* to true. If you find this to be case, than you can further refine
* the computation of the center by setting to true the second
* additional parameter @p use_laplace_transformation, which will
- * force this function to compute the center performing a Laplace
- * transformation on all bounding support points. The Laplace
- * transformation is computed similarly to what happens in
- * @p{MappingQ::set_laplace_on_vector}.
+ * force this function to compute the location of the center by
+ * solving a linear elasticity problem with Dirichlet boundary
+ * conditions set to the location of the bounding vertices and the
+ * centers of the bounding lines and quads.
*/
Point<spacedim> center (const bool respect_manifold=false,
const bool use_laplace_transformation=false) const;
}
template <int dim, int spacedim>
- Point<spacedim> get_new_point_on_obj(const TriaAccessor<1, dim, spacedim> &obj)
+ Point<spacedim> get_new_point_on_object(const TriaAccessor<1, dim, spacedim> &obj)
{
TriaIterator<TriaAccessor<1,dim,spacedim> > it(obj);
return obj.get_manifold().get_new_point_on_line(it);
}
template <int dim, int spacedim>
- Point<spacedim> get_new_point_on_obj(const TriaAccessor<2, dim, spacedim> &obj)
+ Point<spacedim> get_new_point_on_object(const TriaAccessor<2, dim, spacedim> &obj)
{
TriaIterator<TriaAccessor<2,dim,spacedim> > it(obj);
return obj.get_manifold().get_new_point_on_quad(it);
}
template <int dim, int spacedim>
- Point<spacedim> get_new_point_on_obj(const TriaAccessor<3, dim, spacedim> &obj)
+ Point<spacedim> get_new_point_on_object(const TriaAccessor<3, dim, spacedim> &obj)
{
TriaIterator<TriaAccessor<3,dim,spacedim> > it(obj);
return obj.get_manifold().get_new_point_on_hex(it);