+                                  // functional description of the boundary
+                                  // values. This is as explained in the
+                                  // introduction:
+  template <int dim>
+  class SaturationBoundaryValues : public Function<dim>
+  {
+    public:
+      SaturationBoundaryValues () : Function<dim>(1) {}
 
-template <int dim>
-void
-InitialValues<dim>::vector_value (const Point<dim> &p,
-                                  Vector<double>   &values) const
-{
-  ZeroFunction<dim>(dim+2).vector_value (p, values);
-}
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
 
 
+  template <int dim>
+  double
+  SaturationBoundaryValues<dim>::value (const Point<dim> &p,
+                                       const unsigned int /*component*/) const
+  {
+    if (p[0] == 0)
+      return 1;
+    else
+      return 0;
+  }
 
-                                 // @sect3{The inverse permeability tensor}
 
-                                 // As announced in the introduction, we
-                                 // implement two different permeability
-                                 // tensor fields. Each of them we put into a
-                                 // namespace of its own, so that it will be
-                                 // easy later to replace use of one by the
-                                 // other in the code.
 
-                                 // @sect4{Single curving crack permeability}
+                                  // @sect4{Initial data}
 
-                                 // The first function for the
-                                 // permeability was the one that
-                                 // models a single curving crack. It
-                                 // was already used at the end of
-                                 // step-20, and its functional form
-                                 // is given in the introduction of
-                                 // the present tutorial program. As
-                                 // in some previous programs, we have
-                                 // to declare a (seemingly
-                                 // unnecessary) default constructor
-                                 // of the KInverse class to avoid
-                                 // warnings from some compilers:
-namespace SingleCurvingCrack
-{
+                                  // Finally, we need initial data. In reality,
+                                  // we only need initial data for the
+                                  // saturation, but we are lazy, so we will
+                                  // later, before the first time step, simply
+                                  // interpolate the entire solution for the
+                                  // previous time step from a function that
+                                  // contains all vector components.
+                                  //
+                                  // We therefore simply create a function that
+                                  // returns zero in all components. We do that
+                                  // by simply forward every function to the
+                                  // ZeroFunction class. Why not use that right
+                                  // away in the places of this program where
+                                  // we presently use the <code>InitialValues</code>
+                                  // class? Because this way it is simpler to
+                                  // later go back and choose a different
+                                  // function for initial values.
   template <int dim>
-  class KInverse : public TensorFunction<2,dim>
+  class InitialValues : public Function<dim>
   {
     public:
-      KInverse ()
-                     :
-                     TensorFunction<2,dim> ()
-       {}
+      InitialValues () : Function<dim>(dim+2) {}
+
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &value) const;
 
-      virtual void value_list (const std::vector<Point<dim> > &points,
-                               std::vector<Tensor<2,dim> >    &values) const;
   };
 
 
+  template <int dim>
+  double
+  InitialValues<dim>::value (const Point<dim>  &p,
+                            const unsigned int component) const
+  {
+    return ZeroFunction<dim>(dim+2).value (p, component);
+  }
+
+
   template <int dim>
   void
-  KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
-                             std::vector<Tensor<2,dim> >    &values) const
+  InitialValues<dim>::vector_value (const Point<dim> &p,
+                                   Vector<double>   &values) const
   {
-    Assert (points.size() == values.size(),
-            ExcDimensionMismatch (points.size(), values.size()));
+    ZeroFunction<dim>(dim+2).vector_value (p, values);
+  }
 
-    for (unsigned int p=0; p<points.size(); ++p)
-      {
-        values[p].clear ();
 
-        const double distance_to_flowline
-          = std::fabs(points[p][1]-0.5-0.1*std::sin(10*points[p][0]));
 
-        const double permeability = std::max(std::exp(-(distance_to_flowline*
-                                                        distance_to_flowline)
-                                                      / (0.1 * 0.1)),
-                                             0.01);
 
-        for (unsigned int d=0; d<dim; ++d)
-          values[p][d][d] = 1./permeability;
-      }
-  }
-}
+                                  // @sect3{The inverse permeability tensor}
 
+                                  // As announced in the introduction, we
+                                  // implement two different permeability
+                                  // tensor fields. Each of them we put into a
+                                  // namespace of its own, so that it will be
+                                  // easy later to replace use of one by the
+                                  // other in the code.
 
-                                 // @sect4{Random medium permeability}
-
-                                 // This function does as announced in the
-                                 // introduction, i.e. it creates an overlay
-                                 // of exponentials at random places. There is
-                                 // one thing worth considering for this
-                                 // class. The issue centers around the
-                                 // problem that the class creates the centers
-                                 // of the exponentials using a random
-                                 // function. If we therefore created the
-                                 // centers each time we create an object of
-                                 // the present type, we would get a different
-                                 // list of centers each time. That's not what
-                                 // we expect from classes of this type: they
-                                 // should reliably represent the same
-                                 // function.
-                                 //
-                                 // The solution to this problem is to make
-                                 // the list of centers a static member
-                                 // variable of this class, i.e. there exists
-                                 // exactly one such variable for the entire
-                                 // program, rather than for each object of
-                                 // this type. That's exactly what we are
-                                 // going to do.
-                                 //
-                                 // The next problem, however, is that we need
-                                 // a way to initialize this variable. Since
-                                 // this variable is initialized at the
-                                 // beginning of the program, we can't use a
-                                 // regular member function for that since
-                                 // there may not be an object of this type
-                                 // around at the time. The C++ standard
-                                 // therefore says that only non-member and
-                                 // static member functions can be used to
-                                 // initialize a static variable. We use the
-                                 // latter possibility by defining a function
-                                 // <code>get_centers</code> that computes the list of
-                                 // center points when called.
-                                 //
-                                 // Note that this class works just fine in
-                                 // both 2d and 3d, with the only difference
-                                 // being that we use more points in 3d: by
-                                 // experimenting we find that we need more
-                                 // exponentials in 3d than in 2d (we have
-                                 // more ground to cover, after all, if we
-                                 // want to keep the distance between centers
-                                 // roughly equal), so we choose 40 in 2d and
-                                 // 100 in 3d. For any other dimension, the
-                                 // function does presently not know what to
-                                 // do so simply throws an exception
-                                 // indicating exactly this.
-namespace RandomMedium
-{
-  template <int dim>
-  class KInverse : public TensorFunction<2,dim>
-  {
-    public:
-      KInverse ()
-                     :
-                     TensorFunction<2,dim> ()
-       {}
+                                  // @sect4{Single curving crack permeability}
 
-      virtual void value_list (const std::vector<Point<dim> > &points,
-                               std::vector<Tensor<2,dim> >    &values) const;
+                                  // The first function for the
+                                  // permeability was the one that
+                                  // models a single curving crack. It
+                                  // was already used at the end of
+                                  // step-20, and its functional form
+                                  // is given in the introduction of
+                                  // the present tutorial program. As
+                                  // in some previous programs, we have
+                                  // to declare a (seemingly
+                                  // unnecessary) default constructor
+                                  // of the KInverse class to avoid
+                                  // warnings from some compilers:
+  namespace SingleCurvingCrack
+  {
+    template <int dim>
+    class KInverse : public TensorFunction<2,dim>
+    {
+      public:
+       KInverse ()
+                       :
+                       TensorFunction<2,dim> ()
+         {}
 
-    private:
-      static std::vector<Point<dim> > centers;
+       virtual void value_list (const std::vector<Point<dim> > &points,
+                                std::vector<Tensor<2,dim> >    &values) const;
+    };
 
-      static std::vector<Point<dim> > get_centers ();
-  };
 
+    template <int dim>
+    void
+    KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
+                              std::vector<Tensor<2,dim> >    &values) const
+    {
+      Assert (points.size() == values.size(),
+             ExcDimensionMismatch (points.size(), values.size()));
 
+      for (unsigned int p=0; p<points.size(); ++p)
+       {
+         values[p].clear ();
 
-  template <int dim>
-  std::vector<Point<dim> >
-  KInverse<dim>::centers = KInverse<dim>::get_centers();
+         const double distance_to_flowline
+           = std::fabs(points[p][1]-0.5-0.1*std::sin(10*points[p][0]));
 
+         const double permeability = std::max(std::exp(-(distance_to_flowline*
+                                                         distance_to_flowline)
+                                                       / (0.1 * 0.1)),
+                                              0.01);
 
-  template <int dim>
-  std::vector<Point<dim> >
-  KInverse<dim>::get_centers ()
-  {
-    const unsigned int N = (dim == 2 ?
-                            40 :
-                            (dim == 3 ?
-                             100 :
-                             throw ExcNotImplemented()));
-
-    std::vector<Point<dim> > centers_list (N);
-    for (unsigned int i=0; i<N; ++i)
-      for (unsigned int d=0; d<dim; ++d)
-        centers_list[i][d] = static_cast<double>(rand())/RAND_MAX;
-
-    return centers_list;
+         for (unsigned int d=0; d<dim; ++d)
+           values[p][d][d] = 1./permeability;
+       }
+    }
   }
 
 
-
-  template <int dim>
-  void
-  KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
-                             std::vector<Tensor<2,dim> >    &values) const
+                                  // @sect4{Random medium permeability}
+
+                                  // This function does as announced in the
+                                  // introduction, i.e. it creates an overlay
+                                  // of exponentials at random places. There is
+                                  // one thing worth considering for this
+                                  // class. The issue centers around the
+                                  // problem that the class creates the centers
+                                  // of the exponentials using a random
+                                  // function. If we therefore created the
+                                  // centers each time we create an object of
+                                  // the present type, we would get a different
+                                  // list of centers each time. That's not what
+                                  // we expect from classes of this type: they
+                                  // should reliably represent the same
+                                  // function.
+                                  //
+                                  // The solution to this problem is to make
+                                  // the list of centers a static member
+                                  // variable of this class, i.e. there exists
+                                  // exactly one such variable for the entire
+                                  // program, rather than for each object of
+                                  // this type. That's exactly what we are
+                                  // going to do.
+                                  //
+                                  // The next problem, however, is that we need
+                                  // a way to initialize this variable. Since
+                                  // this variable is initialized at the
+                                  // beginning of the program, we can't use a
+                                  // regular member function for that since
+                                  // there may not be an object of this type
+                                  // around at the time. The C++ standard
+                                  // therefore says that only non-member and
+                                  // static member functions can be used to
+                                  // initialize a static variable. We use the
+                                  // latter possibility by defining a function
+                                  // <code>get_centers</code> that computes the list of
+                                  // center points when called.
+                                  //
+                                  // Note that this class works just fine in
+                                  // both 2d and 3d, with the only difference
+                                  // being that we use more points in 3d: by
+                                  // experimenting we find that we need more
+                                  // exponentials in 3d than in 2d (we have
+                                  // more ground to cover, after all, if we
+                                  // want to keep the distance between centers
+                                  // roughly equal), so we choose 40 in 2d and
+                                  // 100 in 3d. For any other dimension, the
+                                  // function does presently not know what to
+                                  // do so simply throws an exception
+                                  // indicating exactly this.
+  namespace RandomMedium
   {
-    Assert (points.size() == values.size(),
-            ExcDimensionMismatch (points.size(), values.size()));
+    template <int dim>
+    class KInverse : public TensorFunction<2,dim>
+    {
+      public:
+       KInverse ()
+                       :
+                       TensorFunction<2,dim> ()
+         {}
 
-    for (unsigned int p=0; p<points.size(); ++p)
-      {
-        values[p].clear ();
+       virtual void value_list (const std::vector<Point<dim> > &points,
+                                std::vector<Tensor<2,dim> >    &values) const;
 
-        double permeability = 0;
-        for (unsigned int i=0; i<centers.size(); ++i)
-          permeability += std::exp(-(points[p]-centers[i]).square()
-                                   / (0.05 * 0.05));
+      private:
+       static std::vector<Point<dim> > centers;
 
-        const double normalized_permeability
-          = std::min (std::max(permeability, 0.01), 4.);
+       static std::vector<Point<dim> > get_centers ();
+    };
 
-        for (unsigned int d=0; d<dim; ++d)
-          values[p][d][d] = 1./normalized_permeability;
-      }
-  }
-}
 
 
+    template <int dim>
+    std::vector<Point<dim> >
+    KInverse<dim>::centers = KInverse<dim>::get_centers();
 
-                                 // @sect3{The inverse mobility and saturation functions}
 
-                                 // There are two more pieces of data that we
-                                 // need to describe, namely the inverse
-                                 // mobility function and the saturation
-                                 // curve. Their form is also given in the
-                                 // introduction:
-double mobility_inverse (const double S,
-                         const double viscosity)
-{
-  return 1.0 /(1.0/viscosity * S * S + (1-S) * (1-S));
-}
+    template <int dim>
+    std::vector<Point<dim> >
+    KInverse<dim>::get_centers ()
+    {
+      const unsigned int N = (dim == 2 ?
+                             40 :
+                             (dim == 3 ?
+                              100 :
+                              throw ExcNotImplemented()));
+
+      std::vector<Point<dim> > centers_list (N);
+      for (unsigned int i=0; i<N; ++i)
+       for (unsigned int d=0; d<dim; ++d)
+         centers_list[i][d] = static_cast<double>(rand())/RAND_MAX;
+
+      return centers_list;
+    }
 
-double f_saturation (const double S,
-                     const double viscosity)
-{
-  return S*S /( S * S +viscosity * (1-S) * (1-S));
-}
 
 
+    template <int dim>
+    void
+    KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
+                              std::vector<Tensor<2,dim> >    &values) const
+    {
+      Assert (points.size() == values.size(),
+             ExcDimensionMismatch (points.size(), values.size()));
 
+      for (unsigned int p=0; p<points.size(); ++p)
+       {
+         values[p].clear ();
 
+         double permeability = 0;
+         for (unsigned int i=0; i<centers.size(); ++i)
+           permeability += std::exp(-(points[p]-centers[i]).square()
+                                    / (0.05 * 0.05));
 
-                                 // @sect3{Linear solvers and preconditioners}
-
-                                 // The linear solvers we use are also
-                                 // completely analogous to the ones
-                                 // used in step-20. The following
-                                 // classes are therefore copied
-                                 // verbatim from there. There is a
-                                 // single change: if the size of a
-                                 // linear system is small, i.e. when
-                                 // the mesh is very coarse, then it
-                                 // is sometimes not sufficient to set
-                                 // a maximum of
-                                 // <code>src.size()</code> CG
-                                 // iterations before the solver in
-                                 // the <code>vmult()</code> function
-                                 // converges. (This is, of course, a
-                                 // result of numerical round-off,
-                                 // since we know that on paper, the
-                                 // CG method converges in at most
-                                 // <code>src.size()</code> steps.) As
-                                 // a consequence, we set the maximum
-                                 // number of iterations equal to the
-                                 // maximum of the size of the linear
-                                 // system and 200.
-template <class Matrix>
-class InverseMatrix : public Subscriptor
-{
-  public:
-    InverseMatrix (const Matrix &m);
+         const double normalized_permeability
+           = std::min (std::max(permeability, 0.01), 4.);
 
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
+         for (unsigned int d=0; d<dim; ++d)
+           values[p][d][d] = 1./normalized_permeability;
+       }
+    }
+  }
 
-  private:
-    const SmartPointer<const Matrix> matrix;
-};
 
 
-template <class Matrix>
-InverseMatrix<Matrix>::InverseMatrix (const Matrix &m)
-                :
-                matrix (&m)
-{}
+                                  // @sect3{The inverse mobility and saturation functions}
 
+                                  // There are two more pieces of data that we
+                                  // need to describe, namely the inverse
+                                  // mobility function and the saturation
+                                  // curve. Their form is also given in the
+                                  // introduction:
+  double mobility_inverse (const double S,
+                          const double viscosity)
+  {
+    return 1.0 /(1.0/viscosity * S * S + (1-S) * (1-S));
+  }
 
+  double f_saturation (const double S,
+                      const double viscosity)
+  {
+    return S*S /( S * S +viscosity * (1-S) * (1-S));
+  }
 
-template <class Matrix>
-void InverseMatrix<Matrix>::vmult (Vector<double>       &dst,
-                                   const Vector<double> &src) const
-{
-  SolverControl solver_control (std::max(src.size(), 200U),
-                               1e-8*src.l2_norm());
-  SolverCG<>    cg (solver_control);
 
-  dst = 0;
 
-  cg.solve (*matrix, dst, src, PreconditionIdentity());
-}
 
 
+                                  // @sect3{Linear solvers and preconditioners}
+
+                                  // The linear solvers we use are also
+                                  // completely analogous to the ones
+                                  // used in step-20. The following
+                                  // classes are therefore copied
+                                  // verbatim from there. There is a
+                                  // single change: if the size of a
+                                  // linear system is small, i.e. when
+                                  // the mesh is very coarse, then it
+                                  // is sometimes not sufficient to set
+                                  // a maximum of
+                                  // <code>src.size()</code> CG
+                                  // iterations before the solver in
+                                  // the <code>vmult()</code> function
+                                  // converges. (This is, of course, a
+                                  // result of numerical round-off,
+                                  // since we know that on paper, the
+                                  // CG method converges in at most
+                                  // <code>src.size()</code> steps.) As
+                                  // a consequence, we set the maximum
+                                  // number of iterations equal to the
+                                  // maximum of the size of the linear
+                                  // system and 200.
+  template <class Matrix>
+  class InverseMatrix : public Subscriptor
+  {
+    public:
+      InverseMatrix (const Matrix &m);
 
-class SchurComplement : public Subscriptor
-{
-  public:
-    SchurComplement (const BlockSparseMatrix<double> &A,
-                     const InverseMatrix<SparseMatrix<double> > &Minv);
+      void vmult (Vector<double>       &dst,
+                 const Vector<double> &src) const;
 
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
+    private:
+      const SmartPointer<const Matrix> matrix;
+  };
 
-  private:
-    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
-    const SmartPointer<const InverseMatrix<SparseMatrix<double> > > m_inverse;
 
-    mutable Vector<double> tmp1, tmp2;
-};
+  template <class Matrix>
+  InverseMatrix<Matrix>::InverseMatrix (const Matrix &m)
+                 :
+                 matrix (&m)
+  {}
 
 
 
-SchurComplement::
-SchurComplement (const BlockSparseMatrix<double> &A,
-                 const InverseMatrix<SparseMatrix<double> > &Minv)
-                :
-                system_matrix (&A),
-                m_inverse (&Minv),
-                tmp1 (A.block(0,0).m()),
-                tmp2 (A.block(0,0).m())
-{}
+  template <class Matrix>
+  void InverseMatrix<Matrix>::vmult (Vector<double>       &dst,
+                                    const Vector<double> &src) const
+  {
+    SolverControl solver_control (std::max(src.size(), 200U),
+                                 1e-8*src.l2_norm());
+    SolverCG<>    cg (solver_control);
 
+    dst = 0;
 
-void SchurComplement::vmult (Vector<double>       &dst,
-                             const Vector<double> &src) const
-{
-  system_matrix->block(0,1).vmult (tmp1, src);
-  m_inverse->vmult (tmp2, tmp1);
-  system_matrix->block(1,0).vmult (dst, tmp2);
-}
+    cg.solve (*matrix, dst, src, PreconditionIdentity());
+  }
 
 
 
-class ApproximateSchurComplement : public Subscriptor
-{
-  public:
-    ApproximateSchurComplement (const BlockSparseMatrix<double> &A);
+  class SchurComplement : public Subscriptor
+  {
+    public:
+      SchurComplement (const BlockSparseMatrix<double> &A,
+                      const InverseMatrix<SparseMatrix<double> > &Minv);
 
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
+      void vmult (Vector<double>       &dst,
+                 const Vector<double> &src) const;
 
-  private:
-    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
+    private:
+      const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
+      const SmartPointer<const InverseMatrix<SparseMatrix<double> > > m_inverse;
 
-    mutable Vector<double> tmp1, tmp2;
-};
+      mutable Vector<double> tmp1, tmp2;
+  };
 
 
-ApproximateSchurComplement::
-ApproximateSchurComplement (const BlockSparseMatrix<double> &A)
-                :
-                system_matrix (&A),
-                tmp1 (A.block(0,0).m()),
-                tmp2 (A.block(0,0).m())
-{}
 
+  SchurComplement::
+  SchurComplement (const BlockSparseMatrix<double> &A,
+                  const InverseMatrix<SparseMatrix<double> > &Minv)
+                 :
+                 system_matrix (&A),
+                 m_inverse (&Minv),
+                 tmp1 (A.block(0,0).m()),
+                 tmp2 (A.block(0,0).m())
+  {}
 
-void ApproximateSchurComplement::vmult (Vector<double>       &dst,
-                                        const Vector<double> &src) const
-{
-  system_matrix->block(0,1).vmult (tmp1, src);
-  system_matrix->block(0,0).precondition_Jacobi (tmp2, tmp1);
-  system_matrix->block(1,0).vmult (dst, tmp2);
-}
 
+  void SchurComplement::vmult (Vector<double>       &dst,
+                              const Vector<double> &src) const
+  {
+    system_matrix->block(0,1).vmult (tmp1, src);
+    m_inverse->vmult (tmp2, tmp1);
+    system_matrix->block(1,0).vmult (dst, tmp2);
+  }
 
 
 
+  class ApproximateSchurComplement : public Subscriptor
+  {
+    public:
+      ApproximateSchurComplement (const BlockSparseMatrix<double> &A);
 
-                                 // @sect3{<code>TwoPhaseFlowProblem</code> class implementation}
+      void vmult (Vector<double>       &dst,
+                 const Vector<double> &src) const;
 
-                                 // Here now the implementation of the main
-                                 // class. Much of it is actually copied from
-                                 // step-20, so we won't comment on it in much
-                                 // detail. You should try to get familiar
-                                 // with that program first, then most of what
-                                 // is happening here should be mostly clear.
+    private:
+      const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
 
-                                 // @sect4{TwoPhaseFlowProblem::TwoPhaseFlowProblem}
-                                 // First for the constructor. We use $RT_k
-                                 // \times DQ_k \times DQ_k$ spaces. The time
-                                 // step is set to zero initially, but will be
-                                 // computed before it is needed first, as
-                                 // described in a subsection of the
-                                 // introduction.
-template <int dim>
-TwoPhaseFlowProblem<dim>::TwoPhaseFlowProblem (const unsigned int degree)
-                :
-                degree (degree),
-                fe (FE_RaviartThomas<dim>(degree), 1,
-                    FE_DGQ<dim>(degree), 1,
-                    FE_DGQ<dim>(degree), 1),
-                dof_handler (triangulation),
-                n_refinement_steps (5),
-                time_step (0),
-                viscosity (0.2)
-{}
+      mutable Vector<double> tmp1, tmp2;
+  };
 
 
+  ApproximateSchurComplement::
+  ApproximateSchurComplement (const BlockSparseMatrix<double> &A)
+                 :
+                 system_matrix (&A),
+                 tmp1 (A.block(0,0).m()),
+                 tmp2 (A.block(0,0).m())
+  {}
 
-                                 // @sect4{TwoPhaseFlowProblem::make_grid_and_dofs}
 
-                                 // This next function starts out with
-                                 // well-known functions calls that create and
-                                 // refine a mesh, and then associate degrees
-                                 // of freedom with it. It does all the same
-                                 // things as in step-20, just now for three
-                                 // components instead of two.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::make_grid_and_dofs ()
-{
-  GridGenerator::hyper_cube (triangulation, 0, 1);
-  triangulation.refine_global (n_refinement_steps);
-
-  dof_handler.distribute_dofs (fe);
-  DoFRenumbering::component_wise (dof_handler);
-
-  std::vector<unsigned int> dofs_per_component (dim+2);
-  DoFTools::count_dofs_per_component (dof_handler, dofs_per_component);
-  const unsigned int n_u = dofs_per_component[0],
-                     n_p = dofs_per_component[dim],
-                     n_s = dofs_per_component[dim+1];
-
-  std::cout << "Number of active cells: "
-            << triangulation.n_active_cells()
-            << std::endl
-            << "Number of degrees of freedom: "
-            << dof_handler.n_dofs()
-            << " (" << n_u << '+' << n_p << '+'<< n_s <<')'
-            << std::endl
-            << std::endl;
-
-  const unsigned int
-    n_couplings = dof_handler.max_couplings_between_dofs();
-
-  sparsity_pattern.reinit (3,3);
-  sparsity_pattern.block(0,0).reinit (n_u, n_u, n_couplings);
-  sparsity_pattern.block(1,0).reinit (n_p, n_u, n_couplings);
-  sparsity_pattern.block(2,0).reinit (n_s, n_u, n_couplings);
-  sparsity_pattern.block(0,1).reinit (n_u, n_p, n_couplings);
-  sparsity_pattern.block(1,1).reinit (n_p, n_p, n_couplings);
-  sparsity_pattern.block(2,1).reinit (n_s, n_p, n_couplings);
-  sparsity_pattern.block(0,2).reinit (n_u, n_s, n_couplings);
-  sparsity_pattern.block(1,2).reinit (n_p, n_s, n_couplings);
-  sparsity_pattern.block(2,2).reinit (n_s, n_s, n_couplings);
-
-  sparsity_pattern.collect_sizes();
-
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress();
-
-
-  system_matrix.reinit (sparsity_pattern);
-
-
-  solution.reinit (3);
-  solution.block(0).reinit (n_u);
-  solution.block(1).reinit (n_p);
-  solution.block(2).reinit (n_s);
-  solution.collect_sizes ();
-
-  old_solution.reinit (3);
-  old_solution.block(0).reinit (n_u);
-  old_solution.block(1).reinit (n_p);
-  old_solution.block(2).reinit (n_s);
-  old_solution.collect_sizes ();
-
-  system_rhs.reinit (3);
-  system_rhs.block(0).reinit (n_u);
-  system_rhs.block(1).reinit (n_p);
-  system_rhs.block(2).reinit (n_s);
-  system_rhs.collect_sizes ();
-}
+  void ApproximateSchurComplement::vmult (Vector<double>       &dst,
+                                         const Vector<double> &src) const
+  {
+    system_matrix->block(0,1).vmult (tmp1, src);
+    system_matrix->block(0,0).precondition_Jacobi (tmp2, tmp1);
+    system_matrix->block(1,0).vmult (dst, tmp2);
+  }
 
 
-                                 // @sect4{TwoPhaseFlowProblem::assemble_system}
-
-                                 // This is the function that assembles the
-                                 // linear system, or at least everything
-                                 // except the (1,3) block that depends on the
-                                 // still-unknown velocity computed during
-                                 // this time step (we deal with this in
-                                 // <code>assemble_rhs_S</code>). Much of it
-                                 // is again as in step-20, but we have to
-                                 // deal with some nonlinearity this time.
-                                 // However, the top of the function is pretty
-                                 // much as usual (note that we set matrix and
-                                 // right hand side to zero at the beginning
-                                 // &mdash; something we didn't have to do for
-                                 // stationary problems since there we use
-                                 // each matrix object only once and it is
-                                 // empty at the beginning anyway).
-                                //
-                                // Note that in its present form, the
-                                // function uses the permeability implemented
-                                // in the RandomMedium::KInverse
-                                // class. Switching to the single curved
-                                // crack permeability function is as simple
-                                // as just changing the namespace name.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::assemble_system ()
-{
-  system_matrix=0;
-  system_rhs=0;
 
-  QGauss<dim>   quadrature_formula(degree+2);
-  QGauss<dim-1> face_quadrature_formula(degree+2);
 
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                           update_values    | update_gradients |
-                           update_quadrature_points  | update_JxW_values);
-  FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula,
-                                    update_values    | update_normal_vectors |
-                                    update_quadrature_points  | update_JxW_values);
 
-  const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
+                                  // @sect3{<code>TwoPhaseFlowProblem</code> class implementation}
 
-  const unsigned int   n_q_points      = quadrature_formula.size();
-  const unsigned int   n_face_q_points = face_quadrature_formula.size();
+                                  // Here now the implementation of the main
+                                  // class. Much of it is actually copied from
+                                  // step-20, so we won't comment on it in much
+                                  // detail. You should try to get familiar
+                                  // with that program first, then most of what
+                                  // is happening here should be mostly clear.
 
-  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       local_rhs (dofs_per_cell);
+                                  // @sect4{TwoPhaseFlowProblem::TwoPhaseFlowProblem}
+                                  // First for the constructor. We use $RT_k
+                                  // \times DQ_k \times DQ_k$ spaces. The time
+                                  // step is set to zero initially, but will be
+                                  // computed before it is needed first, as
+                                  // described in a subsection of the
+                                  // introduction.
+  template <int dim>
+  TwoPhaseFlowProblem<dim>::TwoPhaseFlowProblem (const unsigned int degree)
+                 :
+                 degree (degree),
+                 fe (FE_RaviartThomas<dim>(degree), 1,
+                     FE_DGQ<dim>(degree), 1,
+                     FE_DGQ<dim>(degree), 1),
+                 dof_handler (triangulation),
+                 n_refinement_steps (5),
+                 time_step (0),
+                 viscosity (0.2)
+  {}
+
+
+
+                                  // @sect4{TwoPhaseFlowProblem::make_grid_and_dofs}
+
+                                  // This next function starts out with
+                                  // well-known functions calls that create and
+                                  // refine a mesh, and then associate degrees
+                                  // of freedom with it. It does all the same
+                                  // things as in step-20, just now for three
+                                  // components instead of two.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::make_grid_and_dofs ()
+  {
+    GridGenerator::hyper_cube (triangulation, 0, 1);
+    triangulation.refine_global (n_refinement_steps);
+
+    dof_handler.distribute_dofs (fe);
+    DoFRenumbering::component_wise (dof_handler);
+
+    std::vector<unsigned int> dofs_per_component (dim+2);
+    DoFTools::count_dofs_per_component (dof_handler, dofs_per_component);
+    const unsigned int n_u = dofs_per_component[0],
+                      n_p = dofs_per_component[dim],
+                      n_s = dofs_per_component[dim+1];
+
+    std::cout << "Number of active cells: "
+             << triangulation.n_active_cells()
+             << std::endl
+             << "Number of degrees of freedom: "
+             << dof_handler.n_dofs()
+             << " (" << n_u << '+' << n_p << '+'<< n_s <<')'
+             << std::endl
+             << std::endl;
+
+    const unsigned int
+      n_couplings = dof_handler.max_couplings_between_dofs();
+
+    sparsity_pattern.reinit (3,3);
+    sparsity_pattern.block(0,0).reinit (n_u, n_u, n_couplings);
+    sparsity_pattern.block(1,0).reinit (n_p, n_u, n_couplings);
+    sparsity_pattern.block(2,0).reinit (n_s, n_u, n_couplings);
+    sparsity_pattern.block(0,1).reinit (n_u, n_p, n_couplings);
+    sparsity_pattern.block(1,1).reinit (n_p, n_p, n_couplings);
+    sparsity_pattern.block(2,1).reinit (n_s, n_p, n_couplings);
+    sparsity_pattern.block(0,2).reinit (n_u, n_s, n_couplings);
+    sparsity_pattern.block(1,2).reinit (n_p, n_s, n_couplings);
+    sparsity_pattern.block(2,2).reinit (n_s, n_s, n_couplings);
+
+    sparsity_pattern.collect_sizes();
+
+    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+    sparsity_pattern.compress();
+
+
+    system_matrix.reinit (sparsity_pattern);
+
+
+    solution.reinit (3);
+    solution.block(0).reinit (n_u);
+    solution.block(1).reinit (n_p);
+    solution.block(2).reinit (n_s);
+    solution.collect_sizes ();
+
+    old_solution.reinit (3);
+    old_solution.block(0).reinit (n_u);
+    old_solution.block(1).reinit (n_p);
+    old_solution.block(2).reinit (n_s);
+    old_solution.collect_sizes ();
+
+    system_rhs.reinit (3);
+    system_rhs.block(0).reinit (n_u);
+    system_rhs.block(1).reinit (n_p);
+    system_rhs.block(2).reinit (n_s);
+    system_rhs.collect_sizes ();
+  }
 
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-  const PressureRightHandSide<dim>  pressure_right_hand_side;
-  const PressureBoundaryValues<dim> pressure_boundary_values;
-  const RandomMedium::KInverse<dim> k_inverse;
+                                  // @sect4{TwoPhaseFlowProblem::assemble_system}
+
+                                  // This is the function that assembles the
+                                  // linear system, or at least everything
+                                  // except the (1,3) block that depends on the
+                                  // still-unknown velocity computed during
+                                  // this time step (we deal with this in
+                                  // <code>assemble_rhs_S</code>). Much of it
+                                  // is again as in step-20, but we have to
+                                  // deal with some nonlinearity this time.
+                                  // However, the top of the function is pretty
+                                  // much as usual (note that we set matrix and
+                                  // right hand side to zero at the beginning
+                                  // &mdash; something we didn't have to do for
+                                  // stationary problems since there we use
+                                  // each matrix object only once and it is
+                                  // empty at the beginning anyway).
+                                  //
+                                  // Note that in its present form, the
+                                  // function uses the permeability implemented
+                                  // in the RandomMedium::KInverse
+                                  // class. Switching to the single curved
+                                  // crack permeability function is as simple
+                                  // as just changing the namespace name.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::assemble_system ()
+  {
+    system_matrix=0;
+    system_rhs=0;
 
-  std::vector<double>               pressure_rhs_values (n_q_points);
-  std::vector<double>               boundary_values (n_face_q_points);
-  std::vector<Tensor<2,dim> >       k_inverse_values (n_q_points);
+    QGauss<dim>   quadrature_formula(degree+2);
+    QGauss<dim-1> face_quadrature_formula(degree+2);
 
-  std::vector<Vector<double> >      old_solution_values(n_q_points, Vector<double>(dim+2));
-  std::vector<std::vector<Tensor<1,dim> > >  old_solution_grads(n_q_points,
-                                                                std::vector<Tensor<1,dim> > (dim+2));
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values    | update_gradients |
+                            update_quadrature_points  | update_JxW_values);
+    FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula,
+                                     update_values    | update_normal_vectors |
+                                     update_quadrature_points  | update_JxW_values);
 
-  const FEValuesExtractors::Vector velocities (0);
-  const FEValuesExtractors::Scalar pressure (dim);
-  const FEValuesExtractors::Scalar saturation (dim+1);
+    const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
 
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-      local_matrix = 0;
-      local_rhs = 0;
-
-                                       // Here's the first significant
-                                       // difference: We have to get the
-                                       // values of the saturation function of
-                                       // the previous time step at the
-                                       // quadrature points. To this end, we
-                                       // can use the
-                                       // FEValues::get_function_values
-                                       // (previously already used in step-9,
-                                       // step-14 and step-15), a function
-                                       // that takes a solution vector and
-                                       // returns a list of function values at
-                                       // the quadrature points of the present
-                                       // cell. In fact, it returns the
-                                       // complete vector-valued solution at
-                                       // each quadrature point, i.e. not only
-                                       // the saturation but also the
-                                       // velocities and pressure:
-      fe_values.get_function_values (old_solution, old_solution_values);
-
-                                       // Then we also have to get the values
-                                       // of the pressure right hand side and
-                                       // of the inverse permeability tensor
-                                       // at the quadrature points:
-      pressure_right_hand_side.value_list (fe_values.get_quadrature_points(),
-                                           pressure_rhs_values);
-      k_inverse.value_list (fe_values.get_quadrature_points(),
-                            k_inverse_values);
-
-                                       // With all this, we can now loop over
-                                       // all the quadrature points and shape
-                                       // functions on this cell and assemble
-                                       // those parts of the matrix and right
-                                       // hand side that we deal with in this
-                                       // function. The individual terms in
-                                       // the contributions should be
-                                       // self-explanatory given the explicit
-                                       // form of the bilinear form stated in
-                                       // the introduction:
-      for (unsigned int q=0; q<n_q_points; ++q)
-        for (unsigned int i=0; i<dofs_per_cell; ++i)
-          {
-            const double old_s = old_solution_values[q](dim+1);
-
-            const Tensor<1,dim> phi_i_u      = fe_values[velocities].value (i, q);
-            const double        div_phi_i_u  = fe_values[velocities].divergence (i, q);
-            const double        phi_i_p      = fe_values[pressure].value (i, q);
-            const double        phi_i_s      = fe_values[saturation].value (i, q);
-
-            for (unsigned int j=0; j<dofs_per_cell; ++j)
-              {
-                const Tensor<1,dim> phi_j_u     = fe_values[velocities].value (j, q);
-                const double        div_phi_j_u = fe_values[velocities].divergence (j, q);
-                const double        phi_j_p     = fe_values[pressure].value (j, q);
-                const double        phi_j_s     = fe_values[saturation].value (j, q);
-
-                local_matrix(i,j) += (phi_i_u * k_inverse_values[q] *
-                                      mobility_inverse(old_s,viscosity) * phi_j_u
-                                      - div_phi_i_u * phi_j_p
-                                      - phi_i_p * div_phi_j_u
-                                      + phi_i_s * phi_j_s)
-                                     * fe_values.JxW(q);
-              }
-
-            local_rhs(i) += (-phi_i_p * pressure_rhs_values[q])*
-                            fe_values.JxW(q);
-          }
-
-
-                                       // Next, we also have to deal with the
-                                       // pressure boundary values. This,
-                                       // again is as in step-20:
-      for (unsigned int face_no=0;
-           face_no<GeometryInfo<dim>::faces_per_cell;
-           ++face_no)
-        if (cell->at_boundary(face_no))
-          {
-            fe_face_values.reinit (cell, face_no);
-
-            pressure_boundary_values
-              .value_list (fe_face_values.get_quadrature_points(),
-                           boundary_values);
-
-            for (unsigned int q=0; q<n_face_q_points; ++q)
-              for (unsigned int i=0; i<dofs_per_cell; ++i)
-                {
-                  const Tensor<1,dim>
-                    phi_i_u = fe_face_values[velocities].value (i, q);
-
-                  local_rhs(i) += -(phi_i_u *
-                                    fe_face_values.normal_vector(q) *
-                                    boundary_values[q] *
-                                    fe_face_values.JxW(q));
-                }
-          }
-
-                                       // The final step in the loop
-                                       // over all cells is to
-                                       // transfer local contributions
-                                       // into the global matrix and
-                                       // right hand side vector:
-      cell->get_dof_indices (local_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-        for (unsigned int j=0; j<dofs_per_cell; ++j)
-         system_matrix.add (local_dof_indices[i],
-                            local_dof_indices[j],
-                            local_matrix(i,j));
-
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-        system_rhs(local_dof_indices[i]) += local_rhs(i);
-    }
-}
+    const unsigned int   n_q_points      = quadrature_formula.size();
+    const unsigned int   n_face_q_points = face_quadrature_formula.size();
 
+    FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>       local_rhs (dofs_per_cell);
 
-                                 // So much for assembly of matrix and right
-                                 // hand side. Note that we do not have to
-                                 // interpolate and apply boundary values
-                                 // since they have all been taken care of in
-                                 // the weak form already.
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
+    const PressureRightHandSide<dim>  pressure_right_hand_side;
+    const PressureBoundaryValues<dim> pressure_boundary_values;
+    const RandomMedium::KInverse<dim> k_inverse;
 
-                                 // @sect4{TwoPhaseFlowProblem::assemble_rhs_S}
+    std::vector<double>               pressure_rhs_values (n_q_points);
+    std::vector<double>               boundary_values (n_face_q_points);
+    std::vector<Tensor<2,dim> >       k_inverse_values (n_q_points);
 
-                                 // As explained in the introduction, we can
-                                 // only evaluate the right hand side of the
-                                 // saturation equation once the velocity has
-                                 // been computed. We therefore have this
-                                 // separate function to this end.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::assemble_rhs_S ()
-{
-  QGauss<dim>   quadrature_formula(degree+2);
-  QGauss<dim-1> face_quadrature_formula(degree+2);
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                           update_values    | update_gradients |
-                           update_quadrature_points  | update_JxW_values);
-  FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula,
-                                    update_values    | update_normal_vectors |
-                                    update_quadrature_points  | update_JxW_values);
-  FEFaceValues<dim> fe_face_values_neighbor (fe, face_quadrature_formula,
-                                             update_values);
-
-  const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
-  const unsigned int   n_q_points      = quadrature_formula.size();
-  const unsigned int   n_face_q_points = face_quadrature_formula.size();
-
-  Vector<double>       local_rhs (dofs_per_cell);
-
-  std::vector<Vector<double> > old_solution_values(n_q_points, Vector<double>(dim+2));
-  std::vector<Vector<double> > old_solution_values_face(n_face_q_points, Vector<double>(dim+2));
-  std::vector<Vector<double> > old_solution_values_face_neighbor(n_face_q_points, Vector<double>(dim+2));
-  std::vector<Vector<double> > present_solution_values(n_q_points, Vector<double>(dim+2));
-  std::vector<Vector<double> > present_solution_values_face(n_face_q_points, Vector<double>(dim+2));
-
-  std::vector<double> neighbor_saturation (n_face_q_points);
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-  SaturationBoundaryValues<dim> saturation_boundary_values;
-
-  const FEValuesExtractors::Scalar saturation (dim+1);
-
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      local_rhs = 0;
-      fe_values.reinit (cell);
-
-      fe_values.get_function_values (old_solution, old_solution_values);
-      fe_values.get_function_values (solution, present_solution_values);
-
-                                       // First for the cell terms. These are,
-                                       // following the formulas in the
-                                       // introduction, $(S^n,\sigma)-(F(S^n)
-                                       // \mathbf{v}^{n+1},\nabla sigma)$,
-                                       // where $\sigma$ is the saturation
-                                       // component of the test function:
-      for (unsigned int q=0; q<n_q_points; ++q)
-        for (unsigned int i=0; i<dofs_per_cell; ++i)
-          {
-            const double old_s = old_solution_values[q](dim+1);
-            Tensor<1,dim> present_u;
-            for (unsigned int d=0; d<dim; ++d)
-              present_u[d] = present_solution_values[q](d);
-
-            const double        phi_i_s      = fe_values[saturation].value (i, q);
-            const Tensor<1,dim> grad_phi_i_s = fe_values[saturation].gradient (i, q);
-
-            local_rhs(i) += (time_step *
-                             f_saturation(old_s,viscosity) *
-                             present_u *
-                             grad_phi_i_s
-                             +
-                             old_s * phi_i_s)
-                            *
-                            fe_values.JxW(q);
-          }
-
-                                       // Secondly, we have to deal with the
-                                       // flux parts on the face
-                                       // boundaries. This was a bit more
-                                       // involved because we first have to
-                                       // determine which are the influx and
-                                       // outflux parts of the cell
-                                       // boundary. If we have an influx
-                                       // boundary, we need to evaluate the
-                                       // saturation on the other side of the
-                                       // face (or the boundary values, if we
-                                       // are at the boundary of the domain).
-                                       //
-                                       // All this is a bit tricky, but has
-                                       // been explained in some detail
-                                       // already in step-9. Take a look there
-                                       // how this is supposed to work!
-      for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
-           ++face_no)
-        {
-          fe_face_values.reinit (cell, face_no);
-
-          fe_face_values.get_function_values (old_solution, old_solution_values_face);
-          fe_face_values.get_function_values (solution, present_solution_values_face);
-
-          if (cell->at_boundary(face_no))
-            saturation_boundary_values
-              .value_list (fe_face_values.get_quadrature_points(),
-                           neighbor_saturation);
-          else
-            {
-              const typename DoFHandler<dim>::active_cell_iterator
-                neighbor = cell->neighbor(face_no);
-              const unsigned int
-                neighbor_face = cell->neighbor_of_neighbor(face_no);
-
-              fe_face_values_neighbor.reinit (neighbor, neighbor_face);
-
-              fe_face_values_neighbor
-                .get_function_values (old_solution,
-                                      old_solution_values_face_neighbor);
-
-              for (unsigned int q=0; q<n_face_q_points; ++q)
-                neighbor_saturation[q] = old_solution_values_face_neighbor[q](dim+1);
-            }
-
-
-          for (unsigned int q=0; q<n_face_q_points; ++q)
-            {
-              Tensor<1,dim> present_u_face;
-              for (unsigned int d=0; d<dim; ++d)
-                present_u_face[d] = present_solution_values_face[q](d);
-
-              const double normal_flux = present_u_face *
-                                         fe_face_values.normal_vector(q);
-
-              const bool is_outflow_q_point = (normal_flux >= 0);
-
-              for (unsigned int i=0; i<dofs_per_cell; ++i)
-                local_rhs(i) -= time_step *
-                                normal_flux *
-                                f_saturation((is_outflow_q_point == true
-                                              ?
-                                              old_solution_values_face[q](dim+1)
-                                              :
-                                              neighbor_saturation[q]),
-                                             viscosity) *
-                                fe_face_values[saturation].value (i,q) *
-                                fe_face_values.JxW(q);
-            }
-        }
-
-      cell->get_dof_indices (local_dof_indices);
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-        system_rhs(local_dof_indices[i]) += local_rhs(i);
-    }
-}
+    std::vector<Vector<double> >      old_solution_values(n_q_points, Vector<double>(dim+2));
+    std::vector<std::vector<Tensor<1,dim> > >  old_solution_grads(n_q_points,
+                                                                 std::vector<Tensor<1,dim> > (dim+2));
+
+    const FEValuesExtractors::Vector velocities (0);
+    const FEValuesExtractors::Scalar pressure (dim);
+    const FEValuesExtractors::Scalar saturation (dim+1);
 
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       fe_values.reinit (cell);
+       local_matrix = 0;
+       local_rhs = 0;
+
+                                        // Here's the first significant
+                                        // difference: We have to get the
+                                        // values of the saturation function of
+                                        // the previous time step at the
+                                        // quadrature points. To this end, we
+                                        // can use the
+                                        // FEValues::get_function_values
+                                        // (previously already used in step-9,
+                                        // step-14 and step-15), a function
+                                        // that takes a solution vector and
+                                        // returns a list of function values at
+                                        // the quadrature points of the present
+                                        // cell. In fact, it returns the
+                                        // complete vector-valued solution at
+                                        // each quadrature point, i.e. not only
+                                        // the saturation but also the
+                                        // velocities and pressure:
+       fe_values.get_function_values (old_solution, old_solution_values);
+
+                                        // Then we also have to get the values
+                                        // of the pressure right hand side and
+                                        // of the inverse permeability tensor
+                                        // at the quadrature points:
+       pressure_right_hand_side.value_list (fe_values.get_quadrature_points(),
+                                            pressure_rhs_values);
+       k_inverse.value_list (fe_values.get_quadrature_points(),
+                             k_inverse_values);
+
+                                        // With all this, we can now loop over
+                                        // all the quadrature points and shape
+                                        // functions on this cell and assemble
+                                        // those parts of the matrix and right
+                                        // hand side that we deal with in this
+                                        // function. The individual terms in
+                                        // the contributions should be
+                                        // self-explanatory given the explicit
+                                        // form of the bilinear form stated in
+                                        // the introduction:
+       for (unsigned int q=0; q<n_q_points; ++q)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           {
+             const double old_s = old_solution_values[q](dim+1);
+
+             const Tensor<1,dim> phi_i_u      = fe_values[velocities].value (i, q);
+             const double        div_phi_i_u  = fe_values[velocities].divergence (i, q);
+             const double        phi_i_p      = fe_values[pressure].value (i, q);
+             const double        phi_i_s      = fe_values[saturation].value (i, q);
+
+             for (unsigned int j=0; j<dofs_per_cell; ++j)
+               {
+                 const Tensor<1,dim> phi_j_u     = fe_values[velocities].value (j, q);
+                 const double        div_phi_j_u = fe_values[velocities].divergence (j, q);
+                 const double        phi_j_p     = fe_values[pressure].value (j, q);
+                 const double        phi_j_s     = fe_values[saturation].value (j, q);
+
+                 local_matrix(i,j) += (phi_i_u * k_inverse_values[q] *
+                                       mobility_inverse(old_s,viscosity) * phi_j_u
+                                       - div_phi_i_u * phi_j_p
+                                       - phi_i_p * div_phi_j_u
+                                       + phi_i_s * phi_j_s)
+                                      * fe_values.JxW(q);
+               }
+
+             local_rhs(i) += (-phi_i_p * pressure_rhs_values[q])*
+                             fe_values.JxW(q);
+           }
+
+
+                                        // Next, we also have to deal with the
+                                        // pressure boundary values. This,
+                                        // again is as in step-20:
+       for (unsigned int face_no=0;
+            face_no<GeometryInfo<dim>::faces_per_cell;
+            ++face_no)
+         if (cell->at_boundary(face_no))
+           {
+             fe_face_values.reinit (cell, face_no);
+
+             pressure_boundary_values
+               .value_list (fe_face_values.get_quadrature_points(),
+                            boundary_values);
+
+             for (unsigned int q=0; q<n_face_q_points; ++q)
+               for (unsigned int i=0; i<dofs_per_cell; ++i)
+                 {
+                   const Tensor<1,dim>
+                     phi_i_u = fe_face_values[velocities].value (i, q);
+
+                   local_rhs(i) += -(phi_i_u *
+                                     fe_face_values.normal_vector(q) *
+                                     boundary_values[q] *
+                                     fe_face_values.JxW(q));
+                 }
+           }
+
+                                        // The final step in the loop
+                                        // over all cells is to
+                                        // transfer local contributions
+                                        // into the global matrix and
+                                        // right hand side vector:
+       cell->get_dof_indices (local_dof_indices);
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         for (unsigned int j=0; j<dofs_per_cell; ++j)
+           system_matrix.add (local_dof_indices[i],
+                              local_dof_indices[j],
+                              local_matrix(i,j));
+
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         system_rhs(local_dof_indices[i]) += local_rhs(i);
+      }
+  }
 
 
-                                 // @sect4{TwoPhaseFlowProblem::solve}
+                                  // So much for assembly of matrix and right
+                                  // hand side. Note that we do not have to
+                                  // interpolate and apply boundary values
+                                  // since they have all been taken care of in
+                                  // the weak form already.
 
-                                 // After all these preparations, we finally
-                                 // solve the linear system for velocity and
-                                 // pressure in the same way as in
-                                 // step-20. After that, we have to deal with
-                                 // the saturation equation (see below):
-template <int dim>
-void TwoPhaseFlowProblem<dim>::solve ()
-{
-  const InverseMatrix<SparseMatrix<double> >
-    m_inverse (system_matrix.block(0,0));
-  Vector<double> tmp (solution.block(0).size());
-  Vector<double> schur_rhs (solution.block(1).size());
-  Vector<double> tmp2 (solution.block(2).size());
 
+                                  // @sect4{TwoPhaseFlowProblem::assemble_rhs_S}
 
-                                   // First the pressure, using the pressure
-                                   // Schur complement of the first two
-                                   // equations:
+                                  // As explained in the introduction, we can
+                                  // only evaluate the right hand side of the
+                                  // saturation equation once the velocity has
+                                  // been computed. We therefore have this
+                                  // separate function to this end.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::assemble_rhs_S ()
   {
-    m_inverse.vmult (tmp, system_rhs.block(0));
-    system_matrix.block(1,0).vmult (schur_rhs, tmp);
-    schur_rhs -= system_rhs.block(1);
+    QGauss<dim>   quadrature_formula(degree+2);
+    QGauss<dim-1> face_quadrature_formula(degree+2);
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values    | update_gradients |
+                            update_quadrature_points  | update_JxW_values);
+    FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula,
+                                     update_values    | update_normal_vectors |
+                                     update_quadrature_points  | update_JxW_values);
+    FEFaceValues<dim> fe_face_values_neighbor (fe, face_quadrature_formula,
+                                              update_values);
+
+    const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
+    const unsigned int   n_q_points      = quadrature_formula.size();
+    const unsigned int   n_face_q_points = face_quadrature_formula.size();
+
+    Vector<double>       local_rhs (dofs_per_cell);
+
+    std::vector<Vector<double> > old_solution_values(n_q_points, Vector<double>(dim+2));
+    std::vector<Vector<double> > old_solution_values_face(n_face_q_points, Vector<double>(dim+2));
+    std::vector<Vector<double> > old_solution_values_face_neighbor(n_face_q_points, Vector<double>(dim+2));
+    std::vector<Vector<double> > present_solution_values(n_q_points, Vector<double>(dim+2));
+    std::vector<Vector<double> > present_solution_values_face(n_face_q_points, Vector<double>(dim+2));
+
+    std::vector<double> neighbor_saturation (n_face_q_points);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+    SaturationBoundaryValues<dim> saturation_boundary_values;
+
+    const FEValuesExtractors::Scalar saturation (dim+1);
+
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       local_rhs = 0;
+       fe_values.reinit (cell);
+
+       fe_values.get_function_values (old_solution, old_solution_values);
+       fe_values.get_function_values (solution, present_solution_values);
+
+                                        // First for the cell terms. These are,
+                                        // following the formulas in the
+                                        // introduction, $(S^n,\sigma)-(F(S^n)
+                                        // \mathbf{v}^{n+1},\nabla sigma)$,
+                                        // where $\sigma$ is the saturation
+                                        // component of the test function:
+       for (unsigned int q=0; q<n_q_points; ++q)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           {
+             const double old_s = old_solution_values[q](dim+1);
+             Tensor<1,dim> present_u;
+             for (unsigned int d=0; d<dim; ++d)
+               present_u[d] = present_solution_values[q](d);
+
+             const double        phi_i_s      = fe_values[saturation].value (i, q);
+             const Tensor<1,dim> grad_phi_i_s = fe_values[saturation].gradient (i, q);
+
+             local_rhs(i) += (time_step *
+                              f_saturation(old_s,viscosity) *
+                              present_u *
+                              grad_phi_i_s
+                              +
+                              old_s * phi_i_s)
+                             *
+                             fe_values.JxW(q);
+           }
+
+                                        // Secondly, we have to deal with the
+                                        // flux parts on the face
+                                        // boundaries. This was a bit more
+                                        // involved because we first have to
+                                        // determine which are the influx and
+                                        // outflux parts of the cell
+                                        // boundary. If we have an influx
+                                        // boundary, we need to evaluate the
+                                        // saturation on the other side of the
+                                        // face (or the boundary values, if we
+                                        // are at the boundary of the domain).
+                                        //
+                                        // All this is a bit tricky, but has
+                                        // been explained in some detail
+                                        // already in step-9. Take a look there
+                                        // how this is supposed to work!
+       for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
+            ++face_no)
+         {
+           fe_face_values.reinit (cell, face_no);
+
+           fe_face_values.get_function_values (old_solution, old_solution_values_face);
+           fe_face_values.get_function_values (solution, present_solution_values_face);
+
+           if (cell->at_boundary(face_no))
+             saturation_boundary_values
+               .value_list (fe_face_values.get_quadrature_points(),
+                            neighbor_saturation);
+           else
+             {
+               const typename DoFHandler<dim>::active_cell_iterator
+                 neighbor = cell->neighbor(face_no);
+               const unsigned int
+                 neighbor_face = cell->neighbor_of_neighbor(face_no);
+
+               fe_face_values_neighbor.reinit (neighbor, neighbor_face);
+
+               fe_face_values_neighbor
+                 .get_function_values (old_solution,
+                                       old_solution_values_face_neighbor);
+
+               for (unsigned int q=0; q<n_face_q_points; ++q)
+                 neighbor_saturation[q] = old_solution_values_face_neighbor[q](dim+1);
+             }
+
+
+           for (unsigned int q=0; q<n_face_q_points; ++q)
+             {
+               Tensor<1,dim> present_u_face;
+               for (unsigned int d=0; d<dim; ++d)
+                 present_u_face[d] = present_solution_values_face[q](d);
+
+               const double normal_flux = present_u_face *
+                                          fe_face_values.normal_vector(q);
+
+               const bool is_outflow_q_point = (normal_flux >= 0);
+
+               for (unsigned int i=0; i<dofs_per_cell; ++i)
+                 local_rhs(i) -= time_step *
+                                 normal_flux *
+                                 f_saturation((is_outflow_q_point == true
+                                               ?
+                                               old_solution_values_face[q](dim+1)
+                                               :
+                                               neighbor_saturation[q]),
+                                              viscosity) *
+                                 fe_face_values[saturation].value (i,q) *
+                                 fe_face_values.JxW(q);
+             }
+         }
+
+       cell->get_dof_indices (local_dof_indices);
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         system_rhs(local_dof_indices[i]) += local_rhs(i);
+      }
+  }
 
 
-    SchurComplement
-      schur_complement (system_matrix, m_inverse);
 
-    ApproximateSchurComplement
-      approximate_schur_complement (system_matrix);
+                                  // @sect4{TwoPhaseFlowProblem::solve}
 
-    InverseMatrix<ApproximateSchurComplement>
-      preconditioner (approximate_schur_complement);
+                                  // After all these preparations, we finally
+                                  // solve the linear system for velocity and
+                                  // pressure in the same way as in
+                                  // step-20. After that, we have to deal with
+                                  // the saturation equation (see below):
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::solve ()
+  {
+    const InverseMatrix<SparseMatrix<double> >
+      m_inverse (system_matrix.block(0,0));
+    Vector<double> tmp (solution.block(0).size());
+    Vector<double> schur_rhs (solution.block(1).size());
+    Vector<double> tmp2 (solution.block(2).size());
 
 
-    SolverControl solver_control (solution.block(1).size(),
-                                  1e-12*schur_rhs.l2_norm());
-    SolverCG<>    cg (solver_control);
+                                    // First the pressure, using the pressure
+                                    // Schur complement of the first two
+                                    // equations:
+    {
+      m_inverse.vmult (tmp, system_rhs.block(0));
+      system_matrix.block(1,0).vmult (schur_rhs, tmp);
+      schur_rhs -= system_rhs.block(1);
 
-    cg.solve (schur_complement, solution.block(1), schur_rhs,
-              preconditioner);
 
-    std::cout << "   "
-              << solver_control.last_step()
-              << " CG Schur complement iterations for pressure."
-              << std::endl;
-  }
+      SchurComplement
+       schur_complement (system_matrix, m_inverse);
 
-                                   // Now the velocity:
-  {
-    system_matrix.block(0,1).vmult (tmp, solution.block(1));
-    tmp *= -1;
-    tmp += system_rhs.block(0);
+      ApproximateSchurComplement
+       approximate_schur_complement (system_matrix);
 
-    m_inverse.vmult (solution.block(0), tmp);
-  }
+      InverseMatrix<ApproximateSchurComplement>
+       preconditioner (approximate_schur_complement);
 
-                                   // Finally, we have to take care of the
-                                   // saturation equation. The first business
-                                   // we have here is to determine the time
-                                   // step using the formula in the
-                                   // introduction. Knowing the shape of our
-                                   // domain and that we created the mesh by
-                                   // regular subdivision of cells, we can
-                                   // compute the diameter of each of our
-                                   // cells quite easily (in fact we use the
-                                   // linear extensions in coordinate
-                                   // directions of the cells, not the
-                                   // diameter). Note that we will learn a
-                                   // more general way to do this in step-24,
-                                   // where we use the
-                                   // GridTools::minimal_cell_diameter
-                                   // function.
-                                  //
-                                  // The maximal velocity we compute using a
-                                   // helper function to compute the maximal
-                                   // velocity defined below, and with all
-                                   // this we can evaluate our new time step
-                                   // length:
-  time_step = std::pow(0.5, double(n_refinement_steps)) /
-              get_maximal_velocity();
-
-                                   // The next step is to assemble the right
-                                   // hand side, and then to pass everything
-                                   // on for solution. At the end, we project
-                                   // back saturations onto the physically
-                                   // reasonable range:
-  assemble_rhs_S ();
-  {
 
-    SolverControl solver_control (system_matrix.block(2,2).m(),
-                                  1e-8*system_rhs.block(2).l2_norm());
-    SolverCG<>   cg (solver_control);
-    cg.solve (system_matrix.block(2,2), solution.block(2), system_rhs.block(2),
-              PreconditionIdentity());
+      SolverControl solver_control (solution.block(1).size(),
+                                   1e-12*schur_rhs.l2_norm());
+      SolverCG<>    cg (solver_control);
 
-    project_back_saturation ();
+      cg.solve (schur_complement, solution.block(1), schur_rhs,
+               preconditioner);
 
-    std::cout << "   "
-              << solver_control.last_step()
-              << " CG iterations for saturation."
-              << std::endl;
-  }
+      std::cout << "   "
+               << solver_control.last_step()
+               << " CG Schur complement iterations for pressure."
+               << std::endl;
+    }
 
+                                    // Now the velocity:
+    {
+      system_matrix.block(0,1).vmult (tmp, solution.block(1));
+      tmp *= -1;
+      tmp += system_rhs.block(0);
 
-  old_solution = solution;
-}
+      m_inverse.vmult (solution.block(0), tmp);
+    }
 
+                                    // Finally, we have to take care of the
+                                    // saturation equation. The first business
+                                    // we have here is to determine the time
+                                    // step using the formula in the
+                                    // introduction. Knowing the shape of our
+                                    // domain and that we created the mesh by
+                                    // regular subdivision of cells, we can
+                                    // compute the diameter of each of our
+                                    // cells quite easily (in fact we use the
+                                    // linear extensions in coordinate
+                                    // directions of the cells, not the
+                                    // diameter). Note that we will learn a
+                                    // more general way to do this in step-24,
+                                    // where we use the
+                                    // GridTools::minimal_cell_diameter
+                                    // function.
+                                    //
+                                    // The maximal velocity we compute using a
+                                    // helper function to compute the maximal
+                                    // velocity defined below, and with all
+                                    // this we can evaluate our new time step
+                                    // length:
+    time_step = std::pow(0.5, double(n_refinement_steps)) /
+               get_maximal_velocity();
+
+                                    // The next step is to assemble the right
+                                    // hand side, and then to pass everything
+                                    // on for solution. At the end, we project
+                                    // back saturations onto the physically
+                                    // reasonable range:
+    assemble_rhs_S ();
+    {
 
-                                 // @sect4{TwoPhaseFlowProblem::output_results}
+      SolverControl solver_control (system_matrix.block(2,2).m(),
+                                   1e-8*system_rhs.block(2).l2_norm());
+      SolverCG<>   cg (solver_control);
+      cg.solve (system_matrix.block(2,2), solution.block(2), system_rhs.block(2),
+               PreconditionIdentity());
 
-                                 // There is nothing surprising here. Since
-                                 // the program will do a lot of time steps,
-                                 // we create an output file only every fifth
-                                 // time step.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::output_results ()  const
-{
-  if (timestep_number % 5 != 0)
-    return;
+      project_back_saturation ();
 
-  std::vector<std::string> solution_names;
-  switch (dim)
-    {
-      case 2:
-            solution_names.push_back ("u");
-            solution_names.push_back ("v");
-            solution_names.push_back ("p");
-            solution_names.push_back ("S");
-            break;
-
-      case 3:
-            solution_names.push_back ("u");
-            solution_names.push_back ("v");
-            solution_names.push_back ("w");
-            solution_names.push_back ("p");
-            solution_names.push_back ("S");
-            break;
-
-      default:
-            Assert (false, ExcNotImplemented());
+      std::cout << "   "
+               << solver_control.last_step()
+               << " CG iterations for saturation."
+               << std::endl;
     }
 
-  DataOut<dim> data_out;
 
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, solution_names);
+    old_solution = solution;
+  }
 
-  data_out.build_patches (degree+1);
 
-  std::ostringstream filename;
-  filename << "solution-" << timestep_number << ".vtk";
+                                  // @sect4{TwoPhaseFlowProblem::output_results}
 
-  std::ofstream output (filename.str().c_str());
-  data_out.write_vtk (output);
-}
+                                  // There is nothing surprising here. Since
+                                  // the program will do a lot of time steps,
+                                  // we create an output file only every fifth
+                                  // time step.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::output_results ()  const
+  {
+    if (timestep_number % 5 != 0)
+      return;
 
+    std::vector<std::string> solution_names;
+    switch (dim)
+      {
+       case 2:
+             solution_names.push_back ("u");
+             solution_names.push_back ("v");
+             solution_names.push_back ("p");
+             solution_names.push_back ("S");
+             break;
+
+       case 3:
+             solution_names.push_back ("u");
+             solution_names.push_back ("v");
+             solution_names.push_back ("w");
+             solution_names.push_back ("p");
+             solution_names.push_back ("S");
+             break;
+
+       default:
+             Assert (false, ExcNotImplemented());
+      }
 
+    DataOut<dim> data_out;
 
-                                 // @sect4{TwoPhaseFlowProblem::project_back_saturation}
-
-                                 // In this function, we simply run over all
-                                 // saturation degrees of freedom and make
-                                 // sure that if they should have left the
-                                 // physically reasonable range, that they be
-                                 // reset to the interval $[0,1]$. To do this,
-                                 // we only have to loop over all saturation
-                                 // components of the solution vector; these
-                                 // are stored in the block 2 (block 0 are the
-                                 // velocities, block 1 are the pressures).
-                                 //
-                                 // It may be instructive to note that this
-                                 // function almost never triggers when the
-                                 // time step is chosen as mentioned in the
-                                 // introduction. However, if we choose the
-                                 // timestep only slightly larger, we get
-                                 // plenty of values outside the proper
-                                 // range. Strictly speaking, the function is
-                                 // therefore unnecessary if we choose the
-                                 // time step small enough. In a sense, the
-                                 // function is therefore only a safety device
-                                 // to avoid situations where our entire
-                                 // solution becomes unphysical because
-                                 // individual degrees of freedom have become
-                                 // unphysical a few time steps earlier.
-template <int dim>
-void
-TwoPhaseFlowProblem<dim>::project_back_saturation ()
-{
-  for (unsigned int i=0; i<solution.block(2).size(); ++i)
-    if (solution.block(2)(i) < 0)
-      solution.block(2)(i) = 0;
-    else
-      if (solution.block(2)(i) > 1)
-        solution.block(2)(i) = 1;
-}
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (solution, solution_names);
 
+    data_out.build_patches (degree+1);
 
-                                 // @sect4{TwoPhaseFlowProblem::get_maximal_velocity}
+    std::ostringstream filename;
+    filename << "solution-" << timestep_number << ".vtk";
 
-                                 // The following function is used in
-                                 // determining the maximal allowable time
-                                 // step. What it does is to loop over all
-                                 // quadrature points in the domain and find
-                                 // what the maximal magnitude of the velocity
-                                 // is.
-template <int dim>
-double
-TwoPhaseFlowProblem<dim>::get_maximal_velocity () const
-{
-  QGauss<dim>   quadrature_formula(degree+2);
-  const unsigned int   n_q_points
-    = quadrature_formula.size();
-
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                           update_values);
-  std::vector<Vector<double> > solution_values(n_q_points,
-                                               Vector<double>(dim+2));
-  double max_velocity = 0;
-
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-      fe_values.get_function_values (solution, solution_values);
-
-      for (unsigned int q=0; q<n_q_points; ++q)
-        {
-          Tensor<1,dim> velocity;
-          for (unsigned int i=0; i<dim; ++i)
-            velocity[i] = solution_values[q](i);
-
-          max_velocity = std::max (max_velocity,
-                                   velocity.norm());
-        }
-    }
+    std::ofstream output (filename.str().c_str());
+    data_out.write_vtk (output);
+  }
 
-  return max_velocity;
-}
 
 
-                                 // @sect4{TwoPhaseFlowProblem::run}
-
-                                 // This is the final function of our main
-                                 // class. Its brevity speaks for
-                                 // itself. There are only two points worth
-                                 // noting: First, the function projects the
-                                 // initial values onto the finite element
-                                 // space at the beginning; the
-                                 // VectorTools::project function doing this
-                                 // requires an argument indicating the
-                                 // hanging node constraints. We have none in
-                                 // this program (we compute on a uniformly
-                                 // refined mesh), but the function requires
-                                 // the argument anyway, of course. So we have
-                                 // to create a constraint object. In its
-                                 // original state, constraint objects are
-                                 // unsorted, and have to be sorted (using the
-                                 // ConstraintMatrix::close function) before
-                                 // they can be used. This is what we do here,
-                                 // and which is why we can't simply call the
-                                 // VectorTools::project function with an
-                                 // anonymous temporary object
-                                 // <code>ConstraintMatrix()</code> as the
-                                 // second argument.
-                                 //
-                                 // The second point worth mentioning is that
-                                 // we only compute the length of the present
-                                 // time step in the middle of solving the
-                                 // linear system corresponding to each time
-                                 // step. We can therefore output the present
-                                 // end time of a time step only at the end of
-                                 // the time step.
-template <int dim>
-void TwoPhaseFlowProblem<dim>::run ()
-{
-  make_grid_and_dofs();
+                                  // @sect4{TwoPhaseFlowProblem::project_back_saturation}
 
+                                  // In this function, we simply run over all
+                                  // saturation degrees of freedom and make
+                                  // sure that if they should have left the
+                                  // physically reasonable range, that they be
+                                  // reset to the interval $[0,1]$. To do this,
+                                  // we only have to loop over all saturation
+                                  // components of the solution vector; these
+                                  // are stored in the block 2 (block 0 are the
+                                  // velocities, block 1 are the pressures).
+                                  //
+                                  // It may be instructive to note that this
+                                  // function almost never triggers when the
+                                  // time step is chosen as mentioned in the
+                                  // introduction. However, if we choose the
+                                  // timestep only slightly larger, we get
+                                  // plenty of values outside the proper
+                                  // range. Strictly speaking, the function is
+                                  // therefore unnecessary if we choose the
+                                  // time step small enough. In a sense, the
+                                  // function is therefore only a safety device
+                                  // to avoid situations where our entire
+                                  // solution becomes unphysical because
+                                  // individual degrees of freedom have become
+                                  // unphysical a few time steps earlier.
+  template <int dim>
+  void
+  TwoPhaseFlowProblem<dim>::project_back_saturation ()
   {
-    ConstraintMatrix constraints;
-    constraints.close();
-
-    VectorTools::project (dof_handler,
-                          constraints,
-                          QGauss<dim>(degree+2),
-                          InitialValues<dim>(),
-                          old_solution);
+    for (unsigned int i=0; i<solution.block(2).size(); ++i)
+      if (solution.block(2)(i) < 0)
+       solution.block(2)(i) = 0;
+      else
+       if (solution.block(2)(i) > 1)
+         solution.block(2)(i) = 1;
   }
 
-  timestep_number = 1;
-  double time = 0;
 
-  do
-    {
-      std::cout << "Timestep " << timestep_number
-                << std::endl;
+                                  // @sect4{TwoPhaseFlowProblem::get_maximal_velocity}
 
-      assemble_system ();
+                                  // The following function is used in
+                                  // determining the maximal allowable time
+                                  // step. What it does is to loop over all
+                                  // quadrature points in the domain and find
+                                  // what the maximal magnitude of the velocity
+                                  // is.
+  template <int dim>
+  double
+  TwoPhaseFlowProblem<dim>::get_maximal_velocity () const
+  {
+    QGauss<dim>   quadrature_formula(degree+2);
+    const unsigned int   n_q_points
+      = quadrature_formula.size();
+
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values);
+    std::vector<Vector<double> > solution_values(n_q_points,
+                                                Vector<double>(dim+2));
+    double max_velocity = 0;
+
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       fe_values.reinit (cell);
+       fe_values.get_function_values (solution, solution_values);
+
+       for (unsigned int q=0; q<n_q_points; ++q)
+         {
+           Tensor<1,dim> velocity;
+           for (unsigned int i=0; i<dim; ++i)
+             velocity[i] = solution_values[q](i);
+
+           max_velocity = std::max (max_velocity,
+                                    velocity.norm());
+         }
+      }
 
-      solve ();
+    return max_velocity;
+  }
 
-      output_results ();
 
-      time += time_step;
-      ++timestep_number;
-      std::cout << "   Now at t=" << time
-                << ", dt=" << time_step << '.'
-                << std::endl
-                << std::endl;
+                                  // @sect4{TwoPhaseFlowProblem::run}
+
+                                  // This is the final function of our main
+                                  // class. Its brevity speaks for
+                                  // itself. There are only two points worth
+                                  // noting: First, the function projects the
+                                  // initial values onto the finite element
+                                  // space at the beginning; the
+                                  // VectorTools::project function doing this
+                                  // requires an argument indicating the
+                                  // hanging node constraints. We have none in
+                                  // this program (we compute on a uniformly
+                                  // refined mesh), but the function requires
+                                  // the argument anyway, of course. So we have
+                                  // to create a constraint object. In its
+                                  // original state, constraint objects are
+                                  // unsorted, and have to be sorted (using the
+                                  // ConstraintMatrix::close function) before
+                                  // they can be used. This is what we do here,
+                                  // and which is why we can't simply call the
+                                  // VectorTools::project function with an
+                                  // anonymous temporary object
+                                  // <code>ConstraintMatrix()</code> as the
+                                  // second argument.
+                                  //
+                                  // The second point worth mentioning is that
+                                  // we only compute the length of the present
+                                  // time step in the middle of solving the
+                                  // linear system corresponding to each time
+                                  // step. We can therefore output the present
+                                  // end time of a time step only at the end of
+                                  // the time step.
+  template <int dim>
+  void TwoPhaseFlowProblem<dim>::run ()
+  {
+    make_grid_and_dofs();
+
+    {
+      ConstraintMatrix constraints;
+      constraints.close();
+
+      VectorTools::project (dof_handler,
+                           constraints,
+                           QGauss<dim>(degree+2),
+                           InitialValues<dim>(),
+                           old_solution);
     }
-  while (time <= 250);
+
+    timestep_number = 1;
+    double time = 0;
+
+    do
+      {
+       std::cout << "Timestep " << timestep_number
+                 << std::endl;
+
+       assemble_system ();
+
+       solve ();
+
+       output_results ();
+
+       time += time_step;
+       ++timestep_number;
+       std::cout << "   Now at t=" << time
+                 << ", dt=" << time_step << '.'
+                 << std::endl
+                 << std::endl;
+      }
+    while (time <= 250);
+  }
 }
 
 
@@ -1418,6 +1421,9 @@ int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step21;
+
       deallog.depth_console (0);
 
       TwoPhaseFlowProblem<2> two_phase_flow_problem(0);
index 37ed5a184852948c1ae746dbf0c4686ee962c7e5..5f2919cae571b249159ef50c6900e724f360cd0b 100644 (file)
 
                                 // As in all programs, the namespace dealii
                                 // is included:
-using namespace dealii;
-
-                                // @sect3{Defining the inner preconditioner type}
-
-                                // As explained in the introduction, we are
-                                // going to use different preconditioners for
-                                // two and three space dimensions,
-                                // respectively. We distinguish between
-                                // them by the use of the spatial dimension
-                                // as a template parameter. See step-4 for
-                                // details on templates. We are not going to
-                                // create any preconditioner object here, all
-                                // we do is to create class that holds a
-                                // local typedef determining the
-                                // preconditioner class so we can write our
-                                // program in a dimension-independent way.
-template <int dim>
-struct InnerPreconditioner;
-
-                                // In 2D, we are going to use a sparse direct
-                                // solver as preconditioner:
-template <>
-struct InnerPreconditioner<2>
+namespace Step22
 {
-    typedef SparseDirectUMFPACK type;
-};
-
-                                // And the ILU preconditioning in 3D, called
-                                // by SparseILU:
-template <>
-struct InnerPreconditioner<3>
-{
-    typedef SparseILU<double> type;
-};
-
-
-                                // @sect3{The <code>StokesProblem</code> class template}
-
-                                // This is an adaptation of step-20, so the
-                                // main class and the data types are the
-                                // same as used there. In this example we
-                                // also use adaptive grid refinement, which
-                                // is handled in analogy to
-                                // step-6. According to the discussion in
-                                // the introduction, we are also going to
-                                // use the ConstraintMatrix for
-                                // implementing Dirichlet boundary
-                                // conditions. Hence, we change the name
-                                // <code>hanging_node_constraints</code>
-                                // into <code>constraints</code>.
-template <int dim>
-class StokesProblem
-{
-  public:
-    StokesProblem (const unsigned int degree);
-    void run ();
-
-  private:
-    void setup_dofs ();
-    void assemble_system ();
-    void solve ();
-    void output_results (const unsigned int refinement_cycle) const;
-    void refine_mesh ();
-
-    const unsigned int   degree;
-
-    Triangulation<dim>   triangulation;
-    FESystem<dim>        fe;
-    DoFHandler<dim>      dof_handler;
-
-    ConstraintMatrix     constraints;
-
-    BlockSparsityPattern      sparsity_pattern;
-    BlockSparseMatrix<double> system_matrix;
-
-    BlockVector<double> solution;
-    BlockVector<double> system_rhs;
-
-                                    // This one is new: We shall use a
-                                    // so-called shared pointer structure to
-                                    // access the preconditioner. Shared
-                                    // pointers are essentially just a
-                                    // convenient form of pointers. Several
-                                    // shared pointers can point to the same
-                                    // object (just like regular pointers),
-                                    // but when the last shared pointer
-                                    // object to point to a preconditioner
-                                    // object is deleted (for example if a
-                                    // shared pointer object goes out of
-                                    // scope, if the class of which it is a
-                                    // member is destroyed, or if the pointer
-                                    // is assigned a different preconditioner
-                                    // object) then the preconditioner object
-                                    // pointed to is also destroyed. This
-                                    // ensures that we don't have to manually
-                                    // track in how many places a
-                                    // preconditioner object is still
-                                    // referenced, it can never create a
-                                    // memory leak, and can never produce a
-                                    // dangling pointer to an already
-                                    // destroyed object:
-    std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type> A_preconditioner;
-};
-
-                                // @sect3{Boundary values and right hand side}
-
-                                // As in step-20 and most other
-                                // example programs, the next task is
-                                // to define the data for the PDE:
-                                // For the Stokes problem, we are
-                                // going to use natural boundary
-                                // values on parts of the boundary
-                                // (i.e. homogenous Neumann-type) for
-                                // which we won't have to do anything
-                                // special (the homogeneity implies
-                                // that the corresponding terms in
-                                // the weak form are simply zero),
-                                // and boundary conditions on the
-                                // velocity (Dirichlet-type) on the
-                                // rest of the boundary, as described
-                                // in the introduction.
-                                //
-                                // In order to enforce the Dirichlet
-                                // boundary values on the velocity,
-                                // we will use the
-                                // VectorTools::interpolate_boundary_values
-                                // function as usual which requires
-                                // us to write a function object with
-                                // as many components as the finite
-                                // element has. In other words, we
-                                // have to define the function on the
-                                // $(u,p)$-space, but we are going to
-                                // filter out the pressure component
-                                // when interpolating the boundary
-                                // values.
-
-                                // The following function object is a
-                                // representation of the boundary
-                                // values described in the
-                                // introduction:
-template <int dim>
-class BoundaryValues : public Function<dim>
-{
-  public:
-    BoundaryValues () : Function<dim>(dim+1) {}
+  using namespace dealii;
+
+                                  // @sect3{Defining the inner preconditioner type}
+
+                                  // As explained in the introduction, we are
+                                  // going to use different preconditioners for
+                                  // two and three space dimensions,
+                                  // respectively. We distinguish between
+                                  // them by the use of the spatial dimension
+                                  // as a template parameter. See step-4 for
+                                  // details on templates. We are not going to
+                                  // create any preconditioner object here, all
+                                  // we do is to create class that holds a
+                                  // local typedef determining the
+                                  // preconditioner class so we can write our
+                                  // program in a dimension-independent way.
+  template <int dim>
+  struct InnerPreconditioner;
+
+                                  // In 2D, we are going to use a sparse direct
+                                  // solver as preconditioner:
+  template <>
+  struct InnerPreconditioner<2>
+  {
+      typedef SparseDirectUMFPACK type;
+  };
 
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
+                                  // And the ILU preconditioning in 3D, called
+                                  // by SparseILU:
+  template <>
+  struct InnerPreconditioner<3>
+  {
+      typedef SparseILU<double> type;
+  };
+
+
+                                  // @sect3{The <code>StokesProblem</code> class template}
+
+                                  // This is an adaptation of step-20, so the
+                                  // main class and the data types are the
+                                  // same as used there. In this example we
+                                  // also use adaptive grid refinement, which
+                                  // is handled in analogy to
+                                  // step-6. According to the discussion in
+                                  // the introduction, we are also going to
+                                  // use the ConstraintMatrix for
+                                  // implementing Dirichlet boundary
+                                  // conditions. Hence, we change the name
+                                  // <code>hanging_node_constraints</code>
+                                  // into <code>constraints</code>.
+  template <int dim>
+  class StokesProblem
+  {
+    public:
+      StokesProblem (const unsigned int degree);
+      void run ();
+
+    private:
+      void setup_dofs ();
+      void assemble_system ();
+      void solve ();
+      void output_results (const unsigned int refinement_cycle) const;
+      void refine_mesh ();
+
+      const unsigned int   degree;
+
+      Triangulation<dim>   triangulation;
+      FESystem<dim>        fe;
+      DoFHandler<dim>      dof_handler;
+
+      ConstraintMatrix     constraints;
+
+      BlockSparsityPattern      sparsity_pattern;
+      BlockSparseMatrix<double> system_matrix;
+
+      BlockVector<double> solution;
+      BlockVector<double> system_rhs;
+
+                                      // This one is new: We shall use a
+                                      // so-called shared pointer structure to
+                                      // access the preconditioner. Shared
+                                      // pointers are essentially just a
+                                      // convenient form of pointers. Several
+                                      // shared pointers can point to the same
+                                      // object (just like regular pointers),
+                                      // but when the last shared pointer
+                                      // object to point to a preconditioner
+                                      // object is deleted (for example if a
+                                      // shared pointer object goes out of
+                                      // scope, if the class of which it is a
+                                      // member is destroyed, or if the pointer
+                                      // is assigned a different preconditioner
+                                      // object) then the preconditioner object
+                                      // pointed to is also destroyed. This
+                                      // ensures that we don't have to manually
+                                      // track in how many places a
+                                      // preconditioner object is still
+                                      // referenced, it can never create a
+                                      // memory leak, and can never produce a
+                                      // dangling pointer to an already
+                                      // destroyed object:
+      std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type> A_preconditioner;
+  };
+
+                                  // @sect3{Boundary values and right hand side}
+
+                                  // As in step-20 and most other
+                                  // example programs, the next task is
+                                  // to define the data for the PDE:
+                                  // For the Stokes problem, we are
+                                  // going to use natural boundary
+                                  // values on parts of the boundary
+                                  // (i.e. homogenous Neumann-type) for
+                                  // which we won't have to do anything
+                                  // special (the homogeneity implies
+                                  // that the corresponding terms in
+                                  // the weak form are simply zero),
+                                  // and boundary conditions on the
+                                  // velocity (Dirichlet-type) on the
+                                  // rest of the boundary, as described
+                                  // in the introduction.
+                                  //
+                                  // In order to enforce the Dirichlet
+                                  // boundary values on the velocity,
+                                  // we will use the
+                                  // VectorTools::interpolate_boundary_values
+                                  // function as usual which requires
+                                  // us to write a function object with
+                                  // as many components as the finite
+                                  // element has. In other words, we
+                                  // have to define the function on the
+                                  // $(u,p)$-space, but we are going to
+                                  // filter out the pressure component
+                                  // when interpolating the boundary
+                                  // values.
 
-    virtual void vector_value (const Point<dim> &p,
-                               Vector<double>   &value) const;
-};
+                                  // The following function object is a
+                                  // representation of the boundary
+                                  // values described in the
+                                  // introduction:
+  template <int dim>
+  class BoundaryValues : public Function<dim>
+  {
+    public:
+      BoundaryValues () : Function<dim>(dim+1) {}
 
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
 
-template <int dim>
-double
-BoundaryValues<dim>::value (const Point<dim>  &p,
-                           const unsigned int component) const
-{
-  Assert (component < this->n_components,
-         ExcIndexRange (component, 0, this->n_components));
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &value) const;
+  };
 
-  if (component == 0)
-    return (p[0] < 0 ? -1 : (p[0] > 0 ? 1 : 0));
-  return 0;
-}
 
+  template <int dim>
+  double
+  BoundaryValues<dim>::value (const Point<dim>  &p,
+                             const unsigned int component) const
+  {
+    Assert (component < this->n_components,
+           ExcIndexRange (component, 0, this->n_components));
 
-template <int dim>
-void
-BoundaryValues<dim>::vector_value (const Point<dim> &p,
-                                  Vector<double>   &values) const
-{
-  for (unsigned int c=0; c<this->n_components; ++c)
-    values(c) = BoundaryValues<dim>::value (p, c);
-}
+    if (component == 0)
+      return (p[0] < 0 ? -1 : (p[0] > 0 ? 1 : 0));
+    return 0;
+  }
 
 
+  template <int dim>
+  void
+  BoundaryValues<dim>::vector_value (const Point<dim> &p,
+                                    Vector<double>   &values) const
+  {
+    for (unsigned int c=0; c<this->n_components; ++c)
+      values(c) = BoundaryValues<dim>::value (p, c);
+  }
 
-                                // We implement similar functions for
-                                // the right hand side which for the
-                                // current example is simply zero:
-template <int dim>
-class RightHandSide : public Function<dim>
-{
-  public:
-    RightHandSide () : Function<dim>(dim+1) {}
 
-    virtual double value (const Point<dim>   &p,
-                          const unsigned int  component = 0) const;
 
-    virtual void vector_value (const Point<dim> &p,
-                               Vector<double>   &value) const;
+                                  // We implement similar functions for
+                                  // the right hand side which for the
+                                  // current example is simply zero:
+  template <int dim>
+  class RightHandSide : public Function<dim>
+  {
+    public:
+      RightHandSide () : Function<dim>(dim+1) {}
 
-};
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
 
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &value) const;
 
-template <int dim>
-double
-RightHandSide<dim>::value (const Point<dim>  &/*p*/,
-                           const unsigned int /*component*/) const
-{
-  return 0;
-}
+  };
 
 
-template <int dim>
-void
-RightHandSide<dim>::vector_value (const Point<dim> &p,
-                                  Vector<double>   &values) const
-{
-  for (unsigned int c=0; c<this->n_components; ++c)
-    values(c) = RightHandSide<dim>::value (p, c);
-}
+  template <int dim>
+  double
+  RightHandSide<dim>::value (const Point<dim>  &/*p*/,
+                            const unsigned int /*component*/) const
+  {
+    return 0;
+  }
 
 
-                                // @sect3{Linear solvers and preconditioners}
-
-                                // The linear solvers and preconditioners are
-                                // discussed extensively in the
-                                // introduction. Here, we create the
-                                // respective objects that will be used.
-
-                                // @sect4{The <code>InverseMatrix</code> class template}
-
-                                // The <code>InverseMatrix</code>
-                                // class represents the data
-                                // structure for an inverse
-                                // matrix. It is derived from the one
-                                // in step-20. The only difference is
-                                // that we now do include a
-                                // preconditioner to the matrix since
-                                // we will apply this class to
-                                // different kinds of matrices that
-                                // will require different
-                                // preconditioners (in step-20 we did
-                                // not use a preconditioner in this
-                                // class at all). The types of matrix
-                                // and preconditioner are passed to
-                                // this class via template
-                                // parameters, and matrix and
-                                // preconditioner objects of these
-                                // types will then be passed to the
-                                // constructor when an
-                                // <code>InverseMatrix</code> object
-                                // is created. The member function
-                                // <code>vmult</code> is, as in
-                                // step-20, a multiplication with a
-                                // vector, obtained by solving a
-                                // linear system:
-template <class Matrix, class Preconditioner>
-class InverseMatrix : public Subscriptor
-{
-  public:
-    InverseMatrix (const Matrix         &m,
-                   const Preconditioner &preconditioner);
-
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
-
-  private:
-    const SmartPointer<const Matrix> matrix;
-    const SmartPointer<const Preconditioner> preconditioner;
-};
-
-
-template <class Matrix, class Preconditioner>
-InverseMatrix<Matrix,Preconditioner>::InverseMatrix (const Matrix &m,
-                                                    const Preconditioner &preconditioner)
-               :
-               matrix (&m),
-               preconditioner (&preconditioner)
-{}
-
-
-                                // This is the implementation of the
-                                // <code>vmult</code> function.
-
-                                // In this class we use a rather large
-                                // tolerance for the solver control. The
-                                // reason for this is that the function is
-                                // used very frequently, and hence, any
-                                // additional effort to make the residual
-                                // in the CG solve smaller makes the
-                                // solution more expensive. Note that we do
-                                // not only use this class as a
-                                // preconditioner for the Schur complement,
-                                // but also when forming the inverse of the
-                                // Laplace matrix &ndash; which is hence
-                                // directly responsible for the accuracy of
-                                // the solution itself, so we can't choose
-                                // a too large tolerance, either.
-template <class Matrix, class Preconditioner>
-void InverseMatrix<Matrix,Preconditioner>::vmult (Vector<double>       &dst,
-                                                 const Vector<double> &src) const
-{
-  SolverControl solver_control (src.size(), 1e-6*src.l2_norm());
-  SolverCG<>    cg (solver_control);
+  template <int dim>
+  void
+  RightHandSide<dim>::vector_value (const Point<dim> &p,
+                                   Vector<double>   &values) const
+  {
+    for (unsigned int c=0; c<this->n_components; ++c)
+      values(c) = RightHandSide<dim>::value (p, c);
+  }
 
-  dst = 0;
 
-  cg.solve (*matrix, dst, src, *preconditioner);
-}
+                                  // @sect3{Linear solvers and preconditioners}
+
+                                  // The linear solvers and preconditioners are
+                                  // discussed extensively in the
+                                  // introduction. Here, we create the
+                                  // respective objects that will be used.
+
+                                  // @sect4{The <code>InverseMatrix</code> class template}
+
+                                  // The <code>InverseMatrix</code>
+                                  // class represents the data
+                                  // structure for an inverse
+                                  // matrix. It is derived from the one
+                                  // in step-20. The only difference is
+                                  // that we now do include a
+                                  // preconditioner to the matrix since
+                                  // we will apply this class to
+                                  // different kinds of matrices that
+                                  // will require different
+                                  // preconditioners (in step-20 we did
+                                  // not use a preconditioner in this
+                                  // class at all). The types of matrix
+                                  // and preconditioner are passed to
+                                  // this class via template
+                                  // parameters, and matrix and
+                                  // preconditioner objects of these
+                                  // types will then be passed to the
+                                  // constructor when an
+                                  // <code>InverseMatrix</code> object
+                                  // is created. The member function
+                                  // <code>vmult</code> is, as in
+                                  // step-20, a multiplication with a
+                                  // vector, obtained by solving a
+                                  // linear system:
+  template <class Matrix, class Preconditioner>
+  class InverseMatrix : public Subscriptor
+  {
+    public:
+      InverseMatrix (const Matrix         &m,
+                    const Preconditioner &preconditioner);
+
+      void vmult (Vector<double>       &dst,
+                 const Vector<double> &src) const;
+
+    private:
+      const SmartPointer<const Matrix> matrix;
+      const SmartPointer<const Preconditioner> preconditioner;
+  };
+
+
+  template <class Matrix, class Preconditioner>
+  InverseMatrix<Matrix,Preconditioner>::InverseMatrix (const Matrix &m,
+                                                      const Preconditioner &preconditioner)
+                 :
+                 matrix (&m),
+                 preconditioner (&preconditioner)
+  {}
+
+
+                                  // This is the implementation of the
+                                  // <code>vmult</code> function.
+
+                                  // In this class we use a rather large
+                                  // tolerance for the solver control. The
+                                  // reason for this is that the function is
+                                  // used very frequently, and hence, any
+                                  // additional effort to make the residual
+                                  // in the CG solve smaller makes the
+                                  // solution more expensive. Note that we do
+                                  // not only use this class as a
+                                  // preconditioner for the Schur complement,
+                                  // but also when forming the inverse of the
+                                  // Laplace matrix &ndash; which is hence
+                                  // directly responsible for the accuracy of
+                                  // the solution itself, so we can't choose
+                                  // a too large tolerance, either.
+  template <class Matrix, class Preconditioner>
+  void InverseMatrix<Matrix,Preconditioner>::vmult (Vector<double>       &dst,
+                                                   const Vector<double> &src) const
+  {
+    SolverControl solver_control (src.size(), 1e-6*src.l2_norm());
+    SolverCG<>    cg (solver_control);
 
+    dst = 0;
 
-                                // @sect4{The <code>SchurComplement</code> class template}
-
-                                // This class implements the Schur complement
-                                // discussed in the introduction.  It is in
-                                // analogy to step-20.  Though, we now call
-                                // it with a template parameter
-                                // <code>Preconditioner</code> in order to
-                                // access that when specifying the respective
-                                // type of the inverse matrix class. As a
-                                // consequence of the definition above, the
-                                // declaration <code>InverseMatrix</code> now
-                                // contains the second template parameter
-                                // for a preconditioner class as above, which
-                                // affects the <code>SmartPointer</code>
-                                // object <code>m_inverse</code> as well.
-template <class Preconditioner>
-class SchurComplement : public Subscriptor
-{
-  public:
-    SchurComplement (const BlockSparseMatrix<double> &system_matrix,
-                    const InverseMatrix<SparseMatrix<double>, Preconditioner> &A_inverse);
+    cg.solve (*matrix, dst, src, *preconditioner);
+  }
 
-    void vmult (Vector<double>       &dst,
-               const Vector<double> &src) const;
 
-  private:
-    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
-    const SmartPointer<const InverseMatrix<SparseMatrix<double>, Preconditioner> > A_inverse;
+                                  // @sect4{The <code>SchurComplement</code> class template}
+
+                                  // This class implements the Schur complement
+                                  // discussed in the introduction.  It is in
+                                  // analogy to step-20.  Though, we now call
+                                  // it with a template parameter
+                                  // <code>Preconditioner</code> in order to
+                                  // access that when specifying the respective
+                                  // type of the inverse matrix class. As a
+                                  // consequence of the definition above, the
+                                  // declaration <code>InverseMatrix</code> now
+                                  // contains the second template parameter
+                                  // for a preconditioner class as above, which
+                                  // affects the <code>SmartPointer</code>
+                                  // object <code>m_inverse</code> as well.
+  template <class Preconditioner>
+  class SchurComplement : public Subscriptor
+  {
+    public:
+      SchurComplement (const BlockSparseMatrix<double> &system_matrix,
+                      const InverseMatrix<SparseMatrix<double>, Preconditioner> &A_inverse);
 
-    mutable Vector<double> tmp1, tmp2;
-};
+      void vmult (Vector<double>       &dst,
+                 const Vector<double> &src) const;
 
+    private:
+      const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
+      const SmartPointer<const InverseMatrix<SparseMatrix<double>, Preconditioner> > A_inverse;
 
+      mutable Vector<double> tmp1, tmp2;
+  };
 
-template <class Preconditioner>
-SchurComplement<Preconditioner>::
-SchurComplement (const BlockSparseMatrix<double> &system_matrix,
-                const InverseMatrix<SparseMatrix<double>,Preconditioner> &A_inverse)
-               :
-               system_matrix (&system_matrix),
-               A_inverse (&A_inverse),
-               tmp1 (system_matrix.block(0,0).m()),
-               tmp2 (system_matrix.block(0,0).m())
-{}
 
 
-template <class Preconditioner>
-void SchurComplement<Preconditioner>::vmult (Vector<double>       &dst,
-                                            const Vector<double> &src) const
-{
-  system_matrix->block(0,1).vmult (tmp1, src);
-  A_inverse->vmult (tmp2, tmp1);
-  system_matrix->block(1,0).vmult (dst, tmp2);
-}
+  template <class Preconditioner>
+  SchurComplement<Preconditioner>::
+  SchurComplement (const BlockSparseMatrix<double> &system_matrix,
+                  const InverseMatrix<SparseMatrix<double>,Preconditioner> &A_inverse)
+                 :
+                 system_matrix (&system_matrix),
+                 A_inverse (&A_inverse),
+                 tmp1 (system_matrix.block(0,0).m()),
+                 tmp2 (system_matrix.block(0,0).m())
+  {}
 
 
-                                // @sect3{StokesProblem class implementation}
-
-                                // @sect4{StokesProblem::StokesProblem}
-
-                                // The constructor of this class
-                                // looks very similar to the one of
-                                // step-20. The constructor
-                                // initializes the variables for the
-                                // polynomial degree, triangulation,
-                                // finite element system and the dof
-                                // handler. The underlying polynomial
-                                // functions are of order
-                                // <code>degree+1</code> for the
-                                // vector-valued velocity components
-                                // and of order <code>degree</code>
-                                // for the pressure.  This gives the
-                                // LBB-stable element pair
-                                // $Q_{degree+1}^d\times Q_{degree}$,
-                                // often referred to as the
-                                // Taylor-Hood element.
-                                //
-                                // Note that we initialize the triangulation
-                                // with a MeshSmoothing argument, which
-                                // ensures that the refinement of cells is
-                                // done in a way that the approximation of
-                                // the PDE solution remains well-behaved
-                                // (problems arise if grids are too
-                                // unstructered), see the documentation of
-                                // <code>Triangulation::MeshSmoothing</code>
-                                // for details.
-template <int dim>
-StokesProblem<dim>::StokesProblem (const unsigned int degree)
-                :
-                degree (degree),
-                triangulation (Triangulation<dim>::maximum_smoothing),
-                fe (FE_Q<dim>(degree+1), dim,
-                    FE_Q<dim>(degree), 1),
-                dof_handler (triangulation)
-{}
-
-
-                                // @sect4{StokesProblem::setup_dofs}
-
-                                // Given a mesh, this function
-                                // associates the degrees of freedom
-                                // with it and creates the
-                                // corresponding matrices and
-                                // vectors. At the beginning it also
-                                // releases the pointer to the
-                                // preconditioner object (if the
-                                // shared pointer pointed at anything
-                                // at all at this point) since it
-                                // will definitely not be needed any
-                                // more after this point and will
-                                // have to be re-computed after
-                                // assembling the matrix, and unties
-                                // the sparse matrix from its
-                                // sparsity pattern object.
-                                //
-                                // We then proceed with distributing
-                                // degrees of freedom and renumbering
-                                // them: In order to make the ILU
-                                // preconditioner (in 3D) work
-                                // efficiently, it is important to
-                                // enumerate the degrees of freedom
-                                // in such a way that it reduces the
-                                // bandwidth of the matrix, or maybe
-                                // more importantly: in such a way
-                                // that the ILU is as close as
-                                // possible to a real LU
-                                // decomposition. On the other hand,
-                                // we need to preserve the block
-                                // structure of velocity and pressure
-                                // already seen in in step-20 and
-                                // step-21. This is done in two
-                                // steps: First, all dofs are
-                                // renumbered to improve the ILU and
-                                // then we renumber once again by
-                                // components. Since
-                                // <code>DoFRenumbering::component_wise</code>
-                                // does not touch the renumbering
-                                // within the individual blocks, the
-                                // basic renumbering from the first
-                                // step remains. As for how the
-                                // renumber degrees of freedom to
-                                // improve the ILU: deal.II has a
-                                // number of algorithms that attempt
-                                // to find orderings to improve ILUs,
-                                // or reduce the bandwidth of
-                                // matrices, or optimize some other
-                                // aspect. The DoFRenumbering
-                                // namespace shows a comparison of
-                                // the results we obtain with several
-                                // of these algorithms based on the
-                                // testcase discussed here in this
-                                // tutorial program. Here, we will
-                                // use the traditional Cuthill-McKee
-                                // algorithm already used in some of
-                                // the previous tutorial programs.
-                                // In the
-                                // <a href="#improved-ilu">section on improved ILU</a>
-                                // we're going to discuss this issue
-                                // in more detail.
-
-                                // There is one more change compared
-                                // to previous tutorial programs:
-                                // There is no reason in sorting the
-                                // <code>dim</code> velocity
-                                // components individually. In fact,
-                                // rather than first enumerating all
-                                // $x$-velocities, then all
-                                // $y$-velocities, etc, we would like
-                                // to keep all velocities at the same
-                                // location together and only
-                                // separate between velocities (all
-                                // components) and pressures. By
-                                // default, this is not what the
-                                // DoFRenumbering::component_wise
-                                // function does: it treats each
-                                // vector component separately; what
-                                // we have to do is group several
-                                // components into "blocks" and pass
-                                // this block structure to that
-                                // function. Consequently, we
-                                // allocate a vector
-                                // <code>block_component</code> with
-                                // as many elements as there are
-                                // components and describe all
-                                // velocity components to correspond
-                                // to block 0, while the pressure
-                                // component will form block 1:
-template <int dim>
-void StokesProblem<dim>::setup_dofs ()
-{
-  A_preconditioner.reset ();
-  system_matrix.clear ();
-
-  dof_handler.distribute_dofs (fe);
-  DoFRenumbering::Cuthill_McKee (dof_handler);
-
-  std::vector<unsigned int> block_component (dim+1,0);
-  block_component[dim] = 1;
-  DoFRenumbering::component_wise (dof_handler, block_component);
-
-                                  // Now comes the implementation of
-                                  // Dirichlet boundary conditions, which
-                                  // should be evident after the discussion
-                                  // in the introduction. All that changed is
-                                  // that the function already appears in the
-                                  // setup functions, whereas we were used to
-                                  // see it in some assembly routine. Further
-                                  // down below where we set up the mesh, we
-                                  // will associate the top boundary where we
-                                  // impose Dirichlet boundary conditions
-                                  // with boundary indicator 1.  We will have
-                                  // to pass this boundary indicator as
-                                  // second argument to the function below
-                                  // interpolating boundary values.  There is
-                                  // one more thing, though.  The function
-                                  // describing the Dirichlet conditions was
-                                  // defined for all components, both
-                                  // velocity and pressure. However, the
-                                  // Dirichlet conditions are to be set for
-                                  // the velocity only.  To this end, we use
-                                  // a <code>component_mask</code> that
-                                  // filters out the pressure component, so
-                                  // that the condensation is performed on
-                                  // velocity degrees of freedom only. Since
-                                  // we use adaptively refined grids the
-                                  // constraint matrix needs to be first
-                                  // filled with hanging node constraints
-                                  // generated from the DoF handler. Note the
-                                  // order of the two functions &mdash; we
-                                  // first compute the hanging node
-                                  // constraints, and then insert the
-                                  // boundary values into the constraint
-                                  // matrix. This makes sure that we respect
-                                  // H<sup>1</sup> conformity on boundaries
-                                  // with hanging nodes (in three space
-                                  // dimensions), where the hanging node
-                                  // needs to dominate the Dirichlet boundary
-                                  // values.
+  template <class Preconditioner>
+  void SchurComplement<Preconditioner>::vmult (Vector<double>       &dst,
+                                              const Vector<double> &src) const
   {
-    constraints.clear ();
-    std::vector<bool> component_mask (dim+1, true);
-    component_mask[dim] = false;
-    DoFTools::make_hanging_node_constraints (dof_handler,
-                                            constraints);
-    VectorTools::interpolate_boundary_values (dof_handler,
-                                             1,
-                                             BoundaryValues<dim>(),
-                                             constraints,
-                                             component_mask);
+    system_matrix->block(0,1).vmult (tmp1, src);
+    A_inverse->vmult (tmp2, tmp1);
+    system_matrix->block(1,0).vmult (dst, tmp2);
   }
 
-  constraints.close ();
-
-                                  // In analogy to step-20, we count the dofs
-                                  // in the individual components.  We could
-                                  // do this in the same way as there, but we
-                                  // want to operate on the block structure
-                                  // we used already for the renumbering: The
-                                  // function
-                                  // <code>DoFTools::count_dofs_per_block</code>
-                                  // does the same as
-                                  // <code>DoFTools::count_dofs_per_component</code>,
-                                  // but now grouped as velocity and pressure
-                                  // block via <code>block_component</code>.
-  std::vector<unsigned int> dofs_per_block (2);
-  DoFTools::count_dofs_per_block (dof_handler, dofs_per_block, block_component);
-  const unsigned int n_u = dofs_per_block[0],
-                     n_p = dofs_per_block[1];
-
-  std::cout << "   Number of active cells: "
-            << triangulation.n_active_cells()
-            << std::endl
-            << "   Number of degrees of freedom: "
-            << dof_handler.n_dofs()
-            << " (" << n_u << '+' << n_p << ')'
-            << std::endl;
-
-                                  // The next task is to allocate a
-                                  // sparsity pattern for the system matrix
-                                  // we will create. We could do this in
-                                  // the same way as in step-20,
-                                  // i.e. directly build an object of type
-                                  // SparsityPattern through
-                                  // DoFTools::make_sparsity_pattern. However,
-                                  // there is a major reason not to do so:
-                                  // In 3D, the function
-                                  // DoFTools::max_couplings_between_dofs
-                                  // yields a conservative but rather large
-                                  // number for the coupling between the
-                                  // individual dofs, so that the memory
-                                  // initially provided for the creation of
-                                  // the sparsity pattern of the matrix is
-                                  // far too much -- so much actually that
-                                  // the initial sparsity pattern won't
-                                  // even fit into the physical memory of
-                                  // most systems already for
-                                  // moderately-sized 3D problems, see also
-                                  // the discussion in step-18.  Instead,
-                                  // we first build a temporary object that
-                                  // uses a different data structure that
-                                  // doesn't require allocating more memory
-                                  // than necessary but isn't suitable for
-                                  // use as a basis of SparseMatrix or
-                                  // BlockSparseMatrix objects; in a second
-                                  // step we then copy this object into an
-                                  // object of BlockSparsityPattern. This
-                                  // is entirely analgous to what we
-                                  // already did in step-11 and step-18.
+
+                                  // @sect3{StokesProblem class implementation}
+
+                                  // @sect4{StokesProblem::StokesProblem}
+
+                                  // The constructor of this class
+                                  // looks very similar to the one of
+                                  // step-20. The constructor
+                                  // initializes the variables for the
+                                  // polynomial degree, triangulation,
+                                  // finite element system and the dof
+                                  // handler. The underlying polynomial
+                                  // functions are of order
+                                  // <code>degree+1</code> for the
+                                  // vector-valued velocity components
+                                  // and of order <code>degree</code>
+                                  // for the pressure.  This gives the
+                                  // LBB-stable element pair
+                                  // $Q_{degree+1}^d\times Q_{degree}$,
+                                  // often referred to as the
+                                  // Taylor-Hood element.
                                   //
-                                  // There is one snag again here, though:
-                                  // it turns out that using the
-                                  // CompressedSparsityPattern (or the
-                                  // block version
-                                  // BlockCompressedSparsityPattern we
-                                  // would use here) has a bottleneck that
-                                  // makes the algorithm to build the
-                                  // sparsity pattern be quadratic in the
-                                  // number of degrees of freedom. This
-                                  // doesn't become noticable until we get
-                                  // well into the range of several 100,000
-                                  // degrees of freedom, but eventually
-                                  // dominates the setup of the linear
-                                  // system when we get to more than a
-                                  // million degrees of freedom. This is
-                                  // due to the data structures used in the
-                                  // CompressedSparsityPattern class,
-                                  // nothing that can easily be
-                                  // changed. Fortunately, there is an easy
-                                  // solution: the
-                                  // CompressedSimpleSparsityPattern class
-                                  // (and its block variant
-                                  // BlockCompressedSimpleSparsityPattern)
-                                  // has exactly the same interface, uses a
-                                  // different %internal data structure and
-                                  // is linear in the number of degrees of
-                                  // freedom and therefore much more
-                                  // efficient for large problems. As
-                                  // another alternative, we could also
-                                  // have chosen the class
-                                  // BlockCompressedSetSparsityPattern that
-                                  // uses yet another strategy for %internal
-                                  // memory management. Though, that class
-                                  // turns out to be more memory-demanding
-                                  // than
-                                  // BlockCompressedSimpleSparsityPattern
-                                  // for this example.
+                                  // Note that we initialize the triangulation
+                                  // with a MeshSmoothing argument, which
+                                  // ensures that the refinement of cells is
+                                  // done in a way that the approximation of
+                                  // the PDE solution remains well-behaved
+                                  // (problems arise if grids are too
+                                  // unstructered), see the documentation of
+                                  // <code>Triangulation::MeshSmoothing</code>
+                                  // for details.
+  template <int dim>
+  StokesProblem<dim>::StokesProblem (const unsigned int degree)
+                 :
+                 degree (degree),
+                 triangulation (Triangulation<dim>::maximum_smoothing),
+                 fe (FE_Q<dim>(degree+1), dim,
+                     FE_Q<dim>(degree), 1),
+                 dof_handler (triangulation)
+  {}
+
+
+                                  // @sect4{StokesProblem::setup_dofs}
+
+                                  // Given a mesh, this function
+                                  // associates the degrees of freedom
+                                  // with it and creates the
+                                  // corresponding matrices and
+                                  // vectors. At the beginning it also
+                                  // releases the pointer to the
+                                  // preconditioner object (if the
+                                  // shared pointer pointed at anything
+                                  // at all at this point) since it
+                                  // will definitely not be needed any
+                                  // more after this point and will
+                                  // have to be re-computed after
+                                  // assembling the matrix, and unties
+                                  // the sparse matrix from its
+                                  // sparsity pattern object.
                                   //
-                                  // Consequently, this is the class that
-                                  // we will use for our intermediate
-                                  // sparsity representation. All this is
-                                  // done inside a new scope, which means
-                                  // that the memory of <code>csp</code>
-                                  // will be released once the information
-                                  // has been copied to
-                                  // <code>sparsity_pattern</code>.
+                                  // We then proceed with distributing
+                                  // degrees of freedom and renumbering
+                                  // them: In order to make the ILU
+                                  // preconditioner (in 3D) work
+                                  // efficiently, it is important to
+                                  // enumerate the degrees of freedom
+                                  // in such a way that it reduces the
+                                  // bandwidth of the matrix, or maybe
+                                  // more importantly: in such a way
+                                  // that the ILU is as close as
+                                  // possible to a real LU
+                                  // decomposition. On the other hand,
+                                  // we need to preserve the block
+                                  // structure of velocity and pressure
+                                  // already seen in in step-20 and
+                                  // step-21. This is done in two
+                                  // steps: First, all dofs are
+                                  // renumbered to improve the ILU and
+                                  // then we renumber once again by
+                                  // components. Since
+                                  // <code>DoFRenumbering::component_wise</code>
+                                  // does not touch the renumbering
+                                  // within the individual blocks, the
+                                  // basic renumbering from the first
+                                  // step remains. As for how the
+                                  // renumber degrees of freedom to
+                                  // improve the ILU: deal.II has a
+                                  // number of algorithms that attempt
+                                  // to find orderings to improve ILUs,
+                                  // or reduce the bandwidth of
+                                  // matrices, or optimize some other
+                                  // aspect. The DoFRenumbering
+                                  // namespace shows a comparison of
+                                  // the results we obtain with several
+                                  // of these algorithms based on the
+                                  // testcase discussed here in this
+                                  // tutorial program. Here, we will
+                                  // use the traditional Cuthill-McKee
+                                  // algorithm already used in some of
+                                  // the previous tutorial programs.
+                                  // In the
+                                  // <a href="#improved-ilu">section on improved ILU</a>
+                                  // we're going to discuss this issue
+                                  // in more detail.
+
+                                  // There is one more change compared
+                                  // to previous tutorial programs:
+                                  // There is no reason in sorting the
+                                  // <code>dim</code> velocity
+                                  // components individually. In fact,
+                                  // rather than first enumerating all
+                                  // $x$-velocities, then all
+                                  // $y$-velocities, etc, we would like
+                                  // to keep all velocities at the same
+                                  // location together and only
+                                  // separate between velocities (all
+                                  // components) and pressures. By
+                                  // default, this is not what the
+                                  // DoFRenumbering::component_wise
+                                  // function does: it treats each
+                                  // vector component separately; what
+                                  // we have to do is group several
+                                  // components into "blocks" and pass
+                                  // this block structure to that
+                                  // function. Consequently, we
+                                  // allocate a vector
+                                  // <code>block_component</code> with
+                                  // as many elements as there are
+                                  // components and describe all
+                                  // velocity components to correspond
+                                  // to block 0, while the pressure
+                                  // component will form block 1:
+  template <int dim>
+  void StokesProblem<dim>::setup_dofs ()
   {
-    BlockCompressedSimpleSparsityPattern csp (2,2);
-
-    csp.block(0,0).reinit (n_u, n_u);
-    csp.block(1,0).reinit (n_p, n_u);
-    csp.block(0,1).reinit (n_u, n_p);
-    csp.block(1,1).reinit (n_p, n_p);
-
-    csp.collect_sizes();
+    A_preconditioner.reset ();
+    system_matrix.clear ();
+
+    dof_handler.distribute_dofs (fe);
+    DoFRenumbering::Cuthill_McKee (dof_handler);
+
+    std::vector<unsigned int> block_component (dim+1,0);
+    block_component[dim] = 1;
+    DoFRenumbering::component_wise (dof_handler, block_component);
+
+                                    // Now comes the implementation of
+                                    // Dirichlet boundary conditions, which
+                                    // should be evident after the discussion
+                                    // in the introduction. All that changed is
+                                    // that the function already appears in the
+                                    // setup functions, whereas we were used to
+                                    // see it in some assembly routine. Further
+                                    // down below where we set up the mesh, we
+                                    // will associate the top boundary where we
+                                    // impose Dirichlet boundary conditions
+                                    // with boundary indicator 1.  We will have
+                                    // to pass this boundary indicator as
+                                    // second argument to the function below
+                                    // interpolating boundary values.  There is
+                                    // one more thing, though.  The function
+                                    // describing the Dirichlet conditions was
+                                    // defined for all components, both
+                                    // velocity and pressure. However, the
+                                    // Dirichlet conditions are to be set for
+                                    // the velocity only.  To this end, we use
+                                    // a <code>component_mask</code> that
+                                    // filters out the pressure component, so
+                                    // that the condensation is performed on
+                                    // velocity degrees of freedom only. Since
+                                    // we use adaptively refined grids the
+                                    // constraint matrix needs to be first
+                                    // filled with hanging node constraints
+                                    // generated from the DoF handler. Note the
+                                    // order of the two functions &mdash; we
+                                    // first compute the hanging node
+                                    // constraints, and then insert the
+                                    // boundary values into the constraint
+                                    // matrix. This makes sure that we respect
+                                    // H<sup>1</sup> conformity on boundaries
+                                    // with hanging nodes (in three space
+                                    // dimensions), where the hanging node
+                                    // needs to dominate the Dirichlet boundary
+                                    // values.
+    {
+      constraints.clear ();
+      std::vector<bool> component_mask (dim+1, true);
+      component_mask[dim] = false;
+      DoFTools::make_hanging_node_constraints (dof_handler,
+                                              constraints);
+      VectorTools::interpolate_boundary_values (dof_handler,
+                                               1,
+                                               BoundaryValues<dim>(),
+                                               constraints,
+                                               component_mask);
+    }
 
-    DoFTools::make_sparsity_pattern (dof_handler, csp, constraints, false);
-    sparsity_pattern.copy_from (csp);
-  }
+    constraints.close ();
+
+                                    // In analogy to step-20, we count the dofs
+                                    // in the individual components.  We could
+                                    // do this in the same way as there, but we
+                                    // want to operate on the block structure
+                                    // we used already for the renumbering: The
+                                    // function
+                                    // <code>DoFTools::count_dofs_per_block</code>
+                                    // does the same as
+                                    // <code>DoFTools::count_dofs_per_component</code>,
+                                    // but now grouped as velocity and pressure
+                                    // block via <code>block_component</code>.
+    std::vector<unsigned int> dofs_per_block (2);
+    DoFTools::count_dofs_per_block (dof_handler, dofs_per_block, block_component);
+    const unsigned int n_u = dofs_per_block[0],
+                      n_p = dofs_per_block[1];
+
+    std::cout << "   Number of active cells: "
+             << triangulation.n_active_cells()
+             << std::endl
+             << "   Number of degrees of freedom: "
+             << dof_handler.n_dofs()
+             << " (" << n_u << '+' << n_p << ')'
+             << std::endl;
 
-                                  // Finally, the system matrix,
-                                  // solution and right hand side are
-                                  // created from the block
-                                  // structure as in step-20:
-  system_matrix.reinit (sparsity_pattern);
-
-  solution.reinit (2);
-  solution.block(0).reinit (n_u);
-  solution.block(1).reinit (n_p);
-  solution.collect_sizes ();
-
-  system_rhs.reinit (2);
-  system_rhs.block(0).reinit (n_u);
-  system_rhs.block(1).reinit (n_p);
-  system_rhs.collect_sizes ();
-}
+                                    // The next task is to allocate a
+                                    // sparsity pattern for the system matrix
+                                    // we will create. We could do this in
+                                    // the same way as in step-20,
+                                    // i.e. directly build an object of type
+                                    // SparsityPattern through
+                                    // DoFTools::make_sparsity_pattern. However,
+                                    // there is a major reason not to do so:
+                                    // In 3D, the function
+                                    // DoFTools::max_couplings_between_dofs
+                                    // yields a conservative but rather large
+                                    // number for the coupling between the
+                                    // individual dofs, so that the memory
+                                    // initially provided for the creation of
+                                    // the sparsity pattern of the matrix is
+                                    // far too much -- so much actually that
+                                    // the initial sparsity pattern won't
+                                    // even fit into the physical memory of
+                                    // most systems already for
+                                    // moderately-sized 3D problems, see also
+                                    // the discussion in step-18.  Instead,
+                                    // we first build a temporary object that
+                                    // uses a different data structure that
+                                    // doesn't require allocating more memory
+                                    // than necessary but isn't suitable for
+                                    // use as a basis of SparseMatrix or
+                                    // BlockSparseMatrix objects; in a second
+                                    // step we then copy this object into an
+                                    // object of BlockSparsityPattern. This
+                                    // is entirely analgous to what we
+                                    // already did in step-11 and step-18.
+                                    //
+                                    // There is one snag again here, though:
+                                    // it turns out that using the
+                                    // CompressedSparsityPattern (or the
+                                    // block version
+                                    // BlockCompressedSparsityPattern we
+                                    // would use here) has a bottleneck that
+                                    // makes the algorithm to build the
+                                    // sparsity pattern be quadratic in the
+                                    // number of degrees of freedom. This
+                                    // doesn't become noticable until we get
+                                    // well into the range of several 100,000
+                                    // degrees of freedom, but eventually
+                                    // dominates the setup of the linear
+                                    // system when we get to more than a
+                                    // million degrees of freedom. This is
+                                    // due to the data structures used in the
+                                    // CompressedSparsityPattern class,
+                                    // nothing that can easily be
+                                    // changed. Fortunately, there is an easy
+                                    // solution: the
+                                    // CompressedSimpleSparsityPattern class
+                                    // (and its block variant
+                                    // BlockCompressedSimpleSparsityPattern)
+                                    // has exactly the same interface, uses a
+                                    // different %internal data structure and
+                                    // is linear in the number of degrees of
+                                    // freedom and therefore much more
+                                    // efficient for large problems. As
+                                    // another alternative, we could also
+                                    // have chosen the class
+                                    // BlockCompressedSetSparsityPattern that
+                                    // uses yet another strategy for %internal
+                                    // memory management. Though, that class
+                                    // turns out to be more memory-demanding
+                                    // than
+                                    // BlockCompressedSimpleSparsityPattern
+                                    // for this example.
+                                    //
+                                    // Consequently, this is the class that
+                                    // we will use for our intermediate
+                                    // sparsity representation. All this is
+                                    // done inside a new scope, which means
+                                    // that the memory of <code>csp</code>
+                                    // will be released once the information
+                                    // has been copied to
+                                    // <code>sparsity_pattern</code>.
+    {
+      BlockCompressedSimpleSparsityPattern csp (2,2);
 
+      csp.block(0,0).reinit (n_u, n_u);
+      csp.block(1,0).reinit (n_p, n_u);
+      csp.block(0,1).reinit (n_u, n_p);
+      csp.block(1,1).reinit (n_p, n_p);
 
-                                // @sect4{StokesProblem::assemble_system}
+      csp.collect_sizes();
 
-                                // The assembly process follows the
-                                // discussion in step-20 and in the
-                                // introduction. We use the well-known
-                                // abbreviations for the data structures
-                                // that hold the local matrix, right
-                                // hand side, and global
-                                // numbering of the degrees of freedom
-                                // for the present cell.
-template <int dim>
-void StokesProblem<dim>::assemble_system ()
-{
-  system_matrix=0;
-  system_rhs=0;
-
-  QGauss<dim>   quadrature_formula(degree+2);
-
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                           update_values    |
-                           update_quadrature_points  |
-                           update_JxW_values |
-                           update_gradients);
-
-  const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
-
-  const unsigned int   n_q_points      = quadrature_formula.size();
-
-  FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       local_rhs (dofs_per_cell);
-
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-  const RightHandSide<dim>          right_hand_side;
-  std::vector<Vector<double> >      rhs_values (n_q_points,
-                                                Vector<double>(dim+1));
-
-                                  // Next, we need two objects that work as
-                                  // extractors for the FEValues
-                                  // object. Their use is explained in detail
-                                  // in the report on @ref vector_valued :
-  const FEValuesExtractors::Vector velocities (0);
-  const FEValuesExtractors::Scalar pressure (dim);
-
-                                  // As an extension over step-20 and
-                                  // step-21, we include a few
-                                  // optimizations that make assembly
-                                  // much faster for this particular
-                                  // problem.  The improvements are
-                                  // based on the observation that we
-                                  // do a few calculations too many
-                                  // times when we do as in step-20:
-                                  // The symmetric gradient actually
-                                  // has <code>dofs_per_cell</code>
-                                  // different values per quadrature
-                                  // point, but we extract it
-                                  // <code>dofs_per_cell*dofs_per_cell</code>
-                                  // times from the FEValues object -
-                                  // for both the loop over
-                                  // <code>i</code> and the inner
-                                  // loop over <code>j</code>. In 3d,
-                                  // that means evaluating it
-                                  // $89^2=7921$ instead of $89$
-                                  // times, a not insignificant
-                                  // difference.
-                                  //
-                                  // So what we're
-                                  // going to do here is to avoid
-                                  // such repeated calculations by
-                                  // getting a vector of rank-2
-                                  // tensors (and similarly for
-                                  // the divergence and the basis
-                                  // function value on pressure)
-                                  // at the quadrature point prior
-                                  // to starting the loop over the
-                                  // dofs on the cell. First, we
-                                  // create the respective objects
-                                  // that will hold these
-                                  // values. Then, we start the
-                                  // loop over all cells and the loop
-                                  // over the quadrature points,
-                                  // where we first extract these
-                                  // values. There is one more
-                                  // optimization we implement here:
-                                  // the local matrix (as well as
-                                  // the global one) is going to
-                                  // be symmetric, since all
-                                  // the operations involved are
-                                  // symmetric with respect to $i$
-                                  // and $j$. This is implemented by
-                                  // simply running the inner loop
-                                  // not to <code>dofs_per_cell</code>,
-                                  // but only up to <code>i</code>,
-                                  // the index of the outer loop.
-  std::vector<SymmetricTensor<2,dim> > phi_grads_u (dofs_per_cell);
-  std::vector<double>                  div_phi_u   (dofs_per_cell);
-  std::vector<double>                  phi_p       (dofs_per_cell);
-
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-      local_matrix = 0;
-      local_rhs = 0;
-
-      right_hand_side.vector_value_list(fe_values.get_quadrature_points(),
-                                        rhs_values);
-
-      for (unsigned int q=0; q<n_q_points; ++q)
-       {
-         for (unsigned int k=0; k<dofs_per_cell; ++k)
-           {
-             phi_grads_u[k] = fe_values[velocities].symmetric_gradient (k, q);
-             div_phi_u[k]   = fe_values[velocities].divergence (k, q);
-             phi_p[k]       = fe_values[pressure].value (k, q);
-           }
-
-         for (unsigned int i=0; i<dofs_per_cell; ++i)
-           {
-             for (unsigned int j=0; j<=i; ++j)
-               {
-                 local_matrix(i,j) += (phi_grads_u[i] * phi_grads_u[j]
-                                       - div_phi_u[i] * phi_p[j]
-                                       - phi_p[i] * div_phi_u[j]
-                                       + phi_p[i] * phi_p[j])
-                                      * fe_values.JxW(q);
-
-               }
-
-             const unsigned int component_i =
-               fe.system_to_component_index(i).first;
-             local_rhs(i) += fe_values.shape_value(i,q) *
-                             rhs_values[q](component_i) *
-                             fe_values.JxW(q);
-           }
-       }
-
-                                      // Note that in the above computation
-                                      // of the local matrix contribution
-                                      // we added the term <code> phi_p[i]
-                                      // * phi_p[j] </code>, yielding a
-                                      // pressure mass matrix in the
-                                      // $(1,1)$ block of the matrix as
-                                      // discussed in the
-                                      // introduction. That this term only
-                                      // ends up in the $(1,1)$ block stems
-                                      // from the fact that both of the
-                                      // factors in <code>phi_p[i] *
-                                      // phi_p[j]</code> are only non-zero
-                                      // when all the other terms vanish
-                                      // (and the other way around).
-                                      //
-                                      // Note also that operator* is
-                                      // overloaded for symmetric
-                                      // tensors, yielding the scalar
-                                      // product between the two
-                                      // tensors in the first line of
-                                      // the local matrix
-                                      // contribution.
-
-                                      // Before we can write the local data
-                                      // into the global matrix (and
-                                      // simultaneously use the
-                                      // ConstraintMatrix object to apply
-                                      // Dirichlet boundary conditions and
-                                      // eliminate hanging node
-                                      // constraints, as we discussed in
-                                      // the introduction), we have to be
-                                      // careful about one thing,
-                                      // though. We have only build up half
-                                      // of the local matrix because of
-                                      // symmetry, but we're going to save
-                                      // the full system matrix in order to
-                                      // use the standard functions for
-                                      // solution. This is done by flipping
-                                      // the indices in case we are
-                                      // pointing into the empty part of
-                                      // the local matrix.
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=i+1; j<dofs_per_cell; ++j)
-         local_matrix(i,j) = local_matrix(j,i);
-
-      cell->get_dof_indices (local_dof_indices);
-      constraints.distribute_local_to_global (local_matrix, local_rhs,
-                                             local_dof_indices,
-                                             system_matrix, system_rhs);
+      DoFTools::make_sparsity_pattern (dof_handler, csp, constraints, false);
+      sparsity_pattern.copy_from (csp);
     }
 
-                                  // Before we're going to solve this
-                                  // linear system, we generate a
-                                  // preconditioner for the
-                                  // velocity-velocity matrix, i.e.,
-                                  // <code>block(0,0)</code> in the
-                                  // system matrix. As mentioned
-                                  // above, this depends on the
-                                  // spatial dimension. Since the two
-                                  // classes described by the
-                                  // <code>InnerPreconditioner::type</code>
-                                  // typedef have the same interface,
-                                  // we do not have to do anything
-                                  // different whether we want to use
-                                  // a sparse direct solver or an
-                                  // ILU:
-  std::cout << "   Computing preconditioner..." << std::endl << std::flush;
-
-  A_preconditioner
-    = std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type>(new typename InnerPreconditioner<dim>::type());
-  A_preconditioner->initialize (system_matrix.block(0,0),
-                               typename InnerPreconditioner<dim>::type::AdditionalData());
-
-}
+                                    // Finally, the system matrix,
+                                    // solution and right hand side are
+                                    // created from the block
+                                    // structure as in step-20:
+    system_matrix.reinit (sparsity_pattern);
+
+    solution.reinit (2);
+    solution.block(0).reinit (n_u);
+    solution.block(1).reinit (n_p);
+    solution.collect_sizes ();
+
+    system_rhs.reinit (2);
+    system_rhs.block(0).reinit (n_u);
+    system_rhs.block(1).reinit (n_p);
+    system_rhs.collect_sizes ();
+  }
 
 
+                                  // @sect4{StokesProblem::assemble_system}
 
-                                // @sect4{StokesProblem::solve}
-
-                                // After the discussion in the introduction
-                                // and the definition of the respective
-                                // classes above, the implementation of the
-                                // <code>solve</code> function is rather
-                                // straigt-forward and done in a similar way
-                                // as in step-20. To start with, we need an
-                                // object of the <code>InverseMatrix</code>
-                                // class that represents the inverse of the
-                                // matrix A. As described in the
-                                // introduction, the inverse is generated
-                                // with the help of an inner preconditioner
-                                // of type
-                                // <code>InnerPreconditioner::type</code>.
-template <int dim>
-void StokesProblem<dim>::solve ()
-{
-  const InverseMatrix<SparseMatrix<double>,
-                      typename InnerPreconditioner<dim>::type>
-    A_inverse (system_matrix.block(0,0), *A_preconditioner);
-  Vector<double> tmp (solution.block(0).size());
-
-                                  // This is as in step-20. We generate the
-                                  // right hand side $B A^{-1} F - G$ for the
-                                  // Schur complement and an object that
-                                  // represents the respective linear
-                                  // operation $B A^{-1} B^T$, now with a
-                                  // template parameter indicating the
-                                  // preconditioner - in accordance with the
-                                  // definition of the class.
+                                  // The assembly process follows the
+                                  // discussion in step-20 and in the
+                                  // introduction. We use the well-known
+                                  // abbreviations for the data structures
+                                  // that hold the local matrix, right
+                                  // hand side, and global
+                                  // numbering of the degrees of freedom
+                                  // for the present cell.
+  template <int dim>
+  void StokesProblem<dim>::assemble_system ()
   {
-    Vector<double> schur_rhs (solution.block(1).size());
-    A_inverse.vmult (tmp, system_rhs.block(0));
-    system_matrix.block(1,0).vmult (schur_rhs, tmp);
-    schur_rhs -= system_rhs.block(1);
-
-    SchurComplement<typename InnerPreconditioner<dim>::type>
-      schur_complement (system_matrix, A_inverse);
-
-                                    // The usual control structures for
-                                    // the solver call are created...
-    SolverControl solver_control (solution.block(1).size(),
-                                 1e-6*schur_rhs.l2_norm());
-    SolverCG<>    cg (solver_control);
-
-                                    // Now to the preconditioner to the
-                                    // Schur complement. As explained in
-                                    // the introduction, the
-                                    // preconditioning is done by a mass
-                                    // matrix in the pressure variable.  It
-                                    // is stored in the $(1,1)$ block of
-                                    // the system matrix (that is not used
-                                    // anywhere else but in
-                                    // preconditioning).
-                                    //
-                                    // Actually, the solver needs to have
-                                    // the preconditioner in the form
-                                    // $P^{-1}$, so we need to create an
-                                    // inverse operation. Once again, we
-                                    // use an object of the class
-                                    // <code>InverseMatrix</code>, which
-                                    // implements the <code>vmult</code>
-                                    // operation that is needed by the
-                                    // solver.  In this case, we have to
-                                    // invert the pressure mass matrix. As
-                                    // it already turned out in earlier
-                                    // tutorial programs, the inversion of
-                                    // a mass matrix is a rather cheap and
-                                    // straight-forward operation (compared
-                                    // to, e.g., a Laplace matrix). The CG
-                                    // method with ILU preconditioning
-                                    // converges in 5-10 steps,
-                                    // independently on the mesh size.
-                                    // This is precisely what we do here:
-                                    // We choose another ILU preconditioner
-                                    // and take it along to the
-                                    // InverseMatrix object via the
-                                    // corresponding template parameter.  A
-                                    // CG solver is then called within the
-                                    // vmult operation of the inverse
-                                    // matrix.
+    system_matrix=0;
+    system_rhs=0;
+
+    QGauss<dim>   quadrature_formula(degree+2);
+
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values    |
+                            update_quadrature_points  |
+                            update_JxW_values |
+                            update_gradients);
+
+    const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
+
+    const unsigned int   n_q_points      = quadrature_formula.size();
+
+    FullMatrix<double>   local_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>       local_rhs (dofs_per_cell);
+
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+    const RightHandSide<dim>          right_hand_side;
+    std::vector<Vector<double> >      rhs_values (n_q_points,
+                                                 Vector<double>(dim+1));
+
+                                    // Next, we need two objects that work as
+                                    // extractors for the FEValues
+                                    // object. Their use is explained in detail
+                                    // in the report on @ref vector_valued :
+    const FEValuesExtractors::Vector velocities (0);
+    const FEValuesExtractors::Scalar pressure (dim);
+
+                                    // As an extension over step-20 and
+                                    // step-21, we include a few
+                                    // optimizations that make assembly
+                                    // much faster for this particular
+                                    // problem.  The improvements are
+                                    // based on the observation that we
+                                    // do a few calculations too many
+                                    // times when we do as in step-20:
+                                    // The symmetric gradient actually
+                                    // has <code>dofs_per_cell</code>
+                                    // different values per quadrature
+                                    // point, but we extract it
+                                    // <code>dofs_per_cell*dofs_per_cell</code>
+                                    // times from the FEValues object -
+                                    // for both the loop over
+                                    // <code>i</code> and the inner
+                                    // loop over <code>j</code>. In 3d,
+                                    // that means evaluating it
+                                    // $89^2=7921$ instead of $89$
+                                    // times, a not insignificant
+                                    // difference.
                                     //
-                                    // An alternative that is cheaper to
-                                    // build, but needs more iterations
-                                    // afterwards, would be to choose a
-                                    // SSOR preconditioner with factor
-                                    // 1.2. It needs about twice the number
-                                    // of iterations, but the costs for its
-                                    // generation are almost neglible.
-    SparseILU<double> preconditioner;
-    preconditioner.initialize (system_matrix.block(1,1),
-      SparseILU<double>::AdditionalData());
-
-    InverseMatrix<SparseMatrix<double>,SparseILU<double> >
-      m_inverse (system_matrix.block(1,1), preconditioner);
-
-                                    // With the Schur complement and an
-                                    // efficient preconditioner at hand, we
-                                    // can solve the respective equation
-                                    // for the pressure (i.e. block 0 in
-                                    // the solution vector) in the usual
-                                    // way:
-    cg.solve (schur_complement, solution.block(1), schur_rhs,
-             m_inverse);
-
-                                    // After this first solution step, the
-                                    // hanging node constraints have to be
-                                    // distributed to the solution in order
-                                    // to achieve a consistent pressure
-                                    // field.
-    constraints.distribute (solution);
-
-    std::cout << "  "
-             << solver_control.last_step()
-             << " outer CG Schur complement iterations for pressure"
-             << std::endl;
-  }
+                                    // So what we're
+                                    // going to do here is to avoid
+                                    // such repeated calculations by
+                                    // getting a vector of rank-2
+                                    // tensors (and similarly for
+                                    // the divergence and the basis
+                                    // function value on pressure)
+                                    // at the quadrature point prior
+                                    // to starting the loop over the
+                                    // dofs on the cell. First, we
+                                    // create the respective objects
+                                    // that will hold these
+                                    // values. Then, we start the
+                                    // loop over all cells and the loop
+                                    // over the quadrature points,
+                                    // where we first extract these
+                                    // values. There is one more
+                                    // optimization we implement here:
+                                    // the local matrix (as well as
+                                    // the global one) is going to
+                                    // be symmetric, since all
+                                    // the operations involved are
+                                    // symmetric with respect to $i$
+                                    // and $j$. This is implemented by
+                                    // simply running the inner loop
+                                    // not to <code>dofs_per_cell</code>,
+                                    // but only up to <code>i</code>,
+                                    // the index of the outer loop.
+    std::vector<SymmetricTensor<2,dim> > phi_grads_u (dofs_per_cell);
+    std::vector<double>                  div_phi_u   (dofs_per_cell);
+    std::vector<double>                  phi_p       (dofs_per_cell);
+
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       fe_values.reinit (cell);
+       local_matrix = 0;
+       local_rhs = 0;
+
+       right_hand_side.vector_value_list(fe_values.get_quadrature_points(),
+                                         rhs_values);
+
+       for (unsigned int q=0; q<n_q_points; ++q)
+         {
+           for (unsigned int k=0; k<dofs_per_cell; ++k)
+             {
+               phi_grads_u[k] = fe_values[velocities].symmetric_gradient (k, q);
+               div_phi_u[k]   = fe_values[velocities].divergence (k, q);
+               phi_p[k]       = fe_values[pressure].value (k, q);
+             }
+
+           for (unsigned int i=0; i<dofs_per_cell; ++i)
+             {
+               for (unsigned int j=0; j<=i; ++j)
+                 {
+                   local_matrix(i,j) += (phi_grads_u[i] * phi_grads_u[j]
+                                         - div_phi_u[i] * phi_p[j]
+                                         - phi_p[i] * div_phi_u[j]
+                                         + phi_p[i] * phi_p[j])
+                                        * fe_values.JxW(q);
+
+                 }
+
+               const unsigned int component_i =
+                 fe.system_to_component_index(i).first;
+               local_rhs(i) += fe_values.shape_value(i,q) *
+                               rhs_values[q](component_i) *
+                               fe_values.JxW(q);
+             }
+         }
+
+                                        // Note that in the above computation
+                                        // of the local matrix contribution
+                                        // we added the term <code> phi_p[i]
+                                        // * phi_p[j] </code>, yielding a
+                                        // pressure mass matrix in the
+                                        // $(1,1)$ block of the matrix as
+                                        // discussed in the
+                                        // introduction. That this term only
+                                        // ends up in the $(1,1)$ block stems
+                                        // from the fact that both of the
+                                        // factors in <code>phi_p[i] *
+                                        // phi_p[j]</code> are only non-zero
+                                        // when all the other terms vanish
+                                        // (and the other way around).
+                                        //
+                                        // Note also that operator* is
+                                        // overloaded for symmetric
+                                        // tensors, yielding the scalar
+                                        // product between the two
+                                        // tensors in the first line of
+                                        // the local matrix
+                                        // contribution.
+
+                                        // Before we can write the local data
+                                        // into the global matrix (and
+                                        // simultaneously use the
+                                        // ConstraintMatrix object to apply
+                                        // Dirichlet boundary conditions and
+                                        // eliminate hanging node
+                                        // constraints, as we discussed in
+                                        // the introduction), we have to be
+                                        // careful about one thing,
+                                        // though. We have only build up half
+                                        // of the local matrix because of
+                                        // symmetry, but we're going to save
+                                        // the full system matrix in order to
+                                        // use the standard functions for
+                                        // solution. This is done by flipping
+                                        // the indices in case we are
+                                        // pointing into the empty part of
+                                        // the local matrix.
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         for (unsigned int j=i+1; j<dofs_per_cell; ++j)
+           local_matrix(i,j) = local_matrix(j,i);
+
+       cell->get_dof_indices (local_dof_indices);
+       constraints.distribute_local_to_global (local_matrix, local_rhs,
+                                               local_dof_indices,
+                                               system_matrix, system_rhs);
+      }
+
+                                    // Before we're going to solve this
+                                    // linear system, we generate a
+                                    // preconditioner for the
+                                    // velocity-velocity matrix, i.e.,
+                                    // <code>block(0,0)</code> in the
+                                    // system matrix. As mentioned
+                                    // above, this depends on the
+                                    // spatial dimension. Since the two
+                                    // classes described by the
+                                    // <code>InnerPreconditioner::type</code>
+                                    // typedef have the same interface,
+                                    // we do not have to do anything
+                                    // different whether we want to use
+                                    // a sparse direct solver or an
+                                    // ILU:
+    std::cout << "   Computing preconditioner..." << std::endl << std::flush;
+
+    A_preconditioner
+      = std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type>(new typename InnerPreconditioner<dim>::type());
+    A_preconditioner->initialize (system_matrix.block(0,0),
+                                 typename InnerPreconditioner<dim>::type::AdditionalData());
 
-                                  // As in step-20, we finally need to
-                                  // solve for the velocity equation where
-                                  // we plug in the solution to the
-                                  // pressure equation. This involves only
-                                  // objects we already know - so we simply
-                                  // multiply $p$ by $B^T$, subtract the
-                                  // right hand side and multiply by the
-                                  // inverse of $A$. At the end, we need to
-                                  // distribute the constraints from
-                                  // hanging nodes in order to obtain a
-                                  // constistent flow field:
-  {
-    system_matrix.block(0,1).vmult (tmp, solution.block(1));
-    tmp *= -1;
-    tmp += system_rhs.block(0);
+  }
 
-    A_inverse.vmult (solution.block(0), tmp);
 
-    constraints.distribute (solution);
-  }
-}
 
+                                  // @sect4{StokesProblem::solve}
+
+                                  // After the discussion in the introduction
+                                  // and the definition of the respective
+                                  // classes above, the implementation of the
+                                  // <code>solve</code> function is rather
+                                  // straigt-forward and done in a similar way
+                                  // as in step-20. To start with, we need an
+                                  // object of the <code>InverseMatrix</code>
+                                  // class that represents the inverse of the
+                                  // matrix A. As described in the
+                                  // introduction, the inverse is generated
+                                  // with the help of an inner preconditioner
+                                  // of type
+                                  // <code>InnerPreconditioner::type</code>.
+  template <int dim>
+  void StokesProblem<dim>::solve ()
+  {
+    const InverseMatrix<SparseMatrix<double>,
+      typename InnerPreconditioner<dim>::type>
+      A_inverse (system_matrix.block(0,0), *A_preconditioner);
+    Vector<double> tmp (solution.block(0).size());
+
+                                    // This is as in step-20. We generate the
+                                    // right hand side $B A^{-1} F - G$ for the
+                                    // Schur complement and an object that
+                                    // represents the respective linear
+                                    // operation $B A^{-1} B^T$, now with a
+                                    // template parameter indicating the
+                                    // preconditioner - in accordance with the
+                                    // definition of the class.
+    {
+      Vector<double> schur_rhs (solution.block(1).size());
+      A_inverse.vmult (tmp, system_rhs.block(0));
+      system_matrix.block(1,0).vmult (schur_rhs, tmp);
+      schur_rhs -= system_rhs.block(1);
+
+      SchurComplement<typename InnerPreconditioner<dim>::type>
+       schur_complement (system_matrix, A_inverse);
+
+                                      // The usual control structures for
+                                      // the solver call are created...
+      SolverControl solver_control (solution.block(1).size(),
+                                   1e-6*schur_rhs.l2_norm());
+      SolverCG<>    cg (solver_control);
+
+                                      // Now to the preconditioner to the
+                                      // Schur complement. As explained in
+                                      // the introduction, the
+                                      // preconditioning is done by a mass
+                                      // matrix in the pressure variable.  It
+                                      // is stored in the $(1,1)$ block of
+                                      // the system matrix (that is not used
+                                      // anywhere else but in
+                                      // preconditioning).
+                                      //
+                                      // Actually, the solver needs to have
+                                      // the preconditioner in the form
+                                      // $P^{-1}$, so we need to create an
+                                      // inverse operation. Once again, we
+                                      // use an object of the class
+                                      // <code>InverseMatrix</code>, which
+                                      // implements the <code>vmult</code>
+                                      // operation that is needed by the
+                                      // solver.  In this case, we have to
+                                      // invert the pressure mass matrix. As
+                                      // it already turned out in earlier
+                                      // tutorial programs, the inversion of
+                                      // a mass matrix is a rather cheap and
+                                      // straight-forward operation (compared
+                                      // to, e.g., a Laplace matrix). The CG
+                                      // method with ILU preconditioning
+                                      // converges in 5-10 steps,
+                                      // independently on the mesh size.
+                                      // This is precisely what we do here:
+                                      // We choose another ILU preconditioner
+                                      // and take it along to the
+                                      // InverseMatrix object via the
+                                      // corresponding template parameter.  A
+                                      // CG solver is then called within the
+                                      // vmult operation of the inverse
+                                      // matrix.
+                                      //
+                                      // An alternative that is cheaper to
+                                      // build, but needs more iterations
+                                      // afterwards, would be to choose a
+                                      // SSOR preconditioner with factor
+                                      // 1.2. It needs about twice the number
+                                      // of iterations, but the costs for its
+                                      // generation are almost neglible.
+      SparseILU<double> preconditioner;
+      preconditioner.initialize (system_matrix.block(1,1),
+                                SparseILU<double>::AdditionalData());
+
+      InverseMatrix<SparseMatrix<double>,SparseILU<double> >
+       m_inverse (system_matrix.block(1,1), preconditioner);
+
+                                      // With the Schur complement and an
+                                      // efficient preconditioner at hand, we
+                                      // can solve the respective equation
+                                      // for the pressure (i.e. block 0 in
+                                      // the solution vector) in the usual
+                                      // way:
+      cg.solve (schur_complement, solution.block(1), schur_rhs,
+               m_inverse);
+
+                                      // After this first solution step, the
+                                      // hanging node constraints have to be
+                                      // distributed to the solution in order
+                                      // to achieve a consistent pressure
+                                      // field.
+      constraints.distribute (solution);
+
+      std::cout << "  "
+               << solver_control.last_step()
+               << " outer CG Schur complement iterations for pressure"
+               << std::endl;
+    }
 
-                                // @sect4{StokesProblem::output_results}
-
-                                // The next function generates graphical
-                                // output. In this example, we are going to
-                                // use the VTK file format.  We attach
-                                // names to the individual variables in the
-                                // problem: <code>velocity</code> to the
-                                // <code>dim</code> components of velocity
-                                // and <code>pressure</code> to the
-                                // pressure.
-                                //
-                                // Not all visualization programs have the
-                                // ability to group individual vector
-                                // components into a vector to provide
-                                // vector plots; in particular, this holds
-                                // for some VTK-based visualization
-                                // programs. In this case, the logical
-                                // grouping of components into vectors
-                                // should already be described in the file
-                                // containing the data. In other words,
-                                // what we need to do is provide our output
-                                // writers with a way to know which of the
-                                // components of the finite element
-                                // logically form a vector (with $d$
-                                // components in $d$ space dimensions)
-                                // rather than letting them assume that we
-                                // simply have a bunch of scalar fields.
-                                // This is achieved using the members of
-                                // the
-                                // <code>DataComponentInterpretation</code>
-                                // namespace: as with the filename, we
-                                // create a vector in which the first
-                                // <code>dim</code> components refer to the
-                                // velocities and are given the tag
-                                // <code>DataComponentInterpretation::component_is_part_of_vector</code>;
-                                // we finally push one tag
-                                // <code>DataComponentInterpretation::component_is_scalar</code>
-                                // to describe the grouping of the pressure
-                                // variable.
-
-                                // The rest of the function is then
-                                // the same as in step-20.
-template <int dim>
-void
-StokesProblem<dim>::output_results (const unsigned int refinement_cycle)  const
-{
-  std::vector<std::string> solution_names (dim, "velocity");
-  solution_names.push_back ("pressure");
+                                    // As in step-20, we finally need to
+                                    // solve for the velocity equation where
+                                    // we plug in the solution to the
+                                    // pressure equation. This involves only
+                                    // objects we already know - so we simply
+                                    // multiply $p$ by $B^T$, subtract the
+                                    // right hand side and multiply by the
+                                    // inverse of $A$. At the end, we need to
+                                    // distribute the constraints from
+                                    // hanging nodes in order to obtain a
+                                    // constistent flow field:
+    {
+      system_matrix.block(0,1).vmult (tmp, solution.block(1));
+      tmp *= -1;
+      tmp += system_rhs.block(0);
 
-  std::vector<DataComponentInterpretation::DataComponentInterpretation>
-    data_component_interpretation
-    (dim, DataComponentInterpretation::component_is_part_of_vector);
-  data_component_interpretation
-    .push_back (DataComponentInterpretation::component_is_scalar);
-
-  DataOut<dim> data_out;
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, solution_names,
-                           DataOut<dim>::type_dof_data,
-                           data_component_interpretation);
-  data_out.build_patches ();
-
-  std::ostringstream filename;
-  filename << "solution-"
-           << Utilities::int_to_string (refinement_cycle, 2)
-           << ".vtk";
-
-  std::ofstream output (filename.str().c_str());
-  data_out.write_vtk (output);
-}
+      A_inverse.vmult (solution.block(0), tmp);
 
+      constraints.distribute (solution);
+    }
+  }
 
-                                // @sect4{StokesProblem::refine_mesh}
-
-                                // This is the last interesting function of
-                                // the <code>StokesProblem</code> class.
-                                // As indicated by its name, it takes the
-                                // solution to the problem and refines the
-                                // mesh where this is needed. The procedure
-                                // is the same as in the respective step in
-                                // step-6, with the exception that we base
-                                // the refinement only on the change in
-                                // pressure, i.e., we call the Kelly error
-                                // estimator with a mask
-                                // object. Additionally, we do not coarsen
-                                // the grid again:
-template <int dim>
-void
-StokesProblem<dim>::refine_mesh ()
-{
-  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-
-  std::vector<bool> component_mask (dim+1, false);
-  component_mask[dim] = true;
-  KellyErrorEstimator<dim>::estimate (dof_handler,
-                                      QGauss<dim-1>(degree+1),
-                                      typename FunctionMap<dim>::type(),
-                                      solution,
-                                      estimated_error_per_cell,
-                                      component_mask);
-
-  GridRefinement::refine_and_coarsen_fixed_number (triangulation,
-                                                   estimated_error_per_cell,
-                                                   0.3, 0.0);
-  triangulation.execute_coarsening_and_refinement ();
-}
 
+                                  // @sect4{StokesProblem::output_results}
 
-                                // @sect4{StokesProblem::run}
-
-                                // The last step in the Stokes class is, as
-                                // usual, the function that generates the
-                                // initial grid and calls the other
-                                // functions in the respective order.
-                                //
-                                // We start off with a rectangle of size $4
-                                // \times 1$ (in 2d) or $4 \times 1 \times
-                                // 1$ (in 3d), placed in $R^2/R^3$ as
-                                // $(-2,2)\times(-1,0)$ or
-                                // $(-2,2)\times(0,1)\times(-1,1)$,
-                                // respectively. It is natural to start
-                                // with equal mesh size in each direction,
-                                // so we subdivide the initial rectangle
-                                // four times in the first coordinate
-                                // direction. To limit the scope of the
-                                // variables involved in the creation of
-                                // the mesh to the range where we actually
-                                // need them, we put the entire block
-                                // between a pair of braces:
-template <int dim>
-void StokesProblem<dim>::run ()
-{
+                                  // The next function generates graphical
+                                  // output. In this example, we are going to
+                                  // use the VTK file format.  We attach
+                                  // names to the individual variables in the
+                                  // problem: <code>velocity</code> to the
+                                  // <code>dim</code> components of velocity
+                                  // and <code>pressure</code> to the
+                                  // pressure.
+                                  //
+                                  // Not all visualization programs have the
+                                  // ability to group individual vector
+                                  // components into a vector to provide
+                                  // vector plots; in particular, this holds
+                                  // for some VTK-based visualization
+                                  // programs. In this case, the logical
+                                  // grouping of components into vectors
+                                  // should already be described in the file
+                                  // containing the data. In other words,
+                                  // what we need to do is provide our output
+                                  // writers with a way to know which of the
+                                  // components of the finite element
+                                  // logically form a vector (with $d$
+                                  // components in $d$ space dimensions)
+                                  // rather than letting them assume that we
+                                  // simply have a bunch of scalar fields.
+                                  // This is achieved using the members of
+                                  // the
+                                  // <code>DataComponentInterpretation</code>
+                                  // namespace: as with the filename, we
+                                  // create a vector in which the first
+                                  // <code>dim</code> components refer to the
+                                  // velocities and are given the tag
+                                  // <code>DataComponentInterpretation::component_is_part_of_vector</code>;
+                                  // we finally push one tag
+                                  // <code>DataComponentInterpretation::component_is_scalar</code>
+                                  // to describe the grouping of the pressure
+                                  // variable.
+
+                                  // The rest of the function is then
+                                  // the same as in step-20.
+  template <int dim>
+  void
+  StokesProblem<dim>::output_results (const unsigned int refinement_cycle)  const
   {
-    std::vector<unsigned int> subdivisions (dim, 1);
-    subdivisions[0] = 4;
-
-    const Point<dim> bottom_left = (dim == 2 ?
-                                   Point<dim>(-2,-1) :
-                                   Point<dim>(-2,0,-1));
-    const Point<dim> top_right   = (dim == 2 ?
-                                   Point<dim>(2,0) :
-                                   Point<dim>(2,1,0));
-
-    GridGenerator::subdivided_hyper_rectangle (triangulation,
-                                              subdivisions,
-                                              bottom_left,
-                                              top_right);
-  }
+    std::vector<std::string> solution_names (dim, "velocity");
+    solution_names.push_back ("pressure");
 
-                                  // A boundary indicator of 1 is set to all
-                                  // boundaries that are subject to Dirichlet
-                                  // boundary conditions, i.e.  to faces that
-                                  // are located at 0 in the last coordinate
-                                  // direction. See the example description
-                                  // above for details.
-  for (typename Triangulation<dim>::active_cell_iterator
-        cell = triangulation.begin_active();
-       cell != triangulation.end(); ++cell)
-    for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
-      if (cell->face(f)->center()[dim-1] == 0)
-       cell->face(f)->set_all_boundary_indicators(1);
-
-
-                                  // We then apply an initial refinement
-                                  // before solving for the first time. In
-                                  // 3D, there are going to be more degrees
-                                  // of freedom, so we refine less there:
-  triangulation.refine_global (4-dim);
-
-                                  // As first seen in step-6, we cycle over
-                                  // the different refinement levels and
-                                  // refine (except for the first cycle),
-                                  // setup the degrees of freedom and
-                                  // matrices, assemble, solve and create
-                                  // output:
-  for (unsigned int refinement_cycle = 0; refinement_cycle<6;
-       ++refinement_cycle)
-    {
-      std::cout << "Refinement cycle " << refinement_cycle << std::endl;
-
-      if (refinement_cycle > 0)
-        refine_mesh ();
+    std::vector<DataComponentInterpretation::DataComponentInterpretation>
+      data_component_interpretation
+      (dim, DataComponentInterpretation::component_is_part_of_vector);
+    data_component_interpretation
+      .push_back (DataComponentInterpretation::component_is_scalar);
+
+    DataOut<dim> data_out;
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (solution, solution_names,
+                             DataOut<dim>::type_dof_data,
+                             data_component_interpretation);
+    data_out.build_patches ();
+
+    std::ostringstream filename;
+    filename << "solution-"
+            << Utilities::int_to_string (refinement_cycle, 2)
+            << ".vtk";
+
+    std::ofstream output (filename.str().c_str());
+    data_out.write_vtk (output);
+  }
 
-      setup_dofs ();
 
-      std::cout << "   Assembling..." << std::endl << std::flush;
-      assemble_system ();
+                                  // @sect4{StokesProblem::refine_mesh}
+
+                                  // This is the last interesting function of
+                                  // the <code>StokesProblem</code> class.
+                                  // As indicated by its name, it takes the
+                                  // solution to the problem and refines the
+                                  // mesh where this is needed. The procedure
+                                  // is the same as in the respective step in
+                                  // step-6, with the exception that we base
+                                  // the refinement only on the change in
+                                  // pressure, i.e., we call the Kelly error
+                                  // estimator with a mask
+                                  // object. Additionally, we do not coarsen
+                                  // the grid again:
+  template <int dim>
+  void
+  StokesProblem<dim>::refine_mesh ()
+  {
+    Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+    std::vector<bool> component_mask (dim+1, false);
+    component_mask[dim] = true;
+    KellyErrorEstimator<dim>::estimate (dof_handler,
+                                       QGauss<dim-1>(degree+1),
+                                       typename FunctionMap<dim>::type(),
+                                       solution,
+                                       estimated_error_per_cell,
+                                       component_mask);
+
+    GridRefinement::refine_and_coarsen_fixed_number (triangulation,
+                                                    estimated_error_per_cell,
+                                                    0.3, 0.0);
+    triangulation.execute_coarsening_and_refinement ();
+  }
 
-      std::cout << "   Solving..." << std::flush;
-      solve ();
 
-      output_results (refinement_cycle);
+                                  // @sect4{StokesProblem::run}
 
-      std::cout << std::endl;
+                                  // The last step in the Stokes class is, as
+                                  // usual, the function that generates the
+                                  // initial grid and calls the other
+                                  // functions in the respective order.
+                                  //
+                                  // We start off with a rectangle of size $4
+                                  // \times 1$ (in 2d) or $4 \times 1 \times
+                                  // 1$ (in 3d), placed in $R^2/R^3$ as
+                                  // $(-2,2)\times(-1,0)$ or
+                                  // $(-2,2)\times(0,1)\times(-1,1)$,
+                                  // respectively. It is natural to start
+                                  // with equal mesh size in each direction,
+                                  // so we subdivide the initial rectangle
+                                  // four times in the first coordinate
+                                  // direction. To limit the scope of the
+                                  // variables involved in the creation of
+                                  // the mesh to the range where we actually
+                                  // need them, we put the entire block
+                                  // between a pair of braces:
+  template <int dim>
+  void StokesProblem<dim>::run ()
+  {
+    {
+      std::vector<unsigned int> subdivisions (dim, 1);
+      subdivisions[0] = 4;
+
+      const Point<dim> bottom_left = (dim == 2 ?
+                                     Point<dim>(-2,-1) :
+                                     Point<dim>(-2,0,-1));
+      const Point<dim> top_right   = (dim == 2 ?
+                                     Point<dim>(2,0) :
+                                     Point<dim>(2,1,0));
+
+      GridGenerator::subdivided_hyper_rectangle (triangulation,
+                                                subdivisions,
+                                                bottom_left,
+                                                top_right);
     }
+
+                                    // A boundary indicator of 1 is set to all
+                                    // boundaries that are subject to Dirichlet
+                                    // boundary conditions, i.e.  to faces that
+                                    // are located at 0 in the last coordinate
+                                    // direction. See the example description
+                                    // above for details.
+    for (typename Triangulation<dim>::active_cell_iterator
+          cell = triangulation.begin_active();
+        cell != triangulation.end(); ++cell)
+      for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
+       if (cell->face(f)->center()[dim-1] == 0)
+         cell->face(f)->set_all_boundary_indicators(1);
+
+
+                                    // We then apply an initial refinement
+                                    // before solving for the first time. In
+                                    // 3D, there are going to be more degrees
+                                    // of freedom, so we refine less there:
+    triangulation.refine_global (4-dim);
+
+                                    // As first seen in step-6, we cycle over
+                                    // the different refinement levels and
+                                    // refine (except for the first cycle),
+                                    // setup the degrees of freedom and
+                                    // matrices, assemble, solve and create
+                                    // output:
+    for (unsigned int refinement_cycle = 0; refinement_cycle<6;
+        ++refinement_cycle)
+      {
+       std::cout << "Refinement cycle " << refinement_cycle << std::endl;
+
+       if (refinement_cycle > 0)
+         refine_mesh ();
+
+       setup_dofs ();
+
+       std::cout << "   Assembling..." << std::endl << std::flush;
+       assemble_system ();
+
+       std::cout << "   Solving..." << std::flush;
+       solve ();
+
+       output_results (refinement_cycle);
+
+       std::cout << std::endl;
+      }
+  }
 }
 
 
@@ -1322,6 +1325,9 @@ int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step22;
+
       deallog.depth_console (0);
 
       StokesProblem<2> flow_problem(1);
index 396d1272407d7496f4998f23900d3702e1d34902..c5b7cfb4db1fe1a715d3da9631d3b49d68906784 100644 (file)
@@ -4,7 +4,7 @@
 /*    $Id$       */
 /*    Version: $Name:  $                                          */
 /*                                                                */
-/*    Copyright (C) 2006, 2007, 2008, 2009 by the deal.II authors */
+/*    Copyright (C) 2006, 2007, 2008, 2009, 2011 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 
                                 // The last step is as in all
                                 // previous programs:
-using namespace dealii;
-
-
-                                // @sect3{The <code>WaveEquation</code> class}
-
-                                // Next comes the declaration of the main
-                                // class. It's public interface of functions
-                                // is like in most of the other tutorial
-                                // programs. Worth mentioning is that we now
-                                // have to store four matrices instead of
-                                // one: the mass matrix $M$, the Laplace
-                                // matrix $A$, the matrix $M+k^2\theta^2A$
-                                // used for solving for $U^n$, and a copy of
-                                // the mass matrix with boundary conditions
-                                // applied used for solving for $V^n$. Note
-                                // that it is a bit wasteful to have an
-                                // additional copy of the mass matrix
-                                // around. We will discuss strategies for how
-                                // to avoid this in the section on possible
-                                // improvements.
-                                // 
-                                // Likewise, we need solution vectors for
-                                // $U^n,V^n$ as well as for the corresponding
-                                // vectors at the previous time step,
-                                // $U^{n-1},V^{n-1}$. The
-                                // <code>system_rhs</code> will be used for
-                                // whatever right hand side vector we have
-                                // when solving one of the two linear systems
-                                // in each time step. These will be solved in
-                                // the two functions <code>solve_u</code> and
-                                // <code>solve_v</code>.
-                                //
-                                // Finally, the variable
-                                // <code>theta</code> is used to
-                                // indicate the parameter $\theta$
-                                // that is used to define which time
-                                // stepping scheme to use, as
-                                // explained in the introduction. The
-                                // rest is self-explanatory.
-template <int dim>
-class WaveEquation 
+namespace Step23
 {
-  public:
-    WaveEquation ();
-    void run ();
-    
-  private:
-    void setup_system ();
-    void solve_u ();
-    void solve_v ();
-    void output_results () const;
-
-    Triangulation<dim>   triangulation;
-    FE_Q<dim>            fe;
-    DoFHandler<dim>      dof_handler;
-
-    ConstraintMatrix constraints;
-    
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> mass_matrix;
-    SparseMatrix<double> laplace_matrix;
-    SparseMatrix<double> matrix_u;
-    SparseMatrix<double> matrix_v;
-
-    Vector<double>       solution_u, solution_v;
-    Vector<double>       old_solution_u, old_solution_v;
-    Vector<double>       system_rhs;
-
-    double time, time_step;
-    unsigned int timestep_number;
-    const double theta;
-};
-
-
-
-                                // @sect3{Equation data}
-
-                                // Before we go on filling in the
-                                // details of the main class, let us
-                                // define the equation data
-                                // corresponding to the problem,
-                                // i.e. initial and boundary values
-                                // for both the solution $u$ and its
-                                // time derivative $v$, as well as a
-                                // right hand side class. We do so
-                                // using classes derived from the
-                                // Function class template that has
-                                // been used many times before, so
-                                // the following should not be a
-                                // surprise.
-                                //
-                                // Let's start with initial values
-                                // and choose zero for both the value
-                                // $u$ as well as its time
-                                // derivative, the velocity $v$:
-template <int dim>
-class InitialValuesU : public Function<dim> 
-{
-  public:
-    InitialValuesU () : Function<dim>() {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-template <int dim>
-class InitialValuesV : public Function<dim> 
-{
-  public:
-    InitialValuesV () : Function<dim>() {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
-template <int dim>
-double InitialValuesU<dim>::value (const Point<dim>  &/*p*/,
-                                  const unsigned int component) const 
-{
-  Assert (component == 0, ExcInternalError());
-  return 0;
-}
-
-
-
-template <int dim>
-double InitialValuesV<dim>::value (const Point<dim>  &/*p*/,
-                                  const unsigned int component) const 
-{
-  Assert (component == 0, ExcInternalError());
-  return 0;
-}
-
-
-
-                                // Secondly, we have the right hand
-                                // side forcing term. Boring as we
-                                // are, we choose zero here as well:
-template <int dim>
-class RightHandSide : public Function<dim> 
-{
-  public:
-    RightHandSide () : Function<dim>() {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
-template <int dim>
-double RightHandSide<dim>::value (const Point<dim>  &/*p*/,
-                                 const unsigned int component) const 
-{
-  Assert (component == 0, ExcInternalError());
-  return 0;
-}
-
-
-
-                                // Finally, we have boundary values for $u$
-                                // and $v$. They are as described in the
-                                // introduction, one being the time
-                                // derivative of the other:
-template <int dim>
-class BoundaryValuesU : public Function<dim> 
-{
-  public:
-    BoundaryValuesU () : Function<dim>() {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
-
-template <int dim>
-class BoundaryValuesV : public Function<dim> 
-{
-  public:
-    BoundaryValuesV () : Function<dim>() {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
-
-template <int dim>
-double BoundaryValuesU<dim>::value (const Point<dim> &p,
-                                   const unsigned int component) const 
-{
-  Assert (component == 0, ExcInternalError());
-
-  if ((this->get_time() <= 0.5) &&
-      (p[0] < 0) &&
-      (p[1] < 1./3) &&
-      (p[1] > -1./3))
-    return std::sin (this->get_time() * 4 * numbers::PI);
-  else
+  using namespace dealii;
+
+
+                                  // @sect3{The <code>WaveEquation</code> class}
+
+                                  // Next comes the declaration of the main
+                                  // class. It's public interface of functions
+                                  // is like in most of the other tutorial
+                                  // programs. Worth mentioning is that we now
+                                  // have to store four matrices instead of
+                                  // one: the mass matrix $M$, the Laplace
+                                  // matrix $A$, the matrix $M+k^2\theta^2A$
+                                  // used for solving for $U^n$, and a copy of
+                                  // the mass matrix with boundary conditions
+                                  // applied used for solving for $V^n$. Note
+                                  // that it is a bit wasteful to have an
+                                  // additional copy of the mass matrix
+                                  // around. We will discuss strategies for how
+                                  // to avoid this in the section on possible
+                                  // improvements.
+                                  //
+                                  // Likewise, we need solution vectors for
+                                  // $U^n,V^n$ as well as for the corresponding
+                                  // vectors at the previous time step,
+                                  // $U^{n-1},V^{n-1}$. The
+                                  // <code>system_rhs</code> will be used for
+                                  // whatever right hand side vector we have
+                                  // when solving one of the two linear systems
+                                  // in each time step. These will be solved in
+                                  // the two functions <code>solve_u</code> and
+                                  // <code>solve_v</code>.
+                                  //
+                                  // Finally, the variable
+                                  // <code>theta</code> is used to
+                                  // indicate the parameter $\theta$
+                                  // that is used to define which time
+                                  // stepping scheme to use, as
+                                  // explained in the introduction. The
+                                  // rest is self-explanatory.
+  template <int dim>
+  class WaveEquation
+  {
+    public:
+      WaveEquation ();
+      void run ();
+
+    private:
+      void setup_system ();
+      void solve_u ();
+      void solve_v ();
+      void output_results () const;
+
+      Triangulation<dim>   triangulation;
+      FE_Q<dim>            fe;
+      DoFHandler<dim>      dof_handler;
+
+      ConstraintMatrix constraints;
+
+      SparsityPattern      sparsity_pattern;
+      SparseMatrix<double> mass_matrix;
+      SparseMatrix<double> laplace_matrix;
+      SparseMatrix<double> matrix_u;
+      SparseMatrix<double> matrix_v;
+
+      Vector<double>       solution_u, solution_v;
+      Vector<double>       old_solution_u, old_solution_v;
+      Vector<double>       system_rhs;
+
+      double time, time_step;
+      unsigned int timestep_number;
+      const double theta;
+  };
+
+
+
+                                  // @sect3{Equation data}
+
+                                  // Before we go on filling in the
+                                  // details of the main class, let us
+                                  // define the equation data
+                                  // corresponding to the problem,
+                                  // i.e. initial and boundary values
+                                  // for both the solution $u$ and its
+                                  // time derivative $v$, as well as a
+                                  // right hand side class. We do so
+                                  // using classes derived from the
+                                  // Function class template that has
+                                  // been used many times before, so
+                                  // the following should not be a
+                                  // surprise.
+                                  //
+                                  // Let's start with initial values
+                                  // and choose zero for both the value
+                                  // $u$ as well as its time
+                                  // derivative, the velocity $v$:
+  template <int dim>
+  class InitialValuesU : public Function<dim>
+  {
+    public:
+      InitialValuesU () : Function<dim>() {}
+
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
+
+
+  template <int dim>
+  class InitialValuesV : public Function<dim>
+  {
+    public:
+      InitialValuesV () : Function<dim>() {}
+
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
+
+
+
+  template <int dim>
+  double InitialValuesU<dim>::value (const Point<dim>  &/*p*/,
+                                    const unsigned int component) const
+  {
+    Assert (component == 0, ExcInternalError());
     return 0;
-}
+  }
 
 
 
-template <int dim>
-double BoundaryValuesV<dim>::value (const Point<dim> &p,
-                                   const unsigned int component) const 
-{
-  Assert (component == 0, ExcInternalError());
-
-  if ((this->get_time() <= 0.5) &&
-      (p[0] < 0) &&
-      (p[1] < 1./3) &&
-      (p[1] > -1./3))
-    return (std::cos (this->get_time() * 4 * numbers::PI) *
-           4 * numbers::PI);
-  else
+  template <int dim>
+  double InitialValuesV<dim>::value (const Point<dim>  &/*p*/,
+                                    const unsigned int component) const
+  {
+    Assert (component == 0, ExcInternalError());
     return 0;
-}
+  }
 
 
 
+                                  // Secondly, we have the right hand
+                                  // side forcing term. Boring as we
+                                  // are, we choose zero here as well:
+  template <int dim>
+  class RightHandSide : public Function<dim>
+  {
+    public:
+      RightHandSide () : Function<dim>() {}
 
-                                // @sect3{Implementation of the <code>WaveEquation</code> class}
-
-                                // The implementation of the actual logic is
-                                // actually fairly short, since we relegate
-                                // things like assembling the matrices and
-                                // right hand side vectors to the
-                                // library. The rest boils down to not much
-                                // more than 130 lines of actual code, a
-                                // significant fraction of which is
-                                // boilerplate code that can be taken from
-                                // previous example programs (e.g. the
-                                // functions that solve linear systems, or
-                                // that generate output).
-                                //
-                                // Let's start with the constructor (for an
-                                // explanation of the choice of time step,
-                                // see the section on Courant, Friedrichs,
-                                // and Lewy in the introduction):
-template <int dim>
-WaveEquation<dim>::WaveEquation () :
-                fe (1),
-               dof_handler (triangulation),
-               time_step (1./64),
-               theta (0.5)
-{}
-
-
-                                // @sect4{WaveEquation::setup_system}
-
-                                // The next function is the one that
-                                // sets up the mesh, DoFHandler, and
-                                // matrices and vectors at the
-                                // beginning of the program,
-                                // i.e. before the first time
-                                // step. The first few lines are
-                                // pretty much standard if you've
-                                // read through the tutorial programs
-                                // at least up to step-6:
-template <int dim>
-void WaveEquation<dim>::setup_system ()
-{
-  GridGenerator::hyper_cube (triangulation, -1, 1);
-  triangulation.refine_global (7);
-  
-  std::cout << "Number of active cells: "
-           << triangulation.n_active_cells()
-            << std::endl;
-
-  dof_handler.distribute_dofs (fe);
-
-  std::cout << "Number of degrees of freedom: "
-           << dof_handler.n_dofs()
-           << std::endl
-           << std::endl;
-
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress();
-
-                                  // Then comes a block where we have to
-                                  // initialize the 3 matrices we need in the
-                                  // course of the program: the mass matrix,
-                                  // the laplace matrix, and the matrix
-                                  // $M+k^2\theta^2A$ used when solving for
-                                  // $U^n$ in each time step.
-                                  //
-                                  // When setting up these matrices, note
-                                  // that they all make use of the same
-                                  // sparsity pattern object. Finally, the
-                                  // reason why matrices and sparsity
-                                  // patterns are separate objects in deal.II
-                                  // (unlike in many other finite element or
-                                  // linear algebra classes) becomes clear:
-                                  // in a significant fraction of
-                                  // applications, one has to hold several
-                                  // matrices that happen to have the same
-                                  // sparsity pattern, and there is no reason
-                                  // for them not to share this information,
-                                  // rather than re-building and wasting
-                                  // memory on it several times.
-                                  //
-                                  // After initializing all of these
-                                  // matrices, we call library functions that
-                                  // build the Laplace and mass matrices. All
-                                  // they need is a DoFHandler object and a
-                                  // quadrature formula object that is to be
-                                  // used for numerical integration. Note
-                                  // that in many respects these functions
-                                  // are better than what we would usually do
-                                  // in application programs, for example
-                                  // because they automatically parallelize
-                                  // building the matrices if multiple
-                                  // processors are available in a
-                                  // machine. The matrices for solving linear
-                                  // systems will be filled in the run()
-                                  // method because we need to re-apply
-                                  // boundary conditions every time step.
-  mass_matrix.reinit (sparsity_pattern);
-  laplace_matrix.reinit (sparsity_pattern);
-  matrix_u.reinit (sparsity_pattern);
-  matrix_v.reinit (sparsity_pattern);
-
-  MatrixCreator::create_mass_matrix (dof_handler, QGauss<dim>(3),
-                                    mass_matrix);
-  MatrixCreator::create_laplace_matrix (dof_handler, QGauss<dim>(3),
-                                       laplace_matrix);
-
-                                  // The rest of the function is spent on
-                                  // setting vector sizes to the correct
-                                  // value. The final line closes the hanging
-                                  // node constraints object. Since we work
-                                  // on a uniformly refined mesh, no
-                                  // constraints exist or have been computed
-                                  // (i.e. there was no need to call
-                                  // DoFTools::make_hanging_node_constraints
-                                  // as in other programs), but we need a
-                                  // constraints object in one place further
-                                  // down below anyway.
-  solution_u.reinit (dof_handler.n_dofs());
-  solution_v.reinit (dof_handler.n_dofs());
-  old_solution_u.reinit (dof_handler.n_dofs());
-  old_solution_v.reinit (dof_handler.n_dofs());
-  system_rhs.reinit (dof_handler.n_dofs());
-
-  constraints.close ();
-}
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
 
-                                // @sect4{WaveEquation::solve_u and WaveEquation::solve_v}
-
-                                // The next two functions deal with solving
-                                // the linear systems associated with the
-                                // equations for $U^n$ and $V^n$. Both are
-                                // not particularly interesting as they
-                                // pretty much follow the scheme used in all
-                                // the previous tutorial programs.
-                                //
-                                // One can make little experiments with
-                                // preconditioners for the two matrices we
-                                // have to invert. As it turns out, however,
-                                // for the matrices at hand here, using
-                                // Jacobi or SSOR preconditioners reduces the
-                                // number of iterations necessary to solve
-                                // the linear system slightly, but due to the
-                                // cost of applying the preconditioner it is
-                                // no win in terms of run-time. It is not
-                                // much of a loss either, but let's keep it
-                                // simple and just do without:
-template <int dim>
-void WaveEquation<dim>::solve_u () 
-{
-  SolverControl           solver_control (1000, 1e-8*system_rhs.l2_norm());
-  SolverCG<>              cg (solver_control);
 
-  cg.solve (matrix_u, solution_u, system_rhs,
-           PreconditionIdentity());
+  template <int dim>
+  double RightHandSide<dim>::value (const Point<dim>  &/*p*/,
+                                   const unsigned int component) const
+  {
+    Assert (component == 0, ExcInternalError());
+    return 0;
+  }
 
-  std::cout << "   u-equation: " << solver_control.last_step()
-           << " CG iterations."
-           << std::endl;
-}
 
 
-template <int dim>
-void WaveEquation<dim>::solve_v () 
-{
-  SolverControl           solver_control (1000, 1e-8*system_rhs.l2_norm());
-  SolverCG<>              cg (solver_control);
+                                  // Finally, we have boundary values for $u$
+                                  // and $v$. They are as described in the
+                                  // introduction, one being the time
+                                  // derivative of the other:
+  template <int dim>
+  class BoundaryValuesU : public Function<dim>
+  {
+    public:
+      BoundaryValuesU () : Function<dim>() {}
 
-  cg.solve (matrix_v, solution_v, system_rhs,
-           PreconditionIdentity());
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
-  std::cout << "   v-equation: " << solver_control.last_step()
-           << " CG iterations."
-           << std::endl;
-}
 
 
 
-                                // @sect4{WaveEquation::output_results}
+  template <int dim>
+  class BoundaryValuesV : public Function<dim>
+  {
+    public:
+      BoundaryValuesV () : Function<dim>() {}
 
-                                // Likewise, the following function is pretty
-                                // much what we've done before. The only
-                                // thing worth mentioning is how here we
-                                // generate a string representation of the
-                                // time step number padded with leading zeros
-                                // to 3 character length using the
-                                // Utilities::int_to_string function's second
-                                // argument.
-template <int dim>
-void WaveEquation<dim>::output_results () const
-{
-  DataOut<dim> data_out;
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution_u, "U");
-  data_out.add_data_vector (solution_v, "V");
 
-  data_out.build_patches ();
 
-  const std::string filename = "solution-" +
-                              Utilities::int_to_string (timestep_number, 3) +
-                              ".gnuplot";
-  std::ofstream output (filename.c_str());
-  data_out.write_gnuplot (output);
-}
 
+  template <int dim>
+  double BoundaryValuesU<dim>::value (const Point<dim> &p,
+                                     const unsigned int component) const
+  {
+    Assert (component == 0, ExcInternalError());
 
+    if ((this->get_time() <= 0.5) &&
+       (p[0] < 0) &&
+       (p[1] < 1./3) &&
+       (p[1] > -1./3))
+      return std::sin (this->get_time() * 4 * numbers::PI);
+    else
+      return 0;
+  }
 
 
-                                // @sect4{WaveEquation::run}
 
-                                // The following is really the only
-                                // interesting function of the program. It
-                                // contains the loop over all time steps, but
-                                // before we get to that we have to set up
-                                // the grid, DoFHandler, and matrices. In
-                                // addition, we have to somehow get started
-                                // with initial values. To this end, we use
-                                // the VectorTools::project function that
-                                // takes an object that describes a
-                                // continuous function and computes the $L^2$
-                                // projection of this function onto the
-                                // finite element space described by the
-                                // DoFHandler object. Can't be any simpler
-                                // than that:
-template <int dim>
-void WaveEquation<dim>::run () 
-{
-  setup_system();
-
-  VectorTools::project (dof_handler, constraints, QGauss<dim>(3),
-                       InitialValuesU<dim>(),
-                       old_solution_u);
-  VectorTools::project (dof_handler, constraints, QGauss<dim>(3),
-                       InitialValuesV<dim>(),
-                       old_solution_v);
-
-                                  // The next thing is to loop over all the
-                                  // time steps until we reach the end time
-                                  // ($T=5$ in this case). In each time step,
-                                  // we first have to solve for $U^n$, using
-                                  // the equation $(M^n + k^2\theta^2 A^n)U^n
-                                  // =$ $(M^{n,n-1} - k^2\theta(1-\theta)
-                                  // A^{n,n-1})U^{n-1} + kM^{n,n-1}V^{n-1} +$
-                                  // $k\theta \left[k \theta F^n + k(1-\theta)
-                                  // F^{n-1} \right]$. Note that we use the
-                                  // same mesh for all time steps, so that
-                                  // $M^n=M^{n,n-1}=M$ and
-                                  // $A^n=A^{n,n-1}=A$. What we therefore
-                                  // have to do first is to add up $MU^{n-1}
-                                  // - k^2\theta(1-\theta) AU^{n-1} + kMV^{n-1}$ and
-                                  // the forcing terms, and put the result
-                                  // into the <code>system_rhs</code>
-                                  // vector. (For these additions, we need a
-                                  // temporary vector that we declare before
-                                  // the loop to avoid repeated memory
-                                  // allocations in each time step.)
-                                  //
-                                  // The one thing to realize here is how we
-                                  // communicate the time variable to the
-                                  // object describing the right hand side:
-                                  // each object derived from the Function
-                                  // class has a time field that can be set
-                                  // using the Function::set_time and read by
-                                  // Function::get_time. In essence, using
-                                  // this mechanism, all functions of space
-                                  // and time are therefore considered
-                                  // functions of space evaluated at a
-                                  // particular time. This matches well what
-                                  // we typically need in finite element
-                                  // programs, where we almost always work on
-                                  // a single time step at a time, and where
-                                  // it never happens that, for example, one
-                                  // would like to evaluate a space-time
-                                  // function for all times at any given
-                                  // spatial location.
-  Vector<double> tmp (solution_u.size());
-  Vector<double> forcing_terms (solution_u.size());
-  
-  for (timestep_number=1, time=time_step;
-       time<=5;
-       time+=time_step, ++timestep_number)
-    {
-      std::cout << "Time step " << timestep_number
-               << " at t=" << time
-               << std::endl;
-      
-      mass_matrix.vmult (system_rhs, old_solution_u);
-
-      mass_matrix.vmult (tmp, old_solution_v);
-      system_rhs.add (time_step, tmp);
-
-      laplace_matrix.vmult (tmp, old_solution_u);
-      system_rhs.add (-theta * (1-theta) * time_step * time_step, tmp);
-
-      RightHandSide<dim> rhs_function;
-      rhs_function.set_time (time);
-      VectorTools::create_right_hand_side (dof_handler, QGauss<dim>(2),
-                                          rhs_function, tmp);
-      forcing_terms = tmp;
-      forcing_terms *= theta * time_step;
-      
-      rhs_function.set_time (time-time_step);
-      VectorTools::create_right_hand_side (dof_handler, QGauss<dim>(2),
-                                          rhs_function, tmp);
-
-      forcing_terms.add ((1-theta) * time_step, tmp);
-
-      system_rhs.add (theta * time_step, forcing_terms);
-
-                                      // After so constructing the right hand
-                                      // side vector of the first equation,
-                                      // all we have to do is apply the
-                                      // correct boundary values. As for the
-                                      // right hand side, this is a
-                                      // space-time function evaluated at a
-                                      // particular time, which we
-                                      // interpolate at boundary nodes and
-                                      // then use the result to apply
-                                      // boundary values as we usually
-                                      // do. The result is then handed off to
-                                      // the solve_u() function:
-      {
-       BoundaryValuesU<dim> boundary_values_u_function;
-       boundary_values_u_function.set_time (time);
-      
-       std::map<unsigned int,double> boundary_values;
-       VectorTools::interpolate_boundary_values (dof_handler,
-                                                 0,
-                                                 boundary_values_u_function,
-                                                 boundary_values);
-
-                                  // The matrix for solve_u() is the same in
-                                  // every time steps, so one could think
-                                  // that it is enough to do this only once
-                                  // at the beginning of the
-                                  // simulation. However, since we need to
-                                  // apply boundary values to the linear
-                                  // system (which eliminate some matrix rows
-                                  // and columns and give contributions to
-                                  // the right hand side), we have to refill
-                                  // the matrix in every time steps before we
-                                  // actually apply boundary data. The actual
-                                  // content is very simple: it is the sum of
-                                  // the mass matrix and a weighted Laplace
-                                  // matrix:
-       matrix_u.copy_from (mass_matrix);
-       matrix_u.add (theta * theta * time_step * time_step, laplace_matrix);
-       MatrixTools::apply_boundary_values (boundary_values,
-                                           matrix_u,
-                                           solution_u,
-                                           system_rhs);
-      }
-      solve_u ();
+  template <int dim>
+  double BoundaryValuesV<dim>::value (const Point<dim> &p,
+                                     const unsigned int component) const
+  {
+    Assert (component == 0, ExcInternalError());
 
+    if ((this->get_time() <= 0.5) &&
+       (p[0] < 0) &&
+       (p[1] < 1./3) &&
+       (p[1] > -1./3))
+      return (std::cos (this->get_time() * 4 * numbers::PI) *
+             4 * numbers::PI);
+    else
+      return 0;
+  }
 
-                                      // The second step, i.e. solving for
-                                      // $V^n$, works similarly, except that
-                                      // this time the matrix on the left is
-                                      // the mass matrix (which we copy again
-                                      // in order to be able to apply
-                                      // boundary conditions, and the right
-                                      // hand side is $MV^{n-1} - k\left[
-                                      // \theta A U^n + (1-\theta)
-                                      // AU^{n-1}\right]$ plus forcing
-                                      // terms. %Boundary values are applied
-                                      // in the same way as before, except
-                                      // that now we have to use the
-                                      // BoundaryValuesV class:
-      laplace_matrix.vmult (system_rhs, solution_u);
-      system_rhs *= -theta * time_step;
 
-      mass_matrix.vmult (tmp, old_solution_v);
-      system_rhs += tmp;
 
-      laplace_matrix.vmult (tmp, old_solution_u);
-      system_rhs.add (-time_step * (1-theta), tmp);
 
-      system_rhs += forcing_terms;
+                                  // @sect3{Implementation of the <code>WaveEquation</code> class}
 
+                                  // The implementation of the actual logic is
+                                  // actually fairly short, since we relegate
+                                  // things like assembling the matrices and
+                                  // right hand side vectors to the
+                                  // library. The rest boils down to not much
+                                  // more than 130 lines of actual code, a
+                                  // significant fraction of which is
+                                  // boilerplate code that can be taken from
+                                  // previous example programs (e.g. the
+                                  // functions that solve linear systems, or
+                                  // that generate output).
+                                  //
+                                  // Let's start with the constructor (for an
+                                  // explanation of the choice of time step,
+                                  // see the section on Courant, Friedrichs,
+                                  // and Lewy in the introduction):
+  template <int dim>
+  WaveEquation<dim>::WaveEquation () :
+                 fe (1),
+                 dof_handler (triangulation),
+                 time_step (1./64),
+                 theta (0.5)
+  {}
+
+
+                                  // @sect4{WaveEquation::setup_system}
+
+                                  // The next function is the one that
+                                  // sets up the mesh, DoFHandler, and
+                                  // matrices and vectors at the
+                                  // beginning of the program,
+                                  // i.e. before the first time
+                                  // step. The first few lines are
+                                  // pretty much standard if you've
+                                  // read through the tutorial programs
+                                  // at least up to step-6:
+  template <int dim>
+  void WaveEquation<dim>::setup_system ()
+  {
+    GridGenerator::hyper_cube (triangulation, -1, 1);
+    triangulation.refine_global (7);
+
+    std::cout << "Number of active cells: "
+             << triangulation.n_active_cells()
+             << std::endl;
+
+    dof_handler.distribute_dofs (fe);
+
+    std::cout << "Number of degrees of freedom: "
+             << dof_handler.n_dofs()
+             << std::endl
+             << std::endl;
+
+    sparsity_pattern.reinit (dof_handler.n_dofs(),
+                            dof_handler.n_dofs(),
+                            dof_handler.max_couplings_between_dofs());
+    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+    sparsity_pattern.compress();
+
+                                    // Then comes a block where we have to
+                                    // initialize the 3 matrices we need in the
+                                    // course of the program: the mass matrix,
+                                    // the laplace matrix, and the matrix
+                                    // $M+k^2\theta^2A$ used when solving for
+                                    // $U^n$ in each time step.
+                                    //
+                                    // When setting up these matrices, note
+                                    // that they all make use of the same
+                                    // sparsity pattern object. Finally, the
+                                    // reason why matrices and sparsity
+                                    // patterns are separate objects in deal.II
+                                    // (unlike in many other finite element or
+                                    // linear algebra classes) becomes clear:
+                                    // in a significant fraction of
+                                    // applications, one has to hold several
+                                    // matrices that happen to have the same
+                                    // sparsity pattern, and there is no reason
+                                    // for them not to share this information,
+                                    // rather than re-building and wasting
+                                    // memory on it several times.
+                                    //
+                                    // After initializing all of these
+                                    // matrices, we call library functions that
+                                    // build the Laplace and mass matrices. All
+                                    // they need is a DoFHandler object and a
+                                    // quadrature formula object that is to be
+                                    // used for numerical integration. Note
+                                    // that in many respects these functions
+                                    // are better than what we would usually do
+                                    // in application programs, for example
+                                    // because they automatically parallelize
+                                    // building the matrices if multiple
+                                    // processors are available in a
+                                    // machine. The matrices for solving linear
+                                    // systems will be filled in the run()
+                                    // method because we need to re-apply
+                                    // boundary conditions every time step.
+    mass_matrix.reinit (sparsity_pattern);
+    laplace_matrix.reinit (sparsity_pattern);
+    matrix_u.reinit (sparsity_pattern);
+    matrix_v.reinit (sparsity_pattern);
+
+    MatrixCreator::create_mass_matrix (dof_handler, QGauss<dim>(3),
+                                      mass_matrix);
+    MatrixCreator::create_laplace_matrix (dof_handler, QGauss<dim>(3),
+                                         laplace_matrix);
+
+                                    // The rest of the function is spent on
+                                    // setting vector sizes to the correct
+                                    // value. The final line closes the hanging
+                                    // node constraints object. Since we work
+                                    // on a uniformly refined mesh, no
+                                    // constraints exist or have been computed
+                                    // (i.e. there was no need to call
+                                    // DoFTools::make_hanging_node_constraints
+                                    // as in other programs), but we need a
+                                    // constraints object in one place further
+                                    // down below anyway.
+    solution_u.reinit (dof_handler.n_dofs());
+    solution_v.reinit (dof_handler.n_dofs());
+    old_solution_u.reinit (dof_handler.n_dofs());
+    old_solution_v.reinit (dof_handler.n_dofs());
+    system_rhs.reinit (dof_handler.n_dofs());
+
+    constraints.close ();
+  }
+
+
+                                  // @sect4{WaveEquation::solve_u and WaveEquation::solve_v}
+
+                                  // The next two functions deal with solving
+                                  // the linear systems associated with the
+                                  // equations for $U^n$ and $V^n$. Both are
+                                  // not particularly interesting as they
+                                  // pretty much follow the scheme used in all
+                                  // the previous tutorial programs.
+                                  //
+                                  // One can make little experiments with
+                                  // preconditioners for the two matrices we
+                                  // have to invert. As it turns out, however,
+                                  // for the matrices at hand here, using
+                                  // Jacobi or SSOR preconditioners reduces the
+                                  // number of iterations necessary to solve
+                                  // the linear system slightly, but due to the
+                                  // cost of applying the preconditioner it is
+                                  // no win in terms of run-time. It is not
+                                  // much of a loss either, but let's keep it
+                                  // simple and just do without:
+  template <int dim>
+  void WaveEquation<dim>::solve_u ()
+  {
+    SolverControl           solver_control (1000, 1e-8*system_rhs.l2_norm());
+    SolverCG<>              cg (solver_control);
+
+    cg.solve (matrix_u, solution_u, system_rhs,
+             PreconditionIdentity());
+
+    std::cout << "   u-equation: " << solver_control.last_step()
+             << " CG iterations."
+             << std::endl;
+  }
+
+
+  template <int dim>
+  void WaveEquation<dim>::solve_v ()
+  {
+    SolverControl           solver_control (1000, 1e-8*system_rhs.l2_norm());
+    SolverCG<>              cg (solver_control);
+
+    cg.solve (matrix_v, solution_v, system_rhs,
+             PreconditionIdentity());
+
+    std::cout << "   v-equation: " << solver_control.last_step()
+             << " CG iterations."
+             << std::endl;
+  }
+
+
+
+                                  // @sect4{WaveEquation::output_results}
+
+                                  // Likewise, the following function is pretty
+                                  // much what we've done before. The only
+                                  // thing worth mentioning is how here we
+                                  // generate a string representation of the
+                                  // time step number padded with leading zeros
+                                  // to 3 character length using the
+                                  // Utilities::int_to_string function's second
+                                  // argument.
+  template <int dim>
+  void WaveEquation<dim>::output_results () const
+  {
+    DataOut<dim> data_out;
+
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (solution_u, "U");
+    data_out.add_data_vector (solution_v, "V");
+
+    data_out.build_patches ();
+
+    const std::string filename = "solution-" +
+                                Utilities::int_to_string (timestep_number, 3) +
+                                ".gnuplot";
+    std::ofstream output (filename.c_str());
+    data_out.write_gnuplot (output);
+  }
+
+
+
+
+                                  // @sect4{WaveEquation::run}
+
+                                  // The following is really the only
+                                  // interesting function of the program. It
+                                  // contains the loop over all time steps, but
+                                  // before we get to that we have to set up
+                                  // the grid, DoFHandler, and matrices. In
+                                  // addition, we have to somehow get started
+                                  // with initial values. To this end, we use
+                                  // the VectorTools::project function that
+                                  // takes an object that describes a
+                                  // continuous function and computes the $L^2$
+                                  // projection of this function onto the
+                                  // finite element space described by the
+                                  // DoFHandler object. Can't be any simpler
+                                  // than that:
+  template <int dim>
+  void WaveEquation<dim>::run ()
+  {
+    setup_system();
+
+    VectorTools::project (dof_handler, constraints, QGauss<dim>(3),
+                         InitialValuesU<dim>(),
+                         old_solution_u);
+    VectorTools::project (dof_handler, constraints, QGauss<dim>(3),
+                         InitialValuesV<dim>(),
+                         old_solution_v);
+
+                                    // The next thing is to loop over all the
+                                    // time steps until we reach the end time
+                                    // ($T=5$ in this case). In each time step,
+                                    // we first have to solve for $U^n$, using
+                                    // the equation $(M^n + k^2\theta^2 A^n)U^n
+                                    // =$ $(M^{n,n-1} - k^2\theta(1-\theta)
+                                    // A^{n,n-1})U^{n-1} + kM^{n,n-1}V^{n-1} +$
+                                    // $k\theta \left[k \theta F^n + k(1-\theta)
+                                    // F^{n-1} \right]$. Note that we use the
+                                    // same mesh for all time steps, so that
+                                    // $M^n=M^{n,n-1}=M$ and
+                                    // $A^n=A^{n,n-1}=A$. What we therefore
+                                    // have to do first is to add up $MU^{n-1}
+                                    // - k^2\theta(1-\theta) AU^{n-1} + kMV^{n-1}$ and
+                                    // the forcing terms, and put the result
+                                    // into the <code>system_rhs</code>
+                                    // vector. (For these additions, we need a
+                                    // temporary vector that we declare before
+                                    // the loop to avoid repeated memory
+                                    // allocations in each time step.)
+                                    //
+                                    // The one thing to realize here is how we
+                                    // communicate the time variable to the
+                                    // object describing the right hand side:
+                                    // each object derived from the Function
+                                    // class has a time field that can be set
+                                    // using the Function::set_time and read by
+                                    // Function::get_time. In essence, using
+                                    // this mechanism, all functions of space
+                                    // and time are therefore considered
+                                    // functions of space evaluated at a
+                                    // particular time. This matches well what
+                                    // we typically need in finite element
+                                    // programs, where we almost always work on
+                                    // a single time step at a time, and where
+                                    // it never happens that, for example, one
+                                    // would like to evaluate a space-time
+                                    // function for all times at any given
+                                    // spatial location.
+    Vector<double> tmp (solution_u.size());
+    Vector<double> forcing_terms (solution_u.size());
+
+    for (timestep_number=1, time=time_step;
+        time<=5;
+        time+=time_step, ++timestep_number)
       {
-       BoundaryValuesV<dim> boundary_values_v_function;
-       boundary_values_v_function.set_time (time);
-      
-       std::map<unsigned int,double> boundary_values;
-       VectorTools::interpolate_boundary_values (dof_handler,
-                                                 0,
-                                                 boundary_values_v_function,
-                                                 boundary_values);
-       matrix_v.copy_from (mass_matrix);
-       MatrixTools::apply_boundary_values (boundary_values,
-                                           matrix_v,
-                                           solution_v,
-                                           system_rhs);
+       std::cout << "Time step " << timestep_number
+                 << " at t=" << time
+                 << std::endl;
+
+       mass_matrix.vmult (system_rhs, old_solution_u);
+
+       mass_matrix.vmult (tmp, old_solution_v);
+       system_rhs.add (time_step, tmp);
+
+       laplace_matrix.vmult (tmp, old_solution_u);
+       system_rhs.add (-theta * (1-theta) * time_step * time_step, tmp);
+
+       RightHandSide<dim> rhs_function;
+       rhs_function.set_time (time);
+       VectorTools::create_right_hand_side (dof_handler, QGauss<dim>(2),
+                                            rhs_function, tmp);
+       forcing_terms = tmp;
+       forcing_terms *= theta * time_step;
+
+       rhs_function.set_time (time-time_step);
+       VectorTools::create_right_hand_side (dof_handler, QGauss<dim>(2),
+                                            rhs_function, tmp);
+
+       forcing_terms.add ((1-theta) * time_step, tmp);
+
+       system_rhs.add (theta * time_step, forcing_terms);
+
+                                        // After so constructing the right hand
+                                        // side vector of the first equation,
+                                        // all we have to do is apply the
+                                        // correct boundary values. As for the
+                                        // right hand side, this is a
+                                        // space-time function evaluated at a
+                                        // particular time, which we
+                                        // interpolate at boundary nodes and
+                                        // then use the result to apply
+                                        // boundary values as we usually
+                                        // do. The result is then handed off to
+                                        // the solve_u() function:
+       {
+         BoundaryValuesU<dim> boundary_values_u_function;
+         boundary_values_u_function.set_time (time);
+
+         std::map<unsigned int,double> boundary_values;
+         VectorTools::interpolate_boundary_values (dof_handler,
+                                                   0,
+                                                   boundary_values_u_function,
+                                                   boundary_values);
+
+                                          // The matrix for solve_u() is the same in
+                                          // every time steps, so one could think
+                                          // that it is enough to do this only once
+                                          // at the beginning of the
+                                          // simulation. However, since we need to
+                                          // apply boundary values to the linear
+                                          // system (which eliminate some matrix rows
+                                          // and columns and give contributions to
+                                          // the right hand side), we have to refill
+                                          // the matrix in every time steps before we
+                                          // actually apply boundary data. The actual
+                                          // content is very simple: it is the sum of
+                                          // the mass matrix and a weighted Laplace
+                                          // matrix:
+         matrix_u.copy_from (mass_matrix);
+         matrix_u.add (theta * theta * time_step * time_step, laplace_matrix);
+         MatrixTools::apply_boundary_values (boundary_values,
+                                             matrix_u,
+                                             solution_u,
+                                             system_rhs);
+       }
+       solve_u ();
+
+
+                                        // The second step, i.e. solving for
+                                        // $V^n$, works similarly, except that
+                                        // this time the matrix on the left is
+                                        // the mass matrix (which we copy again
+                                        // in order to be able to apply
+                                        // boundary conditions, and the right
+                                        // hand side is $MV^{n-1} - k\left[
+                                        // \theta A U^n + (1-\theta)
+                                        // AU^{n-1}\right]$ plus forcing
+                                        // terms. %Boundary values are applied
+                                        // in the same way as before, except
+                                        // that now we have to use the
+                                        // BoundaryValuesV class:
+       laplace_matrix.vmult (system_rhs, solution_u);
+       system_rhs *= -theta * time_step;
+
+       mass_matrix.vmult (tmp, old_solution_v);
+       system_rhs += tmp;
+
+       laplace_matrix.vmult (tmp, old_solution_u);
+       system_rhs.add (-time_step * (1-theta), tmp);
+
+       system_rhs += forcing_terms;
+
+       {
+         BoundaryValuesV<dim> boundary_values_v_function;
+         boundary_values_v_function.set_time (time);
+
+         std::map<unsigned int,double> boundary_values;
+         VectorTools::interpolate_boundary_values (dof_handler,
+                                                   0,
+                                                   boundary_values_v_function,
+                                                   boundary_values);
+         matrix_v.copy_from (mass_matrix);
+         MatrixTools::apply_boundary_values (boundary_values,
+                                             matrix_v,
+                                             solution_v,
+                                             system_rhs);
+       }
+       solve_v ();
+
+                                        // Finally, after both solution
+                                        // components have been computed, we
+                                        // output the result, compute the
+                                        // energy in the solution, and go on to
+                                        // the next time step after shifting
+                                        // the present solution into the
+                                        // vectors that hold the solution at
+                                        // the previous time step. Note the
+                                        // function
+                                        // SparseMatrix::matrix_norm_square
+                                        // that can compute
+                                        // $\left<V^n,MV^n\right>$ and
+                                        // $\left<U^n,AU^n\right>$ in one step,
+                                        // saving us the expense of a temporary
+                                        // vector and several lines of code:
+       output_results ();
+
+       std::cout << "   Total energy: "
+                 << (mass_matrix.matrix_norm_square (solution_v) +
+                     laplace_matrix.matrix_norm_square (solution_u)) / 2
+                 << std::endl;
+
+       old_solution_u = solution_u;
+       old_solution_v = solution_v;
       }
-      solve_v ();
-
-                                      // Finally, after both solution
-                                      // components have been computed, we
-                                      // output the result, compute the
-                                      // energy in the solution, and go on to
-                                      // the next time step after shifting
-                                      // the present solution into the
-                                      // vectors that hold the solution at
-                                      // the previous time step. Note the
-                                      // function
-                                      // SparseMatrix::matrix_norm_square
-                                      // that can compute
-                                      // $\left<V^n,MV^n\right>$ and
-                                      // $\left<U^n,AU^n\right>$ in one step,
-                                      // saving us the expense of a temporary
-                                      // vector and several lines of code:
-      output_results ();
-
-      std::cout << "   Total energy: "
-               << (mass_matrix.matrix_norm_square (solution_v) +
-                   laplace_matrix.matrix_norm_square (solution_u)) / 2
-               << std::endl;
-      
-      old_solution_u = solution_u;
-      old_solution_v = solution_v;
-    }
+  }
 }
 
 
@@ -774,11 +777,15 @@ void WaveEquation<dim>::run ()
                                 // program. There is nothing here that hasn't
                                 // been shown in several of the previous
                                 // programs:
-int main () 
+int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step23;
+
       deallog.depth_console (0);
+
       WaveEquation<2> wave_equation_solver;
       wave_equation_solver.run ();
     }
@@ -795,7 +802,7 @@ int main ()
 
       return 1;
     }
-  catch (...) 
+  catch (...)
     {
       std::cerr << std::endl << std::endl
                << "----------------------------------------------------"
@@ -806,6 +813,6 @@ int main ()
                << std::endl;
       return 1;
     }
-  
+
   return 0;
 }
index a200b6b377bb78f0cfbe81101caa7a49e4901c43..a4d70c28e88faa722c030f43ebc8a9fd94d5c6a3 100644 (file)
@@ -1,14 +1,14 @@
 /* $Id$ */
 /*    Version: $Name:  $                                          */
 /*                                                                */
-/*    Copyright (C) 2006, 2007, 2008, 2009 by the deal.II authors */
+/*    Copyright (C) 2006, 2007, 2008, 2009, 2011 by the deal.II authors */
 /*    Author: Xing Jin, Wolfgang Bangerth, Texas A&M University, 2006 */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 /*    to the file deal.II/doc/license.html for the  text  and     */
 /*    further information on this license.                        */
-                                                          
+
 
                                 // @sect3{Include files}
 
 
                                 // The last step is as in all
                                 // previous programs:
-using namespace dealii;
-
-                                // @sect3{The "forward problem" class template}
-
-                                // The first part of the main class is
-                                // exactly as in step-23
-                                // (except for the name):
-template <int dim>
-class TATForwardProblem
+namespace Step24
 {
-  public:
-    TATForwardProblem ();
-    void run ();
-    
-  private:
-    void setup_system ();
-    void solve_p ();
-    void solve_v ();
-    void output_results () const;
-
-    Triangulation<dim>   triangulation;
-    FE_Q<dim>            fe;
-    DoFHandler<dim>      dof_handler;
-
-    ConstraintMatrix constraints;
-    
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
-    SparseMatrix<double> mass_matrix;
-    SparseMatrix<double> laplace_matrix;
-
-    Vector<double>       solution_p, solution_v;
-    Vector<double>       old_solution_p, old_solution_v;
-    Vector<double>       system_rhs_p, system_rhs_v;
-
-    double time, time_step;
-    unsigned int timestep_number;
-    const double theta;
-
-                                    //  Here's what's new: first, we need
-                                    //  that boundary mass matrix $B$ that
-                                    //  came out of the absorbing boundary
-                                    //  condition. Likewise, since this time
-                                    //  we consider a realistic medium, we
-                                    //  must have a measure of the wave speed
-                                    //  $c_0$ that will enter all the
-                                    //  formulas with the Laplace matrix
-                                    //  (which we still define as $(\nabla
-                                    //  \phi_i,\nabla \phi_j)$):
-    SparseMatrix<double> boundary_matrix;
-    const double wave_speed;
-
-                                    // The last thing we have to take care of
-                                    // is that we wanted to evaluate the
-                                    // solution at a certain number of
-                                    // detector locations. We need an array
-                                    // to hold these locations, declared here
-                                    // and filled in the constructor:
-    std::vector<Point<dim> > detector_locations;
-};
-
-
-                                // @sect3{Equation data}
-
-                                // As usual, we have to define our
-                                // initial values, boundary
-                                // conditions, and right hand side
-                                // functions. Except things are a bit
-                                // simpler this time: we are to
-                                // consider a problem that is driven
-                                // by initial conditions, so there is
-                                // no right hand side function
-                                // (though you could look up in
-                                // step-23 to see how this can be
-                                // done. Secondly, there are no
-                                // boundary conditions: the entire
-                                // boundary of the domain consists of
-                                // absorbing boundary
-                                // conditions. That only leaves
-                                // initial conditions, and there
-                                // things are simple too since for
-                                // this particular application only
-                                // nonzero initial conditions for the
-                                // pressure are prescribed, not for
-                                // the velocity (which is zero at the
-                                // initial time).
-                                //
-                                // So this is all we need: a class that
-                                // specifies initial conditions for the
-                                // pressure. In the physical setting
-                                // considered in this program, these are
-                                // small absorbers, which we model as a
-                                // series of little circles where we assume
-                                // that the pressure surplus is one, whereas
-                                // no absorption and therefore no pressure
-                                // surplus is anywhere else. This is how we
-                                // do things (note that if we wanted to
-                                // expand this program to not only compile
-                                // but also to run, we would have to
-                                // initialize the sources with
-                                // three-dimensional source locations):
-template <int dim>
-class InitialValuesP : public Function<dim> 
-{
-  public:
-    InitialValuesP ()
-                   :
-                   Function<dim>()
-      {}
-    
-    virtual double value (const Point<dim> &p,
-                         const unsigned int  component = 0) const;
-
-  private:
-    struct Source
-    {
-       Source (const Point<dim> &l,
-               const double      r)
-                       :
-                       location (l),
-                       radius (r)
-         {}
-       
-       const Point<dim> location;
-       const double     radius;
-    };
-};
-
-
-template <int dim>
-double InitialValuesP<dim>::value (const Point<dim> &p,
-                                   const unsigned int /*component*/) const       
-{
-  static const Source sources[] = {Source (Point<dim> (0, 0),         0.025),
-                                  Source (Point<dim> (-0.135, 0),    0.05),
-                                  Source (Point<dim> (0.17, 0),      0.03),
-                                  Source (Point<dim> (-0.25, 0),     0.02),
-                                  Source (Point<dim> (-0.05, -0.15), 0.015)};
-  static const unsigned int n_sources = sizeof(sources)/sizeof(sources[0]);
-  
-  for (unsigned int i=0; i<n_sources; ++i)
-    if (p.distance(sources[i].location) < sources[i].radius)
-      return 1;
+  using namespace dealii;
 
-  return 0;
-}
+                                  // @sect3{The "forward problem" class template}
 
-
-                                // @sect3{Implementation of the <code>TATForwardProblem</code> class}
-
-                                // Let's start again with the
-                                // constructor. Setting the member variables
-                                // is straightforward. We use the acoustic
-                                // wave speed of mineral oil (in millimeters
-                                // per microsecond, a common unit in
-                                // experimental biomedical imaging) since
-                                // this is where many of the experiments we
-                                // want to compare the output with are made
-                                // in. The Crank-Nicolson scheme is used
-                                // again, i.e. theta is set to 0.5. The time
-                                // step is later selected to satisfy $k =
-                                // \frac hc$
-template <int dim>
-TATForwardProblem<dim>::TATForwardProblem ()
-               :
-                fe (1),
-               dof_handler (triangulation),
-                theta (0.5),
-                wave_speed (1.437)
-{
-                                  // The second task in the constructor is to
-                                  // initialize the array that holds the
-                                  // detector locations. The results of this
-                                  // program were compared with experiments
-                                  // in which the step size of the detector
-                                  // spacing is 2.25 degree, corresponding to
-                                  // 160 detector locations. The radius of
-                                  // the scanning circle is selected to be
-                                  // half way between the center and the
-                                  // boundary to avoid that the remaining
-                                  // reflections from the imperfect boundary
-                                  // condition spoils our numerical results.
+                                  // The first part of the main class is
+                                  // exactly as in step-23
+                                  // (except for the name):
+  template <int dim>
+  class TATForwardProblem
+  {
+    public:
+      TATForwardProblem ();
+      void run ();
+
+    private:
+      void setup_system ();
+      void solve_p ();
+      void solve_v ();
+      void output_results () const;
+
+      Triangulation<dim>   triangulation;
+      FE_Q<dim>            fe;
+      DoFHandler<dim>      dof_handler;
+
+      ConstraintMatrix constraints;
+
+      SparsityPattern      sparsity_pattern;
+      SparseMatrix<double> system_matrix;
+      SparseMatrix<double> mass_matrix;
+      SparseMatrix<double> laplace_matrix;
+
+      Vector<double>       solution_p, solution_v;
+      Vector<double>       old_solution_p, old_solution_v;
+      Vector<double>       system_rhs_p, system_rhs_v;
+
+      double time, time_step;
+      unsigned int timestep_number;
+      const double theta;
+
+                                      //  Here's what's new: first, we need
+                                      //  that boundary mass matrix $B$ that
+                                      //  came out of the absorbing boundary
+                                      //  condition. Likewise, since this time
+                                      //  we consider a realistic medium, we
+                                      //  must have a measure of the wave speed
+                                      //  $c_0$ that will enter all the
+                                      //  formulas with the Laplace matrix
+                                      //  (which we still define as $(\nabla
+                                      //  \phi_i,\nabla \phi_j)$):
+      SparseMatrix<double> boundary_matrix;
+      const double wave_speed;
+
+                                      // The last thing we have to take care of
+                                      // is that we wanted to evaluate the
+                                      // solution at a certain number of
+                                      // detector locations. We need an array
+                                      // to hold these locations, declared here
+                                      // and filled in the constructor:
+      std::vector<Point<dim> > detector_locations;
+  };
+
+
+                                  // @sect3{Equation data}
+
+                                  // As usual, we have to define our
+                                  // initial values, boundary
+                                  // conditions, and right hand side
+                                  // functions. Except things are a bit
+                                  // simpler this time: we are to
+                                  // consider a problem that is driven
+                                  // by initial conditions, so there is
+                                  // no right hand side function
+                                  // (though you could look up in
+                                  // step-23 to see how this can be
+                                  // done. Secondly, there are no
+                                  // boundary conditions: the entire
+                                  // boundary of the domain consists of
+                                  // absorbing boundary
+                                  // conditions. That only leaves
+                                  // initial conditions, and there
+                                  // things are simple too since for
+                                  // this particular application only
+                                  // nonzero initial conditions for the
+                                  // pressure are prescribed, not for
+                                  // the velocity (which is zero at the
+                                  // initial time).
                                   //
-                                  // The locations of the detectors are then
-                                  // calculated in clockwise order. Note that
-                                  // the following of course only works if we
-                                  // are computing in 2d, a condition that we
-                                  // guard with an assertion. If we later
-                                  // wanted to run the same program in 3d, we
-                                  // would have to add code here for the
-                                  // initialization of detector locations in
-                                  // 3d. Due to the assertion, there is no
-                                  // way we can forget to do this.
-  Assert (dim == 2, ExcNotImplemented());
-  
-  const double detector_step_angle = 2.25;
-  const double detector_radius = 0.5;
-  
-  for (double detector_angle = 2*numbers::PI;
-       detector_angle >= 0;
-       detector_angle -= detector_step_angle/360*2*numbers::PI)
-    detector_locations.push_back (Point<dim> (std::cos(detector_angle),
-                                             std::sin(detector_angle)) *
-                                 detector_radius);
-}
+                                  // So this is all we need: a class that
+                                  // specifies initial conditions for the
+                                  // pressure. In the physical setting
+                                  // considered in this program, these are
+                                  // small absorbers, which we model as a
+                                  // series of little circles where we assume
+                                  // that the pressure surplus is one, whereas
+                                  // no absorption and therefore no pressure
+                                  // surplus is anywhere else. This is how we
+                                  // do things (note that if we wanted to
+                                  // expand this program to not only compile
+                                  // but also to run, we would have to
+                                  // initialize the sources with
+                                  // three-dimensional source locations):
+  template <int dim>
+  class InitialValuesP : public Function<dim>
+  {
+    public:
+      InitialValuesP ()
+                     :
+                     Function<dim>()
+       {}
+
+      virtual double value (const Point<dim> &p,
+                           const unsigned int  component = 0) const;
+
+    private:
+      struct Source
+      {
+         Source (const Point<dim> &l,
+                 const double      r)
+                         :
+                         location (l),
+                         radius (r)
+           {}
+
+         const Point<dim> location;
+         const double     radius;
+      };
+  };
+
+
+  template <int dim>
+  double InitialValuesP<dim>::value (const Point<dim> &p,
+                                    const unsigned int /*component*/) const
+  {
+    static const Source sources[] = {Source (Point<dim> (0, 0),         0.025),
+                                    Source (Point<dim> (-0.135, 0),    0.05),
+                                    Source (Point<dim> (0.17, 0),      0.03),
+                                    Source (Point<dim> (-0.25, 0),     0.02),
+                                    Source (Point<dim> (-0.05, -0.15), 0.015)};
+    static const unsigned int n_sources = sizeof(sources)/sizeof(sources[0]);
+
+    for (unsigned int i=0; i<n_sources; ++i)
+      if (p.distance(sources[i].location) < sources[i].radius)
+       return 1;
+
+    return 0;
+  }
 
 
+                                  // @sect3{Implementation of the <code>TATForwardProblem</code> class}
+
+                                  // Let's start again with the
+                                  // constructor. Setting the member variables
+                                  // is straightforward. We use the acoustic
+                                  // wave speed of mineral oil (in millimeters
+                                  // per microsecond, a common unit in
+                                  // experimental biomedical imaging) since
+                                  // this is where many of the experiments we
+                                  // want to compare the output with are made
+                                  // in. The Crank-Nicolson scheme is used
+                                  // again, i.e. theta is set to 0.5. The time
+                                  // step is later selected to satisfy $k =
+                                  // \frac hc$
+  template <int dim>
+  TATForwardProblem<dim>::TATForwardProblem ()
+                 :
+                 fe (1),
+                 dof_handler (triangulation),
+                 theta (0.5),
+                 wave_speed (1.437)
+  {
+                                    // The second task in the constructor is to
+                                    // initialize the array that holds the
+                                    // detector locations. The results of this
+                                    // program were compared with experiments
+                                    // in which the step size of the detector
+                                    // spacing is 2.25 degree, corresponding to
+                                    // 160 detector locations. The radius of
+                                    // the scanning circle is selected to be
+                                    // half way between the center and the
+                                    // boundary to avoid that the remaining
+                                    // reflections from the imperfect boundary
+                                    // condition spoils our numerical results.
+                                    //
+                                    // The locations of the detectors are then
+                                    // calculated in clockwise order. Note that
+                                    // the following of course only works if we
+                                    // are computing in 2d, a condition that we
+                                    // guard with an assertion. If we later
+                                    // wanted to run the same program in 3d, we
+                                    // would have to add code here for the
+                                    // initialization of detector locations in
+                                    // 3d. Due to the assertion, there is no
+                                    // way we can forget to do this.
+    Assert (dim == 2, ExcNotImplemented());
+
+    const double detector_step_angle = 2.25;
+    const double detector_radius = 0.5;
+
+    for (double detector_angle = 2*numbers::PI;
+        detector_angle >= 0;
+        detector_angle -= detector_step_angle/360*2*numbers::PI)
+      detector_locations.push_back (Point<dim> (std::cos(detector_angle),
+                                               std::sin(detector_angle)) *
+                                   detector_radius);
+  }
 
-                                // @sect4{TATForwardProblem::setup_system}
-
-                                // The following system is pretty much what
-                                // we've already done in
-                                // step-23, but with two important
-                                // differences. First, we have to create a
-                                // circular (or spherical) mesh around the
-                                // origin, with a radius of 1. This nothing
-                                // new: we've done so before in
-                                // step-6, step-10, and
-                                // step-11, where we also explain
-                                // how to attach a boundary object to a
-                                // triangulation to be used whenever the
-                                // triangulation needs to know where new
-                                // boundary points lie when a cell is
-                                // refined. Following this, the mesh is
-                                // refined a number of times.
-                                //
-                                // One thing we had to make sure is that the
-                                // time step satisfies the CFL condition
-                                // discussed in the introduction of
-                                // step-23. Back in that program,
-                                // we ensured this by hand by setting a
-                                // timestep that matches the mesh width, but
-                                // that was error prone because if we refined
-                                // the mesh once more we would also have to
-                                // make sure the time step is changed. Here,
-                                // we do that automatically: we ask a library
-                                // function for the minimal diameter of any
-                                // cell. Then we set $k=\frac h{c_0}$. The
-                                // only problem is: what exactly is $h$? The
-                                // point is that there is really no good
-                                // theory on this question for the wave
-                                // equation. It is known that for uniformly
-                                // refined meshes consisting of rectangles,
-                                // $h$ is the minimal edge length. But for
-                                // meshes on general quadrilaterals, the
-                                // exact relationship appears to be unknown,
-                                // i.e. it is unknown what properties of
-                                // cells are relevant for the CFL
-                                // condition. The problem is that the CFL
-                                // condition follows from knowledge of the
-                                // smallest eigenvalue of the Laplace matrix,
-                                // and that can only be computed analytically
-                                // for simply structured meshes.
-                                //
-                                // The upshot of all this is that we're not
-                                // quite sure what exactly we should take for
-                                // $h$. The function
-                                // GridTools::minimal_cell_diameter computes
-                                // the minimal diameter of all cells. If the
-                                // cells were all squares or cubes, then the
-                                // minimal edge length would be the minimal
-                                // diameter divided by
-                                // <code>std::sqrt(dim)</code>. We simply
-                                // generalize this, without theoretical
-                                // justification, to the case of non-uniform
-                                // meshes.
-                                //
-                                // The only other significant change is that
-                                // we need to build the boundary mass
-                                // matrix. We will comment on this further
-                                // down below.
-template <int dim>
-void TATForwardProblem<dim>::setup_system ()
-{
-  const Point<dim> center;
-  GridGenerator::hyper_ball (triangulation, center, 1.);
-  static const HyperBallBoundary<dim> boundary_description (center, 1.);
-  triangulation.set_boundary (0,boundary_description);
-  triangulation.refine_global (7);
-
-  time_step = GridTools::minimal_cell_diameter(triangulation) /
-             wave_speed /
-             std::sqrt (1.*dim);
-  
-  std::cout << "Number of active cells: "
-           << triangulation.n_active_cells()
-           << std::endl;
-
-  dof_handler.distribute_dofs (fe);
-
-  std::cout << "Number of degrees of freedom: "
-           << dof_handler.n_dofs()
-           << std::endl
-           << std::endl;
-
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress();
-
-  system_matrix.reinit (sparsity_pattern);
-  mass_matrix.reinit (sparsity_pattern);
-  laplace_matrix.reinit (sparsity_pattern);
-
-  MatrixCreator::create_mass_matrix (dof_handler, QGauss<dim>(3),
-                                    mass_matrix);
-  MatrixCreator::create_laplace_matrix (dof_handler, QGauss<dim>(3),
-                                       laplace_matrix);
-
-                                  // The second difference, as mentioned, to
-                                  // step-23 is that we need
-                                  // to build the boundary mass matrix that
-                                  // grew out of the absorbing boundary
-                                  // conditions.
+
+
+                                  // @sect4{TATForwardProblem::setup_system}
+
+                                  // The following system is pretty much what
+                                  // we've already done in
+                                  // step-23, but with two important
+                                  // differences. First, we have to create a
+                                  // circular (or spherical) mesh around the
+                                  // origin, with a radius of 1. This nothing
+                                  // new: we've done so before in
+                                  // step-6, step-10, and
+                                  // step-11, where we also explain
+                                  // how to attach a boundary object to a
+                                  // triangulation to be used whenever the
+                                  // triangulation needs to know where new
+                                  // boundary points lie when a cell is
+                                  // refined. Following this, the mesh is
+                                  // refined a number of times.
                                   //
-                                  // A first observation would be that this
-                                  // matrix is much sparser than the regular
-                                  // mass matrix, since none of the shape
-                                  // functions with purely interior support
-                                  // contributes to this matrix. We could
-                                  // therefore optimize the storage pattern
-                                  // to this situation and build up a second
-                                  // sparsity pattern that only contains the
-                                  // nonzero entries that we need. There is a
-                                  // trade-off to make here: first, we would
-                                  // have to have a second sparsity pattern
-                                  // object, so that costs memory. Secondly,
-                                  // the matrix attached to this sparsity
-                                  // pattern is going to be smaller and
-                                  // therefore requires less memory; it would
-                                  // also be faster to perform matrix-vector
-                                  // multiplications with it. The final
-                                  // argument, however, is the one that tips
-                                  // the scale: we are not primarily
-                                  // interested in performing matrix-vector
-                                  // with the boundary matrix alone (though
-                                  // we need to do that for the right hand
-                                  // side vector once per time step), but
-                                  // mostly wish to add it up to the other
-                                  // matrices used in the first of the two
-                                  // equations since this is the one that is
-                                  // going to be multiplied with once per
-                                  // iteration of the CG method,
-                                  // i.e. significantly more often. It is now
-                                  // the case that the SparseMatrix::add
-                                  // class allows to add one matrix to
-                                  // another, but only if they use the same
-                                  // sparsity pattern (the reason being that
-                                  // we can't add nonzero entries to a matrix
-                                  // after the sparsity pattern has been
-                                  // created, so we simply require that the
-                                  // two matrices have the same sparsity
-                                  // pattern).
+                                  // One thing we had to make sure is that the
+                                  // time step satisfies the CFL condition
+                                  // discussed in the introduction of
+                                  // step-23. Back in that program,
+                                  // we ensured this by hand by setting a
+                                  // timestep that matches the mesh width, but
+                                  // that was error prone because if we refined
+                                  // the mesh once more we would also have to
+                                  // make sure the time step is changed. Here,
+                                  // we do that automatically: we ask a library
+                                  // function for the minimal diameter of any
+                                  // cell. Then we set $k=\frac h{c_0}$. The
+                                  // only problem is: what exactly is $h$? The
+                                  // point is that there is really no good
+                                  // theory on this question for the wave
+                                  // equation. It is known that for uniformly
+                                  // refined meshes consisting of rectangles,
+                                  // $h$ is the minimal edge length. But for
+                                  // meshes on general quadrilaterals, the
+                                  // exact relationship appears to be unknown,
+                                  // i.e. it is unknown what properties of
+                                  // cells are relevant for the CFL
+                                  // condition. The problem is that the CFL
+                                  // condition follows from knowledge of the
+                                  // smallest eigenvalue of the Laplace matrix,
+                                  // and that can only be computed analytically
+                                  // for simply structured meshes.
                                   //
-                                  // So let's go with that:
-  boundary_matrix.reinit (sparsity_pattern);
-
-                                  // The second thing to do is to actually
-                                  // build the matrix. Here, we need to
-                                  // integrate over faces of cells, so first
-                                  // we need a quadrature object that works
-                                  // on <code>dim-1</code> dimensional
-                                  // objects. Secondly, the FEFaceValues
-                                  // variant of FEValues that works on faces,
-                                  // as its name suggest. And finally, the
-                                  // other variables that are part of the
-                                  // assembly machinery. All of this we put
-                                  // between curly braces to limit the scope
-                                  // of these variables to where we actually
-                                  // need them.
+                                  // The upshot of all this is that we're not
+                                  // quite sure what exactly we should take for
+                                  // $h$. The function
+                                  // GridTools::minimal_cell_diameter computes
+                                  // the minimal diameter of all cells. If the
+                                  // cells were all squares or cubes, then the
+                                  // minimal edge length would be the minimal
+                                  // diameter divided by
+                                  // <code>std::sqrt(dim)</code>. We simply
+                                  // generalize this, without theoretical
+                                  // justification, to the case of non-uniform
+                                  // meshes.
                                   //
-                                  // The actual act of assembling the matrix
-                                  // is then fairly straightforward: we loop
-                                  // over all cells, over all faces of each
-                                  // of these cells, and then do something
-                                  // only if that particular face is at the
-                                  // boundary of the domain. Like this:
+                                  // The only other significant change is that
+                                  // we need to build the boundary mass
+                                  // matrix. We will comment on this further
+                                  // down below.
+  template <int dim>
+  void TATForwardProblem<dim>::setup_system ()
   {
-    const QGauss<dim-1>  quadrature_formula(3);
-    FEFaceValues<dim> fe_values (fe, quadrature_formula, 
-                                update_values  |  update_JxW_values);
+    const Point<dim> center;
+    GridGenerator::hyper_ball (triangulation, center, 1.);
+    static const HyperBallBoundary<dim> boundary_description (center, 1.);
+    triangulation.set_boundary (0,boundary_description);
+    triangulation.refine_global (7);
+
+    time_step = GridTools::minimal_cell_diameter(triangulation) /
+               wave_speed /
+               std::sqrt (1.*dim);
+
+    std::cout << "Number of active cells: "
+             << triangulation.n_active_cells()
+             << std::endl;
+
+    dof_handler.distribute_dofs (fe);
+
+    std::cout << "Number of degrees of freedom: "
+             << dof_handler.n_dofs()
+             << std::endl
+             << std::endl;
+
+    sparsity_pattern.reinit (dof_handler.n_dofs(),
+                            dof_handler.n_dofs(),
+                            dof_handler.max_couplings_between_dofs());
+    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+    sparsity_pattern.compress();
+
+    system_matrix.reinit (sparsity_pattern);
+    mass_matrix.reinit (sparsity_pattern);
+    laplace_matrix.reinit (sparsity_pattern);
+
+    MatrixCreator::create_mass_matrix (dof_handler, QGauss<dim>(3),
+                                      mass_matrix);
+    MatrixCreator::create_laplace_matrix (dof_handler, QGauss<dim>(3),
+                                         laplace_matrix);
+
+                                    // The second difference, as mentioned, to
+                                    // step-23 is that we need
+                                    // to build the boundary mass matrix that
+                                    // grew out of the absorbing boundary
+                                    // conditions.
+                                    //
+                                    // A first observation would be that this
+                                    // matrix is much sparser than the regular
+                                    // mass matrix, since none of the shape
+                                    // functions with purely interior support
+                                    // contributes to this matrix. We could
+                                    // therefore optimize the storage pattern
+                                    // to this situation and build up a second
+                                    // sparsity pattern that only contains the
+                                    // nonzero entries that we need. There is a
+                                    // trade-off to make here: first, we would
+                                    // have to have a second sparsity pattern
+                                    // object, so that costs memory. Secondly,
+                                    // the matrix attached to this sparsity
+                                    // pattern is going to be smaller and
+                                    // therefore requires less memory; it would
+                                    // also be faster to perform matrix-vector
+                                    // multiplications with it. The final
+                                    // argument, however, is the one that tips
+                                    // the scale: we are not primarily
+                                    // interested in performing matrix-vector
+                                    // with the boundary matrix alone (though
+                                    // we need to do that for the right hand
+                                    // side vector once per time step), but
+                                    // mostly wish to add it up to the other
+                                    // matrices used in the first of the two
+                                    // equations since this is the one that is
+                                    // going to be multiplied with once per
+                                    // iteration of the CG method,
+                                    // i.e. significantly more often. It is now
+                                    // the case that the SparseMatrix::add
+                                    // class allows to add one matrix to
+                                    // another, but only if they use the same
+                                    // sparsity pattern (the reason being that
+                                    // we can't add nonzero entries to a matrix
+                                    // after the sparsity pattern has been
+                                    // created, so we simply require that the
+                                    // two matrices have the same sparsity
+                                    // pattern).
+                                    //
+                                    // So let's go with that:
+    boundary_matrix.reinit (sparsity_pattern);
+
+                                    // The second thing to do is to actually
+                                    // build the matrix. Here, we need to
+                                    // integrate over faces of cells, so first
+                                    // we need a quadrature object that works
+                                    // on <code>dim-1</code> dimensional
+                                    // objects. Secondly, the FEFaceValues
+                                    // variant of FEValues that works on faces,
+                                    // as its name suggest. And finally, the
+                                    // other variables that are part of the
+                                    // assembly machinery. All of this we put
+                                    // between curly braces to limit the scope
+                                    // of these variables to where we actually
+                                    // need them.
+                                    //
+                                    // The actual act of assembling the matrix
+                                    // is then fairly straightforward: we loop
+                                    // over all cells, over all faces of each
+                                    // of these cells, and then do something
+                                    // only if that particular face is at the
+                                    // boundary of the domain. Like this:
+    {
+      const QGauss<dim-1>  quadrature_formula(3);
+      FEFaceValues<dim> fe_values (fe, quadrature_formula,
+                                  update_values  |  update_JxW_values);
+
+      const unsigned int   dofs_per_cell = fe.dofs_per_cell;
+      const unsigned int   n_q_points    = quadrature_formula.size();
+
+      FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
+
+      std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-    const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-    const unsigned int   n_q_points    = quadrature_formula.size();
 
-    FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
 
-    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+      typename DoFHandler<dim>::active_cell_iterator
+       cell = dof_handler.begin_active(),
+       endc = dof_handler.end();
+      for (; cell!=endc; ++cell)
+       for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
+         if (cell->at_boundary(f))
+           {
+             cell_matrix = 0;
 
-        
-                              
-    typename DoFHandler<dim>::active_cell_iterator
-      cell = dof_handler.begin_active(),
-      endc = dof_handler.end();
-    for (; cell!=endc; ++cell)
-      for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
-       if (cell->at_boundary(f))
-         {
-           cell_matrix = 0;
+             fe_values.reinit (cell, f);
 
-           fe_values.reinit (cell, f);
+             for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+               for (unsigned int i=0; i<dofs_per_cell; ++i)
+                 for (unsigned int j=0; j<dofs_per_cell; ++j)
+                   cell_matrix(i,j) += (fe_values.shape_value(i,q_point) *
+                                        fe_values.shape_value(j,q_point) *
+                                        fe_values.JxW(q_point));
 
-           for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+             cell->get_dof_indices (local_dof_indices);
              for (unsigned int i=0; i<dofs_per_cell; ++i)
                for (unsigned int j=0; j<dofs_per_cell; ++j)
-                 cell_matrix(i,j) += (fe_values.shape_value(i,q_point) *
-                                      fe_values.shape_value(j,q_point) *
-                                      fe_values.JxW(q_point));
-
-           cell->get_dof_indices (local_dof_indices);
-           for (unsigned int i=0; i<dofs_per_cell; ++i)
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               boundary_matrix.add (local_dof_indices[i],
-                                    local_dof_indices[j],
-                                    cell_matrix(i,j));
-         }
-  
+                 boundary_matrix.add (local_dof_indices[i],
+                                      local_dof_indices[j],
+                                      cell_matrix(i,j));
+           }
+
+    }
+
+    system_matrix.copy_from (mass_matrix);
+    system_matrix.add (time_step * time_step * theta * theta *
+                      wave_speed * wave_speed,
+                      laplace_matrix);
+    system_matrix.add (wave_speed * theta * time_step, boundary_matrix);
+
+
+    solution_p.reinit (dof_handler.n_dofs());
+    old_solution_p.reinit (dof_handler.n_dofs());
+    system_rhs_p.reinit (dof_handler.n_dofs());
+
+    solution_v.reinit (dof_handler.n_dofs());
+    old_solution_v.reinit (dof_handler.n_dofs());
+    system_rhs_v.reinit (dof_handler.n_dofs());
+
+    constraints.close ();
   }
 
-  system_matrix.copy_from (mass_matrix);
-  system_matrix.add (time_step * time_step * theta * theta *
-                    wave_speed * wave_speed,
-                    laplace_matrix);
-  system_matrix.add (wave_speed * theta * time_step, boundary_matrix);
-  
 
-  solution_p.reinit (dof_handler.n_dofs());
-  old_solution_p.reinit (dof_handler.n_dofs());
-  system_rhs_p.reinit (dof_handler.n_dofs());
+                                  // @sect4{TATForwardProblem::solve_p and TATForwardProblem::solve_v}
 
-  solution_v.reinit (dof_handler.n_dofs());
-  old_solution_v.reinit (dof_handler.n_dofs());
-  system_rhs_v.reinit (dof_handler.n_dofs());
+                                  // The following two functions, solving the
+                                  // linear systems for the pressure and the
+                                  // velocity variable, are taken pretty much
+                                  // verbatim (with the exception of the change
+                                  // of name from $u$ to $p$ of the primary
+                                  // variable) from step-23:
+  template <int dim>
+  void TATForwardProblem<dim>::solve_p ()
+  {
+    SolverControl           solver_control (1000, 1e-8*system_rhs_p.l2_norm());
+    SolverCG<>              cg (solver_control);
 
-  constraints.close ();
-}
+    cg.solve (system_matrix, solution_p, system_rhs_p,
+             PreconditionIdentity());
 
+    std::cout << "   p-equation: " << solver_control.last_step()
+             << " CG iterations."
+             << std::endl;
+  }
 
-                                // @sect4{TATForwardProblem::solve_p and TATForwardProblem::solve_v}
 
-                                // The following two functions, solving the
-                                // linear systems for the pressure and the
-                                // velocity variable, are taken pretty much
-                                // verbatim (with the exception of the change
-                                // of name from $u$ to $p$ of the primary
-                                // variable) from step-23:
-template <int dim>
-void TATForwardProblem<dim>::solve_p () 
-{
-  SolverControl           solver_control (1000, 1e-8*system_rhs_p.l2_norm());
-  SolverCG<>              cg (solver_control);
+  template <int dim>
+  void TATForwardProblem<dim>::solve_v ()
+  {
+    SolverControl           solver_control (1000, 1e-8*system_rhs_v.l2_norm());
+    SolverCG<>              cg (solver_control);
 
-  cg.solve (system_matrix, solution_p, system_rhs_p,
-           PreconditionIdentity());
+    cg.solve (mass_matrix, solution_v, system_rhs_v,
+             PreconditionIdentity());
 
-  std::cout << "   p-equation: " << solver_control.last_step()
-           << " CG iterations."
-           << std::endl;
-}
+    std::cout << "   v-equation: " << solver_control.last_step()
+             << " CG iterations."
+             << std::endl;
+  }
 
 
-template <int dim>
-void TATForwardProblem<dim>::solve_v () 
-{
-  SolverControl           solver_control (1000, 1e-8*system_rhs_v.l2_norm());
-  SolverCG<>              cg (solver_control);
 
-  cg.solve (mass_matrix, solution_v, system_rhs_v,
-           PreconditionIdentity());
+                                  // @sect4{TATForwardProblem::output_results}
 
-  std::cout << "   v-equation: " << solver_control.last_step()
-           << " CG iterations."
-           << std::endl;
-}
+                                  // The same holds here: the function is from
+                                  // step-23.
+  template <int dim>
+  void TATForwardProblem<dim>::output_results () const
+  {
+    DataOut<dim> data_out;
 
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (solution_p, "P");
+    data_out.add_data_vector (solution_v, "V");
 
+    data_out.build_patches ();
 
-                                // @sect4{TATForwardProblem::output_results}
+    const std::string filename =  "solution-" +
+                                 Utilities::int_to_string (timestep_number, 3) +
+                                 ".gnuplot";
+    std::ofstream output (filename.c_str());
+    data_out.write_gnuplot (output);
+  }
 
-                                // The same holds here: the function is from
-                                // step-23.
-template <int dim>
-void TATForwardProblem<dim>::output_results () const
-{
-  DataOut<dim> data_out;
 
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution_p, "P");
-  data_out.add_data_vector (solution_v, "V");
 
-  data_out.build_patches ();
+                                  // @sect4{TATForwardProblem::run}
 
-  const std::string filename =  "solution-" +
-                               Utilities::int_to_string (timestep_number, 3) +
-                               ".gnuplot";
-  std::ofstream output (filename.c_str());
-  data_out.write_gnuplot (output);
-}
+                                  // This function that does most of the work
+                                  // is pretty much again like in step-23,
+                                  // though we make things a bit clearer by
+                                  // using the vectors G1 and G2 mentioned in
+                                  // the introduction. Compared to the overall
+                                  // memory consumption of the program, the
+                                  // introduction of a few temporary vectors
+                                  // isn't doing much harm.
+                                  //
+                                  // The only changes to this function are:
+                                  // First, that we do not have to project
+                                  // initial values for the velocity $v$, since
+                                  // we know that it is zero. And second that
+                                  // we evaluate the solution at the detector
+                                  // locations computed in the
+                                  // constructor. This is done using the
+                                  // VectorTools::point_value function. These
+                                  // values are then written to a file that we
+                                  // open at the beginning of the function.
+  template <int dim>
+  void TATForwardProblem<dim>::run ()
+  {
+    setup_system();
 
+    VectorTools::project (dof_handler, constraints,
+                         QGauss<dim>(3), InitialValuesP<dim>(),
+                         old_solution_p);
+    old_solution_v = 0;
 
 
-                                // @sect4{TATForwardProblem::run}
-
-                                 // This function that does most of the work
-                                 // is pretty much again like in step-23,
-                                 // though we make things a bit clearer by
-                                 // using the vectors G1 and G2 mentioned in
-                                 // the introduction. Compared to the overall
-                                 // memory consumption of the program, the
-                                 // introduction of a few temporary vectors
-                                 // isn't doing much harm.
-                                 // 
-                                // The only changes to this function are:
-                                // First, that we do not have to project
-                                // initial values for the velocity $v$, since
-                                // we know that it is zero. And second that
-                                // we evaluate the solution at the detector
-                                // locations computed in the
-                                // constructor. This is done using the
-                                // VectorTools::point_value function. These
-                                // values are then written to a file that we
-                                // open at the beginning of the function.
-template <int dim>
-void TATForwardProblem<dim>::run () 
-{
-  setup_system();
+    std::ofstream detector_data("detectors.dat");
 
-  VectorTools::project (dof_handler, constraints,
-                       QGauss<dim>(3), InitialValuesP<dim>(),
-                       old_solution_p);
-  old_solution_v = 0;
+    Vector<double> tmp (solution_p.size());
+    Vector<double> G1 (solution_p.size());
+    Vector<double> G2 (solution_v.size());
 
+    const double end_time = 0.7;
+    for (timestep_number=1, time=time_step;
+        time<=end_time;
+        time+=time_step, ++timestep_number)
+      {
+       std::cout << std::endl;
+       std::cout<< "time_step " << timestep_number << " @ t=" << time << std::endl;
 
-  std::ofstream detector_data("detectors.dat");  
+       mass_matrix.vmult (G1, old_solution_p);
+       mass_matrix.vmult (tmp, old_solution_v);
+       G1.add(time_step * (1-theta), tmp);
 
-  Vector<double> tmp (solution_p.size());
-  Vector<double> G1 (solution_p.size());
-  Vector<double> G2 (solution_v.size());
+       mass_matrix.vmult (G2, old_solution_v);
+       laplace_matrix.vmult (tmp, old_solution_p);
+       G2.add (-wave_speed * wave_speed * time_step * (1-theta), tmp);
 
-  const double end_time = 0.7;
-  for (timestep_number=1, time=time_step;
-       time<=end_time;
-       time+=time_step, ++timestep_number)
-    {
-      std::cout << std::endl;                                       
-      std::cout<< "time_step " << timestep_number << " @ t=" << time << std::endl;
-
-      mass_matrix.vmult (G1, old_solution_p); 
-      mass_matrix.vmult (tmp, old_solution_v); 
-      G1.add(time_step * (1-theta), tmp);
-      
-      mass_matrix.vmult (G2, old_solution_v);
-      laplace_matrix.vmult (tmp, old_solution_p); 
-      G2.add (-wave_speed * wave_speed * time_step * (1-theta), tmp);
-
-      boundary_matrix.vmult (tmp, old_solution_p);
-      G2.add (wave_speed, tmp);
-      
-      system_rhs_p = G1; 
-      system_rhs_p.add(time_step * theta , G2);
-
-      solve_p ();
-
-
-      system_rhs_v = G2;
-      laplace_matrix.vmult (tmp, solution_p);
-      system_rhs_v.add (-time_step * theta * wave_speed * wave_speed, tmp);
-
-      boundary_matrix.vmult (tmp, solution_p);
-      system_rhs_v.add (-wave_speed, tmp);
-      
-      solve_v ();
-
-      output_results ();
-      
-
-      detector_data << time;
-      for (unsigned int i=0 ; i<detector_locations.size(); ++i)
-       detector_data << " "
-                     << VectorTools::point_value (dof_handler,
-                                                  solution_p, 
-                                                  detector_locations[i])
-                     << " ";
-      detector_data << std::endl;
-
-      
-      old_solution_p = solution_p;
-      old_solution_v = solution_v;      
-    }
+       boundary_matrix.vmult (tmp, old_solution_p);
+       G2.add (wave_speed, tmp);
+
+       system_rhs_p = G1;
+       system_rhs_p.add(time_step * theta , G2);
+
+       solve_p ();
+
+
+       system_rhs_v = G2;
+       laplace_matrix.vmult (tmp, solution_p);
+       system_rhs_v.add (-time_step * theta * wave_speed * wave_speed, tmp);
+
+       boundary_matrix.vmult (tmp, solution_p);
+       system_rhs_v.add (-wave_speed, tmp);
+
+       solve_v ();
+
+       output_results ();
+
+
+       detector_data << time;
+       for (unsigned int i=0 ; i<detector_locations.size(); ++i)
+         detector_data << " "
+                       << VectorTools::point_value (dof_handler,
+                                                    solution_p,
+                                                    detector_locations[i])
+                       << " ";
+       detector_data << std::endl;
+
+
+       old_solution_p = solution_p;
+       old_solution_v = solution_v;
+      }
+  }
 }
 
 
@@ -654,11 +657,15 @@ void TATForwardProblem<dim>::run ()
                                 // program. There is nothing here that hasn't
                                 // been shown in several of the previous
                                 // programs:
-int main () 
+int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step24;
+
       deallog.depth_console (0);
+
       TATForwardProblem<2> forward_problem_solver;
       forward_problem_solver.run ();
     }
@@ -675,7 +682,7 @@ int main ()
 
       return 1;
     }
-  catch (...) 
+  catch (...)
     {
       std::cerr << std::endl << std::endl
                << "----------------------------------------------------"
@@ -686,6 +693,6 @@ int main ()
                << std::endl;
       return 1;
     }
-  
+
   return 0;
 }
index f3fd473191281bef3f11ba3c3670f3f34ebc5f83..b274cd967fd5cd891f3ece8a30561e55add5da41 100644 (file)
@@ -1,5 +1,5 @@
 /* $Id$ */
-/*    Copyright (C) 2006, 2007, 2008, 2009 by the deal.II authors */
+/*    Copyright (C) 2006, 2007, 2008, 2009, 2011 by the deal.II authors */
 /*    Author: Ivan Christov, Wolfgang Bangerth, Texas A&M University, 2006 */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 
                                 // The last step is as in all
                                 // previous programs:
-using namespace dealii;
-
-
-                                // @sect3{The <code>SineGordonProblem</code> class template}
-
-                                // The entire algorithm for solving the
-                                // problem is encapsulated in this class. As
-                                // in previous example programs, the class is
-                                // declared with a template parameter, which
-                                // is the spatial dimension, so that we can
-                                // solve the sine-Gordon equation in one, two
-                                // or three spatial dimensions. For more on
-                                // the dimension-independent
-                                // class-encapsulation of the problem, the
-                                // reader should consult step-3 and step-4.
-                                //
-                                // Compared to step-23 and step-24, there
-                                // isn't anything newsworthy in the general
-                                // structure of the program (though there is
-                                // of course in the inner workings of the
-                                // various functions!). The most notable
-                                // difference is the presence of the two new
-                                // functions <code>compute_nl_term</code> and
-                                // <code>compute_nl_matrix</code> that
-                                // compute the nonlinear contributions to the
-                                // system matrix and right-hand side of the first
-                                // equation, as discussed in the
-                                // Introduction. In addition, we have to have
-                                // a vector <code>solution_update</code> that
-                                // contains the nonlinear update to the
-                                // solution vector in each Newton step.
-                                //
-                                // As also mentioned in the introduction, we
-                                // do not store the velocity variable in this
-                                // program, but the mass matrix times the
-                                // velocity. This is done in the
-                                // <code>M_x_velocity</code> variable (the
-                                // "x" is intended to stand for
-                                // "times").
-                                //
-                                // Finally, the
-                                // <code>output_timestep_skip</code>
-                                // variable stores the number of time
-                                // steps to be taken each time before
-                                // graphical output is to be
-                                // generated. This is of importance
-                                // when using fine meshes (and
-                                // consequently small time steps)
-                                // where we would run lots of time
-                                // steps and create lots of output
-                                // files of solutions that look
-                                // almost the same in subsequent
-                                // files. This only clogs up our
-                                // visualization procedures and we
-                                // should avoid creating more output
-                                // than we are really interested
-                                // in. Therefore, if this variable is
-                                // set to a value $n$ bigger than one,
-                                // output is generated only every
-                                // $n$th time step.
-template <int dim>
-class SineGordonProblem 
+namespace Step25
 {
-  public:
-    SineGordonProblem ();
-    void run ();
-    
-  private:
-    void make_grid_and_dofs ();
-    void assemble_system ();
-    void compute_nl_term (const Vector<double> &old_data, 
-                         const Vector<double> &new_data,
-                         Vector<double>       &nl_term) const;
-    void compute_nl_matrix (const Vector<double> &old_data, 
-                           const Vector<double> &new_data,
-                           SparseMatrix<double> &nl_matrix) const;
-    unsigned int solve ();
-    void output_results (const unsigned int timestep_number) const;
-
-    Triangulation<dim>   triangulation;
-    FE_Q<dim>            fe;
-    DoFHandler<dim>      dof_handler;
-
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
-    SparseMatrix<double> mass_matrix;
-    SparseMatrix<double> laplace_matrix;
-    
-    const unsigned int n_global_refinements;
-
-    double time;
-    const double final_time, time_step;
-    const double theta;
-
-    Vector<double>       solution, solution_update, old_solution;
-    Vector<double>       M_x_velocity;
-    Vector<double>       system_rhs;
-
-    const unsigned int output_timestep_skip;
-};
-
-
-                                // @sect3{Initial conditions}
-
-                                // In the following two classes, we first
-                                // implement the exact solution for 1D, 2D,
-                                // and 3D mentioned in the introduction to
-                                // this program. This space-time solution may
-                                // be of independent interest if one wanted
-                                // to test the accuracy of the program by
-                                // comparing the numerical against the
-                                // analytic solution (note however that the
-                                // program uses a finite domain, whereas
-                                // these are analytic solutions for an
-                                // unbounded domain). This may, for example,
-                                // be done using the
-                                // VectorTools::integrate_difference
-                                // function. Note, again (as was already
-                                // discussed in step-23), how we describe
-                                // space-time functions as spatial functions
-                                // that depend on a time variable that can be
-                                // set and queried using the
-                                // FunctionTime::set_time() and
-                                // FunctionTime::get_time() member functions
-                                // of the FunctionTime base class of the
-                                // Function class.
-template <int dim>
-class ExactSolution : public Function<dim>
-{
-  public:
-    ExactSolution (const unsigned int n_components = 1,
-                  const double time = 0.) : Function<dim>(n_components, time) {}
-    virtual double value (const Point<dim> &p,
-                         const unsigned int component = 0) const;
-};
-
-template <int dim>
-double ExactSolution<dim>::value (const Point<dim> &p,
-                                 const unsigned int /*component*/) const
-{
-  double t = this->get_time ();
+  using namespace dealii;
 
-  switch (dim)
-    {
-      case 1:
+
+                                  // @sect3{The <code>SineGordonProblem</code> class template}
+
+                                  // The entire algorithm for solving the
+                                  // problem is encapsulated in this class. As
+                                  // in previous example programs, the class is
+                                  // declared with a template parameter, which
+                                  // is the spatial dimension, so that we can
+                                  // solve the sine-Gordon equation in one, two
+                                  // or three spatial dimensions. For more on
+                                  // the dimension-independent
+                                  // class-encapsulation of the problem, the
+                                  // reader should consult step-3 and step-4.
+                                  //
+                                  // Compared to step-23 and step-24, there
+                                  // isn't anything newsworthy in the general
+                                  // structure of the program (though there is
+                                  // of course in the inner workings of the
+                                  // various functions!). The most notable
+                                  // difference is the presence of the two new
+                                  // functions <code>compute_nl_term</code> and
+                                  // <code>compute_nl_matrix</code> that
+                                  // compute the nonlinear contributions to the
+                                  // system matrix and right-hand side of the first
+                                  // equation, as discussed in the
+                                  // Introduction. In addition, we have to have
+                                  // a vector <code>solution_update</code> that
+                                  // contains the nonlinear update to the
+                                  // solution vector in each Newton step.
+                                  //
+                                  // As also mentioned in the introduction, we
+                                  // do not store the velocity variable in this
+                                  // program, but the mass matrix times the
+                                  // velocity. This is done in the
+                                  // <code>M_x_velocity</code> variable (the
+                                  // "x" is intended to stand for
+                                  // "times").
+                                  //
+                                  // Finally, the
+                                  // <code>output_timestep_skip</code>
+                                  // variable stores the number of time
+                                  // steps to be taken each time before
+                                  // graphical output is to be
+                                  // generated. This is of importance
+                                  // when using fine meshes (and
+                                  // consequently small time steps)
+                                  // where we would run lots of time
+                                  // steps and create lots of output
+                                  // files of solutions that look
+                                  // almost the same in subsequent
+                                  // files. This only clogs up our
+                                  // visualization procedures and we
+                                  // should avoid creating more output
+                                  // than we are really interested
+                                  // in. Therefore, if this variable is
+                                  // set to a value $n$ bigger than one,
+                                  // output is generated only every
+                                  // $n$th time step.
+  template <int dim>
+  class SineGordonProblem
+  {
+    public:
+      SineGordonProblem ();
+      void run ();
+
+    private:
+      void make_grid_and_dofs ();
+      void assemble_system ();
+      void compute_nl_term (const Vector<double> &old_data,
+                           const Vector<double> &new_data,
+                           Vector<double>       &nl_term) const;
+      void compute_nl_matrix (const Vector<double> &old_data,
+                             const Vector<double> &new_data,
+                             SparseMatrix<double> &nl_matrix) const;
+      unsigned int solve ();
+      void output_results (const unsigned int timestep_number) const;
+
+      Triangulation<dim>   triangulation;
+      FE_Q<dim>            fe;
+      DoFHandler<dim>      dof_handler;
+
+      SparsityPattern      sparsity_pattern;
+      SparseMatrix<double> system_matrix;
+      SparseMatrix<double> mass_matrix;
+      SparseMatrix<double> laplace_matrix;
+
+      const unsigned int n_global_refinements;
+
+      double time;
+      const double final_time, time_step;
+      const double theta;
+
+      Vector<double>       solution, solution_update, old_solution;
+      Vector<double>       M_x_velocity;
+      Vector<double>       system_rhs;
+
+      const unsigned int output_timestep_skip;
+  };
+
+
+                                  // @sect3{Initial conditions}
+
+                                  // In the following two classes, we first
+                                  // implement the exact solution for 1D, 2D,
+                                  // and 3D mentioned in the introduction to
+                                  // this program. This space-time solution may
+                                  // be of independent interest if one wanted
+                                  // to test the accuracy of the program by
+                                  // comparing the numerical against the
+                                  // analytic solution (note however that the
+                                  // program uses a finite domain, whereas
+                                  // these are analytic solutions for an
+                                  // unbounded domain). This may, for example,
+                                  // be done using the
+                                  // VectorTools::integrate_difference
+                                  // function. Note, again (as was already
+                                  // discussed in step-23), how we describe
+                                  // space-time functions as spatial functions
+                                  // that depend on a time variable that can be
+                                  // set and queried using the
+                                  // FunctionTime::set_time() and
+                                  // FunctionTime::get_time() member functions
+                                  // of the FunctionTime base class of the
+                                  // Function class.
+  template <int dim>
+  class ExactSolution : public Function<dim>
+  {
+    public:
+      ExactSolution (const unsigned int n_components = 1,
+                    const double time = 0.) : Function<dim>(n_components, time) {}
+      virtual double value (const Point<dim> &p,
+                           const unsigned int component = 0) const;
+  };
+
+  template <int dim>
+  double ExactSolution<dim>::value (const Point<dim> &p,
+                                   const unsigned int /*component*/) const
+  {
+    double t = this->get_time ();
+
+    switch (dim)
       {
-       const double m = 0.5;
-       const double c1 = 0.;
-       const double c2 = 0.;
-       return -4.*std::atan (m /
-                             std::sqrt(1.-m*m) *
-                             std::sin(std::sqrt(1.-m*m)*t+c2) /
-                             std::cosh(m*p[0]+c1));
+       case 1:
+       {
+         const double m = 0.5;
+         const double c1 = 0.;
+         const double c2 = 0.;
+         return -4.*std::atan (m /
+                               std::sqrt(1.-m*m) *
+                               std::sin(std::sqrt(1.-m*m)*t+c2) /
+                               std::cosh(m*p[0]+c1));
+       }
+
+       case 2:
+       {
+         const double theta  = numbers::PI/4.;
+         const double lambda  = 1.;
+         const double a0  = 1.;
+         const double s   = 1.;
+         const double arg = p[0] * std::cos(theta) +
+                            std::sin(theta) *
+                            (p[1] * std::cosh(lambda) +
+                             t * std::sinh(lambda));
+         return 4.*std::atan(a0*std::exp(s*arg));
+       }
+
+       case 3:
+       {
+         double theta  = numbers::PI/4;
+         double phi = numbers::PI/4;
+         double tau = 1.;
+         double c0  = 1.;
+         double s   = 1.;
+         double arg = p[0]*std::cos(theta) +
+                      p[1]*std::sin(theta) * std::cos(phi) +
+                      std::sin(theta) * std::sin(phi) *
+                      (p[2]*std::cosh(tau)+t*std::sinh(tau));
+         return 4.*std::atan(c0*std::exp(s*arg));
+       }
+
+       default:
+             Assert (false, ExcNotImplemented());
+             return -1e8;
       }
-
-      case 2:
+  }
+
+                                  // In the second part of this section, we
+                                  // provide the initial conditions. We are lazy
+                                  // (and cautious) and don't want to implement
+                                  // the same functions as above a second
+                                  // time. Rather, if we are queried for
+                                  // initial conditions, we create an object
+                                  // <code>ExactSolution</code>, set it to the
+                                  // correct time, and let it compute whatever
+                                  // values the exact solution has at that
+                                  // time:
+  template <int dim>
+  class InitialValues : public Function<dim>
+  {
+    public:
+      InitialValues (const unsigned int n_components = 1,
+                    const double time = 0.)
+                     :
+                     Function<dim>(n_components, time)
+       {}
+
+      virtual double value (const Point<dim> &p,
+                           const unsigned int component = 0) const;
+  };
+
+  template <int dim>
+  double InitialValues<dim>::value (const Point<dim> &p,
+                                   const unsigned int component) const
+  {
+    return ExactSolution<dim>(1, this->get_time()).value (p, component);
+  }
+
+
+
+                                  // @sect3{Implementation of the <code>SineGordonProblem</code> class}
+
+                                  // Let's move on to the implementation of the
+                                  // main class, as it implements the algorithm
+                                  // outlined in the introduction.
+
+                                  // @sect4{SineGordonProblem::SineGordonProblem}
+
+                                  // This is the constructor of the
+                                  // <code>SineGordonProblem</code> class. It
+                                  // specifies the desired polynomial degree of
+                                  // the finite elements, associates a
+                                  // <code>DoFHandler</code> to the
+                                  // <code>triangulation</code> object (just as
+                                  // in the example programs step-3 and
+                                  // step-4), initializes the current or
+                                  // initial time, the final time, the time
+                                  // step size, and the value of $\theta$ for
+                                  // the time stepping scheme. Since the
+                                  // solutions we compute here are
+                                  // time-periodic, the actual value of the
+                                  // start-time doesn't matter, and we choose
+                                  // it so that we start at an interesting
+                                  // time.
+                                  //
+                                  // Note that if we were to chose the explicit
+                                  // Euler time stepping scheme ($\theta = 0$),
+                                  // then we must pick a time step $k \le h$,
+                                  // otherwise the scheme is not stable and
+                                  // oscillations might arise in the
+                                  // solution. The Crank-Nicolson scheme
+                                  // ($\theta = \frac{1}{2}$) and the implicit
+                                  // Euler scheme ($\theta=1$) do not suffer
+                                  // from this deficiency, since they are
+                                  // unconditionally stable. However, even then
+                                  // the time step should be chosen to be on
+                                  // the order of $h$ in order to obtain a good
+                                  // solution. Since we know that our mesh
+                                  // results from the uniform subdivision of a
+                                  // rectangle, we can compute that time step
+                                  // easily; if we had a different domain, the
+                                  // technique in step-24 using
+                                  // GridTools::minimal_cell_diameter would
+                                  // work as well.
+  template <int dim>
+  SineGordonProblem<dim>::SineGordonProblem ()
+                 :
+                 fe (1),
+                 dof_handler (triangulation),
+                 n_global_refinements (6),
+                 time (-5.4414),
+                 final_time (2.7207),
+                 time_step (10*1./std::pow(2.,1.*n_global_refinements)),
+                 theta (0.5),
+                 output_timestep_skip (1)
+  {}
+
+                                  // @sect4{SineGordonProblem::make_grid_and_dofs}
+
+                                  // This function creates a rectangular grid
+                                  // in <code>dim</code> dimensions and refines
+                                  // it several times. Also, all matrix and
+                                  // vector members of the
+                                  // <code>SineGordonProblem</code> class are
+                                  // initialized to their appropriate sizes
+                                  // once the degrees of freedom have been
+                                  // assembled. Like step-24, we use the
+                                  // <code>MatrixCreator</code> class to
+                                  // generate a mass matrix $M$ and a Laplace
+                                  // matrix $A$ and store them in the
+                                  // appropriate variables for the remainder of
+                                  // the program's life.
+  template <int dim>
+  void SineGordonProblem<dim>::make_grid_and_dofs ()
+  {
+    GridGenerator::hyper_cube (triangulation, -10, 10);
+    triangulation.refine_global (n_global_refinements);
+
+    std::cout << "   Number of active cells: "
+             << triangulation.n_active_cells()
+             << std::endl
+             << "   Total number of cells: "
+             << triangulation.n_cells()
+             << std::endl;
+
+    dof_handler.distribute_dofs (fe);
+
+    std::cout << "   Number of degrees of freedom: "
+             << dof_handler.n_dofs()
+             << std::endl;
+
+    sparsity_pattern.reinit (dof_handler.n_dofs(),
+                            dof_handler.n_dofs(),
+                            dof_handler.max_couplings_between_dofs());
+    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+    sparsity_pattern.compress ();
+
+    system_matrix.reinit  (sparsity_pattern);
+    mass_matrix.reinit    (sparsity_pattern);
+    laplace_matrix.reinit (sparsity_pattern);
+
+    MatrixCreator::create_mass_matrix (dof_handler,
+                                      QGauss<dim>(3),
+                                      mass_matrix);
+    MatrixCreator::create_laplace_matrix (dof_handler,
+                                         QGauss<dim>(3),
+                                         laplace_matrix);
+
+    solution.reinit       (dof_handler.n_dofs());
+    solution_update.reinit     (dof_handler.n_dofs());
+    old_solution.reinit   (dof_handler.n_dofs());
+    M_x_velocity.reinit    (dof_handler.n_dofs());
+    system_rhs.reinit     (dof_handler.n_dofs());
+  }
+
+                                  // @sect4{SineGordonProblem::assemble_system}
+
+                                  // This functions assembles the system matrix
+                                  // and right-hand side vector for each
+                                  // iteration of Newton's method. The reader
+                                  // should refer to the Introduction for the
+                                  // explicit formulas for the system matrix
+                                  // and right-hand side.
+                                  //
+                                  // Note that during each time step, we have to
+                                  // add up the various contributions to the
+                                  // matrix and right hand sides. In contrast
+                                  // to step-23 and step-24, this requires
+                                  // assembling a few more terms, since they
+                                  // depend on the solution of the previous
+                                  // time step or previous nonlinear step. We
+                                  // use the functions
+                                  // <code>compute_nl_matrix</code> and
+                                  // <code>compute_nl_term</code> to do this,
+                                  // while the present function provides the
+                                  // top-level logic.
+  template <int dim>
+  void SineGordonProblem<dim>::assemble_system ()
+  {
+                                    // First we assemble the Jacobian
+                                    // matrix $F'_h(U^{n,l})$, where
+                                    // $U^{n,l}$ is stored in the vector
+                                    // <code>solution</code> for
+                                    // convenience.
+    system_matrix = 0;
+    system_matrix.copy_from (mass_matrix);
+    system_matrix.add (std::pow(time_step*theta,2), laplace_matrix);
+
+    SparseMatrix<double> tmp_matrix (sparsity_pattern);
+    compute_nl_matrix (old_solution, solution, tmp_matrix);
+    system_matrix.add (-std::pow(time_step*theta,2), tmp_matrix);
+
+                                    // Then, we compute the right-hand
+                                    // side vector $-F_h(U^{n,l})$.
+    system_rhs = 0;
+
+    tmp_matrix = 0;
+    tmp_matrix.copy_from (mass_matrix);
+    tmp_matrix.add (std::pow(time_step*theta,2), laplace_matrix);
+
+    Vector<double> tmp_vector (solution.size());
+    tmp_matrix.vmult (tmp_vector, solution);
+    system_rhs += tmp_vector;
+
+    tmp_matrix = 0;
+    tmp_matrix.copy_from (mass_matrix);
+    tmp_matrix.add (-std::pow(time_step,2)*theta*(1-theta), laplace_matrix);
+
+    tmp_vector = 0;
+    tmp_matrix.vmult (tmp_vector, old_solution);
+    system_rhs -= tmp_vector;
+
+    system_rhs.add (-time_step, M_x_velocity);
+
+    tmp_vector = 0;
+    compute_nl_term (old_solution, solution, tmp_vector);
+    system_rhs.add (std::pow(time_step,2)*theta, tmp_vector);
+
+    system_rhs *= -1;
+  }
+
+                                  // @sect4{SineGordonProblem::compute_nl_term}
+
+                                  // This function computes the vector
+                                  // $S(\cdot,\cdot)$, which appears in the
+                                  // nonlinear term in the both equations of
+                                  // the split formulation. This function not
+                                  // only simplifies the repeated computation
+                                  // of this term, but it is also a fundamental
+                                  // part of the nonlinear iterative solver
+                                  // that we use when the time stepping is
+                                  // implicit (i.e. $\theta\ne 0$). Moreover,
+                                  // we must allow the function to receive as
+                                  // input an "old" and a "new" solution. These
+                                  // may not be the actual solutions of the
+                                  // problem stored in
+                                  // <code>old_solution</code> and
+                                  // <code>solution</code>, but are simply the
+                                  // two functions we linearize about. For the
+                                  // purposes of this function, let us call the
+                                  // first two arguments $w_{\mathrm{old}}$ and
+                                  // $w_{\mathrm{new}}$ in the documentation of
+                                  // this class below, respectively.
+                                  //
+                                  // As a side-note, it is perhaps worth
+                                  // investigating what order quadrature
+                                  // formula is best suited for this type of
+                                  // integration. Since $\sin(\cdot)$ is not a
+                                  // polynomial, there are probably no
+                                  // quadrature formulas that can integrate
+                                  // these terms exactly. It is usually
+                                  // sufficient to just make sure that the
+                                  // right hand side is integrated up to the
+                                  // same order of accuracy as the
+                                  // discretization scheme is, but it may be
+                                  // possible to improve on the constant in the
+                                  // asympotitic statement of convergence by
+                                  // choosing a more accurate quadrature
+                                  // formula.
+  template <int dim>
+  void SineGordonProblem<dim>::compute_nl_term (const Vector<double> &old_data,
+                                               const Vector<double> &new_data,
+                                               Vector<double>       &nl_term) const
+  {
+    const QGauss<dim> quadrature_formula (3);
+    FEValues<dim>     fe_values (fe, quadrature_formula,
+                                update_values |
+                                update_JxW_values |
+                                update_quadrature_points);
+
+    const unsigned int dofs_per_cell = fe.dofs_per_cell;
+    const unsigned int n_q_points    = quadrature_formula.size();
+
+    Vector<double> local_nl_term (dofs_per_cell);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+    std::vector<double> old_data_values (n_q_points);
+    std::vector<double> new_data_values (n_q_points);
+
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+
+    for (; cell!=endc; ++cell)
       {
-       const double theta  = numbers::PI/4.;
-       const double lambda  = 1.;
-       const double a0  = 1.;
-       const double s   = 1.;
-       const double arg = p[0] * std::cos(theta) +
-                          std::sin(theta) *
-                          (p[1] * std::cosh(lambda) +
-                           t * std::sinh(lambda));
-       return 4.*std::atan(a0*std::exp(s*arg));
+                                        // Once we re-initialize our
+                                        // <code>FEValues</code> instantiation
+                                        // to the current cell, we make use of
+                                        // the <code>get_function_values</code>
+                                        // routine to get the values of the
+                                        // "old" data (presumably at
+                                        // $t=t_{n-1}$) and the "new" data
+                                        // (presumably at $t=t_n$) at the nodes
+                                        // of the chosen quadrature formula.
+       fe_values.reinit (cell);
+       fe_values.get_function_values (old_data, old_data_values);
+       fe_values.get_function_values (new_data, new_data_values);
+
+                                        // Now, we can evaluate $\int_K
+                                        // \sin\left[\theta w_{\mathrm{new}} +
+                                        // (1-\theta) w_{\mathrm{old}}\right]
+                                        // \,\varphi_j\,\mathrm{d}x$ using the
+                                        // desired quadrature formula.
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           local_nl_term(i) += (std::sin(theta * new_data_values[q_point] +
+                                         (1-theta) * old_data_values[q_point]) *
+                                fe_values.shape_value (i, q_point) *
+                                fe_values.JxW (q_point));
+
+                                        // We conclude by adding up the
+                                        // contributions of the
+                                        // integrals over the cells to
+                                        // the global integral.
+       cell->get_dof_indices (local_dof_indices);
+
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         nl_term(local_dof_indices[i]) += local_nl_term(i);
+
+       local_nl_term = 0;
       }
-
-      case 3:
+  }
+
+                                  // @sect4{SineGordonProblem::compute_nl_matrix}
+
+                                  // This is the second function dealing with the
+                                  // nonlinear scheme. It computes the matrix
+                                  // $N(\cdot,\cdot)$, whicih appears in the
+                                  // nonlinear term in the Jacobian of
+                                  // $F(\cdot)$. Just as
+                                  // <code>compute_nl_term</code>, we must
+                                  // allow this function to receive as input an
+                                  // "old" and a "new" solution, which we again
+                                  // call $w_{\mathrm{old}}$ and
+                                  // $w_{\mathrm{new}}$ below, respectively.
+  template <int dim>
+  void SineGordonProblem<dim>::compute_nl_matrix (const Vector<double> &old_data,
+                                                 const Vector<double> &new_data,
+                                                 SparseMatrix<double> &nl_matrix) const
+  {
+    QGauss<dim>   quadrature_formula (3);
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values | update_JxW_values | update_quadrature_points);
+
+    const unsigned int dofs_per_cell = fe.dofs_per_cell;
+    const unsigned int n_q_points    = quadrature_formula.size();
+
+    FullMatrix<double> local_nl_matrix (dofs_per_cell, dofs_per_cell);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+    std::vector<double> old_data_values (n_q_points);
+    std::vector<double> new_data_values (n_q_points);
+
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+
+    for (; cell!=endc; ++cell)
       {
-       double theta  = numbers::PI/4;
-       double phi = numbers::PI/4;
-       double tau = 1.;
-       double c0  = 1.;
-       double s   = 1.;
-       double arg = p[0]*std::cos(theta) +
-                    p[1]*std::sin(theta) * std::cos(phi) +
-                    std::sin(theta) * std::sin(phi) *
-                    (p[2]*std::cosh(tau)+t*std::sinh(tau));
-       return 4.*std::atan(c0*std::exp(s*arg));
+                                        // Again, first we
+                                        // re-initialize our
+                                        // <code>FEValues</code>
+                                        // instantiation to the current
+                                        // cell.
+       fe_values.reinit (cell);
+       fe_values.get_function_values (old_data, old_data_values);
+       fe_values.get_function_values (new_data, new_data_values);
+
+                                        // Then, we evaluate $\int_K
+                                        // \cos\left[\theta
+                                        // w_{\mathrm{new}} +
+                                        // (1-\theta)
+                                        // w_{\mathrm{old}}\right]\,
+                                        // \varphi_i\,
+                                        // \varphi_j\,\mathrm{d}x$
+                                        // using the desired quadrature
+                                        // formula.
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           for (unsigned int j=0; j<dofs_per_cell; ++j)
+             local_nl_matrix(i,j) += (std::cos(theta * new_data_values[q_point] +
+                                               (1-theta) * old_data_values[q_point]) *
+                                      fe_values.shape_value (i, q_point) *
+                                      fe_values.shape_value (j, q_point) *
+                                      fe_values.JxW (q_point));
+
+                                        // Finally, we add up the
+                                        // contributions of the
+                                        // integrals over the cells to
+                                        // the global integral.
+       cell->get_dof_indices (local_dof_indices);
+
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         for (unsigned int j=0; j<dofs_per_cell; ++j)
+           nl_matrix.add(local_dof_indices[i], local_dof_indices[j],
+                         local_nl_matrix(i,j));
+
+       local_nl_matrix = 0;
       }
+  }
 
-      default:
-           Assert (false, ExcNotImplemented());
-           return -1e8;
-    }
-}
-
-                                // In the second part of this section, we
-                                // provide the initial conditions. We are lazy
-                                // (and cautious) and don't want to implement
-                                // the same functions as above a second
-                                // time. Rather, if we are queried for
-                                // initial conditions, we create an object
-                                // <code>ExactSolution</code>, set it to the
-                                // correct time, and let it compute whatever
-                                // values the exact solution has at that
-                                // time:
-template <int dim>
-class InitialValues : public Function<dim>
-{
-  public:
-    InitialValues (const unsigned int n_components = 1, 
-                  const double time = 0.)
-                   :
-                   Function<dim>(n_components, time)
-      {}
-  
-    virtual double value (const Point<dim> &p,
-                         const unsigned int component = 0) const;
-};
-
-template <int dim>
-double InitialValues<dim>::value (const Point<dim> &p,
-                                 const unsigned int component) const 
-{   
-  return ExactSolution<dim>(1, this->get_time()).value (p, component);
-}
-
-
-
-                                // @sect3{Implementation of the <code>SineGordonProblem</code> class}
-
-                                // Let's move on to the implementation of the
-                                // main class, as it implements the algorithm
-                                // outlined in the introduction.
-
-                                // @sect4{SineGordonProblem::SineGordonProblem}
-
-                                // This is the constructor of the
-                                // <code>SineGordonProblem</code> class. It
-                                // specifies the desired polynomial degree of
-                                // the finite elements, associates a
-                                // <code>DoFHandler</code> to the
-                                // <code>triangulation</code> object (just as
-                                // in the example programs step-3 and
-                                // step-4), initializes the current or
-                                // initial time, the final time, the time
-                                // step size, and the value of $\theta$ for
-                                // the time stepping scheme. Since the
-                                // solutions we compute here are
-                                // time-periodic, the actual value of the
-                                // start-time doesn't matter, and we choose
-                                // it so that we start at an interesting
-                                // time.
-                                //
-                                // Note that if we were to chose the explicit
-                                // Euler time stepping scheme ($\theta = 0$),
-                                // then we must pick a time step $k \le h$,
-                                // otherwise the scheme is not stable and
-                                // oscillations might arise in the
-                                // solution. The Crank-Nicolson scheme
-                                // ($\theta = \frac{1}{2}$) and the implicit
-                                // Euler scheme ($\theta=1$) do not suffer
-                                // from this deficiency, since they are
-                                // unconditionally stable. However, even then
-                                // the time step should be chosen to be on
-                                // the order of $h$ in order to obtain a good
-                                // solution. Since we know that our mesh
-                                // results from the uniform subdivision of a
-                                // rectangle, we can compute that time step
-                                // easily; if we had a different domain, the
-                                // technique in step-24 using
-                                // GridTools::minimal_cell_diameter would
-                                // work as well.
-template <int dim>
-SineGordonProblem<dim>::SineGordonProblem ()
-               :
-                fe (1),
-               dof_handler (triangulation),
-               n_global_refinements (6),
-               time (-5.4414),
-               final_time (2.7207),
-               time_step (10*1./std::pow(2.,1.*n_global_refinements)),
-               theta (0.5),
-               output_timestep_skip (1)
-{}
-
-                                // @sect4{SineGordonProblem::make_grid_and_dofs}
-
-                                // This function creates a rectangular grid
-                                // in <code>dim</code> dimensions and refines
-                                // it several times. Also, all matrix and
-                                // vector members of the
-                                // <code>SineGordonProblem</code> class are
-                                // initialized to their appropriate sizes
-                                // once the degrees of freedom have been
-                                // assembled. Like step-24, we use the
-                                // <code>MatrixCreator</code> class to
-                                // generate a mass matrix $M$ and a Laplace
-                                // matrix $A$ and store them in the
-                                // appropriate variables for the remainder of
-                                // the program's life.
-template <int dim>
-void SineGordonProblem<dim>::make_grid_and_dofs ()
-{
-  GridGenerator::hyper_cube (triangulation, -10, 10);
-  triangulation.refine_global (n_global_refinements);
-  
-  std::cout << "   Number of active cells: "
-           << triangulation.n_active_cells()
-           << std::endl
-           << "   Total number of cells: "
-           << triangulation.n_cells()
-           << std::endl;
-
-  dof_handler.distribute_dofs (fe);
-
-  std::cout << "   Number of degrees of freedom: "
-           << dof_handler.n_dofs()
-           << std::endl;
-
-  sparsity_pattern.reinit (dof_handler.n_dofs(), 
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress ();
-
-  system_matrix.reinit  (sparsity_pattern);
-  mass_matrix.reinit    (sparsity_pattern);
-  laplace_matrix.reinit (sparsity_pattern);
-
-  MatrixCreator::create_mass_matrix (dof_handler,
-                                    QGauss<dim>(3), 
-                                    mass_matrix);
-  MatrixCreator::create_laplace_matrix (dof_handler,
-                                       QGauss<dim>(3), 
-                                       laplace_matrix);
-
-  solution.reinit       (dof_handler.n_dofs());
-  solution_update.reinit     (dof_handler.n_dofs());
-  old_solution.reinit   (dof_handler.n_dofs());
-  M_x_velocity.reinit    (dof_handler.n_dofs());
-  system_rhs.reinit     (dof_handler.n_dofs());
-}
-
-                                // @sect4{SineGordonProblem::assemble_system}
-
-                                // This functions assembles the system matrix
-                                // and right-hand side vector for each
-                                // iteration of Newton's method. The reader
-                                // should refer to the Introduction for the
-                                // explicit formulas for the system matrix
-                                // and right-hand side.
-                                //
-                                // Note that during each time step, we have to
-                                // add up the various contributions to the
-                                // matrix and right hand sides. In contrast
-                                // to step-23 and step-24, this requires
-                                // assembling a few more terms, since they
-                                // depend on the solution of the previous
-                                // time step or previous nonlinear step. We
-                                // use the functions
-                                // <code>compute_nl_matrix</code> and
-                                // <code>compute_nl_term</code> to do this,
-                                // while the present function provides the
-                                // top-level logic.
-template <int dim>
-void SineGordonProblem<dim>::assemble_system () 
-{  
-                                  // First we assemble the Jacobian
-                                  // matrix $F'_h(U^{n,l})$, where
-                                  // $U^{n,l}$ is stored in the vector
-                                  // <code>solution</code> for
-                                  // convenience.
-  system_matrix = 0;
-  system_matrix.copy_from (mass_matrix);
-  system_matrix.add (std::pow(time_step*theta,2), laplace_matrix);
-
-  SparseMatrix<double> tmp_matrix (sparsity_pattern);
-  compute_nl_matrix (old_solution, solution, tmp_matrix);
-  system_matrix.add (-std::pow(time_step*theta,2), tmp_matrix);
-
-                                  // Then, we compute the right-hand
-                                  // side vector $-F_h(U^{n,l})$.
-  system_rhs = 0;
-
-  tmp_matrix = 0;
-  tmp_matrix.copy_from (mass_matrix);
-  tmp_matrix.add (std::pow(time_step*theta,2), laplace_matrix);
-
-  Vector<double> tmp_vector (solution.size());
-  tmp_matrix.vmult (tmp_vector, solution);
-  system_rhs += tmp_vector;
-
-  tmp_matrix = 0;
-  tmp_matrix.copy_from (mass_matrix);
-  tmp_matrix.add (-std::pow(time_step,2)*theta*(1-theta), laplace_matrix);
-
-  tmp_vector = 0;
-  tmp_matrix.vmult (tmp_vector, old_solution);
-  system_rhs -= tmp_vector;
-
-  system_rhs.add (-time_step, M_x_velocity);
-
-  tmp_vector = 0;
-  compute_nl_term (old_solution, solution, tmp_vector);
-  system_rhs.add (std::pow(time_step,2)*theta, tmp_vector);
-
-  system_rhs *= -1;
-}
-
-                                // @sect4{SineGordonProblem::compute_nl_term}
-
-                                // This function computes the vector
-                                // $S(\cdot,\cdot)$, which appears in the
-                                // nonlinear term in the both equations of
-                                // the split formulation. This function not
-                                // only simplifies the repeated computation
-                                // of this term, but it is also a fundamental
-                                // part of the nonlinear iterative solver
-                                // that we use when the time stepping is
-                                // implicit (i.e. $\theta\ne 0$). Moreover,
-                                // we must allow the function to receive as
-                                // input an "old" and a "new" solution. These
-                                // may not be the actual solutions of the
-                                // problem stored in
-                                // <code>old_solution</code> and
-                                // <code>solution</code>, but are simply the
-                                // two functions we linearize about. For the
-                                // purposes of this function, let us call the
-                                // first two arguments $w_{\mathrm{old}}$ and
-                                // $w_{\mathrm{new}}$ in the documentation of
-                                // this class below, respectively.
-                                //
-                                // As a side-note, it is perhaps worth
-                                // investigating what order quadrature
-                                // formula is best suited for this type of
-                                // integration. Since $\sin(\cdot)$ is not a
-                                // polynomial, there are probably no
-                                // quadrature formulas that can integrate
-                                // these terms exactly. It is usually
-                                // sufficient to just make sure that the
-                                // right hand side is integrated up to the
-                                // same order of accuracy as the
-                                // discretization scheme is, but it may be
-                                // possible to improve on the constant in the
-                                // asympotitic statement of convergence by
-                                // choosing a more accurate quadrature
-                                // formula.
-template <int dim>
-void SineGordonProblem<dim>::compute_nl_term (const Vector<double> &old_data,
-                                             const Vector<double> &new_data,
-                                             Vector<double>       &nl_term) const
-{
-  const QGauss<dim> quadrature_formula (3);
-  FEValues<dim>     fe_values (fe, quadrature_formula, 
-                              update_values |
-                              update_JxW_values |
-                              update_quadrature_points);
-  
-  const unsigned int dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int n_q_points    = quadrature_formula.size();
-  
-  Vector<double> local_nl_term (dofs_per_cell);      
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell); 
-  std::vector<double> old_data_values (n_q_points);
-  std::vector<double> new_data_values (n_q_points);
-  
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-
-  for (; cell!=endc; ++cell)
-    { 
-                                      // Once we re-initialize our
-                                      // <code>FEValues</code> instantiation
-                                      // to the current cell, we make use of
-                                      // the <code>get_function_values</code>
-                                      // routine to get the values of the
-                                      // "old" data (presumably at
-                                      // $t=t_{n-1}$) and the "new" data
-                                      // (presumably at $t=t_n$) at the nodes
-                                      // of the chosen quadrature formula.
-      fe_values.reinit (cell);
-      fe_values.get_function_values (old_data, old_data_values);
-      fe_values.get_function_values (new_data, new_data_values);
-      
-                                      // Now, we can evaluate $\int_K
-                                      // \sin\left[\theta w_{\mathrm{new}} +
-                                      // (1-\theta) w_{\mathrm{old}}\right]
-                                      // \,\varphi_j\,\mathrm{d}x$ using the
-                                      // desired quadrature formula.
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i)       
-         local_nl_term(i) += (std::sin(theta * new_data_values[q_point] +
-                                       (1-theta) * old_data_values[q_point]) *
-                              fe_values.shape_value (i, q_point) *
-                              fe_values.JxW (q_point));            
-      
-                                      // We conclude by adding up the
-                                      // contributions of the
-                                      // integrals over the cells to
-                                      // the global integral.
-      cell->get_dof_indices (local_dof_indices);
-      
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       nl_term(local_dof_indices[i]) += local_nl_term(i);
-      
-      local_nl_term = 0;
-    }
-}
-
-                                // @sect4{SineGordonProblem::compute_nl_matrix}
-
-                                // This is the second function dealing with the
-                                // nonlinear scheme. It computes the matrix
-                                // $N(\cdot,\cdot)$, whicih appears in the
-                                // nonlinear term in the Jacobian of
-                                // $F(\cdot)$. Just as
-                                // <code>compute_nl_term</code>, we must
-                                // allow this function to receive as input an
-                                // "old" and a "new" solution, which we again
-                                // call $w_{\mathrm{old}}$ and
-                                // $w_{\mathrm{new}}$ below, respectively.
-template <int dim>
-void SineGordonProblem<dim>::compute_nl_matrix (const Vector<double> &old_data, 
-                                               const Vector<double> &new_data,
-                                               SparseMatrix<double> &nl_matrix) const
-{
-  QGauss<dim>   quadrature_formula (3);
-  FEValues<dim> fe_values (fe, quadrature_formula, 
-                          update_values | update_JxW_values | update_quadrature_points);
-  
-  const unsigned int dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int n_q_points    = quadrature_formula.size();
-  
-  FullMatrix<double> local_nl_matrix (dofs_per_cell, dofs_per_cell);
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell); 
-  std::vector<double> old_data_values (n_q_points);
-  std::vector<double> new_data_values (n_q_points);
-  
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-
-  for (; cell!=endc; ++cell)
-    { 
-                                      // Again, first we
-                                      // re-initialize our
-                                      // <code>FEValues</code>
-                                      // instantiation to the current
-                                      // cell.
-      fe_values.reinit (cell);
-      fe_values.get_function_values (old_data, old_data_values);
-      fe_values.get_function_values (new_data, new_data_values);
-      
-                                      // Then, we evaluate $\int_K
-                                      // \cos\left[\theta
-                                      // w_{\mathrm{new}} +
-                                      // (1-\theta)
-                                      // w_{\mathrm{old}}\right]\,
-                                      // \varphi_i\,
-                                      // \varphi_j\,\mathrm{d}x$
-                                      // using the desired quadrature
-                                      // formula.
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i) 
-         for (unsigned int j=0; j<dofs_per_cell; ++j) 
-           local_nl_matrix(i,j) += (std::cos(theta * new_data_values[q_point] +
-                                             (1-theta) * old_data_values[q_point]) *
-                                    fe_values.shape_value (i, q_point) *
-                                    fe_values.shape_value (j, q_point) *
-                                    fe_values.JxW (q_point));
-      
-                                      // Finally, we add up the
-                                      // contributions of the
-                                      // integrals over the cells to
-                                      // the global integral.
-      cell->get_dof_indices (local_dof_indices);
-
-      for (unsigned int i=0; i<dofs_per_cell; ++i) 
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-         nl_matrix.add(local_dof_indices[i], local_dof_indices[j], 
-                       local_nl_matrix(i,j));
-
-      local_nl_matrix = 0;
-    }
-}
-
-
-
-                                // @sect4{SineGordonProblem::solve}
-
-                                // As discussed in the Introduction, this
-                                // function uses the CG iterative solver on
-                                // the linear system of equations resulting
-                                // from the finite element spatial
-                                // discretization of each iteration of
-                                // Newton's method for the (nonlinear) first
-                                // equation of the split formulation. The
-                                // solution to the system is, in fact,
-                                // $\delta U^{n,l}$ so it is stored in
-                                // <code>solution_update</code> and used to update
-                                // <code>solution</code> in the
-                                // <code>run</code> function.
-                                //
-                                // Note that we re-set the solution update to
-                                // zero before solving for it. This is not
-                                // necessary: iterative solvers can start
-                                // from any point and converge to the correct
-                                // solution. If one has a good estimate about
-                                // the solution of a linear system, it may be
-                                // worthwhile to start from that vector, but
-                                // as a general observation it is a fact that
-                                // the starting point doesn't matter very
-                                // much: it has to be a very, very good guess
-                                // to reduce the number of iterations by more
-                                // than a few. It turns out that for this problem,
-                                // using the previous nonlinear update as a
-                                // starting point actually hurts convergence and
-                                // increases the number of iterations needed,
-                                // so we simply set it to zero.
-                                //
-                                // The function returns the number of
-                                // iterations it took to converge to a
-                                // solution. This number will later be used
-                                // to generate output on the screen showing
-                                // how many iterations were needed in each
-                                // nonlinear iteration.
-template <int dim>
-unsigned int
-SineGordonProblem<dim>::solve () 
-{
-  SolverControl solver_control (1000, 1e-12*system_rhs.l2_norm());
-  SolverCG<> cg (solver_control);
-
-  PreconditionSSOR<> preconditioner;
-  preconditioner.initialize(system_matrix, 1.2);
-  
-  solution_update = 0;
-  cg.solve (system_matrix, solution_update,
-           system_rhs,
-           preconditioner);
-
-  return solver_control.last_step();
-}
-
-                                // @sect4{SineGordonProblem::output_results}
 
-                                // This function outputs the results to a
-                                // file. It is pretty much identical to the
-                                // respective functions in step-23 and
-                                // step-24:
-template <int dim>
-void
-SineGordonProblem<dim>::output_results (const unsigned int timestep_number) const
-{
-  DataOut<dim> data_out;
 
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, "u");
-  data_out.build_patches ();
+                                  // @sect4{SineGordonProblem::solve}
 
-  const std::string filename =  "solution-" +
-                               Utilities::int_to_string (timestep_number, 3) +
-                               ".vtk";
-
-  std::ofstream output (filename.c_str());
-  data_out.write_vtk (output);
-}
-
-                                // @sect4{SineGordonProblem::run}
-
-                                // This function has the top-level
-                                // control over everything: it runs
-                                // the (outer) time-stepping loop,
-                                // the (inner) nonlinear-solver loop,
-                                // and outputs the solution after each
-                                // time step.
-template <int dim>
-void SineGordonProblem<dim>::run () 
-{
-  make_grid_and_dofs ();
-
-                                  // To aknowledge the initial
-                                  // condition, we must use the
-                                  // function $u_0(x)$ to compute
-                                  // $U^0$. To this end, below we
-                                  // will create an object of type
-                                  // <code>InitialValues</code>; note
-                                  // that when we create this object
-                                  // (which is derived from the
-                                  // <code>Function</code> class), we
-                                  // set its internal time variable
-                                  // to $t_0$, to indicate that the
-                                  // initial condition is a function
-                                  // of space and time evaluated at
-                                  // $t=t_0$.
+                                  // As discussed in the Introduction, this
+                                  // function uses the CG iterative solver on
+                                  // the linear system of equations resulting
+                                  // from the finite element spatial
+                                  // discretization of each iteration of
+                                  // Newton's method for the (nonlinear) first
+                                  // equation of the split formulation. The
+                                  // solution to the system is, in fact,
+                                  // $\delta U^{n,l}$ so it is stored in
+                                  // <code>solution_update</code> and used to update
+                                  // <code>solution</code> in the
+                                  // <code>run</code> function.
+                                  //
+                                  // Note that we re-set the solution update to
+                                  // zero before solving for it. This is not
+                                  // necessary: iterative solvers can start
+                                  // from any point and converge to the correct
+                                  // solution. If one has a good estimate about
+                                  // the solution of a linear system, it may be
+                                  // worthwhile to start from that vector, but
+                                  // as a general observation it is a fact that
+                                  // the starting point doesn't matter very
+                                  // much: it has to be a very, very good guess
+                                  // to reduce the number of iterations by more
+                                  // than a few. It turns out that for this problem,
+                                  // using the previous nonlinear update as a
+                                  // starting point actually hurts convergence and
+                                  // increases the number of iterations needed,
+                                  // so we simply set it to zero.
                                   //
-                                  // Then we produce $U^0$ by projecting
-                                  // $u_0(x)$ onto the grid using
-                                  // <code>VectorTools::project</code>. We
-                                  // have to use the same construct using
-                                  // hanging node constraints as in step-21:
-                                  // the VectorTools::project function
-                                  // requires a hanging node constraints
-                                  // object, but to be used we first need to
-                                  // close it:
+                                  // The function returns the number of
+                                  // iterations it took to converge to a
+                                  // solution. This number will later be used
+                                  // to generate output on the screen showing
+                                  // how many iterations were needed in each
+                                  // nonlinear iteration.
+  template <int dim>
+  unsigned int
+  SineGordonProblem<dim>::solve ()
+  {
+    SolverControl solver_control (1000, 1e-12*system_rhs.l2_norm());
+    SolverCG<> cg (solver_control);
+
+    PreconditionSSOR<> preconditioner;
+    preconditioner.initialize(system_matrix, 1.2);
+
+    solution_update = 0;
+    cg.solve (system_matrix, solution_update,
+             system_rhs,
+             preconditioner);
+
+    return solver_control.last_step();
+  }
+
+                                  // @sect4{SineGordonProblem::output_results}
+
+                                  // This function outputs the results to a
+                                  // file. It is pretty much identical to the
+                                  // respective functions in step-23 and
+                                  // step-24:
+  template <int dim>
+  void
+  SineGordonProblem<dim>::output_results (const unsigned int timestep_number) const
+  {
+    DataOut<dim> data_out;
+
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (solution, "u");
+    data_out.build_patches ();
+
+    const std::string filename =  "solution-" +
+                                 Utilities::int_to_string (timestep_number, 3) +
+                                 ".vtk";
+
+    std::ofstream output (filename.c_str());
+    data_out.write_vtk (output);
+  }
+
+                                  // @sect4{SineGordonProblem::run}
+
+                                  // This function has the top-level
+                                  // control over everything: it runs
+                                  // the (outer) time-stepping loop,
+                                  // the (inner) nonlinear-solver loop,
+                                  // and outputs the solution after each
+                                  // time step.
+  template <int dim>
+  void SineGordonProblem<dim>::run ()
+  {
+    make_grid_and_dofs ();
+
+                                    // To aknowledge the initial
+                                    // condition, we must use the
+                                    // function $u_0(x)$ to compute
+                                    // $U^0$. To this end, below we
+                                    // will create an object of type
+                                    // <code>InitialValues</code>; note
+                                    // that when we create this object
+                                    // (which is derived from the
+                                    // <code>Function</code> class), we
+                                    // set its internal time variable
+                                    // to $t_0$, to indicate that the
+                                    // initial condition is a function
+                                    // of space and time evaluated at
+                                    // $t=t_0$.
+                                    //
+                                    // Then we produce $U^0$ by projecting
+                                    // $u_0(x)$ onto the grid using
+                                    // <code>VectorTools::project</code>. We
+                                    // have to use the same construct using
+                                    // hanging node constraints as in step-21:
+                                    // the VectorTools::project function
+                                    // requires a hanging node constraints
+                                    // object, but to be used we first need to
+                                    // close it:
     {
       ConstraintMatrix constraints;
       constraints.close();
@@ -763,117 +765,118 @@ void SineGordonProblem<dim>::run ()
                            solution);
     }
 
-                                  // For completeness, we output the
-                                  // zeroth time step to a file just
-                                  // like any other other time step.
-  output_results (0);
-
-                                  // Now we perform the time
-                                  // stepping: at every time step we
-                                  // solve the matrix equation(s)
-                                  // corresponding to the finite
-                                  // element discretization of the
-                                  // problem, and then advance our
-                                  // solution according to the time
-                                  // stepping formulas we discussed
-                                  // in the Introduction.
-  unsigned int timestep_number = 1;
-  for (time+=time_step; time<=final_time; time+=time_step, ++timestep_number)
-    {
-      old_solution = solution;
-
-      std::cout << std::endl
-               << "Time step #" << timestep_number << "; "
-               << "advancing to t = " << time << "." 
-               << std::endl;
-
-                                      // At the beginning of each
-                                      // time step we must solve the
-                                      // nonlinear equation in the
-                                      // split formulation via
-                                      // Newton's method ---
-                                      // i.e. solve for $\delta
-                                      // U^{n,l}$ then compute
-                                      // $U^{n,l+1}$ and so on. The
-                                      // stopping criterion for this
-                                      // nonlinear iteration is that
-                                      // $\|F_h(U^{n,l})\|_2 \le
-                                      // 10^{-6}
-                                      // \|F_h(U^{n,0})\|_2$. Consequently,
-                                      // we need to record the norm
-                                      // of the residual in the first
-                                      // iteration.
-                                      //
-                                      // At the end of each iteration, we
-                                      // output to the console how many
-                                      // linear solver iterations it took
-                                      // us. When the loop below is done, we
-                                      // have (an approximation of) $U^n$.
-      double initial_rhs_norm = 0.;
-      bool first_iteration = true;
-      do 
-       {
-         assemble_system ();
-
-         if (first_iteration == true)
-           initial_rhs_norm = system_rhs.l2_norm();
-
-         const unsigned int n_iterations
-           = solve ();
-
-         solution += solution_update;
-
-         if (first_iteration == true)
-           std::cout << "    " << n_iterations;
-         else
-           std::cout << '+' << n_iterations;
-         first_iteration = false;
-       } 
-      while (system_rhs.l2_norm() > 1e-6 * initial_rhs_norm);
-
-      std::cout << " CG iterations per nonlinear step."
-               << std::endl;
-      
-                                      // Upon obtaining the solution to the
-                                      // first equation of the problem at
-                                      // $t=t_n$, we must update the
-                                      // auxiliary velocity variable
-                                      // $V^n$. However, we do not compute
-                                      // and store $V^n$ since it is not a
-                                      // quantity we use directly in the
-                                      // problem. Hence, for simplicity, we
-                                      // update $MV^n$ directly:
-      Vector<double> tmp_vector (solution.size());
-      laplace_matrix.vmult (tmp_vector, solution);
-      M_x_velocity.add (-time_step*theta, tmp_vector);
-
-      tmp_vector = 0;
-      laplace_matrix.vmult (tmp_vector, old_solution);
-      M_x_velocity.add (-time_step*(1-theta), tmp_vector);
-      
-      tmp_vector = 0;
-      compute_nl_term (old_solution, solution, tmp_vector);
-      M_x_velocity.add (-time_step, tmp_vector);
-
-                                      // Oftentimes, in particular
-                                      // for fine meshes, we must
-                                      // pick the time step to be
-                                      // quite small in order for the
-                                      // scheme to be
-                                      // stable. Therefore, there are
-                                      // a lot of time steps during
-                                      // which "nothing interesting
-                                      // happens" in the solution. To
-                                      // improve overall efficiency
-                                      // -- in particular, speed up
-                                      // the program and save disk
-                                      // space -- we only output the
-                                      // solution every
-                                      // <code>output_timestep_skip</code>
-                                      // time steps:
-      if (timestep_number % output_timestep_skip == 0)
-       output_results (timestep_number);      
-    }
+                                    // For completeness, we output the
+                                    // zeroth time step to a file just
+                                    // like any other other time step.
+    output_results (0);
+
+                                    // Now we perform the time
+                                    // stepping: at every time step we
+                                    // solve the matrix equation(s)
+                                    // corresponding to the finite
+                                    // element discretization of the
+                                    // problem, and then advance our
+                                    // solution according to the time
+                                    // stepping formulas we discussed
+                                    // in the Introduction.
+    unsigned int timestep_number = 1;
+    for (time+=time_step; time<=final_time; time+=time_step, ++timestep_number)
+      {
+       old_solution = solution;
+
+       std::cout << std::endl
+                 << "Time step #" << timestep_number << "; "
+                 << "advancing to t = " << time << "."
+                 << std::endl;
+
+                                        // At the beginning of each
+                                        // time step we must solve the
+                                        // nonlinear equation in the
+                                        // split formulation via
+                                        // Newton's method ---
+                                        // i.e. solve for $\delta
+                                        // U^{n,l}$ then compute
+                                        // $U^{n,l+1}$ and so on. The
+                                        // stopping criterion for this
+                                        // nonlinear iteration is that
+                                        // $\|F_h(U^{n,l})\|_2 \le
+                                        // 10^{-6}
+                                        // \|F_h(U^{n,0})\|_2$. Consequently,
+                                        // we need to record the norm
+                                        // of the residual in the first
+                                        // iteration.
+                                        //
+                                        // At the end of each iteration, we
+                                        // output to the console how many
+                                        // linear solver iterations it took
+                                        // us. When the loop below is done, we
+                                        // have (an approximation of) $U^n$.
+       double initial_rhs_norm = 0.;
+       bool first_iteration = true;
+       do
+         {
+           assemble_system ();
+
+           if (first_iteration == true)
+             initial_rhs_norm = system_rhs.l2_norm();
+
+           const unsigned int n_iterations
+             = solve ();
+
+           solution += solution_update;
+
+           if (first_iteration == true)
+             std::cout << "    " << n_iterations;
+           else
+             std::cout << '+' << n_iterations;
+           first_iteration = false;
+         }
+       while (system_rhs.l2_norm() > 1e-6 * initial_rhs_norm);
+
+       std::cout << " CG iterations per nonlinear step."
+                 << std::endl;
+
+                                        // Upon obtaining the solution to the
+                                        // first equation of the problem at
+                                        // $t=t_n$, we must update the
+                                        // auxiliary velocity variable
+                                        // $V^n$. However, we do not compute
+                                        // and store $V^n$ since it is not a
+                                        // quantity we use directly in the
+                                        // problem. Hence, for simplicity, we
+                                        // update $MV^n$ directly:
+       Vector<double> tmp_vector (solution.size());
+       laplace_matrix.vmult (tmp_vector, solution);
+       M_x_velocity.add (-time_step*theta, tmp_vector);
+
+       tmp_vector = 0;
+       laplace_matrix.vmult (tmp_vector, old_solution);
+       M_x_velocity.add (-time_step*(1-theta), tmp_vector);
+
+       tmp_vector = 0;
+       compute_nl_term (old_solution, solution, tmp_vector);
+       M_x_velocity.add (-time_step, tmp_vector);
+
+                                        // Oftentimes, in particular
+                                        // for fine meshes, we must
+                                        // pick the time step to be
+                                        // quite small in order for the
+                                        // scheme to be
+                                        // stable. Therefore, there are
+                                        // a lot of time steps during
+                                        // which "nothing interesting
+                                        // happens" in the solution. To
+                                        // improve overall efficiency
+                                        // -- in particular, speed up
+                                        // the program and save disk
+                                        // space -- we only output the
+                                        // solution every
+                                        // <code>output_timestep_skip</code>
+                                        // time steps:
+       if (timestep_number % output_timestep_skip == 0)
+         output_results (timestep_number);
+      }
+  }
 }
 
                                 // @sect3{The <code>main</code> function}
@@ -893,10 +896,13 @@ void SineGordonProblem<dim>::run ()
                                 // here. For more information about
                                 // exceptions the reader should
                                 // consult step-6.
-int main () 
+int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step25;
+
       deallog.depth_console (0);
 
       SineGordonProblem<1> sg_problem;
@@ -912,10 +918,10 @@ int main ()
                 << "Aborting!" << std::endl
                 << "----------------------------------------------------"
                 << std::endl;
-      
+
       return 1;
     }
-  catch (...) 
+  catch (...)
     {
       std::cerr << std::endl << std::endl
                << "----------------------------------------------------"
@@ -926,6 +932,6 @@ int main ()
                << std::endl;
       return 1;
     }
-  
+
   return 0;
 }
index cc070a51477565be5f1ff1a1069db994d6781eb0..aca2b5c47a60041a548eecb2a417c42043ce16c8 100644 (file)
 
                                 // The last step is as in all
                                 // previous programs:
-using namespace dealii;
-
-class PointCloudSurface : public StraightBoundary<3>
-{
-  public:
-                                    /**
-                                     * Constructor.
-                                     */
-    PointCloudSurface (const std::string &filename);
-
-                                    /**
-                                     * Let the new point be the
-                                     * arithmetic mean of the two
-                                     * vertices of the line.
-                                     *
-                                     * Refer to the general
-                                     * documentation of this class
-                                     * and the documentation of the
-                                     * base class for more
-                                     * information.
-                                     */
-    virtual Point<3>
-    get_new_point_on_line (const Triangulation<3>::line_iterator &line) const;
-
-                                    /**
-                                     * Let the new point be the
-                                     * arithmetic mean of the four
-                                     * vertices of this quad and the
-                                     * four midpoints of the lines,
-                                     * which are already created at
-                                     * the time of calling this
-                                     * function.
-                                     *
-                                     * Refer to the general
-                                     * documentation of this class
-                                     * and the documentation of the
-                                     * base class for more
-                                     * information.
-                                     */
-    virtual Point<3>
-    get_new_point_on_quad (const Triangulation<3>::quad_iterator &quad) const;
-
-                                    /**
-                                     * Gives <tt>n=points.size()</tt>
-                                     * points that splits the
-                                     * StraightBoundary line into
-                                     * $n+1$ partitions of equal
-                                     * lengths.
-                                     *
-                                     * Refer to the general
-                                     * documentation of this class
-                                     * and the documentation of the
-                                     * base class.
-                                     */
-    virtual void
-    get_intermediate_points_on_line (const Triangulation<3>::line_iterator &line,
-                                    std::vector<Point<3> > &points) const;
-
-                                    /**
-                                     * Gives <tt>n=points.size()=m*m</tt>
-                                     * points that splits the
-                                     * p{StraightBoundary} quad into
-                                     * <tt>(m+1)(m+1)</tt> subquads of equal
-                                     * size.
-                                     *
-                                     * Refer to the general
-                                     * documentation of this class
-                                     * and the documentation of the
-                                     * base class.
-                                     */
-    virtual void
-    get_intermediate_points_on_quad (const Triangulation<3>::quad_iterator &quad,
-                                    std::vector<Point<3> > &points) const;
-
-                                    /**
-                                     * A function that, given a point
-                                     * <code>p</code>, returns the closest
-                                     * point on the surface defined by the
-                                     * input file. For the time being, we
-                                     * simply return the closest point in the
-                                     * point cloud, rather than doing any
-                                     * sort of interpolation.
-                                     */
-    Point<3> closest_point (const Point<3> &p) const;
-  private:
-    std::vector<Point<3> > point_list;
-};
-
-
-PointCloudSurface::PointCloudSurface (const std::string &filename)
+namespace Step26
 {
-                                  // first read in all the points
+  using namespace dealii;
+
+  class PointCloudSurface : public StraightBoundary<3>
+  {
+    public:
+                                      /**
+                                       * Constructor.
+                                       */
+      PointCloudSurface (const std::string &filename);
+
+                                      /**
+                                       * Let the new point be the
+                                       * arithmetic mean of the two
+                                       * vertices of the line.
+                                       *
+                                       * Refer to the general
+                                       * documentation of this class
+                                       * and the documentation of the
+                                       * base class for more
+                                       * information.
+                                       */
+      virtual Point<3>
+      get_new_point_on_line (const Triangulation<3>::line_iterator &line) const;
+
+                                      /**
+                                       * Let the new point be the
+                                       * arithmetic mean of the four
+                                       * vertices of this quad and the
+                                       * four midpoints of the lines,
+                                       * which are already created at
+                                       * the time of calling this
+                                       * function.
+                                       *
+                                       * Refer to the general
+                                       * documentation of this class
+                                       * and the documentation of the
+                                       * base class for more
+                                       * information.
+                                       */
+      virtual Point<3>
+      get_new_point_on_quad (const Triangulation<3>::quad_iterator &quad) const;
+
+                                      /**
+                                       * Gives <tt>n=points.size()</tt>
+                                       * points that splits the
+                                       * StraightBoundary line into
+                                       * $n+1$ partitions of equal
+                                       * lengths.
+                                       *
+                                       * Refer to the general
+                                       * documentation of this class
+                                       * and the documentation of the
+                                       * base class.
+                                       */
+      virtual void
+      get_intermediate_points_on_line (const Triangulation<3>::line_iterator &line,
+                                      std::vector<Point<3> > &points) const;
+
+                                      /**
+                                       * Gives <tt>n=points.size()=m*m</tt>
+                                       * points that splits the
+                                       * p{StraightBoundary} quad into
+                                       * <tt>(m+1)(m+1)</tt> subquads of equal
+                                       * size.
+                                       *
+                                       * Refer to the general
+                                       * documentation of this class
+                                       * and the documentation of the
+                                       * base class.
+                                       */
+      virtual void
+      get_intermediate_points_on_quad (const Triangulation<3>::quad_iterator &quad,
+                                      std::vector<Point<3> > &points) const;
+
+                                      /**
+                                       * A function that, given a point
+                                       * <code>p</code>, returns the closest
+                                       * point on the surface defined by the
+                                       * input file. For the time being, we
+                                       * simply return the closest point in the
+                                       * point cloud, rather than doing any
+                                       * sort of interpolation.
+                                       */
+      Point<3> closest_point (const Point<3> &p) const;
+    private:
+      std::vector<Point<3> > point_list;
+  };
+
+
+  PointCloudSurface::PointCloudSurface (const std::string &filename)
   {
-    std::ifstream in (filename.c_str());
-    AssertThrow (in, ExcIO());
+                                    // first read in all the points
+    {
+      std::ifstream in (filename.c_str());
+      AssertThrow (in, ExcIO());
 
-    while (in)
-      {
-       Point<3> p;
-       in >> p;
-       point_list.push_back (p);
-      }
+      while (in)
+       {
+         Point<3> p;
+         in >> p;
+         point_list.push_back (p);
+       }
 
-    AssertThrow (point_list.size() > 1, ExcIO());
-  }
+      AssertThrow (point_list.size() > 1, ExcIO());
+    }
 
-                                  // next fit a linear model through the data
-                                  // cloud to rectify it in a local
-                                  // coordinate system
-                                  //
-                                  // the first step is to move the center of
-                                  // mass of the points to the origin
-  {
-    const Point<3> c_o_m = std::accumulate (point_list.begin(),
-                                           point_list.end(),
-                                           Point<3>()) /
+                                    // next fit a linear model through the data
+                                    // cloud to rectify it in a local
+                                    // coordinate system
+                                    //
+                                    // the first step is to move the center of
+                                    // mass of the points to the origin
+    {
+      const Point<3> c_o_m = std::accumulate (point_list.begin(),
+                                             point_list.end(),
+                                             Point<3>()) /
                             point_list.size();
-    for (unsigned int i=0; i<point_list.size(); ++i)
-      point_list[i] -= c_o_m;
-  }
-
-                                  // next do a least squares fit to the
-                                  // function ax+by. this leads to the
-                                  // following equations:
+      for (unsigned int i=0; i<point_list.size(); ++i)
+       point_list[i] -= c_o_m;
+    }
 
-                                  // min f(a,b) = sum_i (zi-a xi - b yi)^2 / 2
-                                  //
-                                  // f_a = sum_i (zi - a xi - b yi) xi = 0
-                                  // f_b = sum_i (zi - a xi - b yi) yi = 0
-                                  //
-                                  // f_a = (sum_i zi xi) - (sum xi^2) a - (sum xi yi) b = 0
-                                  // f_a = (sum_i zi yi) - (sum xi yi) a - (sum yi^2) b = 0
-  {
-    double A[2][2] = {{0,0},{0,0}};
-    double B[2] = {0,0};
+                                    // next do a least squares fit to the
+                                    // function ax+by. this leads to the
+                                    // following equations:
+
+                                    // min f(a,b) = sum_i (zi-a xi - b yi)^2 / 2
+                                    //
+                                    // f_a = sum_i (zi - a xi - b yi) xi = 0
+                                    // f_b = sum_i (zi - a xi - b yi) yi = 0
+                                    //
+                                    // f_a = (sum_i zi xi) - (sum xi^2) a - (sum xi yi) b = 0
+                                    // f_a = (sum_i zi yi) - (sum xi yi) a - (sum yi^2) b = 0
+    {
+      double A[2][2] = {{0,0},{0,0}};
+      double B[2] = {0,0};
 
-    for (unsigned int i=0; i<point_list.size(); ++i)
-      {
-       A[0][0] += point_list[i][0] * point_list[i][0];
-       A[0][1] += point_list[i][0] * point_list[i][1];
-       A[1][1] += point_list[i][1] * point_list[i][1];
+      for (unsigned int i=0; i<point_list.size(); ++i)
+       {
+         A[0][0] += point_list[i][0] * point_list[i][0];
+         A[0][1] += point_list[i][0] * point_list[i][1];
+         A[1][1] += point_list[i][1] * point_list[i][1];
 
-       B[0] += point_list[i][0] * point_list[i][2];
-       B[1] += point_list[i][1] * point_list[i][2];
-      }
+         B[0] += point_list[i][0] * point_list[i][2];
+         B[1] += point_list[i][1] * point_list[i][2];
+       }
 
-    const double det = A[0][0]*A[1][1]-2*A[0][1];
-    const double a = (A[1][1] * B[0] - A[0][1] * B[1]) / det;
-    const double b = (A[0][0] * B[1] - A[0][1] * B[0]) / det;
+      const double det = A[0][0]*A[1][1]-2*A[0][1];
+      const double a = (A[1][1] * B[0] - A[0][1] * B[1]) / det;
+      const double b = (A[0][0] * B[1] - A[0][1] * B[0]) / det;
 
 
-                                    // with this information, we can rotate
-                                    // the points so that the corresponding
-                                    // least-squares fit would be the x-y
-                                    // plane
-    const Point<2> gradient_direction
-      = Point<2>(a,b) / std::sqrt(a*a+b*b);
-    const Point<2> orthogonal_direction
-      = Point<2>(-b,a) / std::sqrt(a*a+b*b);
+                                      // with this information, we can rotate
+                                      // the points so that the corresponding
+                                      // least-squares fit would be the x-y
+                                      // plane
+      const Point<2> gradient_direction
+       = Point<2>(a,b) / std::sqrt(a*a+b*b);
+      const Point<2> orthogonal_direction
+       = Point<2>(-b,a) / std::sqrt(a*a+b*b);
 
-    const double stretch_factor = std::sqrt(1.+a*a+b*b);
+      const double stretch_factor = std::sqrt(1.+a*a+b*b);
 
-    for (unsigned int i=0; i<point_list.size(); ++i)
-      {
-                                        // we can do that by, for each point,
-                                        // first subtract the points in the
-                                        // plane:
-       point_list[i][2] -= a*point_list[i][0] + b*point_list[i][1];
-
-                                      // we made a mistake here, though:
-                                      // we've shrunk the plan in the
-                                      // direction parallel to the
-                                      // gradient. we will have to correct
-                                      // for this:
-       const Point<2> xy (point_list[i][0],
-                          point_list[i][1]);
-       const double grad_distance = xy * gradient_direction;
-       const double orth_distance = xy * orthogonal_direction;
-
-                                        // we then have to stretch the points
-                                        // in the gradient direction. the
-                                        // stretch factor is defined above
-                                        // (zero if the original plane was
-                                        // already the xy plane, infinity if
-                                        // it was vertical)
-       const Point<2> new_xy
-         = (grad_distance * stretch_factor * gradient_direction +
-            orth_distance * orthogonal_direction);
-       point_list[i][0] = new_xy[0];
-       point_list[i][1] = new_xy[1];
-      }
+      for (unsigned int i=0; i<point_list.size(); ++i)
+       {
+                                          // we can do that by, for each point,
+                                          // first subtract the points in the
+                                          // plane:
+         point_list[i][2] -= a*point_list[i][0] + b*point_list[i][1];
+
+                                          // we made a mistake here, though:
+                                          // we've shrunk the plan in the
+                                          // direction parallel to the
+                                          // gradient. we will have to correct
+                                          // for this:
+         const Point<2> xy (point_list[i][0],
+                            point_list[i][1]);
+         const double grad_distance = xy * gradient_direction;
+         const double orth_distance = xy * orthogonal_direction;
+
+                                          // we then have to stretch the points
+                                          // in the gradient direction. the
+                                          // stretch factor is defined above
+                                          // (zero if the original plane was
+                                          // already the xy plane, infinity if
+                                          // it was vertical)
+         const Point<2> new_xy
+           = (grad_distance * stretch_factor * gradient_direction +
+              orth_distance * orthogonal_direction);
+         point_list[i][0] = new_xy[0];
+         point_list[i][1] = new_xy[1];
+       }
+    }
   }
-}
 
 
-Point<3>
-PointCloudSurface::closest_point (const Point<3> &p) const
-{
-  double distance = p.distance (point_list[0]);
-  Point<3> point = point_list[0];
+  Point<3>
+  PointCloudSurface::closest_point (const Point<3> &p) const
+  {
+    double distance = p.distance (point_list[0]);
+    Point<3> point = point_list[0];
 
-  for (std::vector<Point<3> >::const_iterator i=point_list.begin();
-       i != point_list.end(); ++i)
-    {
-      const double d = p.distance (*i);
-      if (d < distance)
-       {
-         distance = d;
-         point = *i;
-       }
-    }
+    for (std::vector<Point<3> >::const_iterator i=point_list.begin();
+        i != point_list.end(); ++i)
+      {
+       const double d = p.distance (*i);
+       if (d < distance)
+         {
+           distance = d;
+           point = *i;
+         }
+      }
 
-  return point;
-}
+    return point;
+  }
 
 
-Point<3>
-PointCloudSurface::
-get_new_point_on_line (const Triangulation<3>::line_iterator &line) const
-{
-  return closest_point (StraightBoundary<3>::get_new_point_on_line (line));
-}
+  Point<3>
+  PointCloudSurface::
+  get_new_point_on_line (const Triangulation<3>::line_iterator &line) const
+  {
+    return closest_point (StraightBoundary<3>::get_new_point_on_line (line));
+  }
 
 
 
-Point<3>
-PointCloudSurface::
-get_new_point_on_quad (const Triangulation<3>::quad_iterator &quad) const
-{
-  return closest_point (StraightBoundary<3>::get_new_point_on_quad (quad));
-}
+  Point<3>
+  PointCloudSurface::
+  get_new_point_on_quad (const Triangulation<3>::quad_iterator &quad) const
+  {
+    return closest_point (StraightBoundary<3>::get_new_point_on_quad (quad));
+  }
 
 
 
-void
-PointCloudSurface::
-get_intermediate_points_on_line (const Triangulation<3>::line_iterator &line,
-                                std::vector<Point<3> > &points) const
-{
-  StraightBoundary<3>::get_intermediate_points_on_line (line,
-                                                       points);
-  for (unsigned int i=0; i<points.size(); ++i)
-    points[i] = closest_point(points[i]);
-}
+  void
+  PointCloudSurface::
+  get_intermediate_points_on_line (const Triangulation<3>::line_iterator &line,
+                                  std::vector<Point<3> > &points) const
+  {
+    StraightBoundary<3>::get_intermediate_points_on_line (line,
+                                                         points);
+    for (unsigned int i=0; i<points.size(); ++i)
+      points[i] = closest_point(points[i]);
+  }
 
 
 
-void
-PointCloudSurface::
-get_intermediate_points_on_quad (const Triangulation<3>::quad_iterator &quad,
-                                std::vector<Point<3> > &points) const
-{
-  StraightBoundary<3>::get_intermediate_points_on_quad (quad,
-                                                       points);
-  for (unsigned int i=0; i<points.size(); ++i)
-    points[i] = closest_point(points[i]);
-}
+  void
+  PointCloudSurface::
+  get_intermediate_points_on_quad (const Triangulation<3>::quad_iterator &quad,
+                                  std::vector<Point<3> > &points) const
+  {
+    StraightBoundary<3>::get_intermediate_points_on_quad (quad,
+                                                         points);
+    for (unsigned int i=0; i<points.size(); ++i)
+      points[i] = closest_point(points[i]);
+  }
 
 
 
-PointCloudSurface pds("surface-points");
+  PointCloudSurface pds("surface-points");
 
 
 
@@ -324,368 +326,369 @@ PointCloudSurface pds("surface-points");
 
 
 
-                                 // @sect3{The <code>LaplaceProblem</code> class template}
+                                  // @sect3{The <code>LaplaceProblem</code> class template}
 
-                                // This is again the same
-                                // <code>LaplaceProblem</code> class as in the
-                                // previous example. The only
-                                // difference is that we have now
-                                // declared it as a class with a
-                                // template parameter, and the
-                                // template parameter is of course
-                                // the spatial dimension in which we
-                                // would like to solve the Laplace
-                                // equation. Of course, several of
-                                // the member variables depend on
-                                // this dimension as well, in
-                                // particular the Triangulation
-                                // class, which has to represent
-                                // quadrilaterals or hexahedra,
-                                // respectively. Apart from this,
-                                // everything is as before.
-template <int dim>
-class LaplaceProblem
-{
-  public:
-    LaplaceProblem ();
-    void run ();
+                                  // This is again the same
+                                  // <code>LaplaceProblem</code> class as in the
+                                  // previous example. The only
+                                  // difference is that we have now
+                                  // declared it as a class with a
+                                  // template parameter, and the
+                                  // template parameter is of course
+                                  // the spatial dimension in which we
+                                  // would like to solve the Laplace
+                                  // equation. Of course, several of
+                                  // the member variables depend on
+                                  // this dimension as well, in
+                                  // particular the Triangulation
+                                  // class, which has to represent
+                                  // quadrilaterals or hexahedra,
+                                  // respectively. Apart from this,
+                                  // everything is as before.
+  template <int dim>
+  class LaplaceProblem
+  {
+    public:
+      LaplaceProblem ();
+      void run ();
 
-  private:
-    void make_grid_and_dofs ();
-    void assemble_system ();
-    void solve ();
-    void output_results () const;
+    private:
+      void make_grid_and_dofs ();
+      void assemble_system ();
+      void solve ();
+      void output_results () const;
 
-    Triangulation<dim>   triangulation;
-    FE_Q<dim>            fe;
-    DoFHandler<dim>      dof_handler;
+      Triangulation<dim>   triangulation;
+      FE_Q<dim>            fe;
+      DoFHandler<dim>      dof_handler;
 
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
+      SparsityPattern      sparsity_pattern;
+      SparseMatrix<double> system_matrix;
 
-    Vector<double>       solution;
-    Vector<double>       system_rhs;
-};
+      Vector<double>       solution;
+      Vector<double>       system_rhs;
+  };
 
 
-                                 // @sect3{Right hand side and boundary values}
+                                  // @sect3{Right hand side and boundary values}
 
 
 
 
-template <int dim>
-class BoundaryValues : public Function<dim>
-{
-  public:
-    BoundaryValues () : Function<dim>() {}
+  template <int dim>
+  class BoundaryValues : public Function<dim>
+  {
+    public:
+      BoundaryValues () : Function<dim>() {}
 
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component = 0) const;
+  };
 
 
 
-template <int dim>
-double BoundaryValues<dim>::value (const Point<dim> &p,
-                                  const unsigned int /*component*/) const
-{
-  return std::max(p[dim-1], -5.);
-}
+  template <int dim>
+  double BoundaryValues<dim>::value (const Point<dim> &p,
+                                    const unsigned int /*component*/) const
+  {
+    return std::max(p[dim-1], -5.);
+  }
 
 
 
-                                 // @sect3{Implementation of the <code>LaplaceProblem</code> class}
-
-                                 // Next for the implementation of the class
-                                 // template that makes use of the functions
-                                 // above. As before, we will write everything
-                                 // as templates that have a formal parameter
-                                 // <code>dim</code> that we assume unknown at the time
-                                 // we define the template functions. Only
-                                 // later, the compiler will find a
-                                 // declaration of <code>LaplaceProblem@<2@></code> (in
-                                 // the <code>main</code> function, actually) and
-                                 // compile the entire class with <code>dim</code>
-                                 // replaced by 2, a process referred to as
-                                 // `instantiation of a template'. When doing
-                                 // so, it will also replace instances of
-                                 // <code>RightHandSide@<dim@></code> by
-                                 // <code>RightHandSide@<2@></code> and instantiate the
-                                 // latter class from the class template.
-                                 //
-                                 // In fact, the compiler will also find a
-                                 // declaration <code>LaplaceProblem@<3@></code> in
-                                 // <code>main()</code>. This will cause it to again go
-                                 // back to the general
-                                 // <code>LaplaceProblem@<dim@></code> template, replace
-                                 // all occurrences of <code>dim</code>, this time by
-                                 // 3, and compile the class a second
-                                 // time. Note that the two instantiations
-                                 // <code>LaplaceProblem@<2@></code> and
-                                 // <code>LaplaceProblem@<3@></code> are completely
-                                 // independent classes; their only common
-                                 // feature is that they are both instantiated
-                                 // from the same general template, but they
-                                 // are not convertible into each other, for
-                                 // example, and share no code (both
-                                 // instantiations are compiled completely
-                                 // independently).
-
-
-                                 // @sect4{LaplaceProblem::LaplaceProblem}
-
-                                // After this introduction, here is the
-                                // constructor of the <code>LaplaceProblem</code>
-                                // class. It specifies the desired polynomial
-                                // degree of the finite elements and
-                                // associates the DoFHandler to the
-                                // triangulation just as in the previous
-                                // example program, step-3:
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem () :
-                fe (1),
-               dof_handler (triangulation)
-{}
-
-
-                                 // @sect4{LaplaceProblem::make_grid_and_dofs}
-
-                                // Grid creation is something
-                                // inherently dimension
-                                // dependent. However, as long as the
-                                // domains are sufficiently similar
-                                // in 2D or 3D, the library can
-                                // abstract for you. In our case, we
-                                // would like to again solve on the
-                                // square [-1,1]x[-1,1] in 2D, or on
-                                // the cube [-1,1]x[-1,1]x[-1,1] in
-                                // 3D; both can be termed
-                                // <code>hyper_cube</code>, so we may use the
-                                // same function in whatever
-                                // dimension we are. Of course, the
-                                // functions that create a hypercube
-                                // in two and three dimensions are
-                                // very much different, but that is
-                                // something you need not care
-                                // about. Let the library handle the
-                                // difficult things.
-                                //
-                                // Likewise, associating a degree of freedom
-                                // with each vertex is something which
-                                // certainly looks different in 2D and 3D,
-                                // but that does not need to bother you
-                                // either. This function therefore looks
-                                // exactly like in the previous example,
-                                // although it performs actions that in their
-                                // details are quite different if <code>dim</code>
-                                // happens to be 3. The only significant
-                                // difference from a user's perspective is
-                                // the number of cells resulting, which is
-                                // much higher in three than in two space
-                                // dimensions!
-template <int dim>
-void LaplaceProblem<dim>::make_grid_and_dofs ()
-{
-  GridGenerator::hyper_cube (triangulation, -30, 30);
+                                  // @sect3{Implementation of the <code>LaplaceProblem</code> class}
+
+                                  // Next for the implementation of the class
+                                  // template that makes use of the functions
+                                  // above. As before, we will write everything
+                                  // as templates that have a formal parameter
+                                  // <code>dim</code> that we assume unknown at the time
+                                  // we define the template functions. Only
+                                  // later, the compiler will find a
+                                  // declaration of <code>LaplaceProblem@<2@></code> (in
+                                  // the <code>main</code> function, actually) and
+                                  // compile the entire class with <code>dim</code>
+                                  // replaced by 2, a process referred to as
+                                  // `instantiation of a template'. When doing
+                                  // so, it will also replace instances of
+                                  // <code>RightHandSide@<dim@></code> by
+                                  // <code>RightHandSide@<2@></code> and instantiate the
+                                  // latter class from the class template.
+                                  //
+                                  // In fact, the compiler will also find a
+                                  // declaration <code>LaplaceProblem@<3@></code> in
+                                  // <code>main()</code>. This will cause it to again go
+                                  // back to the general
+                                  // <code>LaplaceProblem@<dim@></code> template, replace
+                                  // all occurrences of <code>dim</code>, this time by
+                                  // 3, and compile the class a second
+                                  // time. Note that the two instantiations
+                                  // <code>LaplaceProblem@<2@></code> and
+                                  // <code>LaplaceProblem@<3@></code> are completely
+                                  // independent classes; their only common
+                                  // feature is that they are both instantiated
+                                  // from the same general template, but they
+                                  // are not convertible into each other, for
+                                  // example, and share no code (both
+                                  // instantiations are compiled completely
+                                  // independently).
+
+
+                                  // @sect4{LaplaceProblem::LaplaceProblem}
+
+                                  // After this introduction, here is the
+                                  // constructor of the <code>LaplaceProblem</code>
+                                  // class. It specifies the desired polynomial
+                                  // degree of the finite elements and
+                                  // associates the DoFHandler to the
+                                  // triangulation just as in the previous
+                                  // example program, step-3:
+  template <int dim>
+  LaplaceProblem<dim>::LaplaceProblem () :
+                 fe (1),
+                 dof_handler (triangulation)
+  {}
+
+
+                                  // @sect4{LaplaceProblem::make_grid_and_dofs}
+
+                                  // Grid creation is something
+                                  // inherently dimension
+                                  // dependent. However, as long as the
+                                  // domains are sufficiently similar
+                                  // in 2D or 3D, the library can
+                                  // abstract for you. In our case, we
+                                  // would like to again solve on the
+                                  // square [-1,1]x[-1,1] in 2D, or on
+                                  // the cube [-1,1]x[-1,1]x[-1,1] in
+                                  // 3D; both can be termed
+                                  // <code>hyper_cube</code>, so we may use the
+                                  // same function in whatever
+                                  // dimension we are. Of course, the
+                                  // functions that create a hypercube
+                                  // in two and three dimensions are
+                                  // very much different, but that is
+                                  // something you need not care
+                                  // about. Let the library handle the
+                                  // difficult things.
+                                  //
+                                  // Likewise, associating a degree of freedom
+                                  // with each vertex is something which
+                                  // certainly looks different in 2D and 3D,
+                                  // but that does not need to bother you
+                                  // either. This function therefore looks
+                                  // exactly like in the previous example,
+                                  // although it performs actions that in their
+                                  // details are quite different if <code>dim</code>
+                                  // happens to be 3. The only significant
+                                  // difference from a user's perspective is
+                                  // the number of cells resulting, which is
+                                  // much higher in three than in two space
+                                  // dimensions!
+  template <int dim>
+  void LaplaceProblem<dim>::make_grid_and_dofs ()
+  {
+    GridGenerator::hyper_cube (triangulation, -30, 30);
 
-  for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
-    if (triangulation.begin()->face(f)->center()[2] > 15)
-      {
-       triangulation.begin()->face(f)->set_boundary_indicator (1);
-       for (unsigned int i=0; i<GeometryInfo<dim>::lines_per_face; ++i)
-         triangulation.begin()->face(f)->line(i)->set_boundary_indicator (1);
-       break;
-      }
-  triangulation.set_boundary (1, pds);
+    for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
+      if (triangulation.begin()->face(f)->center()[2] > 15)
+       {
+         triangulation.begin()->face(f)->set_boundary_indicator (1);
+         for (unsigned int i=0; i<GeometryInfo<dim>::lines_per_face; ++i)
+           triangulation.begin()->face(f)->line(i)->set_boundary_indicator (1);
+         break;
+       }
+    triangulation.set_boundary (1, pds);
 
 
-  for (unsigned int v=0; v<GeometryInfo<dim>::vertices_per_cell; ++v)
-    if (triangulation.begin()->vertex(v)[2] > 0)
-      triangulation.begin()->vertex(v)
-       = pds.closest_point (Point<3>(triangulation.begin()->vertex(v)[0],
-                                     triangulation.begin()->vertex(v)[1],
-                                     0));
+    for (unsigned int v=0; v<GeometryInfo<dim>::vertices_per_cell; ++v)
+      if (triangulation.begin()->vertex(v)[2] > 0)
+       triangulation.begin()->vertex(v)
+         = pds.closest_point (Point<3>(triangulation.begin()->vertex(v)[0],
+                                       triangulation.begin()->vertex(v)[1],
+                                       0));
 
-  for (unsigned int i=0; i<4; ++i)
-    {
-      for (typename Triangulation<dim>::active_cell_iterator
-            cell = triangulation.begin_active();
-          cell != triangulation.end(); ++cell)
-       for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
-         if (cell->face(f)->boundary_indicator() == 1)
-           cell->set_refine_flag ();
-
-      triangulation.execute_coarsening_and_refinement ();
-
-      std::cout << "Refinement cycle " << i << std::endl
-               << "   Number of active cells: "
-               << triangulation.n_active_cells()
-               << std::endl
-               << "   Total number of cells: "
-               << triangulation.n_cells()
-               << std::endl;
+    for (unsigned int i=0; i<4; ++i)
+      {
+       for (typename Triangulation<dim>::active_cell_iterator
+              cell = triangulation.begin_active();
+            cell != triangulation.end(); ++cell)
+         for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
+           if (cell->face(f)->boundary_indicator() == 1)
+             cell->set_refine_flag ();
+
+       triangulation.execute_coarsening_and_refinement ();
+
+       std::cout << "Refinement cycle " << i << std::endl
+                 << "   Number of active cells: "
+                 << triangulation.n_active_cells()
+                 << std::endl
+                 << "   Total number of cells: "
+                 << triangulation.n_cells()
+                 << std::endl;
 
-    }
+      }
 
 
-  dof_handler.distribute_dofs (fe);
+    dof_handler.distribute_dofs (fe);
 
-  std::cout << "   Number of degrees of freedom: "
-           << dof_handler.n_dofs()
-           << std::endl;
+    std::cout << "   Number of degrees of freedom: "
+             << dof_handler.n_dofs()
+             << std::endl;
 
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress();
+    sparsity_pattern.reinit (dof_handler.n_dofs(),
+                            dof_handler.n_dofs(),
+                            dof_handler.max_couplings_between_dofs());
+    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+    sparsity_pattern.compress();
 
-  system_matrix.reinit (sparsity_pattern);
+    system_matrix.reinit (sparsity_pattern);
 
-  solution.reinit (dof_handler.n_dofs());
-  system_rhs.reinit (dof_handler.n_dofs());
-}
+    solution.reinit (dof_handler.n_dofs());
+    system_rhs.reinit (dof_handler.n_dofs());
+  }
 
 
-                                 // @sect4{LaplaceProblem::assemble_system}
+                                  // @sect4{LaplaceProblem::assemble_system}
 
-                                // Unlike in the previous example, we
-                                // would now like to use a
-                                // non-constant right hand side
-                                // function and non-zero boundary
-                                // values. Both are tasks that are
-                                // readily achieved with a only a few
-                                // new lines of code in the
-                                // assemblage of the matrix and right
-                                // hand side.
-                                //
-                                // More interesting, though, is the
-                                // way we assemble matrix and right
-                                // hand side vector dimension
-                                // independently: there is simply no
-                                // difference to the
-                                // two-dimensional case. Since the
-                                // important objects used in this
-                                // function (quadrature formula,
-                                // FEValues) depend on the dimension
-                                // by way of a template parameter as
-                                // well, they can take care of
-                                // setting up properly everything for
-                                // the dimension for which this
-                                // function is compiled. By declaring
-                                // all classes which might depend on
-                                // the dimension using a template
-                                // parameter, the library can make
-                                // nearly all work for you and you
-                                // don't have to care about most
-                                // things.
-template <int dim>
-void LaplaceProblem<dim>::assemble_system ()
-{
-  MatrixTools::create_laplace_matrix (dof_handler,
-                                     QGauss<dim>(2),
-                                     system_matrix);
-  system_rhs = 0;
-
-  std::map<unsigned int,double> boundary_values;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           BoundaryValues<dim>(),
-                                           boundary_values);
-  MatrixTools::apply_boundary_values (boundary_values,
-                                     system_matrix,
-                                     solution,
-                                     system_rhs);
-}
+                                  // Unlike in the previous example, we
+                                  // would now like to use a
+                                  // non-constant right hand side
+                                  // function and non-zero boundary
+                                  // values. Both are tasks that are
+                                  // readily achieved with a only a few
+                                  // new lines of code in the
+                                  // assemblage of the matrix and right
+                                  // hand side.
+                                  //
+                                  // More interesting, though, is the
+                                  // way we assemble matrix and right
+                                  // hand side vector dimension
+                                  // independently: there is simply no
+                                  // difference to the
+                                  // two-dimensional case. Since the
+                                  // important objects used in this
+                                  // function (quadrature formula,
+                                  // FEValues) depend on the dimension
+                                  // by way of a template parameter as
+                                  // well, they can take care of
+                                  // setting up properly everything for
+                                  // the dimension for which this
+                                  // function is compiled. By declaring
+                                  // all classes which might depend on
+                                  // the dimension using a template
+                                  // parameter, the library can make
+                                  // nearly all work for you and you
+                                  // don't have to care about most
+                                  // things.
+  template <int dim>
+  void LaplaceProblem<dim>::assemble_system ()
+  {
+    MatrixTools::create_laplace_matrix (dof_handler,
+                                       QGauss<dim>(2),
+                                       system_matrix);
+    system_rhs = 0;
+
+    std::map<unsigned int,double> boundary_values;
+    VectorTools::interpolate_boundary_values (dof_handler,
+                                             0,
+                                             BoundaryValues<dim>(),
+                                             boundary_values);
+    MatrixTools::apply_boundary_values (boundary_values,
+                                       system_matrix,
+                                       solution,
+                                       system_rhs);
+  }
 
 
-                                 // @sect4{LaplaceProblem::solve}
+                                  // @sect4{LaplaceProblem::solve}
 
-                                // Solving the linear system of
-                                // equations is something that looks
-                                // almost identical in most
-                                // programs. In particular, it is
-                                // dimension independent, so this
-                                // function is copied verbatim from the
-                                // previous example.
-template <int dim>
-void LaplaceProblem<dim>::solve ()
-{
-                                  // NEW
-  SolverControl           solver_control (dof_handler.n_dofs(),
-                                         1e-12*system_rhs.l2_norm());
-  SolverCG<>              cg (solver_control);
+                                  // Solving the linear system of
+                                  // equations is something that looks
+                                  // almost identical in most
+                                  // programs. In particular, it is
+                                  // dimension independent, so this
+                                  // function is copied verbatim from the
+                                  // previous example.
+  template <int dim>
+  void LaplaceProblem<dim>::solve ()
+  {
+                                    // NEW
+    SolverControl           solver_control (dof_handler.n_dofs(),
+                                           1e-12*system_rhs.l2_norm());
+    SolverCG<>              cg (solver_control);
 
-  PreconditionSSOR<> preconditioner;
-  preconditioner.initialize(system_matrix, 1.2);
+    PreconditionSSOR<> preconditioner;
+    preconditioner.initialize(system_matrix, 1.2);
 
-  cg.solve (system_matrix, solution, system_rhs,
-           preconditioner);
-}
+    cg.solve (system_matrix, solution, system_rhs,
+             preconditioner);
+  }
 
 
-                                 // @sect4{LaplaceProblem::output_results}
+                                  // @sect4{LaplaceProblem::output_results}
 
-                                // This function also does what the
-                                // respective one did in step-3. No changes
-                                // here for dimension independence either.
-                                 //
-                                 // The only difference to the previous
-                                 // example is that we want to write output in
-                                 // GMV format, rather than for gnuplot (GMV
-                                 // is another graphics program that, contrary
-                                 // to gnuplot, shows data in nice colors,
-                                 // allows rotation of geometries with the
-                                 // mouse, and generates reasonable
-                                 // representations of 3d data; for ways to
-                                 // obtain it see the ReadMe file of
-                                 // deal.II). To write data in this format, we
-                                 // simply replace the
-                                 // <code>data_out.write_gnuplot</code> call by
-                                 // <code>data_out.write_gmv</code>.
-                                 //
-                                 // Since the program will run both 2d and 3d
-                                 // versions of the laplace solver, we use the
-                                 // dimension in the filename to generate
-                                 // distinct filenames for each run (in a
-                                 // better program, one would check whether
-                                 // `dim' can have other values than 2 or 3,
-                                 // but we neglect this here for the sake of
-                                 // brevity).
-template <int dim>
-void LaplaceProblem<dim>::output_results () const
-{
-  DataOut<dim> data_out;
+                                  // This function also does what the
+                                  // respective one did in step-3. No changes
+                                  // here for dimension independence either.
+                                  //
+                                  // The only difference to the previous
+                                  // example is that we want to write output in
+                                  // GMV format, rather than for gnuplot (GMV
+                                  // is another graphics program that, contrary
+                                  // to gnuplot, shows data in nice colors,
+                                  // allows rotation of geometries with the
+                                  // mouse, and generates reasonable
+                                  // representations of 3d data; for ways to
+                                  // obtain it see the ReadMe file of
+                                  // deal.II). To write data in this format, we
+                                  // simply replace the
+                                  // <code>data_out.write_gnuplot</code> call by
+                                  // <code>data_out.write_gmv</code>.
+                                  //
+                                  // Since the program will run both 2d and 3d
+                                  // versions of the laplace solver, we use the
+                                  // dimension in the filename to generate
+                                  // distinct filenames for each run (in a
+                                  // better program, one would check whether
+                                  // `dim' can have other values than 2 or 3,
+                                  // but we neglect this here for the sake of
+                                  // brevity).
+  template <int dim>
+  void LaplaceProblem<dim>::output_results () const
+  {
+    DataOut<dim> data_out;
 
-  data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, "solution");
+    data_out.attach_dof_handler (dof_handler);
+    data_out.add_data_vector (solution, "solution");
 
-  data_out.build_patches ();
+    data_out.build_patches ();
 
-  std::ofstream output (dim == 2 ?
-                       "solution-2d.gmv" :
-                       "solution-3d.gmv");
-  data_out.write_gmv (output);
-}
+    std::ofstream output (dim == 2 ?
+                         "solution-2d.gmv" :
+                         "solution-3d.gmv");
+    data_out.write_gmv (output);
+  }
 
 
 
-                                 // @sect4{LaplaceProblem::run}
+                                  // @sect4{LaplaceProblem::run}
 
-                                 // This is the function which has the
-                                // top-level control over
-                                // everything. Apart from one line of
-                                // additional output, it is the same
-                                // as for the previous example.
-template <int dim>
-void LaplaceProblem<dim>::run ()
-{
-  std::cout << "Solving problem in " << dim << " space dimensions." << std::endl;
+                                  // This is the function which has the
+                                  // top-level control over
+                                  // everything. Apart from one line of
+                                  // additional output, it is the same
+                                  // as for the previous example.
+  template <int dim>
+  void LaplaceProblem<dim>::run ()
+  {
+    std::cout << "Solving problem in " << dim << " space dimensions." << std::endl;
 
-  make_grid_and_dofs();
-  assemble_system ();
-  solve ();
-  output_results ();
+    make_grid_and_dofs();
+    assemble_system ();
+    solve ();
+    output_results ();
+  }
 }
 
 
@@ -765,7 +768,11 @@ void LaplaceProblem<dim>::run ()
                                  // library.
 int main ()
 {
+  using namespace dealii;
+  using namespace Step26;
+
   deallog.depth_console (0);
+
   {
     LaplaceProblem<3> laplace_problem_3d;
     laplace_problem_3d.run ();
index 47c764fe92f36bd5969f4b65c99c43df5bf56b87..a3c091558d07b14ee1233ce6f469deae310d4b0d 100644 (file)
@@ -3,7 +3,7 @@
 
 /*    $Id$       */
 /*                                                                */
-/*    Copyright (C) 2006, 2007, 2008, 2009, 2010 by the deal.II authors */
+/*    Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 
                                 // Finally, this is as in previous
                                 // programs:
-using namespace dealii;
-
-
-                                // @sect3{The main class}
-
-                                // The main class of this program looks very
-                                // much like the one already used in the
-                                // first few tutorial programs, for example
-                                // the one in step-6. The main difference is
-                                // that we have merged the refine_grid and
-                                // output_results functions into one since we
-                                // will also want to output some of the
-                                // quantities used in deciding how to refine
-                                // the mesh (in particular the estimated
-                                // smoothness of the solution). There is also
-                                // a function that computes this estimated
-                                // smoothness, as discussed in the
-                                // introduction.
-                                //
-                                // As far as member variables are concerned,
-                                // we use the same structure as already used
-                                // in step-6, but instead of a regular
-                                // DoFHandler we use an object of type
-                                // hp::DoFHandler, and we need collections
-                                // instead of individual finite element,
-                                // quadrature, and face quadrature
-                                // objects. We will fill these collections in
-                                // the constructor of the class. The last
-                                // variable, <code>max_degree</code>,
-                                // indicates the maximal polynomial degree of
-                                // shape functions used.
-template <int dim>
-class LaplaceProblem 
+namespace Step27
 {
-  public:
-    LaplaceProblem ();
-    ~LaplaceProblem ();
+  using namespace dealii;
+
+
+                                  // @sect3{The main class}
+
+                                  // The main class of this program looks very
+                                  // much like the one already used in the
+                                  // first few tutorial programs, for example
+                                  // the one in step-6. The main difference is
+                                  // that we have merged the refine_grid and
+                                  // output_results functions into one since we
+                                  // will also want to output some of the
+                                  // quantities used in deciding how to refine
+                                  // the mesh (in particular the estimated
+                                  // smoothness of the solution). There is also
+                                  // a function that computes this estimated
+                                  // smoothness, as discussed in the
+                                  // introduction.
+                                  //
+                                  // As far as member variables are concerned,
+                                  // we use the same structure as already used
+                                  // in step-6, but instead of a regular
+                                  // DoFHandler we use an object of type
+                                  // hp::DoFHandler, and we need collections
+                                  // instead of individual finite element,
+                                  // quadrature, and face quadrature
+                                  // objects. We will fill these collections in
+                                  // the constructor of the class. The last
+                                  // variable, <code>max_degree</code>,
+                                  // indicates the maximal polynomial degree of
+                                  // shape functions used.
+  template <int dim>
+  class LaplaceProblem
+  {
+    public:
+      LaplaceProblem ();
+      ~LaplaceProblem ();
 
-    void run ();
-    
-  private:
-    void setup_system ();
-    void assemble_system ();
-    void solve ();
-    void create_coarse_grid ();
-    void estimate_smoothness (Vector<float> &smoothness_indicators) const;
-    void postprocess (const unsigned int cycle);
+      void run ();
 
-    Triangulation<dim>   triangulation;
+    private:
+      void setup_system ();
+      void assemble_system ();
+      void solve ();
+      void create_coarse_grid ();
+      void estimate_smoothness (Vector<float> &smoothness_indicators) const;
+      void postprocess (const unsigned int cycle);
 
-    hp::DoFHandler<dim>      dof_handler;
-    hp::FECollection<dim>    fe_collection;
-    hp::QCollection<dim>     quadrature_collection;
-    hp::QCollection<dim-1>   face_quadrature_collection;
+      Triangulation<dim>   triangulation;
 
-    ConstraintMatrix     constraints;
+      hp::DoFHandler<dim>      dof_handler;
+      hp::FECollection<dim>    fe_collection;
+      hp::QCollection<dim>     quadrature_collection;
+      hp::QCollection<dim-1>   face_quadrature_collection;
 
-    SparsityPattern      sparsity_pattern;
-    SparseMatrix<double> system_matrix;
+      ConstraintMatrix     constraints;
 
-    Vector<double>       solution;
-    Vector<double>       system_rhs;
+      SparsityPattern      sparsity_pattern;
+      SparseMatrix<double> system_matrix;
 
-    const unsigned int max_degree;
-};
+      Vector<double>       solution;
+      Vector<double>       system_rhs;
 
+      const unsigned int max_degree;
+  };
 
 
-                                // @sect3{Equation data}
-                                //
-                                // Next, let us define the right hand side
-                                // function for this problem. It is $x+1$ in
-                                // 1d, $(x+1)(y+1)$ in 2d, and so on.
-template <int dim>
-class RightHandSide : public Function<dim>
-{
-  public:
-    RightHandSide () : Function<dim> () {}
-    
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component) const;
-};
-
-
-template <int dim>
-double
-RightHandSide<dim>::value (const Point<dim>   &p,
-                          const unsigned int  /*component*/) const
-{
-  double product = 1;
-  for (unsigned int d=0; d<dim; ++d)
-    product *= (p[d]+1);
-  return product;
-}
 
+                                  // @sect3{Equation data}
+                                  //
+                                  // Next, let us define the right hand side
+                                  // function for this problem. It is $x+1$ in
+                                  // 1d, $(x+1)(y+1)$ in 2d, and so on.
+  template <int dim>
+  class RightHandSide : public Function<dim>
+  {
+    public:
+      RightHandSide () : Function<dim> () {}
 
+      virtual double value (const Point<dim>   &p,
+                           const unsigned int  component) const;
+  };
 
 
-                                // @sect3{Implementation of the main class}
-
-                                // @sect4{LaplaceProblem::LaplaceProblem}
-
-                                // The constructor of this class is fairly
-                                // straightforward. It associates the
-                                // hp::DoFHandler object with the
-                                // triangulation, and then sets the maximal
-                                // polynomial degree to 7 (in 1d and 2d) or 5
-                                // (in 3d and higher). We do so because using
-                                // higher order polynomial degrees becomes
-                                // prohibitively expensive, especially in
-                                // higher space dimensions.
-                                //
-                                // Following this, we fill the collections of
-                                // finite element, and cell and face
-                                // quadrature objects. We start with
-                                // quadratic elements, and each quadrature
-                                // formula is chosen so that it is
-                                // appropriate for the matching finite
-                                // element in the hp::FECollection object.
-template <int dim>
-LaplaceProblem<dim>::LaplaceProblem ()
-               :
-               dof_handler (triangulation),
-               max_degree (dim <= 2 ? 7 : 5)
-{
-  for (unsigned int degree=2; degree<=max_degree; ++degree)
-    {
-      fe_collection.push_back (FE_Q<dim>(degree));
-      quadrature_collection.push_back (QGauss<dim>(degree+1));
-      face_quadrature_collection.push_back (QGauss<dim-1>(degree+1));
-    }
-}
+  template <int dim>
+  double
+  RightHandSide<dim>::value (const Point<dim>   &p,
+                            const unsigned int  /*component*/) const
+  {
+    double product = 1;
+    for (unsigned int d=0; d<dim; ++d)
+      product *= (p[d]+1);
+    return product;
+  }
 
 
-                                // @sect4{LaplaceProblem::~LaplaceProblem}
 
-                                // The destructor is unchanged from what we
-                                // already did in step-6:
-template <int dim>
-LaplaceProblem<dim>::~LaplaceProblem () 
-{
-  dof_handler.clear ();
-}
 
+                                  // @sect3{Implementation of the main class}
 
-                                // @sect4{LaplaceProblem::setup_system}
-                                //
-                                // This function is again an almost
-                                // verbatim copy of what we already did in
-                                // step-6. The first change is that we
-                                // append the Dirichlet boundary conditions
-                                // to the ConstraintMatrix object, which we
-                                // consequently call just
-                                // <code>constraints</code> instead of
-                                // <code>hanging_node_constraints</code>. The
-                                // second difference is that we don't
-                                // directly build the sparsity pattern, but
-                                // first create an intermediate object that
-                                // we later copy into the usual
-                                // SparsityPattern data structure, since
-                                // this is more efficient for the problem
-                                // with many entries per row (and different
-                                // number of entries in different rows). In
-                                // another slight deviation, we do not
-                                // first build the sparsity pattern and
-                                // then condense away constrained degrees
-                                // of freedom, but pass the constraint
-                                // matrix object directly to the function
-                                // that builds the sparsity pattern. We
-                                // disable the insertion of constrained
-                                // entries with <tt>false</tt> as fourth
-                                // argument in the
-                                // DoFTools::make_sparsity_pattern
-                                // function. All of these changes are
-                                // explained in the introduction of this
-                                // program.
-                                //
-                                // The last change, maybe hidden in plain
-                                // sight, is that the dof_handler variable
-                                // here is an hp object -- nevertheless all
-                                // the function calls we had before still
-                                // work in exactly the same way as they
-                                // always did.
-template <int dim>
-void LaplaceProblem<dim>::setup_system ()
-{
-  dof_handler.distribute_dofs (fe_collection);
-
-  solution.reinit (dof_handler.n_dofs());
-  system_rhs.reinit (dof_handler.n_dofs());
-
-  constraints.clear ();
-  DoFTools::make_hanging_node_constraints (dof_handler,
-                                          constraints);
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           0,
-                                           ZeroFunction<dim>(),
-                                           constraints);
-  constraints.close ();
-
-  CompressedSetSparsityPattern csp (dof_handler.n_dofs(),
-                                   dof_handler.n_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, csp, constraints, false);
-  sparsity_pattern.copy_from (csp);
-
-  system_matrix.reinit (sparsity_pattern);
-}
+                                  // @sect4{LaplaceProblem::LaplaceProblem}
 
+                                  // The constructor of this class is fairly
+                                  // straightforward. It associates the
+                                  // hp::DoFHandler object with the
+                                  // triangulation, and then sets the maximal
+                                  // polynomial degree to 7 (in 1d and 2d) or 5
+                                  // (in 3d and higher). We do so because using
+                                  // higher order polynomial degrees becomes
+                                  // prohibitively expensive, especially in
+                                  // higher space dimensions.
+                                  //
+                                  // Following this, we fill the collections of
+                                  // finite element, and cell and face
+                                  // quadrature objects. We start with
+                                  // quadratic elements, and each quadrature
+                                  // formula is chosen so that it is
+                                  // appropriate for the matching finite
+                                  // element in the hp::FECollection object.
+  template <int dim>
+  LaplaceProblem<dim>::LaplaceProblem ()
+                 :
+                 dof_handler (triangulation),
+                 max_degree (dim <= 2 ? 7 : 5)
+  {
+    for (unsigned int degree=2; degree<=max_degree; ++degree)
+      {
+       fe_collection.push_back (FE_Q<dim>(degree));
+       quadrature_collection.push_back (QGauss<dim>(degree+1));
+       face_quadrature_collection.push_back (QGauss<dim-1>(degree+1));
+      }
+  }
 
 
-                                // @sect4{LaplaceProblem::assemble_system}
-
-                                // This is the function that assembles the
-                                // global matrix and right hand side vector
-                                // from the local contributions of each
-                                // cell. Its main working is as has been
-                                // described in many of the tutorial programs
-                                // before. The significant deviations are the
-                                // ones necessary for <i>hp</i> finite element
-                                // methods. In particular, that we need to
-                                // use a collection of FEValues object
-                                // (implemented through the hp::FEValues
-                                // class), and that we have to eliminate
-                                // constrained degrees of freedom already
-                                // when copying local contributions into
-                                // global objects. Both of these are
-                                // explained in detail in the introduction of
-                                // this program.
-                                //
-                                // One other slight complication is the fact
-                                // that because we use different polynomial
-                                // degrees on different cells, the matrices
-                                // and vectors holding local contributions do
-                                // not have the same size on all cells. At
-                                // the beginning of the loop over all cells,
-                                // we therefore each time have to resize them
-                                // to the correct size (given by
-                                // <code>dofs_per_cell</code>). Because these
-                                // classes are implement in such a way that
-                                // reducing the size of a matrix or vector
-                                // does not release the currently allocated
-                                // memory (unless the new size is zero), the
-                                // process of resizing at the beginning of
-                                // the loop will only require re-allocation
-                                // of memory during the first few
-                                // iterations. Once we have found in a cell
-                                // with the maximal finite element degree, no
-                                // more re-allocations will happen because
-                                // all subsequent <code>reinit</code> calls
-                                // will only set the size to something that
-                                // fits the currently allocated memory. This
-                                // is important since allocating memory is
-                                // expensive, and doing so every time we
-                                // visit a new cell would take significant
-                                // compute time.
-template <int dim>
-void LaplaceProblem<dim>::assemble_system () 
-{
-  hp::FEValues<dim> hp_fe_values (fe_collection,
-                                 quadrature_collection, 
-                                 update_values    |  update_gradients |
-                                 update_quadrature_points  |  update_JxW_values);
-
-  const RightHandSide<dim> rhs_function;
-  
-  FullMatrix<double>   cell_matrix;
-  Vector<double>       cell_rhs;
-
-  std::vector<unsigned int> local_dof_indices;
-
-  typename hp::DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      const unsigned int   dofs_per_cell = cell->get_fe().dofs_per_cell;
-
-      cell_matrix.reinit (dofs_per_cell, dofs_per_cell);
-      cell_matrix = 0;
-
-      cell_rhs.reinit (dofs_per_cell);
-      cell_rhs = 0;
-
-      hp_fe_values.reinit (cell);
-      
-      const FEValues<dim> &fe_values = hp_fe_values.get_present_fe_values ();
-
-      std::vector<double>  rhs_values (fe_values.n_quadrature_points);
-      rhs_function.value_list (fe_values.get_quadrature_points(),
-                              rhs_values);
-      
-      for (unsigned int q_point=0;
-          q_point<fe_values.n_quadrature_points;
-          ++q_point)
-       for (unsigned int i=0; i<dofs_per_cell; ++i)
-         {
-           for (unsigned int j=0; j<dofs_per_cell; ++j)
-             cell_matrix(i,j) += (fe_values.shape_grad(i,q_point) *
-                                  fe_values.shape_grad(j,q_point) *
-                                  fe_values.JxW(q_point));
-
-           cell_rhs(i) += (fe_values.shape_value(i,q_point) *
-                           rhs_values[q_point] *
-                           fe_values.JxW(q_point));
-         }
+                                  // @sect4{LaplaceProblem::~LaplaceProblem}
 
-      local_dof_indices.resize (dofs_per_cell);
-      cell->get_dof_indices (local_dof_indices);
+                                  // The destructor is unchanged from what we
+                                  // already did in step-6:
+  template <int dim>
+  LaplaceProblem<dim>::~LaplaceProblem ()
+  {
+    dof_handler.clear ();
+  }
 
-      constraints.distribute_local_to_global (cell_matrix, cell_rhs,
-                                             local_dof_indices,
-                                             system_matrix, system_rhs);
-    }
 
-                                  // Now with the loop over all cells
-                                  // finished, we are done for this
-                                  // function. The steps we still had to do
-                                  // at this point in earlier tutorial
-                                  // programs, namely condensing hanging
-                                  // node constraints and applying
-                                  // Dirichlet boundary conditions, have
-                                  // been taken care of by the
-                                  // ConstraintMatrix object
-                                  // <code>constraints</code> on the fly.
-}
+                                  // @sect4{LaplaceProblem::setup_system}
+                                  //
+                                  // This function is again an almost
+                                  // verbatim copy of what we already did in
+                                  // step-6. The first change is that we
+                                  // append the Dirichlet boundary conditions
+                                  // to the ConstraintMatrix object, which we
+                                  // consequently call just
+                                  // <code>constraints</code> instead of
+                                  // <code>hanging_node_constraints</code>. The
+                                  // second difference is that we don't
+                                  // directly build the sparsity pattern, but
+                                  // first create an intermediate object that
+                                  // we later copy into the usual
+                                  // SparsityPattern data structure, since
+                                  // this is more efficient for the problem
+                                  // with many entries per row (and different
+                                  // number of entries in different rows). In
+                                  // another slight deviation, we do not
+                                  // first build the sparsity pattern and
+                                  // then condense away constrained degrees
+                                  // of freedom, but pass the constraint
+                                  // matrix object directly to the function
+                                  // that builds the sparsity pattern. We
+                                  // disable the insertion of constrained
+                                  // entries with <tt>false</tt> as fourth
+                                  // argument in the
+                                  // DoFTools::make_sparsity_pattern
+                                  // function. All of these changes are
+                                  // explained in the introduction of this
+                                  // program.
+                                  //
+                                  // The last change, maybe hidden in plain
+                                  // sight, is that the dof_handler variable
+                                  // here is an hp object -- nevertheless all
+                                  // the function calls we had before still
+                                  // work in exactly the same way as they
+                                  // always did.
+  template <int dim>
+  void LaplaceProblem<dim>::setup_system ()
+  {
+    dof_handler.distribute_dofs (fe_collection);
+
+    solution.reinit (dof_handler.n_dofs());
+    system_rhs.reinit (dof_handler.n_dofs());
+
+    constraints.clear ();
+    DoFTools::make_hanging_node_constraints (dof_handler,
+                                            constraints);
+    VectorTools::interpolate_boundary_values (dof_handler,
+                                             0,
+                                             ZeroFunction<dim>(),
+                                             constraints);
+    constraints.close ();
+
+    CompressedSetSparsityPattern csp (dof_handler.n_dofs(),
+                                     dof_handler.n_dofs());
+    DoFTools::make_sparsity_pattern (dof_handler, csp, constraints, false);
+    sparsity_pattern.copy_from (csp);
+
+    system_matrix.reinit (sparsity_pattern);
+  }
 
 
 
-                                // @sect4{LaplaceProblem::solve}
+                                  // @sect4{LaplaceProblem::assemble_system}
+
+                                  // This is the function that assembles the
+                                  // global matrix and right hand side vector
+                                  // from the local contributions of each
+                                  // cell. Its main working is as has been
+                                  // described in many of the tutorial programs
+                                  // before. The significant deviations are the
+                                  // ones necessary for <i>hp</i> finite element
+                                  // methods. In particular, that we need to
+                                  // use a collection of FEValues object
+                                  // (implemented through the hp::FEValues
+                                  // class), and that we have to eliminate
+                                  // constrained degrees of freedom already
+                                  // when copying local contributions into
+                                  // global objects. Both of these are
+                                  // explained in detail in the introduction of
+                                  // this program.
+                                  //
+                                  // One other slight complication is the fact
+                                  // that because we use different polynomial
+                                  // degrees on different cells, the matrices
+                                  // and vectors holding local contributions do
+                                  // not have the same size on all cells. At
+                                  // the beginning of the loop over all cells,
+                                  // we therefore each time have to resize them
+                                  // to the correct size (given by
+                                  // <code>dofs_per_cell</code>). Because these
+                                  // classes are implement in such a way that
+                                  // reducing the size of a matrix or vector
+                                  // does not release the currently allocated
+                                  // memory (unless the new size is zero), the
+                                  // process of resizing at the beginning of
+                                  // the loop will only require re-allocation
+                                  // of memory during the first few
+                                  // iterations. Once we have found in a cell
+                                  // with the maximal finite element degree, no
+                                  // more re-allocations will happen because
+                                  // all subsequent <code>reinit</code> calls
+                                  // will only set the size to something that
+                                  // fits the currently allocated memory. This
+                                  // is important since allocating memory is
+                                  // expensive, and doing so every time we
+                                  // visit a new cell would take significant
+                                  // compute time.
+  template <int dim>
+  void LaplaceProblem<dim>::assemble_system ()
+  {
+    hp::FEValues<dim> hp_fe_values (fe_collection,
+                                   quadrature_collection,
+                                   update_values    |  update_gradients |
+                                   update_quadrature_points  |  update_JxW_values);
 
-                                // The function solving the linear system is
-                                // entirely unchanged from previous
-                                // examples. We simply try to reduce the
-                                // initial residual (which equals the $l_2$
-                                // norm of the right hand side) by a certain
-                                // factor:
-template <int dim>
-void LaplaceProblem<dim>::solve () 
-{
-  SolverControl           solver_control (system_rhs.size(),
-                                         1e-8*system_rhs.l2_norm());
-  SolverCG<>              cg (solver_control);
+    const RightHandSide<dim> rhs_function;
 
-  PreconditionSSOR<> preconditioner;
-  preconditioner.initialize(system_matrix, 1.2);
+    FullMatrix<double>   cell_matrix;
+    Vector<double>       cell_rhs;
 
-  cg.solve (system_matrix, solution, system_rhs,
-           preconditioner);
+    std::vector<unsigned int> local_dof_indices;
 
-  constraints.distribute (solution);
-}
+    typename hp::DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       const unsigned int   dofs_per_cell = cell->get_fe().dofs_per_cell;
 
+       cell_matrix.reinit (dofs_per_cell, dofs_per_cell);
+       cell_matrix = 0;
 
+       cell_rhs.reinit (dofs_per_cell);
+       cell_rhs = 0;
 
-                                // @sect4{LaplaceProblem::postprocess}
-
-                                // After solving the linear system, we will
-                                // want to postprocess the solution. Here,
-                                // all we do is to estimate the error,
-                                // estimate the local smoothness of the
-                                // solution as described in the introduction,
-                                // then write graphical output, and finally
-                                // refine the mesh in both $h$ and $p$
-                                // according to the indicators computed
-                                // before. We do all this in the same
-                                // function because we want the estimated
-                                // error and smoothness indicators not only
-                                // for refinement, but also include them in
-                                // the graphical output.
-template <int dim>
-void LaplaceProblem<dim>::postprocess (const unsigned int cycle)
-{
-                                  // Let us start with computing estimated
-                                  // error and smoothness indicators, which
-                                  // each are one number for each active cell
-                                  // of our triangulation. For the error
-                                  // indicator, we use the
-                                  // KellyErrorEstimator class as
-                                  // always. Estimating the smoothness is
-                                  // done in the respective function of this
-                                  // class; that function is discussed
-                                  // further down below:
-  Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
-  KellyErrorEstimator<dim>::estimate (dof_handler,
-                                     face_quadrature_collection,
-                                     typename FunctionMap<dim>::type(),
-                                     solution,
-                                     estimated_error_per_cell);
-
-  Vector<float> smoothness_indicators (triangulation.n_active_cells());
-  estimate_smoothness (smoothness_indicators);
-
-                                  // Next we want to generate graphical
-                                  // output. In addition to the two estimated
-                                  // quantities derived above, we would also
-                                  // like to output the polynomial degree of
-                                  // the finite elements used on each of the
-                                  // elements on the mesh.
-                                  //
-                                  // The way to do that requires that we loop
-                                  // over all cells and poll the active
-                                  // finite element index of them using
-                                  // <code>cell-@>active_fe_index()</code>. We
-                                  // then use the result of this operation
-                                  // and query the finite element collection
-                                  // for the finite element with that index,
-                                  // and finally determine the polynomial
-                                  // degree of that element. The result we
-                                  // put into a vector with one element per
-                                  // cell. The DataOut class requires this to
-                                  // be a vector of <code>float</code> or
-                                  // <code>double</code>, even though our
-                                  // values are all integers, so that it what
-                                  // we use:
-  {
-    Vector<float> fe_degrees (triangulation.n_active_cells());
-    {
-      typename hp::DoFHandler<dim>::active_cell_iterator
-       cell = dof_handler.begin_active(),
-       endc = dof_handler.end();
-      for (unsigned int index=0; cell!=endc; ++cell, ++index)
-       fe_degrees(index)
-         = fe_collection[cell->active_fe_index()].degree;
-    }
+       hp_fe_values.reinit (cell);
 
-                                    // With now all data vectors available --
-                                    // solution, estimated errors and
-                                    // smoothness indicators, and finite
-                                    // element degrees --, we create a
-                                    // DataOut object for graphical output
-                                    // and attach all data. Note that the
-                                    // DataOut class has a second template
-                                    // argument (which defaults to
-                                    // DoFHandler@<dim@>, which is why we
-                                    // have never seen it in previous
-                                    // tutorial programs) that indicates the
-                                    // type of DoF handler to be used. Here,
-                                    // we have to use the hp::DoFHandler
-                                    // class:
-    DataOut<dim,hp::DoFHandler<dim> > data_out;
-
-    data_out.attach_dof_handler (dof_handler);
-    data_out.add_data_vector (solution, "solution");
-    data_out.add_data_vector (estimated_error_per_cell, "error");
-    data_out.add_data_vector (smoothness_indicators, "smoothness");
-    data_out.add_data_vector (fe_degrees, "fe_degree");
-    data_out.build_patches ();
-
-                                    // The final step in generating
-                                    // output is to determine a file
-                                    // name, open the file, and write
-                                    // the data into it (here, we use
-                                    // VTK format):
-    const std::string filename = "solution-" +
-                                Utilities::int_to_string (cycle, 2) +
-                                ".vtk";
-    std::ofstream output (filename.c_str());
-    data_out.write_vtk (output);
+       const FEValues<dim> &fe_values = hp_fe_values.get_present_fe_values ();
+
+       std::vector<double>  rhs_values (fe_values.n_quadrature_points);
+       rhs_function.value_list (fe_values.get_quadrature_points(),
+                                rhs_values);
+
+       for (unsigned int q_point=0;
+            q_point<fe_values.n_quadrature_points;
+            ++q_point)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           {
+             for (unsigned int j=0; j<dofs_per_cell; ++j)
+               cell_matrix(i,j) += (fe_values.shape_grad(i,q_point) *
+                                    fe_values.shape_grad(j,q_point) *
+                                    fe_values.JxW(q_point));
+
+             cell_rhs(i) += (fe_values.shape_value(i,q_point) *
+                             rhs_values[q_point] *
+                             fe_values.JxW(q_point));
+           }
+
+       local_dof_indices.resize (dofs_per_cell);
+       cell->get_dof_indices (local_dof_indices);
+
+       constraints.distribute_local_to_global (cell_matrix, cell_rhs,
+                                               local_dof_indices,
+                                               system_matrix, system_rhs);
+      }
+
+                                    // Now with the loop over all cells
+                                    // finished, we are done for this
+                                    // function. The steps we still had to do
+                                    // at this point in earlier tutorial
+                                    // programs, namely condensing hanging
+                                    // node constraints and applying
+                                    // Dirichlet boundary conditions, have
+                                    // been taken care of by the
+                                    // ConstraintMatrix object
+                                    // <code>constraints</code> on the fly.
   }
 
-                                  // After this, we would like to actually
-                                  // refine the mesh, in both $h$ and
-                                  // $p$. The way we are going to do this is
-                                  // as follows: first, we use the estimated
-                                  // error to flag those cells for refinement
-                                  // that have the largest error. This is
-                                  // what we have always done:
+
+
+                                  // @sect4{LaplaceProblem::solve}
+
+                                  // The function solving the linear system is
+                                  // entirely unchanged from previous
+                                  // examples. We simply try to reduce the
+                                  // initial residual (which equals the $l_2$
+                                  // norm of the right hand side) by a certain
+                                  // factor:
+  template <int dim>
+  void LaplaceProblem<dim>::solve ()
   {
-    GridRefinement::refine_and_coarsen_fixed_number (triangulation,
-                                                    estimated_error_per_cell,
-                                                    0.3, 0.03);
-
-                                    // Next we would like to figure out which
-                                    // of the cells that have been flagged
-                                    // for refinement should actually have
-                                    // $p$ increased instead of $h$
-                                    // decreased. The strategy we choose here
-                                    // is that we look at the smoothness
-                                    // indicators of those cells that are
-                                    // flagged for refinement, and increase
-                                    // $p$ for those with a smoothness larger
-                                    // than a certain threshold. For this, we
-                                    // first have to determine the maximal
-                                    // and minimal values of the smoothness
-                                    // indicators of all flagged cells, which
-                                    // we do using a loop over all cells and
-                                    // comparing current minimal and maximal
-                                    // values. (We start with the minimal and
-                                    // maximal values of <i>all</i> cells, a
-                                    // range within which the minimal and
-                                    // maximal values on cells flagged for
-                                    // refinement must surely lie.) Absent
-                                    // any better strategies, we will then
-                                    // set the threshold above which will
-                                    // increase $p$ instead of reducing $h$
-                                    // as the mean value between minimal and
-                                    // maximal smoothness indicators on cells
-                                    // flagged for refinement:
-    float max_smoothness = *std::min_element (smoothness_indicators.begin(),
-                                             smoothness_indicators.end()),
-         min_smoothness = *std::max_element (smoothness_indicators.begin(),
-                                             smoothness_indicators.end());
-    {
-      typename hp::DoFHandler<dim>::active_cell_iterator
-       cell = dof_handler.begin_active(),
-       endc = dof_handler.end();
-      for (unsigned int index=0; cell!=endc; ++cell, ++index)
-       if (cell->refine_flag_set())
-         {
-           max_smoothness = std::max (max_smoothness,
-                                      smoothness_indicators(index));
-           min_smoothness = std::min (min_smoothness,
-                                      smoothness_indicators(index));
-         }
-    }
-    const float threshold_smoothness = (max_smoothness + min_smoothness) / 2;
-
-                                    // With this, we can go back, loop over
-                                    // all cells again, and for those cells
-                                    // for which (i) the refinement flag is
-                                    // set, (ii) the smoothness indicator is
-                                    // larger than the threshold, and (iii)
-                                    // we still have a finite element with a
-                                    // polynomial degree higher than the
-                                    // current one in the finite element
-                                    // collection, we then increase the
-                                    // polynomial degree and in return remove
-                                    // the flag indicating that the cell
-                                    // should undergo bisection. For all
-                                    // other cells, the refinement flags
-                                    // remain untouched:
-    {
-      typename hp::DoFHandler<dim>::active_cell_iterator
-       cell = dof_handler.begin_active(),
-       endc = dof_handler.end();
-      for (unsigned int index=0; cell!=endc; ++cell, ++index)
-       if (cell->refine_flag_set()
-           &&
-           (smoothness_indicators(index) > threshold_smoothness)
-           &&
-           (cell->active_fe_index()+1 < fe_collection.size()))
-         {
-           cell->clear_refine_flag();
-           cell->set_active_fe_index (cell->active_fe_index() + 1);
-         }
-    } 
-
-                                    // At the end of this procedure, we then
-                                    // refine the mesh. During this process,
-                                    // children of cells undergoing bisection
-                                    // inherit their mother cell's finite
-                                    // element index:
-    triangulation.execute_coarsening_and_refinement ();
-  }
-}
+    SolverControl           solver_control (system_rhs.size(),
+                                           1e-8*system_rhs.l2_norm());
+    SolverCG<>              cg (solver_control);
 
+    PreconditionSSOR<> preconditioner;
+    preconditioner.initialize(system_matrix, 1.2);
 
-                                // @sect4{LaplaceProblem::create_coarse_grid}
-
-                                // The following function is used when
-                                // creating the initial grid. It is a
-                                // specialization for the 2d case, i.e. a
-                                // corresponding function needs to be
-                                // implemented if the program is run in
-                                // anything other then 2d. The function is
-                                // actually stolen from step-14 and generates
-                                // the same mesh used already there, i.e. the
-                                // square domain with the square hole in the
-                                // middle. The meaning of the different parts
-                                // of this function are explained in the
-                                // documentation of step-14:
-template <>
-void LaplaceProblem<2>::create_coarse_grid ()
-{
-  const unsigned int dim = 2;
-  
-  static const Point<2> vertices_1[]
-    = {  Point<2> (-1.,   -1.),
-         Point<2> (-1./2, -1.),
-         Point<2> (0.,    -1.),
-         Point<2> (+1./2, -1.),
-         Point<2> (+1,    -1.),
-            
-         Point<2> (-1.,   -1./2.),
-         Point<2> (-1./2, -1./2.),
-         Point<2> (0.,    -1./2.),
-         Point<2> (+1./2, -1./2.),
-         Point<2> (+1,    -1./2.),
-            
-         Point<2> (-1.,   0.),
-         Point<2> (-1./2, 0.),
-         Point<2> (+1./2, 0.),
-         Point<2> (+1,    0.),
-            
-         Point<2> (-1.,   1./2.),
-         Point<2> (-1./2, 1./2.),
-         Point<2> (0.,    1./2.),
-         Point<2> (+1./2, 1./2.),
-         Point<2> (+1,    1./2.),
-            
-         Point<2> (-1.,   1.),
-         Point<2> (-1./2, 1.),
-         Point<2> (0.,    1.),                   
-         Point<2> (+1./2, 1.),
-         Point<2> (+1,    1.)    };
-  const unsigned int
-    n_vertices = sizeof(vertices_1) / sizeof(vertices_1[0]);
-  const std::vector<Point<dim> > vertices (&vertices_1[0],
-                                           &vertices_1[n_vertices]);
-  static const int cell_vertices[][GeometryInfo<dim>::vertices_per_cell]
-    = {{0, 1, 5, 6},
-       {1, 2, 6, 7},
-       {2, 3, 7, 8},
-       {3, 4, 8, 9},
-       {5, 6, 10, 11},
-       {8, 9, 12, 13},
-       {10, 11, 14, 15},
-       {12, 13, 17, 18},
-       {14, 15, 19, 20},
-       {15, 16, 20, 21},
-       {16, 17, 21, 22},
-       {17, 18, 22, 23}};
-  const unsigned int
-    n_cells = sizeof(cell_vertices) / sizeof(cell_vertices[0]);
-
-  std::vector<CellData<dim> > cells (n_cells, CellData<dim>());
-  for (unsigned int i=0; i<n_cells; ++i) 
-    {
-      for (unsigned int j=0;
-           j<GeometryInfo<dim>::vertices_per_cell;
-           ++j)
-        cells[i].vertices[j] = cell_vertices[i][j];
-      cells[i].material_id = 0;
-    }
+    cg.solve (system_matrix, solution, system_rhs,
+             preconditioner);
 
-  triangulation.create_triangulation (vertices,
-                                    cells,
-                                    SubCellData());
-  triangulation.refine_global (3);
-}
+    constraints.distribute (solution);
+  }
 
 
 
+                                  // @sect4{LaplaceProblem::postprocess}
+
+                                  // After solving the linear system, we will
+                                  // want to postprocess the solution. Here,
+                                  // all we do is to estimate the error,
+                                  // estimate the local smoothness of the
+                                  // solution as described in the introduction,
+                                  // then write graphical output, and finally
+                                  // refine the mesh in both $h$ and $p$
+                                  // according to the indicators computed
+                                  // before. We do all this in the same
+                                  // function because we want the estimated
+                                  // error and smoothness indicators not only
+                                  // for refinement, but also include them in
+                                  // the graphical output.
+  template <int dim>
+  void LaplaceProblem<dim>::postprocess (const unsigned int cycle)
+  {
+                                    // Let us start with computing estimated
+                                    // error and smoothness indicators, which
+                                    // each are one number for each active cell
+                                    // of our triangulation. For the error
+                                    // indicator, we use the
+                                    // KellyErrorEstimator class as
+                                    // always. Estimating the smoothness is
+                                    // done in the respective function of this
+                                    // class; that function is discussed
+                                    // further down below:
+    Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+    KellyErrorEstimator<dim>::estimate (dof_handler,
+                                       face_quadrature_collection,
+                                       typename FunctionMap<dim>::type(),
+                                       solution,
+                                       estimated_error_per_cell);
+
+    Vector<float> smoothness_indicators (triangulation.n_active_cells());
+    estimate_smoothness (smoothness_indicators);
+
+                                    // Next we want to generate graphical
+                                    // output. In addition to the two estimated
+                                    // quantities derived above, we would also
+                                    // like to output the polynomial degree of
+                                    // the finite elements used on each of the
+                                    // elements on the mesh.
+                                    //
+                                    // The way to do that requires that we loop
+                                    // over all cells and poll the active
+                                    // finite element index of them using
+                                    // <code>cell-@>active_fe_index()</code>. We
+                                    // then use the result of this operation
+                                    // and query the finite element collection
+                                    // for the finite element with that index,
+                                    // and finally determine the polynomial
+                                    // degree of that element. The result we
+                                    // put into a vector with one element per
+                                    // cell. The DataOut class requires this to
+                                    // be a vector of <code>float</code> or
+                                    // <code>double</code>, even though our
+                                    // values are all integers, so that it what
+                                    // we use:
+    {
+      Vector<float> fe_degrees (triangulation.n_active_cells());
+      {
+       typename hp::DoFHandler<dim>::active_cell_iterator
+         cell = dof_handler.begin_active(),
+         endc = dof_handler.end();
+       for (unsigned int index=0; cell!=endc; ++cell, ++index)
+         fe_degrees(index)
+           = fe_collection[cell->active_fe_index()].degree;
+      }
 
-                                // @sect4{LaplaceProblem::run}
+                                      // With now all data vectors available --
+                                      // solution, estimated errors and
+                                      // smoothness indicators, and finite
+                                      // element degrees --, we create a
+                                      // DataOut object for graphical output
+                                      // and attach all data. Note that the
+                                      // DataOut class has a second template
+                                      // argument (which defaults to
+                                      // DoFHandler@<dim@>, which is why we
+                                      // have never seen it in previous
+                                      // tutorial programs) that indicates the
+                                      // type of DoF handler to be used. Here,
+                                      // we have to use the hp::DoFHandler
+                                      // class:
+      DataOut<dim,hp::DoFHandler<dim> > data_out;
+
+      data_out.attach_dof_handler (dof_handler);
+      data_out.add_data_vector (solution, "solution");
+      data_out.add_data_vector (estimated_error_per_cell, "error");
+      data_out.add_data_vector (smoothness_indicators, "smoothness");
+      data_out.add_data_vector (fe_degrees, "fe_degree");
+      data_out.build_patches ();
+
+                                      // The final step in generating
+                                      // output is to determine a file
+                                      // name, open the file, and write
+                                      // the data into it (here, we use
+                                      // VTK format):
+      const std::string filename = "solution-" +
+                                  Utilities::int_to_string (cycle, 2) +
+                                  ".vtk";
+      std::ofstream output (filename.c_str());
+      data_out.write_vtk (output);
+    }
 
-                                // This function implements the logic of the
-                                // program, as did the respective function in
-                                // most of the previous programs already, see
-                                // for example step-6.
-                                //
-                                // Basically, it contains the adaptive loop:
-                                // in the first iteration create a coarse
-                                // grid, and then set up the linear system,
-                                // assemble it, solve, and postprocess the
-                                // solution including mesh refinement. Then
-                                // start over again. In the meantime, also
-                                // output some information for those staring
-                                // at the screen trying to figure out what
-                                // the program does:
-template <int dim>
-void LaplaceProblem<dim>::run () 
-{
-  for (unsigned int cycle=0; cycle<6; ++cycle)
+                                    // After this, we would like to actually
+                                    // refine the mesh, in both $h$ and
+                                    // $p$. The way we are going to do this is
+                                    // as follows: first, we use the estimated
+                                    // error to flag those cells for refinement
+                                    // that have the largest error. This is
+                                    // what we have always done:
     {
-      std::cout << "Cycle " << cycle << ':' << std::endl;
+      GridRefinement::refine_and_coarsen_fixed_number (triangulation,
+                                                      estimated_error_per_cell,
+                                                      0.3, 0.03);
+
+                                      // Next we would like to figure out which
+                                      // of the cells that have been flagged
+                                      // for refinement should actually have
+                                      // $p$ increased instead of $h$
+                                      // decreased. The strategy we choose here
+                                      // is that we look at the smoothness
+                                      // indicators of those cells that are
+                                      // flagged for refinement, and increase
+                                      // $p$ for those with a smoothness larger
+                                      // than a certain threshold. For this, we
+                                      // first have to determine the maximal
+                                      // and minimal values of the smoothness
+                                      // indicators of all flagged cells, which
+                                      // we do using a loop over all cells and
+                                      // comparing current minimal and maximal
+                                      // values. (We start with the minimal and
+                                      // maximal values of <i>all</i> cells, a
+                                      // range within which the minimal and
+                                      // maximal values on cells flagged for
+                                      // refinement must surely lie.) Absent
+                                      // any better strategies, we will then
+                                      // set the threshold above which will
+                                      // increase $p$ instead of reducing $h$
+                                      // as the mean value between minimal and
+                                      // maximal smoothness indicators on cells
+                                      // flagged for refinement:
+      float max_smoothness = *std::min_element (smoothness_indicators.begin(),
+                                               smoothness_indicators.end()),
+           min_smoothness = *std::max_element (smoothness_indicators.begin(),
+                                               smoothness_indicators.end());
+      {
+       typename hp::DoFHandler<dim>::active_cell_iterator
+         cell = dof_handler.begin_active(),
+         endc = dof_handler.end();
+       for (unsigned int index=0; cell!=endc; ++cell, ++index)
+         if (cell->refine_flag_set())
+           {
+             max_smoothness = std::max (max_smoothness,
+                                        smoothness_indicators(index));
+             min_smoothness = std::min (min_smoothness,
+                                        smoothness_indicators(index));
+           }
+      }
+      const float threshold_smoothness = (max_smoothness + min_smoothness) / 2;
+
+                                      // With this, we can go back, loop over
+                                      // all cells again, and for those cells
+                                      // for which (i) the refinement flag is
+                                      // set, (ii) the smoothness indicator is
+                                      // larger than the threshold, and (iii)
+                                      // we still have a finite element with a
+                                      // polynomial degree higher than the
+                                      // current one in the finite element
+                                      // collection, we then increase the
+                                      // polynomial degree and in return remove
+                                      // the flag indicating that the cell
+                                      // should undergo bisection. For all
+                                      // other cells, the refinement flags
+                                      // remain untouched:
+      {
+       typename hp::DoFHandler<dim>::active_cell_iterator
+         cell = dof_handler.begin_active(),
+         endc = dof_handler.end();
+       for (unsigned int index=0; cell!=endc; ++cell, ++index)
+         if (cell->refine_flag_set()
+             &&
+             (smoothness_indicators(index) > threshold_smoothness)
+             &&
+             (cell->active_fe_index()+1 < fe_collection.size()))
+           {
+             cell->clear_refine_flag();
+             cell->set_active_fe_index (cell->active_fe_index() + 1);
+           }
+      }
 
-      if (cycle == 0)
-       create_coarse_grid ();
+                                      // At the end of this procedure, we then
+                                      // refine the mesh. During this process,
+                                      // children of cells undergoing bisection
+                                      // inherit their mother cell's finite
+                                      // element index:
+      triangulation.execute_coarsening_and_refinement ();
+    }
+  }
 
-      setup_system ();
 
-      std::cout << "   Number of active cells:       "
-               << triangulation.n_active_cells()
-               << std::endl
-               << "   Number of degrees of freedom: "
-               << dof_handler.n_dofs()
-               << std::endl
-               << "   Number of constraints       : "
-               << constraints.n_constraints()
-               << std::endl;
+                                  // @sect4{LaplaceProblem::create_coarse_grid}
+
+                                  // The following function is used when
+                                  // creating the initial grid. It is a
+                                  // specialization for the 2d case, i.e. a
+                                  // corresponding function needs to be
+                                  // implemented if the program is run in
+                                  // anything other then 2d. The function is
+                                  // actually stolen from step-14 and generates
+                                  // the same mesh used already there, i.e. the
+                                  // square domain with the square hole in the
+                                  // middle. The meaning of the different parts
+                                  // of this function are explained in the
+                                  // documentation of step-14:
+  template <>
+  void LaplaceProblem<2>::create_coarse_grid ()
+  {
+    const unsigned int dim = 2;
+
+    static const Point<2> vertices_1[]
+      = {  Point<2> (-1.,   -1.),
+          Point<2> (-1./2, -1.),
+          Point<2> (0.,    -1.),
+          Point<2> (+1./2, -1.),
+          Point<2> (+1,    -1.),
+
+          Point<2> (-1.,   -1./2.),
+          Point<2> (-1./2, -1./2.),
+          Point<2> (0.,    -1./2.),
+          Point<2> (+1./2, -1./2.),
+          Point<2> (+1,    -1./2.),
+
+          Point<2> (-1.,   0.),
+          Point<2> (-1./2, 0.),
+          Point<2> (+1./2, 0.),
+          Point<2> (+1,    0.),
+
+          Point<2> (-1.,   1./2.),
+          Point<2> (-1./2, 1./2.),
+          Point<2> (0.,    1./2.),
+          Point<2> (+1./2, 1./2.),
+          Point<2> (+1,    1./2.),
+
+          Point<2> (-1.,   1.),
+          Point<2> (-1./2, 1.),
+          Point<2> (0.,    1.),
+          Point<2> (+1./2, 1.),
+          Point<2> (+1,    1.)    };
+    const unsigned int
+      n_vertices = sizeof(vertices_1) / sizeof(vertices_1[0]);
+    const std::vector<Point<dim> > vertices (&vertices_1[0],
+                                            &vertices_1[n_vertices]);
+    static const int cell_vertices[][GeometryInfo<dim>::vertices_per_cell]
+      = {{0, 1, 5, 6},
+        {1, 2, 6, 7},
+        {2, 3, 7, 8},
+        {3, 4, 8, 9},
+        {5, 6, 10, 11},
+        {8, 9, 12, 13},
+        {10, 11, 14, 15},
+        {12, 13, 17, 18},
+        {14, 15, 19, 20},
+        {15, 16, 20, 21},
+        {16, 17, 21, 22},
+        {17, 18, 22, 23}};
+    const unsigned int
+      n_cells = sizeof(cell_vertices) / sizeof(cell_vertices[0]);
+
+    std::vector<CellData<dim> > cells (n_cells, CellData<dim>());
+    for (unsigned int i=0; i<n_cells; ++i)
+      {
+       for (unsigned int j=0;
+            j<GeometryInfo<dim>::vertices_per_cell;
+            ++j)
+         cells[i].vertices[j] = cell_vertices[i][j];
+       cells[i].material_id = 0;
+      }
 
-      assemble_system ();
-      solve ();
-      postprocess (cycle);
-    }
-}
+    triangulation.create_triangulation (vertices,
+                                       cells,
+                                       SubCellData());
+    triangulation.refine_global (3);
+  }
 
 
-                                // @sect4{LaplaceProblem::estimate_smoothness}
 
-                                // This last function of significance
-                                // implements the algorithm to estimate the
-                                // smoothness exponent using the algorithms
-                                // explained in detail in the
-                                // introduction. We will therefore only
-                                // comment on those points that are of
-                                // implementational importance.
-template <int dim>
-void
-LaplaceProblem<dim>::
-estimate_smoothness (Vector<float> &smoothness_indicators) const
-{
-                                  // The first thing we need to do is
-                                  // to define the Fourier vectors
-                                  // ${\bf k}$ for which we want to
-                                  // compute Fourier coefficients of
-                                  // the solution on each cell. In
-                                  // 2d, we pick those vectors ${\bf
-                                  // k}=(\pi i, \pi j)^T$ for which
-                                  // $\sqrt{i^2+j^2}\le N$, with
-                                  // $i,j$ integers and $N$ being the
-                                  // maximal polynomial degree we use
-                                  // for the finite elements in this
-                                  // program. The 3d case is handled
-                                  // analogously. 1d and dimensions
-                                  // higher than 3 are not
-                                  // implemented, and we guard our
-                                  // implementation by making sure
-                                  // that we receive an exception in
-                                  // case someone tries to compile
-                                  // the program for any of these
-                                  // dimensions.
+
+                                  // @sect4{LaplaceProblem::run}
+
+                                  // This function implements the logic of the
+                                  // program, as did the respective function in
+                                  // most of the previous programs already, see
+                                  // for example step-6.
                                   //
-                                  // We exclude ${\bf k}=0$ to avoid problems
-                                  // computing $|{\bf k}|^{-mu}$ and $\ln
-                                  // |{\bf k}|$. The other vectors are stored
-                                  // in the field <code>k_vectors</code>. In
-                                  // addition, we store the square of the
-                                  // magnitude of each of these vectors (up
-                                  // to a factor $\pi^2$) in the
-                                  // <code>k_vectors_magnitude</code> array
-                                  // -- we will need that when we attempt to
-                                  // find out which of those Fourier
-                                  // coefficients corresponding to Fourier
-                                  // vectors of the same magnitude is the
-                                  // largest:
-  const unsigned int N = max_degree;
-
-  std::vector<Tensor<1,dim> > k_vectors;
-  std::vector<unsigned int>   k_vectors_magnitude;
-  switch (dim)
-    {
-      case 2:
+                                  // Basically, it contains the adaptive loop:
+                                  // in the first iteration create a coarse
+                                  // grid, and then set up the linear system,
+                                  // assemble it, solve, and postprocess the
+                                  // solution including mesh refinement. Then
+                                  // start over again. In the meantime, also
+                                  // output some information for those staring
+                                  // at the screen trying to figure out what
+                                  // the program does:
+  template <int dim>
+  void LaplaceProblem<dim>::run ()
+  {
+    for (unsigned int cycle=0; cycle<6; ++cycle)
       {
-       for (unsigned int i=0; i<N; ++i)
-         for (unsigned int j=0; j<N; ++j)
-           if (!((i==0) && (j==0))
-               &&
-               (i*i + j*j < N*N))
-             {
-               k_vectors.push_back (Point<dim>(numbers::PI * i,
-                                               numbers::PI * j));
-               k_vectors_magnitude.push_back (i*i+j*j);
-             }
-       
-       break;
+       std::cout << "Cycle " << cycle << ':' << std::endl;
+
+       if (cycle == 0)
+         create_coarse_grid ();
+
+       setup_system ();
+
+       std::cout << "   Number of active cells:       "
+                 << triangulation.n_active_cells()
+                 << std::endl
+                 << "   Number of degrees of freedom: "
+                 << dof_handler.n_dofs()
+                 << std::endl
+                 << "   Number of constraints       : "
+                 << constraints.n_constraints()
+                 << std::endl;
+
+       assemble_system ();
+       solve ();
+       postprocess (cycle);
       }
+  }
 
-      case 3:
+
+                                  // @sect4{LaplaceProblem::estimate_smoothness}
+
+                                  // This last function of significance
+                                  // implements the algorithm to estimate the
+                                  // smoothness exponent using the algorithms
+                                  // explained in detail in the
+                                  // introduction. We will therefore only
+                                  // comment on those points that are of
+                                  // implementational importance.
+  template <int dim>
+  void
+  LaplaceProblem<dim>::
+  estimate_smoothness (Vector<float> &smoothness_indicators) const
+  {
+                                    // The first thing we need to do is
+                                    // to define the Fourier vectors
+                                    // ${\bf k}$ for which we want to
+                                    // compute Fourier coefficients of
+                                    // the solution on each cell. In
+                                    // 2d, we pick those vectors ${\bf
+                                    // k}=(\pi i, \pi j)^T$ for which
+                                    // $\sqrt{i^2+j^2}\le N$, with
+                                    // $i,j$ integers and $N$ being the
+                                    // maximal polynomial degree we use
+                                    // for the finite elements in this
+                                    // program. The 3d case is handled
+                                    // analogously. 1d and dimensions
+                                    // higher than 3 are not
+                                    // implemented, and we guard our
+                                    // implementation by making sure
+                                    // that we receive an exception in
+                                    // case someone tries to compile
+                                    // the program for any of these
+                                    // dimensions.
+                                    //
+                                    // We exclude ${\bf k}=0$ to avoid problems
+                                    // computing $|{\bf k}|^{-mu}$ and $\ln
+                                    // |{\bf k}|$. The other vectors are stored
+                                    // in the field <code>k_vectors</code>. In
+                                    // addition, we store the square of the
+                                    // magnitude of each of these vectors (up
+                                    // to a factor $\pi^2$) in the
+                                    // <code>k_vectors_magnitude</code> array
+                                    // -- we will need that when we attempt to
+                                    // find out which of those Fourier
+                                    // coefficients corresponding to Fourier
+                                    // vectors of the same magnitude is the
+                                    // largest:
+    const unsigned int N = max_degree;
+
+    std::vector<Tensor<1,dim> > k_vectors;
+    std::vector<unsigned int>   k_vectors_magnitude;
+    switch (dim)
       {
-       for (unsigned int i=0; i<N; ++i)
-         for (unsigned int j=0; j<N; ++j)
-           for (unsigned int k=0; k<N; ++k)
-             if (!((i==0) && (j==0) && (k==0))
+       case 2:
+       {
+         for (unsigned int i=0; i<N; ++i)
+           for (unsigned int j=0; j<N; ++j)
+             if (!((i==0) && (j==0))
                  &&
-                 (i*i + j*j + k*k < N*N))
+                 (i*i + j*j < N*N))
                {
                  k_vectors.push_back (Point<dim>(numbers::PI * i,
-                                                 numbers::PI * j,
-                                                 numbers::PI * k));
-                 k_vectors_magnitude.push_back (i*i+j*j+k*k);
-             }
-       
-       break;
-      }
-      
-      default:
-           Assert (false, ExcNotImplemented());
-    }
-
-                                  // After we have set up the Fourier
-                                  // vectors, we also store their total
-                                  // number for simplicity, and compute the
-                                  // logarithm of the magnitude of each of
-                                  // these vectors since we will need it many
-                                  // times over further down below:
-  const unsigned n_fourier_modes = k_vectors.size();
-  std::vector<double> ln_k (n_fourier_modes);
-  for (unsigned int i=0; i<n_fourier_modes; ++i)
-    ln_k[i] = std::log (k_vectors[i].norm());
-  
-
-                                  // Next, we need to assemble the matrices
-                                  // that do the Fourier transforms for each
-                                  // of the finite elements we deal with,
-                                  // i.e. the matrices ${\cal F}_{{\bf k},j}$
-                                  // defined in the introduction. We have to
-                                  // do that for each of the finite elements
-                                  // in use. Note that these matrices are
-                                  // complex-valued, so we can't use the
-                                  // FullMatrix class. Instead, we use the
-                                  // Table class template.
-  std::vector<Table<2,std::complex<double> > >
-    fourier_transform_matrices (fe_collection.size());
-
-                                  // In order to compute them, we of
-                                  // course can't perform the Fourier
-                                  // transform analytically, but have
-                                  // to approximate it using
-                                  // quadrature. To this end, we use
-                                  // a quadrature formula that is
-                                  // obtained by iterating a 2-point
-                                  // Gauss formula as many times as
-                                  // the maximal exponent we use for
-                                  // the term $e^{i{\bf k}\cdot{\bf
-                                  // x}}$:
-  QGauss<1>      base_quadrature (2);
-  QIterated<dim> quadrature (base_quadrature, N);
-
-                                  // With this, we then loop over all finite
-                                  // elements in use, reinitialize the
-                                  // respective matrix ${\cal F}$ to the
-                                  // right size, and integrate each entry of
-                                  // the matrix numerically as ${\cal
-                                  // F}_{{\bf k},j}=\sum_q e^{i{\bf k}\cdot
-                                  // {\bf x}}\varphi_j({\bf x}_q)
-                                  // w_q$, where $x_q$  
-                                  // are the quadrature points and $w_q$ are
-                                  // the quadrature weights. Note that the
-                                  // imaginary unit $i=\sqrt{-1}$ is obtained
-                                  // from the standard C++ classes using
-                                  // <code>std::complex@<double@>(0,1)</code>.
-
-                                  // Because we work on the unit cell, we can
-                                  // do all this work without a mapping from
-                                  // reference to real cell and consequently
-                                  // do not need the FEValues class.
-  for (unsigned int fe=0; fe<fe_collection.size(); ++fe)
-    {
-      fourier_transform_matrices[fe].reinit (n_fourier_modes,
-                                            fe_collection[fe].dofs_per_cell);
+                                                 numbers::PI * j));
+                 k_vectors_magnitude.push_back (i*i+j*j);
+               }
 
-      for (unsigned int k=0; k<n_fourier_modes; ++k)
-       for (unsigned int j=0; j<fe_collection[fe].dofs_per_cell; ++j)
-         {
-           std::complex<double> sum = 0;
-           for (unsigned int q=0; q<quadrature.size(); ++q)
-             {
-               const Point<dim> x_q = quadrature.point(q);
-               sum += std::exp(std::complex<double>(0,1) *
-                               (k_vectors[k] * x_q)) *
-                      fe_collection[fe].shape_value(j,x_q) *
-                      quadrature.weight(q);
-             }
-           fourier_transform_matrices[fe](k,j)
-             = sum / std::pow(2*numbers::PI, 1.*dim/2);
-         }
-    }
+         break;
+       }
 
-                                  // The next thing is to loop over all cells
-                                  // and do our work there, i.e. to locally
-                                  // do the Fourier transform and estimate
-                                  // the decay coefficient. We will use the
-                                  // following two arrays as scratch arrays
-                                  // in the loop and allocate them here to
-                                  // avoid repeated memory allocations:
-  std::vector<std::complex<double> > fourier_coefficients (n_fourier_modes);
-  Vector<double>                     local_dof_values;
-
-                                  // Then here is the loop:
-  typename hp::DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (unsigned int index=0; cell!=endc; ++cell, ++index)
-    {
-                                      // Inside the loop, we first need to
-                                      // get the values of the local degrees
-                                      // of freedom (which we put into the
-                                      // <code>local_dof_values</code> array
-                                      // after setting it to the right size)
-                                      // and then need to compute the Fourier
-                                      // transform by multiplying this vector
-                                      // with the matrix ${\cal F}$
-                                      // corresponding to this finite
-                                      // element. We need to write out the
-                                      // multiplication by hand because the
-                                      // objects holding the data do not have
-                                      // <code>vmult</code>-like functions
-                                      // declared:
-      local_dof_values.reinit (cell->get_fe().dofs_per_cell);
-      cell->get_dof_values (solution, local_dof_values);
-
-      for (unsigned int f=0; f<n_fourier_modes; ++f)
+       case 3:
        {
-         fourier_coefficients[f] = 0;
-         
-         for (unsigned int i=0; i<cell->get_fe().dofs_per_cell; ++i)
-           fourier_coefficients[f] += 
-             fourier_transform_matrices[cell->active_fe_index()](f,i)
-             *
-             local_dof_values(i);
+         for (unsigned int i=0; i<N; ++i)
+           for (unsigned int j=0; j<N; ++j)
+             for (unsigned int k=0; k<N; ++k)
+               if (!((i==0) && (j==0) && (k==0))
+                   &&
+                   (i*i + j*j + k*k < N*N))
+                 {
+                   k_vectors.push_back (Point<dim>(numbers::PI * i,
+                                                   numbers::PI * j,
+                                                   numbers::PI * k));
+                   k_vectors_magnitude.push_back (i*i+j*j+k*k);
+                 }
+
+         break;
        }
 
-                                      // The next thing, as explained in the
-                                      // introduction, is that we wanted to
-                                      // only fit our exponential decay of
-                                      // Fourier coefficients to the largest
-                                      // coefficients for each possible value
-                                      // of $|{\bf k}|$. To this end, we
-                                      // create a map that for each magnitude
-                                      // $|{\bf k}|$ stores the largest $|\hat
-                                      // U_{{\bf k}}|$ found so far, i.e. we
-                                      // overwrite the existing value (or add
-                                      // it to the map) if no value for the
-                                      // current $|{\bf k}|$ exists yet, or if
-                                      // the current value is larger than the
-                                      // previously stored one:
-      std::map<unsigned int, double> k_to_max_U_map;
-      for (unsigned int f=0; f<n_fourier_modes; ++f)
-       if ((k_to_max_U_map.find (k_vectors_magnitude[f]) ==
-            k_to_max_U_map.end())
-           ||
-           (k_to_max_U_map[k_vectors_magnitude[f]] <
-            std::abs (fourier_coefficients[f])))
-         k_to_max_U_map[k_vectors_magnitude[f]]
-           = std::abs (fourier_coefficients[f]);
-                                      // Note that it comes in handy here
-                                      // that we have stored the magnitudes
-                                      // of vectors as integers, since this
-                                      // way we do not have to deal with
-                                      // round-off-sized differences between
-                                      // different values of $|{\bf k}|$.
-
-                                      // As the final task, we have to
-                                      // calculate the various contributions
-                                      // to the formula for $\mu$. We'll only
-                                      // take those Fourier coefficients with
-                                      // the largest magnitude for a given
-                                      // value of $|{\bf k}|$ as explained
-                                      // above:
-      double  sum_1           = 0,
-             sum_ln_k        = 0,
-             sum_ln_k_square = 0,
-             sum_ln_U        = 0,
-             sum_ln_U_ln_k   = 0;
-      for (unsigned int f=0; f<n_fourier_modes; ++f)
-       if (k_to_max_U_map[k_vectors_magnitude[f]] ==
-           std::abs (fourier_coefficients[f]))
+       default:
+             Assert (false, ExcNotImplemented());
+      }
+
+                                    // After we have set up the Fourier
+                                    // vectors, we also store their total
+                                    // number for simplicity, and compute the
+                                    // logarithm of the magnitude of each of
+                                    // these vectors since we will need it many
+                                    // times over further down below:
+    const unsigned n_fourier_modes = k_vectors.size();
+    std::vector<double> ln_k (n_fourier_modes);
+    for (unsigned int i=0; i<n_fourier_modes; ++i)
+      ln_k[i] = std::log (k_vectors[i].norm());
+
+
+                                    // Next, we need to assemble the matrices
+                                    // that do the Fourier transforms for each
+                                    // of the finite elements we deal with,
+                                    // i.e. the matrices ${\cal F}_{{\bf k},j}$
+                                    // defined in the introduction. We have to
+                                    // do that for each of the finite elements
+                                    // in use. Note that these matrices are
+                                    // complex-valued, so we can't use the
+                                    // FullMatrix class. Instead, we use the
+                                    // Table class template.
+    std::vector<Table<2,std::complex<double> > >
+      fourier_transform_matrices (fe_collection.size());
+
+                                    // In order to compute them, we of
+                                    // course can't perform the Fourier
+                                    // transform analytically, but have
+                                    // to approximate it using
+                                    // quadrature. To this end, we use
+                                    // a quadrature formula that is
+                                    // obtained by iterating a 2-point
+                                    // Gauss formula as many times as
+                                    // the maximal exponent we use for
+                                    // the term $e^{i{\bf k}\cdot{\bf
+                                    // x}}$:
+    QGauss<1>      base_quadrature (2);
+    QIterated<dim> quadrature (base_quadrature, N);
+
+                                    // With this, we then loop over all finite
+                                    // elements in use, reinitialize the
+                                    // respective matrix ${\cal F}$ to the
+                                    // right size, and integrate each entry of
+                                    // the matrix numerically as ${\cal
+                                    // F}_{{\bf k},j}=\sum_q e^{i{\bf k}\cdot
+                                    // {\bf x}}\varphi_j({\bf x}_q)
+                                    // w_q$, where $x_q$
+                                    // are the quadrature points and $w_q$ are
+                                    // the quadrature weights. Note that the
+                                    // imaginary unit $i=\sqrt{-1}$ is obtained
+                                    // from the standard C++ classes using
+                                    // <code>std::complex@<double@>(0,1)</code>.
+
+                                    // Because we work on the unit cell, we can
+                                    // do all this work without a mapping from
+                                    // reference to real cell and consequently
+                                    // do not need the FEValues class.
+    for (unsigned int fe=0; fe<fe_collection.size(); ++fe)
+      {
+       fourier_transform_matrices[fe].reinit (n_fourier_modes,
+                                              fe_collection[fe].dofs_per_cell);
+
+       for (unsigned int k=0; k<n_fourier_modes; ++k)
+         for (unsigned int j=0; j<fe_collection[fe].dofs_per_cell; ++j)
+           {
+             std::complex<double> sum = 0;
+             for (unsigned int q=0; q<quadrature.size(); ++q)
+               {
+                 const Point<dim> x_q = quadrature.point(q);
+                 sum += std::exp(std::complex<double>(0,1) *
+                                 (k_vectors[k] * x_q)) *
+                        fe_collection[fe].shape_value(j,x_q) *
+                        quadrature.weight(q);
+               }
+             fourier_transform_matrices[fe](k,j)
+               = sum / std::pow(2*numbers::PI, 1.*dim/2);
+           }
+      }
+
+                                    // The next thing is to loop over all cells
+                                    // and do our work there, i.e. to locally
+                                    // do the Fourier transform and estimate
+                                    // the decay coefficient. We will use the
+                                    // following two arrays as scratch arrays
+                                    // in the loop and allocate them here to
+                                    // avoid repeated memory allocations:
+    std::vector<std::complex<double> > fourier_coefficients (n_fourier_modes);
+    Vector<double>                     local_dof_values;
+
+                                    // Then here is the loop:
+    typename hp::DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (unsigned int index=0; cell!=endc; ++cell, ++index)
+      {
+                                        // Inside the loop, we first need to
+                                        // get the values of the local degrees
+                                        // of freedom (which we put into the
+                                        // <code>local_dof_values</code> array
+                                        // after setting it to the right size)
+                                        // and then need to compute the Fourier
+                                        // transform by multiplying this vector
+                                        // with the matrix ${\cal F}$
+                                        // corresponding to this finite
+                                        // element. We need to write out the
+                                        // multiplication by hand because the
+                                        // objects holding the data do not have
+                                        // <code>vmult</code>-like functions
+                                        // declared:
+       local_dof_values.reinit (cell->get_fe().dofs_per_cell);
+       cell->get_dof_values (solution, local_dof_values);
+
+       for (unsigned int f=0; f<n_fourier_modes; ++f)
          {
-           sum_1 += 1;
-           sum_ln_k += ln_k[f];
-           sum_ln_k_square += ln_k[f]*ln_k[f];
-           sum_ln_U += std::log (std::abs (fourier_coefficients[f]));
-           sum_ln_U_ln_k += std::log (std::abs (fourier_coefficients[f])) *
-                            ln_k[f];
+           fourier_coefficients[f] = 0;
+
+           for (unsigned int i=0; i<cell->get_fe().dofs_per_cell; ++i)
+             fourier_coefficients[f] +=
+               fourier_transform_matrices[cell->active_fe_index()](f,i)
+               *
+               local_dof_values(i);
          }
 
-                                      // With these so-computed sums, we can
-                                      // now evaluate the formula for $\mu$
-                                      // derived in the introduction:
-      const double mu
-       = (1./(sum_1*sum_ln_k_square - sum_ln_k*sum_ln_k)
-          *
-          (sum_ln_k*sum_ln_U - sum_1*sum_ln_U_ln_k));
-
-                                      // The final step is to compute the
-                                      // Sobolev index $s=\mu-\frac d2$ and
-                                      // store it in the vector of estimated
-                                      // values for each cell:
-      smoothness_indicators(index) = mu - 1.*dim/2;
-    }
+                                        // The next thing, as explained in the
+                                        // introduction, is that we wanted to
+                                        // only fit our exponential decay of
+                                        // Fourier coefficients to the largest
+                                        // coefficients for each possible value
+                                        // of $|{\bf k}|$. To this end, we
+                                        // create a map that for each magnitude
+                                        // $|{\bf k}|$ stores the largest $|\hat
+                                        // U_{{\bf k}}|$ found so far, i.e. we
+                                        // overwrite the existing value (or add
+                                        // it to the map) if no value for the
+                                        // current $|{\bf k}|$ exists yet, or if
+                                        // the current value is larger than the
+                                        // previously stored one:
+       std::map<unsigned int, double> k_to_max_U_map;
+       for (unsigned int f=0; f<n_fourier_modes; ++f)
+         if ((k_to_max_U_map.find (k_vectors_magnitude[f]) ==
+              k_to_max_U_map.end())
+             ||
+             (k_to_max_U_map[k_vectors_magnitude[f]] <
+              std::abs (fourier_coefficients[f])))
+           k_to_max_U_map[k_vectors_magnitude[f]]
+             = std::abs (fourier_coefficients[f]);
+                                        // Note that it comes in handy here
+                                        // that we have stored the magnitudes
+                                        // of vectors as integers, since this
+                                        // way we do not have to deal with
+                                        // round-off-sized differences between
+                                        // different values of $|{\bf k}|$.
+
+                                        // As the final task, we have to
+                                        // calculate the various contributions
+                                        // to the formula for $\mu$. We'll only
+                                        // take those Fourier coefficients with
+                                        // the largest magnitude for a given
+                                        // value of $|{\bf k}|$ as explained
+                                        // above:
+       double  sum_1           = 0,
+               sum_ln_k        = 0,
+               sum_ln_k_square = 0,
+               sum_ln_U        = 0,
+               sum_ln_U_ln_k   = 0;
+       for (unsigned int f=0; f<n_fourier_modes; ++f)
+         if (k_to_max_U_map[k_vectors_magnitude[f]] ==
+             std::abs (fourier_coefficients[f]))
+           {
+             sum_1 += 1;
+             sum_ln_k += ln_k[f];
+             sum_ln_k_square += ln_k[f]*ln_k[f];
+             sum_ln_U += std::log (std::abs (fourier_coefficients[f]));
+             sum_ln_U_ln_k += std::log (std::abs (fourier_coefficients[f])) *
+                              ln_k[f];
+           }
+
+                                        // With these so-computed sums, we can
+                                        // now evaluate the formula for $\mu$
+                                        // derived in the introduction:
+       const double mu
+         = (1./(sum_1*sum_ln_k_square - sum_ln_k*sum_ln_k)
+            *
+            (sum_ln_k*sum_ln_U - sum_1*sum_ln_U_ln_k));
+
+                                        // The final step is to compute the
+                                        // Sobolev index $s=\mu-\frac d2$ and
+                                        // store it in the vector of estimated
+                                        // values for each cell:
+       smoothness_indicators(index) = mu - 1.*dim/2;
+      }
+  }
 }
 
 
@@ -1047,10 +1050,13 @@ estimate_smoothness (Vector<float> &smoothness_indicators) const
                                 // exceptions are thrown, thereby producing
                                 // meaningful output if anything should go
                                 // wrong:
-int main () 
+int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step27;
+
       deallog.depth_console (0);
 
       LaplaceProblem<2> laplace_problem;
@@ -1069,7 +1075,7 @@ int main ()
 
       return 1;
     }
-  catch (...) 
+  catch (...)
     {
       std::cerr << std::endl << std::endl
                << "----------------------------------------------------"
index 7074671ccba8ad635a46fb4aa9659194b736b824..912b89c5d673fab3b6dd24d000521bac0dc27ad8 100644 (file)
@@ -1,7 +1,7 @@
 /*    $Id$       */
 /*    Version: $Name:  $                                          */
 /*                                                                */
-/*    Copyright (C) 2006, 2007, 2008, 2009, 2010 by the deal.II authors and Yaqi Wang     */
+/*    Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011 by the deal.II authors and Yaqi Wang     */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
 
                                 // The last step is as in all
                                 // previous programs:
-using namespace dealii;
+namespace Step28
+{
+  using namespace dealii;
 
 
-                                // @sect3{Material data}
+                                  // @sect3{Material data}
 
-                                 // First up, we need to define a
-                                 // class that provides material data
-                                 // (including diffusion coefficients,
-                                 // removal cross sections, scattering
-                                 // cross sections, fission cross
-                                 // sections and fission spectra) to
-                                 // the main class.
-                                 //
-                                 // The parameter to the constructor
-                                 // determines for how many energy
-                                 // groups we set up the relevant
-                                 // tables. At present, this program
-                                 // only includes data for 2 energy
-                                 // groups, but a more sophisticated
-                                 // program may be able to initialize
-                                 // the data structures for more
-                                 // groups as well, depending on how
-                                 // many energy groups are selected in
-                                 // the parameter file.
-                                 //
-                                 // For each of the different
-                                 // coefficient types, there is one
-                                 // function that returns the value of
-                                 // this coefficient for a particular
-                                 // energy group (or combination of
-                                 // energy groups, as for the
-                                 // distribution cross section
-                                 // $\chi_g\nu\Sigma_{f,g'}$ or
-                                 // scattering cross section
-                                 // $\Sigma_{s,g'\to g}$). In addition
-                                 // to the energy group or groups,
-                                 // these coefficients depend on the
-                                 // type of fuel or control rod, as
-                                 // explained in the introduction. The
-                                 // functions therefore take an
-                                 // additional parameter, @p
-                                 // material_id, that identifies the
-                                 // particular kind of rod. Within
-                                 // this program, we use
-                                 // <code>n_materials=8</code>
-                                 // different kinds of rods.
-                                 //
-                                 // Except for the scattering cross
-                                 // section, each of the coefficients
-                                 // therefore can be represented as an
-                                 // entry in a two-dimensional array
-                                 // of floating point values indexed
-                                 // by the energy group number as well
-                                 // as the material ID. The Table
-                                 // class template is the ideal way to
-                                 // store such data. Finally, the
-                                 // scattering coefficient depends on
-                                 // both two energy group indices and
-                                 // therefore needs to be stored in a
-                                 // three-dimensional array, for which
-                                 // we again use the Table class,
-                                 // where this time the first template
-                                 // argument (denoting the
-                                 // dimensionality of the array) of
-                                 // course needs to be three:
-class MaterialData
-{
-  public:
-    MaterialData (const unsigned int n_groups);
-
-    double get_diffusion_coefficient (const unsigned int group,
-                                     const unsigned int material_id) const;
-    double get_removal_XS (const unsigned int group,
-                          const unsigned int material_id) const;
-    double get_fission_XS (const unsigned int group,
-                          const unsigned int material_id) const;
-    double get_fission_dist_XS (const unsigned int group_1,
+                                  // First up, we need to define a
+                                  // class that provides material data
+                                  // (including diffusion coefficients,
+                                  // removal cross sections, scattering
+                                  // cross sections, fission cross
+                                  // sections and fission spectra) to
+                                  // the main class.
+                                  //
+                                  // The parameter to the constructor
+                                  // determines for how many energy
+                                  // groups we set up the relevant
+                                  // tables. At present, this program
+                                  // only includes data for 2 energy
+                                  // groups, but a more sophisticated
+                                  // program may be able to initialize
+                                  // the data structures for more
+                                  // groups as well, depending on how
+                                  // many energy groups are selected in
+                                  // the parameter file.
+                                  //
+                                  // For each of the different
+                                  // coefficient types, there is one
+                                  // function that returns the value of
+                                  // this coefficient for a particular
+                                  // energy group (or combination of
+                                  // energy groups, as for the
+                                  // distribution cross section
+                                  // $\chi_g\nu\Sigma_{f,g'}$ or
+                                  // scattering cross section
+                                  // $\Sigma_{s,g'\to g}$). In addition
+                                  // to the energy group or groups,
+                                  // these coefficients depend on the
+                                  // type of fuel or control rod, as
+                                  // explained in the introduction. The
+                                  // functions therefore take an
+                                  // additional parameter, @p
+                                  // material_id, that identifies the
+                                  // particular kind of rod. Within
+                                  // this program, we use
+                                  // <code>n_materials=8</code>
+                                  // different kinds of rods.
+                                  //
+                                  // Except for the scattering cross
+                                  // section, each of the coefficients
+                                  // therefore can be represented as an
+                                  // entry in a two-dimensional array
+                                  // of floating point values indexed
+                                  // by the energy group number as well
+                                  // as the material ID. The Table
+                                  // class template is the ideal way to
+                                  // store such data. Finally, the
+                                  // scattering coefficient depends on
+                                  // both two energy group indices and
+                                  // therefore needs to be stored in a
+                                  // three-dimensional array, for which
+                                  // we again use the Table class,
+                                  // where this time the first template
+                                  // argument (denoting the
+                                  // dimensionality of the array) of
+                                  // course needs to be three:
+  class MaterialData
+  {
+    public:
+      MaterialData (const unsigned int n_groups);
+
+      double get_diffusion_coefficient (const unsigned int group,
+                                       const unsigned int material_id) const;
+      double get_removal_XS (const unsigned int group,
+                            const unsigned int material_id) const;
+      double get_fission_XS (const unsigned int group,
+                            const unsigned int material_id) const;
+      double get_fission_dist_XS (const unsigned int group_1,
+                                 const unsigned int group_2,
+                                 const unsigned int material_id) const;
+      double get_scattering_XS (const unsigned int group_1,
                                const unsigned int group_2,
                                const unsigned int material_id) const;
-    double get_scattering_XS (const unsigned int group_1,
-                             const unsigned int group_2,
-                             const unsigned int material_id) const;
-    double get_fission_spectrum (const unsigned int group,
-                                const unsigned int material_id) const;
-
-  private:
-    const unsigned int n_groups;
-    const unsigned int n_materials;
-
-    Table<2,double> diffusion;
-    Table<2,double> sigma_r;
-    Table<2,double> nu_sigma_f;
-    Table<3,double> sigma_s;
-    Table<2,double> chi;
-};
-
-                                 // The constructor of the class is
-                                 // used to initialize all the
-                                 // material data arrays. It takes the
-                                 // number of energy groups as an
-                                 // argument (an throws an error if
-                                 // that value is not equal to two,
-                                 // since at presently only data for
-                                 // two energy groups is implemented;
-                                 // however, using this, the function
-                                 // remains flexible and extendible
-                                 // into the future). In the member
-                                 // initialization part at the
-                                 // beginning, it also resizes the
-                                 // arrays to their correct sizes.
-                                 //
-                                 // At present, material data is
-                                 // stored for 8 different types of
-                                 // material. This, as well, may
-                                 // easily be extended in the future.
-MaterialData::MaterialData (const unsigned int n_groups)
-               :
-               n_groups (n_groups),
-               n_materials (8),
-               diffusion (n_materials, n_groups),
-               sigma_r (n_materials, n_groups),
-               nu_sigma_f (n_materials, n_groups),
-               sigma_s (n_materials, n_groups, n_groups),
-               chi (n_materials, n_groups)
-{
-  switch (n_groups)
-    {
-      case 2:
+      double get_fission_spectrum (const unsigned int group,
+                                  const unsigned int material_id) const;
+
+    private:
+      const unsigned int n_groups;
+      const unsigned int n_materials;
+
+      Table<2,double> diffusion;
+      Table<2,double> sigma_r;
+      Table<2,double> nu_sigma_f;
+      Table<3,double> sigma_s;
+      Table<2,double> chi;
+  };
+
+                                  // The constructor of the class is
+                                  // used to initialize all the
+                                  // material data arrays. It takes the
+                                  // number of energy groups as an
+                                  // argument (an throws an error if
+                                  // that value is not equal to two,
+                                  // since at presently only data for
+                                  // two energy groups is implemented;
+                                  // however, using this, the function
+                                  // remains flexible and extendible
+                                  // into the future). In the member
+                                  // initialization part at the
+                                  // beginning, it also resizes the
+                                  // arrays to their correct sizes.
+                                  //
+                                  // At present, material data is
+                                  // stored for 8 different types of
+                                  // material. This, as well, may
+                                  // easily be extended in the future.
+  MaterialData::MaterialData (const unsigned int n_groups)
+                 :
+                 n_groups (n_groups),
+                 n_materials (8),
+                 diffusion (n_materials, n_groups),
+                 sigma_r (n_materials, n_groups),
+                 nu_sigma_f (n_materials, n_groups),
+                 sigma_s (n_materials, n_groups, n_groups),
+                 chi (n_materials, n_groups)
+  {
+    switch (n_groups)
       {
-        for (unsigned int m=0; m<n_materials; ++m)
-          {
-            diffusion[m][0] = 1.2;
-            diffusion[m][1] = 0.4;
-            chi[m][0]       = 1.0;
-            chi[m][1]       = 0.0;
-            sigma_r[m][0]   = 0.03;
-            for (unsigned int group_1=0; group_1<n_groups; ++group_1)
-              for (unsigned int group_2=0; group_2<n_groups; ++ group_2)
-                sigma_s[m][group_1][group_2]   = 0.0;
-          }
-
-
-        diffusion[5][1]  = 0.2;
-
-        sigma_r[4][0]    = 0.026;
-        sigma_r[5][0]    = 0.051;
-        sigma_r[6][0]    = 0.026;
-        sigma_r[7][0]    = 0.050;
-
-        sigma_r[0][1]    = 0.100;
-        sigma_r[1][1]    = 0.200;
-        sigma_r[2][1]    = 0.250;
-        sigma_r[3][1]    = 0.300;
-        sigma_r[4][1]    = 0.020;
-        sigma_r[5][1]    = 0.040;
-        sigma_r[6][1]    = 0.020;
-        sigma_r[7][1]    = 0.800;
-
-        nu_sigma_f[0][0] = 0.0050;
-        nu_sigma_f[1][0] = 0.0075;
-        nu_sigma_f[2][0] = 0.0075;
-        nu_sigma_f[3][0] = 0.0075;
-        nu_sigma_f[4][0] = 0.000;
-        nu_sigma_f[5][0] = 0.000;
-        nu_sigma_f[6][0] = 1e-7;
-        nu_sigma_f[7][0] = 0.00;
-
-        nu_sigma_f[0][1] = 0.125;
-        nu_sigma_f[1][1] = 0.300;
-        nu_sigma_f[2][1] = 0.375;
-        nu_sigma_f[3][1] = 0.450;
-        nu_sigma_f[4][1] = 0.000;
-        nu_sigma_f[5][1] = 0.000;
-        nu_sigma_f[6][1] = 3e-6;
-        nu_sigma_f[7][1] = 0.00;
-
-        sigma_s[0][0][1] = 0.020;
-        sigma_s[1][0][1] = 0.015;
-        sigma_s[2][0][1] = 0.015;
-        sigma_s[3][0][1] = 0.015;
-        sigma_s[4][0][1] = 0.025;
-        sigma_s[5][0][1] = 0.050;
-        sigma_s[6][0][1] = 0.025;
-        sigma_s[7][0][1] = 0.010;
-
-        break;
-      }
-
+       case 2:
+       {
+         for (unsigned int m=0; m<n_materials; ++m)
+           {
+             diffusion[m][0] = 1.2;
+             diffusion[m][1] = 0.4;
+             chi[m][0]       = 1.0;
+             chi[m][1]       = 0.0;
+             sigma_r[m][0]   = 0.03;
+             for (unsigned int group_1=0; group_1<n_groups; ++group_1)
+               for (unsigned int group_2=0; group_2<n_groups; ++ group_2)
+                 sigma_s[m][group_1][group_2]   = 0.0;
+           }
 
-      default:
-            Assert (false,
-                    ExcMessage ("Presently, only data for 2 groups is implemented"));
-    }
-}
 
+         diffusion[5][1]  = 0.2;
+
+         sigma_r[4][0]    = 0.026;
+         sigma_r[5][0]    = 0.051;
+         sigma_r[6][0]    = 0.026;
+         sigma_r[7][0]    = 0.050;
+
+         sigma_r[0][1]    = 0.100;
+         sigma_r[1][1]    = 0.200;
+         sigma_r[2][1]    = 0.250;
+         sigma_r[3][1]    = 0.300;
+         sigma_r[4][1]    = 0.020;
+         sigma_r[5][1]    = 0.040;
+         sigma_r[6][1]    = 0.020;
+         sigma_r[7][1]    = 0.800;
+
+         nu_sigma_f[0][0] = 0.0050;
+         nu_sigma_f[1][0] = 0.0075;
+         nu_sigma_f[2][0] = 0.0075;
+         nu_sigma_f[3][0] = 0.0075;
+         nu_sigma_f[4][0] = 0.000;
+         nu_sigma_f[5][0] = 0.000;
+         nu_sigma_f[6][0] = 1e-7;
+         nu_sigma_f[7][0] = 0.00;
+
+         nu_sigma_f[0][1] = 0.125;
+         nu_sigma_f[1][1] = 0.300;
+         nu_sigma_f[2][1] = 0.375;
+         nu_sigma_f[3][1] = 0.450;
+         nu_sigma_f[4][1] = 0.000;
+         nu_sigma_f[5][1] = 0.000;
+         nu_sigma_f[6][1] = 3e-6;
+         nu_sigma_f[7][1] = 0.00;
+
+         sigma_s[0][0][1] = 0.020;
+         sigma_s[1][0][1] = 0.015;
+         sigma_s[2][0][1] = 0.015;
+         sigma_s[3][0][1] = 0.015;
+         sigma_s[4][0][1] = 0.025;
+         sigma_s[5][0][1] = 0.050;
+         sigma_s[6][0][1] = 0.025;
+         sigma_s[7][0][1] = 0.010;
+
+         break;
+       }
 
-                                 // Next are the functions that return
-                                 // the coefficient values for given
-                                 // materials and energy groups. All
-                                 // they do is to make sure that the
-                                 // given arguments are within the
-                                 // allowed ranges, and then look the
-                                 // respective value up in the
-                                 // corresponding tables:
-double
-MaterialData::get_diffusion_coefficient (const unsigned int group,
-                                        const unsigned int material_id) const
-{
-  Assert (group < n_groups,
-         ExcIndexRange (group, 0, n_groups));
-  Assert (material_id < n_materials,
-         ExcIndexRange (material_id, 0, n_materials));
 
-  return diffusion[material_id][group];
-}
+       default:
+             Assert (false,
+                     ExcMessage ("Presently, only data for 2 groups is implemented"));
+      }
+  }
 
 
+                                  // Next are the functions that return
+                                  // the coefficient values for given
+                                  // materials and energy groups. All
+                                  // they do is to make sure that the
+                                  // given arguments are within the
+                                  // allowed ranges, and then look the
+                                  // respective value up in the
+                                  // corresponding tables:
+  double
+  MaterialData::get_diffusion_coefficient (const unsigned int group,
+                                          const unsigned int material_id) const
+  {
+    Assert (group < n_groups,
+           ExcIndexRange (group, 0, n_groups));
+    Assert (material_id < n_materials,
+           ExcIndexRange (material_id, 0, n_materials));
 
-double
-MaterialData::get_removal_XS (const unsigned int group,
-                              const unsigned int material_id) const
-{
-  Assert (group < n_groups,
-         ExcIndexRange (group, 0, n_groups));
-  Assert (material_id < n_materials,
-         ExcIndexRange (material_id, 0, n_materials));
+    return diffusion[material_id][group];
+  }
 
-  return sigma_r[material_id][group];
-}
 
 
-double
-MaterialData::get_fission_XS (const unsigned int group,
-                              const unsigned int material_id) const
-{
-  Assert (group < n_groups,
-         ExcIndexRange (group, 0, n_groups));
-  Assert (material_id < n_materials,
-         ExcIndexRange (material_id, 0, n_materials));
+  double
+  MaterialData::get_removal_XS (const unsigned int group,
+                               const unsigned int material_id) const
+  {
+    Assert (group < n_groups,
+           ExcIndexRange (group, 0, n_groups));
+    Assert (material_id < n_materials,
+           ExcIndexRange (material_id, 0, n_materials));
 
-  return nu_sigma_f[material_id][group];
-}
+    return sigma_r[material_id][group];
+  }
 
 
+  double
+  MaterialData::get_fission_XS (const unsigned int group,
+                               const unsigned int material_id) const
+  {
+    Assert (group < n_groups,
+           ExcIndexRange (group, 0, n_groups));
+    Assert (material_id < n_materials,
+           ExcIndexRange (material_id, 0, n_materials));
 
-double
-MaterialData::get_scattering_XS (const unsigned int group_1,
-                                 const unsigned int group_2,
-                                 const unsigned int material_id) const
-{
-  Assert (group_1 < n_groups,
-         ExcIndexRange (group_1, 0, n_groups));
-  Assert (group_2 < n_groups,
-         ExcIndexRange (group_2, 0, n_groups));
-  Assert (material_id < n_materials,
-         ExcIndexRange (material_id, 0, n_materials));
-
-  return sigma_s[material_id][group_1][group_2];
-}
+    return nu_sigma_f[material_id][group];
+  }
 
 
 
-double
-MaterialData::get_fission_spectrum (const unsigned int group,
-                                    const unsigned int material_id) const
-{
-  Assert (group < n_groups,
-         ExcIndexRange (group, 0, n_groups));
-  Assert (material_id < n_materials,
-         ExcIndexRange (material_id, 0, n_materials));
+  double
+  MaterialData::get_scattering_XS (const unsigned int group_1,
+                                  const unsigned int group_2,
+                                  const unsigned int material_id) const
+  {
+    Assert (group_1 < n_groups,
+           ExcIndexRange (group_1, 0, n_groups));
+    Assert (group_2 < n_groups,
+           ExcIndexRange (group_2, 0, n_groups));
+    Assert (material_id < n_materials,
+           ExcIndexRange (material_id, 0, n_materials));
+
+    return sigma_s[material_id][group_1][group_2];
+  }
 
-  return chi[material_id][group];
-}
 
 
-                                 // The function computing the fission
-                                 // distribution cross section is
-                                 // slightly different, since it
-                                 // computes its value as the product
-                                 // of two other coefficients. We
-                                 // don't need to check arguments
-                                 // here, since this already happens
-                                 // when we call the two other
-                                 // functions involved, even though it
-                                 // would probably not hurt either:
-double
-MaterialData::get_fission_dist_XS (const unsigned int group_1,
-                                   const unsigned int group_2,
-                                   const unsigned int material_id) const
-{
-  return (get_fission_spectrum(group_1, material_id) *
-         get_fission_XS(group_2, material_id));
-}
+  double
+  MaterialData::get_fission_spectrum (const unsigned int group,
+                                     const unsigned int material_id) const
+  {
+    Assert (group < n_groups,
+           ExcIndexRange (group, 0, n_groups));
+    Assert (material_id < n_materials,
+           ExcIndexRange (material_id, 0, n_materials));
 
+    return chi[material_id][group];
+  }
 
 
-                                // @sect3{The <code>EnergyGroup</code> class}
+                                  // The function computing the fission
+                                  // distribution cross section is
+                                  // slightly different, since it
+                                  // computes its value as the product
+                                  // of two other coefficients. We
+                                  // don't need to check arguments
+                                  // here, since this already happens
+                                  // when we call the two other
+                                  // functions involved, even though it
+                                  // would probably not hurt either:
+  double
+  MaterialData::get_fission_dist_XS (const unsigned int group_1,
+                                    const unsigned int group_2,
+                                    const unsigned int material_id) const
+  {
+    return (get_fission_spectrum(group_1, material_id) *
+           get_fission_XS(group_2, material_id));
+  }
 
-                                // The first interesting class is the
-                                // one that contains everything that
-                                // is specific to a single energy
-                                // group. To group things that belong
-                                // together into individual objects,
-                                // we declare a structure that holds
-                                // the Triangulation and DoFHandler
-                                // objects for the mesh used for a
-                                // single energy group, and a number
-                                // of other objects and member
-                                // functions that we will discuss in
-                                // the following sections.
-                                //
-                                // The main reason for this class is
-                                // as follows: for both the forward
-                                // problem (with a specified right
-                                // hand side) as well as for the
-                                // eigenvalue problem, one typically
-                                // solves a sequence of problems for
-                                // a single energy group each, rather
-                                // than the fully coupled
-                                // problem. This becomes
-                                // understandable once one realizes
-                                // that the system matrix for a
-                                // single energy group is symmetric
-                                // and positive definite (it is
-                                // simply a diffusion operator),
-                                // whereas the matrix for the fully
-                                // coupled problem is generally
-                                // nonsymmetric and not definite. It
-                                // is also very large and quite full
-                                // if more than a few energy groups
-                                // are involved.
-                                //
-                                // Let us first look at the equation
-                                // to solve in the case of an
-                                // external right hand side (for the time
-                                // independent case):
-                                // @f{eqnarray*}
-                                // -\nabla \cdot(D_g(x) \nabla \phi_g(x))
-                                // +
-                                // \Sigma_{r,g}(x)\phi_g(x)
-                                // =
-                                // \chi_g\sum_{g'=1}^G\nu\Sigma_{f,g'}(x)\phi_{g'}(x)
-                                // +
-                                // \sum_{g'\ne g}\Sigma_{s,g'\to g}(x)\phi_{g'}(x)
-                                // +
-                                // s_{\mathrm{ext},g}(x)
-                                // @f}
-                                //
-                                // We would typically solve this
-                                // equation by moving all the terms
-                                // on the right hand side with $g'=g$
-                                // to the left hand side, and solving
-                                // for $\phi_g$. Of course, we don't
-                                // know $\phi_{g'}$ yet, since the
-                                // equations for those variables
-                                // include right hand side terms
-                                // involving $\phi_g$. What one
-                                // typically does in such situations
-                                // is to iterate: compute
-                                // @f{eqnarray*}
-                                // -\nabla \cdot(D_g(x) \nabla \phi^{(n)}_g(x))
-                                // &+&
-                                // \Sigma_{r,g}(x)\phi^{(n)}_g(x)
-                                // \\ &=&
-                                // \chi_g\sum_{g'=1}^{g-1}\nu\Sigma_{f,g'}(x)\phi^{(n)}_{g'}(x)
-                                // +
-                                // \chi_g\sum_{g'=g}^G\nu\Sigma_{f,g'}(x)\phi^{(n-1)}_{g'}(x)
-                                // +
-                                // \sum_{g'\ne g, g'<g}\Sigma_{s,g'\to g}(x)\phi^{(n)}_{g'}(x)
-                                // +
-                                // \sum_{g'\ne g, g'>g}\Sigma_{s,g'\to g}(x)\phi^{(n-1)}_{g'}(x)
-                                // +
-                                // s_{\mathrm{ext},g}(x)
-                                // @f}
-                                //
-                                // In other words, we solve the
-                                // equation one by one, using values
-                                // for $\phi_{g'}$ from the previous
-                                // iteration $n-1$ if $g'\ge g$ and
-                                // already computed values for
-                                // $\phi_{g'}$ from the present
-                                // iteration if $g'<g$.
-                                //
-                                // When computing the eigenvalue, we
-                                // do a very similar iteration,
-                                // except that we have no external
-                                // right hand side and that the
-                                // solution is scaled after each
-                                // iteration as explained in the
-                                // introduction.
-                                //
-                                // In either case, these two cases
-                                // can be treated jointly if all we
-                                // do is to equip the following class
-                                // with these abilities: (i) form the
-                                // left hand side matrix, (ii) form
-                                // the in-group right hand side
-                                // contribution, i.e. involving the
-                                // extraneous source, and (iii) form
-                                // that contribution to the right
-                                // hand side that stems from group
-                                // $g'$. This class does exactly
-                                // these tasks (as well as some
-                                // book-keeping, such as mesh
-                                // refinement, setting up matrices
-                                // and vectors, etc). On the other
-                                // hand, the class itself has no idea
-                                // how many energy groups there are,
-                                // and in particular how they
-                                // interact, i.e. the decision of how
-                                // the outer iteration looks (and
-                                // consequently whether we solve an
-                                // eigenvalue or a direct problem) is
-                                // left to the
-                                // NeutronDiffusionProblem class
-                                // further down below in this
-                                // program.
-                                //
-                                // So let us go through the class and
-                                // its interface:
-template <int dim>
-class EnergyGroup
-{
-  public:
 
-                                    // @sect5{Public member functions}
-                                    //
-                                    // The class has a good number of
-                                    // public member functions, since
-                                    // its the way it operates is
-                                    // controlled from the outside,
-                                    // and therefore all functions
-                                    // that do something significant
-                                    // need to be called from another
-                                    // class. Let's start off with
-                                    // book-keeping: the class
-                                    // obviously needs to know which
-                                    // energy group it represents,
-                                    // which material data to use,
-                                    // and from what coarse grid to
-                                    // start. The constructor takes
-                                    // this information and
-                                    // initializes the relevant
-                                    // member variables with that
-                                    // (see below).
-                                    //
-                                    // Then we also need functions
-                                    // that set up the linear system,
-                                    // i.e. correctly size the matrix
-                                    // and its sparsity pattern, etc,
-                                    // given a finite element object
-                                    // to use. The
-                                    // <code>setup_linear_system</code>
-                                    // function does that. Finally,
-                                    // for this initial block, there
-                                    // are two functions that return
-                                    // the number of active cells and
-                                    // degrees of freedom used in
-                                    // this object -- using this, we
-                                    // can make the triangulation and
-                                    // DoF handler member variables
-                                    // private, and do not have to
-                                    // grant external use to it,
-                                    // enhancing encapsulation:
-    EnergyGroup (const unsigned int        group,
-                const MaterialData       &material_data,
-                const Triangulation<dim> &coarse_grid,
-                 const FiniteElement<dim> &fe);
-
-    void setup_linear_system ();
-
-    unsigned int n_active_cells () const;
-    unsigned int n_dofs () const;
-
-                                     // Then there are functions that
-                                     // assemble the linear system for
-                                     // each iteration and the present
-                                     // energy group. Note that the
-                                     // matrix is independent of the
-                                     // iteration number, so only has
-                                     // to be computed once for each
-                                     // refinement cycle. The
-                                     // situation is a bit more
-                                     // involved for the right hand
-                                     // side that has to be updated in
-                                     // each inverse power iteration,
-                                     // and that is further
-                                     // complicated by the fact that
-                                     // computing it may involve
-                                     // several different meshes as
-                                     // explained in the
-                                     // introduction. To make things
-                                     // more flexible with regard to
-                                     // solving the forward or the
-                                     // eigenvalue problem, we split
-                                     // the computation of the right
-                                     // hand side into a function that
-                                     // assembles the extraneous
-                                     // source and in-group
-                                     // contributions (which we will
-                                     // call with a zero function as
-                                     // source terms for the
-                                     // eigenvalue problem) and one
-                                     // that computes contributions to
-                                     // the right hand side from
-                                     // another energy group:
-    void assemble_system_matrix ();
-    void assemble_ingroup_rhs (const Function<dim> &extraneous_source);
-    void assemble_cross_group_rhs (const EnergyGroup<dim> &g_prime);
-
-                                    // Next we need a set of
-                                    // functions that actually
-                                    // compute the solution of a
-                                    // linear system, and do
-                                    // something with it (such as
-                                    // computing the fission source
-                                    // contribution mentioned in the
-                                    // introduction, writing
-                                    // graphical information to an
-                                    // output file, computing error
-                                    // indicators, or actually
-                                    // refining the grid based on
-                                    // these criteria and thresholds
-                                    // for refinement and
-                                    // coarsening). All these
-                                    // functions will later be called
-                                    // from the driver class
-                                    // <code>NeutronDiffusionProblem</code>,
-                                    // or any other class you may
-                                    // want to implement to solve a
-                                    // problem involving the neutron
-                                    // flux equations:
-    void   solve ();
-
-    double get_fission_source () const;
-
-    void   output_results (const unsigned int cycle) const;
-
-    void   estimate_errors (Vector<float> &error_indicators) const;
-
-    void   refine_grid (const Vector<float> &error_indicators,
-                        const double         refine_threshold,
-                        const double         coarsen_threshold);
-
-                                    // @sect5{Public data members}
-                                    //
-                                    // As is good practice in object
-                                    // oriented programming, we hide
-                                    // most data members by making
-                                    // them private. However, we have
-                                    // to grant the class that drives
-                                    // the process access to the
-                                    // solution vector as well as the
-                                    // solution of the previous
-                                    // iteration, since in the power
-                                    // iteration, the solution vector
-                                    // is scaled in every iteration
-                                    // by the present guess of the
-                                    // eigenvalue we are looking for:
-  public:
-
-    Vector<double> solution;
-    Vector<double> solution_old;
-
-
-                                    // @sect5{Private data members}
-                                    //
-                                     // The rest of the data members
-                                     // are private. Compared to all
-                                     // the previous tutorial
-                                     // programs, the only new data
-                                     // members are an integer storing
-                                     // which energy group this object
-                                     // represents, and a reference to
-                                     // the material data object that
-                                     // this object's constructor gets
-                                     // passed from the driver
-                                     // class. Likewise, the
-                                     // constructor gets a reference
-                                     // to the finite element object
-                                     // we are to use.
-                                     //
-                                     // Finally, we have to apply
-                                     // boundary values to the linear
-                                     // system in each iteration,
-                                     // i.e. quite frequently. Rather
-                                     // than interpolating them every
-                                     // time, we interpolate them once
-                                     // on each new mesh and then
-                                     // store them along with all the
-                                     // other data of this class:
-  private:
-
-    const unsigned int            group;
-    const MaterialData           &material_data;
-
-    Triangulation<dim>            triangulation;
-    const FiniteElement<dim>     &fe;
-    DoFHandler<dim>               dof_handler;
-
-    SparsityPattern               sparsity_pattern;
-    SparseMatrix<double>          system_matrix;
-
-    Vector<double>                system_rhs;
-
-    std::map<unsigned int,double> boundary_values;
-    ConstraintMatrix              hanging_node_constraints;
-
-
-                                    // @sect5{Private member functionss}
-                                    //
-                                     // There is one private member
-                                     // function in this class. It
-                                     // recursively walks over cells
-                                     // of two meshes to compute the
-                                     // cross-group right hand side
-                                     // terms. The algorithm for this
-                                     // is explained in the
-                                     // introduction to this
-                                     // program. The arguments to this
-                                     // function are a reference to an
-                                     // object representing the energy
-                                     // group against which we want to
-                                     // integrate a right hand side
-                                     // term, an iterator to a cell of
-                                     // the mesh used for the present
-                                     // energy group, an iterator to a
-                                     // corresponding cell on the
-                                     // other mesh, and the matrix
-                                     // that interpolates the degrees
-                                     // of freedom from the coarser of
-                                     // the two cells to the finer
-                                     // one:
-  private:
-
-    void
-    assemble_cross_group_rhs_recursive (const EnergyGroup<dim>                        &g_prime,
-                                        const typename DoFHandler<dim>::cell_iterator &cell_g,
-                                        const typename DoFHandler<dim>::cell_iterator &cell_g_prime,
-                                        const FullMatrix<double>                       prolongation_matrix);
-};
-
-
-                                 // @sect4{Implementation of the <code>EnergyGroup</code> class}
-
-                                 // The first few functions of this
-                                 // class are mostly
-                                 // self-explanatory. The constructor
-                                 // only sets a few data members and
-                                 // creates a copy of the given
-                                 // triangulation as the base for the
-                                 // triangulation used for this energy
-                                 // group. The next two functions
-                                 // simply return data from private
-                                 // data members, thereby enabling us
-                                 // to make these data members
-                                 // private.
-template <int dim>
-EnergyGroup<dim>::EnergyGroup (const unsigned int        group,
-                              const MaterialData       &material_data,
-                              const Triangulation<dim> &coarse_grid,
-                               const FiniteElement<dim> &fe)
-               :
-                group (group),
-               material_data (material_data),
-                fe (fe),
-               dof_handler (triangulation)
-{
-  triangulation.copy_triangulation (coarse_grid);
-  dof_handler.distribute_dofs (fe);
-}
 
+                                  // @sect3{The <code>EnergyGroup</code> class}
 
+                                  // The first interesting class is the
+                                  // one that contains everything that
+                                  // is specific to a single energy
+                                  // group. To group things that belong
+                                  // together into individual objects,
+                                  // we declare a structure that holds
+                                  // the Triangulation and DoFHandler
+                                  // objects for the mesh used for a
+                                  // single energy group, and a number
+                                  // of other objects and member
+                                  // functions that we will discuss in
+                                  // the following sections.
+                                  //
+                                  // The main reason for this class is
+                                  // as follows: for both the forward
+                                  // problem (with a specified right
+                                  // hand side) as well as for the
+                                  // eigenvalue problem, one typically
+                                  // solves a sequence of problems for
+                                  // a single energy group each, rather
+                                  // than the fully coupled
+                                  // problem. This becomes
+                                  // understandable once one realizes
+                                  // that the system matrix for a
+                                  // single energy group is symmetric
+                                  // and positive definite (it is
+                                  // simply a diffusion operator),
+                                  // whereas the matrix for the fully
+                                  // coupled problem is generally
+                                  // nonsymmetric and not definite. It
+                                  // is also very large and quite full
+                                  // if more than a few energy groups
+                                  // are involved.
+                                  //
+                                  // Let us first look at the equation
+                                  // to solve in the case of an
+                                  // external right hand side (for the time
+                                  // independent case):
+                                  // @f{eqnarray*}
+                                  // -\nabla \cdot(D_g(x) \nabla \phi_g(x))
+                                  // +
+                                  // \Sigma_{r,g}(x)\phi_g(x)
+                                  // =
+                                  // \chi_g\sum_{g'=1}^G\nu\Sigma_{f,g'}(x)\phi_{g'}(x)
+                                  // +
+                                  // \sum_{g'\ne g}\Sigma_{s,g'\to g}(x)\phi_{g'}(x)
+                                  // +
+                                  // s_{\mathrm{ext},g}(x)
+                                  // @f}
+                                  //
+                                  // We would typically solve this
+                                  // equation by moving all the terms
+                                  // on the right hand side with $g'=g$
+                                  // to the left hand side, and solving
+                                  // for $\phi_g$. Of course, we don't
+                                  // know $\phi_{g'}$ yet, since the
+                                  // equations for those variables
+                                  // include right hand side terms
+                                  // involving $\phi_g$. What one
+                                  // typically does in such situations
+                                  // is to iterate: compute
+                                  // @f{eqnarray*}
+                                  // -\nabla \cdot(D_g(x) \nabla \phi^{(n)}_g(x))
+                                  // &+&
+                                  // \Sigma_{r,g}(x)\phi^{(n)}_g(x)
+                                  // \\ &=&
+                                  // \chi_g\sum_{g'=1}^{g-1}\nu\Sigma_{f,g'}(x)\phi^{(n)}_{g'}(x)
+                                  // +
+                                  // \chi_g\sum_{g'=g}^G\nu\Sigma_{f,g'}(x)\phi^{(n-1)}_{g'}(x)
+                                  // +
+                                  // \sum_{g'\ne g, g'<g}\Sigma_{s,g'\to g}(x)\phi^{(n)}_{g'}(x)
+                                  // +
+                                  // \sum_{g'\ne g, g'>g}\Sigma_{s,g'\to g}(x)\phi^{(n-1)}_{g'}(x)
+                                  // +
+                                  // s_{\mathrm{ext},g}(x)
+                                  // @f}
+                                  //
+                                  // In other words, we solve the
+                                  // equation one by one, using values
+                                  // for $\phi_{g'}$ from the previous
+                                  // iteration $n-1$ if $g'\ge g$ and
+                                  // already computed values for
+                                  // $\phi_{g'}$ from the present
+                                  // iteration if $g'<g$.
+                                  //
+                                  // When computing the eigenvalue, we
+                                  // do a very similar iteration,
+                                  // except that we have no external
+                                  // right hand side and that the
+                                  // solution is scaled after each
+                                  // iteration as explained in the
+                                  // introduction.
+                                  //
+                                  // In either case, these two cases
+                                  // can be treated jointly if all we
+                                  // do is to equip the following class
+                                  // with these abilities: (i) form the
+                                  // left hand side matrix, (ii) form
+                                  // the in-group right hand side
+                                  // contribution, i.e. involving the
+                                  // extraneous source, and (iii) form
+                                  // that contribution to the right
+                                  // hand side that stems from group
+                                  // $g'$. This class does exactly
+                                  // these tasks (as well as some
+                                  // book-keeping, such as mesh
+                                  // refinement, setting up matrices
+                                  // and vectors, etc). On the other
+                                  // hand, the class itself has no idea
+                                  // how many energy groups there are,
+                                  // and in particular how they
+                                  // interact, i.e. the decision of how
+                                  // the outer iteration looks (and
+                                  // consequently whether we solve an
+                                  // eigenvalue or a direct problem) is
+                                  // left to the
+                                  // NeutronDiffusionProblem class
+                                  // further down below in this
+                                  // program.
+                                  //
+                                  // So let us go through the class and
+                                  // its interface:
+  template <int dim>
+  class EnergyGroup
+  {
+    public:
+
+                                      // @sect5{Public member functions}
+                                      //
+                                      // The class has a good number of
+                                      // public member functions, since
+                                      // its the way it operates is
+                                      // controlled from the outside,
+                                      // and therefore all functions
+                                      // that do something significant
+                                      // need to be called from another
+                                      // class. Let's start off with
+                                      // book-keeping: the class
+                                      // obviously needs to know which
+                                      // energy group it represents,
+                                      // which material data to use,
+                                      // and from what coarse grid to
+                                      // start. The constructor takes
+                                      // this information and
+                                      // initializes the relevant
+                                      // member variables with that
+                                      // (see below).
+                                      //
+                                      // Then we also need functions
+                                      // that set up the linear system,
+                                      // i.e. correctly size the matrix
+                                      // and its sparsity pattern, etc,
+                                      // given a finite element object
+                                      // to use. The
+                                      // <code>setup_linear_system</code>
+                                      // function does that. Finally,
+                                      // for this initial block, there
+                                      // are two functions that return
+                                      // the number of active cells and
+                                      // degrees of freedom used in
+                                      // this object -- using this, we
+                                      // can make the triangulation and
+                                      // DoF handler member variables
+                                      // private, and do not have to
+                                      // grant external use to it,
+                                      // enhancing encapsulation:
+      EnergyGroup (const unsigned int        group,
+                  const MaterialData       &material_data,
+                  const Triangulation<dim> &coarse_grid,
+                  const FiniteElement<dim> &fe);
+
+      void setup_linear_system ();
+
+      unsigned int n_active_cells () const;
+      unsigned int n_dofs () const;
+
+                                      // Then there are functions that
+                                      // assemble the linear system for
+                                      // each iteration and the present
+                                      // energy group. Note that the
+                                      // matrix is independent of the
+                                      // iteration number, so only has
+                                      // to be computed once for each
+                                      // refinement cycle. The
+                                      // situation is a bit more
+                                      // involved for the right hand
+                                      // side that has to be updated in
+                                      // each inverse power iteration,
+                                      // and that is further
+                                      // complicated by the fact that
+                                      // computing it may involve
+                                      // several different meshes as
+                                      // explained in the
+                                      // introduction. To make things
+                                      // more flexible with regard to
+                                      // solving the forward or the
+                                      // eigenvalue problem, we split
+                                      // the computation of the right
+                                      // hand side into a function that
+                                      // assembles the extraneous
+                                      // source and in-group
+                                      // contributions (which we will
+                                      // call with a zero function as
+                                      // source terms for the
+                                      // eigenvalue problem) and one
+                                      // that computes contributions to
+                                      // the right hand side from
+                                      // another energy group:
+      void assemble_system_matrix ();
+      void assemble_ingroup_rhs (const Function<dim> &extraneous_source);
+      void assemble_cross_group_rhs (const EnergyGroup<dim> &g_prime);
+
+                                      // Next we need a set of
+                                      // functions that actually
+                                      // compute the solution of a
+                                      // linear system, and do
+                                      // something with it (such as
+                                      // computing the fission source
+                                      // contribution mentioned in the
+                                      // introduction, writing
+                                      // graphical information to an
+                                      // output file, computing error
+                                      // indicators, or actually
+                                      // refining the grid based on
+                                      // these criteria and thresholds
+                                      // for refinement and
+                                      // coarsening). All these
+                                      // functions will later be called
+                                      // from the driver class
+                                      // <code>NeutronDiffusionProblem</code>,
+                                      // or any other class you may
+                                      // want to implement to solve a
+                                      // problem involving the neutron
+                                      // flux equations:
+      void   solve ();
+
+      double get_fission_source () const;
+
+      void   output_results (const unsigned int cycle) const;
+
+      void   estimate_errors (Vector<float> &error_indicators) const;
+
+      void   refine_grid (const Vector<float> &error_indicators,
+                         const double         refine_threshold,
+                         const double         coarsen_threshold);
+
+                                      // @sect5{Public data members}
+                                      //
+                                      // As is good practice in object
+                                      // oriented programming, we hide
+                                      // most data members by making
+                                      // them private. However, we have
+                                      // to grant the class that drives
+                                      // the process access to the
+                                      // solution vector as well as the
+                                      // solution of the previous
+                                      // iteration, since in the power
+                                      // iteration, the solution vector
+                                      // is scaled in every iteration
+                                      // by the present guess of the
+                                      // eigenvalue we are looking for:
+    public:
+
+      Vector<double> solution;
+      Vector<double> solution_old;
+
+
+                                      // @sect5{Private data members}
+                                      //
+                                      // The rest of the data members
+                                      // are private. Compared to all
+                                      // the previous tutorial
+                                      // programs, the only new data
+                                      // members are an integer storing
+                                      // which energy group this object
+                                      // represents, and a reference to
+                                      // the material data object that
+                                      // this object's constructor gets
+                                      // passed from the driver
+                                      // class. Likewise, the
+                                      // constructor gets a reference
+                                      // to the finite element object
+                                      // we are to use.
+                                      //
+                                      // Finally, we have to apply
+                                      // boundary values to the linear
+                                      // system in each iteration,
+                                      // i.e. quite frequently. Rather
+                                      // than interpolating them every
+                                      // time, we interpolate them once
+                                      // on each new mesh and then
+                                      // store them along with all the
+                                      // other data of this class:
+    private:
+
+      const unsigned int            group;
+      const MaterialData           &material_data;
+
+      Triangulation<dim>            triangulation;
+      const FiniteElement<dim>     &fe;
+      DoFHandler<dim>               dof_handler;
+
+      SparsityPattern               sparsity_pattern;
+      SparseMatrix<double>          system_matrix;
+
+      Vector<double>                system_rhs;
+
+      std::map<unsigned int,double> boundary_values;
+      ConstraintMatrix              hanging_node_constraints;
+
+
+                                      // @sect5{Private member functionss}
+                                      //
+                                      // There is one private member
+                                      // function in this class. It
+                                      // recursively walks over cells
+                                      // of two meshes to compute the
+                                      // cross-group right hand side
+                                      // terms. The algorithm for this
+                                      // is explained in the
+                                      // introduction to this
+                                      // program. The arguments to this
+                                      // function are a reference to an
+                                      // object representing the energy
+                                      // group against which we want to
+                                      // integrate a right hand side
+                                      // term, an iterator to a cell of
+                                      // the mesh used for the present
+                                      // energy group, an iterator to a
+                                      // corresponding cell on the
+                                      // other mesh, and the matrix
+                                      // that interpolates the degrees
+                                      // of freedom from the coarser of
+                                      // the two cells to the finer
+                                      // one:
+    private:
+
+      void
+      assemble_cross_group_rhs_recursive (const EnergyGroup<dim>                        &g_prime,
+                                         const typename DoFHandler<dim>::cell_iterator &cell_g,
+                                         const typename DoFHandler<dim>::cell_iterator &cell_g_prime,
+                                         const FullMatrix<double>                       prolongation_matrix);
+  };
+
+
+                                  // @sect4{Implementation of the <code>EnergyGroup</code> class}
+
+                                  // The first few functions of this
+                                  // class are mostly
+                                  // self-explanatory. The constructor
+                                  // only sets a few data members and
+                                  // creates a copy of the given
+                                  // triangulation as the base for the
+                                  // triangulation used for this energy
+                                  // group. The next two functions
+                                  // simply return data from private
+                                  // data members, thereby enabling us
+                                  // to make these data members
+                                  // private.
+  template <int dim>
+  EnergyGroup<dim>::EnergyGroup (const unsigned int        group,
+                                const MaterialData       &material_data,
+                                const Triangulation<dim> &coarse_grid,
+                                const FiniteElement<dim> &fe)
+                 :
+                 group (group),
+                 material_data (material_data),
+                 fe (fe),
+                 dof_handler (triangulation)
+  {
+    triangulation.copy_triangulation (coarse_grid);
+    dof_handler.distribute_dofs (fe);
+  }
 
-template <int dim>
-unsigned int
-EnergyGroup<dim>::n_active_cells () const
-{
-  return triangulation.n_active_cells ();
-}
 
 
+  template <int dim>
+  unsigned int
+  EnergyGroup<dim>::n_active_cells () const
+  {
+    return triangulation.n_active_cells ();
+  }
 
-template <int dim>
-unsigned int
-EnergyGroup<dim>::n_dofs () const
-{
-  return dof_handler.n_dofs ();
-}
 
 
+  template <int dim>
+  unsigned int
+  EnergyGroup<dim>::n_dofs () const
+  {
+    return dof_handler.n_dofs ();
+  }
 
-                                 // @sect5{<code>EnergyGroup::setup_linear_system</code>}
-                                 //
-                                 // The first "real" function is the
-                                 // one that sets up the mesh,
-                                 // matrices, etc, on the new mesh or
-                                 // after mesh refinement. We use this
-                                 // function to initialize sparse
-                                 // system matrices, and the right
-                                 // hand side vector. If the solution
-                                 // vector has never been set before
-                                 // (as indicated by a zero size), we
-                                 // also initialize it and set it to a
-                                 // default value. We don't do that if
-                                 // it already has a non-zero size
-                                 // (i.e. this function is called
-                                 // after mesh refinement) since in
-                                 // that case we want to preserve the
-                                 // solution across mesh refinement
-                                 // (something we do in the
-                                 // <code>EnergyGroup::refine_grid</code>
-                                 // function).
-template <int dim>
-void
-EnergyGroup<dim>::setup_linear_system ()
-{
-  const unsigned int n_dofs = dof_handler.n_dofs();
 
-  hanging_node_constraints.clear ();
-  DoFTools::make_hanging_node_constraints (dof_handler,
-                                           hanging_node_constraints);
-  hanging_node_constraints.close ();
 
-  system_matrix.clear ();
+                                  // @sect5{<code>EnergyGroup::setup_linear_system</code>}
+                                  //
+                                  // The first "real" function is the
+                                  // one that sets up the mesh,
+                                  // matrices, etc, on the new mesh or
+                                  // after mesh refinement. We use this
+                                  // function to initialize sparse
+                                  // system matrices, and the right
+                                  // hand side vector. If the solution
+                                  // vector has never been set before
+                                  // (as indicated by a zero size), we
+                                  // also initialize it and set it to a
+                                  // default value. We don't do that if
+                                  // it already has a non-zero size
+                                  // (i.e. this function is called
+                                  // after mesh refinement) since in
+                                  // that case we want to preserve the
+                                  // solution across mesh refinement
+                                  // (something we do in the
+                                  // <code>EnergyGroup::refine_grid</code>
+                                  // function).
+  template <int dim>
+  void
+  EnergyGroup<dim>::setup_linear_system ()
+  {
+    const unsigned int n_dofs = dof_handler.n_dofs();
 
-  sparsity_pattern.reinit (n_dofs, n_dofs,
-                           dof_handler.max_couplings_between_dofs());
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  hanging_node_constraints.condense (sparsity_pattern);
-  sparsity_pattern.compress ();
+    hanging_node_constraints.clear ();
+    DoFTools::make_hanging_node_constraints (dof_handler,
+                                            hanging_node_constraints);
+    hanging_node_constraints.close ();
 
-  system_matrix.reinit (sparsity_pattern);
+    system_matrix.clear ();
 
-  system_rhs.reinit (n_dofs);
+    sparsity_pattern.reinit (n_dofs, n_dofs,
+                            dof_handler.max_couplings_between_dofs());
+    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+    hanging_node_constraints.condense (sparsity_pattern);
+    sparsity_pattern.compress ();
 
-  if (solution.size() == 0)
-    {
-      solution.reinit (n_dofs);
-      solution_old.reinit(n_dofs);
-      solution_old = 1.0;
-      solution = solution_old;
-    }
+    system_matrix.reinit (sparsity_pattern);
 
+    system_rhs.reinit (n_dofs);
 
-                                   // At the end of this function, we
-                                   // update the list of boundary
-                                   // nodes and their values, by first
-                                   // clearing this list and the
-                                   // re-interpolating boundary values
-                                   // (remember that this function is
-                                   // called after first setting up
-                                   // the mesh, and each time after
-                                   // mesh refinement).
-                                   //
-                                   // To understand the code, it is
-                                   // necessary to realize that we
-                                   // create the mesh using the
-                                   // <code>GridGenerator::subdivided_hyper_rectangle</code>
-                                   // function (in
-                                   // <code>NeutronDiffusionProblem::initialize_problem</code>)
-                                   // where we set the last parameter
-                                   // to <code>true</code>. This means that
-                                   // boundaries of the domain are
-                                   // "colored", i.e. the four (or
-                                   // six, in 3d) sides of the domain
-                                   // are assigned different boundary
-                                   // indicators. As it turns out, the
-                                   // bottom boundary gets indicator
-                                   // zero, the top one boundary
-                                   // indicator one, and left and
-                                   // right boundaries get indicators
-                                   // two and three, respectively.
-                                   //
-                                   // In this program, we simulate
-                                   // only one, namely the top right,
-                                   // quarter of a reactor. That is,
-                                   // we want to interpolate boundary
-                                   // conditions only on the top and
-                                   // right boundaries, while do
-                                   // nothing on the bottom and left
-                                   // boundaries (i.e. impose natural,
-                                   // no-flux Neumann boundary
-                                   // conditions). This is most easily
-                                   // generalized to arbitrary
-                                   // dimension by saying that we want
-                                   // to interpolate on those
-                                   // boundaries with indicators 1, 3,
-                                   // ..., which we do in the
-                                   // following loop (note that calls
-                                   // to
-                                   // <code>VectorTools::interpolate_boundary_values</code>
-                                   // are additive, i.e. they do not
-                                   // first clear the boundary value
-                                   // map):
-  boundary_values.clear();
-
-  for (unsigned int i=0; i<dim; ++i)
-    VectorTools::interpolate_boundary_values (dof_handler,
-                                              2*i+1,
-                                              ZeroFunction<dim>(),
-                                              boundary_values);
-}
+    if (solution.size() == 0)
+      {
+       solution.reinit (n_dofs);
+       solution_old.reinit(n_dofs);
+       solution_old = 1.0;
+       solution = solution_old;
+      }
 
 
+                                    // At the end of this function, we
+                                    // update the list of boundary
+                                    // nodes and their values, by first
+                                    // clearing this list and the
+                                    // re-interpolating boundary values
+                                    // (remember that this function is
+                                    // called after first setting up
+                                    // the mesh, and each time after
+                                    // mesh refinement).
+                                    //
+                                    // To understand the code, it is
+                                    // necessary to realize that we
+                                    // create the mesh using the
+                                    // <code>GridGenerator::subdivided_hyper_rectangle</code>
+                                    // function (in
+                                    // <code>NeutronDiffusionProblem::initialize_problem</code>)
+                                    // where we set the last parameter
+                                    // to <code>true</code>. This means that
+                                    // boundaries of the domain are
+                                    // "colored", i.e. the four (or
+                                    // six, in 3d) sides of the domain
+                                    // are assigned different boundary
+                                    // indicators. As it turns out, the
+                                    // bottom boundary gets indicator
+                                    // zero, the top one boundary
+                                    // indicator one, and left and
+                                    // right boundaries get indicators
+                                    // two and three, respectively.
+                                    //
+                                    // In this program, we simulate
+                                    // only one, namely the top right,
+                                    // quarter of a reactor. That is,
+                                    // we want to interpolate boundary
+                                    // conditions only on the top and
+                                    // right boundaries, while do
+                                    // nothing on the bottom and left
+                                    // boundaries (i.e. impose natural,
+                                    // no-flux Neumann boundary
+                                    // conditions). This is most easily
+                                    // generalized to arbitrary
+                                    // dimension by saying that we want
+                                    // to interpolate on those
+                                    // boundaries with indicators 1, 3,
+                                    // ..., which we do in the
+                                    // following loop (note that calls
+                                    // to
+                                    // <code>VectorTools::interpolate_boundary_values</code>
+                                    // are additive, i.e. they do not
+                                    // first clear the boundary value
+                                    // map):
+    boundary_values.clear();
+
+    for (unsigned int i=0; i<dim; ++i)
+      VectorTools::interpolate_boundary_values (dof_handler,
+                                               2*i+1,
+                                               ZeroFunction<dim>(),
+                                               boundary_values);
+  }
 
-                                 // @sect5{<code>EnergyGroup::assemble_system_matrix</code>}
-                                 //
-                                 // Next we need functions assembling
-                                 // the system matrix and right hand
-                                 // sides. Assembling the matrix is
-                                 // straightforward given the
-                                 // equations outlined in the
-                                 // introduction as well as what we've
-                                 // seen in previous example
-                                 // programs. Note the use of
-                                 // <code>cell->material_id()</code> to get at
-                                 // the kind of material from which a
-                                 // cell is made up of. Note also how
-                                 // we set the order of the quadrature
-                                 // formula so that it is always
-                                 // appropriate for the finite element
-                                 // in use.
-                                 //
-                                 // Finally, note that since we only
-                                 // assemble the system matrix here,
-                                 // we can't yet eliminate boundary
-                                 // values (we need the right hand
-                                 // side vector for this). We defer
-                                 // this to the <code>EnergyGroup::solve</code>
-                                 // function, at which point all the
-                                 // information is available.
-template <int dim>
-void
-EnergyGroup<dim>::assemble_system_matrix ()
-{
-  const QGauss<dim>  quadrature_formula(fe.degree + 1);
 
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                          update_values    |  update_gradients |
-                           update_JxW_values);
 
-  const unsigned int dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int n_q_points    = quadrature_formula.size();
+                                  // @sect5{<code>EnergyGroup::assemble_system_matrix</code>}
+                                  //
+                                  // Next we need functions assembling
+                                  // the system matrix and right hand
+                                  // sides. Assembling the matrix is
+                                  // straightforward given the
+                                  // equations outlined in the
+                                  // introduction as well as what we've
+                                  // seen in previous example
+                                  // programs. Note the use of
+                                  // <code>cell->material_id()</code> to get at
+                                  // the kind of material from which a
+                                  // cell is made up of. Note also how
+                                  // we set the order of the quadrature
+                                  // formula so that it is always
+                                  // appropriate for the finite element
+                                  // in use.
+                                  //
+                                  // Finally, note that since we only
+                                  // assemble the system matrix here,
+                                  // we can't yet eliminate boundary
+                                  // values (we need the right hand
+                                  // side vector for this). We defer
+                                  // this to the <code>EnergyGroup::solve</code>
+                                  // function, at which point all the
+                                  // information is available.
+  template <int dim>
+  void
+  EnergyGroup<dim>::assemble_system_matrix ()
+  {
+    const QGauss<dim>  quadrature_formula(fe.degree + 1);
 
-  FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>     cell_rhs (dofs_per_cell);
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values    |  update_gradients |
+                            update_JxW_values);
 
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+    const unsigned int dofs_per_cell = fe.dofs_per_cell;
+    const unsigned int n_q_points    = quadrature_formula.size();
 
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
+    FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
+    Vector<double>     cell_rhs (dofs_per_cell);
 
-  for (; cell!=endc; ++cell)
-    {
-      cell_matrix = 0;
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-      fe_values.reinit (cell);
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
 
-      const double diffusion_coefficient
-       = material_data.get_diffusion_coefficient (group, cell->material_id());
-      const double removal_XS
-       = material_data.get_removal_XS (group,cell->material_id());
+    for (; cell!=endc; ++cell)
+      {
+       cell_matrix = 0;
+
+       fe_values.reinit (cell);
+
+       const double diffusion_coefficient
+         = material_data.get_diffusion_coefficient (group, cell->material_id());
+       const double removal_XS
+         = material_data.get_removal_XS (group,cell->material_id());
+
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           for (unsigned int j=0; j<dofs_per_cell; ++j)
+             cell_matrix(i,j) += ((diffusion_coefficient *
+                                   fe_values.shape_grad(i,q_point) *
+                                   fe_values.shape_grad(j,q_point)
+                                   +
+                                   removal_XS *
+                                   fe_values.shape_value(i,q_point) *
+                                   fe_values.shape_value(j,q_point))
+                                  *
+                                  fe_values.JxW(q_point));
+
+       cell->get_dof_indices (local_dof_indices);
 
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
        for (unsigned int i=0; i<dofs_per_cell; ++i)
          for (unsigned int j=0; j<dofs_per_cell; ++j)
-            cell_matrix(i,j) += ((diffusion_coefficient *
-                                  fe_values.shape_grad(i,q_point) *
-                                  fe_values.shape_grad(j,q_point)
-                                  +
-                                  removal_XS *
-                                  fe_values.shape_value(i,q_point) *
-                                  fe_values.shape_value(j,q_point))
-                                 *
-                                 fe_values.JxW(q_point));
-
-      cell->get_dof_indices (local_dof_indices);
-
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-         system_matrix.add (local_dof_indices[i],
-                            local_dof_indices[j],
-                            cell_matrix(i,j));
-    }
+           system_matrix.add (local_dof_indices[i],
+                              local_dof_indices[j],
+                              cell_matrix(i,j));
+      }
 
-  hanging_node_constraints.condense (system_matrix);
-}
+    hanging_node_constraints.condense (system_matrix);
+  }
 
 
 
-                                 // @sect5{<code>EnergyGroup::assemble_ingroup_rhs</code>}
-                                 //
-                                 // As explained in the documentation
-                                 // of the <code>EnergyGroup</code> class, we
-                                 // split assembling the right hand
-                                 // side into two parts: the ingroup
-                                 // and the cross-group
-                                 // couplings. First, we need a
-                                 // function to assemble the right
-                                 // hand side of one specific group
-                                 // here, i.e. including an extraneous
-                                 // source (that we will set to zero
-                                 // for the eigenvalue problem) as
-                                 // well as the ingroup fission
-                                 // contributions.  (In-group
-                                 // scattering has already been
-                                 // accounted for with the definition
-                                 // of removal cross section.) The
-                                 // function's workings are pretty
-                                 // standard as far as assembling
-                                 // right hand sides go, and therefore
-                                 // does not require more comments
-                                 // except that we mention that the
-                                 // right hand side vector is set to
-                                 // zero at the beginning of the
-                                 // function -- something we are not
-                                 // going to do for the cross-group
-                                 // terms that simply add to the right
-                                 // hand side vector.
-template <int dim>
-void EnergyGroup<dim>::assemble_ingroup_rhs (const Function<dim> &extraneous_source)
-{
-  system_rhs.reinit (dof_handler.n_dofs());
+                                  // @sect5{<code>EnergyGroup::assemble_ingroup_rhs</code>}
+                                  //
+                                  // As explained in the documentation
+                                  // of the <code>EnergyGroup</code> class, we
+                                  // split assembling the right hand
+                                  // side into two parts: the ingroup
+                                  // and the cross-group
+                                  // couplings. First, we need a
+                                  // function to assemble the right
+                                  // hand side of one specific group
+                                  // here, i.e. including an extraneous
+                                  // source (that we will set to zero
+                                  // for the eigenvalue problem) as
+                                  // well as the ingroup fission
+                                  // contributions.  (In-group
+                                  // scattering has already been
+                                  // accounted for with the definition
+                                  // of removal cross section.) The
+                                  // function's workings are pretty
+                                  // standard as far as assembling
+                                  // right hand sides go, and therefore
+                                  // does not require more comments
+                                  // except that we mention that the
+                                  // right hand side vector is set to
+                                  // zero at the beginning of the
+                                  // function -- something we are not
+                                  // going to do for the cross-group
+                                  // terms that simply add to the right
+                                  // hand side vector.
+  template <int dim>
+  void EnergyGroup<dim>::assemble_ingroup_rhs (const Function<dim> &extraneous_source)
+  {
+    system_rhs.reinit (dof_handler.n_dofs());
 
-  const QGauss<dim>  quadrature_formula (fe.degree + 1);
+    const QGauss<dim>  quadrature_formula (fe.degree + 1);
 
-  const unsigned int dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int n_q_points = quadrature_formula.size();
+    const unsigned int dofs_per_cell = fe.dofs_per_cell;
+    const unsigned int n_q_points = quadrature_formula.size();
 
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                          update_values    |  update_quadrature_points  |
-                           update_JxW_values);
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values    |  update_quadrature_points  |
+                            update_JxW_values);
 
-  Vector<double>            cell_rhs (dofs_per_cell);
-  std::vector<double>       extraneous_source_values (n_q_points);
-  std::vector<double>       solution_old_values (n_q_points);
+    Vector<double>            cell_rhs (dofs_per_cell);
+    std::vector<double>       extraneous_source_values (n_q_points);
+    std::vector<double>       solution_old_values (n_q_points);
 
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
 
-  for (; cell!=endc; ++cell)
-    {
-      cell_rhs = 0;
+    for (; cell!=endc; ++cell)
+      {
+       cell_rhs = 0;
+
+       fe_values.reinit (cell);
 
-      fe_values.reinit (cell);
+       const double fission_dist_XS
+         = material_data.get_fission_dist_XS (group, group, cell->material_id());
 
-      const double fission_dist_XS
-       = material_data.get_fission_dist_XS (group, group, cell->material_id());
+       extraneous_source.value_list (fe_values.get_quadrature_points(),
+                                     extraneous_source_values);
 
-      extraneous_source.value_list (fe_values.get_quadrature_points(),
-                                   extraneous_source_values);
+       fe_values.get_function_values (solution_old, solution_old_values);
 
-      fe_values.get_function_values (solution_old, solution_old_values);
+       cell->get_dof_indices (local_dof_indices);
 
-      cell->get_dof_indices (local_dof_indices);
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           cell_rhs(i) += ((extraneous_source_values[q_point]
+                            +
+                            fission_dist_XS *
+                            solution_old_values[q_point]) *
+                           fe_values.shape_value(i,q_point) *
+                           fe_values.JxW(q_point));
 
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
        for (unsigned int i=0; i<dofs_per_cell; ++i)
-         cell_rhs(i) += ((extraneous_source_values[q_point]
-                           +
-                          fission_dist_XS *
-                           solution_old_values[q_point]) *
-                         fe_values.shape_value(i,q_point) *
-                         fe_values.JxW(q_point));
-
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       system_rhs(local_dof_indices[i]) += cell_rhs(i);
-    }
-}
+         system_rhs(local_dof_indices[i]) += cell_rhs(i);
+      }
+  }
 
 
 
-                                 // @sect5{<code>EnergyGroup::assemble_cross_group_rhs</code>}
-                                 //
-                                 // The more interesting function for
-                                 // assembling the right hand side
-                                 // vector for the equation of a
-                                 // single energy group is the one
-                                 // that couples energy group $g$ and
-                                 // $g'$. As explained in the
-                                 // introduction, we first have to
-                                 // find the set of cells common to
-                                 // the meshes of the two energy
-                                 // groups. First we call
-                                 // <code>get_finest_common_cells</code> to
-                                 // obtain this list of pairs of
-                                 // common cells from both
-                                 // meshes. Both cells in a pair may
-                                 // not be active but at least one of
-                                 // them is. We then hand each of
-                                 // these cell pairs off to a function
-                                 // tha computes the right hand side
-                                 // terms recursively.
-                                 //
-                                 // Note that ingroup coupling is
-                                 // handled already before, so we exit
-                                 // the function early if $g=g'$.
-template <int dim>
-void EnergyGroup<dim>::assemble_cross_group_rhs (const EnergyGroup<dim> &g_prime)
-{
-  if (group == g_prime.group)
-    return;
+                                  // @sect5{<code>EnergyGroup::assemble_cross_group_rhs</code>}
+                                  //
+                                  // The more interesting function for
+                                  // assembling the right hand side
+                                  // vector for the equation of a
+                                  // single energy group is the one
+                                  // that couples energy group $g$ and
+                                  // $g'$. As explained in the
+                                  // introduction, we first have to
+                                  // find the set of cells common to
+                                  // the meshes of the two energy
+                                  // groups. First we call
+                                  // <code>get_finest_common_cells</code> to
+                                  // obtain this list of pairs of
+                                  // common cells from both
+                                  // meshes. Both cells in a pair may
+                                  // not be active but at least one of
+                                  // them is. We then hand each of
+                                  // these cell pairs off to a function
+                                  // tha computes the right hand side
+                                  // terms recursively.
+                                  //
+                                  // Note that ingroup coupling is
+                                  // handled already before, so we exit
+                                  // the function early if $g=g'$.
+  template <int dim>
+  void EnergyGroup<dim>::assemble_cross_group_rhs (const EnergyGroup<dim> &g_prime)
+  {
+    if (group == g_prime.group)
+      return;
 
-  const std::list<std::pair<typename DoFHandler<dim>::cell_iterator,
-    typename DoFHandler<dim>::cell_iterator> >
-    cell_list
-    = GridTools::get_finest_common_cells (dof_handler,
-                                         g_prime.dof_handler);
+    const std::list<std::pair<typename DoFHandler<dim>::cell_iterator,
+      typename DoFHandler<dim>::cell_iterator> >
+      cell_list
+      = GridTools::get_finest_common_cells (dof_handler,
+                                           g_prime.dof_handler);
 
-  typename std::list<std::pair<typename DoFHandler<dim>::cell_iterator,
-                               typename DoFHandler<dim>::cell_iterator> >
-    ::const_iterator
-    cell_iter = cell_list.begin();
+    typename std::list<std::pair<typename DoFHandler<dim>::cell_iterator,
+      typename DoFHandler<dim>::cell_iterator> >
+      ::const_iterator
+      cell_iter = cell_list.begin();
 
-  for (; cell_iter!=cell_list.end(); ++cell_iter)
-    {
-      FullMatrix<double> unit_matrix (fe.dofs_per_cell);
-      for (unsigned int i=0; i<unit_matrix.m(); ++i)
-       unit_matrix(i,i) = 1;
-      assemble_cross_group_rhs_recursive (g_prime,
-                                          cell_iter->first,
-                                         cell_iter->second,
-                                         unit_matrix);
-    }
-}
+    for (; cell_iter!=cell_list.end(); ++cell_iter)
+      {
+       FullMatrix<double> unit_matrix (fe.dofs_per_cell);
+       for (unsigned int i=0; i<unit_matrix.m(); ++i)
+         unit_matrix(i,i) = 1;
+       assemble_cross_group_rhs_recursive (g_prime,
+                                           cell_iter->first,
+                                           cell_iter->second,
+                                           unit_matrix);
+      }
+  }
 
 
 
-                                 // @sect5{<code>EnergyGroup::assemble_cross_group_rhs_recursive</code>}
-                                 //
-                                 // This is finally the function that
-                                 // handles assembling right hand side
-                                 // terms on potentially different
-                                 // meshes recursively, using the
-                                 // algorithm described in the
-                                 // introduction. The function takes a
-                                 // reference to the object
-                                 // representing energy group $g'$, as
-                                 // well as iterators to corresponding
-                                 // cells in the meshes for energy
-                                 // groups $g$ and $g'$. At first,
-                                 // i.e. when this function is called
-                                 // from the one above, these two
-                                 // cells will be matching cells on
-                                 // two meshes; however, one of the
-                                 // two may be further refined, and we
-                                 // will call the function recursively
-                                 // with one of the two iterators
-                                 // replaced by one of the children of
-                                 // the original cell.
-                                 //
-                                 // The last argument is the matrix
-                                 // product matrix $B_{c^{(k)}}^T
-                                 // \cdots B_{c'}^T B_c^T$ from the
-                                 // introduction that interpolates
-                                 // from the coarser of the two cells
-                                 // to the finer one. If the two cells
-                                 // match, then this is the identity
-                                 // matrix -- exactly what we pass to
-                                 // this function initially.
-                                 //
-                                 // The function has to consider two
-                                 // cases: that both of the two cells
-                                 // are not further refined, i.e. have
-                                 // no children, in which case we can
-                                 // finally assemble the right hand
-                                 // side contributions of this pair of
-                                 // cells; and that one of the two
-                                 // cells is further refined, in which
-                                 // case we have to keep recursing by
-                                 // looping over the children of the
-                                 // one cell that is not active. These
-                                 // two cases will be discussed below:
-template <int dim>
-void
-EnergyGroup<dim>::
-assemble_cross_group_rhs_recursive (const EnergyGroup<dim>                        &g_prime,
-                                   const typename DoFHandler<dim>::cell_iterator &cell_g,
-                                   const typename DoFHandler<dim>::cell_iterator &cell_g_prime,
-                                   const FullMatrix<double>                       prolongation_matrix)
-{
-                                   // The first case is that both
-                                   // cells are no further refined. In
-                                   // that case, we can assemble the
-                                   // relevant terms (see the
-                                   // introduction). This involves
-                                   // assembling the mass matrix on
-                                   // the finer of the two cells (in
-                                   // fact there are two mass matrices
-                                   // with different coefficients, one
-                                   // for the fission distribution
-                                   // cross section
-                                   // $\chi_g\nu\Sigma_{f,g'}$ and one
-                                   // for the scattering cross section
-                                   // $\Sigma_{s,g'\to g}$). This is
-                                   // straight forward, but note how
-                                   // we determine which of the two
-                                   // cells is ther finer one by
-                                   // looking at the refinement level
-                                   // of the two cells:
-  if (!cell_g->has_children() && !cell_g_prime->has_children())
-    {
-      const QGauss<dim>  quadrature_formula (fe.degree+1);
-      const unsigned int n_q_points = quadrature_formula.size();
+                                  // @sect5{<code>EnergyGroup::assemble_cross_group_rhs_recursive</code>}
+                                  //
+                                  // This is finally the function that
+                                  // handles assembling right hand side
+                                  // terms on potentially different
+                                  // meshes recursively, using the
+                                  // algorithm described in the
+                                  // introduction. The function takes a
+                                  // reference to the object
+                                  // representing energy group $g'$, as
+                                  // well as iterators to corresponding
+                                  // cells in the meshes for energy
+                                  // groups $g$ and $g'$. At first,
+                                  // i.e. when this function is called
+                                  // from the one above, these two
+                                  // cells will be matching cells on
+                                  // two meshes; however, one of the
+                                  // two may be further refined, and we
+                                  // will call the function recursively
+                                  // with one of the two iterators
+                                  // replaced by one of the children of
+                                  // the original cell.
+                                  //
+                                  // The last argument is the matrix
+                                  // product matrix $B_{c^{(k)}}^T
+                                  // \cdots B_{c'}^T B_c^T$ from the
+                                  // introduction that interpolates
+                                  // from the coarser of the two cells
+                                  // to the finer one. If the two cells
+                                  // match, then this is the identity
+                                  // matrix -- exactly what we pass to
+                                  // this function initially.
+                                  //
+                                  // The function has to consider two
+                                  // cases: that both of the two cells
+                                  // are not further refined, i.e. have
+                                  // no children, in which case we can
+                                  // finally assemble the right hand
+                                  // side contributions of this pair of
+                                  // cells; and that one of the two
+                                  // cells is further refined, in which
+                                  // case we have to keep recursing by
+                                  // looping over the children of the
+                                  // one cell that is not active. These
+                                  // two cases will be discussed below:
+  template <int dim>
+  void
+  EnergyGroup<dim>::
+  assemble_cross_group_rhs_recursive (const EnergyGroup<dim>                        &g_prime,
+                                     const typename DoFHandler<dim>::cell_iterator &cell_g,
+                                     const typename DoFHandler<dim>::cell_iterator &cell_g_prime,
+                                     const FullMatrix<double>                       prolongation_matrix)
+  {
+                                    // The first case is that both
+                                    // cells are no further refined. In
+                                    // that case, we can assemble the
+                                    // relevant terms (see the
+                                    // introduction). This involves
+                                    // assembling the mass matrix on
+                                    // the finer of the two cells (in
+                                    // fact there are two mass matrices
+                                    // with different coefficients, one
+                                    // for the fission distribution
+                                    // cross section
+                                    // $\chi_g\nu\Sigma_{f,g'}$ and one
+                                    // for the scattering cross section
+                                    // $\Sigma_{s,g'\to g}$). This is
+                                    // straight forward, but note how
+                                    // we determine which of the two
+                                    // cells is ther finer one by
+                                    // looking at the refinement level
+                                    // of the two cells:
+    if (!cell_g->has_children() && !cell_g_prime->has_children())
+      {
+       const QGauss<dim>  quadrature_formula (fe.degree+1);
+       const unsigned int n_q_points = quadrature_formula.size();
 
-      FEValues<dim> fe_values (fe, quadrature_formula,
-                               update_values  |  update_JxW_values);
+       FEValues<dim> fe_values (fe, quadrature_formula,
+                                update_values  |  update_JxW_values);
 
-      if (cell_g->level() > cell_g_prime->level())
-       fe_values.reinit (cell_g);
-      else
-       fe_values.reinit (cell_g_prime);
+       if (cell_g->level() > cell_g_prime->level())
+         fe_values.reinit (cell_g);
+       else
+         fe_values.reinit (cell_g_prime);
+
+       const double fission_dist_XS
+         = material_data.get_fission_dist_XS (group, g_prime.group,
+                                              cell_g_prime->material_id());
+
+       const double scattering_XS
+         = material_data.get_scattering_XS (g_prime.group, group,
+                                            cell_g_prime->material_id());
+
+       FullMatrix<double>    local_mass_matrix_f (fe.dofs_per_cell,
+                                                  fe.dofs_per_cell);
+       FullMatrix<double>    local_mass_matrix_g (fe.dofs_per_cell,
+                                                  fe.dofs_per_cell);
+
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+         for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
+           for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
+             {
+               local_mass_matrix_f(i,j) += (fission_dist_XS *
+                                            fe_values.shape_value(i,q_point) *
+                                            fe_values.shape_value(j,q_point) *
+                                            fe_values.JxW(q_point));
+               local_mass_matrix_g(i,j) += (scattering_XS *
+                                            fe_values.shape_value(i,q_point) *
+                                            fe_values.shape_value(j,q_point) *
+                                            fe_values.JxW(q_point));
+             }
+
+                                        // Now we have all the
+                                        // interpolation (prolongation)
+                                        // matrices as well as local
+                                        // mass matrices, so we only
+                                        // have to form the product
+                                        // @f[
+                                        //  F_i|_{K_{cc'\cdots
+                                        //  c^{(k)}}} = [B_c B_{c'}
+                                        //  \cdots B_{c^{(k)}}
+                                        //  M_{K_{cc'\cdots
+                                        //  c^{(k)}}}]^{ij}
+                                        //  \phi_{g'}^j,
+                                        // @f]
+                                        // or
+                                        // @f[
+                                        //  F_i|_{K_{cc'\cdots
+                                        //  c^{(k)}}} = [(B_c B_{c'}
+                                        //  \cdots B_{c^{(k)}}
+                                        //  M_{K_{cc'\cdots
+                                        //  c^{(k)}}})^T]^{ij}
+                                        //  \phi_{g'}^j,
+                                        // @f]
+                                        // depending on which of the two
+                                        // cells is the finer. We do this
+                                        // using either the matrix-vector
+                                        // product provided by the <code>vmult</code>
+                                        // function, or the product with the
+                                        // transpose matrix using <code>Tvmult</code>.
+                                        // After doing so, we transfer the
+                                        // result into the global right hand
+                                        // side vector of energy group $g$.
+       Vector<double>       g_prime_new_values (fe.dofs_per_cell);
+       Vector<double>       g_prime_old_values (fe.dofs_per_cell);
+       cell_g_prime->get_dof_values (g_prime.solution_old, g_prime_old_values);
+       cell_g_prime->get_dof_values (g_prime.solution,     g_prime_new_values);
+
+       Vector<double>       cell_rhs (fe.dofs_per_cell);
+       Vector<double>       tmp (fe.dofs_per_cell);
+
+       if (cell_g->level() > cell_g_prime->level())
+         {
+           prolongation_matrix.vmult (tmp, g_prime_old_values);
+           local_mass_matrix_f.vmult (cell_rhs, tmp);
 
-      const double fission_dist_XS
-       = material_data.get_fission_dist_XS (group, g_prime.group,
-                                             cell_g_prime->material_id());
+           prolongation_matrix.vmult (tmp, g_prime_new_values);
+           local_mass_matrix_g.vmult_add (cell_rhs, tmp);
+         }
+       else
+         {
+           local_mass_matrix_f.vmult (tmp, g_prime_old_values);
+           prolongation_matrix.Tvmult (cell_rhs, tmp);
 
-      const double scattering_XS
-       = material_data.get_scattering_XS (g_prime.group, group,
-                                           cell_g_prime->material_id());
+           local_mass_matrix_g.vmult (tmp, g_prime_new_values);
+           prolongation_matrix.Tvmult_add (cell_rhs, tmp);
+         }
 
-      FullMatrix<double>    local_mass_matrix_f (fe.dofs_per_cell,
-                                                 fe.dofs_per_cell);
-      FullMatrix<double>    local_mass_matrix_g (fe.dofs_per_cell,
-                                                 fe.dofs_per_cell);
+       std::vector<unsigned int> local_dof_indices (fe.dofs_per_cell);
+       cell_g->get_dof_indices (local_dof_indices);
 
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
        for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
-          for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
-            {
-              local_mass_matrix_f(i,j) += (fission_dist_XS *
-                                           fe_values.shape_value(i,q_point) *
-                                           fe_values.shape_value(j,q_point) *
-                                           fe_values.JxW(q_point));
-              local_mass_matrix_g(i,j) += (scattering_XS *
-                                           fe_values.shape_value(i,q_point) *
-                                           fe_values.shape_value(j,q_point) *
-                                           fe_values.JxW(q_point));
-            }
-
-                                       // Now we have all the
-                                       // interpolation (prolongation)
-                                       // matrices as well as local
-                                       // mass matrices, so we only
-                                       // have to form the product
-                                       // @f[
-                                       //  F_i|_{K_{cc'\cdots
-                                       //  c^{(k)}}} = [B_c B_{c'}
-                                       //  \cdots B_{c^{(k)}}
-                                       //  M_{K_{cc'\cdots
-                                       //  c^{(k)}}}]^{ij}
-                                       //  \phi_{g'}^j,
-                                       // @f]
-                                       // or
-                                       // @f[
-                                       //  F_i|_{K_{cc'\cdots
-                                       //  c^{(k)}}} = [(B_c B_{c'}
-                                       //  \cdots B_{c^{(k)}}
-                                       //  M_{K_{cc'\cdots
-                                       //  c^{(k)}}})^T]^{ij}
-                                       //  \phi_{g'}^j,
-                                       // @f]
-                                       // depending on which of the two
-                                       // cells is the finer. We do this
-                                       // using either the matrix-vector
-                                       // product provided by the <code>vmult</code>
-                                       // function, or the product with the
-                                       // transpose matrix using <code>Tvmult</code>.
-                                       // After doing so, we transfer the
-                                       // result into the global right hand
-                                       // side vector of energy group $g$.
-      Vector<double>       g_prime_new_values (fe.dofs_per_cell);
-      Vector<double>       g_prime_old_values (fe.dofs_per_cell);
-      cell_g_prime->get_dof_values (g_prime.solution_old, g_prime_old_values);
-      cell_g_prime->get_dof_values (g_prime.solution,     g_prime_new_values);
-
-      Vector<double>       cell_rhs (fe.dofs_per_cell);
-      Vector<double>       tmp (fe.dofs_per_cell);
-
-      if (cell_g->level() > cell_g_prime->level())
-       {
-         prolongation_matrix.vmult (tmp, g_prime_old_values);
-         local_mass_matrix_f.vmult (cell_rhs, tmp);
+         system_rhs(local_dof_indices[i]) += cell_rhs(i);
+      }
 
-         prolongation_matrix.vmult (tmp, g_prime_new_values);
-         local_mass_matrix_g.vmult_add (cell_rhs, tmp);
-       }
-      else
+                                    // The alternative is that one of
+                                    // the two cells is further
+                                    // refined. In that case, we have
+                                    // to loop over all the children,
+                                    // multiply the existing
+                                    // interpolation (prolongation)
+                                    // product of matrices from the
+                                    // left with the interpolation from
+                                    // the present cell to its child
+                                    // (using the matrix-matrix
+                                    // multiplication function
+                                    // <code>mmult</code>), and then hand the
+                                    // result off to this very same
+                                    // function again, but with the
+                                    // cell that has children replaced
+                                    // by one of its children:
+    else
+      for (unsigned int child=0; child<GeometryInfo<dim>::max_children_per_cell;++child)
        {
-         local_mass_matrix_f.vmult (tmp, g_prime_old_values);
-         prolongation_matrix.Tvmult (cell_rhs, tmp);
-
-         local_mass_matrix_g.vmult (tmp, g_prime_new_values);
-         prolongation_matrix.Tvmult_add (cell_rhs, tmp);
+         FullMatrix<double>   new_matrix (fe.dofs_per_cell, fe.dofs_per_cell);
+         fe.get_prolongation_matrix(child).mmult (new_matrix,
+                                                  prolongation_matrix);
+
+         if (cell_g->has_children())
+           assemble_cross_group_rhs_recursive (g_prime,
+                                               cell_g->child(child), cell_g_prime,
+                                               new_matrix);
+         else
+           assemble_cross_group_rhs_recursive (g_prime,
+                                               cell_g, cell_g_prime->child(child),
+                                               new_matrix);
        }
+  }
 
-      std::vector<unsigned int> local_dof_indices (fe.dofs_per_cell);
-      cell_g->get_dof_indices (local_dof_indices);
-
-      for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
-       system_rhs(local_dof_indices[i]) += cell_rhs(i);
-    }
-
-                                   // The alternative is that one of
-                                   // the two cells is further
-                                   // refined. In that case, we have
-                                   // to loop over all the children,
-                                   // multiply the existing
-                                   // interpolation (prolongation)
-                                   // product of matrices from the
-                                   // left with the interpolation from
-                                   // the present cell to its child
-                                   // (using the matrix-matrix
-                                   // multiplication function
-                                   // <code>mmult</code>), and then hand the
-                                   // result off to this very same
-                                   // function again, but with the
-                                   // cell that has children replaced
-                                   // by one of its children:
-  else
-    for (unsigned int child=0; child<GeometryInfo<dim>::max_children_per_cell;++child)
-      {
-       FullMatrix<double>   new_matrix (fe.dofs_per_cell, fe.dofs_per_cell);
-       fe.get_prolongation_matrix(child).mmult (new_matrix,
-                                                 prolongation_matrix);
-
-       if (cell_g->has_children())
-         assemble_cross_group_rhs_recursive (g_prime,
-                                             cell_g->child(child), cell_g_prime,
-                                             new_matrix);
-       else
-         assemble_cross_group_rhs_recursive (g_prime,
-                                             cell_g, cell_g_prime->child(child),
-                                             new_matrix);
-      }
-}
-
-
-                                 // @sect5{<code>EnergyGroup::get_fission_source</code>}
-                                 //
-                                 // In the (inverse) power iteration,
-                                 // we use the integrated fission
-                                 // source to update the
-                                 // $k$-eigenvalue. Given its
-                                 // definition, the following function
-                                 // is essentially self-explanatory:
-template <int dim>
-double EnergyGroup<dim>::get_fission_source () const
-{
-  const QGauss<dim>  quadrature_formula (fe.degree + 1);
-  const unsigned int n_q_points    = quadrature_formula.size();
-
-  FEValues<dim> fe_values (fe, quadrature_formula,
-                          update_values  |  update_JxW_values);
-
-  std::vector<double>       solution_values (n_q_points);
-
-  double fission_source = 0;
-
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-
-      const double fission_XS
-       = material_data.get_fission_XS(group, cell->material_id());
 
-      fe_values.get_function_values (solution, solution_values);
+                                  // @sect5{<code>EnergyGroup::get_fission_source</code>}
+                                  //
+                                  // In the (inverse) power iteration,
+                                  // we use the integrated fission
+                                  // source to update the
+                                  // $k$-eigenvalue. Given its
+                                  // definition, the following function
+                                  // is essentially self-explanatory:
+  template <int dim>
+  double EnergyGroup<dim>::get_fission_source () const
+  {
+    const QGauss<dim>  quadrature_formula (fe.degree + 1);
+    const unsigned int n_q_points    = quadrature_formula.size();
 
-      for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-       fission_source += (fission_XS *
-                          solution_values[q_point] *
-                          fe_values.JxW(q_point));
-    }
+    FEValues<dim> fe_values (fe, quadrature_formula,
+                            update_values  |  update_JxW_values);
 
-  return fission_source;
-}
+    std::vector<double>       solution_values (n_q_points);
 
+    double fission_source = 0;
 
-                                 // @sect5{<code>EnergyGroup::solve</code>}
-                                 //
-                                 // Next a function that solves the
-                                 // linear system assembled
-                                 // before. Things are pretty much
-                                 // standard, except that we delayed
-                                 // applying boundary values until we
-                                 // get here, since in all the
-                                 // previous functions we were still
-                                 // adding up contributions the right
-                                 // hand side vector.
-template <int dim>
-void
-EnergyGroup<dim>::solve ()
-{
-  hanging_node_constraints.condense (system_rhs);
-  MatrixTools::apply_boundary_values (boundary_values,
-                                     system_matrix,
-                                     solution,
-                                     system_rhs);
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (; cell!=endc; ++cell)
+      {
+       fe_values.reinit (cell);
 
-  SolverControl           solver_control (system_matrix.m(),
-                                          1e-12*system_rhs.l2_norm());
-  SolverCG<>              cg (solver_control);
+       const double fission_XS
+         = material_data.get_fission_XS(group, cell->material_id());
 
-  PreconditionSSOR<> preconditioner;
-  preconditioner.initialize(system_matrix, 1.2);
+       fe_values.get_function_values (solution, solution_values);
 
-  cg.solve (system_matrix, solution, system_rhs, preconditioner);
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+         fission_source += (fission_XS *
+                            solution_values[q_point] *
+                            fe_values.JxW(q_point));
+      }
 
-  hanging_node_constraints.distribute (solution);
-}
+    return fission_source;
+  }
 
 
+                                  // @sect5{<code>EnergyGroup::solve</code>}
+                                  //
+                                  // Next a function that solves the
+                                  // linear system assembled
+                                  // before. Things are pretty much
+                                  // standard, except that we delayed
+                                  // applying boundary values until we
+                                  // get here, since in all the
+                                  // previous functions we were still
+                                  // adding up contributions the right
+                                  // hand side vector.
+  template <int dim>
+  void
+  EnergyGroup<dim>::solve ()
+  {
+    hanging_node_constraints.condense (system_rhs);
+    MatrixTools::apply_boundary_values (boundary_values,
+                                       system_matrix,
+                                       solution,
+                                       system_rhs);
 
-                                 // @sect5{<code>EnergyGroup::estimate_errors</code>}
-                                 //
-                                 // Mesh refinement is split into two
-                                 // functions. The first estimates the
-                                 // error for each cell, normalizes it
-                                 // by the magnitude of the solution,
-                                 // and returns it in the vector given
-                                 // as an argument. The calling
-                                 // function collects all error
-                                 // indicators from all energy groups,
-                                 // and computes thresholds for
-                                 // refining and coarsening cells.
-template <int dim>
-void EnergyGroup<dim>::estimate_errors (Vector<float> &error_indicators) const
-{
-  KellyErrorEstimator<dim>::estimate (dof_handler,
-                                     QGauss<dim-1> (fe.degree + 1),
-                                     typename FunctionMap<dim>::type(),
-                                     solution,
-                                     error_indicators);
-  error_indicators /= solution.linfty_norm();
-}
+    SolverControl           solver_control (system_matrix.m(),
+                                           1e-12*system_rhs.l2_norm());
+    SolverCG<>              cg (solver_control);
 
+    PreconditionSSOR<> preconditioner;
+    preconditioner.initialize(system_matrix, 1.2);
 
+    cg.solve (system_matrix, solution, system_rhs, preconditioner);
 
-                                 // @sect5{<code>EnergyGroup::refine_grid</code>}
-                                 //
-                                // The second part is to refine the
-                                // grid given the error indicators
-                                // compute in the previous function
-                                // and error thresholds above which
-                                // cells shall be refined or below
-                                // which cells shall be
-                                // coarsened. Note that we do not use
-                                // any of the functions in
-                                // <code>GridRefinement</code> here,
-                                // but rather set refinement flags
-                                // ourselves.
-                                //
-                                // After setting these flags, we use
-                                // the SolutionTransfer class to move
-                                // the solution vector from the old
-                                // to the new mesh. The procedure
-                                // used here is described in detail
-                                // in the documentation of that
-                                // class:
-template <int dim>
-void EnergyGroup<dim>::refine_grid (const Vector<float> &error_indicators,
-                                   const double         refine_threshold,
-                                   const double         coarsen_threshold)
-{
-  typename Triangulation<dim>::active_cell_iterator
-    cell = triangulation.begin_active(),
-    endc = triangulation.end();
+    hanging_node_constraints.distribute (solution);
+  }
 
-  for (unsigned int cell_index=0; cell!=endc; ++cell, ++cell_index)
-    if (error_indicators(cell_index) > refine_threshold)
-      cell->set_refine_flag ();
-    else if (error_indicators(cell_index) < coarsen_threshold)
-      cell->set_coarsen_flag ();
 
-  SolutionTransfer<dim> soltrans(dof_handler);
 
-  triangulation.prepare_coarsening_and_refinement();
-  soltrans.prepare_for_coarsening_and_refinement(solution);
+                                  // @sect5{<code>EnergyGroup::estimate_errors</code>}
+                                  //
+                                  // Mesh refinement is split into two
+                                  // functions. The first estimates the
+                                  // error for each cell, normalizes it
+                                  // by the magnitude of the solution,
+                                  // and returns it in the vector given
+                                  // as an argument. The calling
+                                  // function collects all error
+                                  // indicators from all energy groups,
+                                  // and computes thresholds for
+                                  // refining and coarsening cells.
+  template <int dim>
+  void EnergyGroup<dim>::estimate_errors (Vector<float> &error_indicators) const
+  {
+    KellyErrorEstimator<dim>::estimate (dof_handler,
+                                       QGauss<dim-1> (fe.degree + 1),
+                                       typename FunctionMap<dim>::type(),
+                                       solution,
+                                       error_indicators);
+    error_indicators /= solution.linfty_norm();
+  }
 
-  triangulation.execute_coarsening_and_refinement ();
-  dof_handler.distribute_dofs (fe);
 
-  solution.reinit (dof_handler.n_dofs());
-  soltrans.interpolate(solution_old, solution);
 
-  solution_old.reinit (dof_handler.n_dofs());
-  solution_old = solution;
-}
+                                  // @sect5{<code>EnergyGroup::refine_grid</code>}
+                                  //
+                                  // The second part is to refine the
+                                  // grid given the error indicators
+                                  // compute in the previous function
+                                  // and error thresholds above which
+                                  // cells shall be refined or below
+                                  // which cells shall be
+                                  // coarsened. Note that we do not use
+                                  // any of the functions in
+                                  // <code>GridRefinement</code> here,
+                                  // but rather set refinement flags
+                                  // ourselves.
+                                  //
+                                  // After setting these flags, we use
+                                  // the SolutionTransfer class to move
+                                  // the solution vector from the old
+                                  // to the new mesh. The procedure
+                                  // used here is described in detail
+                                  // in the documentation of that
+                                  // class:
+  template <int dim>
+  void EnergyGroup<dim>::refine_grid (const Vector<float> &error_indicators,
+                                     const double         refine_threshold,
+                                     const double         coarsen_threshold)
+  {
+    typename Triangulation<dim>::active_cell_iterator
+      cell = triangulation.begin_active(),
+      endc = triangulation.end();
 
+    for (unsigned int cell_index=0; cell!=endc; ++cell, ++cell_index)
+      if (error_indicators(cell_index) > refine_threshold)
+       cell->set_refine_flag ();
+      else if (error_indicators(cell_index) < coarsen_threshold)
+       cell->set_coarsen_flag ();
 
-                                 // @sect5{<code>EnergyGroup::output_results</code>}
-                                 //
-                                 // The last function of this class
-                                 // outputs meshes and solutions after
-                                 // each mesh iteration. This has been
-                                 // shown many times before. The only
-                                 // thing worth pointing out is the
-                                 // use of the
-                                 // <code>Utilities::int_to_string</code>
-                                 // function to convert an integer
-                                 // into its string
-                                 // representation. The second
-                                 // argument of that function denotes
-                                 // how many digits we shall use -- if
-                                 // this value was larger than one,
-                                 // then the number would be padded by
-                                 // leading zeros.
-template <int dim>
-void
-EnergyGroup<dim>::output_results (const unsigned int cycle) const
-{
-  {
-    const std::string filename = std::string("grid-") +
-                                 Utilities::int_to_string(group,1) +
-                                 "." +
-                                 Utilities::int_to_string(cycle,1) +
-                                 ".eps";
-    std::ofstream output (filename.c_str());
-
-    GridOut grid_out;
-    grid_out.write_eps (triangulation, output);
-  }
+    SolutionTransfer<dim> soltrans(dof_handler);
 
-  {
-    const std::string filename = std::string("solution-") +
-                                 Utilities::int_to_string(group,1) +
-                                 "." +
-                                 Utilities::int_to_string(cycle,1) +
-                                 ".gmv";
+    triangulation.prepare_coarsening_and_refinement();
+    soltrans.prepare_for_coarsening_and_refinement(solution);
 
-    DataOut<dim> data_out;
+    triangulation.execute_coarsening_and_refinement ();
+    dof_handler.distribute_dofs (fe);
 
-    data_out.attach_dof_handler (dof_handler);
-    data_out.add_data_vector (solution, "solution");
-    data_out.build_patches ();
+    solution.reinit (dof_handler.n_dofs());
+    soltrans.interpolate(solution_old, solution);
 
-    std::ofstream output (filename.c_str());
-    data_out.write_gmv (output);
+    solution_old.reinit (dof_handler.n_dofs());
+    solution_old = solution;
   }
-}
 
 
-
-                                 // @sect3{The <code>NeutronDiffusionProblem</code> class template}
-
-                                 // This is the main class of the
-                                 // program, not because it implements
-                                 // all the functionality (in fact,
-                                 // most of it is implemented in the
-                                 // <code>EnergyGroup</code> class)
-                                 // but because it contains the
-                                 // driving algorithm that determines
-                                 // what to compute and when. It is
-                                 // mostly as shown in many of the
-                                 // other tutorial programs in that it
-                                 // has a public <code>run</code>
-                                 // function and private functions
-                                 // doing all the rest. In several
-                                 // places, we have to do something
-                                 // for all energy groups, in which
-                                 // case we will start threads for
-                                 // each group to let these things run
-                                 // in parallel if deal.II was
-                                 // configured for multithreading.
-                                // For strategies of parallelization,
-                                // take a look at the @ref threads module.
-                                 //
-                                 // The biggest difference to previous
-                                 // example programs is that we also
-                                 // declare a nested class that has
-                                 // member variables for all the
-                                 // run-time parameters that can be
-                                 // passed to the program in an input
-                                 // file. Right now, these are the
-                                 // number of energy groups, the
-                                 // number of refinement cycles, the
-                                 // polynomial degree of the finite
-                                 // element to be used, and the
-                                 // tolerance used to determine when
-                                 // convergence of the inverse power
-                                 // iteration has occurred. In
-                                 // addition, we have a constructor of
-                                 // this class that sets all these
-                                 // values to their default values, a
-                                 // function
-                                 // <code>declare_parameters</code>
-                                 // that described to the
-                                 // ParameterHandler class already
-                                 // used in step-19
-                                 // what parameters are accepted in
-                                 // the input file, and a function
-                                 // <code>get_parameters</code> that
-                                 // can extract the values of these
-                                 // parameters from a ParameterHandler
-                                 // object.
-template <int dim>
-class NeutronDiffusionProblem
-{
-  public:
-    class Parameters
+                                  // @sect5{<code>EnergyGroup::output_results</code>}
+                                  //
+                                  // The last function of this class
+                                  // outputs meshes and solutions after
+                                  // each mesh iteration. This has been
+                                  // shown many times before. The only
+                                  // thing worth pointing out is the
+                                  // use of the
+                                  // <code>Utilities::int_to_string</code>
+                                  // function to convert an integer
+                                  // into its string
+                                  // representation. The second
+                                  // argument of that function denotes
+                                  // how many digits we shall use -- if
+                                  // this value was larger than one,
+                                  // then the number would be padded by
+                                  // leading zeros.
+  template <int dim>
+  void
+  EnergyGroup<dim>::output_results (const unsigned int cycle) const
+  {
     {
-      public:
-       Parameters ();
+      const std::string filename = std::string("grid-") +
+                                  Utilities::int_to_string(group,1) +
+                                  "." +
+                                  Utilities::int_to_string(cycle,1) +
+                                  ".eps";
+      std::ofstream output (filename.c_str());
+
+      GridOut grid_out;
+      grid_out.write_eps (triangulation, output);
+    }
 
-       static void declare_parameters (ParameterHandler &prm);
-       void get_parameters (ParameterHandler &prm);
+    {
+      const std::string filename = std::string("solution-") +
+                                  Utilities::int_to_string(group,1) +
+                                  "." +
+                                  Utilities::int_to_string(cycle,1) +
+                                  ".gmv";
 
-       unsigned int n_groups;
-       unsigned int n_refinement_cycles;
+      DataOut<dim> data_out;
 
-       unsigned int fe_degree;
+      data_out.attach_dof_handler (dof_handler);
+      data_out.add_data_vector (solution, "solution");
+      data_out.build_patches ();
 
-       double convergence_tolerance;
-    };
+      std::ofstream output (filename.c_str());
+      data_out.write_gmv (output);
+    }
+  }
 
 
 
-    NeutronDiffusionProblem (const Parameters &parameters);
-    ~NeutronDiffusionProblem ();
-
-    void run ();
-
-  private:
-                                     // @sect5{Private member functions}
-
-                                     // There are not that many member
-                                     // functions in this class since
-                                     // most of the functionality has
-                                     // been moved into the
-                                     // <code>EnergyGroup</code> class
-                                     // and is simply called from the
-                                     // <code>run()</code> member
-                                     // function of this class. The
-                                     // ones that remain have
-                                     // self-explanatory names:
-    void initialize_problem();
-
-    void refine_grid ();
-
-    double get_total_fission_source () const;
-
-
-                                     // @sect5{Private member variables}
-
-                                     // Next, we have a few member
-                                     // variables. In particular,
-                                     // these are (i) a reference to
-                                     // the parameter object (owned by
-                                     // the main function of this
-                                     // program, and passed to the
-                                     // constructor of this class),
-                                     // (ii) an object describing the
-                                     // material parameters for the
-                                     // number of energy groups
-                                     // requested in the input file,
-                                     // and (iii) the finite element
-                                     // to be used by all energy
-                                     // groups:
-    const Parameters  &parameters;
-    const MaterialData material_data;
-    FE_Q<dim>          fe;
-
-                                     // Furthermore, we have (iv) the
-                                     // value of the computed
-                                     // eigenvalue at the present
-                                     // iteration. This is, in fact,
-                                     // the only part of the solution
-                                     // that is shared between all
-                                     // energy groups -- all other
-                                     // parts of the solution, such as
-                                     // neutron fluxes are particular
-                                     // to one or the other energy
-                                     // group, and are therefore
-                                     // stored in objects that
-                                     // describe a single energy
-                                     // group:
-    double k_eff;
-
-                                     // Finally, (v), we have an array
-                                     // of pointers to the energy
-                                     // group objects. The length of
-                                     // this array is, of course,
-                                     // equal to the number of energy
-                                     // groups specified in the
-                                     // parameter file.
-    std::vector<EnergyGroup<dim>*> energy_groups;
-};
-
-
-                                 // @sect4{Implementation of the <code>NeutronDiffusionProblem::Parameters</code> class}
-
-                                // Before going on to the
-                                // implementation of the outer class,
-                                // we have to implement the functions
-                                // of the parameters structure. This
-                                // is pretty straightforward and, in
-                                // fact, looks pretty much the same
-                                // for all such parameters classes
-                                // using the ParameterHandler
-                                // capabilities. We will therefore
-                                // not comment further on this:
-template <int dim>
-NeutronDiffusionProblem<dim>::Parameters::Parameters ()
-               :
-               n_groups (2),
-               n_refinement_cycles (5),
-               fe_degree (2),
-               convergence_tolerance (1e-12)
-{}
-
-
-
-template <int dim>
-void
-NeutronDiffusionProblem<dim>::Parameters::
-declare_parameters (ParameterHandler &prm)
-{
-  prm.declare_entry ("Number of energy groups", "2",
-                    Patterns::Integer (),
-                    "The number of energy different groups considered");
-  prm.declare_entry ("Refinement cycles", "5",
-                    Patterns::Integer (),
-                    "Number of refinement cycles to be performed");
-  prm.declare_entry ("Finite element degree", "2",
-                    Patterns::Integer (),
-                    "Polynomial degree of the finite element to be used");
-  prm.declare_entry ("Power iteration tolerance", "1e-12",
-                    Patterns::Double (),
-                    "Inner power iterations are stopped when the change in k_eff falls "
-                    "below this tolerance");
-}
+                                  // @sect3{The <code>NeutronDiffusionProblem</code> class template}
+
+                                  // This is the main class of the
+                                  // program, not because it implements
+                                  // all the functionality (in fact,
+                                  // most of it is implemented in the
+                                  // <code>EnergyGroup</code> class)
+                                  // but because it contains the
+                                  // driving algorithm that determines
+                                  // what to compute and when. It is
+                                  // mostly as shown in many of the
+                                  // other tutorial programs in that it
+                                  // has a public <code>run</code>
+                                  // function and private functions
+                                  // doing all the rest. In several
+                                  // places, we have to do something
+                                  // for all energy groups, in which
+                                  // case we will start threads for
+                                  // each group to let these things run
+                                  // in parallel if deal.II was
+                                  // configured for multithreading.
+                                  // For strategies of parallelization,
+                                  // take a look at the @ref threads module.
+                                  //
+                                  // The biggest difference to previous
+                                  // example programs is that we also
+                                  // declare a nested class that has
+                                  // member variables for all the
+                                  // run-time parameters that can be
+                                  // passed to the program in an input
+                                  // file. Right now, these are the
+                                  // number of energy groups, the
+                                  // number of refinement cycles, the
+                                  // polynomial degree of the finite
+                                  // element to be used, and the
+                                  // tolerance used to determine when
+                                  // convergence of the inverse power
+                                  // iteration has occurred. In
+                                  // addition, we have a constructor of
+                                  // this class that sets all these
+                                  // values to their default values, a
+                                  // function
+                                  // <code>declare_parameters</code>
+                                  // that described to the
+                                  // ParameterHandler class already
+                                  // used in step-19
+                                  // what parameters are accepted in
+                                  // the input file, and a function
+                                  // <code>get_parameters</code> that
+                                  // can extract the values of these
+                                  // parameters from a ParameterHandler
+                                  // object.
+  template <int dim>
+  class NeutronDiffusionProblem
+  {
+    public:
+      class Parameters
+      {
+       public:
+         Parameters ();
+
+         static void declare_parameters (ParameterHandler &prm);
+         void get_parameters (ParameterHandler &prm);
+
+         unsigned int n_groups;
+         unsigned int n_refinement_cycles;
+
+         unsigned int fe_degree;
+
+         double convergence_tolerance;
+      };
+
+
+
+      NeutronDiffusionProblem (const Parameters &parameters);
+      ~NeutronDiffusionProblem ();
+
+      void run ();
+
+    private:
+                                      // @sect5{Private member functions}
+
+                                      // There are not that many member
+                                      // functions in this class since
+                                      // most of the functionality has
+                                      // been moved into the
+                                      // <code>EnergyGroup</code> class
+                                      // and is simply called from the
+                                      // <code>run()</code> member
+                                      // function of this class. The
+                                      // ones that remain have
+                                      // self-explanatory names:
+      void initialize_problem();
+
+      void refine_grid ();
+
+      double get_total_fission_source () const;
+
+
+                                      // @sect5{Private member variables}
+
+                                      // Next, we have a few member
+                                      // variables. In particular,
+                                      // these are (i) a reference to
+                                      // the parameter object (owned by
+                                      // the main function of this
+                                      // program, and passed to the
+                                      // constructor of this class),
+                                      // (ii) an object describing the
+                                      // material parameters for the
+                                      // number of energy groups
+                                      // requested in the input file,
+                                      // and (iii) the finite element
+                                      // to be used by all energy
+                                      // groups:
+      const Parameters  &parameters;
+      const MaterialData material_data;
+      FE_Q<dim>          fe;
+
+                                      // Furthermore, we have (iv) the
+                                      // value of the computed
+                                      // eigenvalue at the present
+                                      // iteration. This is, in fact,
+                                      // the only part of the solution
+                                      // that is shared between all
+                                      // energy groups -- all other
+                                      // parts of the solution, such as
+                                      // neutron fluxes are particular
+                                      // to one or the other energy
+                                      // group, and are therefore
+                                      // stored in objects that
+                                      // describe a single energy
+                                      // group:
+      double k_eff;
+
+                                      // Finally, (v), we have an array
+                                      // of pointers to the energy
+                                      // group objects. The length of
+                                      // this array is, of course,
+                                      // equal to the number of energy
+                                      // groups specified in the
+                                      // parameter file.
+      std::vector<EnergyGroup<dim>*> energy_groups;
+  };
+
+
+                                  // @sect4{Implementation of the <code>NeutronDiffusionProblem::Parameters</code> class}
+
+                                  // Before going on to the
+                                  // implementation of the outer class,
+                                  // we have to implement the functions
+                                  // of the parameters structure. This
+                                  // is pretty straightforward and, in
+                                  // fact, looks pretty much the same
+                                  // for all such parameters classes
+                                  // using the ParameterHandler
+                                  // capabilities. We will therefore
+                                  // not comment further on this:
+  template <int dim>
+  NeutronDiffusionProblem<dim>::Parameters::Parameters ()
+                 :
+                 n_groups (2),
+                 n_refinement_cycles (5),
+                 fe_degree (2),
+                 convergence_tolerance (1e-12)
+  {}
+
+
+
+  template <int dim>
+  void
+  NeutronDiffusionProblem<dim>::Parameters::
+  declare_parameters (ParameterHandler &prm)
+  {
+    prm.declare_entry ("Number of energy groups", "2",
+                      Patterns::Integer (),
+                      "The number of energy different groups considered");
+    prm.declare_entry ("Refinement cycles", "5",
+                      Patterns::Integer (),
+                      "Number of refinement cycles to be performed");
+    prm.declare_entry ("Finite element degree", "2",
+                      Patterns::Integer (),
+                      "Polynomial degree of the finite element to be used");
+    prm.declare_entry ("Power iteration tolerance", "1e-12",
+                      Patterns::Double (),
+                      "Inner power iterations are stopped when the change in k_eff falls "
+                      "below this tolerance");
+  }
 
 
 
-template <int dim>
-void
-NeutronDiffusionProblem<dim>::Parameters::
-get_parameters (ParameterHandler &prm)
-{
-  n_groups              = prm.get_integer ("Number of energy groups");
-  n_refinement_cycles   = prm.get_integer ("Refinement cycles");
-  fe_degree             = prm.get_integer ("Finite element degree");
-  convergence_tolerance = prm.get_double ("Power iteration tolerance");
-}
+  template <int dim>
+  void
+  NeutronDiffusionProblem<dim>::Parameters::
+  get_parameters (ParameterHandler &prm)
+  {
+    n_groups              = prm.get_integer ("Number of energy groups");
+    n_refinement_cycles   = prm.get_integer ("Refinement cycles");
+    fe_degree             = prm.get_integer ("Finite element degree");
+    convergence_tolerance = prm.get_double ("Power iteration tolerance");
+  }
 
 
 
 
-                                 // @sect4{Implementation of the <code>NeutronDiffusionProblem</code> class}
+                                  // @sect4{Implementation of the <code>NeutronDiffusionProblem</code> class}
 
-                                 // Now for the
-                                 // <code>NeutronDiffusionProblem</code>
-                                 // class. The constructor and
-                                 // destructor have nothing of much
-                                 // interest:
-template <int dim>
-NeutronDiffusionProblem<dim>::
-NeutronDiffusionProblem (const Parameters &parameters)
-               :
-               parameters (parameters),
-               material_data (parameters.n_groups),
-                fe (parameters.fe_degree)
-{}
+                                  // Now for the
+                                  // <code>NeutronDiffusionProblem</code>
+                                  // class. The constructor and
+                                  // destructor have nothing of much
+                                  // interest:
+  template <int dim>
+  NeutronDiffusionProblem<dim>::
+  NeutronDiffusionProblem (const Parameters &parameters)
+                 :
+                 parameters (parameters),
+                 material_data (parameters.n_groups),
+                 fe (parameters.fe_degree)
+  {}
 
 
 
-template <int dim>
-NeutronDiffusionProblem<dim>::~NeutronDiffusionProblem ()
-{
-  for (unsigned int group=0; group<energy_groups.size(); ++group)
-    delete energy_groups[group];
+  template <int dim>
+  NeutronDiffusionProblem<dim>::~NeutronDiffusionProblem ()
+  {
+    for (unsigned int group=0; group<energy_groups.size(); ++group)
+      delete energy_groups[group];
 
-  energy_groups.resize (0);
-}
+    energy_groups.resize (0);
+  }
 
-                                 // @sect5{<code>NeutronDiffusionProblem::initialize_problem</code>}
-                                 //
-                                 // The first function of interest is
-                                 // the one that sets up the geometry
-                                 // of the reactor core. This is
-                                 // described in more detail in the
-                                 // introduction.
-                                //
-                                // The first part of the function
-                                // defines geometry data, and then
-                                // creates a coarse mesh that has as
-                                // many cells as there are fuel rods
-                                // (or pin cells, for that matter) in
-                                // that part of the reactor core that
-                                // we simulate. As mentioned when
-                                // interpolating boundary values
-                                // above, the last parameter to the
-                                // <code>GridGenerator::subdivided_hyper_rectangle</code>
-                                // function specifies that sides of
-                                // the domain shall have unique
-                                // boundary indicators that will
-                                // later allow us to determine in a
-                                // simple way which of the boundaries
-                                // have Neumann and which have
-                                // Dirichlet conditions attached to
-                                // them.
-template <int dim>
-void NeutronDiffusionProblem<dim>::initialize_problem()
-{
-  const unsigned int rods_per_assembly_x = 17,
-                    rods_per_assembly_y = 17;
-  const double pin_pitch_x = 1.26,
-              pin_pitch_y = 1.26;
-  const double assembly_height = 200;
-
-  const unsigned int assemblies_x = 2,
-                    assemblies_y = 2,
-                    assemblies_z = 1;
-
-  const Point<dim> bottom_left = Point<dim>();
-  const Point<dim> upper_right = (dim == 2
-                                 ?
-                                 Point<dim> (assemblies_x*rods_per_assembly_x*pin_pitch_x,
-                                             assemblies_y*rods_per_assembly_y*pin_pitch_y)
-                                 :
-                                 Point<dim> (assemblies_x*rods_per_assembly_x*pin_pitch_x,
-                                             assemblies_y*rods_per_assembly_y*pin_pitch_y,
-                                             assemblies_z*assembly_height));
-
-  std::vector<unsigned int> n_subdivisions;
-  n_subdivisions.push_back (assemblies_x*rods_per_assembly_x);
-  if (dim >= 2)
-    n_subdivisions.push_back (assemblies_y*rods_per_assembly_y);
-  if (dim >= 3)
-    n_subdivisions.push_back (assemblies_z);
-
-  Triangulation<dim> coarse_grid;
-  GridGenerator::subdivided_hyper_rectangle (coarse_grid,
-                                             n_subdivisions,
-                                             bottom_left,
-                                             upper_right,
-                                             true);
-
-
-                                   // The second part of the function
-                                   // deals with material numbers of
-                                   // pin cells of each type of
-                                   // assembly. Here, we define four
-                                   // different types of assembly, for
-                                   // which we describe the
-                                   // arrangement of fuel rods in the
-                                   // following tables.
+                                  // @sect5{<code>NeutronDiffusionProblem::initialize_problem</code>}
                                   //
-                                  // The assemblies described here
-                                  // are taken from the benchmark
-                                  // mentioned in the introduction
-                                  // and are (in this order):
-                                  // <ol>
-                                  //   <li>'UX' Assembly: UO2 fuel assembly
-                                  //       with 24 guide tubes and a central
-                                  //       Moveable Fission Chamber
-                                  //   <li>'UA' Assembly: UO2 fuel assembly
-                                  //       with 24 AIC and a central
-                                  //       Moveable Fission Chamber
-                                  //   <li>'PX' Assembly: MOX fuel assembly
-                                  //       with 24 guide tubes and a central
-                                  //       Moveable Fission Chamber
-                                  //   <li>'R' Assembly: a reflector.
-                                  // </ol>
+                                  // The first function of interest is
+                                  // the one that sets up the geometry
+                                  // of the reactor core. This is
+                                  // described in more detail in the
+                                  // introduction.
                                   //
-                                  // Note that the numbers listed
-                                  // here and taken from the
-                                  // benchmark description are, in
-                                  // good old Fortran fashion,
-                                  // one-based. We will later
-                                  // subtract one from each number
-                                  // when assigning materials to
-                                  // individual cells to convert
-                                  // things into the C-style
-                                  // zero-based indexing.
-  const unsigned int n_assemblies=4;
-  const unsigned int
-    assembly_materials[n_assemblies][rods_per_assembly_x][rods_per_assembly_y]
-    = {
+                                  // The first part of the function
+                                  // defines geometry data, and then
+                                  // creates a coarse mesh that has as
+                                  // many cells as there are fuel rods
+                                  // (or pin cells, for that matter) in
+                                  // that part of the reactor core that
+                                  // we simulate. As mentioned when
+                                  // interpolating boundary values
+                                  // above, the last parameter to the
+                                  // <code>GridGenerator::subdivided_hyper_rectangle</code>
+                                  // function specifies that sides of
+                                  // the domain shall have unique
+                                  // boundary indicators that will
+                                  // later allow us to determine in a
+                                  // simple way which of the boundaries
+                                  // have Neumann and which have
+                                  // Dirichlet conditions attached to
+                                  // them.
+  template <int dim>
+  void NeutronDiffusionProblem<dim>::initialize_problem()
+  {
+    const unsigned int rods_per_assembly_x = 17,
+                      rods_per_assembly_y = 17;
+    const double pin_pitch_x = 1.26,
+                pin_pitch_y = 1.26;
+    const double assembly_height = 200;
+
+    const unsigned int assemblies_x = 2,
+                      assemblies_y = 2,
+                      assemblies_z = 1;
+
+    const Point<dim> bottom_left = Point<dim>();
+    const Point<dim> upper_right = (dim == 2
+                                   ?
+                                   Point<dim> (assemblies_x*rods_per_assembly_x*pin_pitch_x,
+                                               assemblies_y*rods_per_assembly_y*pin_pitch_y)
+                                   :
+                                   Point<dim> (assemblies_x*rods_per_assembly_x*pin_pitch_x,
+                                               assemblies_y*rods_per_assembly_y*pin_pitch_y,
+                                               assemblies_z*assembly_height));
+
+    std::vector<unsigned int> n_subdivisions;
+    n_subdivisions.push_back (assemblies_x*rods_per_assembly_x);
+    if (dim >= 2)
+      n_subdivisions.push_back (assemblies_y*rods_per_assembly_y);
+    if (dim >= 3)
+      n_subdivisions.push_back (assemblies_z);
+
+    Triangulation<dim> coarse_grid;
+    GridGenerator::subdivided_hyper_rectangle (coarse_grid,
+                                              n_subdivisions,
+                                              bottom_left,
+                                              upper_right,
+                                              true);
+
+
+                                    // The second part of the function
+                                    // deals with material numbers of
+                                    // pin cells of each type of
+                                    // assembly. Here, we define four
+                                    // different types of assembly, for
+                                    // which we describe the
+                                    // arrangement of fuel rods in the
+                                    // following tables.
+                                    //
+                                    // The assemblies described here
+                                    // are taken from the benchmark
+                                    // mentioned in the introduction
+                                    // and are (in this order):
+                                    // <ol>
+                                    //   <li>'UX' Assembly: UO2 fuel assembly
+                                    //       with 24 guide tubes and a central
+                                    //       Moveable Fission Chamber
+                                    //   <li>'UA' Assembly: UO2 fuel assembly
+                                    //       with 24 AIC and a central
+                                    //       Moveable Fission Chamber
+                                    //   <li>'PX' Assembly: MOX fuel assembly
+                                    //       with 24 guide tubes and a central
+                                    //       Moveable Fission Chamber
+                                    //   <li>'R' Assembly: a reflector.
+                                    // </ol>
+                                    //
+                                    // Note that the numbers listed
+                                    // here and taken from the
+                                    // benchmark description are, in
+                                    // good old Fortran fashion,
+                                    // one-based. We will later
+                                    // subtract one from each number
+                                    // when assigning materials to
+                                    // individual cells to convert
+                                    // things into the C-style
+                                    // zero-based indexing.
+    const unsigned int n_assemblies=4;
+    const unsigned int
+      assembly_materials[n_assemblies][rods_per_assembly_x][rods_per_assembly_y]
+      = {
          {
                { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
                { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
@@ -1948,286 +1950,287 @@ void NeutronDiffusionProblem<dim>::initialize_problem()
          }
     };
 
-                                  // After the description of the
-                                   // materials that make up an
-                                   // assembly, we have to specify the
-                                   // arrangement of assemblies within
-                                   // the core. We use a symmetric
-                                   // pattern that in fact only uses
-                                   // the 'UX' and 'PX' assemblies:
-  const unsigned int core[assemblies_x][assemblies_y][assemblies_z]
-    =  {{{0}, {2}}, {{2}, {0}}};
-
-                                  // We are now in a position to
-                                  // actually set material IDs for
-                                  // each cell. To this end, we loop
-                                  // over all cells, look at the
-                                  // location of the cell's center,
-                                  // and determine which assembly and
-                                  // fuel rod this would be in. (We
-                                  // add a few checks to see that the
-                                  // locations we compute are within
-                                  // the bounds of the arrays in
-                                  // which we have to look up
-                                  // materials.) At the end of the
-                                  // loop, we set material
-                                  // identifiers accordingly:
-  for (typename Triangulation<dim>::active_cell_iterator
-         cell = coarse_grid.begin_active();
-       cell!=coarse_grid.end();
-       ++cell)
-    {
-      const Point<dim> cell_center = cell->center();
-
-      const unsigned int tmp_x = int(cell_center[0]/pin_pitch_x);
-      const unsigned int ax = tmp_x/rods_per_assembly_x;
-      const unsigned int cx = tmp_x - ax * rods_per_assembly_x;
-
-      const unsigned tmp_y = int(cell_center[1]/pin_pitch_y);
-      const unsigned int ay = tmp_y/rods_per_assembly_y;
-      const unsigned int cy = tmp_y - ay * rods_per_assembly_y;
-
-      const unsigned int az = (dim == 2
-                              ?
-                              0
-                              :
-                              int (cell_center[dim-1]/assembly_height));
-
-      Assert (ax < assemblies_x, ExcInternalError());
-      Assert (ay < assemblies_y, ExcInternalError());
-      Assert (az < assemblies_z, ExcInternalError());
-
-      Assert (core[ax][ay][az] < n_assemblies, ExcInternalError());
-
-      Assert (cx < rods_per_assembly_x, ExcInternalError());
-      Assert (cy < rods_per_assembly_y, ExcInternalError());
-
-      cell->set_material_id(assembly_materials[core[ax][ay][az]][cx][cy] - 1);
-    }
-
-                                  // With the coarse mesh so
-                                  // initialized, we create the
-                                  // appropriate number of energy
-                                  // group objects and let them
-                                  // initialize their individual
-                                  // meshes with the coarse mesh
-                                  // generated above:
-  energy_groups.resize (parameters.n_groups);
-  for (unsigned int group=0; group<parameters.n_groups; ++group)
-    energy_groups[group] = new EnergyGroup<dim> (group, material_data,
-                                                 coarse_grid, fe);
-}
-
-
-                                // @sect5{<code>NeutronDiffusionProblem::get_total_fission_source</code>}
-                                 //
-                                 // In the eigenvalue computation, we
-                                 // need to calculate total fission
-                                 // neutron source after each power
-                                 // iteration. The total power then is
-                                 // used to renew k-effective.
-                                //
-                                // Since the total fission source is a sum
-                                // over all the energy groups, and since each
-                                // of these sums can be computed
-                                // independently, we actually do this in
-                                // parallel. One of the problems is that the
-                                // function in the <code>EnergyGroup</code>
-                                // class that computes the fission source
-                                // returns a value. If we now simply spin off
-                                // a new thread, we have to later capture the
-                                // return value of the function run on that
-                                // thread. The way this can be done is to use
-                                // the return value of the
-                                // Threads::new_thread function, which
-                                // returns an object of type
-                                // Threads::Thread@<double@> if the function
-                                // spawned returns a double. We can then later
-                                // ask this object for the returned value
-                                // (when doing so, the
-                                // Threads::Thread::return_value
-                                // function first waits for the thread to
-                                // finish if it hasn't done so already).
-                                //
-                                // The way this function then works
-                                // is to first spawn one thread for
-                                // each energy group we work with,
-                                // then one-by-one collecting the
-                                // returned values of each thread and
-                                // return the sum.
-template <int dim>
-double NeutronDiffusionProblem<dim>::get_total_fission_source () const
-{
-  std::vector<Threads::Thread<double> > threads;
-  for (unsigned int group=0; group<parameters.n_groups; ++group)
-    threads.push_back (Threads::new_thread (&EnergyGroup<dim>::get_fission_source,
-                                           *energy_groups[group]));
+                                    // After the description of the
+                                    // materials that make up an
+                                    // assembly, we have to specify the
+                                    // arrangement of assemblies within
+                                    // the core. We use a symmetric
+                                    // pattern that in fact only uses
+                                    // the 'UX' and 'PX' assemblies:
+    const unsigned int core[assemblies_x][assemblies_y][assemblies_z]
+      =  {{{0}, {2}}, {{2}, {0}}};
+
+                                    // We are now in a position to
+                                    // actually set material IDs for
+                                    // each cell. To this end, we loop
+                                    // over all cells, look at the
+                                    // location of the cell's center,
+                                    // and determine which assembly and
+                                    // fuel rod this would be in. (We
+                                    // add a few checks to see that the
+                                    // locations we compute are within
+                                    // the bounds of the arrays in
+                                    // which we have to look up
+                                    // materials.) At the end of the
+                                    // loop, we set material
+                                    // identifiers accordingly:
+    for (typename Triangulation<dim>::active_cell_iterator
+          cell = coarse_grid.begin_active();
+        cell!=coarse_grid.end();
+        ++cell)
+      {
+       const Point<dim> cell_center = cell->center();
 
-  double fission_source = 0;
-  for (unsigned int group=0; group<parameters.n_groups; ++group)
-    fission_source += threads[group].return_value ();
+       const unsigned int tmp_x = int(cell_center[0]/pin_pitch_x);
+       const unsigned int ax = tmp_x/rods_per_assembly_x;
+       const unsigned int cx = tmp_x - ax * rods_per_assembly_x;
 
-  return fission_source;
-}
+       const unsigned tmp_y = int(cell_center[1]/pin_pitch_y);
+       const unsigned int ay = tmp_y/rods_per_assembly_y;
+       const unsigned int cy = tmp_y - ay * rods_per_assembly_y;
 
+       const unsigned int az = (dim == 2
+                                ?
+                                0
+                                :
+                                int (cell_center[dim-1]/assembly_height));
 
+       Assert (ax < assemblies_x, ExcInternalError());
+       Assert (ay < assemblies_y, ExcInternalError());
+       Assert (az < assemblies_z, ExcInternalError());
 
+       Assert (core[ax][ay][az] < n_assemblies, ExcInternalError());
 
-                                // @sect5{<code>NeutronDiffusionProblem::refine_grid</code>}
-                                 //
-                                 // The next function lets the
-                                 // individual energy group objects
-                                 // refine their meshes. Much of this,
-                                 // again, is a task that can be done
-                                 // independently in parallel: first,
-                                 // let all the energy group objects
-                                 // calculate their error indicators
-                                 // in parallel, then compute the
-                                 // maximum error indicator over all
-                                 // energy groups and determine
-                                 // thresholds for refinement and
-                                 // coarsening of cells, and then ask
-                                 // all the energy groups to refine
-                                 // their meshes accordingly, again in
-                                 // parallel.
-template <int dim>
-void NeutronDiffusionProblem<dim>::refine_grid ()
-{
-  std::vector<unsigned int> n_cells (parameters.n_groups);
-  for (unsigned int group=0; group<parameters.n_groups; ++group)
-    n_cells[group] = energy_groups[group]->n_active_cells();
+       Assert (cx < rods_per_assembly_x, ExcInternalError());
+       Assert (cy < rods_per_assembly_y, ExcInternalError());
 
-  BlockVector<float>  group_error_indicators(n_cells);
+       cell->set_material_id(assembly_materials[core[ax][ay][az]][cx][cy] - 1);
+      }
 
-  {
-    Threads::ThreadGroup<> threads;
+                                    // With the coarse mesh so
+                                    // initialized, we create the
+                                    // appropriate number of energy
+                                    // group objects and let them
+                                    // initialize their individual
+                                    // meshes with the coarse mesh
+                                    // generated above:
+    energy_groups.resize (parameters.n_groups);
     for (unsigned int group=0; group<parameters.n_groups; ++group)
-      threads += Threads::new_thread (&EnergyGroup<dim>::estimate_errors,
-                                     *energy_groups[group],
-                                     group_error_indicators.block(group));
-    threads.join_all ();
+      energy_groups[group] = new EnergyGroup<dim> (group, material_data,
+                                                  coarse_grid, fe);
   }
 
-  const float max_error         = group_error_indicators.linfty_norm();
-  const float refine_threshold  = 0.3*max_error;
-  const float coarsen_threshold = 0.01*max_error;
 
+                                  // @sect5{<code>NeutronDiffusionProblem::get_total_fission_source</code>}
+                                  //
+                                  // In the eigenvalue computation, we
+                                  // need to calculate total fission
+                                  // neutron source after each power
+                                  // iteration. The total power then is
+                                  // used to renew k-effective.
+                                  //
+                                  // Since the total fission source is a sum
+                                  // over all the energy groups, and since each
+                                  // of these sums can be computed
+                                  // independently, we actually do this in
+                                  // parallel. One of the problems is that the
+                                  // function in the <code>EnergyGroup</code>
+                                  // class that computes the fission source
+                                  // returns a value. If we now simply spin off
+                                  // a new thread, we have to later capture the
+                                  // return value of the function run on that
+                                  // thread. The way this can be done is to use
+                                  // the return value of the
+                                  // Threads::new_thread function, which
+                                  // returns an object of type
+                                  // Threads::Thread@<double@> if the function
+                                  // spawned returns a double. We can then later
+                                  // ask this object for the returned value
+                                  // (when doing so, the
+                                  // Threads::Thread::return_value
+                                  // function first waits for the thread to
+                                  // finish if it hasn't done so already).
+                                  //
+                                  // The way this function then works
+                                  // is to first spawn one thread for
+                                  // each energy group we work with,
+                                  // then one-by-one collecting the
+                                  // returned values of each thread and
+                                  // return the sum.
+  template <int dim>
+  double NeutronDiffusionProblem<dim>::get_total_fission_source () const
   {
-    Threads::ThreadGroup<> threads;
+    std::vector<Threads::Thread<double> > threads;
     for (unsigned int group=0; group<parameters.n_groups; ++group)
-      threads += Threads::new_thread (&EnergyGroup<dim>::refine_grid,
-                                     *energy_groups[group],
-                                     group_error_indicators.block(group),
-                                     refine_threshold,
-                                     coarsen_threshold);
-    threads.join_all ();
-  }
-}
+      threads.push_back (Threads::new_thread (&EnergyGroup<dim>::get_fission_source,
+                                             *energy_groups[group]));
 
+    double fission_source = 0;
+    for (unsigned int group=0; group<parameters.n_groups; ++group)
+      fission_source += threads[group].return_value ();
 
-                                // @sect5{<code>NeutronDiffusionProblem::run</code>}
-                                 //
-                                 // Finally, this is the function
-                                 // where the meat is: iterate on a
-                                 // sequence of meshes, and on each of
-                                 // them do a power iteration to
-                                 // compute the eigenvalue.
-                                //
-                                // Given the description of the
-                                // algorithm in the introduction,
-                                // there is actually not much to
-                                // comment on:
-template <int dim>
-void NeutronDiffusionProblem<dim>::run ()
-{
-  std::cout << std::setprecision (12) << std::fixed;
+    return fission_source;
+  }
 
-  double k_eff_old = k_eff;
 
-  Timer timer;
-  timer.start ();
 
-  for (unsigned int cycle=0; cycle<parameters.n_refinement_cycles; ++cycle)
-    {
-      std::cout << "Cycle " << cycle << ':' << std::endl;
 
-      if (cycle == 0)
-       initialize_problem();
-      else
-       {
-         refine_grid ();
-         for (unsigned int group=0; group<parameters.n_groups; ++group)
-           energy_groups[group]->solution *= k_eff;
-       }
+                                  // @sect5{<code>NeutronDiffusionProblem::refine_grid</code>}
+                                  //
+                                  // The next function lets the
+                                  // individual energy group objects
+                                  // refine their meshes. Much of this,
+                                  // again, is a task that can be done
+                                  // independently in parallel: first,
+                                  // let all the energy group objects
+                                  // calculate their error indicators
+                                  // in parallel, then compute the
+                                  // maximum error indicator over all
+                                  // energy groups and determine
+                                  // thresholds for refinement and
+                                  // coarsening of cells, and then ask
+                                  // all the energy groups to refine
+                                  // their meshes accordingly, again in
+                                  // parallel.
+  template <int dim>
+  void NeutronDiffusionProblem<dim>::refine_grid ()
+  {
+    std::vector<unsigned int> n_cells (parameters.n_groups);
+    for (unsigned int group=0; group<parameters.n_groups; ++group)
+      n_cells[group] = energy_groups[group]->n_active_cells();
 
-      for (unsigned int group=0; group<parameters.n_groups; ++group)
-       energy_groups[group]->setup_linear_system ();
+    BlockVector<float>  group_error_indicators(n_cells);
 
-      std::cout << "   Numbers of active cells:       ";
-      for (unsigned int group=0; group<parameters.n_groups; ++group)
-       std::cout << energy_groups[group]->n_active_cells()
-                 << ' ';
-      std::cout << std::endl;
-      std::cout << "   Numbers of degrees of freedom: ";
+    {
+      Threads::ThreadGroup<> threads;
       for (unsigned int group=0; group<parameters.n_groups; ++group)
-       std::cout << energy_groups[group]->n_dofs()
-                 << ' ';
-      std::cout << std::endl << std::endl;
+       threads += Threads::new_thread (&EnergyGroup<dim>::estimate_errors,
+                                       *energy_groups[group],
+                                       group_error_indicators.block(group));
+      threads.join_all ();
+    }
 
+    const float max_error         = group_error_indicators.linfty_norm();
+    const float refine_threshold  = 0.3*max_error;
+    const float coarsen_threshold = 0.01*max_error;
 
+    {
       Threads::ThreadGroup<> threads;
       for (unsigned int group=0; group<parameters.n_groups; ++group)
-       threads += Threads::new_thread
-                  (&EnergyGroup<dim>::assemble_system_matrix,
-                   *energy_groups[group]);
+       threads += Threads::new_thread (&EnergyGroup<dim>::refine_grid,
+                                       *energy_groups[group],
+                                       group_error_indicators.block(group),
+                                       refine_threshold,
+                                       coarsen_threshold);
       threads.join_all ();
+    }
+  }
 
-      double error;
-      unsigned int iteration = 1;
-      do
-       {
-         for (unsigned int group=0; group<parameters.n_groups; ++group)
-           {
-             energy_groups[group]->assemble_ingroup_rhs (ZeroFunction<dim>());
 
-             for (unsigned int bgroup=0; bgroup<parameters.n_groups; ++bgroup)
-               energy_groups[group]->assemble_cross_group_rhs (*energy_groups[bgroup]);
+                                  // @sect5{<code>NeutronDiffusionProblem::run</code>}
+                                  //
+                                  // Finally, this is the function
+                                  // where the meat is: iterate on a
+                                  // sequence of meshes, and on each of
+                                  // them do a power iteration to
+                                  // compute the eigenvalue.
+                                  //
+                                  // Given the description of the
+                                  // algorithm in the introduction,
+                                  // there is actually not much to
+                                  // comment on:
+  template <int dim>
+  void NeutronDiffusionProblem<dim>::run ()
+  {
+    std::cout << std::setprecision (12) << std::fixed;
+
+    double k_eff_old = k_eff;
 
-             energy_groups[group]->solve ();
-           }
+    Timer timer;
+    timer.start ();
 
-         k_eff = get_total_fission_source();
-         error = fabs(k_eff-k_eff_old)/fabs(k_eff);
-         std::cout << "   Iteration " << iteration
-                   << ": k_eff=" << k_eff
-                   << std::endl;
-         k_eff_old=k_eff;
+    for (unsigned int cycle=0; cycle<parameters.n_refinement_cycles; ++cycle)
+      {
+       std::cout << "Cycle " << cycle << ':' << std::endl;
 
-         for (unsigned int group=0; group<parameters.n_groups; ++group)
-           {
-             energy_groups[group]->solution_old = energy_groups[group]->solution;
-             energy_groups[group]->solution_old /= k_eff;
-           }
+       if (cycle == 0)
+         initialize_problem();
+       else
+         {
+           refine_grid ();
+           for (unsigned int group=0; group<parameters.n_groups; ++group)
+             energy_groups[group]->solution *= k_eff;
+         }
 
-         ++iteration;
-       }
-      while((error > parameters.convergence_tolerance)
-           &&
-           (iteration < 500));
+       for (unsigned int group=0; group<parameters.n_groups; ++group)
+         energy_groups[group]->setup_linear_system ();
+
+       std::cout << "   Numbers of active cells:       ";
+       for (unsigned int group=0; group<parameters.n_groups; ++group)
+         std::cout << energy_groups[group]->n_active_cells()
+                   << ' ';
+       std::cout << std::endl;
+       std::cout << "   Numbers of degrees of freedom: ";
+       for (unsigned int group=0; group<parameters.n_groups; ++group)
+         std::cout << energy_groups[group]->n_dofs()
+                   << ' ';
+       std::cout << std::endl << std::endl;
+
+
+       Threads::ThreadGroup<> threads;
+       for (unsigned int group=0; group<parameters.n_groups; ++group)
+         threads += Threads::new_thread
+                    (&EnergyGroup<dim>::assemble_system_matrix,
+                     *energy_groups[group]);
+       threads.join_all ();
+
+       double error;
+       unsigned int iteration = 1;
+       do
+         {
+           for (unsigned int group=0; group<parameters.n_groups; ++group)
+             {
+               energy_groups[group]->assemble_ingroup_rhs (ZeroFunction<dim>());
+
+               for (unsigned int bgroup=0; bgroup<parameters.n_groups; ++bgroup)
+                 energy_groups[group]->assemble_cross_group_rhs (*energy_groups[bgroup]);
+
+               energy_groups[group]->solve ();
+             }
+
+           k_eff = get_total_fission_source();
+           error = fabs(k_eff-k_eff_old)/fabs(k_eff);
+           std::cout << "   Iteration " << iteration
+                     << ": k_eff=" << k_eff
+                     << std::endl;
+           k_eff_old=k_eff;
+
+           for (unsigned int group=0; group<parameters.n_groups; ++group)
+             {
+               energy_groups[group]->solution_old = energy_groups[group]->solution;
+               energy_groups[group]->solution_old /= k_eff;
+             }
+
+           ++iteration;
+         }
+       while((error > parameters.convergence_tolerance)
+             &&
+             (iteration < 500));
 
-      for (unsigned int group=0; group<parameters.n_groups; ++group)
-        energy_groups[group]->output_results (cycle);
+       for (unsigned int group=0; group<parameters.n_groups; ++group)
+         energy_groups[group]->output_results (cycle);
 
-      std::cout << std::endl;
-      std::cout << "   Cycle=" << cycle
-               << ", n_dofs=" << energy_groups[0]->n_dofs() + energy_groups[1]->n_dofs()
-               << ",  k_eff=" << k_eff
-               << ", time=" << timer()
-               << std::endl;
+       std::cout << std::endl;
+       std::cout << "   Cycle=" << cycle
+                 << ", n_dofs=" << energy_groups[0]->n_dofs() + energy_groups[1]->n_dofs()
+                 << ",  k_eff=" << k_eff
+                 << ", time=" << timer()
+                 << std::endl;
 
 
-      std::cout << std::endl << std::endl;
-    }
+       std::cout << std::endl << std::endl;
+      }
+  }
 }
 
 
@@ -2265,10 +2268,11 @@ void NeutronDiffusionProblem<dim>::run ()
                                 // for computation of the eigenvalue:
 int main (int argc, char ** argv)
 {
-  const unsigned int dim = 2;
-
   try
     {
+      using namespace dealii;
+      using namespace Step28;
+
       deallog.depth_console (0);
 
       std::string filename;
@@ -2278,6 +2282,8 @@ int main (int argc, char ** argv)
        filename = argv[1];
 
 
+      const unsigned int dim = 2;
+
       ParameterHandler parameter_handler;
 
       NeutronDiffusionProblem<dim>::Parameters parameters;
index c866b3dee2ad203ee4da3218086b6714d2060ba4..bfaf1adca67d03bb1ba9175f29104e4a57168af7 100644 (file)
@@ -2,7 +2,7 @@
 /* Author: Moritz Allmaras, Texas A&M University, 2007 */
 
 /*                                                                */
-/*    Copyright (C) 2007, 2008, 2010 by the deal.II authors and M. Allmaras   */
+/*    Copyright (C) 2007, 2008, 2010, 2011 by the deal.II authors and M. Allmaras   */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
@@ -13,7 +13,7 @@
 
                                 // @sect3{Include files}
 
-                                // The following header files are unchanged 
+                                // The following header files are unchanged
                                 // from step-7 and have been discussed before:
 
 #include <deal.II/base/quadrature_lib.h>
                                 // program takes:
 #include <deal.II/base/timer.h>
 
-                                // As the last step at the beginning
-                                // of this program, we make
-                                // everything that is in the deal.II
-                                // namespace globally available,
-                                // without the need to prefix
-                                // everything with
+                                // As the last step at the beginning of this
+                                // program, we put everything that is in this
+                                // program into its namespace and, within it,
+                                // make everything that is in the deal.II
+                                // namespace globally available, without the
+                                // need to prefix everything with
                                 // <code>dealii</code><code>::</code>:
-using namespace dealii;
-
-
-                                // @sect3{The <code>DirichletBoundaryValues</code> class}
-
-                                // First we define a class for the
-                                // function representing the
-                                // Dirichlet boundary values. This
-                                // has been done many times before
-                                // and therefore does not need much
-                                // explanation.
-                                //
-                                // Since there are two values $v$ and
-                                // $w$ that need to be prescribed at
-                                // the boundary, we have to tell the
-                                // base class that this is a
-                                // vector-valued function with two
-                                // components, and the
-                                // <code>vector_value</code> function
-                                // and its cousin
-                                // <code>vector_value_list</code> must
-                                // return vectors with two entries. In
-                                // our case the function is very
-                                // simple, it just returns 1 for the
-                                // real part $v$ and 0 for the
-                                // imaginary part $w$ regardless of
-                                // the point where it is evaluated.
-template <int dim>
-class DirichletBoundaryValues : public Function<dim>
+namespace Step29
 {
-  public:
-    DirichletBoundaryValues() : Function<dim> (2) {};
+  using namespace dealii;
+
+
+                                  // @sect3{The <code>DirichletBoundaryValues</code> class}
+
+                                  // First we define a class for the
+                                  // function representing the
+                                  // Dirichlet boundary values. This
+                                  // has been done many times before
+                                  // and therefore does not need much
+                                  // explanation.
+                                  //
+                                  // Since there are two values $v$ and
+                                  // $w$ that need to be prescribed at
+                                  // the boundary, we have to tell the
+                                  // base class that this is a
+                                  // vector-valued function with two
+                                  // components, and the
+                                  // <code>vector_value</code> function
+                                  // and its cousin
+                                  // <code>vector_value_list</code> must
+                                  // return vectors with two entries. In
+                                  // our case the function is very
+                                  // simple, it just returns 1 for the
+                                  // real part $v$ and 0 for the
+                                  // imaginary part $w$ regardless of
+                                  // the point where it is evaluated.
+  template <int dim>
+  class DirichletBoundaryValues : public Function<dim>
+  {
+    public:
+      DirichletBoundaryValues() : Function<dim> (2) {};
 
-    virtual void vector_value (const Point<dim> &p,
-                              Vector<double>   &values) const;
+      virtual void vector_value (const Point<dim> &p,
+                                Vector<double>   &values) const;
 
-    virtual void vector_value_list (const std::vector<Point<dim> > &points,
-                                   std::vector<Vector<double> >   &value_list) const;
-};
+      virtual void vector_value_list (const std::vector<Point<dim> > &points,
+                                     std::vector<Vector<double> >   &value_list) const;
+  };
 
 
-template <int dim>
-inline
-void DirichletBoundaryValues<dim>::vector_value (const Point<dim> &/*p*/,
-                                                Vector<double>   &values) const 
-{
-  Assert (values.size() == 2, ExcDimensionMismatch (values.size(), 2));
+  template <int dim>
+  inline
+  void DirichletBoundaryValues<dim>::vector_value (const Point<dim> &/*p*/,
+                                                  Vector<double>   &values) const
+  {
+    Assert (values.size() == 2, ExcDimensionMismatch (values.size(), 2));
 
-  values(0) = 1;
-  values(1) = 0;
-}
+    values(0) = 1;
+    values(1) = 0;
+  }
 
 
-template <int dim>
-void DirichletBoundaryValues<dim>::vector_value_list (const std::vector<Point<dim> > &points,
-                                                     std::vector<Vector<double> >   &value_list) const 
-{
-  Assert (value_list.size() == points.size(), 
-         ExcDimensionMismatch (value_list.size(), points.size()));
+  template <int dim>
+  void DirichletBoundaryValues<dim>::vector_value_list (const std::vector<Point<dim> > &points,
+                                                       std::vector<Vector<double> >   &value_list) const
+  {
+    Assert (value_list.size() == points.size(),
+           ExcDimensionMismatch (value_list.size(), points.size()));
 
-  for (unsigned int p=0; p<points.size(); ++p)
-    DirichletBoundaryValues<dim>::vector_value (points[p], value_list[p]);
-}
+    for (unsigned int p=0; p<points.size(); ++p)
+      DirichletBoundaryValues<dim>::vector_value (points[p], value_list[p]);
+  }
 
-                                // @sect3{The <code>ParameterReader</code> class}
-
-                                // The next class is responsible for
-                                // preparing the ParameterHandler
-                                // object and reading parameters from
-                                // an input file.  It includes a
-                                // function
-                                // <code>declare_parameters</code>
-                                // that declares all the necessary
-                                // parameters and a
-                                // <code>read_parameters</code>
-                                // function that is called from
-                                // outside to initiate the parameter
-                                // reading process.
-class ParameterReader : public Subscriptor
-{
-  public:
-    ParameterReader(ParameterHandler &);
-    void read_parameters(const std::string);
-
-  private:
-    void declare_parameters();
-    ParameterHandler &prm;
-};
-
-                                // The constructor stores a reference to 
-                                // the ParameterHandler object that is passed to it:
-ParameterReader::ParameterReader(ParameterHandler &paramhandler)
-               :
-               prm(paramhandler)
-{}
-
-                                // @sect4{<code>ParameterReader::declare_parameters</code>}
-
-                                // The <code>declare_parameters</code>
-                                // function declares all the
-                                // parameters that our
-                                // ParameterHandler object will be
-                                // able to read from input files,
-                                // along with their types, range
-                                // conditions and the subsections they
-                                // appear in. We will wrap all the
-                                // entries that go into a section in a
-                                // pair of braces to force the editor
-                                // to indent them by one level, making
-                                // it simpler to read which entries
-                                // together form a section:
-void ParameterReader::declare_parameters()
-{
-                                  // Parameters for mesh and geometry
-                                  // include the number of global
-                                  // refinement steps that are applied
-                                  // to the initial coarse mesh and the
-                                  // focal distance $d$ of the
-                                  // transducer lens. For the number of
-                                  // refinement steps, we allow integer
-                                  // values in the range $[0,\infty)$,
-                                  // where the omitted second argument
-                                  // to the Patterns::Integer object
-                                  // denotes the half-open interval.
-                                  // For the focal distance any number
-                                  // greater than zero is accepted:
-  prm.enter_subsection ("Mesh & geometry parameters");
+                                  // @sect3{The <code>ParameterReader</code> class}
+
+                                  // The next class is responsible for
+                                  // preparing the ParameterHandler
+                                  // object and reading parameters from
+                                  // an input file.  It includes a
+                                  // function
+                                  // <code>declare_parameters</code>
+                                  // that declares all the necessary
+                                  // parameters and a
+                                  // <code>read_parameters</code>
+                                  // function that is called from
+                                  // outside to initiate the parameter
+                                  // reading process.
+  class ParameterReader : public Subscriptor
   {
-    prm.declare_entry("Number of refinements", "6",
-                     Patterns::Integer(0),
-                     "Number of global mesh refinement steps "
-                     "applied to initial coarse grid");
-    
-    prm.declare_entry("Focal distance", "0.3",
-                     Patterns::Double(0),
-                     "Distance of the focal point of the lens "
-                     "to the x-axis");
-  }
-  prm.leave_subsection ();
-
-                                  // The next subsection is devoted to
-                                  // the physical parameters appearing
-                                  // in the equation, which are the
-                                  // frequency $\omega$ and wave speed
-                                  // $c$. Again, both need to lie in the
-                                  // half-open interval $[0,\infty)$
-                                  // represented by calling the
-                                  // Patterns::Double class with only
-                                  // the left end-point as argument:
-  prm.enter_subsection ("Physical constants");
+    public:
+      ParameterReader(ParameterHandler &);
+      void read_parameters(const std::string);
+
+    private:
+      void declare_parameters();
+      ParameterHandler &prm;
+  };
+
+                                  // The constructor stores a reference to
+                                  // the ParameterHandler object that is passed to it:
+  ParameterReader::ParameterReader(ParameterHandler &paramhandler)
+                 :
+                 prm(paramhandler)
+  {}
+
+                                  // @sect4{<code>ParameterReader::declare_parameters</code>}
+
+                                  // The <code>declare_parameters</code>
+                                  // function declares all the
+                                  // parameters that our
+                                  // ParameterHandler object will be
+                                  // able to read from input files,
+                                  // along with their types, range
+                                  // conditions and the subsections they
+                                  // appear in. We will wrap all the
+                                  // entries that go into a section in a
+                                  // pair of braces to force the editor
+                                  // to indent them by one level, making
+                                  // it simpler to read which entries
+                                  // together form a section:
+  void ParameterReader::declare_parameters()
   {
-    prm.declare_entry("c", "1.5e5",
-                     Patterns::Double(0),
-                     "Wave speed");
+                                    // Parameters for mesh and geometry
+                                    // include the number of global
+                                    // refinement steps that are applied
+                                    // to the initial coarse mesh and the
+                                    // focal distance $d$ of the
+                                    // transducer lens. For the number of
+                                    // refinement steps, we allow integer
+                                    // values in the range $[0,\infty)$,
+                                    // where the omitted second argument
+                                    // to the Patterns::Integer object
+                                    // denotes the half-open interval.
+                                    // For the focal distance any number
+                                    // greater than zero is accepted:
+    prm.enter_subsection ("Mesh & geometry parameters");
+    {
+      prm.declare_entry("Number of refinements", "6",
+                       Patterns::Integer(0),
+                       "Number of global mesh refinement steps "
+                       "applied to initial coarse grid");
+
+      prm.declare_entry("Focal distance", "0.3",
+                       Patterns::Double(0),
+                       "Distance of the focal point of the lens "
+                       "to the x-axis");
+    }
+    prm.leave_subsection ();
+
+                                    // The next subsection is devoted to
+                                    // the physical parameters appearing
+                                    // in the equation, which are the
+                                    // frequency $\omega$ and wave speed
+                                    // $c$. Again, both need to lie in the
+                                    // half-open interval $[0,\infty)$
+                                    // represented by calling the
+                                    // Patterns::Double class with only
+                                    // the left end-point as argument:
+    prm.enter_subsection ("Physical constants");
+    {
+      prm.declare_entry("c", "1.5e5",
+                       Patterns::Double(0),
+                       "Wave speed");
 
-    prm.declare_entry("omega", "5.0e7",
-                     Patterns::Double(0),
-                     "Frequency");
-  }
-  prm.leave_subsection ();
+      prm.declare_entry("omega", "5.0e7",
+                       Patterns::Double(0),
+                       "Frequency");
+    }
+    prm.leave_subsection ();
 
 
-                                  // Last but not least we would like
-                                  // to be able to change some
-                                  // properties of the output, like
-                                  // filename and format, through
-                                  // entries in the configuration
-                                  // file, which is the purpose of
-                                  // the last subsection:
-  prm.enter_subsection ("Output parameters");
-  {
-    prm.declare_entry("Output file", "solution",
-                     Patterns::Anything(),
-                     "Name of the output file (without extension)");
-
-                                    // Since different output formats
-                                    // may require different
-                                    // parameters for generating
-                                    // output (like for example,
-                                    // postscript output needs
-                                    // viewpoint angles, line widths,
-                                    // colors etc), it would be
-                                    // cumbersome if we had to
-                                    // declare all these parameters
-                                    // by hand for every possible
-                                    // output format supported in the
-                                    // library. Instead, each output
-                                    // format has a
-                                    // <code>FormatFlags::declare_parameters</code>
-                                    // function, which declares all
-                                    // the parameters specific to
-                                    // that format in an own
-                                    // subsection. The following call
-                                    // of
-                                    // DataOutInterface<1>::declare_parameters
-                                    // executes
-                                    // <code>declare_parameters</code>
-                                    // for all available output
-                                    // formats, so that for each
-                                    // format an own subsection will
-                                    // be created with parameters
-                                    // declared for that particular
-                                    // output format. (The actual
-                                    // value of the template
-                                    // parameter in the call,
-                                    // <code>@<1@></code> above, does
-                                    // not matter here: the function
-                                    // does the same work independent
-                                    // of the dimension, but happens
-                                    // to be in a
-                                    // template-parameter-dependent
-                                    // class.)  To find out what
-                                    // parameters there are for which
-                                    // output format, you can either
-                                    // consult the documentation of
-                                    // the DataOutBase class, or
-                                    // simply run this program
-                                    // without a parameter file
-                                    // present. It will then create a
-                                    // file with all declared
-                                    // parameters set to their
-                                    // default values, which can
-                                    // conveniently serve as a
-                                    // starting point for setting the
-                                    // parameters to the values you
-                                    // desire.
-    DataOutInterface<1>::declare_parameters (prm);
+                                    // Last but not least we would like
+                                    // to be able to change some
+                                    // properties of the output, like
+                                    // filename and format, through
+                                    // entries in the configuration
+                                    // file, which is the purpose of
+                                    // the last subsection:
+    prm.enter_subsection ("Output parameters");
+    {
+      prm.declare_entry("Output file", "solution",
+                       Patterns::Anything(),
+                       "Name of the output file (without extension)");
+
+                                      // Since different output formats
+                                      // may require different
+                                      // parameters for generating
+                                      // output (like for example,
+                                      // postscript output needs
+                                      // viewpoint angles, line widths,
+                                      // colors etc), it would be
+                                      // cumbersome if we had to
+                                      // declare all these parameters
+                                      // by hand for every possible
+                                      // output format supported in the
+                                      // library. Instead, each output
+                                      // format has a
+                                      // <code>FormatFlags::declare_parameters</code>
+                                      // function, which declares all
+                                      // the parameters specific to
+                                      // that format in an own
+                                      // subsection. The following call
+                                      // of
+                                      // DataOutInterface<1>::declare_parameters
+                                      // executes
+                                      // <code>declare_parameters</code>
+                                      // for all available output
+                                      // formats, so that for each
+                                      // format an own subsection will
+                                      // be created with parameters
+                                      // declared for that particular
+                                      // output format. (The actual
+                                      // value of the template
+                                      // parameter in the call,
+                                      // <code>@<1@></code> above, does
+                                      // not matter here: the function
+                                      // does the same work independent
+                                      // of the dimension, but happens
+                                      // to be in a
+                                      // template-parameter-dependent
+                                      // class.)  To find out what
+                                      // parameters there are for which
+                                      // output format, you can either
+                                      // consult the documentation of
+                                      // the DataOutBase class, or
+                                      // simply run this program
+                                      // without a parameter file
+                                      // present. It will then create a
+                                      // file with all declared
+                                      // parameters set to their
+                                      // default values, which can
+                                      // conveniently serve as a
+                                      // starting point for setting the
+                                      // parameters to the values you
+                                      // desire.
+      DataOutInterface<1>::declare_parameters (prm);
+    }
+    prm.leave_subsection ();
   }
-  prm.leave_subsection ();
-}
-
-                                // @sect4{<code>ParameterReader::read_parameters</code>}
-
-                                // This is the main function in the
-                                // ParameterReader class.  It gets
-                                // called from outside, first
-                                // declares all the parameters, and
-                                // then reads them from the input
-                                // file whose filename is provided by
-                                // the caller. After the call to this
-                                // function is complete, the
-                                // <code>prm</code> object can be
-                                // used to retrieve the values of the
-                                // parameters read in from the file:
-void ParameterReader::read_parameters (const std::string parameter_file)
-{
-  declare_parameters();
 
-  prm.read_input (parameter_file);
-}
+                                  // @sect4{<code>ParameterReader::read_parameters</code>}
+
+                                  // This is the main function in the
+                                  // ParameterReader class.  It gets
+                                  // called from outside, first
+                                  // declares all the parameters, and
+                                  // then reads them from the input
+                                  // file whose filename is provided by
+                                  // the caller. After the call to this
+                                  // function is complete, the
+                                  // <code>prm</code> object can be
+                                  // used to retrieve the values of the
+                                  // parameters read in from the file:
+  void ParameterReader::read_parameters (const std::string parameter_file)
+  {
+    declare_parameters();
 
+    prm.read_input (parameter_file);
+  }
 
 
-                                // @sect3{The <code>ComputeIntensity</code> class}
-
-                                // As mentioned in the introduction,
-                                // the quantitiy that we are really
-                                // after is the spatial distribution
-                                // of the intensity of the ultrasound
-                                // wave, which corresponds to
-                                // $|u|=\sqrt{v^2+w^2}$. Now we could
-                                // just be content with having $v$
-                                // and $w$ in our output, and use a
-                                // suitable visualization or
-                                // postprocessing tool to derive
-                                // $|u|$ from the solution we
-                                // computed. However, there is also a
-                                // way to output data derived from
-                                // the solution in deal.II, and we
-                                // are going to make use of this
-                                // mechanism here.
-
-                                // So far we have always used the
-                                // DataOut::add_data_vector function
-                                // to add vectors containing output
-                                // data to a DataOut object.  There
-                                // is a special version of this
-                                // function that in addition to the
-                                // data vector has an additional
-                                // argument of type
-                                // DataPostprocessor. What happens
-                                // when this function is used for
-                                // output is that at each point where
-                                // output data is to be generated,
-                                // the compute_derived_quantities
-                                // function of the specified
-                                // DataPostprocessor object is
-                                // invoked to compute the output
-                                // quantities from the values, the
-                                // gradients and the second
-                                // derivatives of the finite element
-                                // function represented by the data
-                                // vector (in the case of face
-                                // related data, normal vectors are
-                                // available as well). Hence, this
-                                // allows us to output any quantity
-                                // that can locally be derived from
-                                // the values of the solution and its
-                                // derivatives.  Of course, the
-                                // ultrasound intensity $|u|$ is such
-                                // a quantity and its computation
-                                // doesn't even involve any
-                                // derivatives of $v$ or $w$.
-
-                                // In practice, the DataPostprocessor
-                                // class only provides an interface
-                                // to this functionality, and we need
-                                // to derive our own class from it in
-                                // order to implement the functions
-                                // specified by the interface.  This
-                                // is what the
-                                // <code>ComputeIntensity</code>
-                                // class is about.  Notice that all
-                                // its member functions are
-                                // implementations of virtual
-                                // functions defined by the interface
-                                // class DataPostprocessor.
-template <int dim>
-class ComputeIntensity : public DataPostprocessor<dim>
-{
-  public:
-
-    virtual
-    void
-    compute_derived_quantities_vector (const std::vector< Vector< double > > &uh, 
-                                      const std::vector< std::vector< Tensor< 1, dim > > > &duh,
-                                      const std::vector< std::vector< Tensor< 2, dim > > > &dduh,
-                                      const std::vector< Point< dim > > &normals,
-                                      const std::vector<Point<dim> > &evaluation_points,
-                                      std::vector< Vector< double > > &computed_quantities) const;
-
-    virtual std::vector<std::string> get_names () const;
-    virtual UpdateFlags              get_needed_update_flags () const;
-    virtual unsigned int             n_output_variables () const;
-};
-
-                                // The <code>get_names</code>
-                                // function returns a vector of
-                                // strings representing the names we
-                                // assign to the individual
-                                // quantities that our postprocessor
-                                // outputs. In our case, the
-                                // postprocessor has only $|u|$ as an
-                                // output, so we return a vector with
-                                // a single component named
-                                // "Intensity":
-template <int dim>
-std::vector<std::string>
-ComputeIntensity<dim>::get_names() const
-{
-  return std::vector<std::string> (1, "Intensity");
-}
 
-                                // The next function returns a set of
-                                // flags that indicate which data is
-                                // needed by the postprocessor in
-                                // order to compute the output
-                                // quantities.  This can be any
-                                // subset of update_values,
-                                // update_gradients and
-                                // update_hessians (and, in the case
-                                // of face data, also
-                                // update_normal_vectors), which are
-                                // documented in UpdateFlags.  Of
-                                // course, computation of the
-                                // derivatives requires additional
-                                // resources, so only the flags for
-                                // data that is really needed should
-                                // be given here, just as we do when
-                                // we use FEValues objects.  In our
-                                // case, only the function values of
-                                // $v$ and $w$ are needed to compute
-                                // $|u|$, so we're good with the
-                                // update_values flag.
-template <int dim>
-UpdateFlags
-ComputeIntensity<dim>::get_needed_update_flags () const
-{
-  return update_values;
-}
+                                  // @sect3{The <code>ComputeIntensity</code> class}
+
+                                  // As mentioned in the introduction,
+                                  // the quantitiy that we are really
+                                  // after is the spatial distribution
+                                  // of the intensity of the ultrasound
+                                  // wave, which corresponds to
+                                  // $|u|=\sqrt{v^2+w^2}$. Now we could
+                                  // just be content with having $v$
+                                  // and $w$ in our output, and use a
+                                  // suitable visualization or
+                                  // postprocessing tool to derive
+                                  // $|u|$ from the solution we
+                                  // computed. However, there is also a
+                                  // way to output data derived from
+                                  // the solution in deal.II, and we
+                                  // are going to make use of this
+                                  // mechanism here.
+
+                                  // So far we have always used the
+                                  // DataOut::add_data_vector function
+                                  // to add vectors containing output
+                                  // data to a DataOut object.  There
+                                  // is a special version of this
+                                  // function that in addition to the
+                                  // data vector has an additional
+                                  // argument of type
+                                  // DataPostprocessor. What happens
+                                  // when this function is used for
+                                  // output is that at each point where
+                                  // output data is to be generated,
+                                  // the compute_derived_quantities
+                                  // function of the specified
+                                  // DataPostprocessor object is
+                                  // invoked to compute the output
+                                  // quantities from the values, the
+                                  // gradients and the second
+                                  // derivatives of the finite element
+                                  // function represented by the data
+                                  // vector (in the case of face
+                                  // related data, normal vectors are
+                                  // available as well). Hence, this
+                                  // allows us to output any quantity
+                                  // that can locally be derived from
+                                  // the values of the solution and its
+                                  // derivatives.  Of course, the
+                                  // ultrasound intensity $|u|$ is such
+                                  // a quantity and its computation
+                                  // doesn't even involve any
+                                  // derivatives of $v$ or $w$.
+
+                                  // In practice, the DataPostprocessor
+                                  // class only provides an interface
+                                  // to this functionality, and we need
+                                  // to derive our own class from it in
+                                  // order to implement the functions
+                                  // specified by the interface.  This
+                                  // is what the
+                                  // <code>ComputeIntensity</code>
+                                  // class is about.  Notice that all
+                                  // its member functions are
+                                  // implementations of virtual
+                                  // functions defined by the interface
+                                  // class DataPostprocessor.
+  template <int dim>
+  class ComputeIntensity : public DataPostprocessor<dim>
+  {
+    public:
+
+      virtual
+      void
+      compute_derived_quantities_vector (const std::vector< Vector< double > > &uh,
+                                        const std::vector< std::vector< Tensor< 1, dim > > > &duh,
+                                        const std::vector< std::vector< Tensor< 2, dim > > > &dduh,
+                                        const std::vector< Point< dim > > &normals,
+                                        const std::vector<Point<dim> > &evaluation_points,
+                                        std::vector< Vector< double > > &computed_quantities) const;
+
+      virtual std::vector<std::string> get_names () const;
+      virtual UpdateFlags              get_needed_update_flags () const;
+      virtual unsigned int             n_output_variables () const;
+  };
+
+                                  // The <code>get_names</code>
+                                  // function returns a vector of
+                                  // strings representing the names we
+                                  // assign to the individual
+                                  // quantities that our postprocessor
+                                  // outputs. In our case, the
+                                  // postprocessor has only $|u|$ as an
+                                  // output, so we return a vector with
+                                  // a single component named
+                                  // "Intensity":
+  template <int dim>
+  std::vector<std::string>
+  ComputeIntensity<dim>::get_names() const
+  {
+    return std::vector<std::string> (1, "Intensity");
+  }
 
-                                // To allow the caller to find out
-                                // how many derived quantities are
-                                // returned by the postprocessor, the
-                                // <code>n_output_variables</code>
-                                // function is used. Since we compute
-                                // only $|u|$, the correct value to
-                                // return in our case is just 1:
-template <int dim>
-unsigned int
-ComputeIntensity<dim>::n_output_variables () const
-{
-  return 1;
-}
+                                  // The next function returns a set of
+                                  // flags that indicate which data is
+                                  // needed by the postprocessor in
+                                  // order to compute the output
+                                  // quantities.  This can be any
+                                  // subset of update_values,
+                                  // update_gradients and
+                                  // update_hessians (and, in the case
+                                  // of face data, also
+                                  // update_normal_vectors), which are
+                                  // documented in UpdateFlags.  Of
+                                  // course, computation of the
+                                  // derivatives requires additional
+                                  // resources, so only the flags for
+                                  // data that is really needed should
+                                  // be given here, just as we do when
+                                  // we use FEValues objects.  In our
+                                  // case, only the function values of
+                                  // $v$ and $w$ are needed to compute
+                                  // $|u|$, so we're good with the
+                                  // update_values flag.
+  template <int dim>
+  UpdateFlags
+  ComputeIntensity<dim>::get_needed_update_flags () const
+  {
+    return update_values;
+  }
 
+                                  // To allow the caller to find out
+                                  // how many derived quantities are
+                                  // returned by the postprocessor, the
+                                  // <code>n_output_variables</code>
+                                  // function is used. Since we compute
+                                  // only $|u|$, the correct value to
+                                  // return in our case is just 1:
+  template <int dim>
+  unsigned int
+  ComputeIntensity<dim>::n_output_variables () const
+  {
+    return 1;
+  }
 
-                                // The actual prostprocessing happens
-                                // in the following function.  Its
-                                // inputs are a vector representing
-                                // values of the function (which is
-                                // here vector-valued) representing
-                                // the data vector given to
-                                // DataOut::add_data_vector,
-                                // evaluated at all quadrature points
-                                // where we generate output, and some
-                                // tensor objects representing
-                                // derivatives (that we don't use
-                                // here since $|u|$ is computed from
-                                // just $v$ and $w$, and for which we
-                                // assign no name to the
-                                // corresponding function argument).
-                                // The derived quantities are
-                                // returned in the
-                                // <code>computed_quantities</code>
-                                // vector.  Remember that this
-                                // function may only use data for
-                                // which the respective update flag
-                                // is specified by
-                                // <code>get_needed_update_flags</code>. For
-                                // example, we may not use the
-                                // derivatives here, since our
-                                // implementation of
-                                // <code>get_needed_update_flags</code>
-                                // requests that only function values
-                                // are provided.
-template <int dim>
-void
-ComputeIntensity<dim>::compute_derived_quantities_vector (
-  const std::vector< Vector< double > >                 & uh,
-  const std::vector< std::vector< Tensor< 1, dim > > >  & /*duh*/,
-  const std::vector< std::vector< Tensor< 2, dim > > >  & /*dduh*/,
-  const std::vector< Point< dim > >                     & /*normals*/,
-  const std::vector<Point<dim> >                        & /*evaluation_points*/,
-  std::vector< Vector< double > >                       & computed_quantities
-) const
-{
-  Assert(computed_quantities.size() == uh.size(), 
-         ExcDimensionMismatch (computed_quantities.size(), uh.size()));
-
-                                  // The computation itself is
-                                  // straightforward: We iterate over
-                                  // each entry in the output vector
-                                  // and compute $|u|$ from the
-                                  // corresponding values of $v$ and
-                                  // $w$:
-  for (unsigned int i=0; i<computed_quantities.size(); i++)
-    {
-      Assert(computed_quantities[i].size() == 1, 
-            ExcDimensionMismatch (computed_quantities[i].size(), 1));
-      Assert(uh[i].size() == 2, ExcDimensionMismatch (uh[i].size(), 2));
 
-      computed_quantities[i](0) = sqrt(uh[i](0)*uh[i](0) + uh[i](1)*uh[i](1));
-    }
-}
+                                  // The actual prostprocessing happens
+                                  // in the following function.  Its
+                                  // inputs are a vector representing
+                                  // values of the function (which is
+                                  // here vector-valued) representing
+                                  // the data vector given to
+                                  // DataOut::add_data_vector,
+                                  // evaluated at all quadrature points
+                                  // where we generate output, and some
+                                  // tensor objects representing
+                                  // derivatives (that we don't use
+                                  // here since $|u|$ is computed from
+                                  // just $v$ and $w$, and for which we
+                                  // assign no name to the
+                                  // corresponding function argument).
+                                  // The derived quantities are
+                                  // returned in the
+                                  // <code>computed_quantities</code>
+                                  // vector.  Remember that this
+                                  // function may only use data for
+                                  // which the respective update flag
+                                  // is specified by
+                                  // <code>get_needed_update_flags</code>. For
+                                  // example, we may not use the
+                                  // derivatives here, since our
+                                  // implementation of
+                                  // <code>get_needed_update_flags</code>
+                                  // requests that only function values
+                                  // are provided.
+  template <int dim>
+  void
+  ComputeIntensity<dim>::compute_derived_quantities_vector (
+    const std::vector< Vector< double > >                 & uh,
+    const std::vector< std::vector< Tensor< 1, dim > > >  & /*duh*/,
+    const std::vector< std::vector< Tensor< 2, dim > > >  & /*dduh*/,
+    const std::vector< Point< dim > >                     & /*normals*/,
+    const std::vector<Point<dim> >                        & /*evaluation_points*/,
+    std::vector< Vector< double > >                       & computed_quantities
+  ) const
+  {
+    Assert(computed_quantities.size() == uh.size(),
+          ExcDimensionMismatch (computed_quantities.size(), uh.size()));
+
+                                    // The computation itself is
+                                    // straightforward: We iterate over
+                                    // each entry in the output vector
+                                    // and compute $|u|$ from the
+                                    // corresponding values of $v$ and
+                                    // $w$:
+    for (unsigned int i=0; i<computed_quantities.size(); i++)
+      {
+       Assert(computed_quantities[i].size() == 1,
+              ExcDimensionMismatch (computed_quantities[i].size(), 1));
+       Assert(uh[i].size() == 2, ExcDimensionMismatch (uh[i].size(), 2));
+
+       computed_quantities[i](0) = sqrt(uh[i](0)*uh[i](0) + uh[i](1)*uh[i](1));
+      }
+  }
 
 
-                                // @sect3{The <code>UltrasoundProblem</code> class}
-
-                                // Finally here is the main class of
-                                // this program.  It's member
-                                // functions are very similar to the
-                                // previous examples, in particular
-                                // step-4, and the list of member
-                                // variables does not contain any
-                                // major surprises either.  The
-                                // ParameterHandler object that is
-                                // passed to the constructor is
-                                // stored as a reference to allow
-                                // easy access to the parameters from
-                                // all functions of the class.  Since
-                                // we are working with vector valued
-                                // finite elements, the FE object we
-                                // are using is of type FESystem.
-template <int dim>
-class UltrasoundProblem 
-{
-  public:
-    UltrasoundProblem (ParameterHandler &);
-    ~UltrasoundProblem ();
-    void run ();
-
-  private:
-    void make_grid ();
-    void setup_system ();
-    void assemble_system ();
-    void solve ();
-    void output_results () const;
-
-    ParameterHandler      &prm; 
-
-    Triangulation<dim>     triangulation;
-    DoFHandler<dim>        dof_handler;
-    FESystem<dim>          fe;
-
-    SparsityPattern        sparsity_pattern;
-    SparseMatrix<double>   system_matrix;      
-    Vector<double>         solution, system_rhs;
-};
-
-
-
-                                // The constructor takes the
-                                // ParameterHandler object and stores
-                                // it in a reference. It also
-                                // initializes the DoF-Handler and
-                                // the finite element system, which
-                                // consists of two copies of the
-                                // scalar Q1 field, one for $v$ and
-                                // one for $w$:
-template <int dim>
-UltrasoundProblem<dim>::UltrasoundProblem (ParameterHandler&  param) 
-               :
-               prm(param),
-               dof_handler(triangulation),
-               fe(FE_Q<dim>(1), 2)
-{}
-
-
-template <int dim>
-UltrasoundProblem<dim>::~UltrasoundProblem () 
-{
-  dof_handler.clear();
-}
+                                  // @sect3{The <code>UltrasoundProblem</code> class}
+
+                                  // Finally here is the main class of
+                                  // this program.  It's member
+                                  // functions are very similar to the
+                                  // previous examples, in particular
+                                  // step-4, and the list of member
+                                  // variables does not contain any
+                                  // major surprises either.  The
+                                  // ParameterHandler object that is
+                                  // passed to the constructor is
+                                  // stored as a reference to allow
+                                  // easy access to the parameters from
+                                  // all functions of the class.  Since
+                                  // we are working with vector valued
+                                  // finite elements, the FE object we
+                                  // are using is of type FESystem.
+  template <int dim>
+  class UltrasoundProblem
+  {
+    public:
+      UltrasoundProblem (ParameterHandler &);
+      ~UltrasoundProblem ();
+      void run ();
+
+    private:
+      void make_grid ();
+      void setup_system ();
+      void assemble_system ();
+      void solve ();
+      void output_results () const;
+
+      ParameterHandler      &prm;
+
+      Triangulation<dim>     triangulation;
+      DoFHandler<dim>        dof_handler;
+      FESystem<dim>          fe;
+
+      SparsityPattern        sparsity_pattern;
+      SparseMatrix<double>   system_matrix;
+      Vector<double>         solution, system_rhs;
+  };
+
+
+
+                                  // The constructor takes the
+                                  // ParameterHandler object and stores
+                                  // it in a reference. It also
+                                  // initializes the DoF-Handler and
+                                  // the finite element system, which
+                                  // consists of two copies of the
+                                  // scalar Q1 field, one for $v$ and
+                                  // one for $w$:
+  template <int dim>
+  UltrasoundProblem<dim>::UltrasoundProblem (ParameterHandler&  param)
+                 :
+                 prm(param),
+                 dof_handler(triangulation),
+                 fe(FE_Q<dim>(1), 2)
+  {}
+
+
+  template <int dim>
+  UltrasoundProblem<dim>::~UltrasoundProblem ()
+  {
+    dof_handler.clear();
+  }
 
-                                // @sect4{<code>UltrasoundProblem::make_grid</code>}
-
-                                // Here we setup the grid for our
-                                // domain.  As mentioned in the
-                                // exposition, the geometry is just a
-                                // unit square (in 2d) with the part
-                                // of the boundary that represents
-                                // the transducer lens replaced by a
-                                // sector of a circle.
-template <int dim>
-void UltrasoundProblem<dim>::make_grid ()
-{
-                                  // First we generate some logging
-                                  // output and start a timer so we
-                                  // can compute execution time when
-                                  // this function is done:
-  deallog << "Generating grid... ";
-  Timer timer;
-  timer.start ();
-
-                                  // Then we query the values for the
-                                  // focal distance of the transducer
-                                  // lens and the number of mesh
-                                  // refinement steps from our
-                                  // ParameterHandler object:
-  prm.enter_subsection ("Mesh & geometry parameters");
-
-  const double         focal_distance = prm.get_double("Focal distance");
-  const unsigned int   n_refinements  = prm.get_integer("Number of refinements");
-
-  prm.leave_subsection ();
-
-                                  // Next, two points are defined for
-                                  // position and focal point of the
-                                  // transducer lens, which is the
-                                  // center of the circle whose
-                                  // segment will form the transducer
-                                  // part of the boundary. We compute
-                                  // the radius of this circle in
-                                  // such a way that the segment fits
-                                  // in the interval [0.4,0.6] on the
-                                  // x-axis.  Notice that this is the
-                                  // only point in the program where
-                                  // things are slightly different in
-                                  // 2D and 3D.  Even though this
-                                  // tutorial only deals with the 2D
-                                  // case, the necessary additions to
-                                  // make this program functional in
-                                  // 3D are so minimal that we opt
-                                  // for including them:
-  const Point<dim>     transducer = (dim == 2) ? 
+                                  // @sect4{<code>UltrasoundProblem::make_grid</code>}
+
+                                  // Here we setup the grid for our
+                                  // domain.  As mentioned in the
+                                  // exposition, the geometry is just a
+                                  // unit square (in 2d) with the part
+                                  // of the boundary that represents
+                                  // the transducer lens replaced by a
+                                  // sector of a circle.
+  template <int dim>
+  void UltrasoundProblem<dim>::make_grid ()
+  {
+                                    // First we generate some logging
+                                    // output and start a timer so we
+                                    // can compute execution time when
+                                    // this function is done:
+    deallog << "Generating grid... ";
+    Timer timer;
+    timer.start ();
+
+                                    // Then we query the values for the
+                                    // focal distance of the transducer
+                                    // lens and the number of mesh
+                                    // refinement steps from our
+                                    // ParameterHandler object:
+    prm.enter_subsection ("Mesh & geometry parameters");
+
+    const double               focal_distance = prm.get_double("Focal distance");
+    const unsigned int n_refinements  = prm.get_integer("Number of refinements");
+
+    prm.leave_subsection ();
+
+                                    // Next, two points are defined for
+                                    // position and focal point of the
+                                    // transducer lens, which is the
+                                    // center of the circle whose
+                                    // segment will form the transducer
+                                    // part of the boundary. We compute
+                                    // the radius of this circle in
+                                    // such a way that the segment fits
+                                    // in the interval [0.4,0.6] on the
+                                    // x-axis.  Notice that this is the
+                                    // only point in the program where
+                                    // things are slightly different in
+                                    // 2D and 3D.  Even though this
+                                    // tutorial only deals with the 2D
+                                    // case, the necessary additions to
+                                    // make this program functional in
+                                    // 3D are so minimal that we opt
+                                    // for including them:
+    const Point<dim>   transducer = (dim == 2) ?
                                     Point<dim> (0.5, 0.0) :
-                                    Point<dim> (0.5, 0.5, 0.0), 
+                                    Point<dim> (0.5, 0.5, 0.0),
                       focal_point = (dim == 2) ?
                                     Point<dim> (0.5, focal_distance) :
                                     Point<dim> (0.5, 0.5, focal_distance);
 
-  const double radius = std::sqrt( (focal_point.distance(transducer) * 
-                                   focal_point.distance(transducer)) + 
-                                  ((dim==2) ? 0.01 : 0.02));
-
-
-                                  // As initial coarse grid we take a
-                                  // simple unit square with 5
-                                  // subdivisions in each
-                                  // direction. The number of
-                                  // subdivisions is chosen so that
-                                  // the line segment $[0.4,0.6]$
-                                  // that we want to designate as the
-                                  // transducer boundary is spanned
-                                  // by a single face. Then we step
-                                  // through all cells to find the
-                                  // faces where the transducer is to
-                                  // be located, which in fact is
-                                  // just the single edge from 0.4 to
-                                  // 0.6 on the x-axis. This is where
-                                  // we want the refinements to be
-                                  // made according to a circle
-                                  // shaped boundary, so we mark this
-                                  // edge with a different boundary
-                                  // indicator.
-  GridGenerator::subdivided_hyper_cube (triangulation, 5, 0, 1);
-
-  typename Triangulation<dim>::cell_iterator
-    cell = triangulation.begin (),
-    endc = triangulation.end();
-
-  for (; cell!=endc; ++cell)
-    for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-      if ( cell->face(face)->at_boundary() &&
-          ((cell->face(face)->center() - transducer).square() < 0.01) )
-
-        cell->face(face)->set_boundary_indicator (1);
-
-                                  // For the circle part of the
-                                  // transducer lens, a hyper-ball
-                                  // object is used (which, of course,
-                                  // in 2D just represents a circle),
-                                  // with radius and center as computed
-                                  // above. By marking this object as
-                                  // <code>static</code>, we ensure that
-                                  // it lives until the end of the
-                                  // program and thereby longer than the
-                                  // triangulation object we will
-                                  // associated with it. We then assign
-                                  // this boundary-object to the part of
-                                  // the boundary with boundary
-                                  // indicator 1:
-  static const HyperBallBoundary<dim> boundary(focal_point, radius);
-  triangulation.set_boundary(1, boundary);
-
-                                  // Now global refinement is
-                                  // executed. Cells near the
-                                  // transducer location will be
-                                  // automatically refined according
-                                  // to the circle shaped boundary of
-                                  // the transducer lens:
-  triangulation.refine_global (n_refinements);
-
-                                  // Lastly, we generate some more
-                                  // logging output. We stop the
-                                  // timer and query the number of
-                                  // CPU seconds elapsed since the
-                                  // beginning of the function:
-  timer.stop ();
-  deallog << "done (" 
-         << timer()
-         << "s)" 
-         << std::endl;
-
-  deallog << "  Number of active cells:  "
-         << triangulation.n_active_cells()
-         << std::endl;
-} 
-
-
-                                // @sect4{<code>UltrasoundProblem::setup_system</code>}
-                                //
-                                // Initialization of the system
-                                // matrix, sparsity patterns and
-                                // vectors are the same as in
-                                // previous examples and therefore do
-                                // not need further comment. As in
-                                // the previous function, we also
-                                // output the run time of what we do
-                                // here:
-template <int dim>
-void UltrasoundProblem<dim>::setup_system ()
-{
-  deallog << "Setting up system... ";
-  Timer timer;
-  timer.start();
+    const double radius = std::sqrt( (focal_point.distance(transducer) *
+                                     focal_point.distance(transducer)) +
+                                    ((dim==2) ? 0.01 : 0.02));
+
+
+                                    // As initial coarse grid we take a
+                                    // simple unit square with 5
+                                    // subdivisions in each
+                                    // direction. The number of
+                                    // subdivisions is chosen so that
+                                    // the line segment $[0.4,0.6]$
+                                    // that we want to designate as the
+                                    // transducer boundary is spanned
+                                    // by a single face. Then we step
+                                    // through all cells to find the
+                                    // faces where the transducer is to
+                                    // be located, which in fact is
+                                    // just the single edge from 0.4 to
+                                    // 0.6 on the x-axis. This is where
+                                    // we want the refinements to be
+                                    // made according to a circle
+                                    // shaped boundary, so we mark this
+                                    // edge with a different boundary
+                                    // indicator.
+    GridGenerator::subdivided_hyper_cube (triangulation, 5, 0, 1);
+
+    typename Triangulation<dim>::cell_iterator
+      cell = triangulation.begin (),
+      endc = triangulation.end();
+
+    for (; cell!=endc; ++cell)
+      for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+       if ( cell->face(face)->at_boundary() &&
+            ((cell->face(face)->center() - transducer).square() < 0.01) )
+
+         cell->face(face)->set_boundary_indicator (1);
+
+                                    // For the circle part of the
+                                    // transducer lens, a hyper-ball
+                                    // object is used (which, of course,
+                                    // in 2D just represents a circle),
+                                    // with radius and center as computed
+                                    // above. By marking this object as
+                                    // <code>static</code>, we ensure that
+                                    // it lives until the end of the
+                                    // program and thereby longer than the
+                                    // triangulation object we will
+                                    // associated with it. We then assign
+                                    // this boundary-object to the part of
+                                    // the boundary with boundary
+                                    // indicator 1:
+    static const HyperBallBoundary<dim> boundary(focal_point, radius);
+    triangulation.set_boundary(1, boundary);
+
+                                    // Now global refinement is
+                                    // executed. Cells near the
+                                    // transducer location will be
+                                    // automatically refined according
+                                    // to the circle shaped boundary of
+                                    // the transducer lens:
+    triangulation.refine_global (n_refinements);
+
+                                    // Lastly, we generate some more
+                                    // logging output. We stop the
+                                    // timer and query the number of
+                                    // CPU seconds elapsed since the
+                                    // beginning of the function:
+    timer.stop ();
+    deallog << "done ("
+           << timer()
+           << "s)"
+           << std::endl;
+
+    deallog << "  Number of active cells:  "
+           << triangulation.n_active_cells()
+           << std::endl;
+  }
 
-  dof_handler.distribute_dofs (fe);
 
-  sparsity_pattern.reinit (dof_handler.n_dofs(),
-                          dof_handler.n_dofs(),
-                          dof_handler.max_couplings_between_dofs());
+                                  // @sect4{<code>UltrasoundProblem::setup_system</code>}
+                                  //
+                                  // Initialization of the system
+                                  // matrix, sparsity patterns and
+                                  // vectors are the same as in
+                                  // previous examples and therefore do
+                                  // not need further comment. As in
+                                  // the previous function, we also
+                                  // output the run time of what we do
+                                  // here:
+  template <int dim>
+  void UltrasoundProblem<dim>::setup_system ()
+  {
+    deallog << "Setting up system... ";
+    Timer timer;
+    timer.start();
 
-  DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-  sparsity_pattern.compress();
+    dof_handler.distribute_dofs (fe);
 
-  system_matrix.reinit (sparsity_pattern);
-  system_rhs.reinit (dof_handler.n_dofs());
-  solution.reinit (dof_handler.n_dofs());
+    sparsity_pattern.reinit (dof_handler.n_dofs(),
+                            dof_handler.n_dofs(),
+                            dof_handler.max_couplings_between_dofs());
 
-  timer.stop ();
-  deallog << "done (" 
-         << timer()
-         << "s)" 
-         << std::endl;
+    DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
+    sparsity_pattern.compress();
 
-  deallog << "  Number of degrees of freedom: "
-         << dof_handler.n_dofs()
-         << std::endl;
-}
+    system_matrix.reinit (sparsity_pattern);
+    system_rhs.reinit (dof_handler.n_dofs());
+    solution.reinit (dof_handler.n_dofs());
 
+    timer.stop ();
+    deallog << "done ("
+           << timer()
+           << "s)"
+           << std::endl;
 
-                                // @sect4{<code>UltrasoundProblem::assemble_system</code>}
-                                // As before, this function takes
-                                // care of assembling the system
-                                // matrix and right hand side vector:
-template <int dim>
-void UltrasoundProblem<dim>::assemble_system () 
-{
-  deallog << "Assembling system matrix... ";
-  Timer timer;
-  timer.start ();
-
-                                  // First we query wavespeed and
-                                  // frequency from the
-                                  // ParameterHandler object and
-                                  // store them in local variables,
-                                  // as they will be used frequently
-                                  // throughout this function.
-
-  prm.enter_subsection ("Physical constants");
-
-  const double omega = prm.get_double("omega"),
-              c     = prm.get_double("c");
-
-  prm.leave_subsection ();
-
-                                  // As usual, for computing
-                                  // integrals ordinary Gauss
-                                  // quadrature rule is used. Since
-                                  // our bilinear form involves
-                                  // boundary integrals on
-                                  // $\Gamma_2$, we also need a
-                                  // quadrature rule for surface
-                                  // integration on the faces, which
-                                  // are $dim-1$ dimensional:
-  QGauss<dim>    quadrature_formula(2);
-  QGauss<dim-1>  face_quadrature_formula(2);
-
-  const unsigned int n_q_points              = quadrature_formula.size(),
-                    n_face_q_points  = face_quadrature_formula.size(),
-                    dofs_per_cell    = fe.dofs_per_cell;
-
-                                  // The FEValues objects will
-                                  // evaluate the shape functions for
-                                  // us.  For the part of the
-                                  // bilinear form that involves
-                                  // integration on $\Omega$, we'll
-                                  // need the values and gradients of
-                                  // the shape functions, and of
-                                  // course the quadrature weights.
-                                  // For the terms involving the
-                                  // boundary integrals, only shape
-                                  // function values and the
-                                  // quadrature weights are
-                                  // necessary.
-  FEValues<dim>  fe_values (fe, quadrature_formula, 
-                           update_values | update_gradients |
-                           update_JxW_values);
-
-  FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula, 
-                                   update_values | update_JxW_values);
-
-                                  // As usual, the system matrix is
-                                  // assembled cell by cell, and we
-                                  // need a matrix for storing the
-                                  // local cell contributions as well
-                                  // as an index vector to transfer
-                                  // the cell contributions to the
-                                  // appropriate location in the
-                                  // global system matrix after.
-  FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
-
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-
-  for (; cell!=endc; ++cell)
-    {
+    deallog << "  Number of degrees of freedom: "
+           << dof_handler.n_dofs()
+           << std::endl;
+  }
 
-                                      // On each cell, we first need
-                                      // to reset the local
-                                      // contribution matrix and
-                                      // request the FEValues object
-                                      // to compute the shape
-                                      // functions for the current
-                                      // cell:
-      cell_matrix = 0;
-      fe_values.reinit (cell);
-
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         for (unsigned int j=0; j<dofs_per_cell; ++j)
-           {
 
-                                              // At this point, it is
-                                              // important to keep in
-                                              // mind that we are
-                                              // dealing with a
-                                              // finite element
-                                              // system with two
-                                              // components. Due to
-                                              // the way we
-                                              // constructed this
-                                              // FESystem, namely as
-                                              // the cartesian
-                                              // product of two
-                                              // scalar finite
-                                              // element fields, each
-                                              // shape function has
-                                              // only a single
-                                              // nonzero component
-                                              // (they are, in
-                                              // deal.II lingo, @ref
-                                              // GlossPrimitive
-                                              // "primitive").
-                                              // Hence, each shape
-                                              // function can be
-                                              // viewed as one of the
-                                              // $\phi$'s or $\psi$'s
-                                              // from the
-                                              // introduction, and
-                                              // similarly the
-                                              // corresponding
-                                              // degrees of freedom
-                                              // can be attributed to
-                                              // either $\alpha$ or
-                                              // $\beta$.  As we
-                                              // iterate through all
-                                              // the degrees of
-                                              // freedom on the
-                                              // current cell
-                                              // however, they do not
-                                              // come in any
-                                              // particular order,
-                                              // and so we cannot
-                                              // decide right away
-                                              // whether the DoFs
-                                              // with index $i$ and
-                                              // $j$ belong to the
-                                              // real or imaginary
-                                              // part of our
-                                              // solution.  On the
-                                              // other hand, if you
-                                              // look at the form of
-                                              // the system matrix in
-                                              // the introduction,
-                                              // this distinction is
-                                              // crucial since it
-                                              // will determine to
-                                              // which block in the
-                                              // system matrix the
-                                              // contribution of the
-                                              // current pair of DoFs
-                                              // will go and hence
-                                              // which quantity we
-                                              // need to compute from
-                                              // the given two shape
-                                              // functions.
-                                              // Fortunately, the
-                                              // FESystem object can
-                                              // provide us with this
-                                              // information, namely
-                                              // it has a function
-                                              // FESystem::system_to_component_index,
-                                              // that for each local
-                                              // DoF index returns a
-                                              // pair of integers of
-                                              // which the first
-                                              // indicates to which
-                                              // component of the
-                                              // system the DoF
-                                              // belongs. The second
-                                              // integer of the pair
-                                              // indicates which
-                                              // index the DoF has in
-                                              // the scalar base
-                                              // finite element
-                                              // field, but this
-                                              // information is not
-                                              // relevant here. If
-                                              // you want to know
-                                              // more about this
-                                              // function and the
-                                              // underlying scheme
-                                              // behind primitive
-                                              // vector valued
-                                              // elements, take a
-                                              // look at step-8 or
-                                              // the @ref
-                                              // vector_valued
-                                              // module, where these
-                                              // topics are explained
-                                              // in depth.
-             if (fe.system_to_component_index(i).first == 
-                 fe.system_to_component_index(j).first)
-               {
-
-                                                  // If both DoFs $i$
-                                                  // and $j$ belong
-                                                  // to same
-                                                  // component,
-                                                  // i.e. their shape
-                                                  // functions are
-                                                  // both $\phi$'s or
-                                                  // both $\psi$'s,
-                                                  // the contribution
-                                                  // will end up in
-                                                  // one of the
-                                                  // diagonal blocks
-                                                  // in our system
-                                                  // matrix, and
-                                                  // since the
-                                                  // corresponding
-                                                  // entries are
-                                                  // computed by the
-                                                  // same formula, we
-                                                  // do not bother if
-                                                  // they actually
-                                                  // are $\phi$ or
-                                                  // $\psi$ shape
-                                                  // functions. We
-                                                  // can simply
-                                                  // compute the
-                                                  // entry by
-                                                  // iterating over
-                                                  // all quadrature
-                                                  // points and
-                                                  // adding up their
-                                                  // contributions,
-                                                  // where values and
-                                                  // gradients of the
-                                                  // shape functions
-                                                  // are supplied by
-                                                  // our FEValues
-                                                  // object.
-
-                 for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-                   cell_matrix(i,j) += (((fe_values.shape_value(i,q_point) *
-                                          fe_values.shape_value(j,q_point)) *
-                                         (- omega * omega)
-                                         +
-                                         (fe_values.shape_grad(i,q_point) *
-                                          fe_values.shape_grad(j,q_point)) *
-                                         c * c) *
-                                        fe_values.JxW(q_point));
-
-                                                  // You might think
-                                                  // that we would
-                                                  // have to specify
-                                                  // which component
-                                                  // of the shape
-                                                  // function we'd
-                                                  // like to evaluate
-                                                  // when requesting
-                                                  // shape function
-                                                  // values or
-                                                  // gradients from
-                                                  // the FEValues
-                                                  // object. However,
-                                                  // as the shape
-                                                  // functions are
-                                                  // primitive, they
-                                                  // have only one
-                                                  // nonzero
-                                                  // component, and
-                                                  // the FEValues
-                                                  // class is smart
-                                                  // enough to figure
-                                                  // out that we are
-                                                  // definitely
-                                                  // interested in
-                                                  // this one nonzero
-                                                  // component.
-               }
-           }
-       }
-
-
-                                      // We also have to add contributions
-                                      // due to boundary terms. To this end,
-                                      // we loop over all faces of the
-                                      // current cell and see if first it is
-                                      // at the boundary, and second has the
-                                      // correct boundary indicator
-                                      // associated with $\Gamma_2$, the
-                                      // part of the boundary where we have
-                                      // absorbing boundary conditions:
-      for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-       if (cell->face(face)->at_boundary() &&
-           (cell->face(face)->boundary_indicator() == 0) )
+                                  // @sect4{<code>UltrasoundProblem::assemble_system</code>}
+                                  // As before, this function takes
+                                  // care of assembling the system
+                                  // matrix and right hand side vector:
+  template <int dim>
+  void UltrasoundProblem<dim>::assemble_system ()
+  {
+    deallog << "Assembling system matrix... ";
+    Timer timer;
+    timer.start ();
+
+                                    // First we query wavespeed and
+                                    // frequency from the
+                                    // ParameterHandler object and
+                                    // store them in local variables,
+                                    // as they will be used frequently
+                                    // throughout this function.
+
+    prm.enter_subsection ("Physical constants");
+
+    const double omega = prm.get_double("omega"),
+                c     = prm.get_double("c");
+
+    prm.leave_subsection ();
+
+                                    // As usual, for computing
+                                    // integrals ordinary Gauss
+                                    // quadrature rule is used. Since
+                                    // our bilinear form involves
+                                    // boundary integrals on
+                                    // $\Gamma_2$, we also need a
+                                    // quadrature rule for surface
+                                    // integration on the faces, which
+                                    // are $dim-1$ dimensional:
+    QGauss<dim>    quadrature_formula(2);
+    QGauss<dim-1>  face_quadrature_formula(2);
+
+    const unsigned int n_q_points            = quadrature_formula.size(),
+                            n_face_q_points  = face_quadrature_formula.size(),
+                            dofs_per_cell    = fe.dofs_per_cell;
+
+                                    // The FEValues objects will
+                                    // evaluate the shape functions for
+                                    // us.  For the part of the
+                                    // bilinear form that involves
+                                    // integration on $\Omega$, we'll
+                                    // need the values and gradients of
+                                    // the shape functions, and of
+                                    // course the quadrature weights.
+                                    // For the terms involving the
+                                    // boundary integrals, only shape
+                                    // function values and the
+                                    // quadrature weights are
+                                    // necessary.
+    FEValues<dim>  fe_values (fe, quadrature_formula,
+                             update_values | update_gradients |
+                             update_JxW_values);
+
+    FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula,
+                                     update_values | update_JxW_values);
+
+                                    // As usual, the system matrix is
+                                    // assembled cell by cell, and we
+                                    // need a matrix for storing the
+                                    // local cell contributions as well
+                                    // as an index vector to transfer
+                                    // the cell contributions to the
+                                    // appropriate location in the
+                                    // global system matrix after.
+    FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+
+    for (; cell!=endc; ++cell)
+      {
+
+                                        // On each cell, we first need
+                                        // to reset the local
+                                        // contribution matrix and
+                                        // request the FEValues object
+                                        // to compute the shape
+                                        // functions for the current
+                                        // cell:
+       cell_matrix = 0;
+       fe_values.reinit (cell);
+
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
          {
+           for (unsigned int j=0; j<dofs_per_cell; ++j)
+             {
+
+                                                // At this point, it is
+                                                // important to keep in
+                                                // mind that we are
+                                                // dealing with a
+                                                // finite element
+                                                // system with two
+                                                // components. Due to
+                                                // the way we
+                                                // constructed this
+                                                // FESystem, namely as
+                                                // the cartesian
+                                                // product of two
+                                                // scalar finite
+                                                // element fields, each
+                                                // shape function has
+                                                // only a single
+                                                // nonzero component
+                                                // (they are, in
+                                                // deal.II lingo, @ref
+                                                // GlossPrimitive
+                                                // "primitive").
+                                                // Hence, each shape
+                                                // function can be
+                                                // viewed as one of the
+                                                // $\phi$'s or $\psi$'s
+                                                // from the
+                                                // introduction, and
+                                                // similarly the
+                                                // corresponding
+                                                // degrees of freedom
+                                                // can be attributed to
+                                                // either $\alpha$ or
+                                                // $\beta$.  As we
+                                                // iterate through all
+                                                // the degrees of
+                                                // freedom on the
+                                                // current cell
+                                                // however, they do not
+                                                // come in any
+                                                // particular order,
+                                                // and so we cannot
+                                                // decide right away
+                                                // whether the DoFs
+                                                // with index $i$ and
+                                                // $j$ belong to the
+                                                // real or imaginary
+                                                // part of our
+                                                // solution.  On the
+                                                // other hand, if you
+                                                // look at the form of
+                                                // the system matrix in
+                                                // the introduction,
+                                                // this distinction is
+                                                // crucial since it
+                                                // will determine to
+                                                // which block in the
+                                                // system matrix the
+                                                // contribution of the
+                                                // current pair of DoFs
+                                                // will go and hence
+                                                // which quantity we
+                                                // need to compute from
+                                                // the given two shape
+                                                // functions.
+                                                // Fortunately, the
+                                                // FESystem object can
+                                                // provide us with this
+                                                // information, namely
+                                                // it has a function
+                                                // FESystem::system_to_component_index,
+                                                // that for each local
+                                                // DoF index returns a
+                                                // pair of integers of
+                                                // which the first
+                                                // indicates to which
+                                                // component of the
+                                                // system the DoF
+                                                // belongs. The second
+                                                // integer of the pair
+                                                // indicates which
+                                                // index the DoF has in
+                                                // the scalar base
+                                                // finite element
+                                                // field, but this
+                                                // information is not
+                                                // relevant here. If
+                                                // you want to know
+                                                // more about this
+                                                // function and the
+                                                // underlying scheme
+                                                // behind primitive
+                                                // vector valued
+                                                // elements, take a
+                                                // look at step-8 or
+                                                // the @ref
+                                                // vector_valued
+                                                // module, where these
+                                                // topics are explained
+                                                // in depth.
+               if (fe.system_to_component_index(i).first ==
+                   fe.system_to_component_index(j).first)
+                 {
+
+                                                    // If both DoFs $i$
+                                                    // and $j$ belong
+                                                    // to same
+                                                    // component,
+                                                    // i.e. their shape
+                                                    // functions are
+                                                    // both $\phi$'s or
+                                                    // both $\psi$'s,
+                                                    // the contribution
+                                                    // will end up in
+                                                    // one of the
+                                                    // diagonal blocks
+                                                    // in our system
+                                                    // matrix, and
+                                                    // since the
+                                                    // corresponding
+                                                    // entries are
+                                                    // computed by the
+                                                    // same formula, we
+                                                    // do not bother if
+                                                    // they actually
+                                                    // are $\phi$ or
+                                                    // $\psi$ shape
+                                                    // functions. We
+                                                    // can simply
+                                                    // compute the
+                                                    // entry by
+                                                    // iterating over
+                                                    // all quadrature
+                                                    // points and
+                                                    // adding up their
+                                                    // contributions,
+                                                    // where values and
+                                                    // gradients of the
+                                                    // shape functions
+                                                    // are supplied by
+                                                    // our FEValues
+                                                    // object.
+
+                   for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+                     cell_matrix(i,j) += (((fe_values.shape_value(i,q_point) *
+                                            fe_values.shape_value(j,q_point)) *
+                                           (- omega * omega)
+                                           +
+                                           (fe_values.shape_grad(i,q_point) *
+                                            fe_values.shape_grad(j,q_point)) *
+                                           c * c) *
+                                          fe_values.JxW(q_point));
+
+                                                    // You might think
+                                                    // that we would
+                                                    // have to specify
+                                                    // which component
+                                                    // of the shape
+                                                    // function we'd
+                                                    // like to evaluate
+                                                    // when requesting
+                                                    // shape function
+                                                    // values or
+                                                    // gradients from
+                                                    // the FEValues
+                                                    // object. However,
+                                                    // as the shape
+                                                    // functions are
+                                                    // primitive, they
+                                                    // have only one
+                                                    // nonzero
+                                                    // component, and
+                                                    // the FEValues
+                                                    // class is smart
+                                                    // enough to figure
+                                                    // out that we are
+                                                    // definitely
+                                                    // interested in
+                                                    // this one nonzero
+                                                    // component.
+                 }
+             }
+         }
 
 
-                                            // These faces will
-                                            // certainly contribute
-                                            // to the off-diagonal
-                                            // blocks of the system
-                                            // matrix, so we ask the
-                                            // FEFaceValues object to
-                                            // provide us with the
-                                            // shape function values
-                                            // on this face:
-           fe_face_values.reinit (cell, face);
-
-
-                                            // Next, we loop through
-                                            // all DoFs of the
-                                            // current cell to find
-                                            // pairs that belong to
-                                            // different components
-                                            // and both have support
-                                            // on the current face:
-           for (unsigned int i=0; i<dofs_per_cell; ++i)
-             for (unsigned int j=0; j<dofs_per_cell; ++j)
-               if ((fe.system_to_component_index(i).first != 
-                    fe.system_to_component_index(j).first) &&
-                   fe.has_support_on_face(i, face) &&
-                   fe.has_support_on_face(j, face))
-                                                  // The check
-                                                  // whether shape
-                                                  // functions have
-                                                  // support on a
-                                                  // face is not
-                                                  // strictly
-                                                  // necessary: if we
-                                                  // don't check for
-                                                  // it we would
-                                                  // simply add up
-                                                  // terms to the
-                                                  // local cell
-                                                  // matrix that
-                                                  // happen to be
-                                                  // zero because at
-                                                  // least one of the
-                                                  // shape functions
-                                                  // happens to be
-                                                  // zero. However,
-                                                  // we can save that
-                                                  // work by adding
-                                                  // the checks
-                                                  // above.
-
-                                                  // In either case,
-                                                  // these DoFs will
-                                                  // contribute to
-                                                  // the boundary
-                                                  // integrals in the
-                                                  // off-diagonal
-                                                  // blocks of the
-                                                  // system
-                                                  // matrix. To
-                                                  // compute the
-                                                  // integral, we
-                                                  // loop over all
-                                                  // the quadrature
-                                                  // points on the
-                                                  // face and sum up
-                                                  // the contribution
-                                                  // weighted with
-                                                  // the quadrature
-                                                  // weights that the
-                                                  // face quadrature
-                                                  // rule provides.
-                                                  // In contrast to
-                                                  // the entries on
-                                                  // the diagonal
-                                                  // blocks, here it
-                                                  // does matter
-                                                  // which one of the
-                                                  // shape functions
-                                                  // is a $\psi$ and
-                                                  // which one is a
-                                                  // $\phi$, since
-                                                  // that will
-                                                  // determine the
-                                                  // sign of the
-                                                  // entry.  We
-                                                  // account for this
-                                                  // by a simple
-                                                  // conditional
-                                                  // statement that
-                                                  // determines the
-                                                  // correct
-                                                  // sign. Since we
-                                                  // already checked
-                                                  // that DoF $i$ and
-                                                  // $j$ belong to
-                                                  // different
-                                                  // components, it
-                                                  // suffices here to
-                                                  // test for one of
-                                                  // them to which
-                                                  // component it
-                                                  // belongs.
-                 for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
-                   cell_matrix(i,j) += ((fe.system_to_component_index(i).first == 0) ? -1 : 1) * 
-                                       fe_face_values.shape_value(i,q_point) *
-                                       fe_face_values.shape_value(j,q_point) *
-                                       c *
-                                       omega *
-                                       fe_face_values.JxW(q_point);
-         }
+                                        // We also have to add contributions
+                                        // due to boundary terms. To this end,
+                                        // we loop over all faces of the
+                                        // current cell and see if first it is
+                                        // at the boundary, and second has the
+                                        // correct boundary indicator
+                                        // associated with $\Gamma_2$, the
+                                        // part of the boundary where we have
+                                        // absorbing boundary conditions:
+       for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+         if (cell->face(face)->at_boundary() &&
+             (cell->face(face)->boundary_indicator() == 0) )
+           {
 
-                                      // Now we are done with this
-                                      // cell and have to transfer
-                                      // its contributions from the
-                                      // local to the global system
-                                      // matrix. To this end, we
-                                      // first get a list of the
-                                      // global indices of the this
-                                      // cells DoFs...
-      cell->get_dof_indices (local_dof_indices);
-
-
-                                      // ...and then add the entries to
-                                      // the system matrix one by
-                                      // one:
-      for (unsigned int i=0; i<dofs_per_cell; ++i)
-       for (unsigned int j=0; j<dofs_per_cell; ++j)
-         system_matrix.add (local_dof_indices[i],
-                            local_dof_indices[j],
-                            cell_matrix(i,j));
-    }
 
+                                              // These faces will
+                                              // certainly contribute
+                                              // to the off-diagonal
+                                              // blocks of the system
+                                              // matrix, so we ask the
+                                              // FEFaceValues object to
+                                              // provide us with the
+                                              // shape function values
+                                              // on this face:
+             fe_face_values.reinit (cell, face);
+
+
+                                              // Next, we loop through
+                                              // all DoFs of the
+                                              // current cell to find
+                                              // pairs that belong to
+                                              // different components
+                                              // and both have support
+                                              // on the current face:
+             for (unsigned int i=0; i<dofs_per_cell; ++i)
+               for (unsigned int j=0; j<dofs_per_cell; ++j)
+                 if ((fe.system_to_component_index(i).first !=
+                      fe.system_to_component_index(j).first) &&
+                     fe.has_support_on_face(i, face) &&
+                     fe.has_support_on_face(j, face))
+                                                    // The check
+                                                    // whether shape
+                                                    // functions have
+                                                    // support on a
+                                                    // face is not
+                                                    // strictly
+                                                    // necessary: if we
+                                                    // don't check for
+                                                    // it we would
+                                                    // simply add up
+                                                    // terms to the
+                                                    // local cell
+                                                    // matrix that
+                                                    // happen to be
+                                                    // zero because at
+                                                    // least one of the
+                                                    // shape functions
+                                                    // happens to be
+                                                    // zero. However,
+                                                    // we can save that
+                                                    // work by adding
+                                                    // the checks
+                                                    // above.
+
+                                                    // In either case,
+                                                    // these DoFs will
+                                                    // contribute to
+                                                    // the boundary
+                                                    // integrals in the
+                                                    // off-diagonal
+                                                    // blocks of the
+                                                    // system
+                                                    // matrix. To
+                                                    // compute the
+                                                    // integral, we
+                                                    // loop over all
+                                                    // the quadrature
+                                                    // points on the
+                                                    // face and sum up
+                                                    // the contribution
+                                                    // weighted with
+                                                    // the quadrature
+                                                    // weights that the
+                                                    // face quadrature
+                                                    // rule provides.
+                                                    // In contrast to
+                                                    // the entries on
+                                                    // the diagonal
+                                                    // blocks, here it
+                                                    // does matter
+                                                    // which one of the
+                                                    // shape functions
+                                                    // is a $\psi$ and
+                                                    // which one is a
+                                                    // $\phi$, since
+                                                    // that will
+                                                    // determine the
+                                                    // sign of the
+                                                    // entry.  We
+                                                    // account for this
+                                                    // by a simple
+                                                    // conditional
+                                                    // statement that
+                                                    // determines the
+                                                    // correct
+                                                    // sign. Since we
+                                                    // already checked
+                                                    // that DoF $i$ and
+                                                    // $j$ belong to
+                                                    // different
+                                                    // components, it
+                                                    // suffices here to
+                                                    // test for one of
+                                                    // them to which
+                                                    // component it
+                                                    // belongs.
+                   for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
+                     cell_matrix(i,j) += ((fe.system_to_component_index(i).first == 0) ? -1 : 1) *
+                                         fe_face_values.shape_value(i,q_point) *
+                                         fe_face_values.shape_value(j,q_point) *
+                                         c *
+                                         omega *
+                                         fe_face_values.JxW(q_point);
+           }
 
-                                  // The only thing left are the
-                                  // Dirichlet boundary values on
-                                  // $\Gamma_1$, which is
-                                  // characterized by the boundary
-                                  // indicator 1. The Dirichlet
-                                  // values are provided by the
-                                  // <code>DirichletBoundaryValues</code>
-                                  // class we defined above:
-  std::map<unsigned int,double> boundary_values;
-  VectorTools::interpolate_boundary_values (dof_handler,
-                                           1,
-                                           DirichletBoundaryValues<dim>(),
-                                           boundary_values);
-
-  MatrixTools::apply_boundary_values (boundary_values,
-                                     system_matrix,
-                                     solution,
-                                     system_rhs);
-
-  timer.stop ();
-  deallog << "done (" 
-         << timer()
-         << "s)" 
-         << std::endl;
-}
+                                        // Now we are done with this
+                                        // cell and have to transfer
+                                        // its contributions from the
+                                        // local to the global system
+                                        // matrix. To this end, we
+                                        // first get a list of the
+                                        // global indices of the this
+                                        // cells DoFs...
+       cell->get_dof_indices (local_dof_indices);
+
+
+                                        // ...and then add the entries to
+                                        // the system matrix one by
+                                        // one:
+       for (unsigned int i=0; i<dofs_per_cell; ++i)
+         for (unsigned int j=0; j<dofs_per_cell; ++j)
+           system_matrix.add (local_dof_indices[i],
+                              local_dof_indices[j],
+                              cell_matrix(i,j));
+      }
+
+
+                                    // The only thing left are the
+                                    // Dirichlet boundary values on
+                                    // $\Gamma_1$, which is
+                                    // characterized by the boundary
+                                    // indicator 1. The Dirichlet
+                                    // values are provided by the
+                                    // <code>DirichletBoundaryValues</code>
+                                    // class we defined above:
+    std::map<unsigned int,double> boundary_values;
+    VectorTools::interpolate_boundary_values (dof_handler,
+                                             1,
+                                             DirichletBoundaryValues<dim>(),
+                                             boundary_values);
+
+    MatrixTools::apply_boundary_values (boundary_values,
+                                       system_matrix,
+                                       solution,
+                                       system_rhs);
+
+    timer.stop ();
+    deallog << "done ("
+           << timer()
+           << "s)"
+           << std::endl;
+  }
 
 
 
-                                // @sect4{<code>UltrasoundProblem::solve</code>}
-                               
-                                // As already mentioned in the
-                                // introduction, the system matrix is
-                                // neither symmetric nor definite,
-                                // and so it is not quite obvious how
-                                // to come up with an iterative
-                                // solver and a preconditioner that
-                                // do a good job on this matrix.  We
-                                // chose instead to go a different
-                                // way and solve the linear system
-                                // with the sparse LU decomposition
-                                // provided by UMFPACK. This is often
-                                // a good first choice for 2D
-                                // problems and works reasonably well
-                                // even for a large number of DoFs.
-                                // The deal.II interface to UMFPACK
-                                // is given by the
-                                // SparseDirectUMFPACK class, which
-                                // is very easy to use and allows us
-                                // to solve our linear system with
-                                // just 3 lines of code.
-
-                                // Note again that for compiling this
-                                // example program, you need to have
-                                // the deal.II library built with
-                                // UMFPACK support, which can be
-                                // achieved by providing the <code>
-                                // --with-umfpack</code> switch to
-                                // the configure script prior to
-                                // compilation of the library.
-template <int dim>
-void UltrasoundProblem<dim>::solve ()
-{
-  deallog << "Solving linear system... ";
-  Timer timer;
-  timer.start ();
-
-                                  // The code to solve the linear
-                                  // system is short: First, we
-                                  // allocate an object of the right
-                                  // type. The following
-                                  // <code>initialize</code> call
-                                  // provides the matrix that we
-                                  // would like to invert to the
-                                  // SparseDirectUMFPACK object, and
-                                  // at the same time kicks off the
-                                  // LU-decomposition. Hence, this is
-                                  // also the point where most of the
-                                  // computational work in this
-                                  // program happens.
-  SparseDirectUMFPACK  A_direct;
-  A_direct.initialize(system_matrix);
-
-                                  // After the decomposition, we can
-                                  // use <code>A_direct</code> like a
-                                  // matrix representing the inverse
-                                  // of our system matrix, so to
-                                  // compute the solution we just
-                                  // have to multiply with the right
-                                  // hand side vector:
-  A_direct.vmult (solution, system_rhs);
-
-  timer.stop ();
-  deallog << "done (" 
-         << timer ()
-         << "s)" 
-         << std::endl;
-}
+                                  // @sect4{<code>UltrasoundProblem::solve</code>}
+
+                                  // As already mentioned in the
+                                  // introduction, the system matrix is
+                                  // neither symmetric nor definite,
+                                  // and so it is not quite obvious how
+                                  // to come up with an iterative
+                                  // solver and a preconditioner that
+                                  // do a good job on this matrix.  We
+                                  // chose instead to go a different
+                                  // way and solve the linear system
+                                  // with the sparse LU decomposition
+                                  // provided by UMFPACK. This is often
+                                  // a good first choice for 2D
+                                  // problems and works reasonably well
+                                  // even for a large number of DoFs.
+                                  // The deal.II interface to UMFPACK
+                                  // is given by the
+                                  // SparseDirectUMFPACK class, which
+                                  // is very easy to use and allows us
+                                  // to solve our linear system with
+                                  // just 3 lines of code.
+
+                                  // Note again that for compiling this
+                                  // example program, you need to have
+                                  // the deal.II library built with
+                                  // UMFPACK support, which can be
+                                  // achieved by providing the <code>
+                                  // --with-umfpack</code> switch to
+                                  // the configure script prior to
+                                  // compilation of the library.
+  template <int dim>
+  void UltrasoundProblem<dim>::solve ()
+  {
+    deallog << "Solving linear system... ";
+    Timer timer;
+    timer.start ();
+
+                                    // The code to solve the linear
+                                    // system is short: First, we
+                                    // allocate an object of the right
+                                    // type. The following
+                                    // <code>initialize</code> call
+                                    // provides the matrix that we
+                                    // would like to invert to the
+                                    // SparseDirectUMFPACK object, and
+                                    // at the same time kicks off the
+                                    // LU-decomposition. Hence, this is
+                                    // also the point where most of the
+                                    // computational work in this
+                                    // program happens.
+    SparseDirectUMFPACK  A_direct;
+    A_direct.initialize(system_matrix);
+
+                                    // After the decomposition, we can
+                                    // use <code>A_direct</code> like a
+                                    // matrix representing the inverse
+                                    // of our system matrix, so to
+                                    // compute the solution we just
+                                    // have to multiply with the right
+                                    // hand side vector:
+    A_direct.vmult (solution, system_rhs);
+
+    timer.stop ();
+    deallog << "done ("
+           << timer ()
+           << "s)"
+           << std::endl;
+  }
 
 
 
-                                // @sect4{<code>UltrasoundProblem::output_results</code>}
-
-                                // Here we output our solution $v$
-                                // and $w$ as well as the derived
-                                // quantity $|u|$ in the format
-                                // specified in the parameter
-                                // file. Most of the work for
-                                // deriving $|u|$ from $v$ and $w$
-                                // was already done in the
-                                // implementation of the
-                                // <code>ComputeIntensity</code>
-                                // class, so that the output routine
-                                // is rather straightforward and very
-                                // similar to what is done in the
-                                // previous tutorials.
-template <int dim>
-void UltrasoundProblem<dim>::output_results () const
-{
-  deallog << "Generating output... ";
-  Timer timer;
-  timer.start ();
+                                  // @sect4{<code>UltrasoundProblem::output_results</code>}
 
-                                  // Define objects of our
-                                  // <code>ComputeIntensity</code>
-                                  // class and a DataOut object:
-  ComputeIntensity<dim> intensities;
-  DataOut<dim> data_out;
-
-  data_out.attach_dof_handler (dof_handler);
-
-                                  // Next we query the output-related
-                                  // parameters from the
-                                  // ParameterHandler.  The
-                                  // DataOut::parse_parameters call
-                                  // acts as a counterpart to the
-                                  // DataOutInterface<1>::declare_parameters
-                                  // call in
-                                  // <code>ParameterReader::declare_parameters</code>. It
-                                  // collects all the output format
-                                  // related parameters from the
-                                  // ParameterHandler and sets the
-                                  // corresponding properties of the
-                                  // DataOut object accordingly.
-  prm.enter_subsection("Output parameters");
-
-  const std::string output_file    = prm.get("Output file");
-  data_out.parse_parameters(prm);
-
-  prm.leave_subsection ();
-
-                                  // Now we put together the filename from
-                                  // the base name provided by the
-                                  // ParameterHandler and the suffix which is
-                                  // provided by the DataOut class (the
-                                  // default suffix is set to the right type
-                                  // that matches the one set in the .prm
-                                  // file through parse_parameters()):
-  const std::string filename = output_file +
-                              data_out.default_suffix();
-
-  std::ofstream output (filename.c_str());
-
-                                  // The solution vectors $v$ and $w$
-                                  // are added to the DataOut object
-                                  // in the usual way:
-  std::vector<std::string> solution_names;
-  solution_names.push_back ("Re_u");
-  solution_names.push_back ("Im_u");
-
-  data_out.add_data_vector (solution, solution_names);
-
-                                  // For the intensity, we just call
-                                  // <code>add_data_vector</code>
-                                  // again, but this with our
+                                  // Here we output our solution $v$
+                                  // and $w$ as well as the derived
+                                  // quantity $|u|$ in the format
+                                  // specified in the parameter
+                                  // file. Most of the work for
+                                  // deriving $|u|$ from $v$ and $w$
+                                  // was already done in the
+                                  // implementation of the
                                   // <code>ComputeIntensity</code>
-                                  // object as the second argument,
-                                  // which effectively adds $|u|$ to
-                                  // the output data:
-  data_out.add_data_vector (solution, intensities);
-
-                                  // The last steps are as before. Note
-                                  // that the actual output format is
-                                  // now determined by what is stated in
-                                  // the input file, i.e. one can change
-                                  // the output format without having to
-                                  // re-compile this program:
-  data_out.build_patches ();
-  data_out.write (output);
-
-  timer.stop ();
-  deallog << "done (" 
-         << timer()
-         << "s)"
-         << std::endl;
-}
+                                  // class, so that the output routine
+                                  // is rather straightforward and very
+                                  // similar to what is done in the
+                                  // previous tutorials.
+  template <int dim>
+  void UltrasoundProblem<dim>::output_results () const
+  {
+    deallog << "Generating output... ";
+    Timer timer;
+    timer.start ();
+
+                                    // Define objects of our
+                                    // <code>ComputeIntensity</code>
+                                    // class and a DataOut object:
+    ComputeIntensity<dim> intensities;
+    DataOut<dim> data_out;
+
+    data_out.attach_dof_handler (dof_handler);
+
+                                    // Next we query the output-related
+                                    // parameters from the
+                                    // ParameterHandler.  The
+                                    // DataOut::parse_parameters call
+                                    // acts as a counterpart to the
+                                    // DataOutInterface<1>::declare_parameters
+                                    // call in
+                                    // <code>ParameterReader::declare_parameters</code>. It
+                                    // collects all the output format
+                                    // related parameters from the
+                                    // ParameterHandler and sets the
+                                    // corresponding properties of the
+                                    // DataOut object accordingly.
+    prm.enter_subsection("Output parameters");
+
+    const std::string output_file    = prm.get("Output file");
+    data_out.parse_parameters(prm);
+
+    prm.leave_subsection ();
+
+                                    // Now we put together the filename from
+                                    // the base name provided by the
+                                    // ParameterHandler and the suffix which is
+                                    // provided by the DataOut class (the
+                                    // default suffix is set to the right type
+                                    // that matches the one set in the .prm
+                                    // file through parse_parameters()):
+    const std::string filename = output_file +
+                                data_out.default_suffix();
+
+    std::ofstream output (filename.c_str());
+
+                                    // The solution vectors $v$ and $w$
+                                    // are added to the DataOut object
+                                    // in the usual way:
+    std::vector<std::string> solution_names;
+    solution_names.push_back ("Re_u");
+    solution_names.push_back ("Im_u");
+
+    data_out.add_data_vector (solution, solution_names);
+
+                                    // For the intensity, we just call
+                                    // <code>add_data_vector</code>
+                                    // again, but this with our
+                                    // <code>ComputeIntensity</code>
+                                    // object as the second argument,
+                                    // which effectively adds $|u|$ to
+                                    // the output data:
+    data_out.add_data_vector (solution, intensities);
+
+                                    // The last steps are as before. Note
+                                    // that the actual output format is
+                                    // now determined by what is stated in
+                                    // the input file, i.e. one can change
+                                    // the output format without having to
+                                    // re-compile this program:
+    data_out.build_patches ();
+    data_out.write (output);
+
+    timer.stop ();
+    deallog << "done ("
+           << timer()
+           << "s)"
+           << std::endl;
+  }
 
 
 
-                                // @sect4{<code>UltrasoundProblem::run</code>}
-                                // Here we simply execute our
-                                // functions one after the other:
-template <int dim>
-void UltrasoundProblem<dim>::run () 
-{
-  make_grid ();
-  setup_system ();
-  assemble_system ();
-  solve ();
-  output_results ();
+                                  // @sect4{<code>UltrasoundProblem::run</code>}
+                                  // Here we simply execute our
+                                  // functions one after the other:
+  template <int dim>
+  void UltrasoundProblem<dim>::run ()
+  {
+    make_grid ();
+    setup_system ();
+    assemble_system ();
+    solve ();
+    output_results ();
+  }
 }
 
 
@@ -1442,10 +1445,13 @@ void UltrasoundProblem<dim>::run ()
                                 // values so read are then handed over
                                 // to an instance of the
                                 // UltrasoundProblem class:
-int main () 
+int main ()
 {
   try
     {
+      using namespace dealii;
+      using namespace Step29;
+
       ParameterHandler  prm;
       ParameterReader   param(prm);
       param.read_parameters("step-29.prm");
@@ -1465,7 +1471,7 @@ int main ()
                << std::endl;
       return 1;
     }
-  catch (...) 
+  catch (...)
     {
       std::cerr << std::endl << std::endl
                << "----------------------------------------------------"

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.